
Fast Iterative Methods for
Solving Large Systems Arising

from Variational Models in
Image Processing

Thesis submitted in accordance with the requirements of the
University of Liverpool for the degree of Doctor in Philosophy by

Joseph David Savage.

May 2006

Contents

Acknowledgements vii

Abstract viii

Publications ix

List of Figures x

List of Tables xii

List of Algorithms xiv

List of Abbreviations xvi

1 Introduction 1

2 Mathematical Preliminaries and Multigrid Methods 6
2.1 Normed S p aces.. 7

2.1.1 Sequences and Convergence.. 9
2.1.2 Open and Closed S e t s 10
2.1.3 Banach and Hilbert S p a ce s .. 10

2.2 O perators... 11
2.2.1 Linear Operators.. 12
2.2.2 Compact O p era to rs .. 13
2.2.3 Operators on Hilbert Spaces.. 13

2.3 Inverse and Ill-Posed Problems and Regularization.. 15
2.3.1 111-Posed Problems and the Generalized Inverse.. 15
2.3.2 Compact Operators and Singular System s... 17
2.3.3 Regularization S ch em es.. 18
2.3.4 Generalized Tikhonov Regularization.. 19

2.4 Discrete PDEs and Notation ... 20

i

2.4.1 Stencil N o ta t io n .. 23
2.4.2 Matrix N o ta tio n .. 23
2.4.3 Boundary Conditions ... 24
2.4.4 Nonlinear Equations.. 25

2.5 Basic Iterative M eth od s .. 25
2.5.1 The Jacobi Method .. 26
2.5.2 Gauss Seidel M ethod.. 28
2.5.3 SOR Methods.. 29
2.5.4 Block M eth ods... 29
2.5.5 Convergence .. 30
2.5.6 Implementation... 34
2.5.7 Local Nonlinear Relaxation M ethods.. 36

2.6 Multigrid M eth ods... 38
2.6.1 Basic Principles of Multigrid .. 38
2.6.2 C oarsening... 39
2.6.3 Intergrid Transfers... 40
2.6.4 Smoothing A n a ly s is .. 45
2.6.5 Coarse Grid Correction schem e... 52
2.6.6 Multigrid M ethods... 54
2.6.7 The Multigrid O perator.. 55
2.6.8 Non-Linear Multigrid ... 56
2.6.9 Krylov Acceleration of Nonlinear M ultigrid .. 58
2.6.10 Multilevel Nonlinear M e th o d .. 61
2.6.11 Multigrid Convergence... 62
2.6.12 Storage and Computational C o s t .. 64
2.6.13 Nested Iteration .. 65

2.7 Algebraic Multigrid.. 66
2.7.1 Neighbours and strong connections... 67
2.7.2 The AMG setup phase... 67
2.7.3 The Variational P rin cip le ... 68
2.7.4 Algebraically smooth error .. 71
2.7.5 The coarse and fine level splitting ... 72
2.7.6 Interpolation O perators.. 74

3 Total-Variation Based Image Restoration 79
3.1 What is an Image ? ... 80
3.2 Image R econstruction.. 81
3.3 Theory of Total Variation Regularization .. 84

3.3.1 The space of functions of Bounded V a ria tion .. 85

ii

3.3.2 The Dual Formulation.. 85
3.4 Properties of Total-Variation Regularization.. 87

3.4.1 Scale and a .. 88
3.4.2 Smooth functions and Staircasing.. 90

3.5 Discretization of the TV Problem ... 92
3.5.1 Alternative N otation.. 94
3.5.2 Alternative Discretizations .. 95

3.6 Solving the TV Problem .. 97
3.6.1 Explicit Time M arching.. 97
3.6.2 The Fixed Point Method .. 98
3.6.3 Newton’s M ethod.. 99
3.6.4 The Primal-Dual Newton Method .. 100
3.6.5 Dual Approaches..101
3.6.6 Multilevel Approaches...102
3.6.7 Active Set Methods ..102

3.7 Measuring Image Quality: SNR and P S N R ... 102
3.8 Beyond The ROF M odel..103

4 A Nonlinear Multigrid Method For Total Variation Denoising 105
4.1 Choice of Smoother... 105

4.1.1 Gauss-Seidel Newton..106
4.1.2 Local Linear Smoother...107
4.1.3 Global Linear Sm oother..108
4.1.4 Further Experiments..108

4.2 The Multigrid M eth od ... 110
4.2.1 C om plexity... 112

4.3 Numerical R e s u lts ... 112
4.3.1 Comparison of Various S m ooth ers... 112
4.3.2 Krylov A cceleration ..117
4.3.3 Comparison with Other M ethods.. 117
4.3.4 Noisier Im a g e s ... 118
4.3.5 Performance with Respect to 0h .. 121

4.4 Conclusion ..122

5 An Efficient Implementation of the Fixed Point Method with A M G Linear
Solver 123
5.1 The Fixed Point M ethod.. 123
5.2 Linear Solvers... 124

5.2.1 PCG with Incomplete Cholesky Preconditioner... 124

iii

5.2.2 Geometric M ultigrid..125
5.2.3 Algebraic Multigrid ..126
5.2.4 How Linear Solvers Perform... 126

5.3 Recycling of AMG Setup Data Within the Fixed Point M eth od129
5.3.1 M otiva tion ... 129
5.3.2 Preliminary Experiments ...129
5.3.3 The New M ethod..132

5.4 Numerical R e su lts ... 134
5.5 Conclusion ..138

6 Multigrid Methods for Staircase Reducing Denoising 140
6.1 Reducing Staircasing: An Overview... 141

6.1.1 Higher Order M odels.. 141
6.1.2 Combining TV and H 1 ... 142
6.1.3 Other Ways to Reduce Staircasing...142

6.2 A class of PDE models from combining TV and H 1 norms...................................143
6.2.1 Model 1 ..143
6.2.2 Model 2 .. ’.. 143
6.2.3 Model 3 ... 144
6.2.4 Model 4 ... 145

6.3 Solving the PD E s.. 145
6.4 Discretization...146
6.5 Algorithms ..147

6.5.1 Time M arching... 147
6.5.2 Fixed Point M e th o d ..147
6.5.3 Nonlinear Conjugate Gradient ... 148
6.5.4 Nonlinear M u ltig rid ..148

6.6 Implementation Issues and Numerical R esults.. 149
6.6.1 Model 1 ..151
6.6.2 Model 2 ..154
6.6.3 Model 3 ..155
6.6.4 Model 4 ..160

6.7 Conclusion ..161

7 Models and Solvers for Image Deblurring 163
7.1 Toeplitz and Circulant Matrices and the D F T .. 164

7.1.1 The Discrete Fourier Transform... 164
7.1.2 The Fast Fourier Transform..165
7.1.3 Toeplitz and Circulant Matrices .. 166

iv

7.1.4 T. Chans Circulant Approximation... 170
7.2 Discretization...171
7.3 Solving The Euler-Lagrange E q u a tion ..172
7.4 An Alternative Two-Step Deblurring M o d e l..173
7.5 New Solvers for TV Deblurring.. 175
7.6 Numerical R e s u lts ... 176

7.6.1 Choice of a ... 176
7.6.2 Cost Analysis.. 177
7.6.3 Comparison of new Methods with the Fixed Point M e t h o d178

7.7 Conclusion ..181

8 Future W ork 182

A Optim ization 184
A .l Optimization Problems... 184

A. 1.1 Unconstrained Optimization... 184
A.1.2 Constrained Optimization...185

A.2 Existence of M in im a 185
A.3 Optimality Conditions For Unconstrained M inim ization.................................. 186

A.3.1 The Frechet Derivative...187
A.3.2 The Gateaux Derivative... 188
A.3.3 Necessary Conditions ...190
A.3.4 Sufficient C on d it ion ..191

A.4 Convex Optimization.. 191
A.4.1 Duality T h eory ... 194

A.5 Optimality Conditions for Constrained P rob lem s...195
A.6 Optimization Methods: Steepest Descent and Conjugate G ra d ie n t................... 196

A.6.1 Steepest D escen t..196
A.6.2 The Method of Conjugate Directions..198
A.6.3 The Conjugate Gradient M eth od ..201
A.6.4 General Steepest Descent and Global Optimization M e th o d s205
A.6.5 Nonlinear Conjugate Gradient ... 207

A. 7 Multilevel O ptim ization.. 207
A.7.1 Multigrid Optimization based on F A S ...207
A. 7.2 Chan and Chen’s Multilevel Optimization...210

B Cost Estim ate For the A M G M eth od 212
B. l The AMG setup phase..213

B. 1.1 Cost of Finding Neighbours and Strong Connections............................ 213

v

B.1.2 The C /F splitting algorithm... 213
B.1.3 The Direct Interpolation... 214
B.1.4 Cost of Forming the Galerkin Matrix RAP ... 214
B.1.5 Overall Cost ..214

B.2 The V-Cycle ..214
B.3 Cost Comparison... 215

Bibliography 216

Acknowledgements

I would like to thank my supervisor Dr Ke Chen for his support throughout my time as
a PhD student and for giving me the opportunity to undertake this project in the first
place. I would also like to thank several other postgrads and postdocs, Dr Stuart Hawkins,
Dr Martyn Hughes, Dr Anwar Hussein and Dr Kamal Shanazari, who offered me advice
on various aspects of studying for a PhD. I would specifically like to thank Dr Hughes for
allowing me to use his latex template for writing this thesis. I also acknowledge the useful
input of Prof. Li Wei-Guo, who worked in collaboration with myself and Dr Chen during a
one year visit to Liverpool from Dong-ying in China.

Funding from the EPSRC and the support of the Department of Mathematical Sciences at
the University of Liverpool is acknowledged. I also acknowledge the use of image generation
MATLAB codes provided to my supervisor by Hao Min Zhou (while at UCLA) and some
1-d data and programs provided by Antonio Marquina (Universität de Valencia). Use was
also made of the resources available at h ttp : / / www.math.montana. edu/~vogel,
h ttp : //www. c s . uiowa. edu/~dstewart/classes/22m l74-2000/22m l74. html and
http://w w w .siam .org/books/fr23 when writing MATLAB codes.

Last but not least I would like to thank my family for their continuing support throughout
this process.

vii

http://www.math.montana
http://www.siam.org/books/fr23

Abstract

This thesis is concerned with the development of fast iterative methods for the numerical solu
tion of nonlinear partial differential equations, which result from the application of Tikhonov
regularization to image restoration problems.

The majority of the work is concerned with image denoising using the total variation
regularization functional, well known for its edge capturing properties. A nonlinear multigrid
(FAS) method with a new smoother is developed. Numerical results showing the effectiveness
of the method over nonlinear multigrid with other smoothers and over other existing iterative
methods are presented. Unfortunately the nonlinear multigrid method does not perform well
when a perturbing parameter 0 is taken too small. A method which is more robust with
respect to 0 is the fixed point method with algebraic multigrid linear solver, a technique for
accelerating this method by recycling algebraic multigrid setup data is also presented.

In later chapters an attempt is made to extend the use of the nonlinear multigrid method
to several other denoising models, which use alternative regularization functionals designed
to reduce the staircasing effect seen in images denoised using the total variation regularization
functional. The nonlinear multigrid method is shown to be particularly effective in one of
the cases. Also presented are iterative methods for solving the equations associated with the
deblurring and denoising of an image with total variation regularization. Results showing
the possible advantage of these methods in problems with heavy noise and moderate blur are
presented.

viii

Publications

1. J. Savage, K. Chen, On Multigrids for Solving a Class of Improved Total Variation
Based Staircasing Reduction Models, To appear in the proceedings of the International
Conference on PDE-Based Image Processing and Related Inverse Problems, CMA Oslo,
Springer-Verlag, 2006.

2. J. Savage, K. Chen, An Accelerated Algebraic Multigrid Algorithm for Total-Variation
Denoising, Submitted to BIT, 2006.

3. K. Chen, J. Savage, On Two New and Nonlinear Iterative Methods for Total-Variation
Based Image Deblurring, in Proceedings of the Fifth UK Conference on Boundary
Integral Methods, K. Chen, ed., 2005.

4. J. Savage, K. Chen, An improved and accelerated Nonlinear Multigrid Method for Total-
Variation Denoising, International Journal of Computer Mathematics., 82, No 8, Au
gust 2005, pp. 1001-1015.

5. J. Savage, K. Chen, Accelerated Iterative Methods for Solving an Inverse Problem Aris
ing from Image Restoration, in Proceedings of the Fourth UK Conference on Boundary
Integral Methods, S. Amini, ed., 2003.

IX

List of Figures

2.1 Vertex-centered (left) and cell-centered (right) discretizations of a square domain
2.2 Red-Black ordering of grid points: red points are shown as squares, black

points are shown as stars ...
2.3 Fine and coarse grids in the vertex centered case (left) and the cell-centered

case (right). Coarse grid lines are full, additional fine grid lines are dashed.
Stars are fine grid points, diamonds are coarse grid points in the cell-centered
case and points which are both coarse and fine in the vertex centered case. .

2.4 Weighted Jacobi for Poisson’s equation on a 31 x 31 grid: original error (left)
and error after 20 steps of weighted Jacobi with u> = 4/5 (centre) and w = 1
(r ig h t)...

3.1 Four example images: clockwise from top left, the blocky triangle image, the
X-ray type fingers image, the realistic Lenna image and a simulated image of
a satellite..

3.2 Examples of noisy and blurred and noisy im a g e s ...
3.3 Noise removal with TV (left) and H 1 (right) regularization functionals, the

observed image is the one seen in Figure 3.2. Note the sharper edges in the
TV case...

3.4 Clockwise from top left, a signal with boundary extremum and stepped regions,
a noisy version of the signal, the result (dashed line) of applying total-variation
regularization to the noisy signal and the result of applying total variation
regularization to the true signal with the same a ...

3.5 From Left to right and down, the original image in mesh plot form and the
effect of total variation with increasing values of a ..

3.6 The effect of staircasing in one and two dimensions. True signal/image (left),
noisy observed signal/image (middle) and recovered signal/image using total-
variation regularization (right) ..

4.1 Noisy (top) and recovered (bottom) triangle, Lenna and fingers images

22

35

40

50

80
82

84

89

91

92

116

x

4.2 Noisy (top) and recovered (bottom) triangle and Lenna images with high noise
levels.. 120

5.1 Convergence History of fixed point with AMG (circles) and peg with Cholinc(10~6)
(squares) with no Krylov acceleration (left) and Krylov acceleration (right) . 128

5.2 Strong connections (circles) and strong connections 10 steps ago (crosses) at
steps 11, 21, 31 and 41 of the fixed point m eth od ...133

6.1 A simple 1-d example of a staircased reconstruction (squares) which will have
a higher PSNR than the smooth reconstruction (stars), the smooth reconstruc
tion in this case has exactly the same gradient as the true solution (circles) . 150

6.2 Mesh plots of true (left) and noisy (right) Hump image..................................... 150
6.3 True (left) and noisy (right) Lenna im a g e ... 151
6.4 Prom top left to bottom right, the images recovered using TV, H 1, model 1

(p = 1.1), model 2, model 3 and model 4 .. 152
6.5 Plots of p against g for polynomial (full line) and quadratic (dashed line) from

2 and 1.5 (left), choice of Karkkainen and Majava (centre) and rational with
various values of k (right)..157

6.6 Prom left to right and down, 1-d slice of true image and images recovered using
TV, quadratic 2 and 1.5, polynomial 2 and 1.5, rational and km159

6.7 Close up of Lenna Image recovered using model 3 (left) and model 4 (centre),
with TV result (right) for comparison, notice the reduction in staircasing on
the face and shoulder.. 161

7.1 True image (left), blurred image (center) and PSF array (right) for triangle
image (top) and satellite image (bottom) ...176

7.2 Blurred triangle with 3 levels of noise, low noise (left) medium noise (centre)
and high noise (right), with images recovered using total variation deblurring
(second row) ...179

7.3 Blurred satellite with 3 levels of noise, low noise (left) medium noise (centre)
and high noise (right), with images recovered using total variation deblurring
(second row) ...180

xi

List of Tables

4.1 Comparison of Nonlinear Multigrid with various smoothers for Triangle Image 113
4.2 Comparison of Nonlinear Multigrid with various smoothers for Lenna Image . 114
4.3 Comparison of Nonlinear Multigrid with various smoothers for Fingers Image 115
4.4 Krylov Accelerated R e s u lts ..117
4.5 Comparisons with Primal-Dual Newton and Fixed P o in t.................................. 119
4.6 Comparison of Nonlinear multigrid versus primal-dual Newton and Fixed Point

for two noisier im a g e s ... 121

5.1 Average number of conjugate gradient steps needed per fixed point step for
various preconditioners and values of / ? / , .. 127

5.2 Average number of V-cycles needed per fixed point step for GMG and AMG
for various values of p h ...128

5.3 Fixed point with AMG data for various frequencies q of setup regeneration . 130
5.4 Efficiency of AMG recycling for q = 1 0 ... 132
5.5 Comparison of Fixed Point with AMG-R against Fixed Point with AMG for

Lenna image ...135
5.6 Comparison of Fixed Point with AMG-R against Fixed Point with AMG for

Fingers im age.. 136
5.7 Fixed Points steps on which AMG setups are performed for fixed point with

AMG-R(3) and AMG-R(IO) run on the fingers image, with various values of /3/,137
5.8 Comparison of Fixed Point with AMG-R against Fixed Point with AMG for

Noisier Lenna im a g e .. 138
5.9 Comparison of Fixed Point with AMG-R against Fixed Point with AMG for

512 x 512 Fingers im a g e .. 139

6.1 Comparison of Fixed Point, Time Marching and Nonlinear Multigrid for Model
1 with various choices of p and / ? ...153

6.2 Comparison of Fixed Point, Time Marching, Nonlinear Multigrid and Nonlin
ear Conjugate Gradient (NLCG) for Model 3 on the hump image (left) and
Lenna image (right) 155

6.3 Comparison of iterative solvers for various choices of p on hump image 158
6.4 Comparison of Fixed Point, time Marching and Nonlinear Multigrid for Model

4 on the hump image (left) and Lenna image (r ig h t) .. 160

7.1 Costs associated with implementing fixed point method and methods 1 and 2 178
7.2 Comparison of Method 1, Method 2 and Fixed Point method for blurred tri

angle with 3 levels of noise.. 180
7.3 Comparison of Method 1, Method 2 and Fixed Point method for blurred satel

lite with 3 levels of noise..181

xiii

List of Algorithms

1 Jacobi M e th o d ... 27
2 Coarse Grid Correction .. 53
3 MfJ-h.. 54
4 FAS T w o -G r id ... 57
5 F A S .. 59
6 MNM Two-Grid .. 63
7 Nested Iteration ... 66
8 AM G n(k) ... 69
9 C/F-Splitting Algorithm.. 73
10 Post C/F-Splitting Algorithm ... 74
11 Gauss-Seidel N ew ton.. 107
12 Local Linear Smoother...108
13 FPGS S m ooth er .. 109
14 Nonlinear Multigrid for TV P rob lem .. I l l
15 FAS1t v ..I l l
16 Fixed P o in t ..124
17 Fixed Point with A M G -R ...134
18 Time M arching... 147
19 Fixed P o in t ..148
20 Nonlinear Conjugate Gradient...148
21 Nonlinear Multigrid M ethod..149
22 BTTB Matrix Vector Products Using Circulant Extension...................................170
23 Steepest Descent for Quadratic Problems ...197
24 The Conjugate Gradient M e th o d .. 202
25 The Conjugate Gradient Method on E ~ 1AE~Tit = E ~lb203
26 The Preconditioned Conjugate Gradient M e th o d .. 203
27 Cholesky Factorization... 204
28 Steepest D escen t...206
29 M G O P ... 208

xiv

30 Multilevel Optimization 210

xv

List of Abbreviations

• AMG=Algebraic Multigrid

• BCCB=Block Circulant with Circulant Blocks

• BTTB=Block Toeplitz with Toeplitz Blocks

• DFT=Discrete Fourier Transform

• FAS=Full Approximation Scheme

• FFT=Fast Fourier Transform

• FP=Fixed Point

• GMG=Geometric Multigrid

• G-S=Gauss-Seidel

• PCG=Preconditioned Conjugate Gradient

• PDE=Partial Differential Equation

• PSNR=Peak Signal to Noise Ratio

• SNR=Signal to Noise Ratio

• SOR=Successive Over Relaxation

• SPD=Symmetric Positive Definite

• TV=Total Variation

xvi

Chapter 1

Introduction

A picture paints a thousand words is an often used phrase which alludes to the power that
images have. In today’s modern society images are all around us, they have the power to
spark controversy across the world, to diagnose illnesses and to catch criminals. We are
all it seems, constantly being captured on CCTV, speed cameras and mobile phones and
possessing the wrong type of image can land you in a lot of trouble. It is not surprising then
that there is a large amount o f mathematical research being carried out which relates in some
way to images. In image registration (or matching) a reference image is mapped into a target
image, in medical imaging for example the images could be two images of the same part of
the body obtained using two different scanning techniques or two scans taken at two different
times, registration can also be used to map two images of the same scene taken at different
angles into each other. In image segmentation the task is to pick out features of interest in
an image from the rest of the image (the background), in image tracking the task is to track
a particular image feature across several scenes, for example tracking the movement of an
individual or vehicle on CCTV footage. In image recognition two images are compared and
the task is to determine whether they are of the same thing, e.g fingerprint matching, facial
recognition software.

A precursor to many of these applications and an important application in itself, is the
task of restoring degraded images. The degradation in the image usually results from two
phenomena, the first is blurring which can occur because of imperfections in the recording
device or light having to pass through some medium e.g the earths atmosphere in astronomical
imaging. The operator which causes this blurring effect is usually known. The second is the
phenomena of random noise which can be added during the transmission of the image or be
due to problems with the recording device. There are several different types of noise which
may occur, each requiring different restoration techniques. The image restoration problem is
an example of an inverse problem and is often also ill-posed. It is important to note here that
the original image will never be restored exactly and some loss of information is inevitable.

1

Research in the field of image restoration, broadly falls in to two categories, the design
of new models for accurately restoring degraded images and the efficient solution of the re
sulting equations (obviously many works encompass both of these). The work in this thesis
falls into the latter category and is concerned mainly with the popular Tikhonov regulariza
tion approach to restoring blurred and noisy images using the total-variation regularization
functional proposed originally by Rudin Osher and Fatemi [78], which is well known for
its excellent edge recovering properties. In Chapter 3 a more thorough introduction to this
method is given but for the purpose o f introducing the research problem I give a very brief
introduction here. The blurred noisy image is modeled by z = Ku + n where, the blurring
operator denoted 1C is assumed to be either the identity (no blurring) or a fredholm integral
operator of the first kind and the noise to be additive Gaussian white noise. The problem is
to minimize the functional

J(u) = f av^|Vu|2 + ¡3 + l/2{K.u — z)2dxdy. (1.1)
Jn

The Euler-Lagrange equation which gives the solution to the variational problem is:

(1 ' 2)

Due to the discrete nature of images the equation is discretized using finite difference meth
ods. The equation is highly nonlinear and the number of unknowns can be large (typically
2562-10242), the construction of fast iterative methods for solving the discrete equation has
therefore been an active area o f research over the last decade or so [7, 17, 18, 19, 20, 24, 25,
29, 32, 34, 39, 48, 55, 61, 71, 78, 79, 93, 94, 95, 96, 97] and is the main focus of this thesis.

Multigrid methods [12, 23, 44, 43, 66, 92, 102, 103] based on the recursive application
of error smoothing and coarse grid correction have been demonstrated to be efficient solvers
for a wide range of (linear and nonlinear) partial differential equations discretized on regular
domains (grids) and can also be applied more generally via the black box algebraic multigrid
methods [9,11, 80, 92, 99]. The primary aim of my work was to develop a nonlinear multigrid
method for solving the discrete Euler-Lagrange equation of the total-variation problem in the
pure denoising (fC = I) case but I have also proposed a technique for accelerating the existing
fixed point method, when algebraic multigrid is used as the linear solver, extended the work
on nonlinear multigrid to other denoising models and proposed an alternative iterative solver
for the deblurring problem.

The thesis is organized as follows:

• C hapter 2 covers various background material which is useful in the chapters that
follow, it includes:

- Useful preliminary definitions and theorems.

2

— A brief discussion of inverse problems and regularization needed for the introduc
tion of denoising techniques in chapter 3.

— A discussion of the discretization of partial differential equations (PDEs) on reg
ular domains using finite difference methods.

— A review of stationary iterative methods for solving discrete linear systems and
nonlinear analogues.

— An introduction to geometric multigrid methods as iterative solvers for discrete
elliptic PDEs including algorithms for linear and nonlinear multigrid methods.

— An introduction to the black box algebraic multigrid methods for linear problems.

• Chapter 3 is an introduction to various aspects of image restoration using the Total
Variation (TV) regularization functional, it includes:

— An introduction to the restoration problem.

— An introduction to regularization techniques used in image restoration, including
the Total Variation regularization method.

— A brief review of some of the mathematical analysis of Total-Variation regulariza
tion.

— A review of the properties of Total-Variation denoising.

— Details of the discretization scheme that I use when solving the TV denoising
problem and a review of alternative discretization schemes.

— A review of the iterative solvers currently available for solving the TV denoising
problem.

• Chapter 4 details our attempts to develop a nonlinear multigrid method for solving
the discrete TV denoising problem, it includes:

— A discussion of the various smoothers that we have used, including our new
smoother FPGS.

— The algorithm for the nonlinear multigrid method being used.

— A comparison of FPGS against other smoothers, which demonstrates its advan
tage.

— An investigation into the effect of applying Krylov acceleration to the nonlinear
multigrid method.

— A comparison of nonlinear multigrid with FPGS against other iterative solvers,
showing its advanatage in certain situations.

— Details of the disadvantage of the nonlinear multigrid method, poor performance
for small (3.

3

• Chapter 5 details a method for reducing the overall cost of the fixed point method
when algebraic multigrid (AMG) is used as the inner linear solver, it includes:

- A brief review of linear solvers used within the fixed point method, including a
demonstration of the better convergence properties of AMG vs geometric multigrid
for small ¡3.

- A discussion of our idea to recycle AMG setup data, within the fixed point method
including preliminary tests which motivate the final algorithm.

- Tests showing the effectiveness of the new method, in reducing the overall cost of
the fixed point method.

• Chapter 6 is an extension of the work on nonlinear multigrid in chapter 4 to other
denoising models, which reduce the staircasing effect, it includes:

- A review of staircase-reducing models, focusing on 4 models in particular.

- A discretization scheme for the models in question and algorithms for the nonlinear
multigrid method and other iterative solvers which are tested.

- Details of the implemntation of the nonlinear multigrid method for each of the
four models and comparison with other iterative solvers.

- A focus on one particular model, which gives good quality reconstructions and a
demonstration of the effectiveness of nonlinear multigrid for this model.

• Chapter 7 details some of our recent work on image deblurring, it includes:

- An introduction to some topics specific to the TV deblurring problem, including
the discrete fourier transform, fast fourier transform and Toeplitz and Circulant
matrices.

- Details of the discretization of the TV deblurring problem and a review of iterative
methods for solving the discrete problem.

- A proposal for an alternative deblurring model, which is still under development.

- Details of two alternative iterative solvers for the TV deblurring problem, which
are shown to potentially have an advantage over the fixed point method when the
level o f blurring is relatively low and the level of noise relatively high.

• Chapter 8 covers possible future research directions.

• Appendix A covers various topics from optimization, which although useful through
out the discussion are somewhat peripheral to my own work, it includes:

- A definition of constrained and unconstrained optimization and local and global
minima.

4

— Conditions for the existance of minima of functionals on Hilbert spaces.

— Discussion of the optimality conditions for unconstrained problems based on the
Frechet and Gateaux derivatives.

— Statement of the KKT optimality conditions for constrained problems on Rn.

— A review of the steepest descent and conjugate gradient optimization methods for
quadratic and more general nonlinear functionals on Rn.

— A discussion of multilevel techniques used in optimization.

• A ppendix B details some cost estimates for the AMG method of chapter 5 imple
mented in MATLAB.

All experiments presented in the thesis were run in MATLAB on a Sun Fire 880.

5

Chapter 2

Mathematical Preliminaries and
Multigrid Methods

Main Reference Material: [2]-[4],[9, 11, 12, 14, 23, 35, 43, 44, 45, 47, 54, 57, 66, 72, 80,
81, 92, 99, 100, 103, 105]

This chapter introduces various material which will be useful throughout the rest of the thesis.
The first two sections introduce some useful definitions and concepts related to normed spaces
and operators. The material is meant mainly for reference, a thorough introduction to the
topics presented can be found, for example, in [54, 105] from which much of the material
has been taken.

§2.3 gives a brief introduction to ill-posed inverse problems and the regularization tech
niques which are used to approximately solve such problems, this material will be useful in
the introduction o f image restoration techniques in Chapter 3.

The Main aim of the rest of the chapter is to introduce multigrid methods as iterative
solvers for discrete (linear and nonlinear) elliptic partial differential equations (PDEs). §2.4
introduces some techniques and notation associated with the discretization of continuous
PDEs on regular domains, §2.5 introduces the stationary iterative methods, which are the
building blocks of multigrid methods, §2.6 gives a brief introduction to the principles on
which multigrid methods are based and details algorithms for linear and nonlinear multigrid
schemes and finally §2.7 covers black box algebraic multigrid methods which can be applied
more generally to discrete linear problems. Nonlinear multigrid methods will be applied to
the discrete Euler-Lagrange equation o f the Total-Variation denoising problem in Chapter
4 and to other denoising problems in Chapter 6, linear (geometric) multigrid methods and

6

algebraic multigrid methods have been employed within the fixed point method (§3.6.2) as
linear solvers and the acceleration of fixed point with algebraic multigrid will be investigated
in Chapter 5.

2.1 Normed Spaces

Definition 2.1.1 (Vector Space)
A vector or linear space over a field F (usually the real or complex numbers) is a set S to
gether with the operations o f vector addition and scalar multiplication such that, the following
conditions hold:

1. Closure of vector addition: I f u S S and v 6 S, then u + v 6 S.

2. Commutativity of addition: u+v=v+u

3. Associativity of addition: (u+v)-f-w=u+(v+w)

4. Existence o f additive inverse: For each u € S, there exists (—u) e S such that u +
(-u) = 0

5. Closure of Scalar multiplication: If A 6 F and u € S then Xu € S.

6. Associativity of scalar multiplication: If u £ S, X,9 £ F then X(9u) = (A6)u.

7. Scalar multiplication is distributive: If u ,v £ S, X,v £ F then (A + 6)u = Xu + 8v and
X(u + v) = Xu + Xv.

A subset of a vector space V which is also a vector space under the same operators of addition
and scalar multiplication is called a subspace of V, it is said to be a proper subspace if it is
not V itself and a non-trivial subspace if it contains non zero elements.
Example
Examples of vector spaces are

• The spaces K" and Cn.

• The space C l(il) o f all functions on the domain ft C R " whose partial derivatives of
order up to l are continuous on ft and the space C l0(Q) of all functions in C '(ft) with
compact support.

• The space 7^(0) of all Lebesgue measurable functions o n f i c R " for which f n |ti(x)|pdx <
00. The precise definition of a Lebesgue measurable function will not be covered here it
can be found in, for example [2]. Strictly speaking the elements of Lp(ft) are not indi
vidual functions but equivalence classes of functions which are equal almost everywhere
in ft, but I will ignore this distinction here.

7

• The Sobolev Space W m'p of functions u € Lp whose weak partial derivatives up to
order m also belong to Lp, see [2] for more details.

D efinition 2.1.2 (Linear D ependance)
A set o f vectors { iq , i s said to be linearly dependant if there is a set o f scalars Ci, c„
not all zero such that ctV{ = 0. If a set of vectors are not linearly dependant they are
said to be linearly independent.

Definition 2.1.3 (Linear Com bination)
A linear combination of a finite set o f vectors iq, ..,vn is a vector of the form a1i > i + , +anvn
where the aj are scalars.

D efinition 2.1.4 (Space Spanned by a Subspace)
I fY = {y i, ..,yn} is a set of vectors in a vector space V , then the set of all linear combinations
o f elements o fY is called the subspace spanned by Y and is denoted span{yi,..,yn}.

D efinition 2.1.5 (Finite Basis)
A set (y x , yn} is called a finite basis for a vector space V if it is linearly independent and
V — span{yi,..,yn}.

Exam ple
Any linearly independent set of n vectors in Rn is a basis for Rn. ■

D efinition 2.1.6 (D im ension o f a V ector Space)
A vector space is said to be n-dimensional if it has a finite basis of n elements. A vector
space with no finite basis is said to be infinite dimensional.

An operator or a mapping from one vector space U into another V (or from a subset of
U into a subset o f V) A : U —* V is just a rule which given an element u € U produces
A(u) € V. The simplest type of operator is a functional which maps a vector space to the
real or complex numbers. A functional mapping Rn to R is usually called a function.

D efinition 2.1.7 (N orm)
A norm on a vector space S is a real-valued functional |j.|| on S such that

1. ||u]| > 0 i / u / 0 .
2. ||Au|| = |A|||u|| f or all scalars A and vectors u.

3. ||u + w|| < |M| + ||v|| fo ra llu ,v € S

A seminorm is defined similarly to above except that axiom 1 is replaced by ||u|| > 0, it is
therefore possible for a seminorm to be equal to zero for some u ^ 0.

8

Definition 2.1.8 (Normed Space)
A Normed space is a vector space S provided with a norm ||.||s-

A special type of normed space is an inner product space.

Definition 2.1.9 (Inner Product)
An inner product on the vector space S is a junctional (., .)s on S x S which satisfies:

1. (u ,v)s = (v,u)s for all u ,v 6 S.

2. (Xu,v)s = X(u,v)s

3. (u + v, w)s = (u , w) + (v , w)

4. (u, u)s > 0 when u ^ 0.

Any inner product induces a norm, which is defined as follows ||u|| = (w,u)1/2.

Example
The classic example of a norm is the Euclidean norm on Rn defined by ||x||2 = x i ^ is
is sometimes also written |x| and is induced by the Euclidean inner product (x, y)2 = yTx.
An example of a normed space, which is not an inner product space is the space of all bounded
continuous complex valued functions on Q c R n together with the supremum norm defined
by WfWoo = supxen |/(x)|. ■

Theorem 2.1.1 The Cauchy Schwarz Inequality
For any inner product (.,.)

|(u,u)| < IMIIMI- (2.1)

2.1.1 Sequences and Convergence

Definition 2.1.10 (Cauchy Sequence)
A sequence {v*} in a normed space is said to be a cauchy sequence if for alle > 0 there exits
a K such that any k > K and any l > K implies that ||ufc — vi\\ < e.

If a sequence is a cauchy sequence then we can force the terms to be as close to each other
as we choose by taking k sufficiently large.

Definition 2.1.11 (Convergent Sequence)
A sequence {t ’fc} in a normed space is said to converge to v (denoted Vk —* v as k —► oo or
limfc_oo vk = v) if for a l l e > 0 there exits a K such that k > K implies that ||vfe - u|| < e.

If a sequence converges to v then we can force the terms to be as close to v as we choose by
taking k sufficiently large.

9

Definition 2.1.12 (Weak Convergence)
A sequence {i?fc} in an inner product space V" is said to converge weakly to v (denoted Vk —k v
as k —► oo) if for all w £ V, the sequence (Vk,w) converges to (v,w).

Strong convergence implies weak convergence since by the Cauchy Schwartz inequality |(v, in)—
(njt,in)| < ||v — Ufc||||tn|| and ||u — v*|| —► 0 as k —► oo if Vk converges to v.

2.1.2 Open and Closed Sets

Definition 2.1.13 (Open Set)
A subset S of a normed space N is said to be open if for each u £ S there exists a 6 > 0 such
that ||u — v|| < S for all v £ S.

This definition says that any point in an open set can be surrounded by a ball centered at
that point which lies entirely in S.

Example
An example of an open set in R " is the set (x|||x — a||2 < r} for some a £ R " and r e l . ■

Definition 2.1.14 (Limit Point)
v is said to be a limit point of a subset S of a normed space N if there exists a sequence {un}
of elements of S such thatvn converges to v and v is not a member of the sequence {un}.

Definition 2.1.15 (Closed Set)
A subset S o f a normed space N is said to be closed if all of it ’s limit points are contained
in S.

It can be shown that 5 is closed if and only if its complement N — S is open. Subsets S can
be both closed and open, the obvious example being the normed space N itself, or neither.

Definition 2.1.16 (Closure)
The closure of a subset S of a normed space N is the union of S and all its limit points and
is denoted S.

2.1.3 Banach and Hilbert Spaces

A normed space in which every Cauchy sequence converges (a complete normed space) is
known as a Banach space, similarly a complete inner product space is known as a Hilbert
space, see [105] for more details.
Example
Two relevant examples of Hilbert spaces are the space M" together with the Euclidean in
ner product and the space L2(fi) together with the inner product defined by (f,g)L^(Q) =
f a f(x)g(x)dx. ,

10

Definition 2.1.17 (Orthogonal Set)
A set of vectors {x j} in an inner product space is called an orthogonal set if (xi,Xj) — 0 for
i j and no x» = 0.

A set of vectors is called orthonormal if in addition (xj,Xj) = 1 for all i. It is clear that any
finite orthogonal set is linearly independent since if we were to take the inner product of both
sides of $2"=1 c»x» = 0 with Xj for any j we would have Cj(xj,Xj) = 0 and hence Cj = 0.

Definition 2.1.18 (Orthogonal Basis)
An orthogonal basis for an inner product space S is a (possibly infinite) orthogonal set {en}
such that for any u 6 S there exists scalars cn such that u = Y n cnen.

If u = Y n c" e" then we can see from the orthogonality of the en that c; = (u, e{)/{ei, e;) or
just (it, ei) if the en are orthonormal. Furthermore if the basis is infinite, these coefficients
will also minimize the distance ||u - Y n = i cnen|| between u and the truncated sum involving
N terms. In some books a Hilbert space is defined more strongly than above as a complete
inner product space with an orthogonal basis.

Definition 2.1.19 (Orthogonal Complement)
If S is a subset of a Hilbert space H, then the orthogonal complement o f S is defined to be
the set Sx = { u e H\(u, v) = 0, for all v e S }.

If U is a subspace of a Hilbert space H with an orthogonal basis, then any element y G H
can be written uniquely as y = u + v, where u 6 U and v € Ux , this is sometimes written
H = U + UX.

2.2 Operators

Recall from above that an operator A : X —* Y is a rule which takes any element of a subset
X of a vector space V and produces an element of a subset Y of a vector space U. The
domain of A denoted D(A) is just X , the image of x € X under A is A(x), and the range
o f A denoted R(A) is {A(x)|x € X } , clearly R{A) C Y. The Null space of an operator A
denoted N{A) is all the elements of X which are mapped to 0 by A i.e {x € X|A(x) = 0}.

Definition 2.2.1 (Identity Operator)
The identity operator I mapping a vector space U into itself is the operator which maps every
element of U to itself.

Definition 2.2.2 (Inverse Operator)
The operator A :U —*V is invertible if for each v € V there is one and only one u e U such
that A(u) = v. The Inverse operator of A is denoted A -1 : V —► U.

If the inverse of an operator exists then clearly A -1 A = A A ~1 = I.

11

2.2.1 Linear Operators

D efinition 2.2.3 (Continuous O perator)
An operator A : S —* M , where S is a subset o f N and N and M are normed spaces, is said
to be continuous a tu e S if for any e > 0 there exists a 5 > 0 such that |]A(ti) - A(u)|] < e
for a l l v & N such that ||it —1>|| < 5 . A is continuous on S if it is continuous at all points in
S.

Definition 2.2.4 (Linear O perator)
An operator A : V —* W , where V and W are vector spaces is linear if A(avi + &02) =
aA(v 1) + bA(v2) for all V\,V2 € V, and all scalars a, b.

Exam ple
A linear operator mapping Rn to Rm is defined by a matrix of A size m x n, then given
x e R", y = Axe Rm. ■

T heorem 2.2.1 If a linear operator A : N —► M is continuous at a single point in N it is
continuous on M .

D efinition 2.2.5 (O perator N orm)
The norm o f an operator A : N —» M , where N and M are normed spaces is defined as
follows

||A|| = sup{||A(u)||/||u|| : u e N ,u ^ 0}. (2.2)

Definition 2.2.6 (B ounded O perator)
An Operator A : N —► M , where N and M are normed spaces is bounded if there exits a
number 9 such that ||A(u)|| < 0||u|| for all u € N i.e. ||A|| < 6.

T heorem 2.2.2 A linear operator is bounded if and only if it is continuous.

T heorem 2.2.3 The set of all bounded linear operators from N to M , where N, M are
normed spaces is itself a normed space under the norm of definition 2.2.5 and the operators
of addition and scalar multiplication defined respectively by (A + B) u = A u + B u and (cA)u =
c(Au) for bounded linear operators A and B, scalar c and u € N . This normed space is
denoted B(N, M) and furthermore is a Banach space if M is a Banach space.

Definition 2.2.7 (Dual)
The dual of a vector space V is the set o f all linear functionals f : V —* R and is denoted V*.

Definition 2.2.8 (Bilinear M apping)
A bilinear mapping B :U x U —>V, where U and V are vector spaces is a rule which given
any two elements ui,U2 o fU produces B{u\,U2) €. V such that

B(aui + b u 2,u3) = aB(ui ,u3) + bB(u2,u3)

B(ui ,au2 + bu3) = a£?(tii,u2) + bB(ui ,u3)

12

(2.3)

(2.4)

for all scalars a, b and all U\,U2, U3 € U.

Exam ple
A bilinear mapping from Rn x Rn into R is defined by an n x n matrix A, and 23 (u, v) = v r Au

2.2-2 Compact Operators

D efinition 2.2.9 (C om pact Set)
A subset S o f a norrned space N is compact if every infinite sequence of elements o f S has a
subsequence which converges to an element of S.

D efinition 2.2.10 (Relatively C om pact Set)
A subset S of N is relatively compact if every sequence in S has a subsequence converging to
an element of N.

D efinition 2.2.11 (B ounded Set)
A subset S of a normed space N is called bounded if there is a number 6 such that ||x|| < 6

for all x € S.

D efinition 2.2.12 (C om pact O perator)
An operator is compact on a normed space if it maps every bounded set into a relatively
compact set.

Any bounded operator on a finite dimensional space is compact, since bounded operators map
bounded sets into bounded sets and a bounded set in a finite dimensional space is relatively
compact.

2.2.3 Operators on Hilbert Spaces

Theorem 2.2.4 Reisz R epresentation T heorem If f : 22 —► R is a continuous linear
functional and H is a Hilbert space, then there exists a unique v £ H such that f (u) = (u, v)
for all u £ H.

D efinition 2.2.13 (Eigenvectors and Eigenvalues)
If A : V —> V is a linear operator mapping a vector space V into itself, then v £ V is said to
be an eigenvector o f A if Av = Xv. The number X is known as an eigenvalue corresponding
to the eigenvector v.

T heorem 2.2.5 Let A £ 23(221,222), where 221 and 222 are Hilbert spaces, then there exists
a unique operator A* £ 23(222,221) called the adjoint of A such that (A u, v)h 2 = {u,A*v)hi
for all u £ 221 and v £ 222.

13

If HI = H 2 and A* = A then A is said to be self-adjoint. If A : V —► H is an operator on a
dense subspace V of H then A is symmetric if {u, Av) = {Av, u) for all u, v 6 V. Symmetry is
a generalization of self-adjointness and any bounded self-adjoint operator on H is symmetric.

T heorem 2.2.6
If A is a self adjoint operator on a Hilbert space, then all i t ’s eigenvalues are real and it ’s
eigenvectors form an orthogonal set.

P r o o f
If Av = Xv, then A||u||2 = A(u, v) = (Av,v), since A is self-adjoint this equal to (v,Av) =
(u,Au) = A||v||2 i.e A = A and hence A is real. If in addition Au = cru, then since (v,Au) =
{Av, u), <x{v, u) = A(i>, u) and so (u, u) = 0 when A ^ a. ■

Theorem 2.2.7 Let A be a compact self-adjoint operator on a Hilbert space H, then H
has a basis (en) consisting o f orthonormal eigenvectors of A. If H is infinite dimensional
then the corresponding eigenvalues Xn tend to zero as n —► oo and if y = J2n cnen then
Ay = A„cne„.

This is equivalent to saying that the eigenvectors of A form a complete set, a complete set
of vectors being a set such that the only vector orthogonal to all members of the set is the
zero vector.

D efinition 2.2.14 (Positive Definite O perator)
An operator A on an inner product space is called positive definite i f (u,Au) > 0 for all u ^ 0
and positive semidefinite i f{u,Au) > 0 for all u, similar definitions exist for negative definite
and negative semidefinite operators.

T heorem 2.2.8
The eigenvalues of a positive definite operator are positive.

P r o o f
If Av = Au and (v, Av) > 0 then X(v, v) > 0 hence A is real and positive. ■

T heorem 2.2.9
If the eigenvectors of an operator A form a complete orthogonal set, and all the eigenvalues
of A are positive then A is positive definite.

D efinition 2.2.15 (Strongly Positive O perator)
A symmetric operator A on an inner product space V is said to be strongly positive i f(v,Av) >
0{v, v) for all v £ V. In this case 6 is said to be a lower bound for A.

Theorem 2.2.10 If A is a symmetric operator with a complete set o f eigenvectors, then A
is strongly positive if there exists a 9 > 0 such that all eigenvalues o f A are greater than or
equal to 6.

14

From this result it is clear that for operators on a finite dimensional space who’s eigenvectors
form a complete set, strong positivity is equivalent to positive definiteness. From Theorem
2.2.7 it is also clear that compact operators on infinite dimensional Hilbert spaces are not
strongly positive.

2.3 Inverse and Ill-Posed Problems and Regularization

An Inverse Problem is a problem in which one is given the output data from a system and
wishes to find the unknown input which created this data as opposed to the direct problem in
which one generates the output from the input. As an example in image processing problems
seen later, one is given a blurred image contaminated with random noise and wishes to find the
true image from this data and knowledge of the blurring operator. In reality inverse problems
are often ill-posed and small errors in the data can lead to very large errors in the solution,
regularization methods to find an approximation to the solution are then required. In this
section I give a very brief introduction to the concepts of ill-posedness and regularization,
focusing on compact operators. For a more thorough treatment of the topics of ill-posed
problems and regularization see [47, 56, 97].

2.3.1 Ill-Posed Problems and the Generalized Inverse

Definition 2.3.1 (Well-Posedness)

I f K : Hi —* #2 where Hi and H2 are Hilbert Spaces then the problem K{u) = z is said to
be well-posed, in the sense o f Hadamard, if

1. For each z 6 H2 there exists a u € Hi such that K(u) = z holds.

2. u is unique.

3. The solution is stable with respect to perturbations in the data, that is given u* € Hi
and z* € H2 such that K(u*) = z* then for every e > 0 there exists a 6 > 0 such that
||A(u) - z*|| < <5 implies that ||u - u*|| < e.

A Problem that is not well-posed is said to be ill-posed.

The first condition is equivalent to the requirement that the range of K , R(K) is equal to
H2- In the case o f linear operators, the second condition is equivalent to requiring that
N (K) = {0 } where N (K) is the null space of K i.e if K u = z then K(u + v) = z if and only
if v = 0. If the first two conditions hold then the inverse of K exists and the third condition
says that the inverse should be continuous. From now on we will focus on linear operators

only.

15

In cases where z £ R (K) one may still be interested in finding some solution that ap
proximately solves the problem, similarly if the solution to the problem is not unique one
may want to find some specific solution, this can be achieved via the generalized inverse (or
pseudoinverse) of the problem.

Definition 2.3.2 (The Generalized Inverse)
The Generalized inverse of K € 23(Hi, H2) is defined as the unique linear extension of
K ~ l to the domain of K^

D(K^) = R {K) + R {K)l (2.5)

with
N (K ') = R (K)X (2.6)

where
K = K\N[K)x : JV(H)X -» R (K). (2.7)

To see that K^ is well defined consider the following; The domain of K is N {K)X, there
fore if w G D (K), (w ,v) = 0 for all v e Hi such that K v = 0. Given that N (K) =
{w G D{K)\Kw = 0} any w G N (K) must satisfy (w, w) = 0. This is only possible if
w = 0, hence N (K) = {0 }, furthermore since Hi can be written as N (K) + N (K)± and any
w G N (K) by definition satisfies K w = 0 we see that the range of K is the same as the range
of K , hence K ~ l exists.

Now K * is required to be the linear extension of K ~ 1 to the domain of K 1 = R {K) +
R iK)1- and any z G R {K) + R (K)1 = H2 can be uniquely defined by z = z\ + z2 with
zj G R {K) and z2 G R (K)1 . Since we also require that N(K^) = R (K)X we must have
K^z = K ~ lz i . Obviously if z G R {K), then K K ^z = z.

The generalized inverse can be characterised via the idea of least squares solutions of
K u = z.

Definition 2.3.3 (Least Squares Solution)
Let K G B (H i ,H 2) where Hi and H2 are Hilbert spaces, then u* G Hi is called a least
squares solution of Ku — z if

||Ku* - z \\h 2 - inf{||Hu - z \\h 2 \u e H i}. (2.8)

u* G Hi is called the best approximate solution of K u = z if u is a least squares solution of
K u = z and

Hu'llflf, = inf{||n|||u is a least squares solution of K u = z } . (2.9)

With this definition we can introduce the following theorem, the proof of which can be found
in [47].

16

T heorem 2.3.1 If z € D(K^) then K u = z has a unique best approximate solution given by

= K^z (2 .10)

and the set of all least squares solutions is given by u* + N (K).

2.3.2 Compact Operators and Singular Systems

Recall that a compact operator (Definition 2.2.12) is a bounded linear operator which maps
any bounded set into a relatively compact set. An example of a compact operator which is of
particular interest here is the Fredhlom first kind integral operator mapping L2(Q) —> L2(Q)
defined by

(K u)(x) = k(x,y)u (x)dy, x € S l. (2.11)
J

where f n f n k (x ,y)2dxdy < oo.
It can be shown that for any compact operator K on infinite-dimensional Hilbert spaces

K u = z is an ill-posed problem. If R (K) is infinite dimensional, this is because the first and
third conditions on a well-posed problem are violated, if R {K) has finite dimension then the
second condition is violated.

For any compact operator K , K *K is a self adjoint compact operator. From the eigende-
composition of K *K (see Theorem 2.2.7) a singular system for K defined as below, can be
found.

Definition 2.3.4 (Singular System)
A singular system for a compact linear operator K : Hi -* H2 is a countable set of triplets
{ Uj,(Tj,Vj}j with the following properties

1. The right singular vectors Vj form an orthonormal basis for N (K)x

2. The left singular vectors Uj form an orthonormal basis for the closure o f R (K)

3. The singular values Oj are positive real numbers and are in nonincreasing order cri >
o 2 > ... > 0.

4- For each j , K vj — OjUj.

5. For each j , K*Uj = OjVj.

In addition if R (K) is infinite dimensional then lim_7_»00 cr, = 0.

Using the singular system we can write

K u = (2.12)
i

17

and
K *z = '^2<Tj(z,uj)H:ivj , (2.13)

i
furthermore it can be shown that the generalized inverse has the following representation

(2-14)V 7* J

If the range of K is infinite dimensional then the sums in all three cases will be infinite.
From the representation of the generalized inverse in (2.14) we can see that small errors

in z can be amplified by the application of the generalized inverse due to the division by
small singular values (particularly if R (K) is infinite dimensional). For example if we take
z = z + 5ui for some l and 5 > 0 and small, then we see that p - z \\h 3 = ||<5uz!|i/2 = 5 (since
(ui, ui)h2 = 1), on the other hand we have

K<z = Y (* + <“ ' ■ ' = K 'z +
V ai Cl

(2.15)

and hence \\K*z - K^z\\hx = as l goes to infinity this error becomes infinitely large. In
order to prevent this happening we can filter the singular values i.e we can replace 1 ¡<jj in
(2.14) by <p(aj)/<Tj, two such filters are the truncated singular value decomposition (TSVD)
filter function defined as follows

Ma2)
1 if ct2 > a
0 if a2 < a

(2.16)

and the Tikhonov filter function defined by

^ = (2-17)

These filtering schemes are examples of regularization schemes. In each case we see that
<j>(cr2) depends on a, which is a positive constant known as the regularization parameter.
The choice of the regularization parameter will be important in determining the quality of
the solution, choose a too small and to many small singular values remain, choose ct too
large and the solution will be inaccurate because too many large singular values have been
filtered out. In the following the precise definition o f a regularization scheme is given.

2.3.3 Regularization Schemes

In the following it is assumed that for the equation K (u) = 2 where K : Hi -+ H2 there
exists an operator R , that assigns to each v e R {K) a unique vector Rt (v) 6 Hx such
that K (R ,(v)) = v. In the linear case discussed above R . is the generalized inverse. A
regularization scheme is given by a family of operators Ra : H2 -* H u where a lies in an
index set I. The regularization scheme converges to R m if the following two conditions hold:

18

1 . For each a e I, Ra is continuous.

2. Given any z € R (K), for any sequence {z n} C H2 that converges to z there is a
sequence {a n} C I such that Ra„(zn) converges to R m(z) as n —► 00.

In the case that Ra is the linear operator defined by

For both the TSVD filter and the Tikhonov filter supCT>0 <pa(cr2)/(T = l/y/ci (in the TSVD
case this is trivial in the Tikhonov case it can be seen using simple calculus) and so Ra is
bounded and thus continuous for every a. To see that the second condition holds for these
two schemes let { zn} be a sequence that converges to z with || zn - z|| < 5n where Sn —> 0 as
n —► 00, we have

^ \\RanZ + ||f̂ a„'2n •Ro;„z ||h1 2q\
< \\Ra„z - / M l * + II^JIIIz« - z||„a

< \\RanZ - R,z\\Hl +

Since Ra is bounded and Ra —► R* as a —► 0 by taking {c*n} = {<!„} we will have Ra„z n
converging to R»z as n —* 00.

2.3.4 Generalized Tikhonov Regularization

The Tikhonov regularization scheme introduced above can be alternatively written in the
following form

(2.18)

we see from the orthogonality of the Vj that

(2.19)

ll^an'2'!» — R*Z^H\ — II Ranzn + Ranz RanZ Rtz\\û

min J{u) J{u) = 1/2||K u - z\\2H + a/2||u||i .
U 1 (2.21)

To see this let us first find the first variation (§A.3.2)

^ J(u + tv)|t=0 = {Ku - z, K v)h2 + a{u, v)Hl•
at

Using the adjoint of K this can be rewritten

(2.22)

(2.23)

If u is the minimum of J(u) then the first variation is zero for any v (§A.3.3) i.e

K *K u + au = K*z. (2.24)

19

Using the singular system we can write this in the form

+ a)(u ,v j)Hlvj = Y ^ uj i z ûj)H2vi- (2.25)

Taking the inner product of both sides with vi for a given l gives us

(er f+ a)(u ,v i)Hl = oi(z, ui)h2. (2.26)

and so

u = ^ (u , ^) ^ = i " 2 Vj' (2-27)
3 3 j

which is the same as what we had above.
Written in the form (2.21) Tikhonov regularization can be viewed as a scheme for finding

a solution which balances between the need for a solution for which X u is a good fit to
z and one that has minimal Hi norm, with the value of the regularization parameter a
determining how much weight is given to each requirement. In a more general form of
Tikhonov regularization, the first term in J(u) can be any fidelity term p(K u , z) which some
how measures how closely K u matches z and the second term a general penalty term i?(u)
which penalizes against certain artifacts in the solution. Generalized Tikhonov regularization
is used in the image processing problems seen in Chapter 3.

2.4 Discrete PDEs and Notation

In many situations one has to solve a discrete version of a continuous partial differential
equation, because the equation can not be solved analytically or because data is only known
at a certain number of discrete locations. A continuous linear boundary value problem in d
dimensions is denoted by

Lnu(x i,..,Xd) = / n(x i,. . ,x d) for (x i , . . ,x d) € 0 . (2.28)

Lr u(x i , . . ,x d) = f r {x i , . . ,x d) for (x i,..x d) € T. (2.29)

where fl is a bounded and open domain in Md and T is its boundary.
Example
One such example would be Poisson’s equation in two dimensions with Dirichlet boundary
conditions

- A u(x,y) = f n (x, y) in if

« (* ,2/) = f r (x ,y) on T

(2.30)

(2.31)

20

I introduce this example here as it is the classic example of an equation to which multigrid
methods can be applied successfully and will be used to illustrate various important concepts
in the next two sections.

Similarly a continuous Nonlinear boundary value problem is defined by

N ° (u (x i,..,x d)) = f n(x i , . . ,x d) for (x i,. . ,x d) e fl. (2.32)

Lr u (x i,..,x d) = f r (xu ..,xd) for (x i ,..x d) e T. (2.33)

Example
An example of a nonlinear equation which will be seen in later chapters is the equation

Vu(x,y)
-a V . + u {x,y) = z(x ,y), (2.34)

•y/|Vu(x,y)| + /3 /

with Neumann boundary condition dUQ^y'> = 0 on T. ■
There are various ways that a continuous PDE can be discretized, for example using the

finite element method or the finite volume method. In our work the domain fi 6 R 2 is
usually rectangular and the values of / known at uniformally distributed points in the domain
therefore the most natural discretization method to use is the finite difference method. From
now on we restrict our discussion to 2 dimensions, although it easy to extend to higher
dimensions. Assuming that = (a, b) x (c, d) is rectangular we impose a cartesian grid (or
mesh) with grid spacing h — (b -a)/ n in the x direction and k = (d -c)/ m in the y direction.
In a vertex-centered discretization grid points are placed at the vertices of the mesh so that
there are (n + 1) x (m -I-1) grid points including points on the boundary with grid point (i, j)
located at (x i,y j) = (ih ,jk) for 0 < i < n and 0 < j < m. In a cell-centered discretization
grid points are placed at the centre of the grid cells so that there are n x m grid points (none
ly ing on the boundary) and grid point (i , j) is located at (X i,yj) — (a -f ^f^h , c + ^ ^ -k)
for 1 < i < n and 1 < j < m. The interior of the discrete grid is denoted Clh and the
boundary by r h. Figure 2.1 shows examples of vertex and cell-centered discretizations of a
square domain.

Once the grid is in place the operators in the PDE can be approximated locally using
Taylor series expansion, for example using the expansions

, . . . ,d u . h ?d2u h3 d3u h4 94u .
u(x + h ,y) = u{x, y) + h— {x ,y) + (x, y) + — — (x , y) + — _ (e+) y)

and
d u ,

2 dx2 ' 3! dx3

h3 d3u . h4d4u .^ ^ I V _f
u(x - h, y) = u(x, y) - f i g (x, y) + — — (x, y) - ^ (x, y) + ^ (e_, y),

(2.35)

(2.36)

with x —h < e_ < x < e+ < x+ /i, the operator g j at the grid point (i , j) can be approximated
in 3 ways, the first order forward and backward difference operators defined respectively by

h h
a n d ^ i

h
Wi— l,j (2.37)

21

Figure 2.1: Vertex-centered (left) and cell-centered (right) discretizations of a square domain

or the second order central difference approximation

&xuij _ ui+l,j
2h ~ 2h (2.38)

where iq j = u(xi: yj) is the value of u at the grid point (i, j) . Approximations to higher order
derivatives can be constructed in a similar way for example a second order approximation to

at (i ,j) is given by
Ui + 1.3 ~ ^u i,j +

/j 2 • {¿.6J)

The discrete analogue of the continuous problem on the discrete domain is denoted by

L%uh{x i , . . ,x d) = fh (x i , . . ,x d) for (xu ..,xd) e fi\ (2.40)

Lrhuh(x u ..,xd) = f £ { x u ..,xd) for (x i,..x d) € T7*. (2.4l)

where uh is a grid function on Slh UTh, and Lrh are operators on the space of grid functions
and f * and are discrete analogues of f n and / r . Usually the boundary condition can be
eliminated and (2.40) and (2.41) can be written simply as

Lh^h — fh- (2.42)

Exam ple
By way of an example consider Poisson’s equation on the unit square with Dirichlet, boundary
condition. Assume that the domain is discretized using a vertex centered grid with h - k =
l/n then at interior grid points not adjacent to the boundary a second order central difference
approximation is given by

{LhUh)ij — 4uj,j ui+i,j ui-i ,j ui,j+1 ui,j-i _ ju ^ 43)

At points adjacent to the right boundary, for example, ui+hj will be replaced by the boundary
value /£ •, so we have

(LhUh^ij —_ 4tjj,j Uj-lJ UjJ + l - 1 fn j
h2

_ f i t I ' " . J
Ji'j + h? ' (2.44)

22

Similar considerations give LhUh at other points adjacent to the boundary, therefore we have
LhUh = fh where Uh is a grid function on the interior grid points only. ■

2.4.1 Stencil Notation

Let p € Z d define a grid point on a d-dimensional grid G. In stencil notation the left hand
side of the discrete equation LhUh = fh at p is defined by:

{LhUh)p — ^ ̂ Lptq(Uh)p+q. (2.45)
q£Ld

The stencil entry Lp<q is non-zero when Lhuh at grid point p € G is dependant on the value of
uh at grid point p + q, the structure of an operator L is defined as all q such that there exists
a p e G such that Lp<q is non-zero and is denoted Sl - The stencil for at p is displayed as
an array containing all non-zero Lp<q e.g a typical stencil in 2 dimensions has the form

0 I'p.to.i) 0

b p ,(_ 1,0) b p , (0,0) b p t(l,o)

0 b p ,(0 ,-1) 0

Example
Returning to the example we saw above at grid points not adjacent the boundary we can
write

Lhuh(x ,y) = -jp
0 - 1 0

- 1 4 - 1

0 - 1 0

uh(x,y) = fh (x ,y) = f h(x ,y) (2.46)

\
and, for example, at points adjacent to the right boundary

LhUh (^) y)
0 - 1

- 1 4
0 - 1

uh{x ,y) = fh {x ,y) + ~ f l { l , y) = f h{x ,y). (2.47)

2.4.2 Matrix Notation

It may sometimes also be useful to write Lhuh = f h in matrix notation. This is done by
stacking the grid function uh into a vector uh, this is usually done in lexicographical order;
uh is stacked along rows of the grid starting at the bottom left point and ending at the top
right. The right hand side vector is stacked in a similar manner into a vector f),. The discrete
linear equation can then be written as = fh.

2 3

Example
In the example of Poisson’s equation considered previously we see that in general row l of
Ah, will have an = 4/h2 and a»_i = a/.j+i = = au-(n~i) = - 1 /h2 with all other
entries in the row zero, with appropriate modifications for boundary points. h2Ah is therefore
the (n — 1) x (n — 1) block tridiagonal matrix with blocks of size (n - l) x (n — 1) where the
off diagonal blocks are the negative Identity and the diagonal blocks are tridiagonal with 4

on the diagonal and - 1 on the off diagonals. ■

2.4.3 Boundary Conditions

So far I have only mentioned Dirichlet Boundary conditions on a vertex centered grid, I
briefly now describe how to deal with Neumann Boundary conditions and cell-centered grids.

Neumann for Vertex Centered Grids

Lets assume that we have a Neumann boundary condition ~ = f r (x, y) on the right bound
ary of a vertex centered grid. We assume that the equation L%u(x,y) = f f i (x ,y) extends
to the points on the right boundary. The equation at these grid points will involve ’ghost’
grid points outside the domain. These ’ghost points’ can be eliminated using the Neumann
Boundary condition

2h (2.48)

Example
If we take the example of Poissons equation on the unit square then at the right boundary

LhUh{^^y) 2̂

0 -1

1 to 4
0 -1

uh{x ,y) = f h { x , y) + |/£(l,y) = f h { x ,y) (2.49)

where u/, now includes points on the right boundary.

Cell-Centered Grids

In the case of a cell-centered grid we have no points on the boundary, so in general the
equation at interior points which are adjacent to the boundary will involve ghost points
outside of the domain, which need to be eliminated using the boundary condition. If we have
a Dirichlet boundary condition at the right boundary, for example we can write it as

2 (Un ,j + u n + l , j) — fn + l/ 2 J (2.50)

24

and use it to eliminate the ghost point value un+i,j from L^uh(x, y) - f^ (x ,y) . Similarly if
we have a Neumann boundary condition at this right boundary we have

un+l,j un j _ »r
/j — Jn+l/2,j- (2.51)

2.4.4 Nonlinear Equations

Nonlinear PDEs are treated in much the same way as linear equations, the various operators
in the equation are approximated locally on a discrete grid using the finite difference method.
The discrete nonlinear equation is denoted by

N%(uh{x i,..,Xd)) = f% (x i , . . , i d) for (xi,..,Xd) € il. (2.52)

L \ u {xi,..,xd) = fh (x i , . . ,x d) for (x i,..x d) £ T. (2.53)

Again the boundary conditions are usually eliminated and the discrete Nonlinear equation
written simply as

Nh{uh) = f h. (2.54)

It may be possible to write the Nonlinear equation in a stencil Notation, but some of the
stencil entries will depend on Uh. Similarly if a matrix notation is used we will have something
of the form Ah(uh)uh = fh-

The discretization of the specific nonlinear operator in (2.34) which is used in our work
will be detailed in §3.5.

For more on finite difference methods for partial differential equations see for example
[72, 88].

2.5 Basic Iterative Methods

This section introduces a class of iterative methods for solving a linear system of equations

Ax = b. (2.55)

Where x is of size N and A is an TV x N matrix. These Iterative methods, which are known
as the basic or stationary iterative methods start with some initial approximation x 1-0'1 and
generate a sequence {x ^ 1} ^ via the relation

x {k) = T x {k~ 1) + c . (2.56)

The iteration matrix T and the vector c come from a splitting A = M - N o f the matrix A
where M is nonsingular. With this splitting the original system (2.55) can then be written

(M - N)x = b
-i=4- M x = N x + b

<=► x = M -'N x + M - 'b 2̂'57^
<=$■ x — T x + c

25

where T = M ~ 1N = I - M 1A and c = M 1b.
Each application of an iterative method which updates x (fc-1) to x (,c) is known as an

iteration or a relaxation sweep.

Rem ark 2.5.1 I introduce the basic iterative methods in the context of solving a general
linear system of equations, using for ease of presentation a matrix notation, however I mainly
use them for solving discrete Linear PDEs discretized on structured grids and later I discuss
the implementation of these methods in such cases, where a grid function notation may be
more useful.

2.5.1 The Jacobi Method

The first iterative method considered is the Jacobi Method. The Jacobi Method consists of
solving the ith equation of A x = b for Xj to get

Note that we require an ± 0 for each i = 1,.., N. If one or more an = 0 and the system is
nonsingular then a reordering can be performed so that no an equals 0. To write A x — b

i.e we use matrix splitting A = M — N where M — D and N = L + U. The matrix form of
the Jacobi Method is then given by:

N
(2.58)

3 = 1
3 / *

Then given x ^ -1 ' for k > 1, is generated by:

3 = l
3 #«

(2.59)

in the form x = T x + c we write A as A = D — L - U where D is a diagonal matrix whose
diagonal is the same as that of A, —L is the strictly lower triangular part of A and - U is
the strictly upper triangular part of A. We then have

(D - L - U) x = b
D x = {L + U)x + b

<=► x = D ~1 {L + U)x + D ~1 b
(2.60)

x fc = T Jx fc- 1 + c J. (2.61)

where Tj = £>_1 (L + U) and c j = D xb.

26

A lgorithm for Jacobi M ethod

The Jacobi Algorithm for finding an approximate solution to A x = b given an initial ap
proximation x (0) is given below (Algorithm 1). A maximum number of iterations MAX to
be performed and a tolerance TOL to stop the algorithm must be specified.

A lgorithm 1 Jacobi Method

x = J A C (A ,b ,x {0\ M A X ,T O L)

1 . Set k = 1, n =size(x(°))

2. While k < M A X do steps 3-5

3. For i = 1,
(

1set Xi — —
da

\

\

] T (ay*J0)) + ^
3 = i
3 / i)

4. If || x - x<°> II < TOL then STOP.

5. Set k = k + 1, x = x (°)

6. OUTPUT Maximum number of iterations exceeded STOP

W eighted Jacobi M ethod

In the Weighted Jacobi Method, given the current approximation x (fc-1) the new Jacobi
iterates are computed using

N
- £ &ij j(k -1)'

+ h

3 = 1
3 # *

(2.62)

for i = 1 ,..., N as before, however x* is now just an intermediate value. The new approxi
mation x (fc) is given by:

x (fc) = (1 - w)xifc-1) + wx* (2.63)

where u> is a weighting factor to be chosen. Of course when w = l w e have the original Jacobi
Method. In matrix form the weighted Jacobi Method is:

x<*> = ((1 -U3)I + U3Tj)^k~^ + ojD ~1 b, (2.64)

27

which is equivalent to
x<fc>= 7Lx(fc- 1>+ cu (2.65)

where = (1 - oj)I + ujD ~1(L + U) and cw = u D ~ lh. Weighting of the Jacobi method
can be important, when it is used within a multigrid framework, see §2.6.4 for an example
of this.

2.5.2 Gauss Seidel Method

When computing x\k ̂ in the Jacobi Method we have already computed x[k\ . . . , xf̂ j which
should be better approximations to x i , . . . , than x (1fc-1), . . . , xj* j 1*. Therefore the Jacobi
Method should be improved if we rewrite the equation for x[k ̂ as

,H - E ‘ - .i M * ’) - E !î.,+ i M 1" 1’) + b-
x f = ------------ ^ ^ ^ ------- i = 1, . . . ,7V. (2.66)

aii

This is known as the Gauss-Seidel Method. Rewriting the above equation as

(*)

j=1 j=i+1 '
(2.67)

we see that the matrix form of the Gauss-Seidel Method is

(D - £)x (*> = U ^ k- ^ + b, (2.68)

or equivalently

x (fe) = Ta sx-(k~1) + cGs (2.69)

where Tgs — (73 — L) 1£7 and c gs — (D ~ L) 1b. Gauss Seidel is therefore based on a
matrix splitting with M = D - L and TV = 17.

A lgorithm for Gauss-Seidel

The algorithm for the Gauss-Seidel Method is the same as the algorithm for the Jacobi
Method, except that step 3 is replaced by
For i = 1, . . . ,n

set Xi = H j= i aij%j - E "= i+i a,ijX(p + bi

Backward Gauss-Seidel

In each relaxation sweep of G-S the latest components of the approximation x<fc) are used to
update other components of x<fcl The order in which the components are updated therefore
becomes significant. A backward G-S method can be defined by calculating the components

28

of x (fc) in the order N, N - 1 , . . . , 2,1 instead of the order 1 used earlier (forward G-S
) we then have

(D - U) x W = Lx (*-D + b .
x (fc) = (D - U y 'L x ^ + (£> _

(2.70)

(2.71)

A symmetric G-S iteration consists of a forward sweep followed by a backward sweep.

2.5.3 SOR Methods

In Successive Over Relaxation or SOR methods given values x the intermediate values
x* are computed using Gauss Seidel and these values used to evaluate x (A) as follows:

x*fc* = wx* + (1 - w jx ^ '1* (2.72)

where u) is a positive constant. If 0 < u> < 1 this is called under-relaxation and is used to
obtain convergence when G-S does not converge. If u > 1 it is called over-relaxation and it
is used to accelerate convergence of systems which are convergent by G-S. SOR is based on
the matrix splitting

uA = (D - u L) - (uU + (1 - u) D) (2.73)

and can be defined by the recurrence

x (fc) = TSoRxSk~l) + c sor (2.74)

where TSor = (D — uL)~x(u)U + (1 - u>)D) and c Sor = u{D - wL)- 1b.
A backward SOR method can be defined analogously to the backward G-S method. A

symmetric SOR or SSOR iteration consists of a forward SOR sweep followed by a backward
SOR sweep.

2.5.4 Block Methods

Assume that the vector x is partitioned into several disjoint sub-vectors (not necessarily of
equal size)

x = (x1, x2, . . . , xs)t . (2.75)
Then A x = b can be written in the block form

A n A 12

A21 A 22

Ala
A2a

*al ls2

 ̂ X1 ^ (b i >
X2 — b2

V *a / l ba)

(2.76)

where the block Apq is of size np x ng (np being the size of xp) and the vector b p is size
np. Assuming that the diagonal blocks are nonsingular the Jacobi and Gauss-Seidel methods

29

can easily be extended to the block level. In the Block Jacobi method for i = 1 , . . . , s, x* is
updated as follows:

/

x<*> = AT}

\

^2 + b i
3 = 1V 3 ̂*

(2.77)

Similarly in the Block Gauss-Seidel method Xj is updated as

\J=1 j = i + l i
(2.78)

Obviously we now have to invert the matrix An in order to update Xi and the larger the
vectors x* are, the more expensive each step of the method is likely to be, on the other hand
the payoff may be faster convergence of the iterative method.

If we define D b , Ub and Lb as block analogues of D , U and L then the block Jacobi
method can be described by the recurrence

x<*> = D~b \U b + L b) ^ ^ + D Bl b (2.79)

and similarly Block Gauss-Seidel by the recurrence

x<‘ > = (D b - Lb T 'U b x ^ -V + (D b - LBT xh. (2.80)

2.5.5 Convergence

The methods considered in this section all define a sequence of iterates x f̂cl = T x (fc-1l + c,
which upon convergence produce a solution of the original system A x = b. In the following
it is shown that the iteration x (fc) = T x (fc-1) + c converges if and only if the spectral radius
of T is less than one. First the definition of a convergent matrix is needed.

D efinition 2.5.1 (Convergent M atrix)
A square matrix A is said to be convergent z/limfe_ 00 Ak = 0.

The following theorem, the proof of which can be found in [81], is also needed.

Theorem 2.5.1 A matrix A is convergent if and only if p(A) < 1.

Finally we need the following lemma.

Lem m a 2.5.1 If the spectral radius p(T) < 1 then (I - T) ~ l exists and (I - T) ~ l = Yl'jLo ^

P r o o f
If A is an eigenvalue of T then (1 - A) is an eigenvalue of (I - T). Since p(T) < 1, 1 is not
an eigenvalue of T. Hence 0 is not an eigenvalue of (I - T) and (I - T) is not singular i.e

30

(2.81)

(7 — T) 1 exists.
For the second part of the proof let

Sm = 7 + T + T 2 + + Tm

then

(7 - T)Sm = (/ + T + T2 + ... + T m) - (T + T2 + ... + T m+1) = / - T m+1. (2.82)

Using Theorem 2.5.1, p(T) < 1 implies that T is convergent and

lim (7 - T)Sm = lim (7 - T m+1) = 7.
m —+oo m —*oo

Thus oo
(7 — T)-1 = lim Sm = f] T i .

m —»oo
3 =0

and the proof is complete.
The main theorem on convergence can now be proved.

(2.83)

(2.84)

T heorem 2.5.2 For any x (0) € Rn the sequence defined by x f - = T x<'k~1'> +
c for each k > 1 converges to the unique solution of x = T x + c if and only if p{T) < 1 .

P ro o f

Assume that p(T) < 1, we have

x (fc) = r x (*-U + c
x (fc) = T (T x (k-2) + c) + c

x (fc) = T 2x (fe-2) + (T _ 7)c (2.85)

x (fc) = r fcx (0) + (T * - 1 + + T 2 + T + 7)c.

Using (2.85), Theorem 2.5.1 and the fact that p(T) < 1 we have

(k~l \
lim x ^ = lim I y ^ T 3 1 c, (2.86)

k—»oo k—*oo I J v '
v = ° /

which by lemma 2.5.1 is equal to (7 - T)_ 1c. The sequence {x (A:)}£ i0 therefore converges
to the unique solution of x = (7 - T)-1 c or x = T x + c. Conversely assume that x* is the
unique solution of x = T x + c. If c = 0 then x* is the unique solution of x = Tx, now let
z € Rn be an arbitrary vector and take intial guess x ^ = x* - z, we have

limfc_oo T kz = limfc_oo Tk{x* - x<°>) = l i m * ^ « ,^ (T x * - T x™)
— limfe_ 00 Tk~1(x* — x ^)

= Tk~2(x* - x '2)) 72.87)

= limfc_ 00(x* - x (fc)) = 0.

31

Since z G R” was arbitrary, the matrix T must be convergent, Theorem 2.5.1 then implies
that p(T) < 1, which completes the proof. ■

C orollary 2.5.1 If ||T|| < 1 for any natural matrix norm and c
{a fk'>}f=Q defined by x ^ = Tx^k~^ + c converges for any x^°Ho
unique solution o f x = T x + c and the following bounds hold

is a given vector , then
a vector x* which is the

\\x'-xM\\<\\TI\k\\xM-x*\\. (2.88)

and
K - ^ fc)||< I5 ^ ||«(I)- a (0)||. (2.89)

P r o o f
The first part of the corollary follows from the fact that p(T) < ||T|| for any matrix norm.
To prove the first bound observe that

x* - x<fc> = Tx* + c - (rx<fc- ‘> + c)
= T (x * - x (fc- x))
= T 2(x* — x (fc_2)) (2.90)

= T fe(x* -x<°>).

we therefore have

l|x'-x<*>|| = ||I*(x* -x<°>)|| < ||r||fc||x(°) -x*||. (2.91)

To prove the second bound observe that

x (°) - x* = x (0) - x (1) + x (1) - x* = x (0) - x (1) + T (x (0) - x*). (2.92)

Therefore
||x (°) — x* || < ||x(0) -x ^ H + ||X||||x<°) — x||

(l-||r||)||xW -x*||<||x(°)-x(1)|| (2.93)
||x(°)-x ‘ ||<Tr|Tlf||xW -x(1)||.

Combining (2.93) with (2.91) gives the desired result. m

C onvergence factor

Define the error in the approximation x ^ to the solution of Ax. = b as

e<fc> = x* _ Y (fc) (2.94)

32

{ ||e(fc)||\1/fc
p = lim sup f " . . (2.95)

f c - o o \e< °>€R" l le (0 ' l l J

Given that
0(̂ 0 —

= Tx* + c - (T x ^ -1) + c)
= r (x * - x (*:- 1))

= Te (k-i) (2.9G)

where x* is the actual solution. The general convergence factor for an iterative method is
defined as

this is equivalent to

p = limfc_*oo (supe(o,€R„ Wk

= limfc-
(2.97)

►oo (IITk\\)l/k = p(T).

(using the fact that lim ^oo (\\Ak\\)1/k = p(A) for any matrix norm). Therefore the optimal
iterative method is the one whose iteration matrix T has minimal spectral radius.

More Convergence Results

Below some useful theorems on convergence are stated without proofs.

Theorem 2.5.3 If a matrix A has positive diagonal entries and all other entries negative
or zero then only one o f the following statements holds

1. 0 < p(Tqs) < p(Tj) < 1

2. 1 < p(Tj) < p{TGS)

3. p(Tj) = p(Tgs) = 0

4• p(Tj) - p{Tgs) = 1

where Tj and Tgs are the iteration matrices for Jacobi and Gauss-Seidel respectively.

This theorem implies that for such matrices if one of Jacobi or Gauss-Seidel converges then
so does the other and similarly divergence of one implies divergence of the other. If both
converge then G-S converges faster than Jacobi. For the next theorem we need to define a
regular splitting of A.

Definition 2.5.2 (Regular Splitting)

A = M - N is a regular splitting o f A if M is nonsingular and M ~ l and N are nonegative.

33

Theorem 2.5.4 If M and N are a regular splitting of A and T = M ~ lN then p(T) < 1 if
and only if A is nonsingular and A~1 is nonegative.

Theorem 2.5.5 If all the diagonal elements of A are non-zero then p {Tsor) > \u — 1| and
hence SOR converges only when 0 < u) < 2.

Theorem 2.5.6 If A is positive definite i.e xTA x > 0 for any x and 0 < u> < 2 then the
SOR method converges for any initial guess

Theorem 2.5.7 If A is positive definite and tridiagonal then p(Tas) = p(T j)2 and the
optimal u> for SOR is

1 + y / l - p(T j)2 (2>98)

for which p (Tsor) = - 1.

2.5.6 Implementation

If we have a system of equations An = f arising from the discretization of a PDE using
the finite difference method on a rectangular domain then the matrix A is likely to be
well structured and sparse, which means storage of A will not usually be required. The
updating of each entry of u will typically involve just a few other entries. To illustrate this
the implementation of Jacobi and Gauss-Seidel methods is outlined for the case of Poissons
equation with Dirichlet boundary conditions on the unit square introduced in §2.4. For ease
of presentation I revert to a grid function notation.

Jacobi Method

In the weighted Jacobi Method if grid point (i ,j) is not adjacent to the boundary iq j is
updated according to the equation

= U 1 + U)
h2fi,j + ik~l + u!fc-i

i— 1 ,j + + u
fc-i •
i,j-1 (2.99)

where for example uk+ ^ is the entry of the previous approximation uk~l corresponding to
the grid point (i + l , j) . For points adjacent to the boundary appropriate modifications to
(2.99) should be made.

Gauss Seidel Method

Unlike in the Jacobi Method the order in which entries of uh are updated is significant
when using the Gauss-Seidel method. Two different ordering schemes (corresponding to two
different ways of stacking u/, into a vector) for Gauss Seidel are outlined below.

34

Lexicographic Ordering

A lexicographic ordering of the grid points involves ordering the points in increasing order
from left to right and up the rows so that the approximation at the bottom left point (1, 1)
is updated first followed by the approximation at the point (2, 1) and so on with the approx
imation at the top right point (n - l,m - 1) updated last. A Gauss-Seidel scheme used with
lexicographic ordering is denoted GS-LEX and the entry u/, corresponding to grid point (i ,j)
(not adjacent to the boundary) is updated as follows

< , = (2 . 1 0 0)

Note that because of the lexicographic ordering entries corresponding to points to the left of
and below { i , j) have already been updated whereas entries corresponding to points to the
right of and above (i ,j) have not.

R ed Black Ordering

When a red-black ordering of the grid points is used the grid is coloured in a checkerboard
fashion as shown in Figure 2.2, entries of u/, corresponding to the red points are updated
first followed by entries of uh corresponding to the black points. A Gauss Seidel scheme with

Figure 2.2: Red-Black ordering of grid points: red points are shown as squares, black points
are shown as stars

red-black ordering of the grid points is denoted GS-RB. Entries of uh corresponding to red
grid points are updated by

(2. 101)

35

(2.102)

and then entries corresponding to black points are updated by

h2fi,j + tijLij + t t f j- i + û + ij
4

+ u.i , j+ l

Because a five point approximation to the PDE is being used, the updating of each entry
associated with a red point involves only entries associated to black points and vice versa.
This means that after each sweep of GS-RB the residual = f h — LhU/, is zero at the
black points. When each red point is updated using only black points and vice-versa, GS-
RB has an advantage over GS-LEX in terms o f paralell computing since all the entries of
Uh corresponding to red points can be computed in paralell followed by all entries of Uh
corresponding to black points. Note that because points are updated in different orders, one
step of GS-LEX will not produce an identical result to one step of GS-RB with the same
initial guess.

Line Relaxation

If uh is stacked into a vector u lexicographically and u split into (n - 1) subvectors each of
size (n - 1) then the subvector u; will contain all the values of uh corresponding to row l of
the grid, hence performing a block Jacobi or Gauss-Seidel iteration on this block system is
equivalent to relaxing a whole row of the grid collectively, this is known as x-line relaxation.
In our example the updating o f u, is done using for example block Gauss-Seidel as follows

ui = Aul (ui~i + ui+i + h2ii) , (2.103)

where A u is a tridiagonal matrix with 4 on the diagonal and -1 on the off diagonals. If
uh is stacked along columns of the grid and the resulting vector partitioned as above the
block relaxation methods relax whole columns of the grid collectively, this is known as t/-line
relaxation. A sweep of an alternating line relaxation consists of an x-Iine relaxation sweep
followed by a y-line relaxation sweep. A line analogue o f the red-black pointwise relaxation
for line Gauss-Seidel is the zebra line relaxation; here either rows or columns of the grid are
coloured alternately white and black, then the white lines are relaxed followed by the black
lines, in most cases the approximation at a point on a white line will depend only on other
points on that line and points on the adjacent black lines, hence a parallel implementation
o f zebra line Gauss-Seidel will be possible.

2.5.7 Local Nonlinear Relaxation Methods

If we have a discrete non-linear PDE Nh(uh) = fh on a grid Qh which has in total N grid
points then we have in general a system of non-linear equations

W i(u !,U 2 ,...,u N) = 0 ,i = 1 , . . . , N. (2.104)

36

Analogous to the linear case a non-linear Jacboi Iteration involves solving the ith equation
for the ith unknown

Wi{u'l,u%,..,u'‘_ i ,Ui+1,u l'+ l,..,u kN) = 0 , (2.105)

where k denotes the current approximation, k + 1 denotes the new approximation and we
start with some initial guess u°. Similarly a non-linear Gauss-Seidel iteration is given by

Wi(u‘k+1
1 > ,fc+i fc+i ,.fc+i ^i+n • ■ • >un) — 0 >* = li • • •,N, (2.106)

where of course u i , u , _ i are known before Ui is updated. Both these methods will involve
solving a non-linear equation in one unknown to update each m. This can be done by one
step of Newton’s method using the current approximation to Ui as initial guess

«*+1 = «* - Wi(uf) /C (u f), (2.107)

where
(2.108)

The resulting iterations are known as Jacobi-Newton and Gauss-Seidel-Newton respectively.
In the case where we have a semi-linear system of equations so that at each grid point we

have
aitti + .. + ojvUjv + W i(u i ,. . . ,u N) = 0, (2.109)

where W is a non-linear equation, the Jacobi-Newton iteration is performed by substituting
in ukj for j i and then replacing Wi(uk+1) by

Wi(uk) + C(uk)(uk+'i - u k).

m is then updated by

uki +1 =
- (a i u f + . ■ ■ + O j - i t t - L ! + Qi+iMj+1 + ■ . . + aN U kN) - W i (u f) + C (u f)

a* + C(uf)

Alternatively we can simply substitute uk into W< in which case

(2.110)

. (2.111)

=
- (a iu k + ■ ■ ■ + ai- iu f_1 + flj+iuf+1 + ■ ■ ■ + aNU%) - Wj(uJ,. . . ,ujf, . . . , uk)

(2.112)
this is known as the Jacobi-Picard iteration. A GS-Picard iteration is defined in a similar
way.

R em ark 2.5.2 As in the case o f linear PDEs, we expect that a discrete Nonlinear PDE at
a particular grid point will be defined in terms o fu at that grid point and a small number of
neighbouring points.

37

2.6 Multigrid Methods

Multigrid methods, first developed by A. Brandt in the 1970s have been shown to be fast
efficient solvers for a range of linear and nonlinear elliptic PDEs discretized on structured
and unstructured grids. In this section I give a short introduction to the concepts behind
multigrid methods, using the classic example of Poisson’s equation on the unit square to
illustrate various key concepts and give the basic algorithms for linear and nonlinear multigrid
methods. The discussion here is limited to equations defined on cartesian grids and to simple
smoothers and grid transfer operators. For a more comprehensive introduction to multigrid
methods see for example [12, 92, 102] and references therein and see the next section (§2.7)
for a discussion of black box algebraic multigrid methods.

2.6.1 Basic Principles of Multigrid

In the following the two key ingredients of multigrid methods, error smoothing and coarse
grid correction are introduced.

Smoothing

Many basic relaxation schemes like the ones seen in the previous section when used to solve
discrete elliptic PDEs, discretized on cartesian grids are slow to converge, however they do (if
applied appropriately) possess what is known as the smoothing property. These schemes are
effective at removing the oscillatory fourier modes of the error in an approximation but may
not be effective at removing the smooth modes of the error (leading to the aforementioned
slow convergence) i.e they smooth the error while not necessarily reducing its size greatly. A
smooth quantity can however be well approximated on a coarser grid, which leads us on to
the second principle on which multigrid methods are built.

Coarse G rid C orrection

Consider a linear system
= (2.113)

If v is an approximation to the solution u then the error in the approximation e is defined

by:
e = u - v . (2.H 4)

Applying A to both sides of (2.114) we get

Ae = f - A v = r (2.115)

where r is the residual. This is known as the residual equation. The residual equation
gives us a way to relax directly on the error e. Of course solving (2.115) is as expensive as

38

solving the original equation, however if A is replaced by some simpler approximation A an
approximation of the error can be found relatively cheaply, used to correct v and then the
process repeated until convergence. If for example we approximate A by its diagonal D we
recover the Jacobi method.

Now lets imagine that we have discretized an elliptic PDE on a cartesian grid tlh with
grid spacing (h, k) and we have (in grid function notation) the linear system

Lhuh = f h. (2.116)

Given an approximation vh one way to improve vh would be to solve the residual equation
on some coarser grid f i " with grid spacing (H ,K) (we will use only standard coarsening i,e
(if, K) = (2h, 2k) in the following) i.e approximate Lh by a coarse grid analogue L h - Overall
the procedure would be

1. Transfer rh to the coarse grid using a restriction operator rH = l£rh

2. Solve Lffe// = th

3. Transfer eH back to the fine grid and correct the approximation vh « - vh + lfreH

Here LH is usually just the original differential operator discretized on Given that ilH
has less grid points it is of coarse cheaper to solve LHeH = rH than it is to solve the fine
grid equation.

R em ark 2 .6.1 A similar approach can be used for Nonlinear operators, using the Nonlinear
residual equation, which is introduced later.

Clearly this approach will only be effective if the error eh can be well approximated on
a coarser grid i.e it is smooth. The combination of iterative methods which are slow to
converge but nevertheless smooth the error, with coarse grid correction is the main idea
behind multigrid methods.

The next three subsections define more precisely what is meant by coarse grids, restriction
and interpolation operators and smoothness, before coarse grid correction is defined more
precisely.

2.6.2 Coarsening

Given that multigrid methods are based on the use of coarse grids to accelerate iterative
methods I describe in more detail what is meant by a coarse grid. I assume that we have a
cartesian grid fi '1 with grid spacing (h, k) called the fine grid and construct a coarse analogue
Q h with grid spacing (H, K).

39

Standard Coarsening

As mentioned above in the case of standard coarsening the coarse grid is just i e the
grid with grid spacing (2h, 2k). In the case of a vertex centered grid, if has (n + 1) x (m + 1)
grid points including boundary points then Q2h will have (n/2 + 1) x (m/2 + 1) grid points
including boundary points and the coarse grid points will be a subset of the fine grid points,
for example the coarse grid point (1 , 1) located at (a + 2/t,c + 2k) is the same as the fine
grid point (2,2). If we have a cell-centered discretization then if the fine grid has n x m grid
points the coarse grid will have n/2 x m/2 grid points and unlike in the verterx centered case
the coarse grid points will not coincide with fine grid points. See Figure 2.3 for an example
of fine and coarse vertex-centered and cell-centered grids.

Figure 2.3: Fine and coarse grids in the vertex centered case (left) and the cell-centered case
(right). Coarse grid lines are full, additional fine grid lines are dashed. Stars are fine grid
points, diamonds are coarse grid points in the cell-centered case and points which are both

O ther Coarsening

Other types of coarsening aside from standard coarsening can be used, for example the
grid spacing can be doubled in just one direction e.g (H .K) = (h,2k) this is known as
semi-coarsening. Semi-coarsening is used in anisotropic problems where pointwise smoothers
smooth the error in only one direction.

2.6.3 Intergrid Transfers

We also need some way of transferring grid functions between grids. Transferring grid func
tions from a fine to a coarse grid is known as restriction and transferring grid functions from
a coarse to a fine grid is called interpolation (or prolongation). In the following we consider

40

only the transfer between standard coarsened fine and coarse grids, in the vertex and cell-
centered cases. An interpolation operator which transfers a grid function Vh from a grid Q2h
to a grid Qh is denoted by I2h and a restriction operator which transfers grid functions from
a grid Clh to a grid il2h is denoted by l£h.

R estriction for V ertex-Centered Grids

The most obvious restriction operator is injection which is defined in 2 dimensions by

v2h = Ihhvh, (2.117)

where

vi ! j = v2i,2j- (2.118)

i.e the coarse grid function at a mesh point takes its value directly from the corresponding
fine grid value. An alternative restriction operator is the full weighting operator which is
defined in 2 dimensions by

where

V2h = IhkVh, (2.119)

2 hV--hj — Y g K t - l , 2 j - l + w2 t - l ,2 j+ l + * 4 + l , 2 j - l + v 2 »+ l,2 j+ l +

2 (v 2 i , 2 j - l + V2i,2j+1 + v 2 i - l ,2 j + v 2 i+ l ,2 j) + ^ V2i,2j]- (2.120)

i.e the value of the coarse grid function at a mesh point is a nine point weighted average of
the value of the fine grid function at that point and the eight points surrounding it on the
fine grid.

Another restriction operator is the half weighting operator which is a five point weighted
average, defined in two dimensions by

where

V2h = ¡ l hvh, (2.121)

ViJ = l N h j - l + < 2J+ 1 + t>2i - l , 2j + *4 + i , 2j + 4 v ^ 2j]• (2. 122)

Stencil Notation

Before continuing I make a brief digression to introduce a stencil notation for restriction
and interpolation operators. Using the notation introduced earlier (§2.4.1) we see that a
restriction operator R = I%h which maps grid functions on fih to grid functions on Q2h can
be written in stencil notation as follows:

(Rvh)p = ^2 Rp,q(vh)2P+q for p e f i2\ (2.123)
96 7 ?

41

where p is a grid point on the two-dimensional grid £l2h and Rp<q (q e Z2) defines the weight
given to the value o f Vh at the fine grid point 2p + q, in the calculation of the value of v2h at
p. For example in the case of full weighting restriction defined above we have Rp^0,o) = 1/4,

p,(i,o) = Rp,(-to) = RpA0A) ~ p pA-bo) = 1/8 and RP,(i,i) = -Rp,(- i , i) = # P,(i ,- i) =
— 1/16 so the stencil is

16

,2/i

2 h

(2.124)

similarly the stencil for injection is [l]^1 and the stencil for half weighting is:

n 2h
1 0 1 0

1
8

0 1 0

1 4 1
0 1 0

(2.125)

If L is an operator mapping U to V where U is the space of grid functions on a grid G x
and V is the space o f grid functions on a grid G2 its adjoint (or transpose) operator with
respect to the Euclidean inner product, L*, which maps V into U satisfies

(Lu, v)2 = (u, L* v)2 (2.126)

for all u € U and v £ V, where (., ,)2 denotes the Euclidean inner product. The transpose o f
every restriction operator is a prolongation operator. If we consider

(Rvh,v2h) = ^ 2

pez* (2.127)^ -Rp,g(v h)2P+q (l>2h)P,
lq€Z‘

making the change of variables s ~ 2p + q we have

(Rvh,v2h) = XI XI Rp,s-2P(Vh)s(V2h)P = XI (vh)a XI P P,s-2P(v2h)p = (Vh, R*V2h)
p6Z2 s€Z2 ,eZ3 p€Z3

(2.128)
and we see that

(R V2h)a XI P P ,a -2 p (v2h)f
p€Z2

(2.129)

so a prolongation operator P can be written in stencil notation in terms of its transpose

(P v 2h)p - X I P q ,p -2 q (v 2h)q-
q€Z3

(2.130)

Given a rule to determine Pv2h the value P*t can be obtained by applying P to the grid
function on Q2k which is zero everywhere except at the point s ,which I shall denote bv 6s
then

(P S 2h)p = P l p - 2 s or P»,t = (P $ 2 h h * + t - (2.131)

42

The most commonly used interpolation operator is bilinear interpolation which is defined by

Vh = I%hV2h, (2.132)

where

Interpolation for Vertex-Centered G rid s

nth rt.2h
v 2i,2j ~ v i,j

(2.133)
V2i+l,2j = \ « 5 + u ?+ l j)
< 2;+ l = i K j + ^ + l)

,,h = I (,,2h I ,,2h , ,,2/i , ,,2h \u 2 t+ l,2 j'+ l 4 \Vi,j + v * + lj + v i , j + l + v i + l , j + l)

for 0 < i < n/2 — 1 and 0 < j < m/2 - 1 .
This means that for fine grid points which are also coarse grid points the value of the fine
grid function is transferred directly from the coarse grid value. For fine grid points on a
horizontal coarse grid line but not a vertical one the fine grid value is the average of the
values at the 2 coarse grid points either side of it on that line, with the analogous result for
fine grid points on a vertical coarse grid line but not a horizontal one. For fine grid points
in the middle of four coarse grid points the fine grid value is the average of the coarse grid
values at the 4 points. From the first line in (2.133) we have

(^2/i)s,(0,0) = (̂ 2y«,(0,0) — K12h^2h)2s — 1 (2.134)

with s = (i , j). From the second line we have

(^2h)s,(-l,0) — (^2h^2h)2a+(-l,0) = 1/2- (2.135)

with s = {i + l , j) . Similar considerations for other points give the stencil for (7^)* as

(A r = 7 (2.136)

2 h
This is sometimes written as

Th — — h h ~ 4

rh

2h

(2.137)

A nice way to think about this notation is to imagine that the stencil is centered on a fine
grid point. The fine grid value at that point is given by the sum of the stencil entries which
lie on a coarse grid point multiplied by the coarse grid value at that point. For example if
the fine grid point is also a coarse grid point, then only the middle entry 1 lies on a coarse
grid point and therefore as defined above the fine grid value is transferred directly from the
coarse grid.

We see from (2.136) that up to a constant the bilinear interpolation operator is the
transpose of the full-weighting restriction operator.

43

Restriction for Cell-Centered G rid s

If we use a cell-centered discretization each cell of the coarse grid fl2h contains within it 4
fine grid cells and each mesh point of f l2h is surrounded by 4 mesh points of flh. The four
cell average restriction operator evaluates the value of a coarse grid function V2h at a coarse
grid point by taking the average value of the fine grid function u/, at the four fine grid points
surrounding it. This restriction operator can be defined formally by

V2h = (2.138)

where

«id = \ (U2i-l,2j-l + + < 2j—1 + < 2j) • (2.139)

Which can be represented by the stencil

r 2/1
i 1 1

4 • • (2-140)
1 1 J h

R em ark 2.6.2 In the case of cell-centered, grids the coarse points are not a subset of the fine
grid points. The point 2p is the fine grid point northeast of the coarse grid point p, hence the
stencil entry (p, (0,0)) is positioned northeast o f the centre o f the stencil.

Interpolation for Cell-Centered Grids

The simplest cell-centered interpolation operator simply transfers the value at a coarse grid
point directly to the four fine grid points contained within that coarse grid cell.

Vh = I%hV2h, (2.141)

where

^2i,2j ~ v2i,2j~l = v2i-l,2j = v2t -l ,2j - l = vi j (2.142)

for i = 1, - , n/2 and j = 1,.., m j2. The stencil is 1

1 1

1 1 L2h

(2.143)

Again note that up to a constant this interpolation operator is the transpose of the cell-
centered restriction operator.

The cell-centered bilinear interpolation operator is defined as follows:

vh = I%hv 2h, (2.144)

44

where

(2.145)

for i = 1, n/2 - 1 and j = 1 , m/2 - 1 .
In stencil notation this is

1 3 3 1
1 3 9 9 3
16 3 9 9 3 (2.146)

J 1 3 3 1 U
O rder o f Interpolation and R estriction

An Interpolation operator is said to have order k + 1 if it can transfer exactly polynomials
of order k i.e if the exact values of a polynomial are given at the coarse grid points, the
exact value of the polynomial can be found at all fine grid points by interpolating with the
given operator. The order o f a restriction operator is equal to the order of it’s transpose.
Bilinear interpolation in both the vertex and cell-centered cases has order 2, which means the
full weighting restriction operator also has order 2. The cell-centered interpolation operator
defined by (2.141) has order 1 and hence so does the cell-centered restriction operator. The
transpose of injection cannot even transfer constants and so its order is zero.

When constructing multigrid methods the order of the restriction operator -I- the order
of the interpolation operator, should be, as a general rule, greater than the order of the PDE
being considered.

2.6.4 Smoothing Analysis

I now discuss what precisely is meant by smooth and oscillatory modes of the error with
respect to standard coarsening and by way of an example apply some smoothing analysis (a
concept invented by A.Brandt 1977) to the weighted Jacobi Method for the model problem
of poissons equation with Dirichlet boundary conditions on the unit square, seen previously,
before introducing the method of Local Fourier Analysis.

Fourier Expansion o f the Error

Consider a vertex centered discretization of the unit square flh with h = k = 1/n, represented
by the discrete points (x^ yj) = (ih ,jk) - (i/n,j/n) for 1 < i , j < n - 1 . Let the grid function

45

n — I

e h (x , y) be the error in the approximation to some discrete PDE and assume that we have
a Dirichlet boundary condition, then can be written as a discrete fourier sine series as
follows:

ek{x,y) = ^ 2 <J‘'m sin Inxsin miry (2.147)
l,m=l

for (x ,y) € flh. The sine series is appropriate here because we have a Dirichlet boundary
condition. Clearly if we have a Dirichlet boundary condition the error in any approximation is
zero on the boundary (because we are given the boundary values) so we need eh{Xi,yj) — 0

for i , j = 0 or n, substituting x = 0 or x = 1 into (2.147) the term sinl7r i = 0 for all l
similarly for y = 0 or 1. If we have a periodic boundary condition we can write (assuming n
even)

n/2—1
eh(x, y) £ a l,mel2Trixem2iriy (2.148)

(,m = - n /2

for (x ,y) = (i/n,j/n) and 0 < i, j < n - 1 . It is clear in this case that eh(x + l ,y) = eh(x,y)
and similarly eh(x,y + 1) = eh(x,y). For a Neumann boundary condition we must have
eh (-l/ n ,y) = e*(l/n, y) and similar conditions at the other boundaries therefore we should
use a cosine series to expand e*

n
eh{x ,y) = ^ 2 a l,m cos Inx cos miry

/,m =0
(2.149)

for (x ,y) = (i/n,j/n) and 0 < i , j < n. If we have a cell-centered discretization, then
essentially we have the same expansions, except that the grid points (Xi,yj) are in different
positions and in the case of Dirichlet and Neumann boundary conditions the number of grid
points is different and hence the range of l,m will need to change.

H igh and Low Frequencies

Returning to the case of the vertex-centered grid with Dirichlet boundary conditions let us
denote sin I tx sin mny by . Now consider a standard coarsened, coarse grid Q2h. On this
grid x = 2i/ny = 2j/n for 1 < i , j < n/2 - 1 . Let us write as

ipn—l,m
h = sin(n - l)nx sin mny = (sin nnx cos Inx - sin hrx cos rnrx) sin rrnry,

we see that for (x, y) € fl2h
sin nwx = sin 2ni = 0.

and
cos nnx = cos 2ni = 1 ,

(2.150)

(2.151)

(2.152)

so
i ’h ! m = - sin f7ra: sin m n y = — (2.153)

46

Similar considerations show that
v>;rm = - i , ir
¡pn-ln-m

= 4 ’m

(2.154)

(2.155)

for (x, y) e fl2h i.e ’ipl̂ m, m and i/jn l'n m cannot be distinguished on Cl2h, this
phenomenon is known as aliasing. Clearly if for l,m < n /2 the functions , ^ n~m and

do not represent meaningful grid functions on then any coarse grid correction
procedure, which utilises Q2h cannot reduce the part of the error which corresponds to these
fourier components, therefore is defined to be

low frequency if max{l,m) < n/2 (2.156)

high frequency if n/2 < max(l, m) < n. (2.157)

The low frequency components of the error can be eliminated using coarse grid correction,
while the high frequency components cannot and must be reduced using a smoother. If it
is said that a relaxation scheme smooths the error after a few steps it means that the high
frequency or oscillatory components of the error become small after a few iterations.

R em ark 2.6.3 The definition of high and low frequency components is of course related to
the choice of the coarse grid. If the fine grid is coarsened only in the y direction, for example,
the above definition o f high frequency components is replaced by

such that n/2 < m < n . (2.158)

Sm oothing Analysis for W eighted Jacobi M ethod

Here I use the above expansion of the error on a vertex-centered grid with Dirichlet boundary
conditions and definition of high and low frequencies to illustrate the smoothing effect of the
weighted Jacobi method on Poisson’s equation (2.30)-(2.31). This example is adapted from
[92].

T heorem 2.6.1 The functions

'I’h™ = sin k x sin miry (l,m = 1 , ...,7V - 1) (2.159)

are the discrete eigenfunctions of the operator Lh = — Ah-

P ro o f

= £7 [4 sin Inx sin mny - sin ln(x + h) sin mwy
- sin Itx{x - h) sin miry - sin Ittx sin mir(y + h) - sin Inx sin mn(y - h)}

(2.160)

47

Given that sin(a ± b) = sin(a) cos(6) ± sin(f>) cos(a) and therefore sin(a + b) + sin(a — b) =
2 sin(a) cos(fe) we have

Lh ’iph™ — r j s n̂ ^ x s *nm7ry ~ 2s*n CQslnhsinmny - 2 sin I n x sinmnycosmnh]

(2.161)
or

Lh4>hm = ^ - 2 cosilnh)^™ - 2 cos(m7r/i)0 {l’mj . (2.162)

So are eigenvectors of Lh and the eigenvalues are

2
Cr̂ m = ~ cos^7r̂ 1) ~ cos(m7r/i)). (2.163)

From (2.99) we see that the weighted Jacobi method can be written as

A = + — fh, (2.164)

where the smoothing operator Sh is represented by the stencil

S /.M = \

The eigenfunctions of Sh{u) are therefore the same as those of Lh and the eigenvalues are
»2

A^m = 1 ----- 1 — ~2 (^ “ cos ~ cos mnh) (2.166)

to, l = 1 , 7 1 — 1.

Recall that /i = 1/n, so provided n > 2 the term cos Ink is monotonically decreasing from
cos nh at / = 1 to -cosnh at l = n - 1. If we assume that n is relatively large we can (using
sin(s) « s and y/l - s a l - s / 2 for s small) approximate cosnh as 1 - 3̂ - . We then have

Ail /7 t2/i2\A ' » 1 - u 1~y ~ j (2.167)

7T2/)2An - l , n - l w l _ 2a> + £ ^ _ > (2 i 6 g)

We see that as the grid spacing h —> 0 there is no convergence for u > 1 since the spectral
radius is greater than 1. If 0 < w < 1 we have

P(Sh(w)) = lAj’1! = 1 - 0 (u h 2). (2.169)

In terms of convergence we see that w = 1 is the best choice of the weighting parameter since
this corresponds to the smallest spectral radius, however to achieve reasonable smoothing

1

1 4 (l / w - l) 1
1

- T wh\ - h - — Lh. (2.165)

48

with weighted Jacobi we must choose a parameter u ^ 1. To see this consider approximations
before Vh and after Vh a relaxation step. Define the error in these approximations as

Z h -U h - Vh (2.170)

e/i = uh - vh, (2.171)

where Uh satisfies Uh = ShUh 4- ^j~fh- Now expand eh in terms of the eigenfunctions

N - 1
eh = ^ 2 0‘l’m'Phm- (2.172)

l,m=l

We know that iih = ShVh + ^ f h so

N -i
eh = Sheh = ^ 2 (2.173)

1,771 — 1

From this we see that the component of the error corresponding to the smoothest eigen
function i ’l ’1 is responsible for the slow convergence of the Jacobi Method because A1’1 is
close to 1. Furthermore the smaller the grid spacing h the larger A ’̂1 is and the worse the
convergence o f smooth error components.

Having established that no choice of u will effectively damp the low frequency components
lets turn our attention to the high frequency components of the error. The smoothing factor
for the weighted Jacobi Method n(h;u) of Sh is defined as the worst factor by which high
frequency components are reduced per relaxation step

/x(/i;w) = max{|A^m| : n j2 < max(l,m) < n - 1 }. (2.174)

fi*(ui) is defined by

= sup fi(h;u), (2.175)
h£H

where H is the set of admissible mesh sizes for example for fî = (0, l)2 if the coarsest grid
on which smoothing is applied corresponds to h — 1/4 then H = {h = 1/n : n > 4}. Given
the eigenvalues of Sh(u) are

\ J,m
Ah — 1 — ^ (2 — cos Inh — cos rmrh) (2.176)

we have

= m a x {| l - ^ (2 - c o s / 7 r h - casmirh)| : n /2 < max (l,m) < n - 1}.

The e x tre m e s o f A|;m o c c u r w h e n l = m = n - 1

(jJ
1 - — (2 - cos lirh — cos mit h) = 1 - w (l + cos irh)

(2.177)

(2.178)

49

(2.179)

and when either m or / = n/2 and l or m = 1

1 - —(2 — cos Ink — cos mnh) = 1 - - (2 - costt/i)

so
n(h-,u>) = max{|l — w(l 4- cos7r/i)|, |1 - — (2 - cos7r/i)|}. (2.180)

and
M*(w) = max{|l - w /2|, |1 - 2u>|}. (2.181)

For w < 0 or w > 1 we see that /i(/t;u>) > 1 provided h is small enough so Jacobi relaxation
has no smoothing properties in these cases. For 0 < u < 1 the smoothing factor is less than
1 and bounded away from 1 independently of h. The optimal choice of uj i.e the choice of w
which minimises h*(uj) occurs when

- (1 - 2w) = 1 - (j/2 (2.182)

4
W “ 5 (2-183)

3
^*(w) = 5 * (2.184)

One step of weighted Jacobi relaxation with optimal choice of w will reduce all high frequency
components of the error by at least a factor of 3/5 independent of the grid spacing h.

Figure 2.4: Weighted Jacobi for Poisson’s equation on a 31 x 31 grid: original error (left)
and error after 20 steps of weighted Jacobi with u = 4/5 (centre) and u = 1 (right)

Local Fourier Analysis

The smoothing analysis for the above case was relatively simple because the eigenfunctions

of Sh were the fourier sine components. However in general smoothing analysis is more
complicated and requires the use of Local Fourier Analysis.

In Local Fourier Analysis boundary conditions are not taken into account, instead analysis
is based on an infinite grid G* = {x = (x ,y) = (ih ,jk) : (i ,j) € Z2} with grid spacing

50

R em ark 2.6.4 Nonlinear operators can be analysed based on a local linearization and linear
operators with nonconstant coefficients can be analysed locally.

The action of such operators on the grid functions

M W i.*a), x) = eie'*/heie>y'h (2.185)

for (x ,y) € G h is considered. Unlike in (2.148) 6X ,02 are continuous parameters (obviously
we need only consider - 7r < 61,62 < n). With respect to standard coarsening, low frequency
components are <ph{0, x) such that 0 - (6X, 62) e [~n/2, n/2) and high frequency components
are <j>h{9, x) such that 6 e [—7r, 7r)\[—7t/ 2, n/2). The following theorem forms a basis for most
of the results in Local Fourier Analysis

T heorem 2.6.2 The grid functions </>h{Q, x) are eigenfunctions of any discrete linear oper
ator Lh with constant coefficients.

P r o o f

If Lh has constant coefficients then

L h M f .x) = E k z. Z,„e‘ » <«+«h> A
= (£ ,e z a L , e ' 6<l) eifl x./K

where . / denotes componentwise division. The eigenvalues of Lh are

L~h(0) = X L«ei0'Ç• (2.186)
96 Z3

h = (h, k) . The analysis is based on discrete linear operators with constant coefficients i.e
operators L h whose stencil entries L p q̂ are not dependant on position p in the grid.

Sm oothing Analysis w ith LFA

With the above result it is straightforward to analyse the smoothing effect of any relaxation
method on LhUh = fh one step o f which can be written as

Lh^h + LhVh = f h, (2.187)

where vh is the approximation before the relaxation step, vh is the approximation after the
step and Lh = L^ + L^. Subtracting (2.187) from Lhuh = f h we get

LhZh + Lheh ~ 0, (2.188)

51

which is equivalent to
(2.189)

where 5/, is the smoothing operator. From (2.188) and Theorem 2.6.2 we see that <j>(9, x) are

eigunfunctions of 5/, and

Sh<j>(9,x.) = Sh<t>(9,x) - - L-h (0)

¿ t W)
<f>(9,x). (2.190)

where we are assuming that {9) ^ 0. The smoothing factor ¿¿¡oc is therefore

IHociSn) =sup{\Sh(9)\ : 9 e [- tt, 7r)\ [-7r /2, tt/ 2)}. (2.191)

Example
By way of an example let us consider GS-LEX applied to Poisson’s equation, from (2.100)

we see that

(2.192)

1
o - 1

i----O 1
o 0 0

Lh - p- 0 0 - l ii-4 - 1 4 0

i---
- o 0 0 1---
- o - 1 0

and hence

L V (9) = ¿ (4 - e

The smoothing factor in this case is
ei01 _|_ ei03

Lh (9) = £ (- e i0' - eie>)
+ //i\ 1 /a _ — i&i g—¿02̂

Vloc(Sh) = sup{ 4 _e-tfi _ : 0 € [—7r,7r)\[—7r /2, 7r /2)}.

(2.193)

(2.194)

It is shown in [102] that the supremum is achieved for (9i ,92) = (7r/2,cos- 1(4/ 5)) and is
equal to 0.5. A similar analysis for weighted Jacobi gives the same result as found above
with the rigourous fourier analysis.

R em ark 2.6.5 Although Jacobi and GS-LEX (plus their line analogues) can be written in
the form (2.187), GS-RB cannot. Local Fourier analysis can still be used to analyse GS-RB
type smoothers but the analysis is more involved see [92] for more details.

2.6.5 Coarse Grid Correction scheme

Having introduced heuristically the idea of coarse grid correction and its combination with
iterative methods which smooth the error, I can now define more precisely in Algorithm 2,
what one step of a coarse grid correction procedure (CGC) for a linear equation LhUh = fh
on a grid f lh involves. Here Sh and c/, relate to the choice of the smoother. The parameters
ui and v2 are the number of relaxation sweeps performed pre and post correction respectively,
which in practice will usually be small. The operator L2h is usually the direct analogue of

52

A lgorithm 2 Coarse Grid Correction

Vh 4 CGC (Vh, fh, Z*hi Shi ̂ hi ^li ^2)

1 . For 1 = 1 to i/i
Vh Shvh + Ch

2. Compute residual rh — fh - LhVh-

3. Restrict residual: r2h = I'h’Ch

4. Solve L2h£2h = r2h on fi2\

5. Interpolate error: = I2he2h

6. Correct fine grid approximation: Vh*—Vfl +

7. For l = 1 to v2

Vh « - ShVh + ch.

Lh on the grid Q.2h i.e the discrete operator which results from discretizing the continuous
problem il2h. An alternative is the Galerkin approach which defines L2h as l l hLhI%h. The
Galerkin approach is often combined with more sophisticated, matrix dependent interpolation
operators [23, 43, 44, 66] used for more difficult problems in which the coarse grid operator is
not well approximated by rediscretization and within the purely black box algebraic multigrid
methods (see §2.7 for more details) to automatically define an accurate coarse grid problem.

The Two Grid Operator

From Algorithm 2 we see that we can define coarse grid correction as an iterative procedure

for updating Vh
vh <- M%hvh + qh, (2.195)

where the two-grid operator M%h is given by

M lh = S ? [Ih + lZhL ^ I 2h(- L h)}S ? . (2.196)

and

Qh = S ? $ hL £ l l h \fk - Lh
i/i-i£sj<*
i =o

1/2 — 1
+ £ 4 * . -

i=0
(2.197)

The asymptotic convergence factor of this process is therefore given by the spectral radius o f

the two-grid operator

53

2.6.6 Multigrid Methods

Each coarse grid correction step requires the residual equation to be solved exactly on the
coarse grid il2h. Although il2h has 4 times fewer grid points than flh if the problem is large
solution of the coarse grid problem using a direct solver is still likely to be prohibitively
expensive. We could use a uni-grid iterative method, but a better approach might be to use
coarse grid correction again i.e solve the residual equation on Q2h by relaxing on its residual
equation on the grid f24h (a grid whose grid spacing is twice that of fi2h). This residual
equation can in turn be solved by moving to a grid ft8h and so on, until we reach some very
coarse grid flph on which the residual equation can be solved exactly using a direct method at
a very low computational cost. If on each coarse grid p coarse grid correction steps are used
to approximately solve the residual equation we have what is known as a p-cycle multigrid
step. A p-cycle multigrid step to update the approximation to a linear system LhUh = /a on
a grid VLh is denoted

vh <- M nh{vh,fh,Lh,Sh,ch,v i,t/2) , (2.198)

where A/p^ is defined recursively in Algorithm 3. In practice only p = 1 or 2 is used, these

Algorithm 3 Mpa________________________

vh « - M H k ' Lh 's h 'ch ^ •*)

1. If fth =coarsest grid, solve L-hu~h = f-h using a direct solver and stop.
Else For l = l to V\

vh Shv h + ch

2- f ih «- 7f (A ~ Lhvh)
v2 r °

3. For / = 1 to p

v2h (V2k > / 2A ’ “̂ 2* > C2* > > ^2)) ’

4. Correct vh + -v h + I^ v 2h.

5. For l = l to iq

vh Shv h + ch-

methods are known as the V-cycle and the W-cycle respectively. The schedule of grids visited
for a 4-grid multigrid V-cycle is shown below, S stands for smoothing and C for correction.
It is dear from the shape where the V-cycle gets its name from, similarly the W-cycle has a

54

W shaped grid schedule.

Slh C+S

Sl2h C+S

Sl4h C+S

QSh SOLVE

2.6.7 The Multigrid Operator

The multigrid method can be written in the form

vh <- M hvh + qh, (2.199)

where Mh can be defined recursively. To see this first note that, assuming convergence, one
step of such a procedure transforms the error as follows

eh <— (2.200)

Now lets assume we are on the grid Slh and see what happens to the initial error e? . If weh
are on the coarsest grid then we solve — f-h exactly and so the error becomes zero,
otherwise we start by applying v\ smoothing steps resulting in a new error e - = S ,1 e?. Next- h h h
the residual in the approximation is transferred to the grid il2", the equation on this grid
using rh = L-heah is

(2.201)WhU2h ~ hLhe\'

At this stage we take an initial guess v2h = 0 and apply M 2h ^ times. Since the initial guess
is zero, the initial error is the exact solution of (2.201) which is

r - lrh r s
h 2k12hLheh' (2.202)

The new approximation after (j, applications of M2~h will be equal to the true solution minus
the new error i.e

(2.203)
This approximation to the solution of the coarse grid problem is transferred back to the fine
grid flh and used to correct the approximation giving us a new error

= \ - 4 + i - * ‘ Z o L ; A h] w e i (2.204)

55

The final application of smoothing gives us the final error

-sea ,0
h‘

Overall we have the following expression for M~h

M h =
0 if is the coarsest grid

otherwise

(2.205)

(2.20G)

2.6.8 Non-Linear Multigrid

In many cases local Nonlinear relaxation methods such as Gauss-Seidel Newton (§2.5.7) have
a similar smoothing effect on the error as their linear analogues and the same principles of
recursive application of smoothing and coarse grid correction that are used to construct linear
multigrid methods can also be applied to discrete nonlinear problems. In the following I first
introduce the nonlinear residual equation, then give a two-grid and a multigrid algorithm
for a nonlinear multigrid scheme (developed by Brandt) known as the Full Approximation
Scheme (FAS).

The Non-Linear Residual Equation

In the non-linear case the exact residual equation on ilh is

Nh(uh) - Nh(vh) = Nh{vh + eh) - Nh(vh) = rh, (2.207)

where Vh is the approximation to Uh, eh is the error in Vh and r/, = f h — Nh(vh) is the
residual. This equation is approximated on f l2h by

N2h(v2h + e2h) - N2h{v2h) — r2h- (2.208)

Note that if Nh was linear then the residual equation on fl2h is

AhkV2h + N2he2h — N2hV2h = r2h, (2.209)

which is
N2h^2h = r2h. (2.210)

So for linear operators FAS is equivalent to linear multigrid.

Two-grid Cycle

I can now define (Algorithm 4) the FAS 2-grid cycle. SM OOTH represents one step of some
local Nonlinear relaxation method, such as Gauss-Seidel Newton to update Vh- The most
important thing to note from the algorithm is that we are solving an equation

N2h{U2h) = f2h (2.211)

56

A lgorithm 4 FAS Two-Grid

vh * - FASCGC(vh,N h ,fh,t/u i/2)

1. For l = 1 to
vh <-S M O O T H (vh, f htNh)

2. Compute residual rh = f h — NhVk

3. Restrict residual and approximation

V2h ihhvh

T2h Ihhrh

4. Solve N2h{u2h) = r2h + N 2h(v2h)

5. Compute error e2* = u2h - v2>,

6. Interpolate error «— / ¿ i e2h

7. Correct fine grid approximation Vh <— Vh 4-

8. For l = 1 to v2

vh *— SM OOTH (vh, f h,Nh)

57

f2h = r 2h + N 2h { v 2h)- (2 . 2 1 2)

This requires the restriction of the approximation vh obtained after the first lot of smoothing
steps in addition to the restriction of the residual. The restriction operator used to
restrict Vh does not necessarily have to be the same as the restriction operator l£h used to
restrict i~h- Furthermore the solution is

w2h = v2h + e2h (2.213)

and it is not this full approximation which is interpolated back to the fine grid but the error

e 2 h = u 2h ~ v 2h • (2.214)

Only the error is guaranteed to be smooth on the fine grid (provided proper smoothing
procedures are used).

Obviously to extend the 2-grid method to a multigrid method we employ coarse grid
correction repeatedly to solve the nonlinear residual equation until we get to some very
coarse grid. Note that on the coarsest grid we will have to solve the residual equation using
an iterative method such as Newton’s Method. Note also that unlike in the linear case where
we use an initial guess 0 for the solution to the residual equation on fi2h in the nonlinear
case because we are working with full approximations we use initial guess v 2h the restricted
approximation.

/¿-cycle algorithm

The FAS //-cycle operator is defined recursively in Algorithm 5.

2.6.9 Krylov Acceleration of Nonlinear Multigrid

A possible way to accelerate a nonlinear multigrid method is with a Krylov acceleration
scheme introduced by Oosterlee and Washio in [100]. If we write our nonlinear system of
equations on the finest grid as

on the coarse grid with a right hand side

F(uh) = Nh(uh) - h = 0 (2.215)

then given a current approximation to the solution u% resulting from the most recent multi
grid step and l stored intermediate solutions u l,..,u lh (obviously if only k previous multigrid
cycles have been performed where k < l then we will have only k intermediate solutions) we
wish to find a more optimal solution in the space

u% + s p a n {u l-u % ,u l-v % ,.. . ,u lh -u E }. (2.216)

58

Algorithm 5 FAS

vh <- FASnh(vh,N hJ h,v u v 2)

1. If f lh = coarsest grid solve N^uh = f h using an iterative solver and stop.
Else For l = l t o v \

vh <- SM OOTH(vh,N h,fh)

2. v2h I l hvh
v2h <— v2h

f 2h «“ Ihh(fh ~ Nhvh) + tyh fa h)

3. For l = 1 to p
V2h < - FAS[l2h{v2h,N2h, f2h,V\,V2)

4. Correct Vh « - Vh + I2h(v2h ~ v2h)

5. For l = 1 to i>i
vh *— SMOOTH(vh,Nh, fh)

In order to do this we make a linear approximation of the nonlinear operator F around uc
on the space uc + spanlul - - u%,..., v!h - u%].

F (u^+^2ffj H - uh)) * F(u%)+J20j (uj[-u?) » F(v%)+£9j(F(ui)-F(u%)).
¿ = i j = i x ' uh j = i

We then define a new solution

3 =1

where the parameters 9i, .., 8i are chosen so as to minimize

l l ^) + E ^ (^ K) - ^)) | | 2.
3 = 1

(2.217)

(2.218)

(2.219)

If we denote F (u£) by X , £ * =1 0>(F(u£) - F «)) by Y and F(u£) - F (ug) by Zj. Mini
mizing (2.219) is equivalent to minimizing

* = (X + r, x + Y) = (X , X) + 2(X, y) + (Y, y), (2.220)

where
(■X, y) = 01 (X , Z j) + + 0,(X, Z,) (2.221)

59

and r i

3 - 1 Lt=l

0 $
~ = 2 (X , Z i) + 2 ' £ o j (Zi,Zj).

j= l

setting ßjp = 0 for all i we get an l x l linear system

A9 = a.

to solve in order to find the optimal values for 6X, .., , where

(2.222)

(2.223)

(2.224)

ay = (Z,-, Zt) = (F (u i) - F (u£), F (u {) - F (t£)) = (F «) , F(u*)) - (F (u£), F(u'h))
-(F (u £),F (u j,)) + (F (U?),F (u Z))

(2.225)
and

= - (X , Zi) = - (F (u £), F (u i) - F (u£)) = (F (u f), F (u f)) - (F (u£), F «)) . (2.226)

If the F(u£) - F(u^) are linearly dependant, then there is no unique solution to (2.224). In
order that a direct solver can be used A is replaced by A + SI, where S is small compared to
the entries of A, to prevent it being singular. It is shown in [100] that the effect of doing
this is negligible.

Selection and Restarting Criteria

Since we are using a linear approximation of our nonlinear operator we have to take into
account the fact that in some cases this approximation may not be reasonable, and that
as the number of intermediate solutions used increases the accuracy of the approximation
may decrease. In order to protect against this the following selection and restart criteria are
proposed in [100].
Selection Criteria
The following 2 criteria are used to decide whether uA is a suitable solution (if not u% is
chosen).

1. ||F(ujf)||a <7yim in(||F(u^)||2,||F(ui)||2,....,||F(u{l)||2)
2. e||< - u%||2 < m in (lK - uj[||2, ••••, ||uA - ulhh)

or ||F(it£)||2 < Smin(||F(u£)||2, ||F(û)||2,, H F ^)^)

Where ja is chosen to be 2, e to be 0.1 and S to be 0.9 .Condition one says that the residual
norm of the new solution should not be considerably larger than that of the intermediate
solutions and condition two says that uA should not be too close to any o f the intermediate

60

solutions unless a significant reduction o f the residual norm occurs.
Restart Criteria

The acceleration process is restarted (i.e all stored solutions dropped) if either of the following
criteria are found in two consecutive iterations.

1. ||F(^)||2 > 7 Bm in(||F(̂)||2,||F«) | | 2..... ,||F«)||2)

2. e||u£ - u ° h > min(||u£ - «ilia, ••••. I K - u'Ja)
and ||F(«jf)||a >imin(||F(^)||ai||F(ui)||ai....,||F(«il)||a)

These conditions are just the opposite of the selection conditions. 7b is taken as 2 (note 7.4
and 7b can take different values but 7b must always be greater than 1).

The extra costs associated with Krylov acceleration of a Nonlinear multigrid method arise
from the evaluation of several residuals and inner products and the direct solution of a small
linear system, the cost of which is negligible, for large problems.

2.6.10 Multilevel Nonlinear Method

When using multigrid to solve nonlinear equations, there are generally, two options: either
linearize the nonlinear equation, using for example Newton’s Method and use linear multigrid
methods as inner solvers on each step, or solve the nonlinear equation directly, using the full
approximation scheme. The advantage of the latter approach, is that it is less reliant on
a good initial guess, the disadvantage is that the only option for finding N2h in the FAS
method is direct rediscretization, there is no equivalent option to the Galerkin method in
linear multigrid. If the nonlinear operator can be well approximated by this approach, there
is no problem, however if the nonlinear operator has for example highly varying nonsmooth
coefficients, the FAS method may not be effective. On the other hand in the linear case
sophisticated problem dependant interpolation operators can potentially be developed and
combined with Galerkin coarsening to produce effective multigrid solvers.

A recent development is the multilevel nonlinear method of Yavneh and Dardyk [103]
which combines both approaches outlined above to produce a nonlinear multigrid method
which has a large domain of convergence and good convergence properties for difficult prob
lems. A brief outline of the method is given below.

Assume that we have a discrete nonlinear equation

Nh(Mh) = fh (2.227)

on some fine grid fi* and that one step of a linearization method involves solving the linear
equation

Lh{uh)5uk = Th (2.228)

61

where Uh is the current approximation. For example in Newton’s method Lh(Uh) = N'h{v,h).
Assume also that this linear operator can be accurately approximated on some coarse grid ClH
by i^ L h i[j where iff and are some nonstandard interpolation and restriction operators.

Given an approximation Vh to the solution of the nonlinear equation add to the left hand
side of the nonlinear residual equation Lh(vh)(uh - vh) - Lh(vh)(uh - Vf,) to get

Lh{vh){uh - vh) + \Nh{uh) - Nh{vh) - Lh(vh){uh - uh)] = rh. (2.229)

If Lh(vh) = ^h(vh), then we see from Taylor’s formula that in the neighbourhood of uh the
second term in the left hand side is 0(\uh — û |2), while the other terms are 0(\uh - u/,|).
It is only this small nonlinear term which is approximated directly on the coarse grid. The
coarse grid approximation to (2.229) is obtained by directly rediscretizing the second term
and using Galerkin coarsening to approximate the first term.

[iffLh{vh)iH\uH + NH(uh) - L ff(vff)uH

= rn + [Ih Lh(vh)fy]vH + Nh {vh) - Lh (vh)vh . (2.230)

The Two-grid method is given in Algorithm 6. Note that the operators Iff and are
used respectively to restrict the residual and interpolate the error, while a simple restriction
operator i f f can be used to restrict the approximation. The recursive application of this
approach gives a multigrid method. Similar methods to those employed in the FAS can be
used for the smoothing.

2.6.11 Multigrid Convergence

One of the attractive features of traditional multigrid methods is that their convergence
properties are independent of the grid spacing of the finest grid used, together with the fact
that the cost o f a smoothing step with one o f the basic iterative methods will usually be
O (N) where N is the total number of grid points, this makes them optimal. Below I give an
outline of the proof given in [92] which shows that if a particular (linear) two-grid method
satisfies

llM *'*ll < ° (2.231)

for sufficiently small a independent of h then the corresponding multigrid method with f i > 2
has similar convergence properties. The proof is based on the observation that, assuming fi**
is not the coarsest grid

+ sr 4 M£ £s : 4 ^ r . (2.232)

which can be seen easily from (2.206) and (2.196). Furthermore the assumption is made that

11̂ 41111̂ 4 ^ ^ 0 (2-233)
62

A lgorithm 6 MNM Two-Grid

vh *- MNMCGC{vh,Nh,Jh,vi,v2)

1. For l = 1 to i/i
vh *— SMOOTH(vh, fh, Nh)

2. Construct linearized operator Lh{vh) for Nh

3. Compute residual r* = A — NhVh

4. Restrict residual and approximation
vh « - lgvh
t h * - I h r h

5. Solve [igLh{vh)iH]uH + NH(uH) - LH(vH)uH = rH + [Ig Lh{vh)i^}vH + NH[vH) -
Lh {vh)vh

6. Compute error e# = uh - vh

7. Interpolate error e* /¿ e /r

8. Correct fine grid approximation Vh <— Vh + e*

9. For l = 1 to u2
Vh <— SMOOTH(vh, fh,Nh)

63

for any h, then, ignoring the coarsest grid on which M h = 0, we have that % with

if Q2h is the coarsest grid
a + otherwise (2.234)

Assuming that a and 6 are small enough and that p = 2 we can assume that the sequence
{r)k} defined by the recurrence relation rjk = a+6(t]k- i) 2 converges to r? satisfying 7? = <t + 6 t)2
and

„ . , „ 1 - V l - 49a 1 - (1 - 40cr) „
--------< ------- 26>-------1 = 2a'2Q 20 (2.235)

where we assume that 1 — 46a > 0.

Establishing (2.231) is more difficult than establishing (2.233) and in general must be
done via local fourier analysis of the various multigrid components.

An alternative approach to proving h-independent convergence was developed by Hack-
bush, it requires that the so called smoothing and approximation properties hold. The
smoothing property states that

\\LkSl\\<Cs h -2mr,^), (2.236)

where 2m is the order of the partial differential equation to be solved and —► 0 as v —► oo,
The approximation property states that

(2.237)

Again establishing these properties is not straightforward.
A general convergence theory for nonlinear problems is much more difficult. Nonlinear

problems are usually analysed using LFA based on a local linearization of the nonlinear
operator.

In reality if we want to find the convergence factor of a multigrid method experimentally
we have to use the residuals, as that is all that is available. The quantities

9(fc) =
(2.238)

are good estimates for the convergence factor provided k is large. Here ||r£|| is the residual on
the finest grid after k multigrid cycles measured in some appropriate norm e.g the Euclidean
norm.

2.6.12 Storage and Computational Cost

From the multigrid algorithms we see that at any one time on each level we need to store
a discrete approximation and a discrete right hand side, plus the restricted approximation
from the grid above in the nonlinear case. For a d-dimensional domain if we assume that the

64

fine grid is partitioned into n cells in each direction where n is a power of 2, then for the case
of a cell centered disrcetization we have nd grid points on the fine grid 2~d as many points for
n 2h and in general p~d as many grid points for iP* (for a vertex centered discretization we
will have slightly more or slightly less points on each grid depending on whether boundary
points are stored, but for large N these amounts should be negligible) . An upper bound on
the storage requirements of a multigrid scheme is then given by the sum to infinity o f the
geometric series

3™d^ 2(2~ d)n, (2.239)
n=0

which is 3 n d
(2.240)

For a 2-dimensional grid with n = 256 this bound is « 262150.
We can use similar techniques to get an upper bound for the computational cost of a

multigrid cycle. First define a work unit (WU) as the cost o f performing one relaxation
sweep on the finest grid (this will usually be the total number of points multiplied by some
relatively small constant). Using the same assumptions as above we require p~d WU to relax
on iP \ First consider the V - cycle with iq = iq = 1 . We visit each level twice, so if we
ignore the cost of intergrid transfers and solving on the coarsest grid, an upper bound on the
computational cost is

P
(U m 2 £ (2 - 'V = _ ! r 3 H't/. (2.241)

n=0
Now consider the W-cycle with vx = v2 = 1 in this case we relax twice on the finest grid
(once at the beginning of the algorithm once at the end) 4 times on the next finest level, 8

times on the level below that and so on, therefore provided d > 2 an upper bound for the
computational cost is

p1l q 2 i > 2~'‘ >r - I - ■■| 2- 4) ly K (2-2«)

In 2 dimensions the bounds are 8/3WU for the V-cycle and 4WU for the W-cycle which is
3/2 times greater than the V-cycle.

2.6.13 Nested Iteration

The multigrid methods discussed so far have been based on the principle of coarse grid
correction, another multigrid approach is that of nested iteration.

Nested iteration works on the principle that a good initial guess for an iterative procedure
on a fine grid can be obtained by using the transferred solution from a coarser grid problem.
Considering a general discrete nonlinear problem Nh(uh) = f h on a fine grid Qh and assuming
that we have a set of coarse grids, which I will assume for now are the standard coarsened
grids fi2\ f i4\ W h where p = 2L (other coarsening strategies can also be used) the nested

65

iteration algorithm is given in Algorithm 7. Here Nih is an analogue of N on the coarse

A lgorithm 7 Nested Iteration "--------------------- -
Choose some initial guess uph on the coarsest grid Qph. —

For k = L :-l:l
l = 2k
Set uih to be the result of approximately solving
Nih(uih) = fih using some iterative procedure with initial guess u,h

T(l/2)h -
U(l/2)h = I\h Uh.

end
Solve Nh(uh) = f h on the finest grid using uh as initial guess in some iterative method.

grid fllh and f lh is a restriction of the fine grid right hand side to the grid Qlh. I ^ 2)h
is an interpolation operator for transferring grid functions between Qlfl and n {l/2)h. Often
more accurate interpolation operators are employed in nested iteration algorithms, than are
employed in coarse grid correction schemes. The initial guess uph on the coarsest grid is
usually some initial guess from the fine grid restricted down to Qph.

If the approximate solution o f Nih(uih) = fih is achieved by using a multigrid V or IF
cycle and several multigrid cycles are used to solve the fine grid problem, then the resulting
algorithm is known as full multigrid or FMG, see [12, 92,102] for more details. More generally
this procedure is often referred to as cascadic multigrid and can be employed in conjunction
with any problem which can be defined on coarser grids and who’s solution with iterative
methods benefits from a good initial guess, e.g in conjunction with discrete optimization
problems.

2.7 Algebraic Multigrid

For many elliptic PDEs discretized on structured grids a geometric multigrid method like
the ones described in the previous section, based on a fixed hierarchy of grids, using a
simple smoother such as Gauss-Seidel is very efficient as a solver. However for more complex
problems such as diffusion equations with highly varying coefficients more complex smoothers
and transfer operators need to be designed in order to maintain efficiency and robustness, this
can be particularly complicated in three dimensional problems. For a review of alternative
smoothers, transfer operators and coarsening strategies used for elliptic linear problems with
nonsmooth coefficients see ¡23] ,see also the work o f De Zeeuw [44] and Khalil and Wesseling
[66] on matrix dependant transfer operators. In addition geometric multigrid is also difficult
to apply to problems defined on unstructured grids. In order to try and overcome these
problems the Algebraic multigrid method was developed.

An algebraic multigrid method (or AMG) is a black box solver for solving a sparse linear

66

system Au = f using only the information in the matrix A. Unlike in geometric multigrid the
smoother is fixed as point Gauss-Seidel and the coarse points and prolongation operator are
defined automatically based on the entries o f A. Algebraic multigrid methods were originally
developed by Brandt et al [9] and Ruge and Stuben [80], work in the direction of a black
box multigrid solver had also been done by Dendy [43] but the defining of the coarse grids
was still geometrically based.

An AMG should not be considered as an alternative to an efficient geometric multigrid
method, rather it should be used in cases where geometric multigrid fails or is too difficult
to apply such as diffusion problems with highly varying coefficients or problems based on
unstructured grids, it can also be used in problems with no geometric interpretation at all.
For problems in which A is spd Algebraic multigrid methods are robust and can be made to
converge quickly. In the following I briefly review some known results and techniques from
the algebraic multigrid literature. For a more comprehensive treatment of algebraic multigrid
see for example [92] appendix A, or [99].

2.7.1 Neighbours and strong connections

Given a linear system Au = f where A is of size n x n and u = (ui)i=sli..[n, in some loose
sense we can consider the index set { 1,.., n} as a set of points on a fine grid, we say that
j ^ i is a neighbour of i if ^ 0 where 1 < i, j < n. The set of points which are neighbours
of i is defined as

Ni = { j I o-H i 0}- (2.243)

Of these neighbouring points, the set of points strongly connected to t is defined as

Si = { j| - ai:i > 0m ax(-a ifc)}. (2.244)

Here 6 G (0,1) and typically is taken to be 0.25. Note that j is considered to be strongly
connected to i only if atj < 0 . A point which is a neighbour of i but not strongly connected
to t is said to be weakly connected to i. The set of points to which i is strongly connected is
defined as

S [= { j I i S S j}. (2.245)

2.7.2 The AM G setup phase

Any Algebraic multigrid method is made up of 2 phases, the second phase is the usual
application of multigrid cycles, the first phase known as the setup phase is where the multigrid
components needed for the second phase are defined. Given the matrix A (1) = A and the
index set { 1 , ..,n } which we will refer to as fi(1) we first split { 1 , ,.,n } into two disjoint sets
C and F (exactly how this is done will be discussed §2.7.5) where C is the set o f coarse
points which we will call f i (2) and F is the set of fine points. Having obtained this coarse/fine

67

splitting we then define an interpolation operator I^ j for transferring between f i (2) and
Various ways to define the interpolation operator will be discussed in §2.7.6 but it will always
have the general form

e(i) _ f ej2) i f i € C

1 HkePi wikek2) if i 6 F
(2.246)

Here P* C C is called the interpolatory set and is often taken to be the set of coarse points
strongly connected to i which is denoted C*. However is chosen it should be reasonably
small in order to produce an efficient AMG method. The are the interpolation weights.
The definition of the interpolation weights for several interpolation operators will be given
in §2.7.6. Once the interpolation operator has been defined, the restriction operator for
transferring between fl(1) and fi (2) is defined to be the transpose of the interpolation operator.

= C f - (2.247)

The Galerkin principle is then used to define the coarse grid matrix A (2).

A(2) - / (i)(-4(1,K(2))- (2.248)

In exactly the same way an even smaller matrix A '3> along with interpolation and restriction
operators is defined from the entries of A <2K This process is repeated until we have a sequence
of matrices A™ , ...,A !^ with corresponding transfer operators, where A ^ is small enough
to be solved efficiently using a direct solver. Once these matrices and transfer operators have
been defined and stored it is clearly straightforward to apply a multigrid cycle with point
Gauss-Seidel smoother to the original linear problem. Given an initial guess v (1> and the
setup data, one p-cycle is

v (1) (2.24,)

where A M G is defined recursively in Algorithm 8:

2.7.3 The Variational Principle

In the following we see that the convergence o f Galerkin-based V-cycles is guaranteed when
A is symmetric positive definite and restriction is taken as the transpose of interpolation
(note that this implies A (2\ ...,A (L) are also spd), provided that the smoother being used
converges. First a theorem on orthogonal projectors is needed.

T heorem 2.7.1 Let (.,.) be any inner product with the norm ||.||. Let Q be symmetric with
respect to this inner product and let Q2 = Q, then Q is an orthogonal projector i.e the
following statements hold

(1) R (Q)± R (I -Q)

68

Algorithm 8 AMGfjSk)

(1) If A ^ is the smallest matrix (on the coarsest level), set v (fc) = (i4(fc))~ 1f(fc) an(j return
else do v\ steps of smoothing on level k:

For l = 1 : î i, vW <- S(fcM fc) + (7 - S ^) {A ik)) -H {k).

(2) Restrict the residual to the coarser level: f (k+1'> = / ^ +1)(fW — A ^ v ^)
and set the correction v f̂c+1) = 0.

(3) Repeat fi steps of, v^fc+1i *— AMG^ii-k+1^(v(-k+1\ f (fc+ !), t/1) j,2)

(4) Add the coarse level correction: v (fc) <— v (fc) + 7(̂ 1^v(fc+1)

(5) Do V2 steps of smoothing on level k:
For / = 1 : **, v (fc) *- + (7 - S W) ^ *)) " 1̂ *).

Here S ^ is the Gauss-Seidel smoothing operator for A ^ i.e

5 W = / - (Q < fc>)-M<fc>. (2.2501

where <?(fc) is the lower triangular part of A (fc) including the diagonal.

(2) For u € R(Q) and v £ R (I — Q) we have ||u + v|| = ||u|| + ||u||.

(3) \Q\\ = 1

(4) For al1 u: IIQUII = minveJt(i-Q) h ~ v||
where R(Q) denotes the range of Q.

Now we consider the action of coarse grid correction on two grids on the fine grid error e (1)
Clearly if e (1̂ represents the error after coarse grid correction

where
K U2 = I - I ^ (A ^) - 1l j ! lA ^ .

(2.251)

'(2) ^ ' > * (I)* '-'- (2.252)

Now note that given that A is symmetric A K ij = A (1) - A ^ I ^ j (A (21)~17(̂ A (1) is sym
metric which means A' 1>2 is symmetric with respect to the energy inner product (., ,)A where

(u <v)>t = (A u , v) 2

and (., .)2 denotes the Euclidean inner product. Now consider K f 2

k U - i - i S (A ,2>) - ' / ; ^ < ') [/ -

(2.253)

69

- K i ,2 - / , y (a i») - ' $ > a <‘ >+

- K ‘ * - +u S l ^ r ' A ^ ’ r ^ » !
= K l , 2- 1} (2.254)

Finally observe that
R (I - K h2) = R {I $) . (2.255)

We therefore have that the 2-grid operator K\,2 is an orthogonal projector with respect to
the energy norm and from statement (4) in Theorem 2.7.1 we have for any fine grid error
e (i)

||tfi,2e (1)|U = min He*1* - (2.256)

In other words the Galerkin-based coarse grid corrections minimize the energy norm of the
error with respect to all variations in the range of the interpolation operator. As a conse
quence of this fact if the smoother converges a two grid method will converge. To extend
this result to complete V-cycles assume that the exact coarse level correction e (2> is re
placed by an approximation e(2) (in this case obtained by correction on coarser levels) where
||e (2) _ e (2)||A<2) < ||e(2)||A(2) and consider the action of the resulting approximate two-grid

operator K\,2- We have

^ i ,2e (1) = e (1) - / ((21))ê<2) = / r 1,2e (1) + / { 21))e (2) - / ((21))ë(2U A'12e(1) + / [21J(e (2) - ë ' 2)). (2.257)

The first term here belongs to R (K h2) and the second term belongs to 77(7^) and so by
statement (2) in Theorem 2.7.1 and the fact that K h2 is an orthogonal projector we have

ll^i,2e (1)||A = l|Ari,2e (1)||̂ + ||/(C2) (e(2) - ê (2))|ft. (2.258)

Now for any v^2̂

l | / $ v (2) ll^> = (^ « / g v W . / g j v W) , = (v ^ r / g A U) / ^ 2)

= (v <2>)r A<2>v<2> = || v (2) ||2 (a). (2.259)

So
P g) (e(2) “ s(2))ll2 <i> = He(2) ~ e (2) ll (̂2) < ||e(2)||2 (2) = ||/((2))e (2>||2 (1). (2.260)

Using this result in (2.258) we have

\\Ki,2e W \\2AW < l! - ft 'i(2 e <1)||^(1) + | | / g))e<2>||2 (1) = + ^ ¡ e < 2)||2 (1) = (1).

(2.261)
We therefore see that the approximate two-grid method and hence the V-cycle method con
verges. Of course this result says nothing about the speed of convergence of a Galerkin-based
V-cycle method, which is determined by the choice of interpolation operator.

70

2.7.4 Algebraically smooth error

In the following section I discuss how a smooth error is defined in a purely algebraic setting
for this discussion the energy inner product (., .)a as defined previously and two other inner
products defined below will be needed

(u ,v)o = (-Du,v)2 , (u ,v)DA = {D ~1Au ,A v)2, (2.2G2)

where D is a diagonal matrix with the same diagonal as A.

Definition 2.7.1 (Algebraically Smooth Error)
An algebraically smooth error is an error which is slow to converge with respect to some
smoothing operators i.e

l|Se|U « ||e|U

For basic relaxation methods such as Gauss-Seidel the following inequality holds with a > 0

ll5 e lli < \Ha - v M d a - (2.2G3)

This implies that an error is algebraically smooth when

IHIda « ||e|U. (2.264)

This is equivalent to
(D ~1A e ,A e)2 < (A e ,e)2 (2.2G5)

recalling that A e = r we have
(D _ 1r ,r)2 « (r ,e)2 (2.2GG)

or
(Ti/au) < y V je j .

i i
(2.267)

Therefore on the average for each i the scaled residual is much smaller than the error

lr>l i i — « N . (2.268)

Given that rt = {A e)l this implies that

~ 1 ^ I /flji..
\j£Ni)

(2.269)

A very accurate interpolation operator can therefore be defined if on each level P* is chosen
to be Ni and the interpolation weights are chosen to be wik = - a ik/au. However this would
require a coarse/fine-splitting in which each fine point had all its neighbours contained in the
coarse set. Such an approach would be very expensive in terms of memory and computational
time and so is not a practical option.

71

If we rewrite (A e,e)2 as (D 1/2 Ae, D 1/ 2e)2 and apply the Cauchy-Schwartz inequality
we get

H ft < W D -^ A e U D ^ e h = {D~1/2Ae, I>_1/2)2/2(D1/2e, D 1/ 2)^ 2 = ||e|M|e||D.

(2.270)
Since an algebraically smooth error satisfies ||e|U » UeU/j ̂ it must also satisfy

H U < I H I d - (2.271)

In the following matrices with positive diagonal entries and negative off-diagonal entries
(M-matrices) are considered. We can rewrite (Ae, e)2 as follows

(Ae, e)2 = Y t aijeiej = Y ^ - aiA ~ eiej) - 5 Z ~ai j { l l 2i.ei ~ l/2c? - l /2 e j). (2.272)

Substituting into (2.271) we have

1/2^2 ~ an (ei ~ e j)2 + S I Z ! ab I ei « 5 2 aiie2i- (2.273)
i,j i V 3) i

In the case where Iaij I ~ au he the row sum is approximately zero we have on the
average for each i

1/ 2 ^ ^ —fli,j(ci — Cj) <& due2

E\aij\ {e, ~ e j)2
n ■ ■“ »« e ,

< 2. (2.274)

This implies that if \alrJ\/atl is relatively large then the error varies slowly from e, to e, in
other words the error varies slowly from * to e} if j is strongly connected to i. The error
at a point is therefore well approximated by a weighted average o f the error at the points
strongly connected to it.

If the matrix contains some small positive off-diagonal entries then the error can again be
shown to vary slowly in the direction of large (negative) entries. If large positive and negative
off-diagonal entries exist then the error varies slowly in the direction of large negative entries
but oscillates in the direction of large positive entries.

2.7.5 The coarse and fine level splitting

As stated earlier at each level k, we must split = { l , . . . ,n* } into two disjoint sets C
and F where C is the set of coarse points which make up the next level and F is the set
o f fine points. When making this C/F-splitting we should look to achieve the following two
conditions.

72

(1) For each point i € F, every point in Si is either in C< or strongly connected to a point
in Ci.

(2) C should be a maximal subset of all points with the property that no two C-points are
strongly connected to each other.

In practice it is not usually possible to strictly satisfy both conditions. The algorithm for
creating a C/F-splitting given below (Algorithm 9) attempts to enforce the second condition.
At each step of the algorithm a coarse point i is chosen which has maximal A, where

A i = IStT nUI + 2 IS fn F I, (2.275)

where U here denotes the set of points which have yet to be defined as either C or F points.
Once a C point has been chosen all the points strongly connected to that point which have
yet to be defined (i.e all points in Sf 0 U) are defined to be F points. The condition that
the new coarse point must have maximal Aj ensures that a reasonably uniform distribution
o f C and F points is obtained.

R em ark 2.7.1 If a point j € S f moves from U to C then A* decreases by 1, whereas if it
moves from U to F Aj increases by 1.

A lgorithm 9 C/F-Splitting Algorithm________________________________
Set U = C = 0, F = 0, \i — \Sf | for all i.
While U ± 0

Select i € U with maximal A,.
C = C U { i } , U = U - { i }
For j e s f n u

F = F U {j }
U = U - { j }
For l e S j H U

A; = Aj + 1
end

end
For j € Si n U

= Aj — 1
end

e n d ______ ___ ______ __________ _____________

Algorithm 9 is based on a definition o f strong connections as large negative connections. In
some cases we may have a small number of large positive connections (small positive connec
tions are not significant) which must be taken into account in the C/F-splitting. Provided

73

there are not too many positive connections, coarse points corresponding to positive con
nections can be added a posteriori based on the positive connections between F points only.
Algorithm 10 tests each F point i to check whether it has large positive connections to other
F points, if it has these points are added to Si and the point corresponding to the largest
connection is added to C.

A lgorithm 10 Post C/F-Splitting Algorithm
Assume C and F have been obtained from Algorithm 9. Set Cj = 0 , F0 = F, F T = F

While F T ¿ 0
Set i =smallest entry in FT.

Set M = 0 Mi = 0

For j e N f n F
If flij > 0.5maxfc^j |a»jt|

Si = Si U { j }

If dij > M
M = dij
Mi = j

end
end

end
If Mi ± 0

~ Ci U Mi
F = F\Mi FT = FT\Mi

end
F T = F T \{i}

end
Set C = C U Ci, F = F0\Ci.__

2.7.6 Interpolation Operators

In the following I review several different methods for defining the interpolation operator to
be used in an AMG method. To aid the description I introduce the following notation: let
p W = Ni\{Si} denote the set of all points weakly connected to i and D f = 5 t\{Ct} denote
the set of all fine points strongly connected to i. Recall also that any interpolation operator

should be of the form

(l)= e; —
0d+i)

IC/tePi wikek
(¡+i)

if i € C
if i G F

(2.276)

where Pi C C .

74

In the method of Ruge and Stuben [80] Pi is taken to be Ci and an assumption is made
that the matrix is an M-matrix. In order to define the interpolation weights wik recall that
an algebraically smooth error satisfies

n«et ** — } * Q ijS j = — } *] a ije j — 'y "] d ije j — ^ ' Ojjej. (2.277)
jeNi j£Ci j€D;s' j€D^

Now at each i E F carry out the following steps:

R u ge and Stuben’s Interpolation Operator

1. For all j E D™ replace ej by e,.

2. For all j E D f replace et by a weighted average of the error at the points in C,

HfcgCi ajk^k
Xjfcecv aik

(2.278)

Substituting into (2.277) and rearranging gives

e* « 5 Z u,^ efc> (2.279)
/sec*

where
1

^ik . v-\
flii + aij

Given that points in D f' are only weakly connected to t step 1 is reasonable. Step 2 uses
the fact that the error varies slowly in the direction of strong connections. We see that the
weighting is biased towards ek for k E Sj, this requires that each point in D f be strongly
connected to at least one point in Ci, this is the first condition that the C/F splitting tries
to enforce, however it is not guaranteed to be satisfied for every j E D f. To ensure that this
condition is satisfied the following process is carried out as the interpolation weights wik for
i E F are being defined:

1. If a k E D f is found such that Sk n Ci = 0 k is provisionally added to the coarse set
and the process of defining the interpolation weights for i restarted. 2

2. If we now have Sk n C, ^ 0 for all k E D f the interpolation weights are defined and k
is permanently moved into the coarse set, however if this is still not the case i itself is
moved into the coarse set and k is moved back into the fine set.

dik + L
J6 Df

Qijdjk
¿m£Ci ajm

(2.280)

Chang, Wong and Fu’s Interpolation Operator

In [35] Chang, Wong and Fu present an interpolation operator, which is an improvement
on the method of Ruge and Stuben in the sense that it can deal with matrices with positive

75

and negative off-diagonal entries and that it takes into account more geometric information.
Their AMG method uses a different definition of Strong connections as entries of A with
relatively large absolute value

St = {j : \aij\ > 0max|ai*|}.kjii (2.281)

along with the usual C/F splitting algorithm (Algorithm 9). The interpolation weights are
defined based on the assumption that the error between i and j is geometrically smooth
provided ay is not a large positive entry and on the assumption that the larger |a,j| is the
closer j is to i. Based on these assumptions two variables are introduced for each i £ F

Cij —
I Zk€Cj ajk

S/teCi
(2.282)

and
\aij\\Ci f~l Nj\

(2.283)

The weights gjk = eac^ J € -Nj\C and k £ Ct are also introduced. The
variable Cij gives an indication of how many large negative entries there are among the ajfc.
If Cij — -5 and atJ < 0 it is assumed that the error between i and j is geometrically smooth.
The variable rjij is approximately the inverse ratio of the distance between i and j to the
average distance between j and the points /c e C, n Nj. If 7)̂ < 3/4 it is assumed that the
average location of points in Ci n Nj is closer to j than i and hence lies somewhere between i
and j , the error at j is therefore approximated by an extrapolation between e< and a weighted
average o f the eu for k € Ci n Nj. If rjij > 2 j is assumed to be between i and the average
location o f points in Ci n Nj and an interpolation between e* and a weighted average of the
e/t is used to approximate t j . In other crises the average location of the k points is assumed
to be very close to j and Cj is approximated using a weighted average of the e^. Overall the
following approximations are made

1 . U j e D f
(

e.

2 zJfcec* 9jkek ei
. YlkeCi 9jk£k

if Ci D Sj = 0 and Ojj < 0

if Ci n S j = 0 and atj > 0

if Cj r \ S j^ 0 and Ojj < 0 and Cij > 0-5

otherwise

(2.284)

2. If j e D f

V 2 (J2kec, ffjk^k + €i)
2 J2keCi 9jk^k -

. S fcec, 9jk efc

if rjij > 2 and atj < 0 and Cij > 0-5

if rjij < 3 /4 and atj < 0 and Cij > 0.5

otherwise
(2.285)

Substituting these approximations into (2.277) gives the interpolation weights for each i £ F.

76

Direct interpolation

Direct Interpolation, along with standard interpolation are introduced by Stuben in [92]
Appendix A.

In the case of M-matrices i.e spd matrices with negative off-diagonal entries we have that
the error varies slowly from i to j if j is strongly connected to i (atj is a relatively large
negative entry of A) and the error at i can therefore be determined by a weighted average of
the error at its strongly connected neighbours. This means for i 6 F we can assume

Ylk&Pj aikek ^ aijej
SfcePi ° ik ° y

(2.28G)

and the more strong connections of i there are contained in P, the better (2.28G) is satisfied.
An interpolation operator can therefore be constructed by making the approximation

^ ̂ — OLi ^ fljfcCfc. (2.287)
jeNi kePi

where
„ _ 'EjeNi aijUt

2-,kePi ° ifc
(2.288)

Substituting this into
Q/ü&i "I- ^ ̂ dijej w 0 (2.289)

jeNi

we get
(2.290)

fcePi

with
Wik ^ &iQ,ik/o,iit (2.291)

In the case where there exist some relatively small positive off diagonal entries of A it is
enough just to move these on to the diagonal. Using superscripts + and - to denote positive
and negative entries o f A we have

SjGTVi aij
2-fcePi aik

(2.292)

_ a *aifcWik = ------ - — + •
°** + HjÇNi %

(2.293)

If there exist a few large positive entries of A and these are represented in the C/F-splitting
then we make separate approximations for the positive and negative connections

aijei = <*<£] °ifcefc 5 Z a%ei - & H atkek> (2.294)
jeNi kePi jeNi kePi

7 7

where
_ ^ > j€N j a ij
— ~

l^kZ P i a ik
ß i =

S j g Nj a tj

^>k€Pi a tk
(2.295)

The approximation for positive connections can be justified because although the error be
tween i and j is likely to be oscillatory if alj is positive and relatively large, the error can
be expected to vary slowly among points k for which a,fc > 0. Denoting by Pf~ and P~ the
points in Pi which correspond to positive and negative connections respectively, we have

Ci = Wikek>
k€Pi

(2.29C)

where

{ ■̂iÔik fCLu k € P̂
(2.297)

Given that it is assumed that there are only a small number of large positive connections,
at some i we may have P f = 0, if this is the case we simply revert to moving any positive
connections on to the diagonal.

Standard Interpolation

Standard interpolation looks to improve upon direct interpolation by indirectly including
in the interpolation for i £ F strong F-connections via the points Cj for j £ D f. For all
3 6 D f, ej is eliminated in (2.289) using the jth equation

This results in a new equation

^ ' a jk^k / Q-jj •
k€Nj

(2.298)

duct + 5Z
i£Ni

Ni = { j ¿ i : àij £ 0}, (2.299)

where for each j £ D f
&H — Q-i. ^ , a kjO‘ik/dkk■ (2.300)

Direct interpolation is now applied as above with the atj replaced by aijy TV, replaced by TV,
and Pi taken to be the union of C, and all Cj for j £ D f .

78

Chapter 3

Total-Variation Based Image
Restoration

U seful Section References: §2.1, §2.2, §2.3, §2.4, §A.l, §A.2, §A.3, §A.4, §A.5, §A.6.3
M ain R eference M aterial: [1, 2] [5]-[7],[16],[17]-[21],[25]-[29], [39, 46, 48, 52, 58, 61, 68,
71],[74]-[86],[89]-[91],[93]-[97], [98, 104],

This chapter is an introduction to the ideas surrounding the recovery of possibly blurred,
noisy images using regularization techniques. I start with an introduction to the image
deblurring/denoising problem and then go on to introduce the regularization techniques used
to approximately solve such problems focusing on the use of the total-variation regularization
method, on which my work presented in the next 4 chapters has mainly been based. I give
a brief review in §3.3 of some of the theory associated with this method with references to
the original work where more detail can be found. The rest of the chapter focuses on the
pure denoising problem (deblurring is returned to in Chapter 7). In §3.4 I review some of
the properties of total variation regularization, demonstrating its advantages (edge recovery)
and disadvantages (staircasing) again references are given to the original papers where more
detail can be found. In §3.5 I introduce the discretization scheme that I use throughout my
work as well as giving a review of other discretization methods used in the literature. §3.6 is
a review of various iterative methods used to solve the total-variation denoising problem, §3.7

introduces some measures of image quality, while the final section gives a flavour of some of
the improvements/extensions to the basic TV denoising method which have been developed
in recent years.

79

3.1 W hat is an Image ?
An image can be interpreted as a real (scalar) valued function u(x ,y) on a bounded and
open domain ft (usually a rectangle) of R2. The type of images I am referring to here are
grey-scale images, which take values in the range [0,255], if an image is a colour image it will
have several components (red, green and blue) and will be represented by a vector valued
function, for more details see [5] and references therein. In practice the images we deal with
are digital and will therefore be discrete quantities represented by an nrray of pixel values.
Each pixel value in the array represents the average light intensity over a small rectangular
portion of the analogue image (a pixel), the more pixels used in sampling the image (the
higher the resolution) the more detail can be seen. We typically deal with digital images
with 256 x 256 to 1024 x 1024 pixels.

An image is generally piecewise smooth and is made up of Hat. regions, smoothly varying
regions and edges (boundaries where a jump in intensity occurs). In Figure 3.1 examples of
4 images which will be used in the next few chapters are given.

Figure 3.1: Four example images: clockwise from top left, the blocky triangle image, the
X-ray type fingers image, the realistic Lenna image and a simulated image of a satellite.

80

A one-dimensional version of an image is known as a signal.

3.2 Image Reconstruction

During the recording of an image, it is often the case that some blurring is introduced, this
can be due, for example, to light from an object in space having to pass through the earths
atmosphere, or to instrumental restrictions in medical imaging. In addition to this blurring,
random noise can also be introduced during the recording and transmission of the image. We
model a blurred noisy image by the following equation:

z(x ,y) =)Cu(x,y) + n {x ,y), (x ,y) e f i . (3.1)

Here z is the noisy blurred observed image which is known, u is the true image which we
wish to recover and n is an additive random noise term, which in our work we assume to
be gaussian white noise with mean 0 and standard deviation a. I remark here that we
refer in our work only to additive noise i.e at (xi,j/j) the observed image z takes the value
fCu(xi,yj) + n (xi,y j) where n (xi,y j) is some random number. Another type of noise is
impulse noise in which z(x i,y j) takes the value JCu(xi,yj) with some probability p and the
value r(xi, yj) with probability 1 - p where r{xu y3) is some random number, for more detail
see, for example, [21]. K.: L2(fl) —> L2(fi) is the blurring operator which is known and is a
Fredhlom integral operator of the first kind

¡Cu{x, y) = k(x, x', y, yf)u(x\ y')dx'dy'. (3.2)

The kernel fc, which describes the blurring, is known as the point spread function (PSF). In
my work I assume that the blurring is spatially invariant i.e the PSF is of the form

k(x, x', y, y') = k(x — x ',y — y'). (3.3)

If no blurring is present then we have what is known as a pure denoising problem and K.
is replaced by the identity operator. Most of my work has focused on the pure denoising
problem. Figure 3.2 shows a noisy version o f the triangle image seen above and a blurred

noisy version of the satellite image.
The problem of recovering the true image u from the observed image z is an inverse

problem and in the deblurring case is ill-posed, therefore, some sort of regularization proce
dure must be used in order to approximate u. There are two main approaches used in the
literature, the first which we shall mainly focus on is the Tikhonov regularization (§2.3.4)
approach in which the following unconstrained minimization problem is solved

mjnaiZ(u) + 1 / 2||Ku - z||£2(n). (3.4)

81

Figure 3.2: Examples of noisy and blurred and noisy images

Here R(u) is a regularization functional which penalizes against certain artifacts in the solu
tion, the second term is a fit to data term which ensures goodness of fit to the observed data
and Q is a regularization parameter (usually chosen by experiment) which balances between
the two. The second approach is the constrained regularization approach. In this approach
the following constrained minimization problem is solved

min R(u) (3.5)
subject to ||JC« - z||£,(n) = a 2 (3 6)

where a is the standard deviation of the noise, which is assumed to be known. The two ap
proaches are similar in that the unconstrained problem can be viewed as a lagrange multiplier
approach to solving the constrained problem with lagrange multiplier A = -L

There are many possible regularization functionals which penalize non-smooth images e g
\\u\ \ L 2 (the classic Tikhonov regularization) or / „ \Vu\2dxdy. The latter of these is' known
as the H 1 norm and Tikhonov regularization with this regularization functional leads to the
following minimization problem

min j a/2|Vu|2dxdy + i(>Cu - z,/Cu - z)£2(n). (3 7)

To find the condition for a minimum of this convex functional let us consider the more general
functional (other functionals of this form are encountered later)

J(u) + ul + p) + l / 2(/Cu - zfdxdy. (3.8)

in this case /? = 0 and i>(x) = l / 2x2. Assuming that $ ' exits, we have
d_
dt J{u + tv) = / n n&(*/(u~ + t.v~)2 4- in- 4-/7).ti2 4- m — Ur+n.fV/(«x+twI)2+(ti„+iv.„)2+/3 x

+ " * ' (̂ + + (“ " + ^ +
+(ACu - z, K.v)l2 (n) + t(tCv, K.v)l2 (n)

(3.9)

82

therefore the first variation (see §A.3.2) is

dt J{u + tu) |t=o = J a& (yju 2 + u 2 + ¡3) Vu

\Juî + u2y + j3
.Vvdxdy 4- (K.u - z,/Cv)L3(n).

(3.10)
Assuming that u is smooth enough we can integrate by parts (i.e use f n vV.wdxdy —
- / n Vv.wdxdy + Jr vw.ndS) to rewrite the first term and using the adjoint (Theorem 2.2.5)
we can rewrite the last term to get

» - ; 0 v .

+ I r v *'{y/ul + ul + l+ul+0

V “ ï+ “ ï+/3 vdxdy

.ndS + (K,*(K.u — z),v)iJi (O)
(3.11)

Imposing the so-called natural Neumann boundary condition Vu.n = 0 on T the second term
disappears. We have f t J{u+tv) |t=0 = DGJ(u)v where DGJ{u) is the Gateaux derivative of J
at u and the first order condition for a minimum (or Euler-Lagrange equation) is D qJ(u) = 0
(see §A.3.3) i.e

—aV. $,(\ /Ux + Uy + /3)
Vu

\[ul + ul + p\
+ K.m(K.u — z) = 0. (3.12)

In the case of (3.7) the Euler-Lagrange equation is

-a A u + fC*/Cu = K,*z. (3.13)

This equation is linear and can be solved fairly efficiently (after discretization) see for example
[20, 79]. However because the regularization functional penalizes non-smooth images, the
effect of this regularization will be noise removal but also a smoothing of the edges in the
image. To overcome this disadvantage with classical noise removal techniques Rudin, Osher
and Fatemi (ROF) in their seminal 1992 paper [78] introduced the Total Variation (TV)
regularization functional

TV(u) = \Vu\dxdy. (3 14^

The TV regularization functional does not distinguish between smooth and piecewise smooth
solutions with the same total variation, and thus Tikhonov regularization with the T V reg
ularization functional can remove noise while still preserving the edges in an image, see §3.4
for more details.

Tikhonov regularization with the TV regularization functional involves the solution of
the minimization problem

m i n i a \ V u \ — z)2dxdy.u Jn 2 (3.15)

83

Refereing to (3.12) the resulting Euler-Lagrange equation is

- qV. + IC’ ICu = K 'z . (3.16)

This equation is degenerate when |Vit| = 0 so in practice (3.14) is usually replaced by

TV0 (u) = \Jul + ul + (3dxdy, (3.17)

where /? is some small perturbing parameter. Replacing TV(u) by TVa(u) in (3.15) the new
Euler-Lagrange equation is

-n V . Vu ^
V N W T p)

+ K,*Ku = K.’ z. (3.18)

Unlike (3.13) this equation is highly nonlinear and the efficient solution of the discrete version
of this equation using iterative methods in both the deblurring and the pure denoising cases
has been an active area of research over the last decade or so and is the main focus of the
work in this thesis.

Figure 3.3: Noise removal with TV (left) and H 1 (right) regularization functionals, the
observed image is the one seen in Figure 3.2. Note the sharper edges in the TV case.

3.3 Theory of Total Variation Regularization
In this section I give a brief outline of the mathematical analysis o f Total-Variation Regu
larization. For a more comprehensive treatment see the original work of Acar and Vogel (ll
and also [17, 29, 74, 97, 94]

84

3.3.1 The space of functions of Bounded Variation

In for example [52] the space of functions of bounded variation in ft, an open set in is
defined as

BV(fi) = {u e L^fl) ; J |Du| < oo}, (3.19)

where

/ |Du| = sup / -uV .w dx W = {w e : Rd) : |w(x)| < 1 for all x € S7 }. (3.20)
Jn wewJn 1 v ’

The space B V (fl) is a Banach space with respect to the B V norm

MUv = IMUi(o) + f \Du\.
Jn

furthermore f n |Du| is a seminorm with respect to BV(fi).

(3.21)

3.3.2 The Dual Formulation

The seminorm f n \Du\ is an extension of T V (u) for non-smooth u and is often called the dual
formulation of TV{u). An argument using integration by parts shows that for u belonging to
the Sobolev space which is a proper subset o f BV(Vt) see [52], (3.20) is equivalent
to (3.14).

L ' D u {‘ S , f n Wu-'“ i x " L 1Vu| ■ TV{U)- <“ >
In [1] Acar and Vogel use (3.20) and the fact that the convex function + has the
following dual representation

\/|ql2+""/J = sup{q.v + y//3(1 - |v|2) : v 6 Rd, |vj < 1}

derived using the techniques in §A.4.1, to introduce

Fp{u) = sup f -u V .w + \/{3{l - |tu|2)dx,
wewJn

(3.23)

(3.24)

which they show is equivalent to TVp(u) for u € IV1’1, with the supremum attained for

Vtt

W ~ \?|Vu|2 + / j ' (3‘25)

We see that F0(u) = / n \Du\. In [1] it is shown that F0(u) < oo if and only if F0(u) < oo
for any /? > 0 and u € Ll (Q,), also for any u e B V (fl)

hm Fp{u) = F0{u).

Using Fp(u) the total variation regularization problem can be defined as

min
u€BV(n)nL2(n) Fp(u) + 1 /2||fCu - z\\l2{Q),

which it can be shown under certain conditions on AC is a well-posed problem

(3.26)

(3.27)

85

Existence and Uniqueness

(3.28)

T heorem 3.3.1

The functional F0 (u) defined above is weakly lower semicontinuous in X2(fi) and convex

P ro o f

To prove weak lower semicontinuity let un converge weakly to u in L2(fi), then for any
v 6 L2(Q) the sequence (un, converges and hence has infinum limit equal to its limit
(u, v)L2(57). Taking v = V.w for w € W we have

- (u , V .w) L, (n) + Jn V P < j - \M2)dx = J i r ^ i n f - ^ , V.tn)i2(n) + f ^ (1 - |w\2)dx
J fl

Taking the supremum over W gives the desired result.
To prove the convexity let u ,t)£ L2(fl), A e [0,1], and w e W then

Fp(\u + (1 - \)v) = - (A u + (1 - Xv)V.w + yfj}(1 - \w\2)dx

= A j a ~ uV -w + - M 2)dx + (1 - A) J -v V .w + y/0(i - \w\2)dx

< XF0(u) + (1 - A)F0(v).

Taking the supremum over W gives the desired result.
In the case K. = I, using the above result and the weak lower semicontinuity and coercivity

o f the L2(Q) norm, theorem A.2.1 implies that a globed minimizer of (3.27) exists. The
convexity o f F0(u) together with the strict convexity of the X2(0) norm ensures that the
solution is unique (see §A.4). For the more general case see [1] for a proof of existence and
uniqueness given certain conditions on K. See [1] also for a proof of stability with respect to
pertubations in z, a, (3 and /C.

If we rewrite (3.27) as

(3.30)

(3.29)

min sup $(u, w).
u new

with

$(u ,w) = j -cm V .ie + y/j3{\ - |w|) 4- l/2(JCu - z)2, (3.31)

then given that $ is convex in u and concave in in we can interchange the min and sup to
get

<»£ n to * (« , „) . (3.32,

The minimum over u is given by the solution of the equation

- a V .w + K * tC u — K * z = 0. (3.33)

86

In the denoising case where 1C is the identity we can use this equation to eliminate u in
$ and taking 0 = 0 we get what is known as the dual formulation of the total variation
regularization problem.

sup
w€W v

J -a z V .w - lf2 a 2(V .w)2. (3.34)
Note that this is equivalent to

sup
tu€ W J azV.w — 1/2q 2(V.iu)2, (3.35)

where if w* is the value of w that maximises (3.34) then -w * maximises (3.35). I use (3.35)
because it is the more commonly used formulation. The advantage of working with the dual
formulation is that it is differentiable without the need for a perturbing parameter 0.

The discussion in the rest of this chapter will focus on the denoising problem only, which
is the focus of the next three chapters. Some specific issues relating to the deblurring problem
will be addressed in Chapter 7 in which iterative methods for this problem are presented.

3.4 Properties of Total-Variation Regularization

In [90, 91] Strong and Chan prove some interesting properties o f total variation regularization
for the case of piecewise constant functions in the 1-dimensional case and in higher dimensions
for radially symmetric functions. In R 1 a simple piecewise constant function z is defined as
follows

z(x) = (3.36)
1 a; 6 H i

o x g n2

Strong and Chan prove that the result of applying total variation regularization to this
functional is to preserve exactly the discontinuity (or edge) while reducing the contrast of
the function so that

“ W ‘ { h i e <3'37>
with the change in intensity 5{ being proportional to the regularization functional a and
inversely proportional to the length of the domain f

i s y (3.38)t,

Furthermore this result is extended to noisy images z with

/n , zdx
Ifiil

= 1 and (3.39)

With this result the effect of total variation regularization on any piecewise constant function
can be analysed. If we split up a piecewise constant function z into n regions ft, on which
z is constant then total variation regularization preserves the discontinuities and the change
in intensity on each region can be classified as follows.

87

1 . At the boundaries fix and Qn the change in intensity is this change is positive if
z is larger on the neighbouring region and vice versa.

2. At an extremum, which is a region flt such that z on is greater (less) than 2 on both
neighbouring regions fix-i-i and f i j - i , there is a decrease (increase) in intensity of

3. At a step, which is a region il* such that z on Qt_i is less than z on f a n d z on Di+1

is greater than z on fi* (or vice versa), there is no change in the intensity.

This last result follows from the fact that the total variation of a nondecreasing (nonincreas
ing) piecewise constant function is just the total jump over the whole function, changing the
value at the steps will not change the total variation but it will increase the value of the
fitting term. If noise is added so that z has piecewise constant mean, results (1) and (2) hold
while result (3) holds approximately.

Note that in the discrete setting a single pixel of noise can be considered an extremum
with width h where h is the grid spacing. Given that loss of intensity is inversely proportional
to the width o f the image feature we see how total variation regularization can remove noise
while preserving other image features.

In two dimensions things are more complicated but for radially symmetric piecewise
constant functions, the following results have been proved in [90, 91]

1 . As in the 1-dimensional case the position of edges is preserved exactly.

2. In boundary regions <5* = ̂q .

3. In extremum regions St = —

4. In step regions Si —

Here |n»| is the area of the region D, and \dnitj\ is the length of the boundary between fl,

and flj.

3.4.1 Scale and a

We see that for extremum regions the change in intensity is given above by

6 =
|5H|

|fl|
a. (3.40)

or in other words a times the length of the boundary of the feature divided by the area of
the feature. Defining the scale of the feature as g , the change in intensity is given as a
divided by the scale. In fact in [91] it is shown that (away from the boundary where there
may be for example some rounding of sharp corners) this formula is a very good estimate for
the effect o f total variation regularization on any constant image feature e.g a rectangle.

88

Figure 3.4: Clockwise from top left, a signal with boundary extremum and stepped regions, a
noisy version of the signal, the result (dashed line) of applying total-variation regularization
to the noisy signal and the result of applying total variation regularization to the true signal

with the same a

89

Using the above formula (3.40) relating the scale of an image feature with the loss of
intensity due to total variation regularization and the fact that in a discrete setting every
image is piecewise constant (even if only at the one pixel level) Strong, Aujol and Chan [89]
investigate the effect o f a on the scale in images. As the value of a increases effectively smaller
scaled features are eliminated and merge to form larger scaled features until eventually if a
is larger than some threshold value a the resulting image is just the mean of the original
image z (a flat image has zero total variation). I note here that for the results above Strong
and Chan assume that a is large enough to remove the noise, while small enough to maintain
all features originally present in the image (this cannot always be achieved). In [89] an
algorithm is presented to find the smallest value a of a needed to remove all features in
an image with scale smaller than some threshold. A suitable threshold for denoising, for
example, would be the scale o f a single pixel. Some interesting results from tests on various
images are presented, including the fact that 5 seems to increase approximately linearly with
scale threshold and for a fixed scale threshold of one pixel linearly with noise level.

Figure 3.5 shows the effect of applying total variation regularization to an original image
(top left) which contains a square feature of intensity 100, a circular feature (with scale 2.5

times smaller than the square) on the square with intensity 200 and a single pixel feature
also with intensity 200. The figure shows what happens as total variation is applied to this
image with increasingly large values of a. We see that the single pixel spike is removed, with
very little loss of intensity o f the other features. The smaller scaled circular feature loses
intensity faster than the square and eventually disappears, as a gets even larger the image
heads towards a flat image at the average value of the original. Note also the greater loss of
intensity at the corners o f the square.

3.4.2 Smooth functions and Staircasing

When total variation regularization is applied to noise free images with smooth regions, then
these smooth regions tend to be preserved reasonably well. For example in 1-dimension the
slope of a straight line, seems to be preserved, (in two dimensions things are less straightfor
ward) see [90] for more details. However we are interested in noisy images and when noise is
added to a smooth function, the recovered image suffers from what is known as the staircas
ing effect, the region which (prior to the addition of noise) was originally smooth is recovered
as piecewise constant. In 1-dimension a straight line (or ramp) is recovered as a piecewise
constant stepped function (a staircase). To provide insight as to why this occurs Chambolle
and Lions [19] provide the following example: they consider the function u0(x) = x between
0 and m, they then assume that the addition of noise transforms this function into a non
decreasing piecewise constant function, using the results above we see that the only effect of
total variation regularization (assuming a isn’t large enough to merge image features) is to
change the intensity of the two boundary regions, leaving the steps unchanged, this may be

90

Figure 3.5: From Left to right and down, the original image in mesh plot form and the effect
of total variation with increasing values of a

91

an extreme example but it illustrates the point well.

Figure 3.6: The effect of staircasing in one and two dimensions. True signal/image (left),
noisy observed signal/image (middle) and recovered signal/image using total-variation regu
larization (right)

3.5 Discretization of the TV Problem

In this section I outline the discretization of the Euler-Lagrange equation (3.18) that we shall
use in the forthcoming chapters, I also give a brief survey of other approaches used in the
literature .

Given that the observed image z is given in the form of n x m pixel values each representing
average light intensity over a small rectangular portion of the domain, it seems sensible to
use a cell-centered discretization of the domain. In our work we assume that the domain
Q is the unit square and then split it into n x m cells of size h x k where h = \/n and
fc = 1/m , grid points are then placed at the centre of the cells so that grid point (i, j) is
located at (xi,t/j) = ((i - l/2)/i, {j - l/2)fc), the discrete domain is denoted fih. The value
of the grid function zh at grid point (i, j) is denoted by ztj. The Euler-Lagrange equation

92

(3.18) is discretized using a finite difference scheme. The equation at grid point (i , j) is

Uij - a 5+ J h

h l V (5 + u iJA) 2 + (^ u i,J/fc)2 + /3>

0yUi,j/k

(3.41)

k \y/(6*uij/h)2 + (SiuiJ/ky + /3j\
= z.»j

, where
(3.42)Ô3CUi,j — (U»±l>j Ui , j) U iJ — i — Ui,j) •

This can be rewritten as

Ui,j - tth [<*x (D (u k i Sx u i , i) + 7<*y i ^ k j ^ y “ to)] = *i,j (3.43)

or
u i,j ° !/i((-^(u)ij(ui+l,j — u*>j) — ~

+ 7 2 [D (u)jj(itjj+ x — U tj) — D{u)i - i tj(ui j — U jj^x)]) = Z jj , (3.44)

where
•D(w)y = ((^ ¿ j)2 + (7 tyU ij)2 + Ph)~1̂ 2 (3.45)

and
Qh = a /h , fa = h2(3 and 7 = h/k, (3.46)

with Neumann boundary condition

Ut,o = ^i,i 1 = UitTn,UQtj = u ij ,u n+ i j = unj . (3.47)

I denote the discrete Euler-Lagrange equation defined by (3.43)-(3.47) by

N hV(uh) = Zh■ (3.48)

We discretize the Euler-Lagrange equation in this way for two reasons, firstly because this
discretization scheme is the same as the one used by Chan et al in [29] and their primal-dual
Newton method (see later) is one of the main methods to which we compare our work and
secondly because (3.43) is equivalent to (V J^ vr) j . = 0 where

min J l V{uh) with J%v (uh) - = ^ a hyj {5 tu itj)2 + (7 # uitj)2 + /3h + - zifj)2 (3.49)
Uh hi Z

is a discrete version of the total-variation minimization problem i.e the discretization of the
Euler-Lagrange equation for the continuous problem is equivalent to the condition for a
minimum of the discrete problem.

93

3.5.1 Alternative Notation

I may at some points find it useful to use the following notation. If u is a scalar quantity
defined on fth then

(Grad u)itj = ((Grad u)k, (Grad u)?j)T, (3.50)

where

(Grad u)ld = I S* “ *J

(Grad u)^ = | l5 v ^

i < n
i = n

j < m
j = m

(3.51)

(3.52)

Also if iu is a vector quantity defined on so that = (w l j ,w l)T then

(Div w)a = (Div1 w)ij + 7 (Div2™)^,

where

(Div1m)i,J- = Ì

(Div 2w)itj = <

With this notation the discrete Euler-Lagrange equation is
/ v

Grad iq,-a /jD iv + Uh = Zh-
■y/IGrad uh\2 + /3h>

I may also wish to use a matrix notation. Denote by

W i = (Ul,l* U2,H — * u n,lt « l , 2 i — U n , m) T

(3.53)

1 < i < n

w l j i = 1 (3.54)

. ~ wi - u i = n

< W ,i 1 < j < m

3 = 1 (3.55)

~ wl i - 1 j = m

(3.56)

(3.57)

the A x 1 vector which results from stacking the grid function Uh along rows of pixels. Now
define B j for l = 1 ,. . ,N as the 2 x N matrix for which B jn h = (it/+1 - u (,7 (ui+n - iq))T
with appropriate modifications if l corresponds to a boundary point so that if l corresponds

94

to the grid point (i , j) then B f u is essentially (Grad u)tj .

Now if we define

0 0 row 1

0 0 ,

- 1 - 7 row l
1 0 row l + l
0 0 ■

0 7 row l + n
0 0 •

0 0 row N

B = [Bi... i Bn] (3.58)

we see that B Tu is a 2N x 1 vector equivalent to ((Grad u)£x, (G r a d u) l m)T. Also if we
have a 2N x 1 vector w = (w f , . . , w £ f = (u ^ , whi ch C0rresp”0„ ds to stacking

the discrete vector quantity wh into a vector, then we see that (for non boundary points)

{Bvr)i = - (w i) i - 7 (w i)2 + (w/_ !) ! + 7(wt_n)2. (3.59)

The first two terms coming from B twj the third term form B i-1w l. 1 and the last term from
In other words if l corresponds to the grid point (i j) then (Bw), is equivalent

to -(D iv w)ij. In this notation the Euler-Lagrange equation is

(/ + a hB E {uh) 1B t) uh = Zh, (3.GO)

where E is a N x N block diagonal matrix with diagonal blocks and the block ll is
and h is the identity matrix o f size 2.

(\j\Bj«hi + Phj h

3.5.2 Alternative Discretizations

The approach outlined above is not the only, method of discretizing the Euler-Lagrange
equation used in the literature. In [78] the nonlinear term is approximated by

i [S- (D ‘ (u)iJStuij) + 7 5 ; (D y{u)i>j5^uu) } , (3.61)

where
D x{u)i,j = ((S tu ij)2 + him iS +U ij^yU ^)))2 + (3h)~ 1/2 (3.62)

and
D y(u)ij = ((m iS+u^S^U ij))2 + (7 S*uti)2 + fih)~ 1/2. (3.63)

95

Here m is the minmod function defined by

m (a, b) = ^
sgn a + sgn b

2 (3.64)

Some evidence that this scheme better preserves the corners of image features is presented

in [90].
In [93] Vogel uses the following (central differencing) scheme (equivalent to a finite volume

discretization) to discretize (3.18)

sion terms D c must be evaluated at the x-edge midpoints {xi±1/2,y j) and ¡/-edge midpoints
(Xi,Vj± 1/ 2) ° f the cells. For example

and then use central differencing approximations of ux,u y, uxx, uyy and uxy.
As well as differences in the finite difference schemes used, there are also different ap

proaches to the choice and discretization of the image domain. Some authors e.g. [48] use a
vertex rather than a cell-centered discretization of the domain. Also the choice of the image
domain Q is somewhat arbitrary, there are two main approaches, the first is the approach
outlined above to take fi to be the unit square whatever the size of the image, the other is
to take the domain to be such that the grid spacing in each direction is 1 , e.g if the image is
of size 256 x 256 then Q - (0,256) x (0,256), this approach is used in, for example, [41, 71].
If I were to replace a* and 0h by simply a and (3 in (3.43) this would be equivalent to using
this type o f discretization. The value of a h, 0h for fi = (0 ,1) x (0, 1) should be the same as
a, for f! = (0,256) x (0,256).

(3.65)

nr

(3.67)

with

SyUi+l/2,j = ^ (<5yUi,j-l/2 + SyUij+i/2 + Syui + + SyUi+i<j +1/ 2) . (3.68)

Another approach used in [71, 41] is to expand out the nonlinear term as follows

(3.69)

96

Rem ark 3.5.1 Assuming for the moment that h = k, the scale of a single pixel of noise is
h/4. Assume that we have a particular image that was sampled at say 128 x 128 and 256 x 256
pixels and a similar level of noise was present in each case. If fi is the unit square then the
scale of a single pixel in the 256 x 256 case will be half what it was in the 128 x 128 case and
from (3.40) we see that the value of a needed to remove the noise will be twice what it was in
the 128 x 128 case, however the value of = a/h (which is what we actually choose in the
algorithm) will remain unchanged. On the other hand if fi is chosen so that h — 1 always,
then the value of a needed to remove the noise in the two cases will be the same.

3.6 Solving the TV Problem

There have been various different approaches proposed in the literature for solving the TV
regularization problem, here I give a brief review.

3.6.1 Explicit Time Marching

In [78] Rudin et al solve the Euler-Lagrange equation using an artificial time marching
method. The equation is solved by using an explicit time marching (forward Euler) method
to find the steady state of the following parabolic equation

/ \
Vu

ut = aV . - (u - z) (3.70)y i v u p + z ^

So on step k + 1, u& is updated by

uh+1 = uh ~ AtJV^v (u£), (3.71)

where At is the time step. I remark here that a steepest descent method (§A.6.4) will also
involve updating u* on each step via equation (3.71), but with At replaced by a step length
parameter, determined via a line search on J%v .

I note here that in [78] Rudin et al actually solve the constrained problem, the lagrange
multiplier A is found by multiplying both sides of the Euler-Lagrange equation by (u - z)
and integrating over Ü.

X [(u - z)2dxdy = f (u - z)V . [—-■ —
Ja Jn W\Vu\2 + i3

dxdy. (3.72)

Making use of the constraint the left hand side of (3.72)is 2A<r2. Using

J uV .wdxdy — — J ̂ 7v.wdxdy-\- J vw.rtdS (3.73)

with V = (u - z) and w = and the fact that = 0 on the boundary, the right
hand side of (3.72) becomes

Vu/nV(u 2)V ! V u|2 + /3 (3.74)

97

and so
1 f . Vu

A = ” ^ i n V U _ 2 ' v T ^ F + ^
(3.75)

A discretization of this equation is used to update A on each step of the time marching

method.
The main disadvantage of the explicit time marching approach is that to ensure stability

a restriction must be imposed on the time step At, this results in very slow convergence of the
method. In [71] Marquina and Osher reduce the restriction on the time step by multiplying
the right hand side of (3.70) by |Vu|. The new equation can be written as

ut |Vu|(z — u) + a\/|Vu|2 + /3V.
Vu

V lV u |2 + /3

n-7 i/ \ $)uyy d" (u^ + 0)uxx 2 u x U y U Xy

+ --------------------u % lu l + n-------------— • <3-re>

Importantly note that ¡3 is included in the |Vu| term multiplying the second term on the
right hand side but not the first term, central differencing is used to discretize the second
term while an upwind differencing scheme is used for the first term, the numerical steady
state obtained is therefore different to the straight TV case and is less staircased.

3.6.2 The Fixed Point Method

A method that can be viewed as a semi-implicit time marching method with infinite time
step is the ’lagged diffusivity’ fixed point method of Vogel and Oman [93]. In this method
the Euler-Lagrange equation is linearized by freezing the term - 1 ^ at the value of they'|Vu|a+ l3
previous iterate. Therefore on step k + 1 o f the method we have a linear equation of the form

ufc+1 - qV.
Vu fe+1

v /IV u ^ + Z?
= z (3.77)

to solve in order to update the approximation. In [46] Dobson and Vogel analyse this method
and show that it is globally convergent.

The linear system which results from the discretization o f (3.77) is

(i + a hB E ((ua)*)-1 B t) (u/l)fc+1 = zh. (3.78)

ji
From the fact that v TB E ~1B Tv = (B Tv) E ~1B Tv and the fact that all the entries o f E are
positive we see that the system is symmetric positive definite. Several different methods have
been used in the literature to solve (3.78), these include preconditioned conjugate gradient
(PCG) with incomplete Cholesky preconditioner [29], geometric multigrid [96] (either on its
own or as a preconditioner for preconditioned conjugate gradient) and Algebraic multigrid
[34], which is more robust with respect to small values of ¡3 than geometric multigrid. In

98

practice accurate solution of the linear equation is not necessary and the most efficient method
usually results from reducing the linear residual by some small amount e.g. a factor of 10

before updating u.
In Chapter 5 the fixed point method with AMG linear solver is studied and a technique

to reduce the overall cost proposed.

3.6.3 Newton’s Method

Writing the Euler-Lagrange equation as

9,") = " aV'(v lW T |) +U-z = 0 (3'79)
we can use Newton’s method to solve it. Starting from some initial guess, on each step of
the method the update 6u is found by solving

g'{u)5u - -g {u) (3.80)

where g'{u) is the Frechet derivative of the operator g (see §A.3.1). Using (|Vu|2)' = 2Vitr V
we have

g'(u) = -£*V.
y i v u i 2 +/ ?

which can alternatively be written as

= + Vu VuTV
V | V u |2 + /3)3y + / (3.81)

—aV.
1 f VuVuT \ 1

y / lV u f+ P V |Vu|2 + / 3 j V J (3.82)

Newton’s method is quadratically convergent provided the initial guess is within the domain
of convergence (close enough to the solution), however Chan et al in [32] show that the
domain of convergence for Newton’s Method in this case is very small for small values of ¡3.
To overcome this problem they propose a continuation procedure on both (3 and a. Starting
with some small value of a and some large value of ¡3 and the noisy image as initial guess
they solve the Euler-Lagrange equation using Newton’s Method. With ¡3 fixed the value of a
is increased and the new problem solved with the solution to the previous problem as initial
guess. This procedure is repeated until the desired value of a has been reached. With a
fixed a continuation procedure on ¡3 is then applied.

The sparse linear system which results from discretizing (3.80) with our usual finite dif
ference operators is symmetric positive definite and is also equivalent to the Hessian of the
discrete minimization problem (3.49). An alternative to the above continuation procedure is
therefore to apply a line search to the Newton direction (see §A.6.4), this was done in [97].
The discrete linear system is solved using the conjugate gradient method.

99

3.6.4 The Primal-Dual Newton Method

To overcome the problems associated with Newton’s method for the TV problem in a more
fundamental way Chan et al [29] introduce the dual variable

w — Vu
(3.83)

(3.84)

V|Vu|2 + ¡3

The original system can then be replaced by the equivalent (u, w) system.

-oSJ.w + u - z = 0 = fi(w ,u)
tui/|Vu|2 + ¡3 — Vu = 0 = f 2(w, u) .

\w(x,y)\ < 1 for all (x ,y)

The first equation here is just (3.33), the second equation is from (3.25) and the constraint
is the usual constraint on the dual variable.

The Primal-dual system (3.84) is much better behaved with respect to Newton’s method
than the Euler-Lagrange equation of the original primal problem (because it is ’more’ linear),
in fact the method presented in [29] seems to be globally convergent with quadratic conver
gence, without the need for a continuation procedure. The linearization of (3.84) results
the following linear system which must be solved on each step:

in

r - qV.
, - Z - - V v/l Vu|* + /3v/|Vu|2+/3 VI I H

Eliminating Sw using the second equation gives

1

Su - f i (u ,w)
Sw . - f i (u ,w) _

Sw =
VI Vu|2 + /?

Then Su is obtained by solving

- f 2(w,u) + / - teVu2,

V Í W + 1
V<5u

-a V . Í - , - ■ —
a v VV|Vu|2 + V

Given that

I -
wVuT

7 Ñ W + 0 ,

~f2{w ,u)

v + /

= — w +

Su = - f i (w ,u) + qV.

Vu

the rhs in (3.87) is

a V .w - {u - z)+ a V . I —w +
Vu

VlVu| 2 + d
= qV.

V|Vu|2 + ¡3

Vu

(3.85)

(3.86)

~ / 2(u,u>) \
 ̂V|Vu|2 + 0 J '

(3.87)

(3.88)

T W W T i) - (» - ,) - - * («) . (3.89)

where g(u) = 0 is the Euler-Lagrange équation for the primai problem, and

Vu 1 (_ wVuT
Sw - —w +

V lV u |2 + /3 + V|Vu|2 + /3 V lV u |2 + /3
Viu. (3.90)

100

We also have the condition that |u>(x, y)j < 1 V(x, y) . To maintain this condition Chan et al
apply a line search to the discrete version o f S w , with the step length t chosen such that

t = 0.9sup{« : IWij + «<5u;¿j| < lVi, j } . (3.91)

We see that the main cost associated with the primal-dual Newton method is the solution
of the linear system Hdu = —g(u) which results from discretization of (3.87). In [29] Chan
et al state that H is positive definite provided a is positive and \wi%j\ < 1 at all grid points,
however H is not symmetric. In order that the preconditioned conjugate gradient method
can be used, Chan et al use an approximate Newton’s method in which H is replaced by its
symmetrization 1/2 (H + H T), which is equivalent to a discretization of

/ 1 (t _ 1 wVuT + VuwT '\ ^ ^ T
\\/|Vu|2 + d \ ~ 2)) +

(3.92)

Preconditied conjugate gradient with incomplete Cholesky preconditioner (§A.6.3) is then
used to solve the linear system on each step. To prevent oversolving the following stopping
criteria is used for the linear solver in [29]; on step k + 1 of Newton’s method the inner PCG
iterations are stopped when the relative linear residual is less than

min(0.1 , 0.9||5 (u fc)|||/||5 (u fc- 1|||). (3.93)

3.6.5 Dual Approaches

In the primal-dual method Chan et al solve a system which contains both the primal and
the dual variables, other authors have worked directly with the dual problem (3.35). In [17]
Carter presents several relaxation methods to solve the discretization of (3.35). Another
more recent approach is that used by Chambolle in [18]. Writing the dual problem as

sup / -l/ 2 (a V .w - z)2 + 1 / 2z2. (3.94)
wzwJn

We can write the discrete dual problem as

mj n] C (Q7l((Div ~ zid)2 (3.95)
»-j

subject to [(u^) 2 + (id2,)2] - 1 < 0 V(i, j) (3.96)

The Karush-Kuhn-Tucker (KKT) (see §A.5) conditions for this problem are

(a h(Div w)ij - Zij) - (ah(Div w)i+itj - zi+Uj)
(a*(Div w)ij - Zij) - (ah(Div tn)¿,j+ i - z<j+i) + 6 2wli

2wli
= 0 (3.97)

for all (i , j) with either 6Uj > 0 and K ^ l = 1 or 0tJ = 0 and < 1 . Since the function
and the constraints are convex, the KKT conditions are necessary and sufficient. Defining
0, „• = the KKT conditions can be written as%iJ Oth

- (Grad (a hDiv w - z))^ + = 0 V(t, j) (3.98)

with

6ij > 0 and |iOî | = 1

or = 0 and \wij\ < 1 (3.100)

(3.99)

In [18] Chambolle makes the following observation; if condition (3.99) is satisfied then from

(3.98)
8ij = I (Grad (o^Div w - z))itj |. (3.101)

However if the second condition (3.100) is satisfied we see from (3.98) that (3.101) also holds
on account of | (Grad (a ftDiv w - z))id | also being equal to zero. The KKT conditions can
therefore be written simply as

- (Grad (ahDiv w - z))itj + | (Grad (c^Div w - z))itj |witj = 0 V(i, j) . (3.102)

[25] and Chen and Tai [39] have multilevel methods working directly with the minimization
problem (not the Euler-Lagrange equation) which can solve the problem with very small
values of fa . For a brief introduction to this kind of approach see §A.7.2. Cascadic Multigrid
(§2.6.13) is employed by Oehsen in [74] to improve the performance of fixed point and time
marching methods, using both linear and nonlinear WENO interpolation operators.

3.6.7 Active Set Methods

Finally I mention that active set methods have been used by Karkkainen and Majava [61]
and Ito and Kunisch [58].

The signal to noise ratio or SNR of a noisy image is a measure of how much noise is present in
the image (the smaller the SNR the more noise there is), it is given by the following formula

Chambolle uses a semi-implicit time marching method to solve this discrete system so that
on step n + 1 , w is updated as follows

n+i wij + At (Grad (o^Div wn - z))i ;j
WiJ ~~ l + At I (Grad (a/iDiv wn - z))i ;-1 ' (3.103)

Where w° — 0.

3.6.6 Multilevel Approaches

In Chapter 4 I present a nonlinear multigrid method for solving the discrete Euler-Lagrange
equation, nonlinear multigrid is also used by Frohn-Schauf et al in [48], Chan and Chen

3.7 Measuring Image Quality: SNR and PSNR

(3.104)

102

here uid is the value of the true image at the grid point (i ,j) , u is the average pixel value of
u and rt-i j is the value of the noise at grid point In real applications of course neither
the true image or the noise will be known, but in the simulations carried out later we do
have the true image and the noise, which is added artificially, available. The Peak Signal to
Noise Ratio or PSNR is used to measure how close two images (of the same size) are to each
other, it is given by the following formula

PSN R{u , v) = 20 log10 (255/R M S E) R M SE = (3.105)

where N is the total number of pixels. The PSNR is not an absolute measure, just a relative
measure, it can be used for example to compare how close the results o f two different denoising
processes (say TV and H l) are to the true image.

Often people will also refer to the ’eyeball norm’ when comparing images, this just refers
to how the image appears to the human eye, for example two reconstructed images may have
similar PSNR values when compared to the original, but one may look better than the other
because it is smooth and not staircased in regions where it is expected to be smooth.

3.8 Beyond The ROF Model

Finally I mention that there have been many attempts in the literature to improve upon and
extend the standard ROF model. One of the major areas of research has been to develop
denoising methods which preserve edges as well as the ROF model while also recovering
better the smooth regions present in the original image (reducing the staircasing effect), I
go into these methods in more detail in Chapter 6 and so will not mention them any further

here.
Other ways to improve the ROF model include the iterative regularization method of

Osher et a 1 [75], in which the (k + l)th iterate uk+1 results from minimizing (3.15) with z
replaced by 2 + vk where vk is the noise from the previous step and the related inverse scale
space method of Burger et al [16] in which one starts from the zero image and gradually
adds back information arriving eventually (if the method is not stopped) at the original
noisy image. Another active area of research is on the use o f the TV regularization term with
alternative fidelity terms. In [26] Chan and Esedoglu consider the L 1 norm as fidelity term.
It is well known that for any nonzero a the standard ROF model will reduce the contrast of
image features (at a rate inversely proportional to their scale) but with this new model the
contrast of image features tends to be preserved until they disappear at some threshold value
o f a. Yin et al [104] also use TV-L1 for decomposing an image into cartoon and texture
parts. Several approximations of Meyers G norm [76, 98] have also been used as fidelity
term for texture extraction and denoising. By combining these alternative fidelity terms with

103

some o f the staircase reducing regularization functionals Chan et al [28] and Levine [68]
have combined staircase reduction (in the cartoon image) with texture extraction.

Diffusion filtering is an alternative denoising approach in which a nonlinear parabolic
equation, usually of the general form ut = V.(<7(|Vu|)Vu) is marched forward in time. The
noisy image is used used as initial guess and when the process is stopped determines the
quality of the image (at convergence the image will be flat). Specific choices of g include the
original choice of Perona and Malik [77], g(x) = 1/(1 + x i) and the TV filterring choice g(x) —
l/s/x2 + ¡3. The connection between diffusion filtering and regularization is investigated in
[86].

104

Chapter 4

A Nonlinear Multigrid Method
For Total Variation Denoising

U seful Section References: §2.5, §2.6, §3.2, §3.5, §3.6, §A.7
M ain Reference M aterial: [12, 29, 48, 57, 73, 78, 83, 92, 96, 97, 100, 102]

In this chapter I present my attempts to develop a nonlinear multigrid method based on the
FAS (§2.6.8), for solving the discrete nonlinear equation N ^v (uh) = zh (as defined in §3.5)
which results from Tikhonov regularization of the denoising problem with the total variation
regularization functional. The material in this chapter is based on work published by myself

and K. Chen in [83].
Recall from §2.6 that a (non)linear multigrid method is defined by the choice of the

coarse grid, transfer operators and the smoother, in our work we use standard coarsening
and the standard cell-centered transfer operators defined in §2.6.3, the main focus of the
work is on the choice of a suitable smoother for use in the nonlinear multigrid method. I
first outline my experience using the standard approach of Gauss-Seidel Newton and then
consider alternatives to this approach, comparisons of the nonlinear multigrid method with
various smoothers against each other and against the fixed point and primal-dual Newton
methods are made.

4.1 Choice of Smoother

We tried several different iterative methods as smoothers for our nonlinear multigrid method
here we give the details of each of them, to aid the description recall that we can write the

105

discrete nonlinear equation at grid point (i , j) as

— Uj_ i j)

d'T — U jj—i)]) = Zij, (4-1)

where
D(u)y = ((<£uij)2 + {jS+Uij)2 + f3h)~1/2 (4.2)

with appropriate modifications at the boundary.

4.1.1 Gauss-Seidel Newton

If at (i, j) we freeze all non (i ,j) terms in (4.1) at the value of the most recent approximation
Uij we have a nonlinear equation in one variable to solve in order to update utj.

Uij - oihg{uij) = ztj. (4.3)

This can be approximated using Newton’s method as

^ ‘<7 & h c (u Tj) (U jj)] — Z j j ,

where c(uìj) = j~ g {u i j) and is given by

c(Uij) =
~ C l (u i j) + ui i - e i + l ,i+y ("H-^i.i+ l)

cltuij)
C j (Ui j)

”clT“ o)

+ 7 2 cj(uy)

(4.4)

(4.5)

+C3 (u„) -72 (»0 ~C-, j -1) [—(" c 3 -l)]
ciTüiïT1 ^

with ______________________________________
c \ (u i j) = y / (û i + i j - U ij)2 + 7 2(û i , j+1 - U i j) 2 + 0 h

C2(uij) = >/(u<j - û i - i j)2 + 72(ü»-i,j+ i - u<_ij)'2 + /3h (4.6)

c i (w7i) = V (ü i + h j - 1 + - ü » , i - l) 2 + &

with appropriate modifications at points adjacent to the boundary. The algorithm for updat
ing an approximation vh to the solution of N%v (uh) = zh using Gauss-Seidel Newton with
lexicographical ordering of the grid points is given in Algorithm 1 1 .

106

A lg o r ith m 11 Gauss-Seidel Newton

vu <— G SN W (Vh, Zh, maxit, tol)

for j = 1 : m
for i = 1 : n

for iier = 1 : maxit
Vh *~vh
update Vij

Zij - <Xh (g(Vjj) - c(Vij)Vij)
hJ 1 - OthC(Vij)

if IVij — Vij\ < tol stop
end

end
end_____ ___ ___________ __

Note that although only one step of Newton’s method is usually used at each grid point
we include the option of performing up to maxit steps, stopping if the value of \v{j — Vij |
falls below some specified tolerance.

We found that this method on its own only converged if a small weighting parameter
was applied to the Newton step i.e after the update of v̂ j we set Vij = wu,j + (1 - u)vij
where u> is typically 0.2 - 0.5 and did not perform well as a smoother in a nonlinear multigrid
method, performing more than one inner Newton step offered no real advantage. The poor
performance of this method as a smoother forced us to look at other alternatives.

4.1.2 Local Linear Smoother

Note that D{u)ij, D (u),_ ij and D (u),j_ i in (4.1) all contain utj terms. In our second
smoother, for each grid point (i, j) as well as substituting current values of the approximation
at non (i ,j) points into (4.1) we also substitute current values of the approximation at (i ,j)
into the D terms; this gives us a linear equation in one variable to solve in order to update
the approximation at (i, j) . The algorithm for updating Vh using this method is given in
Algorithm 12.

Note that because the linear equation used to update involves C ij, at each grid point
we perform up to maxit inner iterations. Typically we take maxit = 2 and tol ~ 10-6 . We
found that this method was slowly convergent and could be speeded up by the use of nonlinear
multigrid, however we found that using this smoother in a nonlinear multigrid method was
less efficient than using another smoother based on a global linearization of N][v (uh) which

107

A lg o r ith m 12 Local Linear Smoother

Vh <— GSLL(vh,Zh,maxit,tol)

for j = 1 : m
for i — 1 : n

for iter = 1 : maxit
Vh <-~Vh
update v ,j by solving the linear equation

Vi,j - ah((D(v)ij(vi+ i,j - Vi,j) - Dityi-ijivij - Vi-ij)) +

72 (D{v)i,j(vi,j+1 - va) - D (v)ij~\(vij - Vi,j-x))) = zu

if Ivi,j — < t°l stop
end

end
end___

I now outline.

4.1.3 Global Linear Smoother

Our third smoother is similar to the lagged diffusivity fixed point method of Vogel and
Oman. In this method the system of nonlinear equations is linearized globally at each step
by evaluating D ij for all (i , j) using the current approximation, several steps of Gauss-Seidel
relaxation are then applied to the resulting linear system. We found that while exactly
solving the linear system, (or solving to some specified accuracy using conjugate gradient
or linear multigrid) at each step seems to give a method which is not speeded up at all by
nonlinear multigrid, applying just a few steps of Gauss-Seidel to the linear system results
in a method that while obviously slower to converge than the fixed point method, can be
used to good effect as a smoother in a nonlinear multigrid method. The algorithm is given
in Algorithm 13.

We typically take it = 3 i.e we perform 3 inner Gauss-Seidel steps on each smoothing
step.

4.1.4 Further Experiments

The two smoothers detailed above were investigated in [83], here I give details of some
modifications considered more recently.

108

A lg o r ith m 13 FPGS Smoother

Vh <- FPGS(vh,Zh,it)

Evaluate D{vh)ij = ((f ë v i j)2 + (jà yV ij)2 + Ph)~1/2 for ail (i j)
Perforai Gauss-Seidel steps on linear System

Wh = vh
for iter = 1 : it

for j = 1 : m
for i = 1 : n

wh < - wh

Zj,j + ah(D(vh)i,i(wi+id + j 2Wjj+i) + D(vh)i-i,jWj-i,j + H2D(vh)i,j-iWjj-i)
Wi’j 1 + ah((1 + 72)^K)i,i + r>(vfc)i-ij + ^ D (v h) i , i - i)

end
end

end
Vh wh__

Red-Black Ordering

The first thing to note is that in the above algorithms a lexicographical ordering of the grid
points is used I have also considered a red-black ordering of the grid points for both the local
linear smoother and for the linear Gauss-Seidel steps within the global linear smoother, in
some cases there is a slight advantage in using a red-black ordering, see results section for
more details.

Jacobi Variants

For completeness I also give results for Jacobi variants of the two smoothers, although I have
found no advantage in using these. Some numerical local fourier analysis (LFA) suggests that
a weighting parameter of around 0.7 should give the best results in terms of smoothing, this
seems to be confirmed by experiment.

Line Smoothers

Recently I have become aware of work by Frohn-Schauf, Henn and Witsch [48] on non
linear multigrid methods for the total-variation denoising problem. I do not make a direct
comparison with their method here as they use a vertex-centered based discretization, which
is different to the discretization scheme I am using, but I do take account of some of the
techniques used. In [48] a pointwise smoother similar to the local linear smoother detailed

109

above is used, also considered is a line variant of this approach.
In the results section I give results for a Gauss-Seidel alternating line variant of the local

linear smoother, this involves updating each line of the grid simultaneously by freezing all
values of the approximation not on the line and also all values in the D terms before solving
the resulting linear system. I also considered the use of a Gauss-Seidel alternating line
relaxation method for solving the linear system on each step of my global linear smoother.

Over Relaxation

Also proposed in [48] is the use of over-relaxation of the local linear pointwise and line
smoothers. I consider the use of over-relaxation for all the smoothers I have investigated,
with the exception of the Jacobi version of the local linear smoother, where I am using an
under-relaxation parameter.

Notation

In the following I will denote my fixed point type smoother by FP followed by a code de
noting the type of relaxation used on the linear system GS for pointwise Gauss-Seidel with
lexicographical ordering GSRB for pointwise Gauss-Seidel with red black ordering GSL for
Gauss-Seidel alternating line relaxation and JA for pointwise Jacobi relaxation, shown in
brackets is the number of inner relaxation steps used on each step (this corresponds to it
in the above algorithm). I shall denote the local linear smoother by LL preceded by a code
denoting the type of nonlinear relaxation used, in brackets will be the number of inner steps
used for each grid point (this corresponds to maxit in the algorithm).

4.2 The Multigrid Method

For clarity I give the algorithm for the nonlinear multigrid method that we are using (Algo
rithm 14).

Note that we include the option to use the Krylov acceleration procedure outlined in
§2.6.9, the effect of this is discussed in the results section. In most cases we take the noisy
image Zh as the initial guess and set tol = 10-4 ||zh - Nh{zh)\\2. We use a V-cycle method
as we have found that we only gain a very small advantage in terms of convergence by using
the more expensive W-cycle method. FA S 1TV is defined recursively in Algorithm 15. Here
N2h is the coarse grid analogue of N £v i.e the operator resulting from discretization of the
Euler-Lagrange equation on Q?h. The equation at a grid point of fl2h is just (4.1) with a/,
replaced by a 2h = oth/2 and fih replaced by fah — ^Pk- The restriction and interpolation

110

A lgorithm 14 Nonlinear Multigrid for TV Problem_________________________
Select Smoother, ¿q, and initial guess vh.

Set k = 0
While ||zh - NZv (vh)\\2 < tol

k * - k + 1
Vh <— FAS1%V(vh,N£v ,Zh, vi,V2)
If Krylov requested

Apply Krylov acceleration to find more optimal solution in space
vh 4- span[v\ - vh, v ‘h - u*]
If k < l set vfc = Vh else set vfc mo<̂ 1 = Vh-

end
end________ __

A lgorithm 15 FAS1TV

vh *— FA S l lv (vh, N%v , zh, vu V2)

1 . If fih = coarsest grid solve N/[v Uh = Zh using the primal-dual Newton method and
stop.
Else For l = 1 to v\

Vh *- SMOOTH(vh,Nj[v ,Zh)

2. V2h +— Ihhvh
V2h * - v 2h
Z2h - I 2h h (z h - N l V V h) + N 2hV2h

3. V 2 h «- F A S l l X (V 2 h , z 2h , V \ , v ¡)

4. Correct Vh <— Vh + I $ h i v 2 h - v 2h)

5. For í = 1 to ux
vh +- SMOOTH(vh,NZv ,Zh)

111

operators used are the cell-centered operators given by the stencils:

hr 2 h "
1 3 3 1

1 1
Tk 1 3 9 9 3

1 1
liIh = 16 3 9 9 3

h 1 3 3 1

(4.7)

4.2.1 Complexity

The main cost of the multigrid method is the cost of the smoothing steps. Using the fixed-
point type smoother, with 3 inner steps of Gauss-Seidel, costs approximately 907V flops per
smoothing step, as the cost of evaluating A ,j (performed once per smoothing step) is 9 flops
and the cost of one Gauss-Seidel step is 26 flops per grid point. An upper bound on the cost
of one V-cycle is:

lim (z/i + i/2)907V ^ (l / 4) n = 90(1/! + u2)N = 120(i/! + u2)N. (4.8)

The extra costs associated with Krylov acceleration of a multigrid step are the evaluation
o f several residuals and inner products, the cost of which is approximately 1007V and the
direct solution of a small linear system the cost of which is negligible. Using for example
v \ = v 2 = 5, Krylov acceleration adds around 8% to the cost of a multigrid step.

4.3 Numerical Results

4.3.1 Comparison of Various Smoothers

In our first test we compare the performance of the FAS with the various smoothers outlined
above for total variation denoising applied to 3 different 256 x 256 noisy images (Figure 4.1).
The results for the first image, which is the blocky triangle image with SNR — 3.4 are given
in Table 4.1, shown is the smoother used, the optimal number of pre and post correction
smoothing steps (this is usually the smallest number of steps for which the multigrid method
converges, although this is not always the case) the weighting factor u> used on the smoother,
the number of steps required by the multigrid method to reduce the relative residual by a
factor of 10~4 and the corresponding cpu time in seconds. Also shown is the number of steps
and cpu time needed by each of the smoothers to converge on their own (without multigrid).
Similar results are given for the Lenna image with SNR = 3.2 in Table 4.2 and for the fingers
image with SNR = 3.6 in 4.3. In all cases we take the noisy image as the initial guess and
take (3h = 10~2, for the triangle and Lenna images we use a value of 30 for a h, for the fingers

image we take a/, — 35.

112

Table 4.1: Comparison o f Nonlinear Multigrid with various smoothers for Triangle Image

FAS Smoother Alone

Smoother u> vi/v2 Steps cpu(s) Steps cpu(s)

FPGS(3) 1 6/6 8 62.8 654 323.5
FPGS(3) 1.5 5/5 7 46.8 420 206.8

FPGSRB(3) 1 5/5 9 60.5 699 351.3
FPGSRB(3) 1.5 5/5 6 40.2 451 227.0
FPGSL(l) 1 5/5 9 148.9 489 509.9
FPGSL(l) 1.5 5/5 6 98.9 314 327.6
FPJA(3) 1 10/10 9 140.1 1895 1099.1
FPJA(3) 1.5 9/9 6 82.3 1247 726.4
GSLL(2) 1 10/10 8 171.7 1805 1486.1
GSLL(2) 1.5 10/10 8 171.5 1128 932.3

GSRBLL(2) 1 10/10 9 194.8 1913 1583.4
GSRBLL(2) 1.5 7/7 7 106.7 1252 1043.6
GSLLL(l) 1 4/4 7 111.2 563 701.4
GSLLL(l) 1.5 4/4 7 111.0 335 422.3
JALL(2) 0.7 30/30 7 275.0 4993 2583.9

113

Table 4.2: Comparison of Nonlinear Multigrid with various smoothers for Lenna Image

FAS Smoother Alone

Smoother U) V\jV2 Steps cpu(s) Steps cpu(s)

FPGS(3) 1 5/5 14 91.6 596 301.4

FPGS(3) 1.5 4/4 12 63.2 382 192.6
FPGSRB(3) 1 5/5 14 92.3 632 319.1
FPGSRB(3) 1.5 5/5 9 59.3 403 205.2
FPGSL(l) 1 5/5 13 214.0 449 473.8
FPGSL(l) 1.5 4/4 11 145.0 283 298.1
FPJA(3) 1 15/15 12 268.2 1727 1021.6
FPJA(3) 1.5 12/12 9 167.5 1141 657.6
GSLL(2) 1 17/17 11 399.4 1633 1365.2
GSLL(2) 1.5 10/10 12 258.9 1009 843.3

GSRBLL(2) 1 17/17 11 402.6 1715 1438.3
GSRBLL(2) 1.5 11/11 11 263.3 1114 936.8
GSLLL(l) 1 5/5 11 218.3 529 662.6
GSLLL(l) 1.5 4/4 10 159.3 311 388.4
JALL(2) 0.7 * * * 4436 2282.2

114

Table 4.3: Comparison o f Nonlinear Multigrid with various smoothers for Fingers Image

FAS Smoother Alone
Smoother cu vxjvi Steps cpu(s) Steps cpu(s)
FPGS(3) 1 8/8 11 111.97 628 314.9
FPGS(3) 1.5 5/5 11 71.0 405 203.4

FPGSRB(3) 1 9/9 10 115.8 664 335.8
FPGSRB(3) 1.5 6/6 9 70.0 427 215.0
FPGSL(l) 1 7/7 11 250.0 475 502.9
FPGSL(l) 1.5 6/6 7 157.2 303 319.8
FPJA(3) 1 26/26 9 345.8 1805 1122.5
FPJA(3) 1.5 18/18 8 222.1 1193 741.4
GSLL(2) 1 24/24 10 512.1 1714 1436.1
GSLL(2) 1.5 18/18 8 306.5 1099 919.2

GSRBLL(2) 1 27/27 9 517.9 1803 1510.0
GSRBLL(2) 1.5 20/20 7 310.2 1164 975.4
GSLLL(l) 1 8/8 9 283.8 556 695.8
GSLLL(l) 1.5 6/6 8 189.3 347 432.5
JALL(2) 0.7 * * * 4631 2444.2

115

Figure 4.1: Noisy (top) and recovered (bottom) triangle, Lenna and fingers images

We see that overall the best performing smoothers are the GSLLL smoother and our
FP type smoothers (with the exception of FP.JA), the GSLLL smoother has slightly better
convergence properties, however the FPGS and FPGSRB methods, which have almost as
good convergence properties and are cheaper to implement, perform the best in terms of cpu,
being over twice as fast as the GSLLL smoother. Overall their is a slight advantage in using
a red-black ordering for the inner Gauss-Seidel steps. The pointwise local linear smoothers
tend to need more smoothing steps within the FAS and are less robust, the Jacobi variant
is particularly bad, convergence of the nonlinear multigrid method could not be achieved in
two of the three cases tested. In all cases (except JALL) we gave results for the case where
no over-relaxation was used and an over-relaxation parameter of 1.5 was used (1.5 was found
to be the optimal value, larger values led to a break down in convergence). In all cases except
the triangle image with GSLLL smoother, there was an advantage in using over-relaxation,
typically giving methods which were one and a half times faster than the u) = 1 case. In
some cases less smoothing steps were needed per multigrid step when over-relaxation was
used. The use of over-relaxation also speeded up the smoothers when used on their own.
Finally we note that the multigrid method typically reduced the cost of the smoother alone
by around 70 — 80%.

116

4.3.2 Krylov Acceleration

In the next experiment we investigate the effect of using the Krylov acceleration procedure of
Washio and Oosterlee (see §2.6.9) to accelerate the FAS. We apply Krylov acceleration with
5 stored solutions, as this seems to give the best results. For each o f the 3 images we run the
FAS with Krylov acceleration with the FPGSRB smoother and for comparison the GSLLL
smoother as well. Shown in Table 4.4 is the optimal number of pre and post correction steps
(this is not always the same as when no acceleration is used) the number of steps required
to reduce the residual by a factor of 10-4 the corresponding cpu and the reduction in cost
as compared to the case where no Krylov acceleration is used. In all experiments we use z
as the initial guess and a h, and ¡3̂ are as above.

Table 4.4: Krylov Accelerated Results

Image Smoother LD v\ M Steps cpu(s) Cost Reduction
Triangle FPGSRB(3) 1 4/4 9 50.3 17%
Triangle FPGSRB(3) 1.5 4/4 6 33.4 17%
Triangle GSLLL(l) 1 2/2 11 94.3 15%
Triangle GSLLL(l) 1.5 4/4 6 96.4 14%
Lenna FPGSRB (3) 1 4/4 12 67.3 27%
Lenna FPGSRB(3) 1.5 4/4 9 50.2 15%
Lenna GSLLL(l) 1 4/4 10 159.9 27%
Lenna GSLLL(l) 1.5 4/4 8 128.3 19%

Fingers FPGSRB(3) 1 3/3 21 90.5 22%
Fingers FPGSRB(3) 1.5 3/3 13 56.0 20%
Fingers GSLLL(l) 1 6/6 10 239.9 15%
Fingers GSLLL(l) 1.5 4/4 10 160.9 15%

We see that in all cases the application of Krylov acceleration leads to a speed up in the
multigrid method. In all cases their is still an advantage in using over-relaxation except for
the triangle image with GSLLL smoother (this was also the case without acceleration), even
though in some cases the slower uj = 1 method is speeded up more by the application of
Krylov acceleration. In all cases the FPGSRB smoother is faster than the GSLLL smoother,
in two of the three cases the advantage has grown.

4.3.3 Comparison with Other Methods

In the next test I compare the nonlinear multigrid method, with the primal dual Newton
method and the fixed point method (§3.6). Tests are carried out for various sizes of the

117

triangle and fingers images. Shown in Table 4.5 are the results of applying, the FAS method
with FPGSRB smoother, on its own and with Krylov acceleration, the primal-dual Newton
method and the fixed point method, on its own and with Krylov acceleration. In all cases
we take Sh = 10-2 , for all sizes of the triangle we take a h = 30 and for all fingers images
an = 35. The noisy image is used as initial guess and the methods are stopped when
the nonlinear residual has been reduced by a factor of 10-4 . The number of pre and post
correction smoothing steps used in the nonlinear multigrid method are shown in the table,
an over-relaxation parameter o f 1.5 is used in all cases. In the primal dual Newton method
an incomplete Cholesky preconditioned conjugate gradient method is used as the inner linear
solver, with the stopping criteria as in (3.93), the Cholesky preconditioner is generated using
MATLAB’s choline program, with drop tolerance 0.1, as this gave the best results over the
range of sizes. In the fixed point method we use a linear multigrid method with 2 pre and
2 post correction smoothing steps (see §5.2.2), the inner stopping criteria is a halving of
the inner linear residual. If fixed point is applied without Krylov acceleration we use over
relaxation parameter 1.5 as this also speeds up the fixed point method, if however Krylov
acceleration is used we use no over-relaxation, as we have found that this makes very little
difference to the convergence and can in some cases increase the number of steps required,
slightly.

We see that in all cases the nonlinear multigrid method outperforms the primal-dual
Newton and Fixed point methods. If no Krylov acceleration is used, the nonlinear multigrid
method is around 2.3 times faster than the fixed point method. The advantage of the non
linear multigrid method over the primal-dual Newton method is larger for the larger images,
in the case of the fingers image, for example, nonlinear multigrid method is approximately
1.5 times faster in the 256 case, 1.6 times faster in the 512 case and 2.3 times faster in the
1024 case. If Krylov acceleration is applied to both, the nonlinear multigrid method and the
fixed point method, then the advantage of the nonlinear multigrid method is reduced, but it
is still on average around 1.5 times faster.

In most cases, the primal-dual Newton method is faster than the fixed point method, but
when Krylov acceleration is applied to the fixed point method it performs better. Note that
if we used the same Cholesky preconditioned conjugate gradient method for the fixed point
method as we did for the primal-dual Newton we would expect that the primal-dual Newton
method would perform best.

4.3.4 Noisier Images

In the next test, I look at the performance of the nonlinear multigrid method for images
with heavier noise levels, I compare the performance of the Krylov accelerated nonlinear
multigrid method, with that of the primal-dual Newton and fixed point methods for the
triangle image and the Lenna image (size 256 x 256) both with SN R ss 0.8 (see Figure 4.2).

118

Table 4.5: Comparisons with Primal-Dual Newton and Fixed Point

Image Size FAS K-FAS
V\/V2 Steps cpu(s) V\/V2 Steps cpu(s)

fingers 256 6/6 9 70.0 3/3 13 56.0
fingers 512 6/6 10 332.9 3/3 13 233.4
fingers 1024 6/6 10 1401.4 3/3 13 994.4
triangle 256 5/5 6 40.2 4/4 6 33.4
triangle 512 5/5 6 160.7 5/5 5 140.9
triangle 1024 5/5 6 694.1 4/4 6 590.3

Image Size P-D NEW FP K-FP
Steps cpu(s) Steps cpu(s) Steps cpu(s)

fingers 256 14 104.6 91 164.7 49 91.4
fingers 512 16 544.4 94 740.7 40 306.9
fingers 1024 18 3153.7 92 3424.9 41 1542.2
triangle 256 11 76.9 60 98.9 32 47.2
triangle 512 14 496.6 55 396.6 31 219.0
triangle 1024 14 1998.8 51 1602.9 32 951.1

119

For the nonlinear multigrid method I use 4 pre and 4 post correction smoothing steps, the

Figure 4.2: Noisy (top) and recovered (bottom) triangle and Lenna images with high noise
levels

inner solvers in the primal-dual Newton and fixed point methods are as above. Since we have
higher noise levels, we must use a larger value of a /, to remove the noise. For the triangle
image we take ah = 75 and for the Lenna image a/, = 45, in all cases /3j, = 10~2 and the
stopping criteria and initial guess are as before.

For this more difficult problem, the cost of the nonlinear multigrid method increases, going
up from 6 to 9 steps in the case of the triangle and from 9 to 12 in the case of the Lenna
image, when compared to the less noisy cases seen earlier, however the nonlinear multigrid
method still maintains its advantage over the fixed point and primal-dual Newton methods.

120

Table 4.6: Comparison of Nonlinear multigrid versus primal-dual Newton and Fixed Point
for two noisier images

Image K-FAS P-D NEW K-FP
steps cpu(s) steps cpu(s) steps cpu(s)

Triangle 9 53.2 12 113.6 47 83.1
Lenna 12 70.1 15 139.5 54 131.7

4.3.5 Performance with Respect to f3h

Finally I comment on the performance o f our multigrid method with respect to the parameter
fih- The larger Ph is the better the multigrid method performs. If ph is reduced from 10“ 2 to
10~3 then we typically have to increase the number of smoothing steps to 20/20 to achieve
convergence and the method costs approximately two and a halftimes as much as in the 10~2
case. The multigrid method reduces the cost of the smoother alone by approximately 70%.
If Ph is reduced further to 10 4, then we have to increase the number of smoothing steps to
50/50 to achieve convergence of the multigrid method, again there is around a 70% reduction
in the cost of the smoother. For these smaller values of ph I have found that the nonlinear
multigrid method is still competitive with the fixed point method but is outperformed by
the primal-dual Newton method (the optimal choice of preconditioner/linear solver in the
fixed point and primal-dual Newton methods is likely to be different than in the I0-2 case).
For even smaller values of ph, I have been unable to achieve convergence o f the nonlinear
multigrid method.

We can achieve convergence for any ph, with a fixed number of smoothing steps if a line
search is used on the coarse grid correction as in §A.7 (in this case we replace the prolongation
operator with 4(I%h)T as this is required to guarantee a descent direction), however the actual
reduction in the number of smoothing steps as compared to the smoother alone becomes very
small as Ph decreases.

When Ph is very small the diffusion coefficients (the D («)y terms) can become very
large in fiat regions where (¿+Uj,j)3 + {6+Uij)2 = 0. The highly varying nature of these
diffusion terms means that the nonlinear operator N%v cannot be well approximated by the
operator N resulting from a rediscretization on fl2h and this leads to the poor performance.
Linear geometric multigrid methods used within the fixed point method suffer from a similar
deterioration in performance. In the next chapter the fixed point method with Algebraic
multigrid linear solver (proposed by Chang and Chern [34]) which is robust for small ph is
considered and a technique to improve its efficiency proposed.

R em ark 4.3.1 The choice ph = 10~2 used in the majority of the experiments in this section,
is a commonly used choice which produces reasonable quality reconstructions and has been

121

u sed in va rio u s p ap ers e .g . [2 9] to te st so lv ers f o r the T V p roblem .

4.4 Conclusion

I presented a nonlinear multigrid method, with a new smoother based on the fixed point
method, but with just a few steps of Gauss-Seidel applied to the linear system on each step.
The smoother was compared to various other smoothers, including one similar to that used
in [48] and found to perform best. Provided ¡3h is not too small experiments suggest that
the nonlinear multigrid method can outperform the primal-dual Newton and Fixed Point
methods and that there is a particular advantage over the primal-dual Newton method for
larger images. In all cases tested the nonlinear multigrid method could be speeded up by the
application of a Krylov acceleration procedure. For smaller values of j3h an increase in the
number of smoothing steps is required to achieve convergence and the nonlinear multigrid
method loses its advantage over other methods (particularly the primal-dual method), if
is too small, the method will not converge at all without the use of a line search on the coarse
grid correction.

122

Chapter 5

An Efficient Implementation of
the Fixed Point Method with
A M G Linear Solver

Useful Section References: §2.6, §2.7, §3.2, §3.5, §3.6, §A.6.3, §B.l, §B.2, §B.3
M ain R eference M aterial: [9, 29, 34, 35, 78, 80, 85, 92, 99, 100], [93]-[97]

In this chapter I present a method which attempts to speed up the fixed point method, when
algebraic multigrid is used as the inner linear solver, by recycling the AMG setup data. I
start with a brief review of the fixed point method (§5.1) and the linear solvers used within
it (§5.2). In §5.3 I introduce the recycling idea and present the results of some preliminary
tests which motivate the final algorithm presented at the end of the section. Finally some
numerical results showing the effectiveness of the new method in speeding up the fixed point
with AMG method are presented in §5.4 and conclusions drawn in §5.5.

5.1 The Fixed Point Method

Recall from Chapter 3 that step k + 1 of the fixed point (FP) method requires the solution
o f the linear system

W = *» • (5.1,

where
A (u kh) = I + a h B E (u kh) - 1B T . (5>2)

123

and B and E are as defined in §3.5.1. The matrix A is symmetric positive definite and is
sparse. It has an m xm block tridiagonal structure with n x n tridiagonal diagonal blocks and
n x n diagonal off-diagonal blocks. The number of operations required by a direct solver is
0 (N 2), where N is the number of pixels and so as the size of the problem increases, iterative
solvers must be used. The general fixed point method is given in Algorithm 16.

A lgorithm 16 Fixed Point
Input Initial Guess u®, Set k = 0
While ||zh - A (u£)u£||2 > toll

Set w = u£
While \\zh - A (u£)w ||2 > tol2\\zh - A(u£)u£||2

Update w with one step of some iterative method for solving the linear equation
A{ u£)w* = zh.

end
Set u£+1 = w
k < -k + 1

end ___ __________

In most cases we take u£ = zh and tolx = 10“ 4||zh - A(z£)z£||2. The value of tol2
determines by how much we require the linear residual to be reduced by before moving to
the next outer fixed point step. For clarity I focus here on the case that tol2 = 0.1 as
suggested in [29], using a smaller value of tol2 results in, at best, a small reduction in the
total number of fixed point steps, the advantage of which is outweighed by the extra work
needed to solve the linear system to a higher accuracy, we have in some cases found that
taking an even larger value of tol2, say 0.5 gives slightly better results.

In the following we also accelerate the fixed point method using the Krylov acceleration
procedure outlined in §2.6.9 for use with nonlinear multigrid (the process is the same with
the multigrid step replaced by a fixed point step), an idea which was proposed by Chang and
Chem in [34]. We carry out Krylov acceleration after each fixed point step using 5 stored
previous iterates.

5.2 Linear Solvers

In this section I review the various linear iterative solvers which have been proposed in the
literature for use in the fixed point method.

5.2.1 PCG with Incomplete Cholesky Preconditioner

Given that A {u£) is symmetric positive definite, the preconditioned conjugate gradient
method (PCG) can be used as an iterative solver. In [29] the incomplete Cholesky pre

124

conditioner is used as preconditioner within the PCG method. In the following I generate
the incomplete cholesky preconditioner using MATLAB’s CHOLINC program with the drop
tolerance option (see §A.6.3), obviously the larger the drop tolerance, the less it costs to
generate and invert the preconditioner, but the less accurate the preconditioner is.

5.2.2 Geometric Multigrid

In [96] Vogel proposes a geometric multigrid method to solve the linear system within the
fixed point method. The method I outline below differs slightly from Vogel’s method because
I am using a slightly different discretization scheme. Reverting, for now, to a grid function
notation the linear operator L* on step k + 1 of the fixed point method at points not adjacent
to the boundary is represented by the stencil

0 -ah'yD^j 0
- c t h D ^ j 1 + OihLij - a hD^

0 - a h l D ^ j . i 0
(5.3)

where , = (1 + 7 ^ + The grid function D h is dependant on u* and is
given at grid point (i , j) by

m u ^) 2 + (1s+u^)2 + ph) - 1/2
(5.4)

On a standard coarsened grid il2h the coarse grid operator L2h has stencil

0 - a 2hlD % 0

1 + « 2 /iS i j -a 2hD2£
0 - a 2h'yD2hj _ 1 0

(5.5)

where a2h = a^ /2 and D 2h = I^hD h.
The linear equation Lhwh = zh is solved using the standard multigrid V-cycle method

(Algorithm 3 with /z = 1) with 2 pre-correction smoothing steps o f red-black Gauss-Seidel
and 2 post correction smoothing steps o f black-red Gauss-Seidel. We use the cell-centered
restriction operator given by the stencil

j2h _ "
1h — “

l
4

1 1

1 1

I 2 h

(5.6)

and the interpolation operator is taken to be 4(7^h)T. This method can be applied as a
solver on its own, but to improve performance Vogel uses preconditioned conjugate gradient
to accelerate it, hence the need for symmetry in the smoothing steps and the choice of transfer
operators. The number of operations required to perform a single V-cycle will be O(N) and
experiments suggest, there is only a very small increase in the number conjugate gradient
steps required as the size of the problem grows.

125

5.2.3 Algebraic Multigrid

The geometric multigrid method may perform reasonably well if 0h is not too small, say
1CT2, however for smaller values of ¡3h its performance tends to deteriorate quite rapidly. A
more robust, but more expensive, option is to use a black box algebraic multigrid method
(§2.7), this approach is proposed in [34] by Chang and Chern. Chang and Chern use an
algebraic multigrid method which uses the interpolation operator of Chang, Wong and Fu
detailed in §2.7.6, we have found that using direct interpolation gives similar results and this
method is used for ease of implementation.

Cost o f the A M G m ethod

It is important to note that at this stage we are not confident that our implementation o f
the AMG setup phase in MATLAB is as efficient as it could be. Exactly how the AMG
setup phase is implemented can have a significant effect on the cost in terms of cpu time. A
naive implementation o f the C/F-splitting algorithm using MATLAB’s intersect and setdiff
functions is very expensive in terms of cputime. We have improved our implementation
several times by using various techniques to try and get around the most expensive costs,
however in appendix B we present an estimate for the (equivalent) cost in flops of our current
implementation based on various assumptions which reveal a potential 0 {N 2) cost associated
with performing the C /F splitting (Algorithm 9), it is our aim in the future to improve upon
this.

The current cost of a setup phase in cputime is around 180 times the cost of a V-cycle for
N = 2562. Results presented in [92] using the RAMG05 code suggest that an assumption
that a setup phase costs around 4 times the cost o f a V-cycle may give a guide as to what
can be achieved with an optimal implementation. Throughout the discussion below we give
a guide as to what sort of reduction in cost can be expected with our recycling idea based
on the relative cost of the setup to the V-cycle and the recycle (essentially the Galerkin step
in the setup phase).

5.2.4 How Linear Solvers Perform

A detailed comparison of the various linear solvers used within the fixed point method is
difficult and as far as I am aware has not been carried out in the literature. It is not my aim
here to do such a comparison or to advocate one particular approach over the others, my
work has focused on the particular case of fixed point with algebraic multigrid and a possible
way to speed up this particular method. Any comparison between the various linear solvers
in terms of cpu time would be unfair given that we our not entirely happy with our current
implementation of the AMG method.

Although I do not attempt a detailed comparison of linear solvers, I do in the following

126

give a few results from my own experience, which demonstrate the performance of the various
methods with respect to the parameter ¡3h-

Shown in Table 5.1 is the average number of conjugate gradient steps needed per fixed
point step to reduce the linear residual by a factor of 0.1 for various values of the parameter
0h and various preconditioners (where a * is shown the number of steps required was excessive
and no results are given). Results are run on a 256 x 256 noisy image and a h = 30 in all
cases. The incomplete cholesky preconditioner with various values of droptol is considered,
so is the geometric multigrid method. The incomplete Cholesky factor with droptol = 0.1
has roughly the same sparsity pattern as the lower triangular part of the matrix A or around
1% of the entries of the full Cholesky factor, Choline, with droptol — 10-3 has between 2
and 4% of the entries of the full Cholesky factor depending on what stage the fixed point
method is at and the value of (3h. I have found that the larger ¡3̂ is the larger the number of
entries in the incomplete Cholesky factor. If droptol = 10-6 the incomplete Cholesky factor
has between 3-15% of the entries of the full Cholesky factor, again larger (3̂ leads to more
entries.

Table 5.1: Average number of conjugate gradient steps needed per fixed point step for various
preconditioners and values of (3h

Ph 10~2 10"4

001or-H i o - 12
Preconditioner

Cholinc(O.l) 7.8 16.3 263.5 *

Cholinc(10-3) 1 1.3 11.5 88.3
Cholinc(10-6) 1 1 1 1.8

GMG (2/2) 2.1 3.7 18.6 75.4

The optimal value of droptol in the incomplete Cholesky factorisation will depend on the
size of the problem and on the value of (3h but in general it will be smaller for smaller /?/,, a
strategy of taking droptol = y/fih, seems to give good results.

In Table 5.2 I give the average number of V-cycles needed per fixed point step, for the
same image, using the AMG method and the GMG method (without preconditioning) with
the same values of f3h as before, in both cases 2 pre and 2 post-correction smoothing steps
were used.

I have found that geometric multigrid performs reasonably well for relatively large values
of 0h (10-2 or greater), as /3h decreases, the performance deteriorates quite badly, this effect
can be somewhat reduced by using GMG as a preconditioner, within the conjugate gradient
method (Table 5.1). AMG tends to be much more robust with respect to small values of (3h
than GMG, with only a small increase in the number of V-cycles required.

127

Table 5.2: Average number of V-cycles needed per fixed point step for GMG and AMG for
various values of (ih

Ph n r 2 10-4 10"8 i o - 12
GMG(2/2) 3.1 9.4 202.9 *

AMG(2/2) 1 1.1 1.7 2.4

Figure 5.1: Convergence History of fixed point with AMG (circles) and peg with
Cholinc(10-6) (squares) witli no Krylov acceleration (left) and Krylov acceleration (right)

As well as being robust with respect to small /?/, we have also found that AMG may work
better in combination with Krylov acceleration than PCG with incomplete Cholesky precon
ditioner. In Figure 5.1 the convergence history of the fixed point method with preconditioned
conjugate gradient using incomplete Cholesky with droptol = 10-6 and AMG is shown for
the case where no Krylov acceleration is used and the case where Krylov acceleration with 5
stored iterates is used. The results are for a 256 x 256 image and fih = 10“ 12. We see that
the convergence histories are almost identical when no Krylov acceleration is used, but when
Krylov acceleration is applied, the fixed point with AMG performs significantly better. This
result is not observed in all cases and is generally more dramatic for smaller 0h■

As stated earlier these results simply reflect my own experience and are not meant to be
an exhaustive study of linear solvers within the fixed point method.

In the rest of this chapter I focus purely on the fixed point with AMG met hod and propose
a way to reduce the cost by performing less setup phases.

128

5.3 Recycling of AM G Setup Data Within the Fixed
Point Method

The improved convergence properties of the algebraic multigrid method over the geometric
multigrid method, comes at the cost of the need to perform an AMG setup phase (§2.7.2),
in this section I outline a method to try and reduce the number of setups required over the
whole fixed point process.

5.3.1 Motivation

If algebraic multigrid is used as the linear solver in the fixed point method, then on each step
an algebraic multigrid setup phase is required, however only a relatively small reduction in
the linear residual is required, which once the setup phase has been performed will require
typically 1 or 2 V-cycIes.

Observe that the matrix A(u£) at each fixed point step is symmetric positive definite
(SPD). The variational principle (see §2.7.3) guarantees that a Galerkin based V-cycle method
in which restriction is chosen to be the transpose of interpolation will converge for SPD
matrices provided the smoother converges (convergence is not necessarily fast). Furthermore
at all fixed point steps the matrix A(ufc) has the same block tridiagonal structure. Based
on these observations and the fact that accurate solution of the linear equation at each fixed
point step is not necessary we propose that it may be possible to recycle the AMG setup
data from an earlier fixed point step for use at later fixed point steps thus reducing the
computational cost of the method.

By recycling of setup data we mean the following: Given a system Aw = z, to solve and
stored interpolation operators , •••, generated from the entries of a matrix A which
is similar to A (in our case A = A(u£) and A = A(uj,), l < k, is the matrix from a previous
fixed point step) instead o f generating a new C/F-splitting and interpolation operators based
on the entries of A, we use the stored interpolation operators and generate the coarse grid
matrices A (2),, A (L) using the Galerkin principle i.e for p = 2,.., L we evaluate.

A(P) = (/ ¡ ; - 1)) ^ (p - i)/ fp - i). (57)

These coarse grid matrices together with the stored interpolation operators are then used in
the V-cycle.

5.3.2 Preliminary Experiments

Below I present some preliminary experiments which motivate the final algorithm presented
later. Test 1 looks at the effect on the overall cost of the fixed point method of recycling
setup data after every q steps, while test 2 examines the effect recycling has on the efficiency

129

of the AMG solver.
Test 1. Table 5.3 shows convergence information for the fixed point method with AMG
applied to the linear system at each step, we use standard algebraic coarsening with direct
interpolation and point Gauss-Seidel as smoother with 2 pre and 2 post correction smoothing
steps within a multigrid V-cycle. The AMG setup i.e generation of a coarse-fine splitting
and interpolation and restriction operators from matrix entries, is carried out after every q
fixed point steps. If q ^ 1 then the most recent setup data is used for the linear multigrid
solver at a fixed point step. Enough V-cycles are run to reduce the inner residual by a factor
0.1. The table shows the number of fixed point steps required to reduce the outer (nonlinear
residual) by a factor of 10-4 and the total cputime, for various values of q. Also shown is
the total number of setups, V-cycles and recycles with corresponding cputime in seconds.
The experiments are run on a 256 x 256 noisy image with SNR=3.6. I take = 35 and

Ph = i o - 4-

Table 5.3: Fixed point with AMG data for various frequencies q of setup regeneration

q FP Steps cpu Setups V-cycles Recycles
Number Total Cpu Number Total cpu Number Total cpu

l 62 13716 62 13561 72 88 * *

2 56 6122 28 5976 64 77 28 10

3 56 4215 19 4064 66 79 37 13

4 57 3410 15 3244 75 91 42 15

5 64 3023 13 2824 93 113 51 18

10 55 1552 6 1301 138 175 49 17

15 61 1513 5 1140 225 289 55 20

25 69 1237 3 655 364 476 66 24

50 71 1439 2 453 673 884 69 27

We make the following observations. Firstly as q increases the setup cost goes down but
in general we require an increasing number of V-cycles because the recycled interpolation
operators become less accurate, however it appears we can achieve some reduction in the
number of setups for free. Indeed in the case of q — 2 and q = 3, we have used fewer V-cycles
than in the q = 1 case (standard AMG). This is due to the fact that the number o f outer
fixed point steps has reduced slightly but the ratio of V-cycles to fixed point steps has also
not increased. Even in the q = 4 case there is only a 4% rise in the number of V-cycles.
For q > 5 there is approximately a linear relationship between the increase in the number
of V-cycles per fixed point step (as compared to the q = 1 case) and q. It is of interest to

130

investigate the optimal frequency qopt. To do this, we model the approximate increase in
V-cycles by 0.15q + 0.7 and assume that on average 1.2 V-cycles are performed on each fixed
point step in the original (no-recycling) method. Denoting the cost of a setup phase by Cs,
the cost o f a V-cycle by Cy and the cost of a recycle by CR we have that the average cost of
a fixed point step when a setup is performed every q steps is

^ + ^1 - CR 4- 1.2CV(0.159 + 0.7). (5.8)

Minimizing this quantity we get that the optimal q is

3y/2V Cv (5.9)

As mentioned earlier we aim to give a guide as to the sort of reduction in the cost of the
fixed point method that can be achieved based on the relative costs of a setup, a recycle and
a V-cycle. If we take Cs = P\Cy and CR = p2Cy where p\ is the ratio of setup cost to
V-cycle cost and P2 is the ratio of recycle cost to V-cycle cost then (5.9) becomes

10 ,----
9opt — ^ = \ / p i - P2- (5.10)

The factor by which the average cost of a fixed point step is decreased by is

£ + (l - ¿) + 1.2CV(0.15qopt + 0.7)
Cs + 1.2CV (5.11)

which is
5 VPi - P2 + P2 + 0-84

pi +1 .2 ' (5-12)
We can then make a prediction of the best choice of q and the speed up in the fixed point
method based on pi and p2. The user can measure p\ and P2 in cpu time by running
one AMG, or base them on complexity analysis. In our case the px as measured in cpu is
approximately 180 and p2 is approximately 0.3, giving qopt « 31 with a reduction in cost of
around 93%. If we were to take pi = 4 we would have qopt « 5 (on the cusp of where the
above assumptions are valid) and expect a reduction in cost of around 45%.

This analysis is for the /? = 10-4 case, I note here that for smaller /3 the optimal value of
q will in general be smaller. Although the AMG method itself is fairly robust with respect
to changes in /?, once you start recycling the performance of the multigrid solver deteriorates
more rapidly for smaller /3.

Test 2. To get a better idea of how effective the recycling of setups is, in Table 5.4, some
information on the efficiency of the linear multigrid solver for the case where q = 10 is given.
Data are given for the first and last fixed point steps at which a particular setup is used.
Shown is the number of multigrid cycles required to reduce the inner (linear) residual by a
factor of 1CT4 (rather than 0.1 as we are interested in the efficiency of the inner solver rather

131

than the speed of the overall fixed point method) and the amount by which the residual is
reduced on the first step (if no recycling is used, one V-cycle is usually enough to reduce the
residual by a tenth, which is what we ordinarily require).

Table 5.4: Efficiency of AMG recycling for q = 10

FP step number of inner multigrid steps convergence factor on first step

1 2 5.3 x 10~3

10 116 1.9 X 10*1

11 15 4.1 x 10"2

20 38 1.2 x 10“ 1

21 16 7.4 x 10"2

30 27 9.1 x 10~2

31 13 6.5 x 10"2

40 12 6.4 x 10"2

From Table 5.4 we observe that on early fixed point steps the multigrid method is signif
icantly worse on the last step at which the recycled data is used compared to the first step
(where the data was generated), but at later fixed point steps the performance on the first
and last fixed point steps at which a particular setup data is used is very similar, the results
shown are for the case q = 10, but similar results have been observed for other values of q.
Figure 5.2 shows the matrix entries (the matrix at the finest level) corresponding to strong
c o n n e c t io n s at various fixed point steps along with the entries which corresponded to strong
connections 10 fixed point steps ago, for ease of presentation the image is only 8 x 8 but we
have observed similar results for larger images. On step 11 there are a large number o f points
which initially corresponded to strong connections but are now weak connections. At steps
21 and 31 there is less change in the connectivity pattern (compared to 10 steps ago) than
there was at step 11 and the majority of points that have changed have gone from being weak
to being strong. By step 41 there is almost no change in the pattern of strong connections

compared to step 31.
The above test results suggest that more setup phases are required at early fixed point

steps and less later on i.e the recycling should be more adaptive.

5.3.3 The New Method

Instead of arbitrarily carrying out a new setup phase every q FP steps we base the decision
on whether new setup data is required on the convergence history at the previous FP step.
If the multigrid method takes more than ss V-cycles to reduce the linear residual by a factor
of 0.1 on a particular FP step we generate new setup data at the next step. This allows for

132

Figure 5.2: Strong connections (circles) and strong connections 10 steps ago (crosses) at steps
11, 21, 31 and 41 of the fixed point method

0 f x ---------X1--------------'
x * * x

*
®X

X "

* y x

10 % * ? • x* 10
X X

Xs4 X
xxx Xx

20
Xx ^

*X
X

20 • T »
X

X Kx * X

\ X x \ «X

30 «
*x * * *

Vx

30 X
X Xx

X

40 \ ‘ X X

\ * *
®»x X X «

40
« * *

\ . »

" X « » .
» . %

50 * c fex * * 50 * < x . .
*x ®xxx xX

X x * *
* J * *

\ \ *X «

60 * « V S e
C * 60

X*
* X*X -

* « . * . * «at X «
10 20 30 40 50 60

nz » 115
0 10 20 30

nz
40 50 60

- 137

0

X *«

V -to

et ®cXX

x xx
. *' *,V «*>

f X X

».
* *

*« \
« XX 4

V Xjn
*x V x

2 0 30 40 SO 60 10 2 0 30 40 50 60
nz - 162

133

more setup phases on early fixed point steps when they are needed and less at later fixed
point steps. This new method should strike a balance between using as few AMG setups
as possible and not causing a dramatic increase in the overall number of V-cycles required.
The algorithm for the new method, which from now on I shall refer to as fixed point with
AMG-R, is given in Algorithm 17. Here the notation A M G 1 is as defined in (2.249).

A lgorithm 17 Fixed Point with AMG-R
Set u° = zh, ms° = ss + 1, k = 0
While ||zh - A(u£)u£||2 > 10"4||zh - A(u£)u£||2

Evaluate A ^ = A(u£).
Set z (1) = zh, v (1) = u£, Tp1' = z (1) - A (1)v (1).
If msk > ss

Perform AMG setup and generate ..., A^L\
Store the Interpolation operators from the AMG setup.

else
Generate A ^ \ ..., A ^ using stored
interpolation operators from most recent setup.

end
Set msfc+1 = 0
While ||r̂ ||2 >0.1||41)||2

V(D _ A M G l ^ \ v ^ y i\ 2 ,2)
msfc+1 «— msfe+1 + 1

end
Set u^+1 = v (1)
k * - k + 1

end
end_______ ___ ___________________ ___________

5.4 Numerical Results

In the following I compare the fixed point method with AMG-R, with the standard fixed
point with AMG method. I give results for 2 256 x 256 images (Lenna and Fingers) each
with SN R » 3.5. In each case 4 different values o f ¡3h are tested, in the case o f Lenna
ah = 30 in the case of the Fingers = 35. AMG-R in each case is run with two different
values of ss, ss = 3 and ss = 10. Shown in Tables 5.5-5.6 are the number of fixed point steps
required for convergence, the total cpu time in seconds and also the total number of setups
and V-cylces required, with corresponding cpu times.

I have presented results for the cases ss = 3 and ss = 10. I give results for the case

134

Table 5.5: Comparison o f Fixed Point with AM G -R against Fixed Point with AM G for Lenna

image

0h Linear Solver AMG AMG-R(3) AMG-R(IO)
10“ 2 FP Setps

Total cpu
Setups: No/cpu

V-cycles: No/cpu
Recycles:No/cpu

31
7499

31/7421
31/42

*

31
570

2/475
40/51
29/11

31
398

1/246
80/106
30/13

10-4 FP Setps
Total cpu

Setups: No/cpu
V-cycles: No/cpu
Recycles:No/cpu

66
14912

66/14737
83/104

*

56
899

3/690
106/130
53/19

89
1005

2/464
339/414

87/31
10"8 FP Setps

Total cpu
Setups: No/cpu

V-cycles: No/cpu
Recycles:No/cpu

172
37744

172/37165
322/393

*

146
2123

7/1533
316/383
139/49

148
1937

5/1104
514/623
143/50

1 0 -12 FP Setps
Total cpu

Setups: No/cpu
V-cycles: No/cpu
Recycles:No/cpu

310
67878

310/66747
652/795

*

291
3602

11/2381
666/809
280/97

272
3340

8/1739
1001/1214

264/92

135

Table 5.6: Comparison o f Fixed Point with A M G -R against Fixed Point with AM G for

Fingers image

0h Linear Solver AMG AMG-R(3) AMG-R(IO)
1(T2 FP Setps

Total cpu
Setups: No/cpu

V-cycles: No/cpu
Recycles:No/cpu

33
7979

33/7895
33/45

*

31
549

2/454
42/52
29/11

31
396

1/239
86/112
30/12

10"4 FP Setps
Total cpu

Setups: No/cpu
V-cycles: No/cpu
Recycles:No/cpu

62
14094

62/13923
72/99

*

56
867

3/662
108/128
53/18

76
846

2/449
246/293

74/26

1CT8 FP Setps
Total cpu

Setups: No/cpu
V-cycles: No/cpu
Recycles:No/cpu

154
34520

154/33967
279/372

*

173
2351

8/1677
372/437
165/56

174
1994

5/1061
589/692
169/57

10-12 FP Setps
Total cpu

Setups: No/cpu
V-cycles: No/cpu
Recycles:No/cpu

301
67427

301/66195
655/875

*

310
3646

11/2342
719/868
299/103

297
3095

7/1485
990/1191
290/100

136

ss = 10 because I have found that generally this gives the best results in terms of cpu time.
Given that I have concerns over the implementation of the AMG setup phase I also include
the case ss = 3 as a method which should limit the increase in the number o f V-cycles to
be as small as possible. A value ss = 3 is chosen because we have observed that this is the
maximum number o f V-cycles required per fixed point step in the standard fixed point with
AMG method. We see that in both cases, there is a significant decrease in the number of
setup phases required. In the case o f ss = 3 there is on average a 95% reduction in the
number of setups compared to the fixed point with AMG method with on average only a
22% increase in the number of V-cycles. In the case of ss = 10 there is on average a 97%
decrease in the number o f setups, with an average 142% increase in the number o f V-cycles.
Note that in the preliminary tests where we performed a setup every q steps regardless, a
96% reduction in the number of setups (q = 25) led to a 406% increase in the number of
V-cycles. In both cases the largest reduction in setups occurs for the smallest value of /?/,,
10“ 12, the increase in the number of V-cycles is in general also smaller for smaller /3*.

Based on these timings, the cost of the fixed point with AMG method in cpu time is
reduced by around 95% by recycling setup data. Taking the average reduction in setups and
increase in V-cycles from the ss — 3 case and assuming that 2 V-cycles are used per fixed
point step with no-recycling the expected reduction in cost for any p1 and p2 (as defined
earlier) would be

0.05pi -1- 0.95p2 4- 2.44

’ (5-13)
If we take p2 = 0.3, then we can expect some speed up in the fixed point method provided
px > 0.7 i.e the cost of a setup is a least 0.7 times the cost of a V-cycle. Taking px = 4 we
would expect to at least halve the overall cost of the fixed point method.

For information I also show in Table 5.7 on which fixed point steps AMG setups are
actually performed, results are shown for the fingers image only. As expected the majority

Table 5.7: Fixed Points steps on which AMG setups are performed for fixed point with
AMG-R(3) and AMG-R(IO) run on the fingers image, with various values of /?/,

AMG-R(3) AMR-R(IO)

0h AMG Setup on steps: AMG Setup on steps:
10~2 1,8 1
10~4 1,5,14 1,8
10~8 1,5,14,23,32,41,57,109 1,8,23,38,76
10-12 1,5,14,30,40,51,63,76,98,130,275 1,8,29,45,61,88,139

of setups occur early on in the fixed point process.

137

Finally I present two more experiments to test the robustness of the method. In the first
test I compare fixed point with AMG against fixed point with AMG-R for a noisier version
of the Lenna image seen earlier, in this case the SNR=0.8 and the value of ah is increased
to 45. In the second test I run comparisons for a larger version of the Fingers Image. The
size of the image is 512 x 512 and a similar amount of noise is present as in the 256 x 256
case, an is again chosen to be 35. In both cases I compare the methods for (3h = 10"4 and
ph = 10-8 only. Results for the noisy Lenna Image are given in Table 5.8 and results for the
larger fingers image are given in Table 5.9.

Table 5.8: Comparison of Fixed Point with AMG-R against Fixed Point with AMG for
Noisier Lenna image

/% Linear Solver AMG AMG-R(3) AMG-R(IO)

1
1o FP Setps

Total cpu
Setups: No/cpu

V-cycles: No/cpu
Recycles:No/cpu

69
15091

69/14894
97/121

*

74
1148

4/910
134/160
70/25

98
1097

2/476
401/470
96/35

10~8 FP Setps
Total cpu

Setups: No/cpu
V-cycles: No/cpu
Recycles:No/cpu

199
42813

199/42098
399/495

*

187
4210

16/3460
439/544
171/64

167
2003

5/1128
567/693
162/59

In the case of the noisier Lenna image we see that again both versions of the AMG-R
method achieve a significant decrease in the number of setup phases, however the performance
of the AMG-R(3) method is worse than in the less noisy case particularly for the 0h = 10~8
case, while the performance of the AMG-R(IO) method is actually slightly better than in
the less noisy case. In the case of the 512 x 512 fingers image, the performance (in terms of
decrease in setups and increases in V-cycles) of the AMG-R methods is almost identical to
the 256 x 256 case. The 10 fold increase in cpu time of the AMG method as compared to
the 256 x 256 case can be potentially improved with a better implementation.

5.5 Conclusion

We have proposed a method for accelerating the fixed point method, when AMG is used as the
inner linear solver, by recycling the AMG setup data. In the final algorithm an AMG setup
phase was performed only when the number of V-cycles required on the previous fixed point

138

Table 5.9: Comparison of Fixed Point with AM G -R against Fixed Point with AMG for
512 x 512 Fingers image

Ph Linear Solver AMG AMG-R(3) AMG-R(IO)
10-4 FP Setps

Total cpu
Setups: No/cpu

V-cycles: No/cpu
Recycles:No/cpu

62
146754

62/146035
72/407

*

60
7926

3/6856
128/698
57/81

60
6043

2/4564
199/1104

58/84
10~8 FP Setps

Total cpu
Setups: No/cpu

V-cycles: No/cpu
Recycles:No/cpu

163
37997

163/377239
301/1732

*

175
20820

8/17516
406/2219
167/233

209
16512

5/11429
672/3757
204/290

step exceeded some user-defined parameter ss. Experiments have shown that a significant
decrease in the total number of setups can be achieved, for only a modest increase in the
number of V-cycles performed, for a wide range of values o f the parameter /?/,. The reduction
in cpu time achieved by the method is subject to caveats regarding our implementation of
the AMG setup phase, nevertheless, even with a very efficient implementation of the setup
phase (pi — 4) at least a halving of the cpu time can still be achieved. The optimal choice of
the parameter ss will again depend on implementation costs but tests suggest it will increase
with increasing noise levels.

139

Chapter 6

Multigrid Methods for Staircase
Reducing Denoising

U seful Section References: §2.6, §3.2, §3.4, §3.5, §3.6, §4.1, §4.2, §5.1, §5.2, §A.6.3, §A.6.4,
§A.6.5
M ain Reference M aterial: [5, 6, 12, 19, 27, 30, 40, 41, 59, 62, 63],[67]-[71], [78, 92, 102,
96, 97]

In Chapter 3 we saw that although Total-Variation (TV) denoising has excellent edge
capturing properties it does suffer from the staircasing effect in which piecewise smooth
regions in the original image tend to be recovered as piecewise constant. Over recent years
there have been many attempts to devise denoising methods which capture edges as well as
Total-Variation denoising but do not suffer from the staircasing effect. Unlike in the TV case
where the model is well established and many possible iterative solvers have been proposed,
the opposite is true in staircase reduction, many different models have been proposed, with
less attention paid to developing efficient iterative solvers for the resulting equations. The aim
in this chapter is firstly to try and develop nonlinear multigrid solvers similar to the one seen
in Chapter 4 for several staircasing reduction models, which have an Euler-Lagrange equation
of a similar form and then also to compare with other possible iterative solvers, specifically
time marching and fixed point type methods which can also be easily generalized to the new
problems. Results presented at the end o f the chapter, show that nonlinear multigrid is an
effective solver in several of the cases tested, although cannot be implemented effectively in
all cases. One model in particular is found to both produce good quality reconstructions and
be solved efficiently using nonlinear multigrid, which is shown to be faster and more robust

140

than several other iterative solvers. Much of the work presented here is also contained in
[84].

The rest o f the chapter is organized as follows. I first give a brief review of the many
methods proposed in the literature to reduce the staircasing effect and then focus on a small
number of these and attempt to implement nonlinear multigrid methods similar to the one
seen in Chapter 4 for the solution of the resulting equations. Discretization of the resulting
equations is discussed in §6.4 and algorithms for the iterative solvers considered given in §6.5,
various implementation issues and some numerical results are presented in §6.6. Finally some
conclusions are drawn in §6.7.

6.1 Reducing Staircasing: An Overview

In this section I review some of the ways to reduce staircasing that have been proposed in
the literature, the specific models that I study here are introduced in the next section.

6.1.1 Higher Order Models

One way to reduce staircasing is to in some way introduce higher order derivatives into the
regularization term. In [19] Chambolle and Lions do this by minimizing the inf-covolution
of the TV norm and a second order functional

min f |Vui| + /i|V(Vu2)| + A/2(ui + u2 - z)2. (6.1)

Here u is decomposed into a smooth function u2 and a function containing the discontinuities
Ui.

Another way to use higher order derivatives is introduced in [30] by Chan et al in which
the non-convex functional

/n av/|V“|a + P + f,(v/ |v t p l 1)3 +1/2(" ~ 2)2 <“ >
is minimized. Here the (|Vu|2 -I-1)-3 / 2 term multiplying the higher order term ensures that
true edges (with very large gradient) are not penalized while staircasing is reduced by the
presence of the higher order term.

In [69] instead of combining the TV norm and second order derivatives within one
regularization functional Lysaker and Tai use two regularization functionals.

E i{u)= f I V u l + A ^ u - z) 2 and E2(v) = f (n23.+u2J/+u2I -|-u21/)1/ 2-(-A2/2 (u -z)2. (6.3)
JQ JQ

Their approach is to use an iterative procedure in which they simultaneously apply an explicit
time marching method to the Euler-Lagrange equation of each functional. After each step the
current iterates uk and vk are combined in a convex combination to give w = 6kuk + (l - 6 k)vk.

141

uk and vk are then overwritten with w in preparation for the next step. 6k is chosen so that
it is 1 only at the largest jumps (edges) allowing smaller jumps due to staircasing to be
suppressed by the higher order PDE. In an earlier paper the same authors and Lundervold
[70] considered E2 on its own and another functional f Q]uxx\ + \uyy\ + A/2(u - z)2 which was
not rotation invariant.

6.1.2 Combining TV and H 1

Another popular approach to reducing staircasing is to try and combine the ability of TV
denoising to preserve edges with the ability of H 1 denoising to preserve smooth regions.
In the next section I outline 4 such approaches for which I will attempt to use nonlinear
multigrid to solve the resulting PDEs, here I mention several other methods which could be
said to fall into this category. The first is the inf-convolution of the TV and H 1 regularization
functionals proposed as an alternative to (6.1) in [19] the resulting minimization problem is
equivalent to:

min f |Vu| + e/2 f |Vu|2 + f A/2(u - z) 2. (6.4)
" J\Vu\>e J J V u| < c JSl

Another approach proposed in [59] by Ito and Kunisch is to minimize the functional

f aip{\Vu\2) + l/2 (u - z)2, (6.5)
J n

where ip is chosen so that it behaves like |Vu| for large values of |Vu| and (in contrast to
other models seen later) for small values of |Vu| and behaves like |Vu|2 for mid range values
of |Vu|.

6.1.3 Other Ways to Reduce Staircasing

As mentioned in §3.6 Marquina and Osher [71] preconditioned the right hand side of the
parabolic equation used in [78] with |Vtt| which had a staircase reducing effect. In a similar
vein is the algebraic scaling approach used in [60] which is equivalent to using

ut = min (^ p (| V u | 2 + /3)1/2, l) V. + M* - «), (6.6)

where amax is a parameter to be chosen.
I also mention the Gauss-Curvature driven diffusion approach (not related to any opti

mization problem) proposed in [67] which has several desirable properties, including staircase
reduction.

ut = V.
V 'X x 'U 'y y W,xy

(1 + U 2 + U 2)2
Vu (6.7)

142

6.2 A class of PDE models from combining T V and H 1
norms

In this section I introduce the four Models for staircase reduction that I use. The emphasis
will be to solve these models efficiently using nonlinear multigrid. All the models involve a
minimisation problem of the form

min / a$(|Vu|) + 1 /2 (u - z)dxdy.
u Jn (6.8)

which has Euler-Lagrange equation

- a V . (i ' (| V u |) ^) + (u - z) = 0 (6.9)

with homogenous Neumann boundary condition f s = 0. If the Euler-Lagrange equation is
degenerate for |Vu| = 0 we must include a perturbing parameter ¡3 as in the TV case.

6 .2 .1 M o d e l 1

Note that the TV case corresponds to $(p) = g and the H l case $(p)
approach proposed in various papers [6, 62], would be to take

= g2, one simple

$(|V*i|) = -|Vu|p l < p < 2.
P (6.10)

In this case
$'(|Vu() = |Vu|p~1 and $'(|Vu|)/|Vu| - * . (6.11)

In order to recover edges reasonably well p should be close to 1, say 1.1.

6.2.2 Model 2

A more sophisticated approach would be to in some way make p adaptive. To this end
Blomgren [5] and Blomgren, Chan, Mulet [6] proposed the following choice which results
in a non-convex minimisation problem

$(|Vu|) = |VU|^VuD, (6.12)

where p(g) is a monotonically decreasing function, lims_ 0 p{g) = 2 and limp-,«, p(g) = 1 i.e
TV-like regularization (p = 1) is used at edges, H Mike regularization (p = 2) is used in flat
regions and in between p takes some value between 1 and 2. We have

*'(|Vu|) =p(|Vu|)|Vu|*lv “ l>-1 +p'(|Vu|)|Vu|p(lVuD log(|Vti|). (6.13)

In [5] Blomgren suggests the following choice for p.

p(g) =
{

ag3 + bg2 + eg + d
1

9 ^ &9max

9 — ®9max
(6 .1 4)

where the third order polynomial is chosen so that p(0) = 2, p '(0) = 0, p(sgmax) = 1 ,
p'(sgmax) = 0) 9rnax is the maximum realizable gradient and 0 < s < 1 . Resolving the
conditions on p gives a — (sg^a~)i i b = ■ c ~ 0 and d — 2. If we assume that our
image is a square n x n image with values in the range [0,255], then gmax = 255\/2(l/h)
where h is the grid spacing (see later). We note here that in a later paper, Chan, Esedoglu,
Park and Yip [27] suggested taking p to be a monotonically decreasing function from 2 to 0
e.g p(ff) = j+ 2g> here we focus on the case that p takes values between 2 and 1 .

6.2.3 Model 3

A slightly simplified alternative to (6.12) would be to make p dependant only on the position
in the image (and thus ’less’ nonlinear), i.e take

4<|V“ i) = (6.15)

where u* is some initial image from which the position of edges and smooth regions in the
true image can be approximated. With this choice the resulting minimization problem is
convex and we have

'(|Vu|) = iVulrfl “ '» - 1 and S'(|Vn|)/|Vu| = (6.16)

This approach was originally proposed as a possible alternative to (6.12) by Blomgren in [5]
with p a function of] VG * z| where G is a Gaussian used to smooth the noisy image z. More
recently this approach was used by Karkkainen and Majava in [63]. In [63] p is based on
the gradient of the TV solution u tv , the choice of p is as follows

p(\VuTv\) = <

2
Pi (|Vu tv|)
1

| V utv | < Si
01 < |Vltxv| < <72
|Vurv| > 02

(6.17)

Where pi(g) is a second order polynomial satisfying p i(0i) = 1.5, Pi(02) = 1 and p'(g2) = 0.
The idea here is that a value of 1.5 is enough to recover smooth regions effectively with larger
values possibly oversmoothing the image. In order that a nonlinear conjugate gradient solver
can be implemented effectively p takes values 2 for |Vu t v | < 0i where gx is small, p then
jumps to a value of 1.5 and then decreases smoothly as IVurvI increases until IVitxvl = g2,
g2 being small enough so that p = 1 at all edges in the image. The values of gx and g2 are
chosen using a histogram of |Vu tv| values.

144

Another similar, but slightly different approach is that used by Chen, Levine and Rao in
[40]. In this case

®(|Vu|) =
l

p(|Vu')

|Vu| -

|V u |P(|V u*|)

p(IV u 'l)

|Vu| < e
|Vu| > e ’ (6.18)

where
p(|Vu*|) = l + 1

1 + fc|Vit*|2
(6.19)

and u* = G*z. The difference here is that the threshold for a switch to pure TV regularization
is based on the gradient of u rather than on the gradient of the initial image u*. The function
p is a monotonically decreasing rational function which is 2 at | Viz* { = 0 and tends to 1 as
|Vit*| tends to infinity. In [40] the existence and uniqueness of solutions of this model and
the behaviour of the gradient descent method are studied.

6.2.4 Model 4

Another approach proposed in [6, 5] tries to combine TV and H 1 in a convex combination.
In this case 4> is of the form

$(|Vu|) = 7r(|Vu|)|Vu| + (1 - 7r(|Vu|))|Vu|2 (6.20)

with lim3_ 0 n(g) = 0 and lim,,-.,» ir(g) = 1. In this case

®'(|Vu|) = 7r'(|Vu|)(|Vit| - |Vit|2) + 7r(|Vu|)(l - 2|Vu|) + 2|Vu|. (6.21)

One possibility, suggested in [5] is to take n(g) = 2 -p (g) where p is the polynomial outlined
in (6.14).

Next we shall consider how to solve these 4 models.

6.3 Solving the PDEs

As mentioned earlier less focus has been given to the efficient solution of the models o f the
previous section than their effectiveness in reducing staircasing. In [6] a fixed point type
method is proposed to solve model 2 and model 4 but no numerical results are given. In [63]
a nonlinear conjugate gradient method is used to solve model 3 with the particular choice of p
outlined above. Our aim is to implement a nonlinear multigrid method similar to the one we
used to solve the TV problem in Chapter 4 for the solution of the Euler-Lagrange equations
of the 4 models outlined in the previous section and compare with explicit time marching
and fixed point type methods. In the case of model 3 we also for comparison implement a
nonlinear conjugate gradient solver (see §A.6.5). The Euler-Lagrange equation in all cases
has the general form

- qV. (d (v/ |V u|2 +/3)V u) + u = z . (6.22)

R em ark 6.3.1 In the case of model 1 and model 3 D is similar to the TV case with the added
advantage in model 3 that when |Vu| is small p(|Vu*|) should be close to 2, preventing jumps
in the diffusion coefficient as large as in the TV case. For models 2 and 4 the Euler-Lagrange
equation is more nonlinear than in the TV case.

In the next 3 sections we first outline our discretization scheme, we then give the algorithms
for each of the iterative methods and then give details of implementation and numerical
results.

6.4 Discretization

The domain $7 (see below for the choice of fi) is partitioned into n x m rectangular cells of
size h x k to produce a discrete cell-centered grid tlh. Denoting the discrete Euler-Lagrange
equation by Nh(uh) = zh (where Uh and Zh are grid functions on flh) we have:

{Nh{uh))i,j = ui,j ~ ah [x̂ (^ > j(p ij)7 ^ ui,j)] = 2»ji (6.23)

where

Dij(gij) — s

i
h
1
h
1
h
1V h

p ~ . (2 ~ p)

9i,j = uhj)2 + ('ySy u,j)2 + 0h.

j model 1

P { 9 i j) 9 + p'(gtj)gfJ(9', 'llog(g,j)J p“ 1 model 2

P, J)] model 3

*■'(&>)(9ij - 9%) + n(9ij)(1 “ 2gn) + 2gi3] g~1 model 4

oth — <*/h, (3h — h20 and 7 = h/k

and

(6.24)

(6.25)

(6.26)

(6.27)<5x u i , j — -b (u i ± l , j u i , j) fiy u i,j i (^¿,¿±1 Ui,j) •

Note that D is actually only dependant on (iff) in the case of model 3. We also have
boundary condition.

^¿,0 — Wj j , U n + x tj —

Once again we note that (6.23) is equivalent to (VJh)i,j = 0 where

J h (Uh)
*<3

- ^) 2-
is the discrete functional and | glj model 1

^ i j id i j) = '
n P(9i,j)
9i,j

QPii

model 2

model 3
+ (1 - i r (g i j)) g ? j model 4

(6.28)

(6.29)

(6.30)

146

Unlike in the TV case where the choice of ft is not important provided and (3h are
chosen to be the same, whatever the value of h, there is not in all cases here a straightforward
relationship between the case ft = (0, n) x (0, m) i.e (h, k) = (1 , 1) and the case ft = (0, 1) x
(0, 1) i.e (h, k) = (1/n , 1/m). We have chosen the former to be consistent with the majority
of papers that we have seen on this subject. In the case of model 1 there is a straightforward
relationship, choosing a/, = a when h = 1 /n is equivalent to choosing = a(np_1) when
h = 1-

6.5 Algorithms

For clarity I give the algorithms for the time marching (Algorithm 18), fixed point (Algorithm
19), nonlinear conjugate gradient (Algorithm 20) and nonlinear multigrid (Algorithm 21)
methods below.

6.5.1 Time Marching

A lgorithm 18 Time Marching______________ ___________________
Choose initial guess
Set k = 0.

While IKzfc - JVh(uE))||2 > t°l
ukh+1 = ukh + A t [zh - JVh(uJ)]
k = k + 1
end__

The time step A t is determined by experiment as the largest value which gives stability
of the algorithm, tol is typically 10“ 4||(2:h -N h {z h))h - The time step can also be determined
automatically via a backtracking line search on the discrete functional i.e steepest descent
(§A.6.4).

6.5.2 Fixed Point Method

The linear operator Lh(uk) on step k + 1 is given by the stencil:

0 ~ a lD ij(g kj) 0
- a D i - u C g ^ j) 1 + a n , j ~ a D l:/(g k)

0 - a 7 A j - i (j * j - i) 0
(6.31)

where Ily — (1 + 7)D%j{9%) + The linear solver used in
most cases is a geometric multigrid method similar to the one used in the TV case (§5.2.2)
We only require a relatively small decrease in the linear residual (typically a halving) as this

147

A lgorithm 19 Fixed Point___
Choose initial guess
Set k = 0.
While ||(zfc — JVfc(«£))Ha > tol
Set ukh+1 to be the result of applying some iterative method to the linear system:
Lh(uk)wh = zh
k = k + 1
end __

seems to give the best results in terms of overall cpu time. For the FPGS smoother we use
(unless otherwise stated) 3 steps of pointwise lexicographical Gauss-Seidel as linear solver.

6.5.3 Nonlinear Conjugate Gradient

A lgorithm 20 Nonlinear Conjugate Gradient
Choose Initial Guess u°h.
Evaluate = Zh - Nh(u°).
Set d°h = ~r°h, k = 0.
While ||(z/,-JVh(vh))||a > tol
Choose p such that + pd ̂ satisfies the strong Wolfe conditions (A.94) and (A.9G) with
respect to (6.29).
ukh+1 = u kh + pdk.
rk+1 = zh - N h(uk+l).
3 P R ^ (r j + V j ^ - r t b

¡3pr = max((3PR,0).
dkh+ 1 = r k+1+ P PRdk.

end ___

The value of A and a used in the Wolfe conditions (A.94) and (A.96) are 10-4 and 0.5
respectively.

6.5.4 Nonlinear Multigrid

The algorithm for the nonlinear multigrid method is similar to the TV case (Algorithm 14),
for clarity I present it here.

In Algorithm 21 Vh <— FPGS{vh,Nh,Zh) denotes the updating of vh via one step of the
FPGS smoother. N2h is the coarse grid analogue of Nh which results from standard coars
ening i.e the nonlinear operator which results from discretizing the Euler-Lagrange equation
using a cell-centered grid with grid spacing (2h, 2k). We use V-cycles and the value of and

148

A lgorithm 21 Nonlinear Multigrid Method
Set Vh to be some initial guess.
While \\(zh-Nh(vh))\\2 >to\
vh * - F A S lh{vh,Nh,Zh,vi,v2)
end
where FASj} is defined recursively as

vh +- F A S lh(vh, Nh, Zh, vi, i/2).

1 . If Qh =coarsest grid, solve NhUh = Zh using Fixed Point Method and stop.
Else For l = 1,.., vx Vh <— FPG S(vh, Nh, zh)

2. v2h = l l hVh
V2h = V2h
Z2h = I lh(zh - NhVh) + N2hV2h

3. V2h F A S l2h(v2h,N2h,Z2h,l'l,l'2)

4. Vh * - Vh + I2h(v2h - V2h)

5. For l = 1,.., v2 Vh <- FPG S(vh, Nh, zh)

i/2 depends on the model (see the results section for details). We use standard cell-centered
interpolation and restriction operators seen earlier (§2.6.3).

6.6 Implementation Issues and Numerical Results

In this section we present some numerical results and give details of some of the issues
regarding our implementation of iterative methods for each of the four models. Tests are run
on the test hump image seen in Figure 6.2, which has both smooth regions, high intensity
edges and low intensity edges and the more realistic Lenna image shown in Figure 6.3. In each
case we have tried to choose parameters which give the optimal reconstruction, focusing on
the need to reduce staircasing. What the optimal reconstruction is, is somewhat subjective,
as a guide we have used mesh and image plots as well as Peak signal to noise ratio PSNR (see
§3.7). The PSNR does not always give a clear guide as to whether one image is less staircased
than another as can be seen in the hypothetical 1-d example in Figure 6.1 , so we also take
into account the value of PSN Rgrad which we define as 1 /2 (PSN R(uX) u°x) + PSN R(uy, u®))
this should measure how well the derivatives of the reconstruction match those of the true
image. All methods were implemented in MATLAB.

In Figure 6.4, we present some plots showing the results of applying each of the four models

149

Figure 6.1 : A simple 1-d example of a staircased reconstruction (squares) which will have a
higher PSNR than the smooth reconstruction (stars), the smooth reconstruction in this case
has exactly the same gradient as the true solution (circles)

Figure 6.2: Mesh plots of true (left) and noisy (right) Hump image

150

Figure 6.3: True (left) and noisy (right) Lenna image

to the test hump image, we also show the results of applying TV and H 1 regularization. We
remark that it is not our intention to carry out a detailed comparison of the various staircase
reducing methods in terms of the quality of the reconstructed images, however we make a
few general comments. To some extent all the models can recover better the smooth regions
of the image than the original TV model (3.15) but in our experience models 2 and 3 seem to
give better overall results than model 1 (as would be expected) and model 4 in which there
is some oversmoothing of the edges (particularly the low intensity edges), this is predicted in
[5], With models 2 and 3 for the test image shown we have been able (with suitable choices
of parameters) to reduce the staircasing present in the TV reconstructed image while still
recovering well the high and low intensity edges in the image.

6.6.1 Model 1

For this model we consider three choices of p, p = 1.1, p - 1.5 and p = 1.9 mainly to highlight
the effect the value of p has on the convergence of the various methods (the latter two choices
will of course oversmooth the edges). A suitable value of a h to remove the noise is chosen
for each value, the larger p is, the smaller a /, needs to be. The effect that the parameter fth
has on convergence is also studied.

In Table 6.1 we show results (number of steps required for convergence and epu time in
seconds) for the Fixed Point method (FP), Nonlinear multigrid method (NLMG) and the
explicit time marching method (TM) run on model 1 for the hump image with 3 different
values of p, 1.1, 1.5 and 1.9 the corresponding values of a h are 52, 24 and 15. Also shown are
results for the smoother (FPGS) run on its own. Shown are results for various values of ph.
In all cases the initial guess is taken to be the noisy image z and the stopping criteria is a
reduction in the residual by a factor of lO-4 . As linear solver in the fixed point method we use

151

Figure 6.4: From top left to bottom right, the images recovered using TV, H 1, model 1
(p = 1 .1), model 2, model 3 and model 4

152

a linear multigrid method with 2 pre and 2 post correction smoothing steps of Gauss-Seidel
relaxation and stop the iterations when the linear residual has been reduced by a factor of 0.5 .
Shown in the table are the choices of Ui and 1/2 which give the optimal nonlinear multigrid
method for each case, also shown is the value o f the time step in the time marching method.

Table 6.1: Comparison of Fixed Point, Time Marching and Nonlinear Multigrid for Model 1

with various choices o f p and ¡3

p f a FP FPGS NLMG TM
steps cpu steps cpu v\/v2 steps cpu At steps cpu

1.1

1! OrH 43 73 748 680 5/5 4 34 5 x 10~4 9502 2540
10-4 73 216 4389 4036 10/10 4 66 * * *

1.5 1(T 2 14 19 78 61 1/1 6 13 1 x 10~3 4054 536
10"4 16 23 94 74 1/1 6 13 1 x 10~3 4053 536
IQ- 10 16 23 119 93 1/1 6 13 5 x 10~4 8150 1131

1.9 10"2 6 8.8 29 23.9 1/1 3 6.9 1 x 10~2 303 56
10- 1° 6 8.8 29 23.9 1/1 3 6.9 1 x 10~2 303 56

We observe that the closer p is to 2 the easier the problem is to solve, less steps are required
for each of the methods and less smoothing steps are required in the nonlinear multigrid
method. We see that for p = 1.9 the convergence of the various methods is seemingly
invariant to the value of 0h- For p = 1.5 decreasing the value of (3h has only a small effect on
the FP method and the FPGS smoother and no effect on the nonlinear multigrid method.
In the case that p = 1.1 the value of flh has a significant effect on convergence. We see that
as is decreased from 10-2 to 10-4 the cost of the fixed point method increases by 3 times.
The cost of the nonlinear multigrid method doubles and more pre and post correction steps
are needed to ensure convergence. We have been unable to implement the time marching
method in a reasonable number of steps. If ¡3h is reduced to 10“ 10 only the fixed point
method converges in a reasonable number of steps (in this case a PCG linear solver with
Cholesky preconditioner gives the best results). This breakdown of the nonlinear multigrid
convergence for very small (3h was also observed in the TV (p = 1) case. Apart from this
last case the nonlinear multigrid method significantly speeds up the smoother FPGS and is
faster than the time marching and fixed point methods.

153

6.6.2 Model 2

For this model p(|Vu|) is chosen to be the polynomial (6.14). There were several problems
that occurred during the implementation of iterative solvers for this model. The first problem
is that the functional is non-convex and the initial guess seems to have an effect on the quality
of the final image. If we take the noisy image z as initial guess we appear to converge to a
minimum which is still highly oscillatory (in this case we use steepest descent as solver). To
achieve the reconstruction of the test image shown in Figure 6.4 we had to take the solution
to the TV problem as initial guess, the following discussion relates to experiments run using
this initial guess.

Another point to note is that unlike in the TV case (and some of the other models
considered here) the Dij terms can take negative values, as a consequence the linear system in
the fixed point method is not necessarily positive definite. We have been unable to implement
our smoother FPGS successfully, this is due to divergence o f the inner gauss-seidel steps,
instead we have used a slight modification of this smoother which we will denote FPGS2.
Instead of updating uk+1 by applying 3 Gauss-Seidel steps to the linear system L(uk)uih = Zh
we apply 3 Gauss-Seidel steps to the linear system (A + L{ukh))wh = + Xukh (essentially
we add a Xu term to both sides of the Euler-Lagrange equation and lag the right hand side
term). Taking A large enough will ensure diagonal dominance of the inner linear system and
hence positive definiteness, which ensures convergence of the Gauss-Seidel steps. In addition
we have also used this approach when implementing the fixed point method. We tried to
implement the fixed point method in its original form but had problems finding a suitable
inner solver (linear multigrid did not converge and PCG was not an option) we settled on
the minimum residual method but found that the outer fixed point steps stagnated, this was
also the case when we used a direct solver to solve the linear system. Under-relaxation of the
fixed point iterates was required to ensure convergence, with the under-relaxation parameter
in some cases being quite small. Using the modified fixed point method, we can use linear
multigrid or PCG as the inner linear solver and the outer steps also converge.

We implemented the time marching method, the modified fixed point method and the
nonlinear multigrid method with FPGS2 smoother on the test hump image using a value
of s = 0.2 , oth = 10 and A = 7, in this case only 2 pre and 2 post correction smoothing
steps were required in the nonlinear multigrid method which converged in 9 steps and was
around 1.75 times as feist as the modified fixed point method and over 5 times as fast as
the time marching method. However when we tried to implement this model for the Lenna
image we could not achieve a reasonable quality reconstruction, the image tended to look
too blurred or be contaminated with undesirable artifacts. In addition we found that the
nonlinear multigrid method is not effective in that the convergence stagnates unless a large
number (10 or more) of smoothing steps is used and the total number of smoothing steps in
this case is more than if the smoother were run on its own. The convergence of the modified

154

Table 6.2: Comparison of Fixed Point, Time Marching, Nonlinear Multigrid and Nonlinear
Conjugate Gradient (NLCG) for Model 3 on the hump image (left) and Lenna image (right)

Hump Lenna
Method Steps cpu(s) Steps cpu(s)

FP 9 12.2 10 12.4
FPGS 32 18.6 22 13.1
NLMG 2 6.3 3 9.8

TM 211 32.5 169 24.8
NLCG 42 21.7 35 19.5

fixed point method also seems somewhat unstable and typically the number of steps required
by the modified fixed point and time marching methods is considerably larger than the case
of the hump image above. We note that some of the problems with the iterative methods
described above also occur in the case of the hump image for larger values of s (although
these do not produce good reconstructions). More work is needed on this model before we
can draw any firm conclusions.

Finally we note that the value of /?/, seems to have no effect on convergence for this model
and so it is taken to be very small (10-10) in the implementation.

6.6.3 Model 3

We have implemented model 3 with the choice of p(|Vu*|) described by (6.17). We have been
able to implement a working nonlinear multigrid method (with the usual FPGS smoother)
as well as the fixed point and time marching methods. Since a nonlinear conjugate gradient
(NLCG) solver is used in [63] for this model we also implement a version here for comparison.

For the parameters gi and g2 in (6.17) we take g\ = g*max! 50 (as in [63]) and g2 = sg^ax
where 0 < s < 1 and is chosen to give the best visual results, g*max is the maximum value of
g*. over all (i, j) where the g*j is the discretization of |Vit*| at grid point (i ,j) , it* in this
case being the TV solution u t v -

In Table 6.2 results of running FP, NLMG, TM and NLCG on model 3 for the hump test
image are shown. In this case we take s = 0.2 and ah = 30, /?/, in this case appears to have
no effect on convergence and is taken to be 10~10. We take z as the initial guess and the
same stopping criteria as above is used. In the nonlinear multigrid method 2 pre and 2 post
correction smoothing steps are used. For the fixed point method linear multigrid is used as
the linear solver again with the same stopping criteria as in model 1 . The time step in the
time marching method is At = 8.0 x 10-3 .

We observe that the nonlinear multigrid method reduces the cost of the smoother alone

155

by approximately 65%. Nonlinear multigrid is around 2.1 times faster than the fixed point
method, around 5.2 times as fast as the time marching method and around 3.4 times as fast
as the nonlinear conjugate gradient method.

In our second test, we compare the performance of fixed point, time marching and non
linear multigrid on the more realistic Lenna image. In this case we take s = 0.9 and = 1 1 .
The implementation is as above, except that the time step A t = 2.2 x 10-2 is used in the
time marching method. The usual initial guess and stopping criteria are used, results are
given in Table 6.2 (right).

In this case the speed up in the smoother achieved by the nonlinear multigrid method is
around 35% (note that the smoother itself is competitive with the fixed point method), the
nonlinear multigrid method is around 1.3 times as fast as the fixed point, around 2.4 times
faster than the time marching method and around twice as fast as the nonlinear conjugate
gradient solver.

O ther C hoices o f p and u*

One of the advantages we have found with using Model 3 over Models 2 and 4 is that iterative
solvers and in particular the nonlinear multigrid method are robust with respect to different
choices of p, since changing p does not alter the nature of the Euler-Lagrange equation, only
the exponent of gltJ at each grid point. Focusing on the hump image we outline below the
performance of the iterative solvers for several different choices of p that we have considered.
We consider the following choices for p

1 . A general quadratic which satisfies p(0) = q, p{sg*max) = 1 and p'(g*max) = 0, where
1 < q < 2. Specifically here we consider q = 2 and q = 1.5 we note that the latter
choice is equivalent to the p from [63] with gi = 0.

2. A general third order polynomial satisfying p(0) = q, p'(0) = 0, p(sg^ax) = 1 and
P'(3max) = 0 aSain taking q = 2 and q = 1.5, the former choice here is like the
polynomial used in model 2.

3. A rational function like that used by Chen et al in [41] but with the threshold for
switch to TV regularization based on |Vu*|. See equation (6.19) above.

Note that in all cases p = 1 whenever g*j > sg^ax with s being a user defined parameter.
Figure 6.5 illustrates the nature of each choice with a plot of p against g , also shown is the
choice from [63] used above. Note that in the case of the rational (right plot) the choice of
k in (6.19) is important, in the experiments below we take k = .01.

In Table 6.3, information is given on the cost of running the three iterative solvers with
each choice of p on the hump image. In each case we take s = 0.2, a h = 30 (this choice is
reasonable in all cases, but the optimal a may vary with p) and 0h = 10"10. In all cases

156

Figure 6.5: Plots of p against g for polynomial (full line) and quadratic (dashed line) from 2
and 1.5 (left), choice of Karkkainen and Majava (centre) and rational with various values of
k (right).

we use 2 pre and 2 post correction smoothing steps in the nonlinear multigrid method, the
fixed point method is implemented as above and the time step for the time marching method
is given in the table. Results for the Karkkainen, Majava (km) type choice are reproduced
for comparison. We observe that all the choices which have p(0) = 2 behave similarly in
terms of convergence, while the costs associated with the choices satisfying p(0) = 1.5 are
larger. Note that for these more difficult problems, the advantage of the nonlinear multigrid
method over the other methods has grown. The time marching method suffers particularly
badly, the multigrid method being up to 100 times faster as compared to around 7 times for
other choices, while the nonlinear conjugate gradient is as much as 16 times slower than the
nonlinear multigrid method, as compared to three and a half times slower for other choices.
We remark that, the choice of Karkkainen and Majava was used originally to avoid difficulties
in implementing their nonlinear conjugate gradient method for such choices. Taking q even
closer to 1 will lead to a further increase in cost and eventually to a sensitivity to small values
of /?, although as we see below, there is likely to be no advantage in terms of image quality.

Remark 6.6.1 The costs of one step of the various methods for the km choice is slightly
less than for other choices, this is because the cpu time associated with evaluating gp,,~1 is
slightly less for PiJ = 1 or 2 than it is for 1 < PiJ < 2 and the km choice has p ,} = 2 at
more places.

Finally we make some comment about the quality of the reconstructed image in this case.
In Figure 6.6 we show a 1-dimensional slice through the reconstructed hump image, for each
choice of p used above as well as the original image and the TV solution. We see that all
results are clearly less staircased than the TV solution which has the lowest PSNR and

157

Table 6.3: Comparison o f iterative solvers for various choices o f p on hump image

FP FPGS NLMG TM NLCG
p steps cpu steps cpu steps cpu At steps cpu steps cpu

quad (2) 7 11.3 35 22.0 2 6.8 8.0 x 10~3 222 46.4 43 27.0
poly (2) 7 13.3 35 21.9 2 6.9 8.0 x 10~3 223 48.5 41 25.9

quad (1.5) 17 28.3 158 99.7 4 13.7 6.0 x 10~4 6254 1380 258 227.3
poly (1.5) 16 27.0 153 96.8 4 13.6 6.0 x 10~4 6135 1322 198 171.9

rat (k = 0.01) 7 11.2 34 21.8 2 7.0 8.0 x 10~3 218 47.0 42 26.3
km 9 12.2 32 18.6 2 6.3 8.0 x 10~3 211 32.5 42 21.7

PSNRgrad values. The best looking images are the two recovered using the third order
polynomial choice of p (third row), the q = 2 choice seems to look the smoothest and indeed
has the highest PSN Rgra<i value of all choices (a 15% increase on TV), the q = 1.5 choice
achieves the highest PSN R value of all choices (a 4% increase on the TV). Although it is
hard to see from the figure their is less loss of intensity at the peak of the hump, than in the
q = 2 case and the background is slightly less oscillatory as well. We note that the second
highest PSN R value was achieved with the polynomial with g = 2 and the second highest
P S N R gTad value with the polynomial with q = 1.5. Given that the q = 1.5 case is slightly
less smooth on the sides of the hump than the q = 2 choice there is likely to be no advantage
in taking q even smaller.

Of the other choices the km choice achieved the lowest PSN R and PSN R grad values
(apart from TV), we see that visually the reconstruction looks similar to the quadratic with
q = 1 .5, but the background is slightly more noisy.

R em ark 6.6.2 The hump image was designed to have simply smooth regions and edges
for the Lenna image which also includes a lot of fine detail, PSN R and PSN R grad values
achieved with all choices, including TV, are very similar, visually a reduction in staircasing
can be seen with all p choices used above (provided suitable parameters are chosen) but it is
difficult to say which is best.

As well as using different p, different choices o f u* can also be used, all the results presented
above are for u* = u tv■> but we have observed similar convergence properties for u* ~ G * z
where G is a Gaussian used to smooth the original noisy image. This choice does o f course
avoid the cost of having to solve the TV problem first. Taking u* = G * z may give slightly
better visual results for the Lenna image, while for the hump u* = uTV appears to be best.
We note that u* can also be iterated, although we have found no real advantage in doing
more than two iterations.

158

Figure 6.6: From left to right and down, 1-d slice of true image and images recovered using
TV, quadratic 2 and 1.5, polynomial 2 and 1.5, rational and km

Table 6.4: Comparison of Fixed Point, time Marching and Nonlinear Multigrid for Model 4

on the hump image (left) and Lenna image (right)

Hump Lenna
Method Steps cpu(s) Steps cpu(s)

FP 16 17.9 22 24.7
FPGS 140 31.3 78 17.5
NLMG 6 8.0 8 10.3

TM 378 34.2 245 21.8

6.6.4 Model 4

We consider (6.20) only for the case

n{x) =

In this case the functional is convex (see [6]
functional). Also

which is positive for nonnegative x ensuring
point method. With this choice we have successfully implemented nonlinear multigrid, fixed
point and time marching methods. With other choices of 7r(x) e.g 2 - p (x) where p is the
third order polynomial, we may not have a convex functional and some of the same issues as
in the case of Model 2 may arise. We are not aware of the choice (6.32) being used before
but in our experience it is easier to implement iterative solvers for this case.

We have found that the choice of e is more important than the choice of q in obtain
ing a reasonable reconstruction. With our choice of ir the Euler-Lagrange equation is not
degenerate for |Vu| = 0 and so we take = 0.

In Table 6.4 (left) we show some results for the FP, NLMG and TM methods run on model
4 for the hump image, with the particular choice of n outlined above. For the parameters e
and q in rr we take values 0.001 and 0.005 respectively, the value o f a h is 9. We have found
in this case that the fastest multigrid method was achieved if we took the parameter it in
the FPGS smoother (see Algorithm 13) to be 1 rather than the usual 3. The initial guess,
stopping criteria and linear solver for the fixed point method are the same as in the case of
model 1 and model 3. In the nonlinear multigrid method we use 2 pre and 2 post correction
smoothing steps and in the time marching method we use a time step A t = 1.3 x 10~2

We observe that the nonlinear multigrid method reduces the cost of the smoother alone
by around 75%. The nonlinear multigrid method is « 2.2 times as fast as the fixed point
method and ~ 4.3 times as fast as the time marching method.

ex
(6.32)ex + q v

for the conditions on n required for a convex

(e + 9) (ex + 2q)
(6.33)(ex + q)2

a positive definite linear system in the fixed

160

Figure 6.7: Close up of Lenna Image recovered using model 3 (left) and model 4 (centre),
with TV result (right) for comparison, notice the reduction in staircasing on the face and
shoulder

We also applied model 4 to the Lenna image, results are shown in Table 6.4 (right). The
value of q and e are as above, but ah = 5. The implementation is as above, except that the
time step in the time marching method is A f = 2.7 x 10~2.

In this case the FPGS smoother on its own performs quite well and is actually slightly
faster than the fixed point method with linear multigrid inner solver, this suggests that we
are oversolving the linear equation in the fixed point method and we can view the FPGS
smoother with just one gauss-seidel sweep as an optimal fixed point method. The nonlinear
multigrid method is 1.7 times faster than FPGS. The time marching method is actually quite
competitive in this case at around twice the cost of the nonlinear multigrid method.

Remark 6.6.3 Although model 4 did not perform that well on the hump image with over
smoothing of some edges, we have observed for more realistic images like the Lenna image,
where the intensity of edges is more uniform, this model does not perform that badly in
comparison with model 3 as can be seen from the plots in Figure 6.7.

6.7 Conclusion
We studied several staircasing-reducing regularization methods and compared three different
iterative solvers for the solution of the resulting equations, a nonlinear multigrid method
similar to the one we used in Chapter 4 for the TV problem, a fixed point method similar
to the method used by Vogel and Oman for solving the TV problem and an explicit time
marching method. In the case of model 3 a nonlinear conjugate gradient solver was also
compared as this approach was used in [63]. By studying the simple model 1 we observed
that the closer the exponent p of the |Vu| term was to 2 the less steps were required by
each of the iterative methods and the less smoothing steps were required for each step of the

161

multigrid method, in addition while the convergence of the multigrid method breaks down
for small when p is close to 1 for larger p the convergence properties are invariant to the
value of (3h- In this case large values of p oversmooth the edges, however the convergence
properties seen for large fixed p also seem to carry over to the case of model 3 where the value
of p varies with position in the image and is based on the gradient of some initial image u*,
taking a value 1 at edges and a value between 1 and 2 in smooth regions and flat regions. We
tested the specific choice of p(| Vu*|) used in [63] and several other more general cases. In all
cases the nonlinear multigrid method was the fastest iterative solver with its advantage over
the other methods growing for the harder choices. We have also observed that this model
produces good quality reconstructions reducing the staircasing effect while still recovering
sharp edges.

While the non-convex model 2, in which p is chosen to be a monotonically decreasing
function o f |Vu|, can also with a suitable initial guess produce good quality reconstructions
for the simple hump image we encountered some problems when attempting to implement
iterative solvers for this problem. We had some success with a nonlinear multigrid method
using a modified version of the FPGS smoother and with a modified fixed point method
when denoising our simple hump image, however there seems to be a lack of robustness of
the iterative solvers with respect to different images and changes in parameters. In addition
we had problems achieving good quality reconstructions for the Lenna image.

In the case of model 4 we found a choice for 7r which resulted in a convex functional and
did not require the use of a perturbing parameter ¡3 in the Euler-Lagrange equation. In this
case fewer inner Gauss-Seidel steps were used in the FPGS smoother as this resulted in the
fastest multigrid method. Running this model on the hump image revealed that it may have
a problem recovering low intensity edges however reconstructions of the Lenna image looked
reasonable. Other choices of 7r which lead to non-convex functionals are likely to prove more
of a challenge.

Overall taking into account both the quality of the reconstructed image and the efficiency
and robustness o f iterative solvers, we favour model 3 with the nonlinear multigrid solver and
a third order polynomial choice for p.

162

Chapter 7

Models and Solvers for Image
Deblurring

Useful Section References: §2.3, §3.2,§3.5, §3.6, §4.2, §5.1, §5.2, §A.6.3
M ain R eference M aterial: [20, 22, 24, 29, 33, 34, 36, 38, 55, 56, 71, 79, 83],[93]-[97]

Recall from Chapter 3 that the full TV deblurring and denoising problem involves the mini
mization of the functional

\/|Vu|2 -(- ¡3 + l/2(!Cu — z)2dxdy. (7 1)

and the corresponding Euler-Lagrange equation is

—aV.
Vu

^\Vu\2 + ß
+ IC'ICu = K,*z.

Discretization of (7.2) leads to an equation of the form

aL(u)u 4- K t K u = K t z.

(7.2)

(7.3)

where L is an N x N sparse banded matrix and K is a Block Toeplitz matrix with Toeplitz
blocks (see §7.2). The cost of inverting and multiplying by K can be reduced to 0{N logN)
by making use of fast fourier transform techniques. In general, the more noise there is the
larger a should be and the more expensive it is to solve the nonlinear equation using the
iterative methods currently available.

In this chapter details are given of our current work on deblurring, previously presented
in [38]. Two current areas of investigation are detailed, both of which in some way try

163

and make use of iterative methods used for the pure denoising problem, within a deblurring
and denoising context. The first is a new deblurring model which builds upon the two-step
method presented in [38]. The model attempts in some way to decouple the denoising element
of the image restoration from the deblurring element. At this stage work on this model is
still ongoing and so no numerical results are presented here. The second area involves the
development of two new iterative solvers for the total-variation deblurring problem. The new
methods are shown to be somewhat complementary to the existing fixed point method, in
that they perform best when a is large as opposed to the fixed point method, which performs
best for small a. Consequently the new methods are most effective for problems involving
low or moderate levels of blur and high noise levels.

The rest of the chapter is organized as follows, in section 7.1 some useful results on
the Discrete Fourier Transform and Toeplitz and Circulant Matrices are reviewed, in §7.2 I
outline the discretiztion of the Euler-Lagrange equation, in §7.3 some of the iterative methods
currently used to solve the discrete Euler-Lagrange equation are surveyed, in §7.4 the two
step deblurring model is introduced, in §7.5 the new iterative methods for the TV problem
are presented, in §7.6 some numerical results relating to the methods of §7.5 are presented
and finally I draw some conclusions and comment on future work in §7.7.

7.1 Toeplitz and Circulant Matrices and the DFT

This section gives a brief introduction to the Discrete Fourier transform, its fast implemen
tation via the fast fourier transform and its connection to Toeplitz and circulant matrices.

7.1.1 The Discrete Fourier Transform

Definition 7.1.1 (The Discrete Fourier Transform)
Given a vector f = (f o , f i ,—,fn - i) G C" the discrete fourier transform (DFT) of f is defined

[D F T {f}]k = £ f je~ i2njk/n k = 0 , 1 , n - 1
3=0

where i = y/-\. In matrix notation this is [D FT{f}]^ = [Fnf]k where Fn has entries
{Fn}kj = e-l27rjfc/n.
The inverse DFT (IDFT) of g = (go, 1) &n is defined by

[ID FT{g}]k = ± " ¿ g j e i2* W n = [F " 1 g]*
j=o

where F " 1 = ^F*.

164

Definition 7.1.2 (Two-dimensional DFT)

The two-dimensional DFT (DFT2) o f an array f € Cnxm with entries fa 0 < i < n - 1
0 < j < rn - 1 is defined by

n—1 ra—1
[DFT2{f}]ki = frae-i2*(kr/n+ls/m) 0 < * < n - 1,0 < I < m - 1

r=0 s=0

The inverse DFT2 (IDFT2) of an array g € Cnxm is defined by

. n— 1 m— 1
{IDFT2{g}]ki = -----y y g rse^ r ik r/ n + u/m)

nm 'r==0 s=0
0 < A : < n - l , 0 < i < m - l

7.1.2 The Fast Fourier Transform

If the 1-dimensional DFT is implemented using standard matrix vector multiplication on a
vector of size n then the computational cost is 0 (n 2). The fast fourier transform (FFT)
devised by Cooley and Tukey reduces this computational cost to 0 (n log n). The ideas
behind the fast fourier transform algorithm are outlined below. Consider a vector f =
(fo, fii /n - i) € C". Assume that n is a power of 2 and define p = n/2 and

w„ = e- i2* /n_

The Discrete Fourier Transform of f can then be written as
2p-l

[D F T {i}]k = y / jWg , k = 0 ,1 , . . . , n - 1.
j = 0

This can be split into two sums

(7.4)

(7.5)

[DFT{{}]k = y f 2jw%k + y f 2j+lu>gj+l)k, k = 0, 1 ,... n - 1
j =0 j=0

(7.6)

Now u>2pk = W3pk so

P -1 P-1

[D * T {fl]k = y f a u ? + y f 2j+xuPpkwkp, fc = 0, 1 , n - 1 .
j = 0 3 = 0

(7.7)

If we define f uen

P - 1

Furthermore

and

(/oi f 2i fn -2) and fodd - (/ i , / 3, . . , / „ _ i) then we see that for 0 < k <

[D F T {f}]k = [D F T {rven}]k + w % [D F T {fdd}]k . (7.8)

u P+k = e - i 2 *(p + k) /p =
(7.9)

u)* + k = e-»2»(P+*)/2p _ fc2p c — W2p (7.10)

165

so
[Z tfT {f}]t+p = [D F T {F ^ })k - u k2p\DFT{f°dd}}k (7.n)

for 0 < k < p - 1. The discrete fourier transform of f can therefore be written in terms of
the discrete fourier transforms of 2 vectors half its size

[D F T {f}]fc = [D FT{f— }]fc + Uk[D FT {f°dd)]k (7.12)

[D F T {î}}k+n/2 = [D F T {F ven}\k - u>k[D FT {f°M}}k (7.13)

k = 0,1 ,...., n/2 — 1 .

Since we are assuming that n is a power of 2 this process can be applied recursively until we
have the Discrete Fourier Transform of f entirely in terms of discrete fourier transforms of
single elements (vectors of size 1).

Computational Cost

Let FFT(n) denote the number of operations required to evaluate D F T {f} where f is of
size n, using the fast fourier transform and assume that n = 2q. Given D F T {F ven}
and D F T { fdd} only 0(n/2) operations (the evaluation u>k , the multiplication of uik by
[D FT {f°dd}\k and 2 additions for each k = 0 ,1,.., n/2) are required to evaluate D F T {f}
also F F T (1) = 0 therefore

FFT(n) = 0(n/2) + 2FFT(n/2)
= 0(n/2) + 2(0(n/4) + 2FFT{n/A))

= 0(n/2) + 2 (0 (n /4) + 2 (0 (n /8) + FFT(n/8)))

= 0{qn/2)

where q = log2 n.
A similar process to that used to evaluate the DFT can be used to evaluate IDFT The

two dimensional DFT can be evaluated by performing a 1-D DFT on each of the columns
of / and then performing 1-D DFT’s on the rows of the resulting array. Making use of the
FFT the cost of DFT2 is 0(nm log2(nm)). The FFT is very useful for efficiently computing
matrix vector products of Circulant and Toeplitz matrices as we will see later.

7.1.3 Toeplitz and Circulant Matrices

Definition 7.1.3 (Convolution Product)

The convolution product of vectors t = (* !_„, ...t0,«i, i) a n d fe Cn is defined by

71- 1
[f U -jf j i = 0,..., n — 1

j =0

166

The two-dimensional convolution product o f an array t with components t̂ j 0 i n _1 0 <
j < m - 1 and an array / e Cnxm is defined by

n-l m —1
[t * f]ij = ^ 2 ^ 2 ti-k,j~ifk,i l - n < i < n - l , l — m < j < m — 1

fc=0 ¿=0 ~

Definition 7.1.4 (n-periodic)
A discrete vector t is called n-periodic if tj = tj when i = j mod n. Given a vector t =
{ t o , in- i) £ C the periodic extension of t of size 2n — 1 is the n-periodic vector t rxi =

(tf~n, f or which t\xt = U ,i = 0,... n - 1

The following theorem relates the convolution product and the discrete Fourier Transform

T heorem 7.1.1 If t and f € Cn and H xt is the periodic extension of t of size 2n — 1 then

t ext * / = I D F T [D F T { t } . * D F T { f }]. (7.14)

Proof
Define uj — e~'2lt/>n so that e~l2'K]k/n = wik. From Definition 7.1.1

n—1
D F T [{ text * f}]fc = £ ([< «* * /] , ,) u A (7.15)

3=0

From Definition 7.1.3 we see that this is

D F T [{text * f}]k = ¿ 2 (E * ,-* /*)
3=0 \i=o)

n-l /n - l
= £ / . E < ? V ‘

i=o \j=0
(7.16)

If we set j = i + l so that j = 0 when 1 = - i and j = n - 1 when 1 = n - 1 - i we have

D F T [{ t e r t * f }] fc = 5 2 / i (^ 2 *?aV ,+ 0 fc ')

¿=o \ i=-« /

.lit= 52̂ E
i= 0 (= - i

Now t exi is n-periodic so tixi = for p = 1 ,.., n - 1 . Also if & is an integer

w (J+n)fc _ e -i2n (l+n)k/n _ e -i27rffc/ne -i2irfc _ e ~i2nlk/n _ JLk

(7.17)

(7.18)

n-l-t n- l —« n-lE ip*wifc = + E
i=—i ¡=0 !=n-t

167

(7.19)
n - l

=] T t? * V fc = [D F T {t}]fc for all * € (0 , 1 , n - l)
i=0

therefore

D F T [{text * £}]fc
n—1

[D f T { t)] t = [D F T { f (| t [D i T { t } I t .

and the theorem is proved.
A similar result in two dimensions shows that

(7.20)

text * f = ID FT 2[D FT2{t}. * D FT2{f}\ , (7.21)

where text is the (n, m)-periodic extension of size (2n - 1) x (2m - 1) of the n x m array t.

D efinition 7.1.5 (Toeplitz M atrix)
An n x n matrix T is said to be toeplitz if it has the form,

to t - 1 * ¿2—n t l —n

t l to t - 1 1-2—n

t l to •

tn —2 . t - 1

tn — 1 t n - 2 t i to

i.e it is constant along its diagonals.

A Toeplitz matrix T can be uniquely determined by its first row and column only. The 2n - 1

vector t = (ti_n ,f2—n, ->*n—i)T is therefore defined as the generator of T, this
is denoted T = toeplitz(t). If f = (f o , f i , . . , f n- i) T e Cn then

n —1

[Ff]» — t i - j f j = [t *f]<. (7.22)
j =o

D éfinition 7.1.6 (C irculant M atrix)
An n x n matrix is said to be circulant if it has the form

Co Cn—1 •

Cl CO C n-1

. Cl Co

c 2 Cl

C2

Cn—2 Cn—1

Cn—1 Cn—2 Cl Cq

168

A circulant matrix is a matrix which is Toeplitz and which has the added property that each
column is the previous column downshifted by 1 with the last entry of the previous column
wrapping around to become the first entry. A circulant matrix can therefore be determined
by its first column only. We define c = (co ,^ ,,c„_x)T as the generator of C and write
C = circulant(c). Of course since C is Toeplitz we can also define C = toep litz(cext)
where c ext = (c i,...,cn_ i,c o ,c 1,...,cn_ i)r is the n-periodic extension of c of size 2n - 1 .
This means that for a vector f = (/ 0, / i , .., f n~ i)T G C"

C f = c ext * f. (7.23)

From theorem 7.1.1 we see that this is

C f = ID F T {D F T {c }. * D F T {f}} , (7.24)

which can be done using fast fourier transforms. This gives us a computationally efficient way
to compute C f which requires storage of the first column of C only. If we rewrite equation
(7.24) in matrix form we have

O f = F ~ 1(Fnc. * Fnf)
= F ~ ldiag(Fnc)Fnf (7.25)

which implies that

C = F - ldiag(D FT{c})Fn = F*diag(D FT{c})Fn, (7.26)

where Fn = ^ F n is a unitary matrix known as the fourier matrix. Thus any circulant
matrix can be diagonalized by the Fourier matrix F and the eigenvectors of all circulant
matrices of size n are the same. Furthermore the eigenvalues of a circulant matrix are the
entries of D F T {c }.

A n m xrn block matrix with n x n blocks is said to be Block Toeplitz with Toeplitz blocks
(BTTB) if each of its blocks is Toeplitz and it has a Toeplitz structure at the block level as
well. A BTTB matrix has generator t = (t i_ m, ..,t0, . .,tm_ !) where t j is the generator of
the block Tj. If f G Cnm and T is an nm x nm BTTB matrix, then

T f = vec(t * array{f)), (7-27)

where vec stacks an n x m array columnwise into a vector and array is its inverse. A Block
Circulant matrix with Circulant blocks (BCCB) is defined analogously and has generator
c = (c0, ..,cm-.i), stacking this array columnwise into a vector gives the first column of the
BCCB matrix. Analogous to the circulant case the matrix vector product of a BCCB matrix
C and a vector f of size nm can be written as

C f = vec(ID FT2 (D FT2(c). * D FT2{array(f))), (7.28)

169

where .* denotes componentwise multiplication. This relationship allows us to calculate ma
trix vector products of C in 0{nm\og{nm)) operations using FFT’s with storage of the gen
erator of C only. Note also that the cost of inverting a BCCB matrix is also 0(nm log(nm)).

If Ca and Cb are two BCCB matrices with generators a and b, then clearly Ca + Cb is a
BCCB matrix with generator a + b, in addition Cd = CaCb is also a BCCB matricx, further
more the first column of Cd i.e vec(d) is Cavec(b) = vec(ID F T 2{D FT 2{a}. * D F T 2{b }}) so
d = ID F T 2{D F T 2{a). * D FT 2{b}}.

To efficiently compute matrix vector products involving BTTB matrices a process known
as circulant extension, in which the BTTB matrix T is embedded in a larger BCCB matrix
is used. Algorithm 22 outlines how to compute T f if T is BTTB with generator t.

A lgorithm 22 BTTB Matrix Vector Products Using Circulant Extension

1. Extend t to a 2n x 2m array * by adding a top row and left column o f zeros.

2. Partition * into four n x m subblocks and then reorder the subblocks to form the
generator for a BCCB matrix C

t i l *12 (N
» c*

1__

*21

*21 *22
C =

*12 *11

3. Take / = array(i) and embed it in a 2n x 2m array/

/ - [' ° 1
0 0

4. Compute
g = ID F T 2(D F T 2(f). * DFT2{c))

5. Take the leading n x m subblock, gn , of the array g. T f is then given by

T f = v e c (g u)

7 . 1 . 4 T . Chans Circulant Approximation

For a general n x n matrix A, T. Chans circulant approximation [22] c(A) is the n x n circulant
matrix C which minimizes ||C7 - A||f , where ||.||f denotes the Frobenius norm defined by
||A||f = la*,jl2- The generator of c(A) is given by the formula

c‘ = ~ S a3 J = 0 , . . ,n - 1 . (7.29)
j ~ k —l{modn)

170

The ci are just the average of the diagonals of A with the diagonals extended to length n by
a wrap around.
Example
For the 4 x 4 matrix shown below the entries which are used to calculate Ci are shown in
bold.

(1 3 6 8 \
2 7 5 4
3 1 5 4

 ̂ 2 6 5 3)

ci is therefore given by | (2 + 1 + 5 + 8) = 4. ■
For the specific case when A is an n x n toeplitz matrix the generator for T.Chans circulant

approximation c{A) can be defined from the generator of A, a = (a i_n, .., oq , ..., an~ i)T by

Cj
(n - j)a j + jflj-n

n
j = 0,..., n — 1 . (7.30)

c{A) can be therefore be computed in O(n) operations. Similarly if A is sparse with just a
few nonzero diagonals c(A) can also be computed in 0 (n) operations.

A BCCB approximation 02(A) of a block matrix A can be computed by first approximating
each block in A by a circulant matrix as above and then applying the same approach at the
block level.

7.2 Discretization

In this section I outline the discretization of the Euler-Lagrange equation for the TV deblur
ring problem (7.2).

The diffusion term in the Euler-Lagrange equation is discretized in exactly the same way
as in the denoising problem, so using the usual matrix notation we have a/lJ5£'(u/l) “ I23u/,
(as defined in §3.5.1) which I will denote L(u/l)ufl, all that remains is to discretize the term
K*(K,u - z). To avoid confusion with the kernel function, the grid spacing in the ¡/-direction
will be denoted by p rather than the usual k. By midpoint quadrature we have

m n
(K,u)ij = Y l Y l k(X i~ Xr' yj ~ y °)urshp= [fc* u]ij, (7.31)

s=l r=l

where k = /ip(ki_m,..,k o ,..,k m_i) and kj = (k((l — n)h, jp), ..,k(0, j p) , k ((n - l)h, jp))T.
From (7.28) the discrete version o f ICu is K u where AT is a BTTB matrix with generator
k. The discrete version of the adjoint operator 1C* is just K T. Hence we have the discrete
Euler-Lagrange equation

q L (u)u + K t K u = K t z . (7.32)

171

In practical applications it is usually the case that we are given a n x m ’PSF array’ H
which results from imaging a point source, assumed to be located at the central pixel (n/2 +
1, m /2 + 1) [55] (rather than having an explicit formula for k). The array H contains all the
nonzero entries of k and is the central n x m block of k, where k is the 2n x 2m array which
results from adding a top row and left column of zeros to k. Given H we can replace steps
1 and 2 in algorithm 22 with

1. Partition H into four n/2 x m /2 subblocks

H = # u H i2

#21 #22

note that fco.o is the top left entry of # 2,2 •

2. Form the 2n x 2m BCCB generator array

c =
2 2 0 #21

0 0 0

12 0 # 11

(7.33)

(7.34)

7.3 Solving The Euler-Lagrange Equation

Several of the iterative methods used to solve the denoising problem (§3.6), can also be
applied in the deblurring case.

The simplest approach is just to use the artificial time-marching method i.e find the
steady state of

",=aV-(vi^^)~A:'(,::i‘+;) <7-35>
using an explicit time-marching method. The update of u is done as follows

ur+1 = ur - At (X(ur)ur 4- K T(K u r - z)) . (7.36)

As in the denoising case the time step At has to be small due to stability constraints, resulting
in very slow convergence, which can be somewhat improved by multiplying the right hand
side o f (7.35) by |Vu|. Each step of this method simply requires evaluation of the entries of
L(ur) plus matrix vector multiplications by L, K and K T.

The ’lagged diffusivity’ fixed point method of Vogel and Oman can also be used in the
deblurring case. In this method the following linear equation is solved to update u on each
step.

a i (u r)ur+1 + K TK u r+1 = K t z . (7.37)

The linear system is symmetric positive definite and is usually solved using the preconditioned
conjugate gradient method (PCG), the main cost of each step of the PCG method is a matrix

172

vector multiply by aL(ur) + K TK and the inversion of a preconditioner M . One option
would be to take M ~ c2{aL(ur)) + c2{K)Tc2{K) where c2(A) denotes T.Chans BCCB
approximation o f A. For an n x m image the construction cost o f the preconditioner will
be 0 (n m) and its inversion using FFT’s will have cost 0{nm\ognm). A similar approach
with similar costs, using cosine transforms and optimal cosine transform preconditioners is
presented in [24]. These cosine transform preconditioners give better approximations to
the elliptic operator. Another option proposed by Vogel and Oman [95] is the product
preconditioner M = 7 ~1{K TK + 7-01/ 2(7-f + a L)(K TK + 7 f) 1/ 2, where AT is a circulant
approximation to K . The aim here is to ‘split up’ the preconditioning of the elliptic and
the convolution terms. (K TK + 7 /)1/2 is inverted using FFT’s and (7 1 + aL) is inverted
using PCG with multigrid preconditioner. In [24] ‘diagonal scaling’ of the cosine transform
and product preconditioners is employed to try and better capture the large variations in
the D ,j terms within the elliptic operator. Two level preconditioners are employed in [79]
by Riley. Finally I mention an attempt in [20] to use a linear multigrid solver to solve the
linear equation. This work only looked at the 1-dimensional (signal processing) case and an
efficient implementation of the proposed method could not be obtained.

The primal-dual Newton method also applies in the deblurring case, the system of equa
tions to be solved becomes

—aV.tu + K*{Ku — z) = 0

wy/\Vu\2 -t- 0 - Vu = 0 . (7.38)
|w(x,y)| < 1 V(x,y)

The inner solve in this case will involve solving something of the form

(H (uh) + K TK)d u h = g (uh). (7.39)

where H(\ih.) is a discretization of

—qV.
1

V|V«|2 + /3
I

1 wVuT -I- Vutir1̂ ^ r

2 ViVu|2 + /3)) +
In [33] PCG with cosine transform preconditioners is suggested for the inner solve.

(7.40)

7.4 An Alternative Two-Step Deblurring Model

In [38] we proposed the following two-step method for denoising and deblurring an image.

1 . First approximate JCu0 (where uq is the true image) by solving the denoising problem

min J ai\/|Vrc|2 + /? + l/2(w - z)2dxdy (7-41)

which has Euler-Lagrange equation

<7'42)

173

2. Approximate uq by solving the deblurring problem

•sat

which has Euler-Lagrange equation

(7.43)

(7.44)

The idea is to try and decouple the denoising from the deblurring. The cost of the pure
denoising problem (7.41) is relatively cheap and the value of a 2 needed in (7.43) should be
less than the equivalent value o f a needed in (7.1) since some o f the noise has been removed
by the first step, reducing the cost o f solving the resulting Euler-Lagrange equation. We
proposed using nonlinear multigrid to solve the discretization of (7.42), for the solution of
the discretization of (7.44) fixed point or primal-dual Newton can be used.

To try and make this approach more formal we have recently considered the following
minimization problem, which is not equivalent to the above approach but is in a similar vein.

min J(u,tu), where J(u,w) = (a 2(Vu(/3 + o ilV ic^ + l/2 (io - z)2 + y/2(/Cu - w)2dxdv
u,™ J n

Here u will be an approximation to the true image u0 and w an approximation to K.ua
The minimization problem is solved via an iterative procedure in which u is fixed and the
nonlinear PDE

solved to update u. The process is repeated until \ J{uold,w old) - J(unew,w new)\ is less than
some specified tolerance. Once again nonlinear multigrid (or other solvers used for the TV
denoising problem) can be used in the first step, and iterative solvers for the TV deblurring

residual on each inner step is required, to produce the most efficient method.
At this stage we are still in the process of investigating the effect of the various parameters

in the model, on both image quality and overall efficiency o f the method. Some preliminary
results suggest that reconstructed images of similar quality to the result of TV deblurring
with fixed point solver can be achieved in comparable cpu time, particularly for problems
with moderate blurring and moderate or high levels of noise. We have found that taking 7

relatively large (i.e requiring that fCu is a good match to w) generally improves both image

(7.45)

(7.46)

solved to update w, the new value of w held fixed and

(7.47)

problem used in the second step. Obviously the solve on each step can be initialized using the
approximation from the previous step and typically only a small reduction in the nonlinear

174

quality and overall computational time. Clearly from the above equations, the larger 7 is the
easier it is to solve both (7.46) and (7.47), the disadvantage is that more outer steps of the
iteration are required.

We do not present here any numerical results or draw any firm conclusions regarding
this model as further testing is required fisrt, however we believe that there is potentially
an advantage in decoupling the pure denoising from the deblurring and exploiting efficient
solvers for the resulting equations.

7.5 New Solvers for TV Deblurring

In the following we propose two alternative iterative solvers for the discrete Euler-Lagrange
equation of the TV deblurring problem. In the first method we propose updating u on each
step by solving the linear equation

erur+1 + aL(ur)ur+1 = K Tz - K t K vlt + aur.

In the second method we update u by solving the nonlinear equation

<mr+1 4- Qi(ur+1)ur+1 = K t z - K TK u r 4- crur.

The idea here is to avoid the inversion L 4- K TK via PCG needed on each step of the fixed
point method (7.37) by moving the K r K\i term over to the right hand side, one matrix
vector multiply by K TK is then needed on each outer step instead. We also add a <m term
to both sides to stabilize the method. If the K TK term is dominant this approach may not
be sensible (this is confirmed by experiment in the next section) but when a is relatively
large there may be some benefit.

In the first method we can use any of the linear solvers used in the fixed point method for
the pure denoising problem e.g linear multigrid or preconditioned conjugate gradient method
to solve the linear equation on each step. In the second method we propose to use a nonlinear
multigrid method, like the one used in Chapter 4 to solve the nonlinear equation on each
step. From now on we refer to (7.48) as method 1 and (7.49) as method 2.

R em ark 7.5.1 A method similar to (7-48) was proposed independently by Chang et al [36],
in their method an additional diagonal term Du is added to both sides, where D is a diagonal
matrix with the same diagonal as K TK, this can be computed efficiently using the BTTB
structure of K , algebraic multigrid is used as the linear solver. In our experience the addition
o f this diagonal term has very little effect on the convergence properties o f the method.

Numerical results relating to the implementation of these two new methods are given in the
next section.

(7.48)

(7.49)

175

7.6 Num erical Results
Tests in this section are run on two blurred images (size 256 x 256), the first image is the
triangle with a relatively low level of blur, the second image is the satellite image with a
higher level of blur. In the first case we generate an n x n PSF array using the formula

Hitj (7.50)

where (i 'J 1) is the central pixel (n/2 + 1, n /2 + 1) and c is a normalization constant. In the
second case the PSF array is given as part of the data set. Various levels of noise will be
tested. Figure 7.6 shows the true images the PSF arrays and the resulting blurred images
(no noise is added so that the blurring effect can be seen clearly).

Figure 7.1: True image (left), blurred image (center) and PSF array (right) for triangle image
(top) and satellite image (bottom)

7 .6 .1 C h o ic e o f a

Before coming to the main tests I first mention the significance of the choice of the parameter
a in (7.48) and (7.49). In every test I have performed so far both method 1 and method
2 converge provided a > 0.5, taking any smaller value of a leads to a divergent method.
In addition the minimum number of steps for convergence appears to be achieved with the
smallest possible value of cr i.e cr = 0.5, in all tests below I have used <r = 0.5, except in one

176

case in which a slightly larger value of cr led to better convergence properties of the inner
nonlinear solver and thus an overall faster method. The smaller a is, the more significant
the choice of a appears to be.

7.6.2 Cost Analysis

In the next subsection I will compare the new methods with the fixed point method, below
I analyse some of the costs involved in each method. For ease of implementation I use PCG
with circulant preconditioner as the linear solver in the fixed point method although other
preconditioning methods may potentially give better convergence results, in method 1 I am
using linear multigrid (c.f §5.2.2) for the inner linear solver and in method 2, nonlinear
multigrid (c.f. Chapter 4) for the inner nonlinear solver.

In Table 7.1 the cost in cpu time and flops of one PCG step with circulant preconditioner,
one linear multigrid (LMG) step with 2 pre and 2 post correction steps of gauss-seidel relax
ation and one nonlinear multigrid (NLMG) step with 5 pre and 5 post-correction smoothing
steps is shown in the 256 x 256 case and also in the 512 x 512 case. Typically in the results
seen next, only 1 linear and nonlinear multigrid step is needed per outer step of methods 1

and 2 respectively, while 20-40 PCG steps are needed per fixed point step.
Each inner PCG step within the fixed point method will require a matrix multiplication

by the matrix K TK, multiplying by each of K and K T will involve performing a 2D fast
fourier transform (FFT2) and an inverse fast fourier transform (IFFT2) on an array of size
2n x 2m (DFT2{c } in Algorithm 22 can be computed at the beginning of the algorithm
(using FFT2) and stored for later use), in addition a FFT2 and an IFFT2 on arrays of size
n x m will be required to invert the circulant preconditioner, two FFT2 and one IFFT2 will
also be required in constructing the generator of the circulant preconditioner at the beginning
of the PCG steps. In method 1 and method 2 just one multiplication by K TK is required on
each outer step. The cost of performing an FFT2/IFFT2 pair on vectors of size 2N and N is
also shown in the table. Note that as the size of the problem increases we expect that these
costs will grow faster than the cost of performing a multigrid step (0(JV log N) versus O(JV)),
this can be seen in the flop costs in the table. What is also interesting is that although the
cost in eputime of performing the FFT2/IFFT2 pair (using MATLAB’s fft function) is low,
the cost in eputime of performing FFT’s on 2n x 2m array’s has increased ten fold as the
size of the problem increases from 2562 to 5122. We don’t know why this is, at this stage,
but it does suggest a possible increasing advantage (in terms of computational time) as the
size of the problem increases, of methods which limit the number FFT’s required.

R em ark 7.6.1 The costs associated with implementing other preconditioning techniques,
such as optimal cosine preconditioners and the product preconditioner will be similar to the
circulant case in terms of the number o f FFT ’s required (an additional inner solve on 7 1 + a L

1 7 7

Table 7.1: Costs associated with implementing fixed point method and methods 1 and 2

N 2562 5122

LMG(2/2)
NLMG(5/5)

PCG
FFT2/IFFT2 (2N)
FFT2/IFFT2 (N)

Flops
1.28 x 107

8.71 x 107

1.28 x 108

5.11 x 107

1.29 x 107

cpu
1.2

7.2
0.55
0.22

0.052

Flops
5.11 x 107

3.49 x 108

5.54 x 108

2.22 x 108

5.69 x 107

cpu
5.5
29.4
5.2
2.3

0.22

is required in the product preconditioner) . Other preconditioners may o f course reduce the
overall number of PCG steps required per step.

7.6.3 Comparison of new Methods with the Fixed Point Method

In the following we compare our two alternative solvers (7.48) and (7.49) with the fixed point
method. We test method 1, method 2 and the fixed point method on the blurred triangle
image seen previously with 3 different levels o f noise (Figure 7.2), very low noise (snrw 1000),
medium noise (snr« 10) and relatively high noise (snrw 2) and on the blurred satellite image
with similar levels of noise (Figure 7.3). Suitable choices of an in the case o f the triangle
are 0.1, 5 and 20 for the low, medium and high noise levels respectively. In the case o f the
satellite image where the blurring is heavier, the best results, in terms of image quality are
achieved for much smaller values of a/,. In this case a/, is taken to be 10-3 , 0.2 and 0.5 for
the low, medium and high noise levels respectively. We run each of the methods until the
outer nonlinear residual has been reduced by a factor of 10~4. In the fixed point method we
use PCG with circulant preconditioner as the linear solver and stop the iterations when the
linear residual has been reduced by a factor of 0.1. In method 1 we use a linear multigrid
method with 2 pre and 2 post correction smoothing steps and stop the iterations when the
linear residual has been reduced by a factor of 0.1. In method 2 we use nonlinear multigrid
with 5 pre and 5 post-correction smoothing steps of the FPGS smoother as the nonlinear
solver on each step, we stop the inner iterations when the residual of the inner nonlinear
equation has been reduced by a factor o f 0.1. In all cases we take — 10~2 and take the
observed image z as initial guess, in both method 1 and method 2 we take a = 0.5, except in
the case of the triangle image with heaviest noise, in which a is taken as 0.7 in order that the
nonlinear multigrid method converges without the need to increase the number of smoothing
steps.

The number of outer steps required for convergence, the cpu time in seconds and the
average number of inner steps (ais) needed on each outer step for each method run on the

178

triangle image is shown in Table 7.2, the results for the satellite image are shown in table
7.3.

Figure 7.2: Blurred triangle with 3 levels of noise, low noise (left) medium noise (centre) and
high noise (right), with images recovered using total variation deblurring (second row)

We see that as the noise level and hence the value of a needed increases so does the
number of steps required for convergence of the fixed point method, on the other hand as a
increases the number of steps required for convergence of method 1 and method 2 reduces
suggesting that these approaches and the fixed point approach may be complementary to
each other.

The fixed point method performs best for the case of the heavily blurred satellite image,
with low noise level, with just four outer steps required for convergence, the largest number
o f outer steps is required for the triangle image with high noise level, although we note that
as the level o f noise is increased, the increase in fixed point steps is more dramatic in the case
o f the satellite image. Generally the number of inner PCG steps stays fairly stable although
in the case of the satellite image the number of PCG steps required in the low noise case is
more than half that required at the other two noise levels.

We see that the new methods perform best for the triangle image with the medium and
high levels of noise. In both cases the number of outer steps decreases as the level of noise
increases and the decrease is larger in the case of the triangle. In the case of the triangle the
decrease in the number of steps in method 2 is at least twice the decrease in the number of

179

Figure 7.3: Blurred satellite with 3 levels of noise, low noise (left) medium noise (centre) and
high noise (right), with images recovered using total variation deblurring (second row)

Table 7.2: Comparison of Method 1, Method 2 and Fixed Point method for blurred triangle
with 3 levels of noise.

Noise level Low Medium High

ah 0.1 5 20

steps cpu ais steps cpu ais steps cpu ais
Fixed Point 91 1343 26.0 347 5940 31.1 386 6575 31.0
Method 1 1614 3763 1.0 521 1244 1.1 452 1227 1.2

Method 2 1635 13616 1.0 264 2843 1.3 87 2601 4.0

180

Table 7.3: Comparison of Method 1 , Method 2 and Fixed Point method for blurred satellite
with 3 levels of noise.

Noise level Low Medium High
C*h io - 3 0.2 0.5

steps cpu ais steps cpu ais steps cpu ais
Fixed Point 4 48 17.8 117 2828 46.1 222 4758 40.7

Method 1 4419 10249 1.0 2725 6569 1.0 2149 5170 1.1

Method 2 4418 37409 1.0 2671 22567 1.0 2009 16561 1.0

steps for method 1 , however in the satellite case the decrease is roughly the same for both
methods. In all cases method 1 outperforms method 2 in terms of cpu time. In general just
one inner multigrid step is required on each step of method 1 and method 2, however for
the triangle image with heavy noise 4 nonlinear multigrid steps are required on each step of
method 2, this increase in inner steps negates any advantage over method 1 gained from the
faster decrease in the number of outer steps.

7.7 Conclusion

I have presented two alternative iterative methods for total variation image deblurring. In
contrast to the fixed point method inversion of a linear system L + K TK where K is BTTB
is not required on each step, instead either a linear or a nonlinear inner solve using methods
employed for the pure denoising problem is required. The new methods perform best when
a is large, as opposed to the fixed point method which performs best for small a, this makes
them most suitable for deblurring problems in which high levels of noise are combined with
moderate levels of blur. Testing suggests that the linear variant (method 1) is overall more
efficient than the nonlinear variant (method 2). Further testing of the methods against fixed
point with other preconditioners and primal-dual Newton are planned in the future.

Also presented was an alternative model for image deblurring, which attempted to decou
ple the denoising from the deblurring. Work on analysing and implementing this new model
is still ongoing.

181

Chapter 8

Future Work

In this chapter I briefly discuss some possible future research directions.
Starting with the TV denoising problem, there are several future areas of research that

arise from our work on nonlinear multigrid (chapter 4) and AMG-R within the fixed point
method (chapter 5). The main area of improvement for the nonlinear multigrid method is
its performance with respect to small values of 0 . To try and combat this we would like
to investigate the possibility of using more accurate interpolation operators for transferring
the error, possibly like those considered for use in cascadic multigrid by Ohesen in [74]
Another possibility would be to use some sort of matrix dependant interpolation operator
for accurately coarsening the linearized (fixed point type) operator and use this within the
multilevel nonlinear method of Yavneh and Dardyk (see [103] for details and §2.6.10 for a brief
introduction). As regards the fixed point with AMG-R method, there is as mentioned earlier
a need to improve our implementation in MATLAB of the AMG method, or possibly, to
implement in another programming language (note that predictions for cost reduction made
in chapter 5 were based on relative cost and so take into account the possible improvement
of the implementation). Potentially the recycling idea could also be used in the context of
preconditioned conjugate gradient methods, to avoid the construction of a preconditioner on
each fixed point step. Another possible avenue o f research is the combination of AMG-R
with some other linear solver e.g PCG, which can be used on early fixed point steps (where
most AMG setups are needed) with AMG-R taking over for later steps.

Moving on to the work on staircase reduction, there are still some outstanding issues re
garding the effective implementation of nonlinear multigrid for some of the models considered
in chapter 6, particularly model 2. We may also consider the use of multigrid methods for
solving some of the higher order models, it is likely that different smoothers will be needed
for these problems.

For the work on image deblurring, as mentioned in chapter 7 work on the two-step model
and the new solvers for the TV problem is still ongoing. In addition we would ultimately like

182

to develop a nonlinear multigrid solver for the full TV deblurring problem. Using a version of
method 1 (7.48) with gauss-seidel solver as smoother and using a smoother based on circulant
extension have not so far produced good results, further exploration of these ideas is planned.
We may also possibly consider, for the deblurring problem, the use o f multilvel optimization
techniques used by Chan and Chen for the denoising problem (see [25] for details and §A.7.2
for an introduction).

Finally I mention that we may consider multigrid solvers for other imaging problems, for
example the active contour segmentation method of Chan and Vese [31] involves solution of
the Euler-Lagrange equation

- v - Ai(u - c i)2 - A2(u - c2f = 0 (8 . 1)

where (j> is the contour used to segment the image u and 5t is a regularization of the dirac
measure. We can see that this equation has some similarities with the nonlinear equation
associated with total variation denoising.

183

Appendix A

Optimization

Main Reference Material: [8, 10, 15, 25, 42, 49, 50, 51, 54, 64, 65, 73, 81, 82, 87, 97, 105]

In this appendix I give a brief review of some useful results and techniques in optimization.
In section A .l I introduce unconstrained and constrained minimization and the definitions of
local and global minima. Section A. 2 considers the conditions for the existence of minima
while section A.3 reviews the necessary and sufficient conditions for minima o f unconstrained
optimization problems, section A.4 gives some specific results relating to convex optimization
problems. The KKT conditions for constrained optimization problems are touched upon in
section A.5 for optimization problems on R” only. Section A .6 looks at optimization methods
for unconstrained problems for both quadratic and more general nonlinear problems on Rn
focusing mainly on the steepest descent and conjugate gradient methods, finally in section
A .7 several multigrid optimization methods are reviewed.

A .l Optimization Problems

A .1.1 Unconstrained Optimization

In the majority of this chapter we will consider unconstrained optimization problems o f the
form

S (A .1)

where H is a Hilbert space (or more generally an open subset of a normed space) and /(u)
is assumed to be a proper functional i.e there exits some u € H such that f (u) < +oo. A
solution to such a problem can either be a local minimum or a global minimum, the definition
of which are given below:

184

Definition A . 1.1 (Local M inim um)
u e H is a local minimum o f f if f (u) < f (ù + h) for all h € H such that j |A|| < 6.

D efinition A .1 .2 (G lobal M inim um)
u € H is a global minimum of f i f f (u) < f (u) for all u e H.

If we replace < by < in both definitions, require that h in the first definition is nonzero
and replace u e H by u e H \{u} in the second definition we get the definitions of a strict
local/global minimum. Local and global maxima are defined in a similar way.

In general finding the global minima if many local minima exist is difficult.

A.1.2 Constrained Optimization

In addition certain constraints may be placed on the solution u. Constraints usually take the
form of equality or inequality constraints. If V and W are Hilbert spaces and V is ordered,
with order relation then a typical constrained optimization problem will be

subject to

m in /(u)u eH (A.2)

p(u) ^ 0 (A.3)

oII (A.4)

where p : H —» V and q : H -* W. Specifically we will only consider here the case that
H = Rn, V = Rm and W = Mi, so that for x 6 Rn the constraints take the form p,(x) < 0
for i = 1 , m and ^ (x) = 0 for i = 1, I where p, and ql map Rn into R.

The definition of local and global minimisers have to be modified so that the h in definition
A.1.1 is such that u + h e C where C is the constraint set and u £ C in definition A.1.2.

A .2 Existence of Minima

The solution to a minimization problem does not always exist, for example in the simple case
x £ R, no minimum exists for either f (x) = x 3 or f (x) = e~x. In the following I give the
conditions required for the existence of a minimum of a functional f (u) : H —► R. First some
definitions will be needed.

D efinition A .2.1 (B ounded Sequence)
A sequence {un} in a Hilbert space H is bounded if there exists a number M such that
l{v„ ¡Ih < M for all n.

185

Definition A .2.2 (Weak Lower Semicontinuity)
A functional f : H —> R, where H is a Hilbert space is weakly lower semicontinuous if

/ (« *) < I™ in f/(u „) (A.5)

whenever un converges weakly to ut .

Definition A .2.3 (Coercive Functional)
A functional f : H - * R is coercive if f (u n) —> oo whenever ||un||// —* oo.

The following Lemma will also be useful.

Lemma A.2.1 Let {uk} be a bounded sequence in a Hilbert space H, then there exists a
weakly convergent subsequence {uki} i.e (v,Uki)H converges to (v,u)H for allv € H.

Finally we come to the main theorem

Theorem A.2.1 If f : H —► R = [- 00, 00] is weakly lower semicontinuous and coercive,
then there exists u € H which is a global minimizer of f over H.

Proof
Let 6 = infueH / (u) , then there exists a sequence {u fc} such that f (u k) converges to 0. Given
that / is coercive the sequence {uk} is bounded which by Lemma A.2.1 implies that there is
a subsequence {u fcI} which converges weakly to some it € H. From the weak lowersemicon-
tinuity of / we have

/ («) < Um inf f (u ki) = 0 (A .6)

Hence ii is a global minimum of / . m

More generally we can say that a / has a minimizer over any closed convex set S, since
closed convex sets in a Hilbert space are weakly closed i.e if {un} is a bounded sequence in
5 there will exist a weakly convergent subsequence who’s weak limit is contained in S.

A .3 Optimality Conditions For Unconstrained Minimiza

tion

For functions on the real numbers we know that f { x) has a stationary point when ^ = 0
and that a stationary point x is a minimum if g jf(x) > 0. In this section the optimality
conditions for an unconstrained minimization problem o f the form minû h f {u) where H is
a Hilbert space, will be given. These conditions will be based on two concepts of derivatives
which will be introduced below.

186

A .3.1 The Frechet Derivative

The Frechet Derivative is a generalization of the ordinary derivative of a function on the real
numbers to operators on normed spaces.

D efinition A .3.1 (T he Frechet Derivative)
An operator f : N -* M , where N and M are normed spaces is said to be Frechet differentiable
at u £ N if there exists a 5 > 0 such that for all h € N satisfying ||/i|| < S

f(u + h) - /(G) = Lh + e(h). (A.7)

where L : N —► M is a continuous linear operator and lima-.o = 0. L is known as the
Frechet derivative of f at u and is often denoted f ' (u)

R em ark A .3.1 Clearly if f is a linear operator then f (u + h) = f (u) + f (h) and f'(u) = f
i.e f is it ’s own Frechet derivative. It can also be shown that the usual rules of elementary
calculus e.g the product rule generalize to the Frechet derivative.

The second Frechet derivative is defined in a similar way, /" (u) will be a linear operator
mapping N into the space of bounded linear operators from N into M , such that for all
k e N satisfying ||fc|| < S, for some 5

f (u + fc) - f (u) = } " {u)k + e(k). (A .8)

with lim*;_o = 0. Note that if -0 is a linear operator which maps N into B(N, M) then
if k € N tf’k is a linear operator from N into M which means that if h G N , (rpk)h e M and
thus ip is a bilinear mapping from N x TV into M. The bilinear map f " (u) is symmetric and
can therefore be uniquely determined if f ' (u) (h, h) is known for all h.

An equivalent definition of the second Frechet defivative of f : N —> M at u is the bilinear
mapping from N x N into M such that for all h e N with \\h\\ < 5 for some <5

f (u + h) = f {u) + f (u) h + 1/2 f "(u) (h, h) + e{h). (A.9)

where lim/l_ 0 = 0. This result follows from a generalized version of Taylors formula in
Banach spaces.

If / : H —► R where i f is a Hilbert space, then if / is Frechet differentiable at u by the
Reisz representation theorem (see §2.2) there will be a unique vector grad{u) e H such that

f (u) h = (h,grad(u)). (A .10)

It can also be shown that if / is twice Frechet differentiable at u then there will be a unique
self-adjoint operator Hess(u) € B(H, H) such that

f " (u) (h,k) = (h,Hess{u)k). (A .ll)

187

It can be shown that if / : Rn —► R then

b -a d t x J J ^ V /ix J ^ ^ ix) . (A.12)

simply by substituting h = hze t into (A .7), where e* is the vector with 1 in position i and
zeros everywhere else, and letting hi -* 0 and similarly if the Hessian exists then it has entries

" " * < * > « = a s 4 (s >- (A.13)

A.3.2 The Gateaux Derivative

Definition A .3.2 (T he Gateaux Variation)
If f : N —* M where N and M are normed spaces, Sf(u,h) is called the Gateaux variation
(or first variation) o f f (u) at u € A" if for t e R

Sf(u,h) = — f (u + th) |t=0- (A .14)

exists for all h € N.

Note that
/ (« + (/>)!,.„ = Bm t i ? .+ (t + TW - / (“ + »'»)

t=0

(A .15)

dt “ ' T—.0 t

_ lim /(Q + rh) - f (u)
r—*0 r

This is known as the directional derivative of / in the direction o f h. FYom this definition
and the definition of the Frechet Derivative it is clear that if the Frechet Derivative f ' {u)
exists then 5f(u, h) — f'{u)h, existence of the Gateaux variation does not imply existence of
the Frechet derivative.

The Gateaux variation if it exists is unique, it is also homogenous of the first degree i.e for
all h e H and A € R, 6f(u,\h) = A8f(u, h), this fact can be used to show that the following
theorem holds

T heorem A .3.1 Sf(u,h) is the Gateaux variation o f f (u) at u if and only if there exists a
§ > 0 such that for all h € H such that ||/i|| < 5

f {u + h) — f {u) = 6f (u,h) + e(h), (A .16)

where 5f(u, h) is homogenous of the first degree and limt_o e{th)/t = 0.

For more details see [82],

D efinition A .3.3 (G ateaux Derivative)

I f the Gateaux variation 6f(u, h) = Da f(u)h where Da f (u) is a continuous linear map, then
D af (u) is called the Gateaux derivative of f at u.

188

In the following it is shown that if the Gateaux derivative exists and is continuous in the
operator norm, then the Frechet Derivative also exists and is equivalent to the Gateaux
derivative. The result is proved for the functional case only, for a more general proof for
operators see [42]. The following Lemma which is a generalization of the mean value theorem
will be required.

Lemma A .3 .1 (Mean Value Theorem)
If f :N -> R where N is a normed space and f is Gateaux differentiable on N , then fo r each
u and v in IV, there exzsts some £ on the line segment between u and v such that

f (v) - f (u) = DGf (£) (v - u) (A.17)

Proof
Define g(t) = f (u + t(v — u)), then

p'(t) = lim + (* + T)(v ~ u)) ~ f (u + t {v - n))
r—»0 j-

_ Jim f (u + Hv - u) + t {v - n)) - f (u 4- t(v - u))
T —»0

— &f{u + t{v — ti), v — u) — D o f (u H- t(v — u))(v — u), (A .18)

By the ordinary mean value theorem there exists 6 e (0 ,1) such that g\ff) = g(i) _ g(0) i.e
there exits £ between u and v such that

D c f i O i v - u) = f { v) - f {u) (A. 19)

T heorem A .3 .2 Let f : N —► R, then if f is Gateaux differentiable on N and the Gateaux
derivative is continuous in the operator norm at u, the Frechet derivative o f f exists at u and
coincides with the Gateaux derivative.

Proof
From Lemma A.3.1 there exists £ between u and u + h such that

D G f { 0 h = f { u + h) ~ f (u) (A.20)
for any h e N. We therefore have

f (u + h)~ f (u) = D Gf{u)h + [DGf(£)h - DGf(u)h] (A.21)

Defining e{h) = DGf{£)h - D Gf{u)h we have

'cWI
11*11

\ D G f (O h - D G f (u) h }

11*11
<\\DGm - D Gf(u)\\. (A.22)

Given that DGf is continuous in the operator norm at u the right hand side of (A.22) goes
to zero as £ —► u i.e |e(*)|/||*|| —* 0 as /i —♦ 0 and hence D Gf(u) is the Frechet derivative of
/ at u. ■

189

D efinition A .3 .4 (Second Variation)
52f(ü, h) is called the second Gateaux variation (or second variation) of f (u) at ü if f or t e R

¿2
52f(ü, h) = j p / (S + iA) |t=o (A.23)

exists for all h (E H .

We have 2

ô2f {ü ,h) = - ^ f (ü + th) t=o

= lim i—>o

him _(0 /(g+(t+p+r)/i)T/(u+(t+T)h) _ Jim f(ü+(t+p)h)-J(u+th) 1

t=0

= limr—*0
¿ /(u + rh , h) - Sf(u, h)

(A.24)
If / is twice Frechet differentiable, then <52/(it, A) = f"(ü)(h, h). More generally f "(u) (h, v) =

^ f { ü + th + sv)\t=o,s=o-

A .3.3 Necessary Conditions

Below the first and second order necessary conditions for local minima will be given.

Theorem A .3.3 (First Order Necessary C ondition)
If f : H —+ R is Gateaux differentiable at u and u is a local minimum of f then D o f (u) = 0

P ro o f
Since u is a local minimum of / we have for any v e H and t e R+ sufficiently small

f (ü + tv) - f (u) >
t (A.25)

Letting t - » 0 we have Da f(u)v > 0 for all v e H. Taking v = ui where w is arbitrary
we have DGf(u)w > 0, taking v - - w and using the fact that D Gf{u) is linear we have
D Gf(u)w < 0, which implies that D Gf(u) = 0 .

R em ark A .3.2 Clearly if f is Frechet differentiable at u then f '(u) = 0 is a necessary
condition for a local minimum, the slightly weaker result given above is more useful in practice
It can also be shown [82] using theorem A .3.1 that 8(u,h) = 0 is a necessary condition for a
local minimum even ifS(u,h) = 0 is not linear.

The following theorem provides a second order necessary condition.

T heorem A .3 .4 (Second O rder N ecessary C ondition)
I f f is twice Frechet differentiable at u and u is a local minimum of f then f" (u) is positive
semidefinite.

190

P ro o f

Substituting h = tv into (A.9) with t € R and taking account of the first order condition
from above we have

^■U * ' ll— ~ = V 2/ " (“) K v) + \\v\\lp{u, tv), (A.26)

where p(u,h) —> 0 as h -* 0. If we assume that f " (u) (v ,v) < 0 for some v then we have
that the left hand side is negative for sufficiently small t and hence u is not a local minimum,
which is a contradiction.

A .3.4 Sufficient Condition

A sufficient condition for a strict local minimum is given below.

Theorem A.3.5 (Sufficient Condition)

If f : H —> R is twice Frechet differentiable at u, f ' (u) = 0 and f"(u)(v, v) > 9 for all v e H
with 9 > 0 independent o f v, then u is a strict local minimum of f .

Proof

From A.9 and the conditions stated above we have for any v € H and f ç R sufficiently
small

f (u + tv) - f (u) = l/2t2f" (ü)(v ,v) + t2\\v\\2p(u,tv)

> l/28t2 + t2\\v\\2p(û, tv) (A.27)

therefore
f (u + t v) - f (u) 9

+ p(ü,tv) (A.28)t2IMI2 - 2||uf
For t small enough the right hand side is positive and hence u is a strict local minimum of

/•
Note that the requirement that f " {u) {v ,v) > 9 for all v e H with 9 > 0 independent of v

(strong positivity) is equivalent to the hessian Hess(u) being a positive definite operator if
H is finite dimensional (see §2.2.3).

A .4 Convex Optimization

A special type o f optimization problem is the problem o f minimizing a convex functional on
a convex set, as we shall see below, the first order necessary condition for a minimum is also
sufficient for these problems.

191

Definition A.4.1 (Convex Set)
A set S is convex if for all u ,v €. S

Xu + (1 — X)v € 5 (A.29)

for all A € [0,1].

Definition A .4.2 (Convex Functional)
A functional / : 5 —» ®, where S is a convex set, is convex if for all u,v 6 S

f(Xu + (1 - X)v) < Xf(u) + (1 - X)f(v) (A.30)

for all X G [0,1].

A function is strictly convex if the strict inequality holds for u ^ v and A € (0, 1). The
following lemma will be useful in the proofs that follow.

Lemma A.4.1
Suppose that f : S —> R where S is a nonempty open convex set and that f is Frechet
differentiable on S, then f is convex if and only if

f {v) > f (u) + f '(u) (v - ufiu, v e S. (A.31)

Proof
Assume that / is convex, then

/ (Xv + (1 - A) «) < Xf(v) + (1 - A) / (u)

for all u,v e S and A G [0,1], or equivalently

f (u + X (v - u)) - f (u)
A ^ / («) - / («) ■

(A.32)

(A.33)

From the fact that / is Frechet differentiable we have that the term in the numerator of the
left hand side is A /'(u)(t> -u) + A||u —u||/o(u, A (v -it)) where p -> 0 as X (v - u) —> 0, therefore
letting A —* 0 in (A.33) gives the desired result.

Conversely assume that (A.31) is satisfied and let u = Xw + (1 — A)z where ui,z 6 S and
A € [0,1], then given that

f(w) > f (u) + f '(u) {w - u) (A.34)

f (z) > f (u) + f ' (u) { z - u) (A.35)

we have that

Xf{w) + (1 - A)/(z) > f {u) + f '(u)(X(w - u) + (1 - A)(z - w))

192

= /(u) + f'{u) [Aw - Xu + (1 - A)z - (1 - A)u]

= /(u) + / '(u) [Aw + (1 - A)z - u] = f (u)

— /(Aw + (1 - A)z). (A.36)

Theorem A.4.1 If S is a nonempty open convex set and f : S —* R is twice Frechet differ
entiable then f is convex if and only if f " {u) is positive semidefinite for all u e S.

Proof
Suppose that / is convex. Let u 6 5 and v be an arbitrary vector in H D S. For t £ R+
sufficiently small u + tv £ S. Given that / is twice Frechet differentiable we have

f (u + tv) = f (u) + t f (u) v + 1/2 t2f" {u){v,v) + t2\\v\\2p(u,tv). (A.37)

and p{u,tv) —► 0 as tv —> 0. Flom lemma A.4.1 we have that

f (u + tv) > f (u) + t f {u)v . (A.38)

Combining (A.37) and (A.38) we get

1/2f "{u) (v, v) + \\v\\2p(u, tv) > 0. (A.39)

Letting t —> 0 gives the desired result.
Conversely assume that /" (u) is positive definite for all u £ S. Let w, z 6 5 be arbitrary,

Taylors theorem with the Lagrange form of the remainder gives

f (z) = f (w) + f { w) (z - w) + l /2 /" (C)(* - w , z - w). (A.40)

The term £ is a convex combination of w and z, which means that the truncation term is
> 0 and hence (A.31) is satisfied implying that / is convex. ■

Theorem A.4.2 If S is a nonempty open convex set, f : S —> R is convex and u is a local
minimum of f , then u is a global minimum of f .

Proof
Assume that u is not a global minimum of / i.e there exists v € S such that

f (v) < f(u) . (A.41)

Now let z = Au + (1 - X)v where A € (0,1) we have

f [z) - /(A u + (1 - \)v) < A /(u) + (1 - A) f (v)

< A /(u) + (1 — A)/(u) = f (u) ’ 1 }

which implies that /(u) is not a local minimum, which is a contradiction. ■

193

Theorem A .4.3 If S is a nonempty open convex set, f : S —» R is strictly convex and ü is
a global minimum o f f then ü is unique.

P ro o f
Assume that there exists a v € S such that f (u) = f (v) . Let z = Xü + (1 - A)u where
A e (0,1), then

f (z) = /(Au + (1 - X)v) < Xf(ü) + (1 - A)/(fi) = f(ü). (A.43)

Implying that / (ü) is not a minimum, which is a contradiction. H

T heorem A .4.4 (N ecessary and Sufficient C ondition)
If S is a nonempty open convex set and f : S —> K is convex and Frechet differentiable on S,
then f'ifi) — 0 if and only if ü is a global minimum of f .

Proof
The necessity was proved earlier for any / , to prove the sufficiency assume that f '(u) = 0
then by lemma A.4.1

f (v) > f (ü) V v e S (A.44)

giving the desired result. M

A.4.1 Duality Theory

Duality theory is often used in convex optimization problems to rewrite an optimization
problem in terms o f its dual representation. Below a very brief introduction to this subject
is given, for more details see [8, 15, 97]

D efinition A .4 .3 (C onvex Conjugate)
If f : H - * E where H is a Hilbert space, the convex conjugate /* : H* —> R defined by

f*(v) = sup [(u, u) - f{u)} (A.45)

where H* is the dual space to H.

The convex conjugate, as it’s name suggests is always convex, even if / isn’t. Similarly /** is
defined as (/*)* and acts on the space H**. If H is reflexive, then H** = H and furthermore
f** = / if and only if / is convex. Therefore if / is a convex functional defined on a convex
set S, the following dual representation for f can be given

where S* is defined by

S'

and S** = S.

f (u) = sup(u,v) - f * (v) ,
ues*

\ v € H*\ sup [(v, u)
l u65

(A.46)

(A.47)

194

A.5 Optimality Conditions for Constrained Problems

Below I state, without proof the first order Karush-Kuhn-Tucker (KKT) conditions for con-
strained minimization problems on R" of the form

min f i x) xeR" / (A.48)

subject to

p(x) < 0 (A.49)

II o (A.50)

where p : Rn —> Rm and q : R " -*• R!, and state when they are necessary and sufficient,
for more details see, for example [51, 49] and for a more general treatment of constrained
problems in Hilbert space see [15].

First denote by by Vp(x) the m x n matrix whose ith row is V p,(x)T and by V<?(x)
the i x n matrix whose ith row is Vql(x)T. The feasible or constraint set is the set {x €
Rn|p(x) < 0, <j(x) = 0}, if x is a feasible point, then the index 1 < i < m is said to be active if
Pi(x) = 0, otherwise it is said to be inactive. The active set of the feasible point x is denoted
A{x) and the inactive set I(x).

Theorem A.5.1 (K K T First Order Necessary Conditions)
Let x be a feasible point and let the vectors Vql(x) for i = 1 , .., I and V y t (x) for i £ A (x) be
linearly independent, then if x is a local minimum, there exists vectors A and a, such that

V / (x) + V p (x) r A + Vq(x)Tcr = 0
A > 0 . (A .5 1)

AtPi(x) = 0, i = l ,..,m

The vectors A and a are often known as lagrange multipliers the components A* of A can only
be strictly positive if the index i is in the active set. Note that the first equation in (A.51)
can be written equivalently as

m l
v / (x) + ^2 A iV p i(x) + ^2 o - iV g i(x). (A .5 2)

•=i ¿=i

Before giving the conditions for the KKT conditions to be sufficient, first I need to define
quasiconvexity and pseudoconveity.

Definition A.5.1 (Quasiconvex Function)
A function f (x) which maps S into R, where S is a convex set, is quasiconvex if for all
x ,y 6 S and all A € [0,1]

/ (A x + (1 - A)y) < m a x (/ (x) , / (y)) . (A .5 3)

195

Definition A .5.2 (Pseudoconvex Function)
A differentiable function f (x) which maps S c Rn into R, where S is a convex set, is
pseudoconvex i f for all x, y € S

V /(x)T(y - x) > 0 =* / (y) > /(x). (A.54)

A convex function is quasiconvex and if it is differentiable pseudoconvex, a pseudoconvex
function is also quasiconvex.

Theorem A.5.2 (K K T Sufficient Conditions)
Let x be a feasible point and let x and vectors A and a satisfy (A.51), then if f (x) is pseu
doconvex, pi{x), i = 1 ,..,m are quasiconvex and q,(x), i = 1 ,..,l are linear, x is a global
minimum.

A .6 Optimization Methods: Steepest Descent and Con
jugate Gradient

In this section the steepest descent and conjugate gradient optimization methods for solv
ing quadratic and then more general optimization problems on Mn are introduced. These
problems may arise as the equivalent formulation of a system of linear equations or from the
discretization of functionals such as those seen in Chapter 3. First some notation is needed-
a vector d e Rn is a descent direction at x if f (x + ed) < / (x) for e > 0 sufficiently small.
Assuming V /(x) exists the direction d is a descent direction if the directional derivative
limA-.o /(xf"l1~/(-X- = V /(x)Td is negative and the direction - V / (x) which minimizes the
directional derivative is known as the direction o f steepest descent.

We start by considering the quadratic minimization problem

min f (x) , f (x) = 1/2xt A x - x Tb. (A .55)

where x , b e R " and A is an n x n matrix. Given that xr Ax = (xTA x)T = x TATx, the
matrix A can be assumed without loss of generality to be symmetric. The gradient of / at
any x is Ax — b and the Hessian is A. In addition we assume that A is a positive definite
matrix. The quadratic has unique solution x* satisfying V /(x *) = Ax* - b = 0 The
approach used here follows that used by Shewchuck in [87], see also [37, 53, 81] for more on
conjugate gradient methods.

A .6.1 Steepest Descent

In the method of steepest descent (A.55) is minimized by selecting some initial guess x 0 and
then on step k + 1 o f the method updating the current approximation x k by taking a step

196

in the direction of steepest descent - V f (x k) = b - A x k = rk where rk denotes the current
residual.

x * + i = x * + akrk. (A .5 6)

The value of o* is chosen to minimize / along the search direction r* i.e a k solves

d
dak / (x fc + a krk) = V / (x fc + a krk)Trk = 0.

Replacing V /(xfc + a krk) by A (xk + a krfc) - b and rearranging we get

a k = r fcffc
r l A r k

(A.57)

(A.58)

The method of steepest descent for the quadratic problem is given in Algorithm 23.

A lgorithm 23 Steepest Descent for Quadratic Problems
Choose Xo, set r0 = b - Ax0, k = 0.
While ||r*||3 > tol

<Ik = A r k
T

a k = ^
Xfc+1 = Xfc + Qfcrfc
ffc+i — ffe ~ a kc±k
k <— k + 1

en d__ _

Note that the fact that rfc+J = b — A(Xfc + a kvk) —Tk - a kArk is used, to avoid an extra
matrix vector product, to prevent the accumulation of roundoff error rfc+1 should periodically
be evaluated as b - Axfc+i- The method is stopped when the residual is small enough.

Convergence

The following upper bound on the energy norm of the error after k steps of the steepest
descent method for quadratic problems is given in, for example, [87]

llefclU ^ () m) ^e° ^ ’ (A.59)

where k is the condition number of the matrix A which is equal to the largest eigenvalue of
A divided by the smallest eigenvalue of A. Clearly the larger the condition number is (the
more ill-conditioned A is) the slower the convergence of the steepest descent method.

To see the connection between the decrease in the energy norm of the error and the
decrease in the Euclidean norm of the residual the following lemma can be used

Lem m a A .6.1 If A is spd with eigenvalues > X2 > ,.., > An, then for all z e R n

Ay2||z|U<||Az||2 <Ai/2||z|U

197

P ro o f
Let Vi be the unit eigenvector associated with Aj, then we can write A = V k V T where V is
a matrix whose columns are the v* and A is a diagonal matrix of the eigenvalues. We have

n

Az = A i(vfz)vi. (A.60)
¿=1

Hence

A„||z|ft = AnzTAz = An zTA i(vfz)vi = An £ ? =i M vf z)2

< E ”= l ^ (v i z)2 = H ZH22

< >*1 E "= i M vf z)2 = Aizr Az = Aillait
(A.61)

Taking square roots gives the desired result.
With this result we have that ||rfc||2 = ||Ae*||2 < A}/ 2||efc||A and ||r0||2 = ||Ae0||2 >

An^UeolU, which gives us

Ikfclla < y - llefclU
llrolla - V HeolU

(A.62)

A .6.2 The Method of Conjugate Directions

The problem with the steepest descent method is that it often ends up taking steps in the
same direction as earlier steps. A method which takes exactly one step in each search direction
is the method of conjugate directions.

In the method of conjugate directions n search directions d0, are selected such
that they are A-orthogonal i.e for k j d^Ad,, = 0, then on step k of the method a step is
taken in the direction of d*. The length of the step a k is again chosen to minimize f (x k+l)

(A(xk + a k d fc) - b) r d* = 0

- r j ’dfc + a kd lA d k = 0 . (A.63)

T heorem A .6.1 If the vectors d 0, d n_i are A-orthogonal, then they are linearly indepen

dent.

P ro o f
Assume that they are not linearly independent, then there exists A0, .., An_ i, such that

n — 1

5 3 A,di = 0 (A.64)
i=0

and at least one of the A, is non zero. For any i multiplying (A.64) by d f A we get from the
A-orthogonality of the d that A* = 0, which is a contradiction. ■

198

T heorem A .6 .2 The method of conjugate directions will find the exact minimum x* in at
most n steps.

P ro o f
Let us express the initial error as a linear combination of the search directions.

n-1
e0 = ^ 2 Sjdj. (A.65)

j=0

Multiplying by d j A we get

n— 1
d { A e 0 - ^ 2 SjdjAdj = ôkdjAdk. (A.G6)

i =o

This gives us
Sk = d j A e 0

d%Adk '

using the A-orthogonality we can rewrite this as

Sk
d k A (e 0 - Y .j=o ajd j) _ d l A e k d l r k _

d j A d k djAdfe djAd*. ak'

(A.C7)

(A.68)

Given that ejt+i = e* - a kdk we have that the step along d fc eliminates the d fe component
o f the error and hence the error is zero after at most n steps. a

T heorem A .6 .3 The error e k on step k of the method of conjugate directions minimizes
the energy norm in the space eo + Dk where D k = s p a n {d o ,d ^ —i}.

P r o o f
It is clear that e fc is chosen from e0 + Dk. Any vector v € e0 + D k can be written as
v = +]C"=fc Sjdj where the 6j are as above. We have

M a = è è W j t f + el8jdjAdj + J2 è SiBjdjAdj + Stfjdf Adj.
1=0 j —0 1=0 j= fc l=k j = 0 l - k j=le

(A .69)
By the A-orthogonality of the search directions this is

IMIa = BjdjAdj + J 2 S jd j Adj. (A .70)
3=0 j = k

Equation (A.70) is minimized by taking 6j = 0 for 0 < h < k - 1 i.e taking v = e k. ■

199

G ram -Schm idt Conjugation

So far we have assumed that we have a set of A-ort.hogonal search directions. To find such a
set we must use the conjugate Gram-Scmidt process outlined below

1. Take n linearly independent vectors Vo,.., v n_ !.

2. Set d 0 = v 0

3. For k = 1 , n - 1 set
fc-i

dfc = Vk + ^ P k j d j . (A.71)
j =o

where the j < k are constructed so that all components of not A-orthogonal to
the previous search directions are removed.

The term ßkp can be found by multiplying d p by djA .

k - 1
d%Adp = v jA d p + ^ 2 ß k jd jA d p = v^Adp + ß kpd j A d p,

i=o

which implies that
ß. = . ï * d dP.

d ?A d p

(A .72)

(A.73)

We see that to construct the search direction dfc we need to find k - 1 (3kp values each of
which requires a matrix vector multiplication, making the overall cost o f performing the
method of conjugate directions 0 (n3) in addition all previous search directions must be
stored. The beauty of the conjugate gradient method introduced next is that most of the
cost can be eliminated and there is no need to store old search directions. Before introducing
the conjugate gradient method I introduce a few useful results. Firstly from the expansion

o f e j = Y*i=j we have

71— 1

dfcAej = d £ r j = ^ Sid^Adi = 0 if k < j.
l=j

(A.74)

Also from (A.71)

dfc C; = Vjfry + ^ 2ßk ld fT j ,
1=0

(A.75)

which if k < j gives us

< *■
4

J II p (A.76)

and if j = k gives us
, T T dfcTfc = Vfc Tfc. (A.77)

200

A .6.3 The Conjugate Gradient Method

The conjugate gradient method is just the method of conjugate directions with the Vfc set to
be the residuals rk, from (A.74) we see that the residual is orthogonal to all previous search
directions, which guarantees a new linearly independent search direction. With this choice
o f V*; (A.76) becomes

r l r j i î k ^ j . (A .78)

which is important in the following discussion.
Recall that the error e k on step k of the method of conjugate directions is chosen from

e0+.Dfc and minimizes the energy norm among all vectors in this space. Given that the search
directions are constructed from the v fc then Dk = span{d0, d fc_ x} = span{v0, .., Vfc_j},
which in the case of the conjugate gradient method is span{r0, ..,rfc_!}. Recalling that

r*+i = ffc - ûfcAdfc (A .79)

we see that in the special case of the conjugate gradient method

D k - span{r0, Ar0, A2r0, .., A k xr0}. (A .80)

T his subspace is an example of a Krylov Subspace and the conjugate gradient method is part
of a class of methods for solving Ax* = b known as Krylov subspace methods, which also
includes the generalized minimum residual (GMRES) method, which can be used for general
A, see for example [81].

What makes the conjugate gradient method desirable is the following: from (A.74) rk
is orthogonal to D k, however we see from above that Dk contains ADfc_j making rk A-
orthogonal to Dk- j. The ¡3kp terms in the Gram-Schmidt process are

rkAdp
:P~ d jA d p (A.81)

for p < k, which using the A-orthogonality of rk and D k~i are zero, except when p — k - l .
The need to store d0, ..,dfc_i and carry out k - 1 matrix vector products when evaluating d*
has reduced to doing one matrix vector product involving the most recent search direction.
The calculation of j3k,k-i which we can now simply denote ¡3k can be simplified further by
using (A.79) to replace Adfc_i by (rfc_i - rk)/ak we then have

r* Adfc_i = rfcrfc-t - r ^ r fc
Qfc-l (A.82)

From (A.78) and the fact that Qfc_x = Al-\rk-i
dL i^ dfc-i we have

Pk =
d L i rfc-i

(A.83)

201

From (A.77) this is equivalent to

0k *k*k
r fc-lrfc~l

(A.84)

Putting everything together we have the conjugate gradient method (Algorithm 24).

A lgorithm 24 The Conjugate Gradient Method
Choose xo, set r0 = b - Ax0, d0 = r0 7o = r j r 0

For k= 0,..,n-l
qfe = Adk

Xfc+i = x/t + a fcdfc

end

Tfc+i = rjt - Qfcqfc

7fc+i = r i+ i r fc+i
Pk+i = ^
dfc+i = rfc+ i + At+idk

Although the conjugate gradient method finds the exact minimum in n steps, for large
problems it is not feasible to carry out n steps and the conjugate gradient method is usually
terminated once the norm of the residual has been reduced by some specified amount.

Convergence

In for example [87] the following upper bound on the energy norm of the error after k steps
of the conjugate gradient method is given:

||efe| U < 2 (^ j) fc||e0m . (A.85)

Comparing this to (A.59) we see that the conjugate gradient method converges significantly
faster than the steepest descent method when k is large.

Preconditioning

We have seen that the larger the condition number of the matrix A the worse the convergence
of the conjugate gradient method is. One way to improve the performance o f the conjugate
gradient method might be to replace the original system A x = b by the new system

M ~ 1Ax = M ~ 1 b, (A.86)

where M is a symmetric positive definite matrix and M ~ lA has a smaller condition number
than A. The problem is that M ~ XA is not necessarily SPD, so instead the system

E ~ xAE~t x = E ~ l b (A.87)

202

is solved, where x = E Tx and the matrix E satisfies E E T = M (any SPD matrix can be
written in this form). E ~1AE~T is clearly SPD, furthermore it has the same eigenvalues and
hence the same condition number as M ~ lA to see this let M ~ l A v = Av then

£ - r £ r M v = E ~ tE - 1A(E~t E t)v = A (E ' t E t)v (A .88)

E - iAE~T{ETv) = A (Etv) (A .89)

Applying the conjugate gradient method to (A.87) we get Algorithm 25.

h 7o = r jro
A lgorithm 25 The Conjugate Gradient Method on E ~ 1A E ~r x = E _1b
Choose Xo, set io = £ _1b - JS~1Ae~Txo, d0 =
For k=0,..,n-l

q k = E ~ lAE~T dk

ak = a f lr
Xfe+i = Xfc + akAk
Tk+1 = H — Oikqk
7fc+i = r
h + i = ^
dfc+i = ffc+i + /?fc+ldfc

e n d ____________________________________

In reality there is no need to find E instead we can set rk = E ~ 1rkt d k = E Tdk and
q fc = E ~ 1q k and use the fact that x = E Tx to rewrite the algorithm in the form given in
Algorithm 26.

A lgorithm 26 The Preconditioned Conjugate Gradient Method
Choose xq, set ro = b - Axq, z0 = do = Zo. 7o = r j z 0
For k= 0,..,N-l

q* = A dk

Qk = d f eXfc+l = Xfc + Qfcdfc
Tfc+l = tfc - a k q k
zk+1 = M ~ h k+1

7fc+X = rk+lZk+l

A + l = ^
dfc+i = r fc+i + Pk+\dk

end

203

C hoice o f Preconditioner

There are several requirements that a preconditioner should meet if an efficient algorithm is
to be achieved, the first is that it should be a good approximation to the original matrix A,
on this criteria alone M = A would be the best choice, only one step of the preconditioned
conjugate gradient method would be required, but it would involve the solution of tiie system
Az = r, which is of course as difficult a problem as the original problem. The second
requirement therefore is that the preconditioner should be able to be inverted relatively
cheaply. Finally the preconditioner should not be too expensive to construct. The topic of
preconditioning is large and growing, some preconditioners are quite general, others are more
problem specific. Below I review only a few basic approaches to preconditioning that are
relevant to my own topic.

D iagonal Preconditioning

The simplest preconditioner is a diagonal preconditioner i.e M is the diagonal matrix with
the same diagonal as A. Diagonal preconditioners are trivial to construct and invert, but
generally do not speed up the convergence of the conjugate gradient method significant ly.

Incom plete Cholesky Preconditioner

The Cholesky factorization of a SPD matrix A into LLT is a special case of an LU factor
ization. Performing a full LU factorization and then solving A x = b by inverting in turn
the lower triangular matrix L and the upper triangular matrix U is a direct method, the
algorithm for constructing the Cholesky matrix L for an N x N symmetric matrix A is given
in Algorithm 27.

A lgorithm 27 Cholesky Factorization
Set In = \/dn
For j = 2, . . ,N

Iji = dji/ln
end

,1/2
For i = 2,.., N — 1

For j = i + 1 ,- ,N

hi ~ 177 (“•>* - S U i h*hk)
end

end i /iI (V^n-l ,2 ^
Inn — 1 °nn 1 lnk J

When an incomplete Cholesky factorisation is performed only some of the entries o f L

204

are computed, this can be done for example by only calculating the entries of L which fit
the sparsity pattern of the original matrix A. In my experiments I make use of MATLAB’s
CHOLINC function with the drop tolerance option to construct incomplete Cholesky factori
sations. After each column U of L has been computed all entries (with the exception of the
diagonal entry /¿¿) in that column less than droptol\\li\\2 are dropped (set to zero) before the
algorithm proceeds. The matrix M = LLT, where LLT comes from an incomplete Cholesky
factorisation, can be used as a preconditioner for the conjugate gradient method. To invert
M the lower triangular matrix L is first inverted followed by the upper triangular matrix LT.
The more entries kept the more accurate the incomplete Cholesky factorisation is and the
better the convergence of the PCG method, however the more entries that are kept, the more
expensive to construct and invert the preconditioner is. How much information to retain will
depend on the difficulty and size of the problem to be solved.

M ultigrid Preconditioning

The step z = M ~ 1r in the PCG method can be seen as an approximate solve of the problem
A t = r , since M is an approximation of A. One way to approximately solve A t = r would be
to apply one multigrid cycle to the system with zero initial guess, hence a multigrid met hod
can be used as a preconditioner for the PCG method. If an efficient multigrid method for
solving A x = b exists, there will be no advantage in using it as a preconditioner for conjugate
gradient, in fact the overall cost of solving the problem is likely to increase, however if the
convergence of the multigrid method is not satisfactory it can be accelerated by using it as
a preconditioner within the conjugate gradient method.

R em ark A .6.1 If we wish to use multigrid as a preconditioner, then the multigrid method
should preserve symmetry.

A.6.4 General Steepest Descent and Global Optimization Methods

For a general minimization problem minx / (x) the steepest descent method involves taking
on step k + 1 a step in the direction of steepest descent d fc = -V /(x fc) . In the case where /
was a quadratic the step length a* which minimized / along dfc could be found analytically,
in the more general case a fc is determined using a line search procedure. The simplest line
search is a backtracking algorithm in which the value of a* is continually reduced by 0 e (0, 1)
until the following sufficient decrease condition is satisfied

/(xfc+1 - afcV/(xfc)) - /(xfc) < -A||V/(x*)|||. (A .90)

where A is typically 1 0 '4. This sufficient decrease condition basically says that the decrease
in the function value is some fraction of the reduction predicted by approximating / around
x/t by the linear model

A W = / (x fc) + V / (x k) (x - X f c) . (A .9 1)

205

The general steepest descent algorithm with a backtracking line search is given in Algorithm
28.

A lgorithm 28 Steepest Descent ’ ‘ "—
Choose xo, set k = 0. — - — - ■—
Choose 6 € (0,1), A
While ||V/(xo)*||3 > tol

dk = - V / (x *)

oik = 1
While /(xfe+i + afcdfc) - / (x fc) > —A||dfc|||

a*: <— 6ak
end
Xfĉ -i = Xfe Ofcdfc
k <— k + 1

end__

R em ark A .6.2 If the function f does not have a unique minimum, then the minimum found

by the steepest descent method will depend on the initial guess xo

The steepest descent method is part of a larger class of global minimization methods,
based on quadratic models of / around x k

qk(x) = f (x k) + V /(x *)T(x - x k) + l /2 (x - x k)THk(x - x k), (A.92)

where Hk is SPD. The search direction dk is taken to be the value of x - x k which minimizes
qk(x) i.e dfc satisfies

Vflt(x) = V /(x jt) + Hkdk = 0. (A .9;i)

The search direction is therefore dfe = - H j f 1V f { x k). Given that IIk and hence / / “ ' ¡s
positive definite it is clear that V f (x k)Tdk < 0 and hence dk is a descent direction. In
Newton’s Method Hk = H { x k), where H (x k) is the Hessian of / at x k, in general / / (x fc) is
not guaranteed to be positive definite, unless x k is sufficiently close to the minimum of / ,
see [65]. The general sufficient decrease condition for such methods is

f i xk + o*d*) - f { x k) < A o*V /(x *)r d*. (A.91)

Often the sufficient decrease condition is accompanied by another condition on a k known
as the curvature condition, which prevents unacceptably short steps along d* from being
taken

V /(x fc + a kdk)Tdk > aSIf{xk)Td k, (A.95)

where the value o f a should be between A and 1 . A stronger version of this condition is

|V /(xfe + Ofcdfc^dfcl < crlV /(xfc)Td fc|. (A.9C)

206

(A.94) with (A.95) are known as the Wolfe conditions and (A.94) with (A.9f>) the strong
Wolfe conditions. A line search procedure to find a step length which satisfies the (strong)
Wolfe conditions, involves two phases, a bracketing phase in which an interval guaranteed to
contain points satisfying the Wolfe conditions is found and a second phase in which cubic
or quadratic interpolation on <f>(a) = f (xk + ad*) is applied continually until an acceptable
point is found, for more details see, for example [49].

A.6.5 Nonlinear Conjugate Gradient

A version of the conjugate gradient method also exists for general nonlinear minimization
problems, although it does not have the nice convergence properties of the conjugate gradient
method for SPD linear systems. There are several changes which must be made to Algorit hm
24, firstly the residual r* is replaced by its nonlinear equivalent r fc = -V /(x /t) also tk+i
cannot be defined recursively from rjt and must simply be evaluated. Secondly the value of
a k cannot be determined analytically and is instead determined by a line search procedure,
usually required to satisfy the strong Wolfe conditions. Finally, there are two different options
for 0h (equivalent in the linear case since the residuals are orthogonal), either the Fletcher
Reeves choice . T_ ,, ,

„FR V/(xfc+1)TV/(Xfc+i)
A + 1 " W t x O W / M (A 'i)7)

or the Polak Ribiere choice

Pk+i =
p r V /(x fc+1)T(V /(x fc+1) - V / (x fc))

V /(X fc)7 V /(x fc) (A.98)

The Fletcher-Reeves formula has a neater convergence theory, but the Polak-Ribiere formula
generally performs better. In order to guarantee convergence of the Polak-Ribiere method
Pk+i can be replaced by max(/?££,0). For more details on nonlinear conjugate gradient, see
[65, 87] and the references therein.

A. 7 Multilevel Optimization

In this section I briefly review two optimization methods which employ multilevel techniques.

A .7.1 Multigrid Optimization based on FAS

In [73] Nash presents a Multigrid optimization algorithm based on the full approximation
scheme for solving an unconstrained optimization problem

min fh(uh).
Uh (A.99)

on fih. To clarify what this notation means we may have for example the problem

min f (u) where f (u) = / L(x ,y ,u (x ,y) ,ux ,uv)dxdy, (A .100)
J (1

207

where u is some continuous variable on the bounded and open domain fi C R2. If ii is
discretized and the resulting grid Qh has grid spacing h in both directions and grid points at
(ih, jh) then the discrete optimization problem is

min f h(uh) where f (u h) = L(ih, jh , U,,, (ux)ij, (uy)i:i), (A.101)
Uh (ij)

where (ux)tj and (uy)lj are finite difference approximations of ux and uy at the grid point

One step of Nash’s multigrid method is denoted u{j+1 = M G O P{u£,minU/i fh(uh)) •where
M G O P is defined recursively in Algorithm 29.

A lgorithm 29 MGOP___

ukh+1 = M G O P(u^,m m fh(uh))

1. If is the coarsest grid, solve
min f h(uh)

and return.
Else: apply u\ steps of an optimization algorithm with initial guess ujj

ukh = O P "1 (ukh, min f h(uh))Uh

2. Evaluate

“ if =

3. Apply multigrid method to solve: minu„ Jh {uh) - vt uh with initial guess uk,

ukJ '1 = MGOP(u%,min/h (uh) - vt uh)
UH

4. Evaluate
eh = I hH(uk+1 - u ki)

5. Perform Line Search
uk+1 = ukh + Xeh

6. Apply vz steps of an optimization algorithm with initial guess u£+1

uk+' =O P ">{uk+ \ m m fh{uh))
Uh

208

In Algorithm 29 ilH is the next coarsest grid e.g and and If* are transfer operators
for transferring grid functions between Clh and flH. f H denotes the original optimization
problem discretized on the grid flH.

Note that the coarse grid optimization problem is not simply

but

min/H(utf) (A .102)

min - v t u h . (A.103)
UH

where v = V/h (uh) - Ij?C^fh(uh))- If V //,(« /,) = Nh(uk) - g/t where Nh(uh) is some
nonlinear operator, then

V [/h (utf) - vTuh] = Nh {uh) — 9h — (Nh(uH) ~ 9 h) + I^ (N h(uh) - gh)

= Nh {uh) - \Nh {uh) + if? (9h - Nh{uh))} (A .104)

which is the equivalent coarse grid problem in the original FAS method presented in Algorit hm
5.

The following theorem establishes that under certain assumptions the coarse grid correc
tion is a descent direction.

Theorem A .7.1 If the following conditions hold e/, is a descent direction for //, at uk.

1. The optimization problem is convex.

2. I hH = C {I”)T

3. The coarse grid problem is solved accurately enough, i.e

V (/* (uh) - vtuh){u'$ 1) = V / „ (4 +1) ~ (V/H(fiJ,) - /¿'VA(ufc)) * e

where e is small enough.

Proof
By definition

V f h{ukh)Teh = V f h(ukh)T(IhHeH). (A.105)

By condition (2) this is equivalent to

V f h{uk)Teh = C (l ” V fh(ukh))TeH■ (A .100)

By condition (3) this is equivalent to

V f h(ukh)Teh = C (V /h (4) ~ V / / / (4 +1) + i)TeH. (A.107)

209

Using the mean value theorem we have

V / i i (4 +1) - V /* (u fc) = VV ^C X fiJ* 1 - ukH) = V 2/ / / (Q e „ . (A .108)

where uk < (< nfc+1- Substituting into (A.107) we get

V / fc(uJ[)Tefc = C (- e l V 2M 0 e H + tTeH). (A.109)

Given that the optimization problem is convex the first term in the right hand side is negative
and given that t is small the second term is negligible. Hence is a decent direction. ■
If eh is a descent direction then the combination of the multigrid method M G O P wit h an

optimization method which is globally convergent will result in a globally convergent method.
In [73] Nash shows that e* can be expected to be a descent direction even if the coarse grid
problem is not solved to high accuracy, he also extends the method to non-convex problems.

A.7.2 Chan and Chen’s Multilevel Optimization

In [25] Chan and Chen propose a multilevel optimization method which uses local optimiza
tion and correction via coarse grids. The method is applied to the discrete Total Variat ion
denoising optimization problem in 1 and 2 dimensions. A brief outline of the method is given
below.

Given a discrete optimization problem

min f (u h) (A .110)

where Uh is a grid function on the finest (cell-centered) grid f1h, several steps of a local
optimization method are applied to the problem to generate an approximation Uh. Each step
of the local optimization method involves cycling through the grid points in a Gauss-Seidel
fashion, solving at each grid point the local optimization problem minU4iJ /.,_,(utJ) which
results from freezing all non (i ,j) components of Uh at their current value. This problem is
either solved analytically (if possible) or via iterations.

Once Uh has been found a multilevel algorithm, utilising standard coarsened, coarse grids
Q2ht Q4h, .., ilph with p = 2l , is employed. The algorithm is given in Algorithm 30.

Algorithm 30 Multilevel Optimization__
Find Hh by applying a local minimization method to minUh f(uh)

For k=l:L
l = 2k
cih = argminCl(>/(u /, + Pthhcih)

uh = u h + Pfclh
end__________ __

210

In Algorithm 30 the interpolation operator Pthk maps grid functions on illh to grid func
tions on Qh. Assuming that the grids are cell-centered P is defined as the operator which
assigns the value at a coarse grid cell, to all fine grid cells contained within it e.g for f i e l 2,
p£h is the cell-centered interpolation operator seen in equation (2.141). The solution of the
minimization problem minC|h f(uk 4- P^cih) on Qlh involves 1 /(ld) as many unknowns as the
fine grid problem where d is the dimension, ¿¡h is found using several steps of a local opt i
mization method, as on the finest grid. The whole procedure is iterated until some stopping
criteria is satisfied.

In addition the same approach has also been employed using a nonstandard coarse grid
flH, which is defined based on the properties of the fine grid approximation u. The principle
is exactly as above with an interpolation operator P¿r mapping grid functions on i l // to grid
functions on ilh being required.

211

Appendix B

Cost Estimate For the A M G
Method

In this appendix we present an analysis of the costs associated with implementing the AMG
method in MATLAB with the standard C /F splitting algorithm and direct interpolation as
detailed in §2.7. Due to the automatic nature of AMG the analyis is non trivial and certain
assumptions will have to be made. We will use the following notation in the cost analysis
that follows

nk = number of points on level k
npk = number of fine points on level k
nck = n fc+1 = number of coarse points on level k

= max number of entries in a row of A k ’
= max number of entries in a row of Rk = /£ +1(restriction k —» k + 1)

7 pfc = max number of entries in a row of P k = Ik+1(prolongation fc + 1 —► k)

Although the flop cost in MATLAB of finding all the nonzero entries in a set or finding
the maximum value in set is zero, below we assume that the costs are approximately equal
to twice the size of the set. To justify the assumptions made we present below the cost, in
cputime of finding the nonzero entries in a random vector of size 107 using MATLAB's find
function, finding the maximum value in a random vector of size 107 using MATLAB’s max
function and multiplying component wise two vectors of size 107 i.e an operation which costs
107 flops.

operation cpu
find 0.76
max 0.92

multiply .50

212

We see that our assumptions appear reasonable as an upper bound.

B .l The AM G setup phase

B .l .l Cost of Finding Neighbours and Strong Connections

To find Ni we must search row t of the matrix for non-zero, non-diagonal entries. In reality
the position of all non-zero entries in a sparse matrix can be found very cheaply in MATLAB
so we ignore this cost here. Once we have the set of neighbours we have to find the maximum
value of -a n over j G Ni and then find St = { j € Nt\ - aitj > Onmxk^l(-a ,k)}. We have to
search through the set {-a n \ j G Nt} to find the maximum, and then search the set again to
find the entries greater than 9 times the maximum, since an upper bound on the size of N i
is - 1 an upper bound for this cost is 4(7^ - 1). An upper bound on the cost of finding
all Ni and S, on level k is therefore

[4(7.4* - 1)] • (B.2)

B .l.2 The C /F splitting algorithm

We assume that the size of Ck = l/4 n fc i.e we assume standard coarsening. We therefore
go around the C /F splitting loop l/4 n times and on average each coarse point defines 3 fine
points i.e the size of S f n U is 3. Although in our experience based on cpu analysis similar to
above a reasonable assumption is that the cost of finding S n U using MATLAB’s intersect
function (in fact a slight modification of it) where S is a small set, is around 3 times the size
of U we can in our current implementation find S f n U simply by finding the nonzero entries
of a set the size o f S f , which we assume below has size 4. Based on these assumptions we
have the following estimate for the cost of performing the C /F split on level k.

l/4nfc —1
5 Z [2(n* - 4m) + 8] + 3 (8 + 4) + 8 + 4. (B.3)

m=Q

The fisrt term comes from finding i G U with maximal A, and then finding j e S f D ¡7, the
second term comes from finding l G Sj n U setiing A, = Aj + 1 for each j £S ?r\U (we assume
that the size of Sj and Sj n U is 4) the third term comes from finding j e 5< (~l U and the last
term setting A, = Xj - 1 (again we assume Si and Si DU have 4 members). An approximate
cost estimate is therefore

l/4nfc- l
(l/4n*)(2n* + 56) - 8 m « 1 /2 (nk)2 + 14n* - 8 (l/8 n fc)(l/4n *) = l /4 (n fc)2 + 14,1*.

m=0

(B.4)

213

B.1.3 The Direct Interpolation

On level k direct interpolation involves finding for each i G F k

_ S jg V, aijc*i = - and Pi =
l^kePi aik I s ,

_ HjzNi aij+_ j i

k€Pi aik
(B.5)

or if P t+ is empty finding on and setting an = a u + Y l j e N i a t j • Then defining the interpolation
weights as

I —Qian-Ian k G P~
(B.C)W%k { -aittik/aa k £ Pt

Pi&ik! Qa k € P^

where Pi = Ci.
Denote by npk the max size of Pi over all i £ F k and by nNk the max size of Ni over all

i G F k then an upper bound for the cost of the direct interpolation on level k is

i F k [nN‘ + 3npk] . (B.7)

B.1.4 Cost of Forming the Galerkin Matrix RAP

Given that we expect that A and P will be very sparse most rowA, columnp multiplications
will produce zeros. A cost of 7\knk is a reasonable assumption for the cost of evaluating
A kP k similarly 7 is a reasonable assumption for the cost of multiplying A kP k by Rk.

B.1.5 Overall Cost

Putting all of this together and assuming standard coarsening and also taking 7 /t, 7h , 7p as
the maximum value over all levels of 7Ak, 7pk, 7 p* noting that nN = 7 ,4* — 1 and assuming
that npk = 4 we have as an estimate for the cost of an AMG setup phase the following:

^ 4(7.4* - l)n fc + 1 /4(nfc)2 + 14nfc + nF (74 + 11) 4- 7\nk + 7 %nck
k

= ^ 2 1/4(nfc)2 + 4(7 ,4* ~ !) nfc + 14n* + W n k(lA + 11) + 7 \nk + 7« l /4nk
k

00
« £ 1/4(1/16)‘ n2 + 3/4(1/4)^17/37^ + 4/37^ + l /3 7£ + 8)n

¡=0

= 17/64n2 + (177a + 47^ + 7 2 + 24)n/3. (B.8)

B.2 The V-Cycle

Once the setup phase has been performed the costs associated with the V-cycle on level k
are

214

1 . The cost of 4 Gauss-Seidel steps each of which involves solving M vnew = (N votd + /)
where M is the lower triangular part of Ak including the diagonal and N is the upper
triangular part of Ak. Assuming that 7 * is small and that the entries of Ak are split
evenly about the diagonal and using the fact that the cost of inverting or multiplying
by a nk x nk triangular matrix with a small number, say a, of entries on each row is
approximately (2a - 1)nk we have 4 [2(7^ - l)n fc + nk] as an estimate for the cost of
the Gauss-Seidel steps.

2. The cost of the residual calculation r k = f k - Akvk, an upper bound for which is
nk + 2'iAknk.

3. The cost of restricting the residual, an upper bound for which is 27^1 nc>>.

4. The cost of interpolating the error back from the coarse grid and correcting, an upper
bound for which is 2~fpknFk + nck + nk.

Putting all of this together we have as an upper bound for the cost of a V-cyde:
OO

5 3 (1 /4) ' [107,1 + I / 27* + 3/2lP - 7/4] n
1=0

= (407,1 + 27r + 67p - 7) n/3. (B.9)

B.3 Cost Comparison

From observations we take 7.4 = 20, 7 r = 15 and 7 p = 10 we then have an approximate cost
for the V-cycle of 300n and an approximate cost for the setup phase o f 17/64n2 + 730n. If
we take n = 2562 we get that the cost of a V-cycle is approximately 2 x 107 and the cost of a
setup is approximately 1.19 x 109, around 60 times the cost of the V-cycle. In §5.3 we present
the idea of recycling setup data, essentially on some fixed point steps we replace a whole setup
with a simple evaluation of RAP using stored interpolation and restriction operators. The
cost of the recycling will be (4/3j\ + 1 / 37%)n which is approximately 610n, making the cost
of a V-cycle -+- recycling around 910n which for n = 2562 is 6.0 x 107. In reality the dominant
cost is the cost on the finest level, on this level we know 7 ^ = 5 and we can assume 7 « = 5
and 7p = 4. With these parameters we get that a V-cycle costs approximately 75n and a
setup costs approximately 17/64n2 + 80n, while a recycle costs around 4071, for n = 25Ga
this is 5.0 x 106 flops for a V-cycle, 2.8 x 106 for a recycle and 1.15 x 109 for a setup. When
we actually measure the flops associated with a V-cycle and a recycle we get that a V-cyde
costs around 1.2 x 107 flops and a recycle costs 6.1 x 106, which is somewhere in between the
two estimates made above.

This is of course only an estimate of the sort of costs involved based on some assumptions
about the flops cost of certain operations which register no flop cost in MATLAB.

215

Bibliography

[1] R. Acar and C. R. Vogel, A nalysis o f Bounded, Variation P enalty M ethods

f o r III-Posed Problem s, Inverse Problems 10 (1994), pp. 1217-1229.

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second E dition , Elsevier
Science Ltd, Oxford, 2003.

[3] K. G. Binmore, The Foundations o f Analysis: A Straightforward In tro

duction, B o o k l: Logic Sets and N um bers, Cambridge University Press,
Cambridge, 1980.

[4] K. G. Binmore, The Foundations o f A nalysis: A Straightforward Introduc

tion, B ook2: Topological Ideas, Cambridge University Press, Cambridge,
1981.

[5] P. Blomgren, Total Variation M ethods f o r R estoration o f V ector Valued

Im ages, PhD Thesis, UCLA, 1998.

[6] P. Blomgren, T. F. Chan and P. Mulet, E xtensions to Total Variation

D enoising, Proc. SPIE 97, San Diego.

[7] P. Blomgren, T. F. Chan, P. Mulet, L. Vese and W. L. Wan, Variational

P D E m odels and methods fo r im age processing, in: Research N otes in

M athem atics, 420: 43-67. Chapman & Hall/CRC, 2000.

[8] J. M. Borwein and A. S. Lewis, C on vex A nalysis and N onlinear O ptim iza

tion, Springer-Verlag, New York, 2000.

[9] A. Brandt, S. F. McCormick and J. Ruge, Algebraic M ultigrid (A M G) f o r

A u tom atic M ultigrid Solution with A pplication to G eodetic Com putations,

Institute for Computational Studies, Fort Collins, Colarado, 1982.

216

[10] U. Brechtken-Manderscheid, Introduction to the Calculus o f Variations,

Chapman and Hall, London, 1991.

[11] M. Brezina, R. Falgout, S. Maclachlan, T. Manteuffel, S. Mccormiek and J.
Ruge, Adaptive Sm oothed Aggregation , SIAM J. Sei. Comput., 25 (2001),
No. 6, pp.1896-1920.

[12] W. Briggs, A M ultigrid Tutorial, SIAM, Philadelphia, 1987.

[13] A. Bruhn, J. Weickert, T. Kholberger and T. Schnorr, A M ultigrid Plat

fo rm fo r R eal-T im e M otion Com putation with D iscontinuity P reserving

Variational Methods, Technical Report No. 136, Department of Mathe
matics, Saarland University, Saarbrücken, Germany, May 2005.

[14] R. Burden and D. Faires, N um erical Analysis, sixth ed, ITP publishing,
London, 1997.

[15] M. Burger, Infinite-dim ensional O ptim ization and Optim al D esign, Lecture
Notes, 285J, Department of Mathematics, UCLA, 2003.

[16] M. Burger, S. Osher, J. Xu and G. Gilboa, N onlinear Inverse Scale Space

M ethods f o r Im age Restoration, UCLA CAM report, 2005.

[17] J. L. Carter, Dual M ethods f o r Total Variation Based Im age R estoration ,

PhD Thesis, UCLA, 2001.

[18] A. Chambolle, A n algorithm fo r Total Variation M inim ization and A p

plications, Journal of Mathematical Imaging and Vision., 20 (2001) pp.
89-97.

[19] A. Chambolle and P-L. Lions, Im age R ecovery via Total Variation M in i

m ization and Related Problem s, Numer. Math., 76 (1997), pp. 167-188.

[20] R. H. Chan, T. F. Chan and W. L. Wan, M ultigrid f o r D ifferential-

Convolution Problem s A rising from Im age Processing, Proceedings of the
Workshop on Scientific Computing 97, Springer-Verlag, 1997.

[21] R. Chan, C. Hu and M. Nikolova, A n Iterative Procedure f o r R em oving

Random -Valued N oise, IEEE Signal Proc. Letters 11 (2004), pp.921-912.

217

[22] T.Chan, A n optim al Circulant P recon d ition er f o r Toeplitz System s, SIAM
J. Sci. Stat. Comput. 9 (1988), pp. 766-771.

[23] T. F. Chan and W. L. Wan, R obust multigrid m ethods f o r nonsm ooth

coefficien t elliptic linear system s, Journal of Computational and Applied
Mathematics, 123 (2000), pp.323-352.

[24] R. H. Chan, T. F. Chan and C-K. Wong, C osine Transform Based P recon

ditioners f o r Total Variation D eblurring,UCLA CAM report 97-44, 1997.

[25] T. Chan and K. Chen, On a N onlinear M ultigrid A lgorithm with Prim al

R elaxation fo r the Im age Total Variation M inim ization, to appear in SIAM
J. Multiscale Modeling and Simulation (MMS), 2006.

[26] T. Chan and S.Esedoglu, A spects o f Total Variation Regularized L x Func

tion Approxim ation, UCLA CAM report, 2004.

[27] T. Chan, S. Esedoglu, F.Park and A. Yip, R ecent D evelopm ents in Total

Variation Im age R estoration, Mathematical Models in Computer Vision:
The Handbook, 2004.

[28] T. F. Chan, S. Esedoglu and F.E. Park, Im age D ecom position Com bining

Staircase R eduction and Texture Extraction, UCLA CAM Report, 2005.

[29] T. F. Chan, G. H. Golub and P. Mulet, A N onlinear Prim al-D ual M ethod

f o r Total Variation-Based Im age R estoration, SIAM J. Sci. Comput., 20
(1999), pp. 1964-1977.

[30] T. F. Chan, A. Marquina and P. Mulet, Second O rder D ifferential Func

tionals in Total Variation-Based Im age R estoration , UCLA CAM Report
98-35, 1998.

[31] T. F. Chan and L. Vese, A ctive C ontours W ithout Edges, UCLA CAM
report 98-53, 1998.

[32] T. F. Chan, R. H. Chan and H. M. Zhou, C ontinuation M ethod f o r Total

Variation D enoising Problem s, UCLA CAM Report, 1995.

[33] T. Chan and P. Mulet, Iterative M ethods f o r Total Variation Im age

R estoration , UCLA CAM Report 96-38, 1996.

218

[34] Q. Chang and I. Chern, A cceleration M ethods f o r Total Variation Based

Im age D enoising, SIAM J. Sei. Comput., 25 (2003), pp. 982-994.

[35] Q. S. Chang, Y. S. Wong and H. Fu, On the algebraic m ultigrid m ethod , J.
Comput. Phys., 125 (1996), pp.279-292.

[36] Q. Chang, W. Wang and J. Xu, A M ethod f o r Total Variation-Based R e

construction o f N oisy and Blurred Im age, Submitted to the proceedings of
the International Conference on PDE-Based Image Processing and Related
Inverse Problems, Oslo, August 2005.

[37] K. Chen, M atrix Preconditioning Techniques and A pplications, Series:
Cambridge Monographs on Applied and Computational Mathematics (No.
19), Cambridge University Press, UK, 2005.

[38] K. Chen and J. Savage, On Two N ew and N onlinear Iterative M ethods f o r

Total- Variation Based Im age Deblurring, in Proceedings of the Fifth UK
Conference on Boundary Integral Methods, K. Chen, ed., 2005.

[39] K. Chen and X-C. Tai, A N onlinear M ultigrid M ethod f o r Curvature Equa

tions related to Total Variation M inim ization, UCLA CAM report, 2005.

[40] Y. Chen, S. Levine and M.Rao, Functionals with p (x)-G row th in Im age

R estoration, Duquesne Univ. Dept, of Math and Comp. Sei. Tech. Report,

2004.

[41] Y. Chen, S. Levine and J. Stanich, Im age R estoration via N onstandard

D iffusion, Duquesne Univ. Dept, of Math and Comp. Sei. Tech. Report,
2004.

[42] S. Cheng, M ulti-L inear M aps and T aylor ’s Theorem in H igher D im ensions,

February 2006.

[43] J. E. Dendy, Black B o x Multigrid, Journal of Computational Physics, 48
(1982), pp.366-386.

[44] P. M. De Zeeuw, M atrix-D ependent Prolongations and R estriction s in a

Blackbox M ultigrid Solver, Journal of Computational and Applied Mathe
matics 33 (1990), pp.1-27.

219

[45] B. Diskin, J. L. Thomas and R. E. Mineck, On Q uantitative A nalysis

M ethods f o r M ultigrid Solutions, SIAM J. Sei. Comput., 27 (2005), No. 1,
p p .108-129.

[46] D. C. Dobson and C. R. Vogel, C onvergence o f an Iterative M ethod f o r To

tal Variation D enoising, SIAM J. Numer. Anal., 34 (1997), No. 5, pp.1779-
1791.

[47] H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,
Kluwer, Dordrecht, 1996.

[48] C. Frohn-Schauf, S. Henn and K. Witsch, N onlinear M ultigrid M ethods f o r

Total Variation D enoising, Comput. Vision. Sei., 7 (2004), pp.199-206.

[49] R. Fletcher, Practical M ethods o f O ptim ization, Wiley, Chichester, 1987.

[50] R. M. Freund, Introduction to O ptim ization and Optim ality Conditions fo r

Unconstrained Problem s, Massachusettes Institute of Technology, 2004.

[51] R. M. Freund, Optim ality Conditions f o r Constrained O ptim ization P rob

lems , Massachusettes Institute of Technology, 2004.

[52] E. Giusti, M inim al Surfaces and Fuctions o f Bounded Variation ,
Birkhauser, Boston, 1984.

[53] G. Golub and C. van Loan, M atrix Com putations, third cd., The John
Hopkins University Press, London, 1996.

[54] D. H. Griffel, A pplied Functional Analysis, Ellis Horwood Limited, Chich

ester, 1981.

[55] M. Hanke and J. G. Nagy, R estoration o f A tm ospherically Blurred Im ages

by Sym m etric Indefinite C onjugate Gradient Techniques, Inverse Problems
12 (1996), pp. 157-173.

[56] P. C. Hansen, R ank-D eficien t and D iscrete Ill-P osed Problem s, SIAM
Philadelphia, 1998.

[57] V. E. Henson, M ultigrid M ethods f o r N onlinear Problem s: A n Overview ,

Center for Applied Scientific Computing Lawrence Livermore Laboratory.

220

[58] K. Ito and K. Kunisch, A n A ctiv e-S et Strategy Based on the A ugm ented La-

grangian Form ulation fo r Im age R estoration , M2AN Mathematical Mod
elling and Numerical Analysis, 33, No.l (1999), pp.1-21.

[59] K. Ito and K. Kunisch, B V -T yp e Regularization M ethods f o r Convoluted

Objects with Edge Flat and G rey Scales, Inverse Problems 1C (2000),
pp.909-928.

[60] K. Joo and S. Kim, P D E -B ased Im age R estoration , I: A nti-S taircasing and

A nti-D iffusion , University of Kentucky Technical Report, 2003.

[61] T. Karkkainen and K. Majava, N on m on oton e and M on oton e A ctive-S et

M ethods f o r Im age R estoration, Journal of Optimization Theory and Ap
plications, 106, No. 1 (2000), pp.61-105.

[62] T. Karkkainen, K. Majava and M. M. Makela, Com parisons o f Form ula

tions and Solution M ethods f o r Im age R estoration Problem s, Tech. Rep. B
14/2000, Department of Mathematical Information Technology University
of Jyvaskyla, 2000.

[63] T. Karkkainen and K. Majava, Sem i-Adaptive O ptim ization M ethodology

f o r Im age D em is in g , IEE Proc. Vis. Image Signal Process., 152, No. 5,
October 2005, pp.553-560.

[64] C. T. Kelley, Iterative M ethods f o r L inear and N onlinear Equations, SIAM,
Philadelphia, 1995.

[65] C. T. Kelley, Iterative M ethods fo r O ptim ization, SIAM, Philadelphia,
1999.

[66] M. Khalil and P. Wesseling, V ertex-C en tered and C ell-C en tered M ultigrid

f o r In terface Problem s, Journal of Computational Physics 98 (1992), pp.l-
10.

[67] S-H. Lee and J. K. Seo, N oise R em oval with Gauss Curvature D riven D if

fusion , IEEE transactions on Image Processing, 2005.

[68] S. E. Levine, A n A daptive Variational M odel f o r Im age D ecom position ,

Duquesne Univ. Dept, of Math and Comp. Sci. Tech. Report, 2004.

221

[69] M. Lysaker and X-C. Tai, In teractive Im age R estoration Com bining To

tal Variation M inim ization and a Second Order Functional, Int. J. Comp
Vision, to appear.

[70] M. Lysaker, A. Lundervold and X-C. Tai, N oise R em oval Using Fourth-

O rder Partial D ifferen tia l Equation with A pplications to M edical M agnetic

R esonance Im ages in Space and Tim e, IEEE Trans. Image Processing, 12
(2003).

[71] A. Marquina and S. Osher, Explicit A lgorithm s f o r a N ew T im e D epen

dant M odel Based on Level Set M otion f o r N onlinear D eblurring and N oise

Rem oval, SIAM J. Sei. Comput., 22 (2000), pp. 387-405.

[72] A. R. Mitchell and D. F. Griffiths, The F in ite D ifference M ethod in Partial

D ifferential Equations, John Wiley and Sons, Chichester, 1980.

[73] S. G. Nash, A M ultigrid A pproach to D iscretized O ptim ization Problem s,

Journal of Optimaization Methods and Software, 14 (2000), pp. 99-11G.

[74] Markus von Oehsen, M ultiscale M ethods f o r Variational Im age D em is in g ,

Logos-Verl, Berlin, 2002.

[75] S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, A n Iterative Regu

larization M ethod f o r Total Variation Based Im age R estoration , Multiscale
Model, and Simul., 4 (2005) pp. 460-489.

[76] S. Osher, A. Sole and L. Vese, Im age D ecom position and R estoration Using

Total Variation M inim ization and the H ~ l N orm , Multiscale Model Simul.,
1 (2003), pp.349-370.

[77] P. Perona and J. Malik, Scale-Space and Edge D etection Using A n isotrop ic

D ifussion, IEEE Transactions on Pattern Analysis and Machine Intelli
gence, 12, No. 7, July 1990, pp.629-639.

[78] L. I. Rudin, S. Osher and E. Fatemi, N onlinear Total Variation Based

N oise R em oval A lgorithm s, Physica D, 60 (1992), pp. 259-268.

[79] K. L. Riley, T w o-Level P recond itioners f o r Regularized Ill-P osed Problem s,

PhD Thesis, Montana State University-Bozeman, 1999.

222

[80] J. W. Rüge and K. Stuben, A lgebraic M ultigrid, In S. F. McCormick (Ed.),
Multigrid Methods, SIAM, Philadelphia, 1987.

[81] Y. Saad, Iterative M ethods fo r Sparse L inear System s, 2nd ed., SIAM,
Philadelphia, 2003.

[82] H. Sagan, Introduction to the Calculus o f Variations, Dover Publications,
New York, 1992.

[83] J. Savage and K. Chen, A n im proved and accelerated N onlinear M ultigrid

M ethod f o r Total- Variation D em is in g , International Journal of Computer
Mathematics., 82, No 8, August 2005, pp. 1001-1015.

[84] J. Savage and K. Chen, On Multigrids f o r Solving a Class o f Im proved Total

Variation Based Staircasing R eduction Models, To appear in the proceed
ings of the International Conference on PDE-Based Image Processing and
Related Inverse Problems, CMA Oslo, Springer-Verlag, 200G.

[85] J. Savage and K. Chen, A n A ccelerated A lgebraic M ultigrid A lgorithm fo r

Total- Variation D em isin g , Submitted to BIT, 2006.

[86] O. Scherzer and J. Weickert, Relations B etw een Regularization and D if

fu sion Filtering, Journal of Mathematical Imaging and Vision 12 (2000),
pp.43-63.

[87] J. R. Shewchuk, A n Introduction to the Conjugate Gradient M ethod W ith

out the A gonizing Pain, Carnegie Mellon University, Pittsburgh, 1994.

[88] G. D. Smith, N um erical Solution o f P artial D ifferential Equations: F in ite

D ifferen ce Mathods, Clarendon Press, Oxford, 1985.

[89] D. M. Strong, J-F. Aujol and T. F. Chan, Scale Recognition, Regularization

P aram eter Selection and M e y e r ’s G N orm in Total Variation Regulariza

tion, UCLA CAM Report, 2004.

[90] D. M. Strong and T. F. Chan, E xact Solutions to Total Variation Regular

ization Problem s, UCLA CAM Report, 1996.

223

[91] D. M. Strong and T. F. Chan, Edge Preserving and Scale D ependant P rop

erties o f Total Variation Regularization, Inverse Problems 19 (2003) pp.
165-187.

[92] U. Trottenberg, C. Oosterlee and A. Schuller, M ultigrid , Academic Press,
London, 2001.

[93] C. R. Vogel and M. E. Oman, R erative M ethods f o r Total Variation D e

m ising, SIAM J. Sei. Comput., 17 (1996), pp. 227-238.

[94] C. R. Vogel and M. E. Oman, Fast Total Variation-Based Im age R econ

struction , In Proceedings of the ASME Symposium on Inverse Problems,
1995.

[95] C. R. Vogel and M. E. Oman, Fast, Robust Total V ariation-Based R econ

struction o f N oisy Blurred Im ages, IEEE Transactions on Image Process
ing, 7, 1998, pp.813-824.

[96] C. R. Vogel, A M ultigrid M ethod fo r Total Variation Based Im age D e m is

ing, Computaion and Control IV, Bikhauser, 1995.

[97] C. R. Vogel, Com putational M ethods f o r Inverse Problem s, SIAM,
Philadelphia, 2002.

[98] L. Vese and S. Osher, M odelling Textures with Total Variation M inim iza

tion and Oscillating P atterns in Im age Processing, UCLA CAM Report
02-19, 2002.

[99] C. Wagner, Introduction to A lgebraic Multigrid, Course Notes of an Al
gebraic Multigrid Course at the University of Heidelberg in the Winter
semester 1998/1999.

[100] T. Washio and C. Oosterlee, K rylov Subspace A ccelera tion f o r N onlin

ear M ultigrid Schem es, Electronic Transactions on Numerical Analysis., 6
(1997), pp. 271-290.

[101] J. Weickert, R ecursive Seperable Schem es f o r N onlinear D iffusion Filters,

B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.), Scale-
Space Theory in Computer Vision, Lecture Notes in Computer Science,
Vol. 1252, Springer, Berlin, pp. 260-271, 1997.

224

[102] P. Wesseling, A n Introduction to M ultigrid M ethods, Wiley, Chichester,
1992.

[103] I. Yavneh and G. Dardyk, A M ultilevel N onlinear M ethod, SIAM J. Sei.
Comput., 28, No. 1, pp.24-46.

[104] W. Yin, D. Goldfarb and S. Osher, Im age C artoon-T exture D ecom position

and Feature Selection using the Total Variation Regularized L 1 Functional,

UCLA CAM report, 2005.

[105] N. Young, A n Introduction to Hilbert Space, Cambridge University Press,
Cambridge, 1988.

225

