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Damage Mechanics Applied to 
Structural Impact 

by Marcilio Alves 

Abstract 

This work aims at the prediction of failure in impacted structures. 
This is achieved by developing a particular formulation of Continuum 

Damage Mechanics, CDM. Perfectly plastic and linear strain hardening ma­
terial constitutive laws were used, both taking into account strain rate ef­
fects. The model is used to predict the displacement to failure of mild steel 
im pacted beams. 

Basic material properties were obtained through dynamic tensile tests on 
cylindrical specimens. These tests allowed the determination of a dynamic 
equivalent stress-strain curve. A material constitutive law is proposed for 
the stresses at any value of strain and strain rate. 

Dynamic tensile tests on notched specimeas and Finite-Element analyses 
have shown that the hydrostatic stress has a secondary role on determining 
the failure site of axisymmetric specimens. Failure takes place at regions 
were the triaxiality is low but the strains are high, a fact predicted by the 
CDM model. 

Different experimental techniques were used to measure the critical dam­
age parameter. The change of electrical potential, change of hardness, void 
area and elastic modulus degradation yielded different damage definitions. 
It was found that the damage parameter is dependent on the experimental 
technique used to measure it. 

By properly defining a hinge length for beams, plastic strains and an 
average strain rate were determined. They were used, together with the 
CDM rate-dependent model, to predict the failure of statically loaded and 
impacted beams. The beams were loaded at different points, by different 
tup geometries, masses and velocities. The results indicate that the CDM is 
capable of forecasting well the displacement to failure of the heams as long 
as the rate-dependent model is used. 

Key words: failure, impact, beams, rate-dependent damage mechanics, 
damage, material constitutive law, dynamic tensile test, notched specimens. 
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1 Introduction 

IN A SOCIETY where man-made structures are found everywhere, the 
importance of predicting structural behaviour is evident. Methods of elastic 
and plastic analysis, including dynamic behaviour, are now at the disposal 
of engineers for the design of lighter and safer structures. 

The use of computers allows the prediction of the response of a broad 
class of static and dynamic elasto-plastic structures and components made 
of homogeneous materials. In spite of that, it is significant that failure, in 
the sense of a structural breakdown, cannot be yet properly predicted in 
many cases. 

This undesirable situation has prompted researches of different fields to 
strive for the finding offailure mechanisms and criteria to be applied in struc­
tural design. However, to date, among the various failure criteria proposed 
in the literature, none can be considered definitive. 

The phenomenon of failure is extremely complex. At a local microscopic 
level, where all failure starts, the laws of Continuum Mechanics are not fully 
valid. Fracture Mechanics can be considered a first attempt to approach the 
problem of failure by using global parameters, without paying attention to the 
micro-mechanisms of failure. Even considering the importance of Fracture 
Mechanics as a design tool, a local approach to failure is necessary in helping 
the understanding of material behaviour at a grain level. To bridge the gap 
between local and global interpretations of failure is a difficult task, not yet 
fully accomplished. 

Rupture, fracture and failure are important concepts in this work. Briefly, 
a material is said to rupture when, pulled in tension, its resistant cross­
sectional area reduces to zero,3 either by necking or shearing-off. Rupture 
is an extreme case of fracture, which is any material separation taking place 
before a total area reduction. Fracture occurs due to a multitude of complex 
mechanisms, summarised in sequence. 

Failure has a wider meaning. It can be said that a structure fails when it 
cannot accomplish any more the functions it has been designed for. In this 

1 



2 Introduction 

sense, a structure exhibiting a slight plastic deformation may be considered 
to have failed. Nevertheless, in the present work, the concern is with struc­
tures subject to such intense loads that formation and eventually growth 
of a crack is likely. A structure is considered to have failed when all the 
conditions for crack initiation have been fulfilled. Accordingly, failure and 
fracture in the present context are, sometimes, mingled concepts. Due to 
this failure definition, the analyses herein pursued are bounded by elasticity 
and fracture mechanics. 

In the present work, from the main mechanisms of fracture, only ductile 
rupture at normal temperature will be contemplated. The starting point 
is the prediction of failure in simple structures, mixing local and global 
parameters, but from an engineering and not a physical or a metallurgical 
point of view. 

This chapter aims to provide a descriptive background on the main ma­
terial failure mechanisms and on important theoretical models used to in­
vestigate structural failure. It introduces models to predict failure based 
on the rigid, perfectly plastic ~sumption and provides a literature review 
on Continuum Damage Mechanics. The chapter finishes with a discussion, 
where tl.e present research is outlined. 

1.1 Fracture mechanisms 

It is generally accepted that the interaction among temperature, stress state 
and its history, strain rate, microstructure of the material, inclusions, second­
phase particles and grain boundaries affects the fracture mechanisms. This 
suggests, as it is, that the phenomena leading to fracture is very involved. In­
deed, it is not completely clear nowadays how the different variables leading 
to failure manifest themselves, interact and grow. 

One of the simplest classifications, yet covering a broad range, of fracture 
mechanisms is due to Ashby et al.3 and is depicted in Figure 1.1. 

In one extreme of the diagram, for low temperatures and/or high strain 
rates, cleavage is likely to occur. Under certain conditions, almost all crys­
talline solids can fail by cleavage, usually in a transgranular way. It involves 
nucleation of small cracks due to abrasion, corrosion, slip or growth of de­
fects. The cracks concentrate stresses, following propagation.59 

The other extreme of Figure 1.1 corresponds to rupture, occurring when 



1.2 Ductile fai lure 

BRITltE +------------------------------+. ~~ 

HIGH STRAIN RATE +---------------------_ LOW STRAIN RATE 

F igure 1.1: Classification of fracture mechani m (after Ashby t al. 3 ). 

The strain rate scale has been added . 

3 

no other fracture mechanism intervenes. The genuine rupture is usually 
related to the suppression of nucleation due to the high pu rity of the ma­
terial or due to plastic deformation occurring simultaneously with dynamic 
recrystallisation .3 

In between these two extremes, ductile fracture is dominant . 

Using the classification in F igure 1.1, ASHBY et al.3 have developed vari­
ous fracture-mechanism maps. Though these map treat dynamic fracture as 
a separate fracture mechanism, Curran el ai.52 remark that dynamic fracture 
phenomena are similar to those occurring at quasi-static conditions. 

1.2 Ductile failure 

It is generally accepted that ductile fracture mechanisms are associated with 
nucleat ion , growth and coalescence of voids or cracks.196 Voids nucleate at 
inclusions , they grow with plast icity and coalesce, leading to fracture. These 
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aspects will be now summarised. 

1.2.1 Nucleation of voids and microcracks 

Ductile fracture starts with the nucleation of voids or microcracks at a sub­
microscopic level. For polycrystalline metals, exhibiting grain sizes of mi­
crometers, such nucleation process is characterised by the appearance of 
voids having a size of about a micrometer. The sites of nucleation have been 
described by CURRAN et al.52 

. For ordinary ductile metals, the nucleation of voids is due to the presence 
of inclusions in the material matrix. The nucleation occurs either by fracture 
of the matrix adjacent to a stronger inclusion, by debonding at the interface 
matrix-inclusion, or by fracture of the inclusions themselves.3 , 51, 74 

For low triaxial stress state at room temperature, nucleation of voids 
in a material has been recognised as a deformation-driven process. 52, 74,134 

This means that, for a given alloy system, there exists a critical strain to 
cause cavity nucleation, below that no nucleation occurs in a way to alter 
a continuum variable. High level of stresses, on the other hand, may drive 
the nucleation phenomena when the deformation magnitude is low. This 
suggests that nucleation mechanisms are function of stresses and strains 
prevailing in the structure and/or material. 

The measurement of the strain associated with the nucleation of cavities 
is a point to be addressed in the present work. At some extent, the accuracy 
of the failure criterion here explored depends on the correct value of the 
strain associated with the void nucleation threshold. 

1.2.2 Growth of voids and microcracks 

Once the nucleation process has been set up, the microscopic failures, voids, 
cracks, shear bands, grow with the loading. 

This growth seems to be the result of ductile plastic (viscous) flow, brittle 
crack extension and shear slipping.52 They interact with each other accord­
ing to the material, temperature, stress state and loading rates. 

For most polycrystalline metals, the growth of micro-failures is caused by 
brittle crack propagation and ductile void growth. They can occur at inter 
or intra grains. At low temperatures and/or high strain rates, the growth is 
dominated by brittle mechanisms whereas the ductile mode is likely to occur 
at higher temperatures and lower strain rates. Mixed modes are expected to 
occur, resulting in a fracture front characterised by brittle cracks and ductile 
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voids. 

Brittle fracture grows linking small microcracks which may be formed due 
to the presence of voids. For more ductile materials or structures submitted 
to low level of stress triaxiality, the crack mechanism is dominated by the 
enlargement of microvoids which link to form a crack. 

The growth of shear bands is less well understood than the previous 
mechanisms of crack formation. It appears to occur by enlargement of the 
band in all directions on a plane of maximum shear strain and stress.52 

1.2.3 Coalescence of voids 

CURRAN at al.52 classify the phenomenon of coalescence of voids under two 
major groups: direct impingement and localisation between the voids. 

Basically, direct impingement is the linkage of voids which have grown 
until a point in which further stretching results in their coalescence. Im­
pingement is the coalescence mode for adiabatic shear bands. Of course 
this process of void coalescence is accompanied by stress concentration in 
the neighbourhood of the voids, diminishing the material ductility. Such 
localisation of strains is ultimately what governs the ductility of material. 
Without localisation, the material would fail by void impingement, exhibit­
ing maximum ductility. 

Coalescence due to localisation occurs in sheets between voids. These 
sheets are formed by smaller voids. Cox and Low51 sustain that the void 
sheets are planar, composed of small voids and generally oriented at 4.5°with 
the tensile axis. 

1.3 Micromechanic models of ductile failure 

Experimental evidence that ductile fracture is intimately connected with 
void growth has directed the effort of various researchers into grasping quan­
titative aspects of this phenomenon. 

In this regard, the pioneering work of MCCLINTOCK146 analyses the ex­
pansion of cylindrical holes in a non-hardening material. Disregarding in­
teraction among the various possible holes, the problem was reduced to a 
hole in an infinite medium. A noteworthy result is the very strong inverse 
dependence of fracture strain on the tensile stress, transverse to the holes. 146 

RICE and TRACEy175 treated the case of a spherical void in a remotely 
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uniform stress and strain field. They found, as MCCLINTOCK did, that the 
void growth rate increases exponentially with the stress triaxiality, meaning 
that this last parameter greatly affects the strain to failure. 

ORTIZ and MOLINARI168 have treated the same problem of RICE and 
TRACEY but considering the matrix surrounding the voids as made of a 
rigid-visco plastic material. They could assess the influence of hardening 
and strain rate, concluding that the rate sensitivity of the material has the 
effect of retarding void expansion, as expected. 

The models cited above implicitly assume that the presence of the holes 
do not affect the plastic potential. GURSON,75 however, developed a yield 
surface which has the property to shrink as the voids grow. The yield surface 
degenerates to the VON MISES one when the void volume is zero. For a void 
volume fraction equal to unity, the yield surface degenerates to a point. An 
extension of this model for visco-plastic materials has been developed by 
PAN et az.1 70 and by SUN and HUANG.188 

The GURSON model has been extensively used to grasp the basic features 
of the mechanisms of nucleation, void growth and coalescence. However, 
DOOD and BAI59 point out that, in this model, coalescence always occurs by 
internal necking of the ligaments between cavities. This contradicts the fact 
that, at some stage of the fracture, localised shear or planar flaws among 
the ligaments are likely to occur.51 Similarly, THOMASON I96 strongly re­
marks that the validity of the GURSON model is severely limited by the 
non-appreciation of internal microscopic necking of the intervoid matrix. 

These limitations have been partly overcome by various researchers. For 
instance, TVERGAARD198,199 has introduced in the GURSON yield function 
numerical coefficients aiming to bring the theoretical yield surface closer to 
the actual one. These modifications have been numerically implemented by 
various authors and are generally accepted as a good fit to the actual yield 
surface. In particular, ductile fracture in pre-notched beam specimens has 
been analysed for some static157,169 and dynamic92 cases. 

PERZYNA 172 has addressed the problem of dynamic failure. He worked 
with a spherical void embedded in rigid-visco-plastic matrix. His basic failure 
criterion is that dynamic failure occurs when both void volume fraction 
and equivalent plastic strain achieve critical values. Later on, the linear 
hardening rule used by PERZYNA was improved by NEMES et ai.,163 who 
considered a non-linear hardening material. 

CLAUSMEYER and ROOS44 present some results offailure prediction using 
as a criterion a variable q, a characteristic quantity of the degree of stress 
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triaxiality. When q achieves a critical value, ductile fracture is expected. 
Other failure criteria applied to metal-forming are commented by CLIFT ct 

al.45 

COCKS and ASHBy48 have analysed the growth of a spherical void in 
a rate-dependent plastic material. This void, supposed to be in the grain 
boundary to simulate creep, was subjected to different stress states. The 
COCKS and ASHBY model was successfully implemented by BAM MANN et a1. 5 

in a Finite-Element scheme to predict ductile failure of plates subjected to 
blast loads and disks, cylinders and spheres struck by a rod. They considered 
a hardening, strain rate material, its properties depending on temperature, 
which permits consideration of the thermal softening phenomenon. 

1.4 Rigid-plastic models of ductile failure 

Many structural analyses in the plastic regime use a rigid, perfectly plastic 
material as a constitutive law. The rigid-plastic assumption permits the 
solution of important practical problems which otherwise would be mathe­
matically intractable.34,97 

Methods to predict failure in structures based on the rigid-plastic as­
sumption are not fully explored. 

JONES95,96 has applied rigid-plastic methods to analyse beam failure by 
tensile tearing and shearing. The beam is subjected to a uniformly dis­
tributed velocity over its entire span. The values of threshold velocities 
which cause the so called mode II and III failure have been determined. The 
results are in reasonable agreement with experimental data available for a 
non-strain rate sensitive material. For tearing, a hinge length was defined 
and the uniaxial rupture strain was used in the calculations. A similar proce­
dure was applied to a free-free beam,101 being determined a critical pressure 
pulse which causes tearing failure, and for a beam struck transversely by a 
mass.137 

SHEN and JONES took another approach. They assumed that rupture 
in a rigid-plastic structure occurs when the absorption of plastic work per 
unit volume reaches a critical value. To calculate the actual plastic work 
in beams, a hinge length was estimated based on experimental data from 
MENKES and OPATS 147 for impulsively loaded aluminium beams. 

This methodology, reviewed by JONES and SHEN,lOO was applied to pre­
dict the failure of beams under impulsive loading,180 the failure of clamped 
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beams struck by a m~181 and to circular plates. 182 

The method predicts well the threshold failure impulse that produces 
tensile tearing and shearing in beams, as well as the permanent transverse 
deflections of circular plates. Nevertheless, failure in circular plates is not 
well predicted, the authors suggesting that the non-fulfilment of the clamped 
boundary condition in the experiment.s, as assumed in the theory, could be 
a possible reason for the deviation. 

It is important to remark that the rigid, perfectly plastic models for 
failure are, essentially, global approaches relying on generalised stress fields. 
Accordingly, details like void coalescence, triaxiality and softening are all 
more or less disregarded in these models. 

1.5 Local and global approaches to failure 

The interaction among voids is extremely important in determining failure. 
Every microvoid is a source of singularity in the distribution of the stress 

field.91, 172 As the void grows, it interacts with its neighbours, changing com­
pletely the matrix configuration. Due to this intendion, the way voids are 
distributed in the material affect global parameters, as has been confirmed 
experimentally by MAGNUSEN et al.,145 and experimentally and numerically 
by BECKER lO - the failure strain is significantly lower in materials with a 
non-uniform void distribution. 

Voids have different shapes and dimensions, different mechanical prop­
erties, are arbitrarily distributed in the material. Clearly, micromechan­
ics plays here the main role in revealing aspects of the interaction among 
voids and in relating local and global parameters, as illustrated by LEE and 
MEAR119 *. A successful theory to predict failure based on micromechanics 
approach has to be capable of addressing the above cited void characteristics. 
Clearly, this is a tremendous task in face of the peculiar characteristics of 
.'aids and their interrelation with the matrix. Even avoiding complications 
at microscopic level, sophisticated micromechanic models to predict ductile 
failure rely on several material constants, as in CURRAN et al. 52 Also, the 
required computational effort is intense.5 , 15, 114, 160 

The extreme alternative to this situation is the use of global failure 
criteria, disregarding details at a local level. Global approaches to fail­
ure have been explored. 114, 178 The classical concept of a yield surface has 

*Micromechanics is discussed at length by NEMAT-NASSER and HORJ162 
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been expanded to fracture surfaces, giving rise to techniques to predict fail­
ure based mainly on stress and strain parameters, as in THEOCARIS 195 and 
UKADGAONKER and AWASARE.203 Failure theories are developed as an ex­
tension of the plasticity framework,189 using generalised stresscs lOO and even 
fractal concepts.38 

One has then on one side a global approach to fracture where the atten­
tion to the details at a local level is overlooked. This makes it more arbitrary 
but simpler. On the other hand, the micromechanics approach goes to the 
deepest level of the material microstructure to search there for phenomena 
that may be helpful in explaining failure. 

Bearing in mind these characteristics, it is opportune to enquire whether 
there exists a theoretical framework which is capable to contemplate both 
local and global aspects offailure. This is the case of the Continuum Damage 
Mechanics, CDM. 

CDM sees the material as a continuum where the traditional concepts 
of stress and strain are valid. The presence of voids, small cracks or second 
phase particles are seen as elements causing stress concentrations, picked 
up by the so called damage variable. Hence, the possibility of formulating 
constitutive laws using continuous variables for materials exhibiting voids or 
small cracks. 

The meaning of a damage mechanics model lies in the smearing of local 
stress concentrations and interaction among voids in order to obtain a con­
tinuum model. The voids are assumed to occur in a representative volume 
element, which is small enough to be considered a material point as well as 
sufficiently large to contain a representative number of defects. 

1.6 Continuum Damage Mechanics 

The seminal paper published in Russian by L.M.KAcHANov,42 marks the 
beginning of Continuum Damage Mechanics *. He defined a variable, the 
integrity, whose extreme values are 1 and 0 for fully undamaged and damaged 
structure, respectively. He then applied this concept to creep analyses. The 
integrity variable evolved to the damage and was related to void inside a 
material thanks to ROBOTNOV, as pointed out in reference 112. 

Nowadays, there are two major ways of developing damage models: based 
on micromechanics and/or phenomenological arguments. In the former, the 

·According to KRAJCINOVIC,112 this term was coined by JANSON and HULT.90 
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damageis introduced in a constitutive law mainly by considering void shape 
and interaction. In the later, experimental observation aid in formulating 
damage evolution laws, damage definitions, etc: .. 

A damage model aims to establish how the presence of voids in a material 
affects the structural behaviour. In other words, it has to be formally defined 
the way damage enters in the material constitutive law and how stresses and 
strains affect the damage evolution. 

To assist in this task, thermomechanics plays a special role.71 It is 
through the basic principles of thermodynamics that a damage model is de­
veloped. This general formalism, as described, for instance, by ZIEGLER226 

has been extensively used to derive constitutive relations in general, as in 
ZIEGLER and WEHRLI,227 and including damage in particular, as in COCKS 
and LECKIE,46 HANSEN and SCHREYER78 and LEHMANN.120,121 

The developing of damage models based on thermodynamics lends to 
CDM, at first, rigor and the possibility of proposing new models by defining 
different thermodynamic potentials. If, on one hand, this flexibility is all 
necessary in face of the various existing materials, on the other hand, it 
determines a lack of agreement on a more general model, an issue discussed 
by CAROL et al.32 

The formalism yielded by thermodynamics is frequently used as an ar­
gument pro CDM, for the later is seen as coming from the former. However, 
the amount of theoretical CDM models have to be put in contrast with the 
paucity of good experimental data in the field. This, in turn, puts CDM in 
a different perspective, where new models are seen rather restrictively until 
experiments corroborate them. 

The relationship between damage and void area is one of the basic con­
cepts of CDM. However, damage can be related to other mechanical proper­
ties, as the elastic modulus. Such a relation, proposed by LEMAITRE,122,127 
has been used extensively in theoretical models and confirmed experimen­
tally by many researchers.4,23,49,55,110,13O,152 

CDM becomes then the relation of the damage to a mechanical property 
and the definition of a thermodynamic potential leading to damage evolution 
and to a material constitutive law. Eventually, a critical value for the damage 
parameter at a local material level, beyond which a microcrack is likely to 
grow in a crack, can be established. 
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1.6.1 Applications 

CDM has been applied to a vast area of structural problems. This wide spec­
trum of applications is mainly due to the possibility of formulating different 
thermodynamic potentials, specific for each problem, as already indicated. 

In maintaining its origin, CDM has been used extensively in creep analy­
sis,83, 153,222 including radioactive effects154,155 and assessment of weldment 
integrity.212 

MURAKAMI et al. 153 have simulated a biaxial stress state in a plate where 
creep is important. Their model included anisotropy and it was able to 
simulate crack propagation and non-proportional loading. Interestingly, the 
use of a critical damage equal to unity or equal to one-half does not alter 
substantially the time and strain to failure. This suggests that, for their 
model, the critical damage has a second order effect on the failure prediction. 

CDM has spread to metal forming problems,69, 109, 142,224 fatigue,37,128 
shock loading,19 buckling,173 brittle fracture,25,197 to name a few. The ca­
pability CDM has in blending local and global approaches is seen here as 
a justification for the use of CDM concepts to such different areas. This 
not only attests its generality but also emprasises the importance of a local 
approach to phenomena exhibiting a global manifestation. It is here that all 
the strength of CDM is revealed. Local phenomena are still treated under 
the frame of continuum mechanics, being subject to analysis. 

In studying the failure of fiber-reinforced ceramic-matrix composites, 
HILD et al.85 used the localisation of deformation, determined via the dam­
age variable, as an indicator of local failure. 

Localisation using damage concepts has been developed by BENALLAL et 
al., 12,13 BILLARDON and DOGHRI,20 DESOYER and CORMERY,56 among oth­

ers. It has been in development because it is atractive to treat the softening 
regime and to establish a failure condition, as in RIZZI et al.176 

LADEVEzEet al.116 applied CDM to ceramic composites and established 
failure criteria for these materials. Criteria for failure or microcrack initiation 
in composites23, 54, 70, 107, 132, 133 and polymers194 have also been established 

using CDM framework. 

The loss of load carring capacity of less idealised structures loaded stati­
cally has been established using damage concepts.35,41,58, 73,104 In particular, 

BILBYet al. 19 predicted successfully the crack growth of a full scale spinning 
cylinder test, where temperatures effects were important. KIM and KIM llO 

applied CDM to the bending of beams whith large strains and rotations 
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and COMBESCURE and JIAJU47 predict rather reasonably the behaviour of 
notched pipes in a four point bending test, in a well developed rotation 
regime. 

ROUVRAY and HAUG54,81 employed material constitutive laws incorpo­
rating damage and large strains to analyse a car made of a composite mate­
rial under different crash situtations. Also, FARuQuE and Wu66 used CDM 
to predict the crash behaviour of an aluminium bumper, obtaining a reason­
able agreement with experiments. 

It is known that damage may exhibit an anisotropic character.33,103 
Whether this anisotropy is important or not is a topic to be established for 
each material and load regime. There are quite a few different models capable 
of taking into account the damage anisotropy.39,40,49,73,104 These models, 
though potentially more accurate than isotropic damage formulations, ask 
for more material parameters to be implemented in a real analysis. This is 
restrictive in face of the difficulties of accurately measuring them. It is even 
reasonable to say that the accuracy gained in a anisotropic model is limited 
by the accuracy of the experimental data. However, damage anisotropy is 
not a topic of this research and a review of it can be found elsewhere.33 

GELIN and PREDELEANU69 offers a reviev. of some damage models and 
comments on their numerical implementation. It is interesting to note that 
the applications cited above are the product of a constitutive damage model 
coded in a Finite-Element programme. This is quite natural in considering 
that such local phenomena as damage does request a well defined continuum 
field of strains and stresses. Accordingly, besides the above cited references, 
different damage models have been implemented with the support of numer­
ical analysis.63, 129, 184,187,223,225 

Ductile damage, understood as damage associated with large strains, 
has been treated by several authors. LEMAITRE,123-125 in particular, has 
proposed an elementary model for the damage evolution in a well developed 
plastic regirre. 

Inspired by the LEMAITRE ductile damage model, WANG207-210 has pro­
posed a slightly different potential, obtaining good predictions for the failure 
of notched specimens, including non-proportional loading. Similar comments 
are valid for the work of TAl191 and TAl and YANG .192,193 

These potentials were proposed on an empirical basis to satisfy some 
particular experimental finding or to simplify the mathematical model. 

On the outset of the present research, no closure effect due to compressive 
stresses is considered, a topic treated elsewhere.25, 70, 126 This is to say that 
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here a damaged material will behave identically either being compressed or 
in tension. 

1.6.2 Limitations 

Being a new branch of mechanics, CDM has still to face important problems, 
some of them commented hereafter. 

The constitutive equations for a damaged material is derived in the same 
way as for the undamaged material but stresses and strains in the damaged 
material are defined differently. The relation between the damaged and 
undamaged space has to be somehow defined, measured, hypothesised. 

Some hypothesis, to be described later, have been proposed in the liter­
ature. Two of them, the strain equivalence hypothesis, due to LEMAITRE124 
and the energy equivalence hypothesis, due to CORDEBOIS and SmOROFF ,49 
are the most relevant and have been explored in theoretical and computa­
tional models.143,186,223--225 However, there is no direct experimental evi­

dence of which one is more appropiate and because they are used in the 
yield condition, this seems an important unsolved issue. 

The very definition of a damac;ed variable is a topic to be examined 
further. There are different ways to define and measure the damage, with 
implications in the CDM formulation,214 as it will be seen in Chapter 4. 
Here, it is anticipated that CDM models treat damage as a theoretical pa­
rameter, with no distinction among its various definitions and experimental 
techniques used to measure it. 

There is a discussion about the damage variable being local or nOI1-
loca1.205 In practice, the main reason to consider damage as a non-local vari­
able is to avoid mesh sensitivity and lack of convergence in Finite-Element 
modelling of failure based on CDM models.24,31,73, 113,164, 177 For instance, 

BAZANT9 argues that the local common damage variable cannot be used 
in the stress-strain relation. Based on a simple model, he shows that the 
damage is dependent on the microcrack size. Two different circular crack 
patterns of identical area may lead to different damage, since the crack open­
ing displacement is proportional to the cube of crack diameter in his model. 

On the other hand, XIA et al. 215 showed that there is little difference 
between local and non-local models when analysing a plate with a middle 
crack. Also, good mesh independent results were obtained with local damage 
models, as in GHRIB' and TINAWr.73 

The relationship between damage and the change of elastic modulus has 
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been criticised. 102 The reason is that damage, as such, is caused only by 
the release of elastic energy. According to J U, 102 this treatment contradicts 
evidences that plastic variables cooperate with failure mechanisms. 

This motivates models where elastic and plastic damages are defined, as 
advocate by TAHER et az.190 But, it emerges that further experimental and 
theoretical studies are necessary to investigate the role of plastic strains on 
damage. 

The measurement of the damage variable is difficult. If it is measured 
by the change of the elastic mod ulus, it is not yet clear how the damage is 
affected by the stress state. In other words, it is not well known how the 
critical damage changes if the stress state changes from uniaxial to axisym­
metric or plain. This potential dependence of the damage on the stress state 
has been approached by LEMAITRE et al., 14,126 but it is still an open issue. 

In a review of finite plasticity, NAGHDI 156 emphasises the disagreement 
among researches about the definition of plastic strain. This is here quoted to 
emphasise that CDM, though also used to predict failure in ductile materials 
under large (finite) plastic strains, has its formalism restricted mainly to 
small strains. 

There are a few attempts in the literature to deal simultaneously with 
large deformation and damage. 47,107,138,225 VOYIADJ IS and KATTAN, 108,206 

for instance, quantify the degradation of the elastic modulus through elasto­
plastic coupling where finite strains are preserved. Luo et al. 141 develops 
a large anisotropic damage theory based on energy equivalence of damaged 
and undamaged states. Models where large plastic strains are retained are 
quite recent and the subject is far from being mature and no attempt is here 
pursued towards their use. 

The last topic commented on here is regarded to the growth of the dam­
age zones. CDM aims to predict under which conditions a microcrack starts 
in a structure. Its growth is still the domain of fracture mechanics. Hence, 
the growth of the damage zone is a subject requiring further study.126 It is 
true that it is possible, via Finite-Elements, to set the strength of an ele­
ment to zero once the critical damage is achieved. By doing so for all the 
other elements, a crack path can be established. However, the localisation 
of damage does not assure a convergence of the Finite-Element solution. In 
fact, it is this point that led researches to develop non-local CDM models, 
as already commented. 
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1. 7 Final remarks 

In contradistinction from a broad class of a static and dynamic elasto-plastic 
analyses, to forecast structural failure and to establish conditions for its 
initiation is a topic not mastered yet by the current knowledge. This is a 
major point of atraction for researchers willing to put forward new strategies, 
concepts and theories to tackle the prohlem. 

Among the options, Continuum Damage Mechanics has become a ma­
jor theoretical framework for failure prediction. This is partially due to the 
fact that CDM can be derived on a thermomechanic basis, allowing its ap­
plication to different fields and to incorporate micromechanical features in 
continuum constitutive laws. In turn, such characteristics make simpler the 
implementation of CDM models in Finite-Element codes. 

Even considering the limitations commented on above, it seems that 
CDM can, in quite a few cases, effectively predict a bound for failure in 
structures. This is meaningfully shown by GHRIB and TINAWI,73 in analysing 
failure in a real concrete dam (small strains). Even the crack path could be 
correctly predicted using a damage model. 

Some CDM models consider consti~utive damage laws where the strain 
rate is important enough to affect the material behaviour. The few efforts 
in this direction, though, as in LUBARDA and KRAJCINOVIC,139 SIMO and 
JU,186,187 and ZHU and CESCOTT0223,224 are aimed at numerical applica­

tions and are not related to structural impact. The strain rate these models 
have been applied to are quite low. Indeed, CDM models used in the context 
of structural impact have not been developed yet. 

Consider next the remarkable fact that CDM has been used to predict 
structural failure via numerical procedures only. CDM models are imple­
mented in Finite-Element codes, taking advantage of knowing rather pre­
cisely local values of strain and stress. 

This intensive use ofCDM coupled to numerical codes, establishes a trend 
where analytical methods of failure prediction based on CDM are relegated. 
In spite of that, it is worthwhile to investigate whether CDM can be used 
in conjunction with standard theoretical solutions, as the ones yielded by 
rigid-plastic methods of analyses. 

It is against this background that the present work arises. Its main aim 
is to use a ductile damage model, applying it to the prediction of failure in 
impacted structures. As a first step, beams are chosen to test the approach 
here proposed. 
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Because the scope of this research is to predict failure in impacted struc­
tures, it is most necessary to use a material constitutive law where strain 
rate effects are taken into account. This is the subject of Chapter 2, which 
describes how a simple stress-strain-strain rate relation is obtained through 
a series of dynamic tensile tests. 

As already emphasised, the influence of the hydrostatic stress on failure 
is accepted as very significant. It will be shown that the damage evolution 
is affected by the hydrostatic stress but it needs to be demonstrated how 
important is the influence of the hydrostatic stress on failure. This matter 
is adressed in Chapter 3, where static and dynamic tensile tests on notched 
specimens will help to clarify the role of the stresses and strains on failure. 

The failure criterion yielded by CDM is simple. Local material failure will 
take place when the damage parameter achieves its critical value. Chapter 
4 presents different techniques to measure the damage, its evolution and its 
critical value. A numerical simulation will be called upon to assist in the 
task of a more accurate measure of the damage. 

Chapter 5 will introd uce the basic formulation of CDM and will integrate 
the damage evolution equation for some special stress-strain relations, strain 
rate efffects being incorporated. Closed form expressions for the damage 
evolution will then be used to explore the failure sites in notched specimens 
and the dynamic limit forming diagrams. 

It will be shown that the prediction of failure in beams relies on the 
knowledge of the plastic strains they sustain. By defining an appropriate 
hinge length and using experimental data, Chapter 6 addresses this problem. 
It is shown that a reasonable prediction of large plastic strains in beams, 
including shear, can be obtained by knowing the beam displacement, the 
load position and one material parameter. 

Chapter 7 applies Damage Mechanics, with strain rate effects incorpo­
rated, to the prediction of the displacement to failure of beams made of a 
strain rate sensitive material and impacted by tups of different geometries. 

A general discussion about the capability of CDM in predicting failure 
of beams under impact conditions is left to Chapter 8. 



2 Material 
Characterisation 

A QUANTITATIVE analysis of a structural engineering problem is based 
on the solution of a set of equilibrium equations and a kinematically admis­
sible displacement field. They are supplemented by the boundary conditions 
and initial conditions of a particular problem. Additionally, these statically 
and kinematically admissible sets are independent of each other and, to link 
them, the material behaviour, from which the structure is made, should be 
invoked. This points towards the importance of defining the way the ma­
terial behaves under different load, temperature, radiation, microstructure 
changes, etc ... 

The mathematical equation relating some of these variables is called the 
material constitutive law and it is, in general, gained through a series of 
experiments. The experimental data are then used to propose functions by 
curve fitting. Though this procedure might sound less scientific, the other 
extreme of defining theoretical equations of state based, for instance, on 
micromechanical processes or chemistry is still in its infancy. 

Traditionally, the tensile test is the most common procedure to establish 
a constitutive law. The simplicity of the test, however, is only apparent and 
its analysis and data interpretation is certainly not mundane. In fact, a full 
description of what happens when loading a tensile specimen up to rupture 
is not yet possible. 

This chapter aims to present how basic mechanical material properties 
are determined through a series of static and dynamic tensile tests. A typ­
ical tensile test is described, followed by details of the material used in the 
experiments. The experimental arrangement for the static and dynamic ten­
sile tests is shown with comments about data accuracy and analysis. Next, 
the results for static and dynamic tests are reported. An equation is then 
proposed capable of predicting well the experimental data for a broad range 
of stresses, strains and strain rates. The chapter ends with comments on the 
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relevant measured data and on the stress-strain-strain rate relation. 

2.1 Tensile test 

A typical tensile test consists in loading a strip or a cylindrical rod up to 
some desired level of deformation or stress. The load * increases continuously 
as the specimen hardens. It then achieves a maximum value and the stress 
state up to this point is uniform, as demonstrated by MILES. 151 Following 
the peak load, at some stage, a bifurcation in the uniform stress field occurs 
and localisation takes place. 

The exact stress-strain state associated with localisation is a complex 
issue. Firstly, it depends on the specimen geometry and material proper­
ties.72 For slender cylindrical specimens, bifurcation occurs nearer to the 
maximum load than for stubby ones.88,159 Rectangular specimens tend to 
bring the localisation point nearer to the maximum load, when compared to 
cylindrical ones, ie rectangular specimens are inherently more unstable.2OO 

The test speed, and hence inertia and strain rate, are other factors that 
infl uence the strain to necking. The higher the material strain rate sensi­
tivity the greater the delay in localisation. This was treated theoretically 
by HUTCHINSON and NEALE89 and numerically by KNOCHE and NEEDLE­

MANl11 and PAN et al. 170 

Elastic and plastic wave interaction, inertia, strain rate variation, among 
other variables, promote a complex picture of a dynamic tensile test. As an 
example of a non-expected feature of a tensile test, at very high strain rates, 
it is possible that a second point of bifurcation occurs in a specimen. This 
means that necking starts in two different zones, with one finally overcoming 
the other and progressing until total fracture. A numerical study of this 
phenomenon is given by KNOCHE and NEEDLEMAN.IlI Figure 2.1 illustrates 
the dou ble necking for one of the cylindrical mild steel specimens tested here 
and for a rectangular cross section aluminium specimen. 

2.1.1 Equivalent stress 

Once a tri-dimensional stress state takes place in the necking zone of a cylin­
drical specimen, radial and hoop stresses begin to increase to the detriment 

• In this work, the precise use of expressions like measured load is relaxed. As a matter 
of fact, in the present context, load, stress, elastic modulus, etc ... are inferred from, 
among other variables, strain measurements. 
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(a) (b) 

Figure 2.1: The phenomenon of double necking indicate by the white lines. 
(a) Rectangular aluminium specimen. (b) Mild steel cylindrical t nsile 
specimen. Test speed of around 5 m/s. 

of the axial stresses. Thereafter, load divided by area is no longer a measure 
of the tri-dimensional stress state and some sort of equivalent stress should 
be sought. This is what BRIDGMAN developed:26•27 a theoretical solution for 
stresses and strains in a tensile cylindrical specimen made of a VON MISES 

material. 
According to BRIDGMAN , at the minimum cross-section of a cylindrical 

specimen exhibiting necking, the true equivalent strain , radial, hoop and 
axial stresses are given, respectively, by 

Ceq = 2In(do/d), (2 .1) 

(
a2 + 2aR - r2) 

a rr = a88 = Be In , 
2aR (2.2) 

{ (
a2 + 2aR - r2)} 

Oyy = Be 1 + In 2aR ' (2 .3) 

where 

Be = load 
7l'a2(1 + 2R/a) In(1 + a/2R) ' 

(2.4) 
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Figure 2.2: Correction factor according to equation (2.5), for cylindrical 
specimens with diameters of 5mm, lOmm and 20mm, as a function of the 
necking radius. 

In these expressions, do and d are the initial and current diameter, a is the 
current cross-section radius, R the outer radius due to necking and r, 9, y 
are the cylindrical co-ordinates in the minimum cross-section. 

By noting that (1eq = Be and that load/rra2 is the average axial stress, 
one can consider 

1 
Ie = (1 + 2R/a) In{1 + a/2R) 

(2.5) 

as a correction factor by which the average axial stress has to be multiplied 
to give the material equivalent stress. The smaller the value of Ie the greater 
the error in assuming (J'eq = (11/1/' 

Figure 2.2 shows this correction factor for specimen diameters of 5mm, 
lOmm and 20mm as a function of the external radius at necking •. 

It is clear from the above equations that, to infer the material constitutive 
law from a tensile test, one needs to measure the evolution of the necking 

• BRIDGMAN27 remarks that the strain hardening curve rises less rapidly with strain in 
a Ueq versus ~eq curve than in U,," versus ~eq curve. This widens the discrepancy between 
u eq and U,," for high plastic strains. 
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Figure 2.3: Load behaviour near fracture in a tensile test conduct at a 
speed of 1.9m/s. 
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radius *. This is not an easy task, especially in dynamic tests, and is reflected 
in the shortage of material data under dynamic conditions, in the range of 
high plastic strains. 

2.1.2 Stress definitions 

Next, consider the fracture process. It is a common procedure in engineering 
practice to define the fracture stress as the fracture load divided by the area 
of a broken specimen measured after a test. This simple definition introduces 
some problems. First, the load, when recorded using a high sampling rate, 
continuously decreases until zero, as illustrated in Figure 2.3. Thus, it might 
be difficult to define precisely the fracture load. Secondly, the minimum cross 
section area and the neck radius measured after a test is not necessarily the 
one prevailing at the time the fracture load was measured. 

This calls for a definition of the failure point, gained by considering the 

-The radius measured on the broken specimen is not the same as at the moment of 
fracture. 
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equivalent stress versus the equivalent plastic strain curve. The curve will 
exhibit, at same stage, a sharp drop, as experimentally shown by MACKENZIE 
et al. 144 • and numerically by TVERGAARD and NEEDLEMAN. 201 This drop 
in the equivalent stress is a consequence of a macro crack formation in the 
interior of the specimen and it is, accordingly, defined as the failure stress. 
The equivalent strain at this point is defined as the failure strain. 

The equivalent failure stress should be distinguished from the axial frac­
ture stress and from the equivalent fracture stress. The axial fracture stress, 
O"yf, in a macro sense, is nil. Nevertheless, for comparison purposes, the 
axial fracture stress is defined as the load labelled Ff in Figure 2.3 divided 
by the final cross-section area, measured after a test. The equivalent frac­
ture stress, O"Jr, is the axial fracture stress corrected for triaxial effects using 
equation (2.5). Also, the fracture strain is defined as a ratio between initial 
and final (as measured after test) cross-section areas. Clearly, after necking, 
the equivalent stress is not the true axial stress. 

The measurement of the failure strain and stress is difficult, especially 
in displacement-controlled tensile test machines. The main difficulty here 
is to accurately record the specimen geometry at the maximum equivalent 
stress. Even so, this task will be pursued here because it might reveal some 
differences between failure and fracture stress and/or strain. 

2.1.3 Strain rate 

As previously commented, the actual strain rate in the material is a ma­
jor issue. As soon as a tensile test commences, the axial strain increases 
almost linearly, indicating a constant strain rate. Around the upper yield 
point of the material here tested, there is a noticeable increase of the strain 
rate, lasting until the lower yield point is reached. The strain rate becomes 
constant again, but now at a higher level, and it stays more or less so until 
necking occurs. After necking, it is anticipated that the strain rate changes 
drastically. 

Figure 2.4 illustrates this phenomenon for low strains. For large plastic 
strains, the strain rate pattern in the necking region is apparently not ad­
dressed in the literature, probably because of the difficulty in measuring such 
parameter at high speeds. Due to the potential importance of this topic, it 

·MACKENZIE et al. l44 showed that a macrocrack initiation is associated to a peak in 
the U yy versus Eeq curve. This implies in a peak in the U eq vern, .. Eeq curve since u"" is 
proportional to ueq • 
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Figure 2.4: Evolution of the equivalent stress and engineering strain in a 
tensile test before necking. The material is a mild steel and the test speed 
2.2m/s. 

will be shown subsequently how this variable was measured. 
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Because the strain rate in a displacement controlled tensile test is not 
constant, it is opportune to introduce a definition of strain rate. 

For that matter, consider again Figure 2.4. The marked change of strain 
rate around the upper yield point makes difficult to consistently use this 
strain rate in a constitutive equation. On the other hand, the strain rate 
just after the upper yield point is nearly constant until the ultimate stress. 
This strain rate, denoted by €, will be used in the material constitutive law. 

Because € is a true strain rate, it is slightly different from the engineering 
strain rate, f, defined as the test speed divided by the initial gauge length. 

The engineering fracture strain rate, fjr, is defined as the fracture engineer­
ing strain divided by the test time. 

The issues here commented will now be investigated. 

2.2 Material 

A mild steel is examined in this study with the BRITISH STEEL classification 
BS EN 10025 FE430A and having the nominal properties and composition 



24 Material Characterisation 

Table 2.1 : Nominal material properties and chemical element concentra­
tions (in weight %) for the BS EN 10025 FE430A steel. y and Su are 
the engineering yield and ultimate stresses in MPa. e Jr is the traditional 
engineering fracture strain (in %). 

Sy Su e Jr C Si Mn P S Al 
346 511 31 0.18 0.022 0.97 0.015 0.012 0.039 
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F igure 2.5 : Plate as delivered indicating the direction used to cut the 
specimens. Dash lines indicate flame cut. 

listed in Table 2.1. 

The material was delivered as a long plate and it was flame cut according 
to the directions shown by the dashed lines in Figure 2.5. It was then cut 

with a band saw in strips of 12x300mm along the directions shown in the 

same figure . A few specimens were cut at 45° and 90°. The majority of the 

specimens are along the rolling direction. The minimum di tance from the 

plate edges was set around 50mm in order to avoid the heat affected zone 
due to flame cutting. The strips were then turned into cylindrical bars and 
no heat treatment was performed. 

The volume fraction of inclusions can be determined by the expression67 

( 
0.001 ) 

Iv(%) = 5.4 S(%) - Mn(%) , (2 .6) 

which, using Table 2.1, gives Iv = 0.059%. This is to be compared with 
the value of 0.03% measured for this material through the void counting 
procedure, as described in Chapter 4. This parameter is quoted here because 
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Figure 2.6: Schematic representation of the measurement system used in 
the static tensile tests. 
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of its importance in the micromechanics theories of failure, as the ones based 
on GURSO flow potential commented on Chapter 1. 

2.3 Static tensile tests 

The static tensile tests were conducted on an INSTRON 4204 tensile test 
machine . The head speed was set to Imm/min, giving an average st rain rate 
of € = 4.0 X 1O-4s- 1. The load and displacement signals in all the tests were 

recorded directly from the machine. In some cases, the transverse strain was 
measured using a mechanical/electrical INSTRON extensometer. Figure 2.6 

shows the measurement system and Figure 2.7 shows the specimen geometry. 

The strain gauges EP-08-125AD-120 from MICRO MEASUREMENTS, were 

connected in a quarter-bridge configuration. They are designed to sustain 
strains as high as 20%. The strain gauge signals were amplified separately 
in a FYLDE 359TA amplifier, whose linearity in the range of 0 to 5V was 
confirmed with a high precision signal generator. Two amplifier gains were 
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F igur e 2.7: Geometry of the specimens used in the static and dynamic 
tensile tests. In the static tests , no head gauges and flags were used. All 

dimensions in millimetres . 

chosen to cope with the elastic and plastic strains. The test scale is readily 
obtained from the gauge factor definition and knowing that the strain gauge 
is connected in parallel to the calibration resistance. This gives 

(2 .7) 

where e is the engineering strain, 91 is the gauge factor, R $g is the strain 
gauge resistance and Reall is the internal amplifier resistance. All the re­
sistance were measured with an accurate multimeter, SOLARTRO model 

7150. 
The FYLDE output was fed into a TEKTRONIKS AM502 amplifier aiming 

only to filter eventual noise in the signal. The signals were then recorded 
in an oscilloscope GOULD 1604. From there, through a GPIB interface the 
data were dumped to a pc486DX for eventual analysis. 

Lastly, the neck formation was monitored using the EKTAPRO image anal­
ysis system, which is basically a video camera with a computer to store the 
image. Using simple procedures to define the image scale, the diameter and 
radius in the neck zone were measured . This information was then used to 
obtain the equivalent stress, as indicated later. A similar arrangement was 
used in references 28 and 68. 

2.3.1 Validation 

The procedure for static tensile testing is standard apart from the image 
recording system. 

The transverse sensitivity of the strain gauges was corrected through 
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equation:150 

(2.8) 

where v is the Poisson's ratio, kt is the transverse sensitivity of the strain 
gauge and em refers to the measured engineering strain. 

A source of error is the change in the gauge factor as deformation in­
creases. HUANG AND KHAN87 report on an equation to correct the gauge 
factor, function of strain. This correction is rather different from other 
sources,150 and it should be strongly dependent on the strain gauge type. 
Hence, it does not seem reliable to attempt any correction here. 

An important point is how accurate the plastic strains and stresses can 
be measured with the image analyser. In the system used, an image can 
be represented by a maximum of 238 pixel. If the analyst detects 1 pixel 
of difference in the specimen diameter, this means a diameter resolution of 
100 x 2~8 = 0.4%. In fact, this figure was estimated as 2% because the image 
does not fill the screen and because a difference of one pixel is not always 
easy to detect. An error of 2% in the diameter represents an error of 4% in 
the plastic strain measured by the diameter contraction. These figures, valid 
also for the axial stress, were confirmed when analysing notched specimens 
(see Chapter 3). 

2.4 Dynamic tensile tests 

The dynamic tensile tests were conducted in a displacement controlled ESH 

servo-hydraulic machine. The associated instrumentation is presented in 
Figure 2.8 and the geometry of the test specimen is depicted in Figure 2.7. 

The specimen used in the dynamic tests have a smaller diameter when 
compared to the static ones. This reduces the dynamic load and allows the 
ESH machine to operate at higher speeds. Flags were also attached to the 
ends of the gauge length, as shown in Figure 2.7. They offer a reference 
mark to the ZIMMER, which records accurately their relative movement *. 

The strains were measured via strain gauges connected to an unbalanced 
WHEATSTONE bridge circuit. This instrument uses a stable power source 
and it is intrinsically non-linear, specially for high values of strain. The 

·The displacement transducer attached to the ESH machine gives a poor signal due to 
the machine compliance. 
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Figure 2.8: Schematic representation of the measurement system used in 
the dynamic tensile tests. 

non-linearity was taken into account, when processing the data, through 
eq uation 150 

(2 .9) 

The body strain gauges were connected in a half-bridge configuration­
the signal was then split in two TEKTRO les AM502 differential amplifier 
with the filter set at O.lMHz. Different gains were set in the amplifier 0 

that the elastic and plastic strains exhibited a good resolution. All the strain 
gauge calibration was direct, ie a resistance was connected in parallel to the 
gauges and the resulted voltage was accurately measured. 

The signals were recorded by a 10MHz KO TRO transient recorder 
model TRA800, for posterior analyses. In particular this transient recorder 
has an amplifier accuracy of ±O.S% and the time base can be set as small as 
20ns •. This capability was explored in order to fully record the load signal 
near fracture . 

• A small time base is strongly recommended in dynamic tests. DAVE and BRo\ :-;53 

cliscu s the main sources of error in a tensile test. 
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The minimum gauge length for the dynamic specimens was 40mm; smaller 
values would not provide adequate space for fixing the strain gauges and 
flags. 

2.4.1 Validation 

The image analyser was set in a similar way to the static tests. The main dif­
ference here is that the image had to be reduced up to one-eighth, depending 
on the test speed. At higher speeds, EKTAPRO does not record accurately 
curved contours. It is estimated that the diameter measured with the image 
are within a precision of 3%, which means a maximum error of 6% in the 
readings of strains and stresses. This error is slightly larger than in the static 
tests. 

The signal from the head gauges were also used as an input for the 
EKTAPRO to synchronise the image system to the transient recorder. In 
fact, for very high speed tests, there is a delay between the load signal and 
the image since the former is measured at a different location from the later. 
This delay may be taken into account by shifting the time associated with the 
images by an amount which brings the load signal as recorded by EKTAPRO 

to the same values recorded by KONTRON. This procedure was done for all 
the tests where such shift occurred. 

It is evident that in a tensile test, the load is a fundamental parameter. 
For static tests, force is relatively easy to measure but in the dynamic case 
it can be difficult. Figure 2.9 shows the load values in a typical dynamic test 
as measured by the load cell and by the gauges located on the enlarged end 
of the specimens. It can be seen that the load cell signal cannot be used in 
the analysis due to its strong fluctuation. 

The scale for the head gauge was determined by keeping the amplifier 
gain constant throughout all the tests. By comparing head gauge and load 
cell signals at low speeds, a constant factor load signal/strain gauge signal 
was worked out. By knowing this factor and the strain gauge signal the load 
can be determined for higher speeds. This method works well, as confirmed 
by analysing data in regions where the load cell and head gauges signals do 
not present a significant variation. 

Lastly, the accuracy of the displacement values, as recorded by the ZIM­

MER optical system, was easily checked by measuring the specimen length 
after the tests. It was confirmed that the figures were correct. 
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Figure 2.9: Load as measured by load cell and by head gauges. Test speed 
of 5.6m/s. 

Table 2.2: Summary of some mechanical properties of mild steel at differ-
ent orientations. 

specimen E (GPa) v Sy,.", (MPa) rTf,. (MPa) ef,. 
450 213.5 0.313 332.0 929.1 1.14 
900 213.9 0.279 315.0 803.5 0.92 

2.5 Results 

Table 2.2 reports on the main mechanical properties of the material cut at 
45°and 90ofrom the rolling direction. They are listed here for the sake of 
completeness though the main focus will be on the material behaviour along 
the roIling direction, whose data are listed in Table 2.3. 

The engineering stress-strain curve is depicted in Figure 2.10. Not all the 
tests were plotted for the sake of clarity. The data were neither averaged, 
nor filtered by software nor interpolated. The various strain rates are also 
quoted. 

From these data, it is possible to evaluate the true stress-strain curve 
using the expressions 

O'yy = 8(1 + e) and Ceq = In(1 + e), (2.10) 



Table 2.3: Main results of the static and dynamic tensile tests. 
spec t028 t029 t036 t041 t080 t053 t087 t085 t082 t054 t086 t083 t084 t081 t089 tOOl t090 
do mm 9.08 8.98 6.00 5.99 9.00 8.98 7.00 7.00 8.95 8.99 6.98 9.00 8.93 8.94 7.00 6.00 6.00 
d/ r mm 5.03 5.13 3.31 3.28 5.16 5.02 3.84 4.06 5.06 5.04 3.98 5.06 5.04 5.20 3.92 3.19 3.40 
gl mm 60 60 40 40 40 55 40 40 55 53 40 40 55 40 40 40 40 
i s i 0.0004 1.4 1.8 1.9 2.1 7.8 8.7 16.1 39.2 72.6 105.5 195.1 208.8 239.9 

el r 8-1 0.3 0.3 3.7 4.6 2.4 7.7 19.3 40.5 48.2 139.9 106.1 138.8 

~/a 1.18 1.12 1.19 1.20 1.06 1.16 1.20 0.99 1.14 1.05 1.00 1.12 1.04 1.14 1.09 
~/r 1.18 1.12 1.19 1.20 1.11 1.16 1.20 1.09 1.14 1.14 1.12 1.15 1.14 1.08 1.16 1.26 1.14 
e/ r 0.31 0.34 0.30 0.26 0.31 0.26 0.31 0.29 0.34 0.26 0.29 0.35 0.30 0.27 
eu 0.12 0.21 0.21 0.13 0.14 0.16 0.15 0.15 0.15 0.16 0.14 0.09 0.13 0.15 

EFmaz 0.11 0.19 0.19 0.12 0.13 0.15 0.14 0.14 0.14 0.13 0.09 0.12 0.14 

~bod!! 0.17 0.17 0.16 0.18 0.15 o.n 0.17 0.17 0.17 0.20 0.13 0.13 0.25 0.19 0.17 

u"uP MPa 320.0 314.5 333.0 329.3390.9386.6 399.6 425.0 426.3 424.6 428.4 515.6540.4 563.8 579.9 550.1 623.1 
lT y, ... MPa 320.0 309.5 331.3 326.2390.9369.3 383.3 400.1.410.8 362.7 416.6 433.8487.4 505.9 543.2 483.2 547.8 

8u MPa 479.3 448.7 498.1 493.4531.5 524.2 542.4 551.6 551.0 628.5 571.2581.5 603.1 605.3 599.0 657.8 

lTu MPa 502.5 603.7 598.4 601.7 598.6 628.1 635.4 632.5 720.9 661.4 685.7 661.0 676.9 757.8 

IT/a MPa 908.2 889.61034.01022.5911.3894.8 965.81044.3 980.9 928.0 952.8 974.0 1132.9 989.9 952.91058.7 

IT/r MPa 956.4 930.7 903.2 881.0 906.0 880.3 850.7 898.2 1016.9 919.1 915.7 982.5 

IT!!l MPa 1027.5 1049.41129.0 1118.3925.3974.01055.71037.41066.21036.61013.61092.0 1173.41077.21076.01145.5 

E GPa 212.9 206.6 

R/ r mm 2.0 1.8 3.2 2.5 2.5 3.2 3.2 2.3 2.5 2.5 3.8 2.5 2.0 2.3 

" 0.286 0.288 
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Figure 2.10: Engineering stress-strain curves for a mild teel with the 
strain rate labelled on the curves. 

where sand e are the engineering stress and strain definitions. These equa­
t ions are valid up to necking or, roughly, until the engineering stress achieve 
a maximum value. After this point, localisation occurs and the diameter­
time history should be followed if the actual stress-strain points are required. 
Moreover, if the equivalent stress is being sought, it is necessary to monitor 
the radius evolution at necking. This can be done with the image system. 
One then arrive at the true equivalent stress-strain curve for the present ma­
terial, Figure 2.11 '". Up to an equivalent strain of around 20%, the curves 
are fully experimental. After that, only a few discrete points can be mea­
sured due to the limi ted sampling rate of the image system . A straight line 
was then used to interpolate the image data. 

The curves presented in Figure 2.11 are those were an image at the peak 
equivalent stress was recorded. This was not always the case. To evaluate 
the failure equivalent stresses quoted in Table 2.3, one needs to know the 
necking radius and diameter at this point. 

The diameter may be interpolated using specific values recorded for each 
test, as shown in Figure 2.12. The necking radius is used to correct the axial 
st ress through the factor f e. This was inferred by plotting the neck radius 
as a function of the plastic strain for various tests . These data were then 

"E lastic strains were disregarded after necking. 
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F igure 2.11: Equivalent stress- strain curves for a mild steel for various 
strain rates, as quoted . 
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interpolated to yield the factor fe, plotted in Figure 2.13. It was not possible 
to infer whether f e is affected by the strain rate. 

The true equivalent failure and fracture strains and the engineering frac­
ture strain are plotted in Figure 2.14. It can be noted that the failure 
strain, ie the strain associated with a maximum equivalent stress, tends to 

be slightly smaller than the fracture strain, ie the strain obtained measur­
ing the diameter in the broken specimens. Also they are not affected by 
strain rate. The yield stress of the material is strain rate sensitive but the 
failure and fracture strains are not, at least within the range of strain rates 

measured. 
Figure 2.15 shows the true equivalent strains at the maximum load, 

EFmo%' and as measured by the diameter reduction far from the neck region, 
Ebody. If bifurcation had occurred at the maximum load , all the subsequent 
strain would have concentrated mainly in the neck zone. The fact that Ebody 

is higher than EFmu shows then that bifurcation takes place after the max­
imum load point . The strain rate does not affect either variables, again for 
€ ~ 250s- 1

. 

Figure 2.16 shows the behaviour of the upper and lower yield stresses plus 
the ultimate tensile engineering stress against strain rate. The equivalent 
failure stress, a fa, the equivalent fracture stress, a fn and the traditional 
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Fig ure 2.12: Diameter evolution for a tensile test at a speed of O.1m/ . 
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Figure 2.13: Correction factor used to estimate failure stress and strain. 
The various strain rates are also quoted. 
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Figure 2.14: Equivalent failure and fracture strains and engineering frac­
ture strain versus strain rate. The lines are fitted linearly to the data. 
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Figure 2 .15: Equivalent strain at maximum load, cFmar , and as measured 
by the diameter contraction, Cbody, against strain rate. The lines are a 
linear fi t to the data. 

35 



36 Material Characterisation 

800 
0 

cr 0 

(MPa) ~ 

600 ~ ~~ 

~ ~ o 0yl4' 

~ 
os., 

400 
~ Oylow 

200 

0 1 

0 50 100 150 200 250 

E (1/s) 

F igure 2.16 : Evolution of upper and lower yield true stresses plus ultimate 
tensile engineering stress against strain rate. The lines are a logarithm fit 
to the data. 

fracture stress, C7Yf' ie the load point Ff indicated in Figure 2.3 divid d 
by the broken cross-sectional area, are depicted in Figure 2.17. It emerges 
that the traditional fracture stress is higher than the fracture and failure 
equivalent stresses. 

Consider now the strain rate. The strain rate as measured by the strain 
gauges is limited in practice to strains less than 10%. The strain rate mea­
sured by the flags gives only a crude idea of what really happens in the 

necking region . However, using the image system, it was possible to have 
a quantitative idea of the variation of the strain rates in the necking region 
through the entire history of the test, up to fracture. A collection of some 
curves is presented in Figure 2.18. It is evident that the strain rate increases 
at least one order of magnitude throughout a tensile test. It could be argued 
that this increase in strain rate is due to a variation in the tensile machine 
speed during the test. To disregard this hypothesis, the displacement be­
haviour in a low and in a high speed test is depicted in Figure 2.19. It i 
evident that the speed is nearly constant for both cases, confirming that the 
change in strain rate is a phenomenon in itself for displacement controlled 
tensile tests . 
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Figure 2.17: Equivalent failure stress, cr fa , equivalent fracture stress, cr f r , 

true axial fracture stress, cryf , against strain rate . The lines are a logarithm 
fit to the data. 
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F igure 2.1 9: Displacement and load behaviour for a tensile t t at (a) low 
(i= 1.4s-1) , and (b) high (i=208.8s- 1) speed. 

2.6 Constitutive relations 

As anticipated in F igures 2.10 and 2.11 , the strain rate plays a fundamental 
role in the material behaviour and it causes the yield stress to increase b . a 
factor as large as two in the present test programme. Hence, it i impor ant 
to not only relate stresses to strain but also to strain rate without mention­
ing and considering the well known influence of temperature, load hi tory, 
biaxial loading etc . . . on the material behaviour. 

A material constitutive law is responsible for establishing such a r la­
tionship • . 

Ideally, once the strain, strain history and strain rates are known the 
stresses are obtained by applying a function such as 

a=g (c,i) . (2 .11 ) 

The determination of the function 9 has been the scope of res arch for 
many years. 

To quote some important constitutive laws, JOH 0 t al. 3, I ug-

gested the material law 

(2.12) 

with the experimental parameters aD, B C, n' and m'. T- is a temperature 
term and EO is a reference strain rate. Also Z ERILLI and ARMSTRO G220.221 

• HAUPT offers a review on mathematical modelling of material behaviour.82 
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proposed the following relation among stress, strain, strain rate and temper­
ature 

(2.13) 

where CO-C6 and n' are constants. 
Equation (2.13) was developed on a more micromechanical basis and is 

valid for bcc metals. It shows an interesting and useful characteristic, namely 
that the plastic strain is uncoupled from the strain rate and temperature. 
This means that the stress-strain curve is simply translated up and down 
with the strain rate and temperature, as pointed out by MEYERS.149 

The list of constitutive laws is extensive and reviews can be found else­
where.65,80, 148, 149, 228 

To determine the constants in these equations, a series of static and dy­
namic tensile tests are performed for a certain material. Data like yield and 
ultimate stresses are plotted versus strain rate. The coefficients in these 
equations are then determined in order to bring the prediction of the con­
stitutive equation as close as possible to the data. 

Consider now the widely u~~d COWPER-SYMONDS equation *. It relates 
the static, 0"0., and dynamic, O"Od' flow stresses to the uniaxial strain rate, i, 
according to 

0"0 (i )l/q 
_d = 1+ _ 
0"0. C 

(2.14) 

C and q are material parameters chosen in order to best describe the material 
sensitivity to strain rate. 

The prediction of this equation for the lower yield stress of the mild steel 
here tested is shown in Figure 2.20. In this case, the coefficients C and q in 
equation (2.14) are the ones on the third row of Table 2.4 

The coefficients in the COWPER-SYMONDS equation assume different 
values for different ranges of strains. If these coefficients are kept constant, 
the prediction for some stresses is not good. For instance, by using the 
coefficients in the third row of Table 2.4, the prediction of the ultimate and 
failure stresses, according to equation (2.14), is as depicted in Figure 2.20. 

Table 2.4 lists different coefficients for the COWPER-SYMONDS equation 
according to the stress and strain rate data used. 

°EL_MAGD65 attributes this expression to P. LUDWIK. 
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Figure 2.20: Prediction of the dynamic yield, ultimate and failure tr 
versus the strain rate , according to equation (2.14). The coefficient C and 
q for all the predictions are listed on the third row of Table 2.4 . The ymbol 
are experimental data for mild steel. 

By making the coefficient C in equation (2 .14) strain dependent Jo . 'E 9 

suggested an alternative equation to grasp the material strain rate ensitivity 
to ultimate stress. The prediction of his equation for the ultimate str 

(2.15) 

Cu is obtained in the same way as C but now using the dynamic and tatic 

ultimate stresses, (JUd and (Ju,. q is considered a material constant, though 
there is no restriction of it being strain dependent. Equation (2.15) is valid 

os equation. 

based on q 
stress strain rate 

(jyup i 360.07 3.42 

(jYI .", i 59 .13 3.052 
~((jyup + (jYI •• .) i 550.43 3.439 

cr YtoUJ el r 411.62 3.244 
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up to the ultimate strain and it reduces to the COWPER-SYMONDS equation 
at yielding if Cu is replaced by C. 

Clearly, in order to obtain a good prediction for stresses, the coefficients 
in equation (2.14) have to be strain dependent. An equation with strain 
dependent coefficients is more complicated to deal with than its counter­
part, with constant coefficients. This is especially significant when using 
analytical methods in structural analysis. 

The fact that the COWPER-SYMONDS equation is not suitable for the 
prediction of a broad range of stresses, unless its coefficients are variables, 
suggests to search for an alternative equation, with the feature of keeping 
a balance between simplicity and accuracy. An empirical equation which 
can fit well over the entire range of stresses, strains and strain rates for the 
present experimental data is 

or 

where 

(J 
m--­- Cl/q and 

(2.16) 

(2.17) 

_ 1 
n =-. 

q 
(2.18) 

In equation (2.17), (Jeqd and (Jeq. are the dynamic and static equivalent 
stresses, respectively. The coefficients C and q in equation (2.16) is deter­
mined in the same way as in COWPER-SYMONDS'S. The parameters (J and € 
can be freely chosen based on the available experimental data or application. 
Upon this choice, the coefficients C, q, in and ii will assume specific values. 

For instance, the coefficients C and q could be evaluated using ultimate 
stresses and overall strain rates in tensile tests, or even stresses and strain 
rates at a specific strain. Once the coefficients are determined they are kept 
constant; yet any stress can be predicted. 

If the yield stress, (Jy, and the strain rate E are used for the evaluation 
of in and ii, equation (2.16) is written as 

(2.19) 
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This equation allows the prediction of the dynamic yield, ultimate and 
failure stresses according to 

(2.20) 

(2.21) 

and 

( 

. ) l/q 
{7Jad={7Ja.+{7y. ~ , (2.22) 

respectively. 
These equations make clear that any dynamic stress can be predicted. 

yet keeping the coefficients in = {7"./C1/q and ij = 1/q constants. 
Figure 2.21 plots equations (2.20)-(2.22) together with the experimental 

data for the mild steel. 

2.7 Discussion 

The various parameters recorded in the experiments help to draw a clear 
picture of how the material behaves under different strain rates. The ma­
terial is reasonably homogeneous and its yield point is strain rate sensitive. 
Figure 2.21, but not the failure strain, Figure 2.14. The results shown in Fig­
ure 2.14 indicate a slight difference between the failure and fracture strain. 
However, this difference is not significant. 

The strain at which the onset of inhomogeneous behaviour occurs is 
higher than the strain at the maximum load, Figure 2.15. Also, it is not 
strain rate sensitive in the range tested. The bifurcation point is important 
and it is associated with the beginning of damage growth. as discussed in 
Chapter 4. 

A distinction exists between the traditional true fracture stress, {7IJJ, it 
fracture load divided by the final area, the equivalent fracture stress, {7/,., it 
{7yJ corrected for triaxial effects, and the equivalent stresses at failure, {7Ja, 

ie at the peak equivalent stress. This difference is attributed mainly to the 
growth of the hoop and radial stresses in the necking zone, which causes an 
increase in the hydrostatic stress {7h. 
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Figure 2.21: Experimental results for lower yield, ultimate and equivalent 
failure true stresses versus strain rate . Dotted line is the prediction of 
equation (2 .15) ,98 with Cu = 14426s- 1 and q = 3.052. Thick lines are 
the prediction of equations (2.20)- (2 .22), with m = 38.4s and n = 0.328. 
When Cu = C , equation (2 .15) gives the same result as equation (2 .20) 
when predicting the lower yield stress . 
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Observe that a Jr is smaller than a Ja by 8% because the fractured neck 
radius is smaller than the radius at the maximum equivalent stress . On the 
other hand, the common fracture stress, ayJ, is larger than the failure, a Ja, 

and fracture, aJr, equivalent stresses, also by a factor of 8%. This is all 
expected since no triaxial effect due to necking is taken into account . The 
difference between ayJ and a Jr is about 15%. 

Yu and JONES 216 have simulated numerically a tensile test and have 
found a difference of about 12% between the traditional fracture stress, ayJ, 

and the fracture equivalent stress, a Jr . They have simulated cylindrical ten­
sile specimen made of a mild steel. This difference of 12% is to be compared 
with the 15% difference here measured·. The ratio, ah/aeq, an important 
parameter which might govern the failure process, achieves a maximum of 
about 1/2, according to equation (3.2), at the centre of the specimen , 111 

contrast to the uniaxial case where it is 1/3. 

-GALE KAMP and WIJNGAARDEN68 reports on a difference between {Tyf and {TI n as 
large as 30% for an aluminium alloy. 
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Figure 2.22: Experimental results for lower yield, ultimate and fracture 
true st resses versus engineering strain rate for the mild teel u ed in refer­
ence 218. The lines are the prediction of equation (2.17). 

As far as the strain rate behaviour in a tensile t t is concerned, the 

literature reports on strain rates at small plastic strains, up to necking. It 
was shown in F igu re 2.18 that there is a rapid increase of the strain rate in 

t he necking region . The high value of strain rates in the necking zone might 
have some inertial influence on void formation. The exponential charact r of 

the strain rate in a d isplacement controlled test induces also an expon ntial 
acceleration . Consequently, the inertia effect tends to be high. Thi might 

prod uce a retardi ng effect on the void growth. Even so the complete picture 

is not clear since other factors are involved in the failure mechanism. 

The C OWPER- SYMONDS equation is not able to predict the present ma­

terial behavi('ur fo r a broad range of strains, unless its coefficients change. 

Eq uation (2 .17) offers an alternative, where any stress can be pr dieted 

reasonable well for any input plastic strain. It differs from the OWPER­
SYMONDS equation just by a coefficent. AI 0 the dynamic yield tr 
prediction rendered by equation (2.17) can be reduced to the COWPER 

SYMONDS constitutive law, equation (2.14) as shown by equation (2.20). 

The advantage of equation (2.17) is that it can predict dynamic str 
of tensile tests at any plastic strain, inclusive of stresses in the softening 
regime. As already emphasised, once the parameters m and n in equation 
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{2.17} are calculated, they do not change with the stress to be predicted. 
For the present work, this is not crucial, as it will be seen in Chapter 5, but 
it might be relevant where true stress values near rupture are required. It is 
in this region that failure is likely to occur. 

Equation {2.17} is valid for other materials. Figure 2.22 presents the 
prediction of equations {2.20}-(2.22} for the mild steel used by Yu and 
JONES.218 Figure 2.23 shows the prediction of the behaviour ofthe austenitic 
steel X6CrNi 18 11 used in reference 115. The strain rate quoted by the 
authors is the engineering strain rate. They were used to evaluate the co­
efficients in and 11" together with the various dynamic yield stresses. The 
prediction is reasonable for all stresses and range of strains and strain rates. 
Note the high values of strain rate in Figure 2.23. 

Equation (2.17) might be seen then as an improvement in the COWPER­
SYMONDS equation, for it describes better the experimental data. Also it 
contains a more simple mathematical expression when compared to equa­
tions {2.12} and (2.13), for instance. This is potentially important for nu­
merical analysis as well as for analytical solutions of structural impact prob­
lems. 

The prediction of equation (2.17) was demonstrated using basic stress, 
strain and strain rate data. Needless to say, further studies are necessary to 
test its validity for other load configurations and for actual structures. 
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equivalent strain of 0.3 for the austenitic steel used in reference 115. The 
lines are the prediction of equation (2.17). 



3 Stress State 
Influence on 

Failure 

IT COULD BE argued that the maximum equivalent stress or strain, which 
a structure is capable of bearing, coincides with the equivalent failure stress 
and strain measured in a tensile test. Hence, a failure criterion would be 
dictated by single and simple parameters as the equivalent strain or, anal­
ogously, the equivalent stress. Nonetheless, the problem is far from being 
simple. In fact, paradoxically or not, a structure can sustain loads that cause 
strains higher than the corresponding material failure values in a tensile test. 
Conversely, equivalent strains much lower than the material rupture values 
in a tensile test may trigger the rupture process in a structure. 

That a structure may sustain strains higher than the corresponding ma­
terial failure can be seen in Figure 3.1, extracted from reference 5. There, 
a 6061-T6 aluminium disk was impacted with a hardened steel rod at a 
velocity of 84m/s. The figure shows the contours of the equivalent plastic 
strain, whose maximum value is around 0.42. This is nearly three times 
the material failure strain in a uniaxial tensile test reported in the same 

reference *. 
On the contrary, a total structure collapse may happen for equivalent 

strains much lower than the respective material failure strain. This is illus­
trated in Figure 3.2, where a typical equivalent stress-strain curve is pre­
sented together with points associated with structural failure. In this case, 
failure strains as low as nearly one-half the corresponding material failure 
strain, measured in a tensile test, were obtained. 

There exist several reasons for structure failure with such a broad range 
of strains. Some of them are not yet known but it is generally acknowl-

"The equivalent fracture strain for the aluminium is infered from the data in Figure 13 
of reference 5. 

47 



48 

Effective Plastic 
Strain 

K: 0.400 
J '" 0.360 
I = 0.320 
H = 0.280 
G= 0.240 
F.O.2OO 
E .0.160 
0.0.120 
C.0.080 
B.O.04O 
A . O.OOO 

:§. 
c 
0 

"fJ 
~ 
fti 
'w 
III 

-0.40 

-0 .50 

-0. 

-0.70 

Stress State Influence on Failure 

Time .20011 & 

Sandia 6061-T6 aluminum 
ImpaC1 Velocity - 3300 in Is 

0.10 0.20 

radiallocatioo (in) 

0.30 
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edged that the hydrostatic stress, or pressure, plays an important role in 
determining the spectrum of strains to failure. 

The hydrostatic stress at a point is defined as the average of the main di­
agonal of the stress tensor at that point. Some authors prefer to refer to the 
hydrostatic stress as the negative of the stress tensor trace, but throughout 
this work, a positive hydrostatic pressure is associated with tension. As such, 
an external fluid surrounding a structure would apply on it a negative pres­
sure. This pressure would work in a way to avoid material separation, hence 
retarding failure initiation. Experiments confirm that there is an increase 
of the ductility of metals with the increase of the fluid pressure surrounding 
them.27,28 Even when no fluid is present, it is possible to generate negative 
pressures in a structure by the sole action of the load. Nevertheless, the 
most common case is when the load causes a positive pressure, ie the stress 
state is such that tends to act in desegregating the material. Moreover, the 
commonplace reasoning is that regions in the structure exposed to higher 
hydrostatic stress are more likely to fail first. In other words, the failure 
sites are dictated by the pressure intensity. 

The above commentaries emphasise the major importance of knowing 
quantitatively the influence of the hydrostatic stress on material failure. 
This can be achieved by pulling specimens in tension with an external ma­
chined notch. The idea of this test probably comes from the analysis due 
to BRIDGMAN, who showed that the hydrostatic stress state inside a necked 
tensile specimen is a function of the necking radius. By changing the ma­
chined notch radius, different levels of hydrostatic stress in the specimen are 
obtained, leading the specimen to fail at different strains. 

This chapter describes static and dynamic notch tensile tests performed 
in specimens made of the same mild steel tested according to Chapter 2. 
The main results are presented and commented, followed by a static Finite­
Element simulatio;,.tr these '·teststThe numerical analysis is then com pared 
with the BRIDGMAN'; predi<ition. ~1he influence of the material properties 
on the triaxiality, a1 parameter defined in sequence, is also explored. The 
chapter ends with~ discussion about"the actual influence of the hydrostatic 
stress on failure, showing that the traditional analysis of notch tests used to 
generate the so-called envelope failure curves is not suitable for the material 
here tested. 
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3.1 Notch tensile tests 

Basically, the notch tensile tests aim to induce different levels of stresses 
in the material, obtained by machining specimens with different notch radii 
R. This precipitates failure at different strains which are correlated to some 
measure of the stress state, usually the hydrostatic to equiva.Ient stress ratio, 
or triaxiality. By using an appropriate analysis, the triaxiality along the 
minimum cross-section becomes known. This can be partially accomplished 
by applying the BRIDGMAN formulation described in the previous chapter, 
originally meant to explore the necking phenomenon in cylindrical rods. 

One of the early studies in determining to what extent the hydrostatic 
stress influences the failure strain is due to MCCLINTOCK.146 He achieved his 
theoretical results by analysing a long circular cylindrical cavity embedded in 
a non-hardening matrix pulled axially while subjected to transverse tensile 
stress. His analysis was expanded further by RICE and TRACEY,175 who 
studied the stress triaxiality influence on the growth of a spherical void and 
by GURSON,75 who proposed a flow rule for a porous material. All these 
studies have confirmed theoretically the pressure influence on the strain to 
failure. 

A pioneering experimental programme using notched specimens is due to 
MACKENZIE et al. 144 By testing different materials and different specimen 
geometry they were able to produce extensive data about the influence of 
the pressure on failure strain. Their triaxiality versus failure strain plots, 
also known as failure envelopes, do show a marked decrease of the ductility 
as the triaxiality increases. Similar static tests were performed by others 
to explore further the RICE-TRACEY model,17, 18, 117 fracture mechanics.57 

failure criteria36,86,158 and material modelling.219 

Dynamic notch tensile tests have also been performed},6,61.62 Some 
results show a decrease of the failure strain with the increase of strain rate 
and hydrost;-tic stress},6 Others, on the contrary, show that the strain 
rate has no influence on failure strain regardless of the triaxiality level. as 
measured by BARTON et al.6 for copper *. ' 

Obviously, the influence of the strain rate and pressure on failure is par­
ticular to each material. It is natural then to enquire how these parameters 
affect the failure strain of the mild steel characterised in Chapter 2. a subject 
to be explored on the next section . 

• EL- MAGD65 reviews these works in a broader context of material properties. 
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Figure 3 .3 : Geometric representation of a dynamic notched tensile speci­
men. The static ones are similar except for the non-presence of head gauges 
and flags. All dimensions are in millimetres. 
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A series of static and dynamic notch tensile tests were performed using the 
same arrangement described in the previous chapter, Figures 2.6 and 2.8, 
respectively. The specimens, a typical one depicted in Figure 3.3, were cut 
in the rolling direction from the plate shown in Figure 2.5 of Chapter 2. 
They were machined with three different notch radii and slightly different 
diameters. The specimens were designated n05, n2 and n4 for small, medium 
and large radius (around O.5mm, 2mm and 4mm), respectively. 

As in the tensile tests, a camera was used to monitor the evolution of 
the diameter and radius in the notch region. Also, the load in the dynamic 
tests was measured from the head gauges . The calibration procedure and 
validation are similar to the ones described in the previous chapter. Table 
3.1 lists the relevant results from the tests. 

The notch tests aim to reveal to what extent the hydrostatic pressure in 
conjunction with different strain rates influences the strain to failure. From 
the BRIDGMAN analysis, it is possible to evaluate the ratio <7h/aeQ ' where h 
stands for hydrostatic and eq for equivalent . It follows that 

<7h ~ 1 I (a
2 + 2aR - r2) -- -+ n 

<7eQ 3 2aR' 
(3.1) 
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where r measures the radial position at the minimum cross-section, a is the 
diameter of the minimum cross-section and R the notch radius. At the notch 
base, ie for r = a, this ratio is 1/3; for r = 0 the ratio achieves its maximum 
value given by 

-= -+In 1+- . Uh 1 ( a ) 
ueq 3 2R 

(3.2) 

Also, the equivalent plastic true strain is given by the diameter contraction 
through 

do 
Ceq = 21n d' 

where do and d are the initial and current diameter. 

(3.3) 

Equation (3.1) shows that the smaller the notch radius R, the bigger 
the stress ratio at the middle of the specimen, being 1/3 at the notch base 
regardless of the value of R. Hence the idea of decreasing R to increase the 
triaxiality and of measuring the diameter contraction in the broken specimen 
to infer the fracture strain. By doing that, a plot similar to the one in Figure 
3.4 may be obtained. 

For the specimens tested here, the nominal peak values of stress triax­
iality, according to equation (3.2), are around 1.8, 1.1 and 0.6 for the nOS, 
n2 and n4 specimens, respectively. These figures are based on the initial 
nominal geometry, a common practice in the literature. Nevertheless, un­
like other investigators, the use of a high-speed camera to record the tests 
allows one to measure the necking geometry, ie the current notch radius and 
diameter, as the test progresses. Clearly, the notch radius R increases and 
the diameter 2a decreases which, according to BRIDGMAN, would cause a 
reduction of the stress triaxiality. 

After processing the image data, the geometric parameters CTh/CTeq, equa­
tion (3.2), at the central axes of the specimens, and the equivalent true strain, 
equation (3.3), were evaluated, Figure 3.S. The various labels in the figure 
refer to different strain rates averaged between the ultimate and fracture 
strains. It can be seen that the triaxiality for strains higher than, roughly, 
the material ultimate strain, tends to values not as large as one would pre­
dict from the initial geometry and when using equation (3.2). Also, for 
the present material, the strain rate does not affect the way the triaxiality 
evolves. 
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Table 3.1: Basic results of the static and dynamic notch tensile 
tests. 

do dlr Ro 
. .. c= spec. Ceq (~) b (~) b Cu 

(mm) (mm) (mm) (S-I) U.q ini U. q lin 21n .!bL dlr 

n0509 6.03 5.05 0.44 0.0048 1.83 1.16 0.19 0.36 
n0514 6.16 4.73 0.46 4.3 1.79 1.23 0.22 0.53 
n051l0 5.02 3.84 0.52 11.7 1.57 1.00 0.20 0.53 
n0524 6.06 4.53 0.49 12.2 1.75 1.24 0.58 
n0511 6.20 4.80 0.46 69.7 1.81 1.23 0.19 0.51 

n0544 6.09 5.00 0.45 142.3 1.82 1.14 0.21 0.39 
n05122 5.47 4.04 0.44 164.0 1.75 1.08 0.19 0.61 

n0521 6.35 4.60 0.51 723.3 1.75 1.31 0.28 0.64 

n0515 6.11 4.78 0.44 803.4 1.84 1.16 0.18 0.49 
n0523 6.21 4.56 0.42 941.2 1.87 1.46 0.62 
n05116 5.14 3.94 0.42 1362.8 1.73 1.16 0.53 

n205 6.98 5.31 1.58 0.0042 1.08 0.80 0.55 

n225 7.17 5.68 1.68 0.3 1.05 0.78 0.20 0.47 

n251 6.79 5.25 1.54 32.1 1.08 0.81 0.17 0.51 
n218 7.04 5.39 1.58 77.1 1.08 0.84 0.19 0.54 
n2114 5.01 3.58 2.05 159.1 0.81 0.69 0.18 0.67 
n250 7.09 5.44 1.51 455.0 1.11 0.74 0.19 0.53 
n202 7.02 5.44 1.93 483.3 0.98 0.89 0.21 0.51 
n2120 5.23 3.54 2.20 1018.1 0.80 0.88 0.15 0.78 
n452 5.15 3.51 4.13 0.0089 0.60 0.52 0.18 0.97 
n4111 5.06 3.20 3.59 13.9 0.63 0.51 0.23 0.97 
n430 5.14 3.13 4.12 21.6 0.60 0.50 0.18 0.99 
n431 5.13 3.32 4.17 74.9 0.60 0.50 0.18 0.87 
n420 5.20 3.17 4.17 159.2 0.60 0.61 0.17 0.99 
n426 5.21 3.39 3.52 798.5 0.65 0.56 0.86 
n4123 5.26 3.34 1206.4 0.16 0.91 
n427 5.19 3.28 4.21 1955.3 0.60 0.50 0.33 0.92 

.. Averaged over the interval Cu ~ C ~ C Ir. 

bFrom equation (3.2). 

The few published dynamic notch tensile tests define the strain rate as 

the axial displacement rate, as in DUMONT et al.62 With the aid of the 

camera, it was possible to measure the diametrical contraction during the 

tests. By knowing the time associated with the images, it is possible to infer 

a more local value for the strain rate, though averaged over the minimum 

diameter. A collection of some of these measurements is shown in Figure 

3.6. It can be seen that the tests generally start with a low strain rate 
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Figure 3.4: A hypothetical plot showing the expected influence of the 
stress triaxiality on the strain to fracture. 

which increases vigorously in the region of low plastic strains. As the strains 
build up, the strain rate tends to assume a steadily exponential character, 
resembling what occurs in the tensile tests (see Figure 2.18 on page 37). 

Figure 3.7 shows the strain measured at maximum load and the fracture 
strain against strain rate for the batch of n05, n2 and n4 specimens. It 
can be seen that the strain rate slightly influences the ultimate and fracture 
strains. 

In line with the comments in the previous chapter, a distinction is made 
between failure and fracture strains. The tensile tests shows quantitatively 
that this difference is small (see Figure 2.14 on page 35). Because those 
strains were measured when necking was well developed, the triaxiality was 
increased from 1/3 to 1/2, which is near the value achieved by specimens n4 
in Table 3.1. This suggests that no important difference between strain to 
failure and to fracture should occur for the n4 specimens. This assumption 
is supplementary endorsed by the numerical simulation by TVERGAARD and 
NEEDLEMAN 201 who found that once the inner crack starts there is no addi­
tional significant change at the necking geometry. For a notch with a more 
acute angle, a larger difference between fracture and failure strain, as given 
by equation (3.3), might occur. But such distinction would be meaningless 
because the strains along the minimum cross-section for these specimens are 
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specimens. The data are from the beginning of the tests, when the strain 
is nil , to the total rupture of the specimens. The quoted strain rates are 
averaged over the interval eu :S e :S e Jr· 
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strongly non-uniform. Hence, equation (3 .3) would yield a poor description 
of the local values of strain, as it will be seen . 

The axial displacement was increased linearly in the static notch tensile 
tests. This is more difficult to achieve in tests at higher speeds. A typical 
displacement- time signal measured by the ZIMMER for a n4 ·dynamic test 
is shown in Figure 3. , together with the respective load measured by the 
head gauges. These data may be compared with the numerical dynamic 
simulation of geometrically similar notch specimens by TVERGAARD and 

EEDLEMA .202 They found an oscillatory character in the load, plainly 
contrasting with the smooth load profile depicted in F igure 3.8. Nevertheless, 
their analysis use material parameters representative of a high tensile steel 
and the prescribed end velocity is around four times the maximum here 

obtained. 

Based on the records of load and the notch geometry, it is possible to 
obtain the true axial, ayy , and engineering stresses, s, ie load over actual 
area and load over initial area, respectively. Plots of these stress definitions 
against the average plastic strain are depicted in Figures 3.9 and 3.10. Ob-
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Figure 3.7: Evolution of the ultimate and fracture st rains versus (average) 
strain rate for the three batches of notched specimens. The lines fit the data 
linearly (solid triangle not considered in the fit). 
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serve the fact that higher peak loads are found for the specimens with smaller 

values of R. Also, it is evident that the strain rate does have a marked effect 

on the level of stresses, as expected. 

The various images recorded in the tests allows one to plot the previous 

commented envelope failure curve. This is shown in Figure 3.11 where the 

traditional trend of decreasing fai lure strain with increasing stress triaxiality 

is clearly obtained. This figure was generated with two sets of data; the 

triaxiality measured from the initial and final • geometry. 

The various points in the graph represent different test speeds and hence 

different average strain rates. These does not seem to influence the behaviour 

of the curve, in line with the findings plotted in Figures 3.5 and 3.7. Also, 

for the same level of triaxiality, there is a difference of around 10% in the 

failure strain according to the way the ratio ah/aeq is evaluated, ie from the 

initial or final geometry. As a matter of fact, this sort of envelope failure 

curve obtained from notch tests and using the BRIDGMAN formulae have 

additional limitations, as it will be discussed in the sequence. 

This failure loclls is of the most importance in failure prediction. Indeed, 

• Actually, the geometry comes from the last recorded image in the test before visual 
failure . 
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F igure 3.8: Prescribed axial displacement and the resulted load uer u 
time for the n4123 specimen. The number of measured points shown for 
the displacement signal was reduced for the sake of clarity. The continuou 
line for the displacement represents a polynomial fitting of order four . 

some fail ure criteria are developed a nd applied based on data imilar to 
the ones in Figure 3.11, (see, in part icula r, t he work of BAMMA t al. s 

and HOLMES et al.86
) . Hence the important quest ion of how accurate the 

experimental and analytical procedures a re to generate such curves. 

Figure 3.10 suggests that the actual average stress in the specim n in­
creases continuously up to just before fracture. Th is probably means an 
increase in the triaxia li ty, which unambiguously contrasts with the continu­
ous decrease of it pointed out in Figure 3.5. T his contrast may be attributed 
to the BRIDGMAN formulae, formulated originally for cylindrical sp dmen . 
To gain a more accurate description of the behaviour of the notched speci­
mens, a numerical analysis seems to be most useful. 

3.3 Finite-Element analysis 

Some failure criteria have been developed by using the envelope failure cur es 
of the kind shown in Figure 3.1l. It can be noted that both axes of this graph 
are essentially obtained from geometrical pa rameters; it being expected that 
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material characteristics such as hardening and yield stress are somehow rep­
resented by the fracture geometry. The fact that the material does not 
explicitly influence the triaxiality has to be accepted with reserve and a con­
firmation of the BRIDGMA analysis is required. This can be achieved by a 
numerical simulation of the tests through the Finite-Element method". 

To this end, the domains of the three notch specimens n05, n2 and n4 

were discretised by Finite-Elements type CAX8R t, from ABAQUS package, 
taking advantage of the axial symmetry of the problem . The meshes in 
the notch region are indicated in Figure 3.12 and represent the geometry of 
the specimens tested statically. It was confirmed that the results are not 
sensitive to two other mesh configurations used . 

The input static equivalent stress-strain curve is depicted in Figure 3.2. 

·The accuracy of the BRIDGMAN analysis has been examined in references 16,44,62 and 
64, etc ... 

'This is an axisymmetric, eight-noded, quadratic element. The field variables were 
evaluated at the integration points. 
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Figure 3.12: Domain discretisation by Finite-Elements of the notch region 
of the (a) n05, (b) n2 and (c) n4 specimens. 

It belongs to the material used to manufacture the specimens and measured 
as described in Chapter 2. The static elastic modulus and Poisson ratio also 
come from the previous chapter, Table 2.3 on page 31. In the numerical 
sim ulation, a linear displacement- time curve was im posed at the end of the 
specimens and no dynamic effect was considered. 0 failure criterion was 
used in the analysis. Hence the equivalent stress increases continuousl in 
the frame of the VON MI SES plasticity. everthekss the simulations wele 
interrupted when the notch diameter contraction of the nOS, n2 and n4 
specimens equal the one measured in the experiments at fracture. 

3.3.1 Results 

Figures 3.13 , 3.14 and 3.15 present the stress- strain distribution at the min­
imum cross-section of the n05, n2 and n4 specimens. These stress-strain 
profiles occur when the numerical average equivalent strain equals the frac­
ture value obtained in the experiment, both strains measured by the diameter 
contraction, equation (3.3) . Observe that for the n4 specimens the BRIDC ­

MAN theory agrees well in the sense that (jrr = (jOO and that the equivalent 
plastic strain is nearly constant across the section though it underestimates 
the triaxiality. This is not the case for more acute geometry. The smaller the 
notch radius the less uniform is the equivalent strain and the larger the hoop 
stress at the notch root, leading to triaxiality values along the cross-section 
different from the ones predicted by BRIDC MA equations. 

The evolution of the triaxiality at the middle and at the notch base v r­
sus the average equivalent st rain is shown in Figure 3.16, together with the 
res pective BRIDCMAN prediction. Apart from an initial transient period at 



3.3 Finite-Element analysis 63 

1200 
cr 

(MPa) 1000 

- ... -.- ....... - ..... .. - -----.... .. -----
--- ah 
--- aeq 
- - - . a rr 

800 - - - - - • a yy 

- - - an 

600 .- ---.- -~ ----:- -

400 

200 

0 
0 0.2 0.4 0.6 0.8 

rIa 

(a) 

1.2 
E 

0.8 
--- Eeq 

----_. Err 

--- - f.yy 

0.4 1=------------ ----7"''''----- - - - - E" 

--- Bridgman 
rIa 

o 

-0.4 

-0.8 

(b) 
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average plastic strain equals the experimental average rupture value of 
€Jr = 0.55. The thin line in (b) is the BRIDGMA prediction, equation 
(3 .3). 
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F igure 3.15: (a) Stresses and (b) strains calculated by the Fin ite-Element 
method , along the minimum cross-section of the n452 specimen. The 
average plastic strain equals the experimental average fracture value of 
e!r = 0.97. The thin line in (b) is the BRIDGMAN prediction , equation 
(3.3). 
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small strains, the triaxiality is always higher at the centre of the specimen. a 
region where failure would then start. This agrees qualitatively with BRIDG­
MAN but the numerical values do not compare well. Extra simulations have 
confirmed that the triaxiality evolution profile is rather sensitive to small 
changes in the specimen geometry, turning out to be difficult to compare 
the results of different researchers. In fact, some authors, like Dt:MONT 
et al.,62 present numerical results closer to the BRIDGMAN equation. Con­
versely, results from BARTON et al.6 and, for some notch acuteness. from 
CHAOUADI et al.36 tend to disagree significantly with BRIDGMAN. 

3.3.2 Material influence on triaxiality 

The maximum triaxiality in the centre of notched specimens is given byequa­
tion (3.2). This equation is not material dependent, which partially explains 
the reason for the poor prediction of the triaxiality according to BRIDGMAN. 
As the Finite-Element simulation does take into account the material prop­
erties, it is possible to investigate the influence of different materials on the 
ah/aeq versus E:eq curve. This study was carried out and the main results are 
summarised in Figure 3.17. Different elastic, Iihear hardenihg materials were 
simulated by changing the yield stress and the hardening modulus according 
to the insert in Figure 3.17. A total of six different material constitutive 
laws were used and the simulation was restricted to specimens with notch 
radius of R = 4mm and notch diameter of 2a = 5mm. 

It appears that a high value of hardening tends to bring the prediction 
closer to the BRIDGMAN one when the strains are welI developed·. 

It is quite clear that the material properties do playa very important 
role in the value of the triaxiality, a fact not catered for by BRIDGMAN'S 
expression. This explains why some authors have found poor6 and good 
agreement219 between their numerical simulations and the theoretical equa­
tions, since they used different materials. In this perspective, it is difficult 
to advocate the use of the BRIDGMAN equation when comparing it with just 
one material. In short, the BRIDGMAN equations mayor not give reasonable 
results for the triaxiality, according to the material properties. 

·The mild steel cannot be fully compared with material m2 becalUle the former does 
not harden significantly for strains lower than say 20%. 
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F igure 3.16: Triaxiality evolution at the centre and at the notch root of 
the (a) n0509 , (b) n205 and (c) n452 specimens as calculated by the Finite­
Element method . The BRIDGMA prediction , equation (3 .2), is valid for 
the middle of the specimen and is based on the initial geometry. 
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material 0 , (MPa) E' (MPa) 

m1 300 0 
m2 300 300 
m3 300 600 
m4 800 0 
mS 800 500 
m6 800 1000 
mild steel 333 319 

o 0.2 0 .4 0 .6 0.8 1.2 

Figure 3 .17: Stress lriaxiality versus equivalent plastic strain behaviour 
at the centre of the minimum cross-section of a specimen with diameter 
and radius equal to 5mm and 4mm, respectively. The dotted line represent 
the BRIDGMAN solution when evaluated using the initial geometry. The 
insert in the figure shows the various material parameters used for each 
simulation. E' is the hardening modulus in the equivalent stress-strain 
space and cry is the yield stress. 

3.3.3 Validation 

The accuracy of the numerical simulation can be checked since experimental 
data are available. One way to do this is to use the load and diameter 

as measured in the experiments, comparing them with the ones generated 
by the Finite- Element analysis . Alternatively, these two parameters can be 

used to calculate the true and engineering stresses plus the average equivalent 
st rain given by the diameter contraction. 

The Finite- Element predictions of the engineering and true equivalent 
stresses versus the average equivalent plastic strain are shown in Figures 

3.9 and 3.10 by the continuous lines. The agreement between the numerical 
solution and the measured data for the smallest strain rates is quite good, 
except for the n4 specimen. In spite of this good agreement, as CLAUSING 43 

remarks, the fact that global variables, like force, compare well does not 
imply good agreement for local variables, like stress-strain components. But 
local internal variables are difficult to measure. 

One indication of the behaviour of a local variables, like strain, is the 
hardness. Accordingly, the hardness profile was measured for the n05, n2 
and n4 specimens tested quasi-statically and the res ults are plotted in Fig-
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Figure 3.18: Hardness values across the minimum cross sect ion of n05, 
n2 and n4 specimens tested quasi-statically. The lines are a quadratic 
interpolation to the data. 

ure 3.1 . It was confirmed that the eq uivalent plastic strain as cal ulated 
by the numerical method agrees qualitatively well with the ha rdn ss profile, 
as inferred by comparing Figures 3.13(b), 3.14(b) , 3 .15{b) and 3.1 . Thi 

supports the accuracy of the numerical solu tion here described. 

3.4 Discussion 

The results of this chapter indicate that large errors can oc ur when th 

BRIDGMA analysis is used to predict strains and stresses at the minimum 

cross-section of notched specimens. It was observed that th actual value 

of the triaxiality is a material and geometric dependent parameter. T hi 
accounts, si multaneously, for the poors and good219 results found by other 
when the BRIDGMAN formu lae is employed for notch d specimens. It ac­
counts also, for the contradictory results presented in Figures 3.5 and 3.16, 

the former gained through a direct application of equation (3 .2) and the lat r 
yielded by the Finite- Element analysis . 

A striking experimental result is the behaviour of the strain rat at th 
minimum cross section of the notched specimens pulled in tension, Figur 3.6 . 
The average strain rate, measured by the change in the necking diam ter, 
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increases significantly, in some cases up to three orders of magnitude. This 
increase of strain rate is in accord with the data presented in Chapter 2, 
Figure 2.18, although the trend of the former is less exponential than the 
later. 

It is interesting to compare Figures 3.6 and 3.10. The marked increase 
of strain rate along the progression of the deformation does not find a coun­
terpart in the true axial stress. Rather, the axial stress is just shifted as 
whole by an amount which is strain rate dependent. But this dependence. 
according to the constitutive equation (2.17) presented in Chapter 2, can 
be dictated only by the strain rate at low strains and not by a strain rate 
dependent of the plastic strain. This is an important finding. It emphasises 
that the material sensitivity to strain rates can be even restricted to just 
around the elastic limit. 

The Finite-Element simulation showed that the triaxiality is higher at 
the middle of the notched specimens * regardless the notch radius. This is 
in complete agreement with the findings of other researches.6,62,l44,161 

Consider now the work of NEEDLEMAN and TVERGAARD. 161 

They have simulated numerically plane strain and axisymmetric notched 
specimens incorporating in their analysis a void volume dependent yield 
function. Their notch specimens have diameter to notch radius ratios of 
12 and 4. This ratio for the n05 and n2 specimens simulated in the pre­
vious section are 13.7 and 4.4, respectively. Their material parameters are 
representative of a steel with a yield stress of around 650MPa. 

The major conclusion they arrived at was that the failure site for the 
plane strain specimens is sometimes in the middle and sometimes in the 
notch root, according to the notch radius. As for the axisymmetric speci­
mens, the failure site is located always in the middle because the triaxiality 
is higher there, regardless of the value of the plastic strain. In fact, this 
conclusion was a numerical confirmation of the experiments of MACKENZIE 
et al. 144 and BECKER et a/. ll and agrees with the numerical results of HAN­
COCK and BROWN.71 Although HANCOCK76 argues that the influence of the 
hydrostatic stress on failure has been too much emphasised, it is accepted 
that ductile failure occurs in regions of high triaxiality. 

In the present experiments and analysis, for all the specimens, the triax­
iality is higher in the middle than in the notch root, regardless of the notch 
radius and the plastic strain. If the triaxiality was to govern the failure ini-

• In the elastic regime, the stress concentration is higher at the notch root. 
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tiation, in line with others, one would expect then the crack site to always 
occur at the middle. 

Figure 3.19 shows part of the polished cross section of a n05 specimen, 
quasi-statically tested. The test was stopped after a substantial decrease of 
the maximum load. It shows clearly that a crack started to run probably 
from the notch root; certainly not from the middle where the triaxiality is 
a maximum. For the majority of the n05 and 02 tests, the failure started 
at the notch root, as confirmed by the camera records, by visual inspection 
and by metallography, almost regardless the test speed *. Conversely, for 
the n4 specimens no sign of external fracture was detected prior to the total 

fracture. 
This experimental evidence plainly contrasts with the findings commentf'd 

on above. It shows that the triaxiality does not rule the beginning of failure 
for the present material and for the notched specimens. Rather, the strains 
are to be considered the major parameter in defining where the failure starts, 
as Figures 3.13 and 3.14 suggest. This experimental evidence offers a debat­
able point. Is the hydrostatic stress really a more important parameter in 
determining the failure in a structure? Or would a failure criterion giving 
more importance to the strains be more realistic? The answer to this ques­
tion will be deferred to Chapter 5, where a convenient way to assess how 
triaxiality and plastic strains interact to determine the failure site will be 

pursued. 
Some authors report on similar findings. 36,61,219 DUMONT et al.61 states 

clearly that their results of damage sites in notch specimens, more intense 
in regions of lower triaxiality, are in complete disagreement with micro­
mechanic models like the RICE and TRACEy175 one. Also, ZAVALIANGOS and 
ANAN0219 found in their model that fracture in notched specimens occurs 
at some distance ahead of the notch root but not at the centre. 

The prediction of the failure site of notched structures can be seen as a 
test for a failure criterion. The reason is that the stress-strain field is such 
that the triaxiality and equivalent plastic strains vary within a broad range. 
In the present case, for the n05 and n2 specimens, the triaxiality is high where 
the equivalent plastic strain is low; for the n4 specimens the equivalent strain 
is constant and the triaxiality higher at the middle. Chapter 5 will address 
this problem and will show how the failure site can be forecast. 

As far as the failure envelope curve is concerned, one might be tempted to 

·For very high test speeds it is not possible to actually see the crack site. 
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(a) 

Figure 3 .19: (a) A photograph of a n05 specimen srowing a crack tarting 
far away from the middle. (b) Detail of the notch base. 

consider the one depicted in Figure 3.11 as the correct one but this is difficult 
to sustain . Firstly, because of the wrong values for the triaxiality. As noted 
before, the triaxiality via BRIDGMA is not accurate. More importantly 
are the fracture strains. Traditionally, they are measured by the diameter 

contraction but this leads to average values, very different from the local 
ones obtained in the numerical simulation for the n05 and n2 specimens. 
Accordingly, for the n05 specimen, Figure 3.13 an average fracture strain of 
0.38 means in fact a local strain at the failure point of 1.12. 

If the local values of fracture strain and triaxiality for the n05, n2 and 
n4 static specimens are used to plot the failure locus, a rather considerable 
change occurs, as shown in Figure 3.20. The solid circles in this figure rep­
resent the stress- strain state prevailing at the failure point when evaluated 
with the Finite-Element results . What this figure shows is that, for the 
studied material, the range of triaxiality obtained by changing the notch 
radius is smaller than results based on BRIDGMA N'S would suggest. This 
means that the test of notched specimens may not reveal how the triaxial-
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Figure 3.20: Failure envelope for a mild steel. The continuous line rep­
resents the common approach for inferring the triaxiality, equation (3 .2) 
and the strains, equation (3.3) (includes a tensile test point labelled by a 
cross). The broken line is rendered using the maximum triaxiality, at the 
specimen centre, just before fracture and according to the Finite- Element 
analysis ; the strains are given by equation (3.3). The olid circles rd r 
to the stress- strain state prevailing at the failure site in the static notch 
specimens as calculated by the Finite- Element method . The solid triangle 
is the stress- strain state at failure for a flat specimen (see Chapter 4). 
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ity influences the failure strain . Moreover, again for the present material in 
the range tested, it is not clear how the triaxiality plays its role on failure. 
In fact, for the n05 and n2 specimens, the failure sites are associated with 
low triaxiality values for the more acute specimens, a quite unexpected re­
sult . For the n4 specimen, the failure site is at centre, where the triaxiality 
is higher. This chapter focused in exploring the way the triaxiality drives 
the fracture strains. The aim was clearly to generate an envelope failure 
locus but Finite- Element analysis and experimental evidences have shown 
that such curves are not valid for the present material. As a matter of fact, 
because mo t of the published curves were generated using the BRIDGMAN 

analysis, they have to be interpreted as an average influence of the triaxial­
ity on an average fracture strain . The present results also suggest that the 
triaxiality is not fundamental in triggering the failure; the strains seem to 
be more relevant and a failure criterion should be able to gather this trend . 





4 Material Damage 

FOR DUCTILE MATERIALS, the nucleation of micro-voids or micro-cracks, 
and their growth and coalescence due to external loads are the main steps 
anticipating the formation of a meso-crack, eventually leading to failure. 
This is exemplified in Figure 4.1, which shows void growth and coalescence 
in the fracture region of a beam made of the mild steel studied in Chapter 2. 

This classical ductile failure mechanism finds its global expression in the 
decrease of the capacity of a structure to sustain additional loads. At a local 
or micro-structure level, the void onset affects various material properties as 
the elastic modulus, the density and hence the speed of elastic waves, the 
hardness, the electrical resistance, to name a few. 

All these property changes are indicative of material degradation and 
they can be used to develop suitable 'experimental techniques to measure 
damage in a material or structure. This damage at critical conditions might 
be viewed then as a major parameter in the onset of failure and theoretical 
approaches relying on it could be employed for failure prediction. 

It is the objective of this chapter to describe different experimental and 
numerical techniques to assess material damage. The chapter starts pre­
senting various material damage definitions. A Finite-Element analysis is 
described, yielding a reinterpretation of experimental results concerning the 
damage via the change of the elastic modulus. Then, it follows a detailed 
description of the damage tests here performed and the main results gained 
through the different techniques employed. A final discussion debates the 
meaning of the damage parameter, supported by experimental data from 
various sources. 

4.1 Damage definitions 

The first obvious way to assess quantitatively the damage presented in a 
ductile material is to measure the area or number of voids present. The 
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(a) Void 
growth 

Material Damage 

(b) Void coales-
cence 

F ig u re 4 .1: Micro-pictures of a mild steel beam showing the (a) growth 
and (b) coalescence of voids in the fracture region. The beam was loaded 
statically up to total rupture. 

damage in this case may be defined as 

SD 
Ds=S' (4 .1) 

where Ds is the damage evaluated from voids, S is the original area of the 
virgin material and SD is the total area of voids, Figure 4.2 . This definition 
has been used in the literature to measure damage in different materials. 

Another damage definition can be obtained through the effective tress 
concept which goes back to KACHA OV.42,105 The effective stress a is 

related to the area in the damaged material that effectively resists the load 
F, namely (S - SD). It is expressed by 

_ F 
(J = S - SD' 

The damage definition , Ds, yields 

(J 

a=---
1- D s' 

where (J is a true stress related to the virgin material. 

(4 .2) 

(4.3) 

L EMA ITRE has hypothesised that any strain constitutive equation for a 
damaged material may be derived in the same way as fo r a virgin mat rial 
xcept that the usual stress is replaced by the · effective tress.126 
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Figure 4.2: A damaged element showing schematically the virgin material 
and the area SD of micro-voids. 

In an undamaged material, the uniaxial elastic strain is 

a­
Ce = E' (4.4) 

where E is the elastic modulus. For a damaged material, according to 
LEMAITRE'S assumption, this expression changes to 

a a-
Ce = E = E(1 - Ds)" 

If the elastic modulus in the damaged material is defined by 

one can write 

- a-
E= - , 

f:e 

DE: E 
Ds = E = 1-­

E 

(4 .5) 

(4.6) 

(4 .7) 

where Dk is a damage definition based on the elastic modulus degradation 
when using the LEMAITRE'S strain equivalence hypothesis. Obviously Ds == 
Dk only if this assumption is correct. 

In an attempt to analyse anisotropic damage, CORDEBOIS and SIDO­

ROFF49 used another hypothesis where the elastic energy of the damaged ma­
terial is assumed to be the same as the undamaged one, except that stresses 
(or strains) are to be replaced by their corresponding effective quantities. A 
mathematical expression for this statement may be gained by equating the 
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product stressxstrain in both virgin and damaged materials, the areas 1-2-3 

and 1-4-5 in Figure 4.3, 

Ec2 E(l __ e ___ e 

2 - 2 . 
(4.8) 

By noting that 

(4.9) 

it follows that 

D't = 1- ~, (4.10) 

where D~ is the damage based on the elastic modulus degradation and using 
the hypothesis of elastic energy equivalence. 

It is evident that the hypothesis of strain and energy equivalence allows 
one to measure the damage from the change in the elastic modulus. Also. 
the two damage definitions lead to rather different values for the damage 
variable. The reason for that is further illustrated in Figure 4.3. where the 
area 1-2-3 is the elastic energy stored in the damaged material. At point 
2, the effective stress 11 is the point 6, according t<. the hypothesis of straitl 
equivalence. The area 1-4-5 is imposed to be equal the area 1-2-3 and point 
4 is then associated with another effective stress q', to be compared with tht> 
one in point 6. It is obvious that the effective stress related to the hypothesis 
of elastic energy equivalence is lower than effective stress related to the strain 
equivalence approach, which leads to lower damage values. As remarked by 
HANSEN and SCHREYER,79 the choice between these principles leads to a 
marked difference on the behaviour of the model since the effective stress 
definition is used in the yield function. as it will be shown. 

The formation of voids in a ductile material also affects the hardness. 
Hence the measurement of the hardness yields a method of measuring tht> 
damage.21.13O.131 The relation between damage and hardness may be ob­

tained through the hardness definition 

F 
BV= S' (.1.l1) 

where HV, F and S are the hardness, load and area. respectively. Because 
there is a linear relation between hardness and the flow stress. tTrq • through 
a constant k' ,126 one can write for the damaged material 

(4.12) 
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6 

Figure 4.3: Illustration of the effect of the strain and energy equiva­
lency hypothesis on the effective stress values. Adapted from HANSEN and 

SCHREYER.
79 

and for the undamaged one 

79 

(4.13) 

HV' being the hardness in the virgin material at the same level of plastic 
strain as for HV in the damaged material. From the above two expressions 

it follows that 

D~ HV 
HV = 1- HV" (4.14) 

where DHV is the damage based on hardness according to the hypothesis of 
strain equivalence. A drawback of this technique is that, for ductile damage, 
the hardness HV' cannot be measured because damage occurs simultane­
ously with increasing plastic strain. It is proposed then an extrapolation for 
the curve HV' x Ceq .21,130,131 The extrapolation may be carried out as illus­

trated in Figure 4.4(a), with the resulting damage parameter, DHV , shown 
in Figure 4.4(b). 

The presence of voids also affects the electrical resistance of metals. The 
monitoring of the change in the electrical potential, V, may give an indication 
of the void area or volume and hence damage. The departure point to relate 
electrical potential change to damage is the effective intensity of electrical 
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Figure 4.4: (a) Illustration of the measurement of V HV by extrapolating 
linearly the hardness curve. (b) Resulting damage near the fracture surface. 
The tensile specimen is made of an aluminium alloy used in the aero-space 
industry. The lines are a linear fit to the data and the fracture surface is 
at Dmm. 
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current i. It is defined by7,8,29,30,130 

z=---
1 - Dt-' (4.15) 

where i is the electrical current intensity and Dt- the damage from the 
electrical potential according to the principle of strain equivalence. Invoking 
now Ohm's law for the undamaged element of length I, area S and resistivity 
r a , and for the damaged one with resistivity rB , it follows that 

and (4.16) 

where iT is the potential in the damaged element. The relation between the 

resistivities is * 

(4.17) 

which is assumed to be the unity for low values of the damage DV.l26 The 

final relation between damage and electrical potential, according to the hy­
pothesis of strain equivalence, is 

Dt- = 1 - ':. 
V 

(4.18) 

This technique has been applied mainly to measure damage in fatigue, 
as in references 8,29,30 and 130, but it is worthy to explore the method for 

ductile damage. 

4.2 Finite-Element simulation of the damage tensile 
test 

By far, the most common technique to measure ductile material damage 
is by monitoring the elastic modulus variation. This technique, introduced 
by LEMAITRE and DUFAILLY,60,130 consists in loading in tension a speci­
men, similar to the one depicted in Figure 4.5, up to some level of plastic 

deformation. The specimen is then unloaded and the elastic modulus is cal­
culated from the slope of the unloaded stress-strain curve. A new set of 

"This expression is due to P.W. BRIDGMAN. See his work in the Proceedings of the 
American Academy of Sciences, 60:423, 1925. Also in the volume P.W. Bridgman, Collected 
Experimental Papers, Cambridge University Press, 1964. 
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=1.5 

Figure 4.5: A typical damage specimen. All dimensions in millimetres. 

strain gauges is installed and the loading starts again, leading the specimen 
to another level of plastic strain. It is then unloaded and a new slope of 
the stress-strain curve is recorded. This process is carried on until a visual 
crack is detected. 

The actual specimen adopted by LEMAITRE and DUFAILLY exhibits a ra­
dius of 80mm aiming to restrict the plastic deformation and, consequently, 
the damage to a small zone where the elastic modulus can be monitored. It 
is acknowledged by DUFAILLy60 that this geometry leads to a non-uniform 
stress field but no further attention is paid in the literature to the influ­
ence of the stress field non-uniformity on the measurement of the elastic 
modulus. Because most of the measurements of D through the elastic mod­
ulus degradation are made in similar specimen geometry, it is important to 
know whether the measured change in the elastic modulus is due to material 
damage or to specimen geometry effects. 

This problem was examined in reference 2 through a numerical simula­
tion of the test. The specimen geometry in Figure 4.5 was represented by 
finite elements available in the ABAQUS programme, Figure 4.6. Incremental 
plasticity theory, the isotropic hardening rule and the VON MISES yield crite­
rion were employed. The input static equivalent stress-strain curve, shown 
in Figure 4.7 together with the loading-unloading paths, comes from the 
mild steel specimens tested in Chapter 2. The elastic modulus and Poisson's 
ratio as measured in cylindrical tensile specimens are 209.8GPa and 0.287, 
respectively. The simulation is similar to an experiment. The specimen is 
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(a) (b) 

Figure 4.6: Finite- Element mesh of one-eigth of the damage specimen. 
(a) Overall mesh and (b) detail of the fine mesh at the minimum cross 
section. 2 

loaded to some level of plastic strain and unloaded to zero load. 
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Unlike the experimental test, the simulation does not consider any ma­
terial degradation. Hence, any deviation of the input elastic modulus, a 
material property, used in the simulation from the one obtained from nu­

merical data (load, current area and elastic strain), may be safely attributed 

to geometric effects only. 
The usual way to calculate the elastic modulus is to measure the load, 

F, the actual elastic strain, ee, at the minimum cross section, th current 

minimum area S and to apply the expression 

F 
E=-. 

See 
(4.19) 

This formula is valid provided the stress field is uniform across the area 
where the strain gauges are fixed. Obviously this is not exactly the case in 

the damage specimens since the radius introduces a certain degree of non­
uniformity. Moreover, experiments and the numerical simulation in refer­
ence 2 show that the specimen thickness distorts significantly at high levels of 
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Figure 4 .7: Equivalent stress-strain curve and load path used in the static 
Finite-Element simulation of reference 2. 

plastic strain, Figure 4 .8. This suggests even more important non-uniformit 
in the s tress field and hence additional errors in the elastic modulus if eval­
uated from expression (4.19). In fact , such elastic modulus is not a material 
property; it is rather a geometric dependent stress- strain ratio hence the 
denomination apparent elastic modulus, =:.2 

This apparent elastic modulus can be defined in different ways. It can 
be, for instance, a relation between load , area and elastic strains as measured 
by thickness or width contraction. Some mathematical definitions for the 
apparent elastic modulus include ratios among: 2 

• load, F, current cross-section area, S, and longitudinal elastic train 
es, at the minimum thickness and width: 

(4.20) 

• load , F, current cross-section area, S, and thickness elastic contraction 
et, at the minimum thickness and width: 

F 
=-t = -

Set 
(4.21) 
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Figure 4 .8: A detail of the deformed mesh showing the distortion at t.h e 
. . . 2 specimen mlfilmum cross sectIOn . 

• load, F, current cross-section area, S, and minimum width elastic con­

traction, Cw: 

F 
'='w--­

Sew 
(4.22) 

• longitudinal plastic strain, £~, load, F, initial mllllmum cross-section 
area, So, and longitudinal elastic strain, £ 3 : 

(4.23) 

This last definition is currently used in the open literature for damage 

specimens. 
The numerical analysis in reference 2 yields the plot of all these apparent 

elastic moduli against the plastic strain, Figure 4.9, allowing the comparison 
with the initial input elastic modulus. Any deviation from this value is 

interpreted as an error introduced by the specimen geometry and by the 
associated definition. 

This error, erE, in the value of the elastic modulus affects the damage 
parameter, as defined by DE = 1 - Ej E, by a substantial amount, specially 
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Figure 4 .9: Change of the apparent elastic modulus and associated error 
against the actual axial, c~, and area reduction, t:s, plastic train . =., =, 
and =w use the strain data from axial, thickness and width elastic change, 
respectively. =s is evaluated using the common literature procedure equa­
tion (4 .23), and =8 is obtained applying the Bridgman correction factor to 
-= 2 - to 

for low values of Dk .2 Hence all the data here presented concerning the 
measurement of E were corrected according to Figure 4.9. Becau e in the 
present work it was possible to measure both :=:5 and :=:8 definitions the 
correction factor was applied accordingly and it was confirmed that both 
results after correction are equal within 3.7%, at worst. 

4.3 Damage tests description 

To measure the damage parameters according to the various definitions and 
techn iques commented earlier on, the specimen depicted in Figure 4 .10 was 
tested in a tensile test machine. 

The specimens were cut from the plate shown in Figure 2.5 on page 24 , 
along the rolling direction and machined in an automatic milling machin . 
Strain-gauges type EP-08- 015DJ-120, from MICRO MEASUREME TS were 
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Figure 4 .10: Illustration of the geometry of the damage specim n. All 
dimensions in millimetres. 
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pasted onto them at the middle of the minimum cross-section with th h lp 
of a set of amplification lenses. These strain gauges have an eJr ctiv gaug­
length of 0.36mm and are designed to sustain plastic deformations of up to 
0.1. The instrumented specimens were then plac d in an oven at 0° for 2 
to 3 hours to allow the polymerisation of the glue. 

Five static tensile specimens were subjected to th load path in F ig­
ure 4.7 *. The head speed of the tensile test machine was set b tw n 0.05 
and 2mm/min, to minimise strain rate effects . The data collect d during 
the elastic loading region was used to calcu late th various apparent elastic 

moduli described above t. 
The elastic modulus was always measured at th beginning of a h load 

cycle, when then the strain gauges were new. This avoided any ha nge of 
the strain gauge factor due to the plastic strains.B1 The specim ns were 
unloaded immediately after failure of one of the strain gauges. This was 
easily checked because the strain gauges were connected in a quarter- bridge 
configuration. The experimental apparatus was the same as described in 
Figure 2.6 on page 25, except for the camera, which was not us d. The 
calibration of the system was performed at the end of each load cy Ie, as 
described on page 25. The collected data were then r corded in a n electronic 

·The actual load path cliffers slightly from the one in Figure 4.7 since the strain gauges 
fail at different plastic strain intervals. 

tSome authors recommend that elastic str S5 and strain are recorded on the lastic 
unloading curves. 50 , 125 In the present experiments, it was confirm d that no significant 
difference exists between the data for the elastic loading and unloacling cycles. 
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Figure 4 .11: A detail of a crack formed at the middle of a damage pecl­

men. 

file for analysis. This process was carried on until a visible crack occurred 
in the specimen, Figure 4.11 , when then it was considered that the critical 
damage state had been reached. 

Aiming to measure the static Poisson ratio evolution an electronic exten­
someter was installed transversely to the specimens at the minimum \ idth. 
The results obtained are a measure of the material anisotropy. It should be 
remarked, however, that the elastic strain field at the cross-section is not 
uniform .2 Because the extensometers measure only an average value of lat­
eral elastic strains, the measured Poisson ratio has to be seen as an average 
rather than a local value. 

Additionally, the specimens were submitted to a direct current of 5 from 
a stable power source operating in a constant current mode Figure 4.12. 
The specimens were isolated from the tensile machine by an appropria e rig. 
The change in the potential across two internal points to the power uppl 
connection was monitored continuously by a high precision multimeter 50-

LARTRON, model 7150. Amplifiers at high gain were also used to monitor 
the drop in potential due to the damage but the records were too noisy to 
be used, even after filtering. 

4.4 Measuring the damage parameters 

By using the techniques and the measurement systems d cribed b fore it 
was possible to calculate the damage according to its different defini tions 
as now presented. 
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Figure 4 .12: Schematic representation of the measurement sy tern u d 
to record the electrical potential change due to damage. 

4.4.1 Static damage parameter DE 
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The measurement of the elastic modulus for different levels of plasti strain 
was carried out along the guidelines above. The elastic modulus d cr as 
with the equivalent plastic strain as indicated in Figure 4.13. The original 

recorded data were corrected according to the curves lab II d :=:5 and :=:s ill 
Figure 4.9. As previously commented, no significant difference was ~ und 
in the final value of the elastic modulus when using either proc dure. In 
passing, reference 2 shows that, by taking into account geometric effects on 

the evaluation of the elastic modulus, one finds an actual valu of damag 

larger than otherwise predicted . 

According to Figure 4.9, the use of the elastic variation of the thickne 
is potentially a better technique for measurement of the lastic modulus in 
specimens like the one in Figure 4.10. The elastic change of thickness can be 
easily measured with a transverse extensometer. However, thi finding was 

not available at the time the tests had been done. 

The two most common damage parameters, D~ and D}2', obtained from 
the elastic modulus degradation are presented in F igure 4.14. Experimen­
tally, it is difficult to measure the elastic modulus at the fai lure strain b cause 
failure is a dynamic phenomenon. Hence, the last elastic modulus measur 
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Figure 4.13: Change of the elastic modulus against the equivalent plastic 
st rain. The cross is an extrapolation of the third order polynomial fitted 
to the data. 

is associated with an equivalent plastic strain of 0.6 whereas failure took 
place at 0.83 . The croSS in Figures 4.13 and 4.14 represents then the extrap­
olation of the curves This allows one to infer the critical damage parameters 
based on the elastic modulus degradation. For the mild steel one has 

D~E = 0.45 
c r 

and DEW = 0.27. 
cr 

(4.2 ) 

4.4.2 Static damage parameter DHV 

The materia l degradation is reflected on the values of hardness and as pre­
viously shown, this can be related to the damage parameter. The specimens 

broken in the damage tensile tests were mounted and polished for hardn 
measurement. An automatic micro-hardness test machine from SHIMADZ 

Japan, was programmed to perform hardness measurement at discrete lo­
cations along the fracture boundary and along the load axes. The diagonal 
of the indentation produced by the diamond indenter was measured on a 
computer screen by the operator and the values were automatically dumped 
to a data base. In addition to the damage specimens, the notch specimens 
tested as described in Chapter 3 were also hardness mapped. 
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Figure 4.14: Damage evolution, according to equations (4.7) and (4.10) , 
versus the equivalent plastic strain. The crosses are obtained by ext.rapo­
lating the fourth order polynomial used to fit the data. 

91 

Unfortunately, despite all the collected data, it appears that, for the mild 
steel used here, there is no evident decrease of the hardness in the damag cl 
region to yield a consistent measure of the damage parameter. Obs rve that 
the hardness in the damage region should change at a rate different from the 
hardness at the non-damaged material to permit the evaluation of the dam­
age parameter Dkv, Figure 4.4 . Even so, the solid symbol in Figure 4.15, 
were extrapolated and compared to the average of the open symbols in the 
same figure to give a measure of DHV ' Similar procedures for the notch 
specimens were also performed and the results are summarised in Table 4.1. 

Table 4.1: Damage values D HV for damage (d) and notch (n) specim ns. Th 
tests are all quasi-static except for the ones where the test speed is quoted. 

d057 d061 d060 d068 d064 d062 n0515a n430 n420 n404 

0.051 0.028 0.020 0.066 0.039 0.043 0.062 0.117 0.161 0.153 

aPulled at 3m/s. 

bPulled at 0.6m/s. 
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Figure 4.15: Hardness values along the length of a damage specimen 
pu lled statically. The continuous line square fits the solid symbols. The 
open symbols were averaged and assumed to be affected by damage. The 
fracture occurred at zero millimeters. 

4.4.3 Static damage parameter D" 
Disr gard in g any damage effect on the resistivity of the damage specimens, 

th damage parameter Dv was measured as a function of the equivalent 
plastic st rains. The averaged results are plotted in Figure 4.16. 

4 .5 Material damage according to the void area 

Th original definition of damage relies on the measurement of the voids 

form ed inside the specimen tested. This is a destructive method since the 
sp im n has to be sectioned, mounted in a resin and polished. 

The polishing is a most delicate task. To illustrate this point, some 
mi ld steel samples we re polished using two different methods: the standard 

on r commended for mild steel from the polish machine manufacturer *, 
Table 4.2, and other using a lumina O.3JLm for three hours, ultrasonic clean­
ing [or 3 minutes followed by a lumina O.05JLm for another one hour , as in 

• All the polishing was automatically executed in the PREPAMATIC, from STRUERS. 
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Figure 4.16: Static damage parameter evolu tion Dv measur d by th 
electrical potential method against the equivalent plasti train. 

Table 4.2: Polishing route used for the mild teel 

cloth grain size (ttm) time (s) load ( rotation (rpm) 
stone 150 un t il remove 500ttm 153 1000 
P-M 6 until remove IOOttm 153 L50 
plus 3 180 126- 10 150 

reference 219 *. 
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The result is shown in Figure 4.17. The materia l in th figur was n t 

plastically deformed and hence no voids were expected; at mo t om initi al 
impurities. The incorrect polishing, however, introduc d void vi w d h r 

as the place occupied by grey and black soft sulphide. Their oftn 
them to become elongated during rolling and also a llow t hem to b 
when polishing with alumina for a long t ime.174 This point is h r d 
t o show that an incorrect polishing may lead to wrong values for t h 

parameter Ds· 
Using the stand ard route for polishing mild steel, th damage p im n 

tested in tension where investigated for voids. Some of t h not h d t nsil 

specimens tested as described in Chapter 3 were a lso xam in d. Th m a,-

· Private communication from the first author in reference 2l9. 
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(a) Normal polishing (b) Polished with alumina 

Figure 4 .11: Micro-photography of an as received mild steel specimen. (a) 
Normal polishing and (b) polished with alumina. 

s urement of the void area in both the damage and notched specimens was 
restricted to the near fracture boundary, since voids are more concentrated 
at this region . The measurement plane is indicated in Figure 4.18 which, 
according to classical stereology arguments,204 leads to identical values of 
void area as if it had been measured in the fracture plane. The experimental 
procedure consisted in locating the more populated void zones and recording 
the image in an electronic file by using a camera. The file was then analysed 
using a software • with capabilities of measuring voids. Different magnifica­
tions were used in the beginning but it was concluded that a magnification 
of 100 was good since the voids were easily identified and the field of view 
was small enough to restrict the measurement to a small area . 

• Public domain software IMAGE, written by the NATIONAL INSTITUTE OF HEALTH­

USA. 
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view plane damage specimen 

Figure 4 .18: The view plane for th measur m nL of voids . 

4.5.1 Results 

A typical void for the present material was shown in Figur 4.1. II, an b 
seen that the void is elliptical- shape rather than symmetrical. Th void ( I' 

micro- crack) orientation suggests an ani otropic ~ t, whi h may xplai n 
the different str ss- strain fai lure values for different material ol'i nl.al.ion 

(see Table 2.2 on page 30) . 

The results* obtained for the damage specimens show I.hal. I.h s l.l'ain 

rate does not significantly influence the critical values of th damag D 
Figure 4.19. A trend is shown in the curve but it was not possibl 1,0 inf r 
the effect of higher strain rates on void growth. 

As far as the notch specimens are concerned, the data in Figur 4.20 al 0 

suggests a minor influence of the strain rate on Ds . More importan t.i y i 
that the void area is nearly the same at the centre and at the not h bas . 

But for the n05 and n2 specimens, a crack starts to form at the not h b 

(see Figure 3.19, on page 72), which would lead one to con Iud that the 
void distribution is not an indicator of the failure sites . How vel', it has to 

be borne in mind that most of the n specimens wer fractur d durin g th 

tests and hence the voids can propagate along the fracture boundary, ma king 
t heir final values more homogeneou . 

This is further corroborated by looking at the damage valu s of two not h 

specimens whose tests were interrupted before total fractur. n sp im n 

has a large initial radius of 4mm and, as seen in hapter 3, fail s from th 

<The ini t ial measured void fraction of 0.030% was subtracted from all the data. 
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Figure 4 .19: The damage parameter Ds versus the nominal test speed. 

centre. Indeed, the damage Ds at the centre is 0.76% to be compared with 
0.18% at the notch base. Another specimen of r.ominal radius of 0.5mm fails 
at the notch root. The damage value at this point is 0.57% contrasting with 

its value at the centre of 0.33%. 
It should be remarked that the damage Ds does not take into account 

a ny void interaction , shape, orientation and stress concentration. Hence, it 
is expected that the actual damage viewed as the weakness of a structure 
to sustain loads is higher than inferred by measuring the void area. This 
point was taken by JANSSON and STIGH ,91 when analysing different cav­
ity shapes and orientations embedded in an isotropic, incompressible power 
law creeping material. They showed that the damage parameter, Ds, is 
underestimated by a factor as high as two for spherical cavities. 

4.6 Additional experimental parameters 

The Poisson ratio in the elastic regime evolves with the equivalent plastic 
st rain accord ing to F igure 4.21. The main experimental limitation of these 
data is that the lateral elastic strain was measured with extensometers . As 
already remarked , the elastic strains are not constant across the width of a 
damage specimen, which limi ts the accuracy of the data. 
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damage specimens. 
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Consider now the uni-dimensional strain associated with the damage 
threshold, cD. 

It is commonly accepted that damage commences when cD reaches the 
ultimate strain, cu' 52,126,185 For the present material, the ultimate strain 
was measured to be invariant with the strain rate, according to Figure 2.15 
on page 35, Chapter 2. The average values between Cbody and eFmt>% are 
taken here as the uni-dimensional damage threshold strain CD! 

- Cbody + cFmaz - 0 15 
cD! - 2 -., (4.25) 

which is approximately the strain to which the elastic modulus in Figure 4.13 
starts to decrease. Accordingly, cD is strain rate invariant for the present 
material. 

For the notched specimens, the results in Figure 3.7, on page 57, indicate 
that the equivalent strain, cu, associated with load decrease and, hence, with 
damage beginning, is not strain rate sensitive. Also, the different stress­
strain fields induced by the notch acuity do not have a marked influence on 
cu' The average values of eu for different notch radii is 0.19 which can be 
averaged with CD! to finally give 

cD = 0.17. (4.26) 

The damage starts then when the equivalent strain reaches 0.17, regard­
less of the stress field and the strain rate.· 

4.7 Discussion 

A striking feature of the various experimental data presented here is the clear 
disagreement among the various damage definitions. It appears that damage 
has not been measured for the same material using different techniques. The 
static values of the damage parameter for the mild steel, according to the 
different experimental techniques, are listed in Table 4.3. 

It is evident, therefore, that the damage parameter is dependent on the 
definition and of the experimental technique used. The importance of this 
observation is that failure criteria based upon damage parameters may yield 
good or poor predictions, according to the critical damage chosen. In this 
sense, the damage parameter might be seen as an adjustable parameter, 
a fact pointed out by M. KACHANOV106 in light of his studies on crack 
interaction. 
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Table 4.3: Static critical damage parameters for mild steel according to 
different definitions and experimental techniques. 

variable values 
0.45 

0.26 
0.20 

0.041 
0.0072 

technique 
measurement of the elastic modulus 
measurement of the elastic modulus 
measurement of the voltage 
measurement of the hardness 
measurement of the voids area 
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However, different damage values for the same material does not mean 
that they cannot be considered a material constant, for the values are a!-\­
sociated with different properties. They may well represent individually a 
measure of damage. To choose the most appropriate damage parameter hi 

not an easy task. Of course that this is dependent of the goals the parame­
ter has to fulfil. In fact, as pointed out by KRAJCINOVIC,1l2 the selection of 
different damage variable may yield different damage models. 

For the present purposes, it is argued here that the damage inferred from' 
voids is too small. It is expected that crack interaction and shape have a 
decisive influence on the final value of D. This cannot be measured dirc'Ctly 
from the void area. As the elastic modulus degradation tends to take into 
account such interaction, as well as the non-uniform void distribution, the 
associated damage might be more appropriate. But it should be clear that 
the damage inferred from the change of the elastic modulus may not be 
straightforwardly related to the original damage concept, viewed as voids 
formed in a material due to loading. 

Now, whether the hypothesis of energy or strain equivalence holds bett<'f 
is difficult to say and the present data do not allow a conclusion to be formed 
on this point. Clearly, more experimental data are necessary. However, the 
lower values of D}f suggest that the energy equivalence damage definition 
can be more appropriate when considering it yields values closer to other 
damage definitions, eg based on hardness, voltage change and void area. 
Nonetheless, in the present work, the hypothesis of the strain equivalence 
will be adopted since its general formulation is better established, as Chapter 
5 will show. 

Another table similar to Table 4.3 can be obtained from the damage data 
available in the literature. The damage for different materials is listed Oil 

Table 4.4. It can be seen, in line with the data here produced, that the 
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damage from void measurement tends to be quite low. 
It is important to stress that the damage DE is usually measured in 

specimens with a large lateral radius. This induces important errors in the 
final values of the elastic modulus. Hence, the damage DE in the literature, 
Table 4.4, cannot be directly compared with the ones here obtained since 
the later were corrected according to the numerical results of reference 2. 

In this reference, it is shown that an error, erE, in the value of the elastic 
modulus affects the correct value of the damage, DE, through equation 

DE=DI+erE , 
1 + erE 

( 4.27) 

where Dl is the damage measured through the elastic modulus change in 
specimens with a lateral radius and without any correction. For example, at 
a strain of around 0.8, the error in the elastic modulus is 16%, Figure 4.9. If 
the common accepted value of the damage Dl is 0.20, the correct value will 
be DE = 0.31, a quite large difference. 

One open question in the literature is how the critical damage is influ­
enced by tri-dimensional stress fields. 14 As a matter of fact, the so-called 
uni-dimensional damage parameter, as DE, thought considered to be uni­
dimensional,126 takes place under constrains of such order that the prevail­
ing peak triaxiality at the critical moment is as high as 0.65.2 This is much 
higher then the accepted value of 0.33. Hence, DE cannot be considered 
uni-dimensional, unless experimentally shown that the stress field has a neg­
ligible influence on D. 

As the triaxiality varies drastically with the notch radius, the notch spec­
imens can be used to assess the stress influence on the critical damage. In 
this case, the damage was measured from the voids. Figure 4.22 shows 
the averaged measured data, together with bars representing a ± one stan­
dard deviation. Apart from the values for the damage specimens, which are 
mainly plane strain deformed, the damage parameter Ds does not seem to 
be highly stress state dependent. This suggests that the critical damage can 
be, in a first approximation, assumed constant for axisymmetric structures 
when using the void measure technique, regardless of the strain rate and for 
a triaxiality range between 0.35 and 1.37 *. 

On the other hand, BECKER's10 experimental data indicate a slight de­
crease of the critical void volume fraction (the damage Ds), with the increase 

"These are the values for the minimum and maximum triaxiality in the notch specimens. 
See Figure 3.16 on page 67. 
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of the triaxiality for the axisymmetric case. For plane strain, he found that 
Ds can be considered constant, though initial void volume fraction and 
hardening dependent. Moreover, results from SHI et al. 183 show that the 
critical void volume fraction increases significantly with the increase of the 
stress triaxiality. Their material, a structural steel 854360 grade SOD, is 
similar to the one used in this study, as far as yielding and elongation are 
concerned. They concluded that the critical damage at the onset of crack is 
stress dependent and hence not a material constant. 

In line with the results here produced, OTSUKA et al. 169 found for their 
material, a structural steel sM41A, also similar to the one here tested, that 
the critical void volume fraction attained the same level (2.5%) rl'gardl('ss 
of the triaxiality*. These comments lead to the natural conclusion that the 
stress state influences the critical damage but in a way particular to each 
material. In the present case, this influence can be assumed negligible. 

The experimental technique based on hardness seems to work well for 
some materials, as shown in Figure 4.4, but not for the mild steP} here 
tested. This is an unfortunate finding because a whole map of hardness 
in specimens tested at different strain rates may be obtained easily with 
automatic measurement systems, as the one here used. 

It is important to remark that the experimental techniques adopted have 
been demonstrated to be valid for other materials. This is the case of hard­
ness, where good results for mild steel, comparable to the change in the 
elastic modulus, were obtained by LEMAITRE and his group.21, 126, 130, 131 

However, in face of the present results, the technique cannot be considerl'd 
general. 

These comments hold also for the damage measured from the potential 
drop. It does not faithfully indicates the quasi-linear damage evolution ob­
tained from the elastic modulus change. A correction 126 for the change of 
length, I, and area, S, due to the plastic strains was performed but the re­
sults did not improve. The technique may be potentially used for dynamic 
measures of the damage but high precise transient recorders operating with 
signals as small as IJLV with fast response time, are fairly uncommon. 

The present data allows one to conclude that, within the range tested, 
the damage evolves linearly with the plastic strains. The threshold damage 
strain and the critical damage are neither stress nor strain rate dependent. 
Theoretically, these features are very appealing. To fully utilise them in 

*This does not hold for failure by shear (mode 11).169 



102 Material Damage 

1.2 

Os (%) 
1 

0.8 

0.6 

0.4 

0.2 
I I ! 

0 
d n05 n2 n4 

specimen 

Figure 4.22: The damage parameter Ds averaged per specimen type. The 
bars are indicative of the data scatter (values of ± one standard deviation). 

applying a failure criterion, one needs a theoretical framework which, by 
dealing with quantities as damage, stress and strain, is capable of imposing 
a limit failure strain or stress in a structure under analysis, beyond which 
failure is triggered. This is the subject of the next chapter. 
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Table 4.4: Critical damage value for various materials at room tem-
perature evaluated from void area and from the variation of the clastic 
modulus. 

Ref. Material DScr D~ 
E,~ 

D~f 
I'J,-[ 

11 sintered irona 0.140 
28 plain carbon steel 1045 coarse carbide 0.035 
55 glass reinforced epox composite 0.180 

118 plain carbon steel 1045d 0.066 

118 plain carbon steel 1090 0.018 
118 plain carbon steel 1015 0.018 
126 steel NiCoMo 0.880 
130 high alloy steel· 0.100 
142 mild steel 0.060 
160 347 austenitic steel 0.010 

169 SM41A structural steeld 0.025 
183 8S4360 grade SOD structural steeld O.OlOe 
183 8S4360 grade SOD structural steeld 0.003 f 

185 A533B pressure vessel steel 0.029 
219 Fe-2%Sib 0.105c 

4 carbon-epoxi 0.120 0.062 
23 DERAKANE 411-45 resin and E-glass CSM 0.100 0.051 
60 copper 0.850 0.613 

110 aluminium 2024 0.130 0.067 
126 aluminium alloy 2024 0.230 0.123 
126 concrete in tension 0.200 0.106 
126 steel AISI1010 0.200 0.105 
126 stainless steel AISIS316 0.150 0.078 
132 alumina bounded by carbon fiber-epoxy 0.300 0.163 
167 aluminium alloy Au4G1 0.230 0.123 
167 steel xc38 0.220 0.117 
211 steel 15MnMoVNRe 0.295 0.160 

alnitial void volume fraction fo = 0.06. 

blnitial void volume fraction fo = 0.06. 

c Close to the failure point. 

dSimilar to the material used in this work. 

eAt (Jh/(Jeq = 4.1. 

(At (Jh/(Jeq = 2.2. 





5 Strain 
Rate-Dependent 

Damage 
Mechanics 

CONTINUUM DAMAGE MECHANICS, CDM, offers a theoretical framework 
for the prediction of the damage evolution in a structure. The growth of 
damage is upper bounded by the beginning of a crack, which occurs whell a 
critical damage in the continuum is achieved. 

This threshold between critical damage and crack growth can be S(,{,lI as 
a failure criterion. Because the damage is related to the stresses and straills, 
it is all plausible to admit that damage should affect the structural fl~sponse 
even before a critical value is achieved. This has the im mediate cons<'q \I {,11 ("(' 

that the damage should be included in the set of equations governing a 
particular problem, as demonstrated in Appendix A. 

On the other hand, it is evident from the results of Chapter 2 that the 
strai~ rate affects the material response. Clearly, if CDM has to be applied 
in structural impact analysis, it is important to take into account, at least, 
the influence of the strain rate on the stresses. This, in turn, affects the 

damage evolution. 

These comments set the goals ofthis chapter. It aims to take into account 
strain rate effects on the damage evolution. This is achieved by using the 
stress-strain-strain rate relation proposed in Chapter 2. The so obtained 
damage model is particularised to linear hardening and perfectly plastic 
materials. As an application of the damage equation, the triaxiality influence 
on the failure strain, the failure sites in notched specimens and the dynamic 
limit forming diagrams are explored. A discussion ends the chapter. 
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5.1 Strain rate influence on damage evolution 

Generally speaking, for the few cases where damage is taken into account 
in a dynamic structural analysis, as in ROUVRAY and HAUG54,81 and in 
FARUQUE and WU,66 CDM models do not bear any special feature which 
would distinguish them from a static model. 

The exceptions are worth of mentioning. 

NEMES and SPECIEL164 applied a rate-<iependent damage model to com­
posites. They have concentrated on exploring their model as far as stability, 
convergence and mesh sensitivity of the numerical solution is concerned. 
Their model is capable of showing, for a fixed plastic strain (smaller than 
1 %), that the damage parameter decreases with an increase of strain rate. 
The damage evolution is written in terms of stress and one parameter, known 
as damage viscosity constant, governs the rate of damage. 

SIMO and JU186 have proposed a viscous-damage linear model in order 
to retard the growth of microcracks as the strain rate increases. They have 
implemented the model in a Finite-Element code and have simulated the 
com pression of concrete at two different speeds.187 The strains and strain 
rates in the simulation were quite low, with strain rates less than 0.15- 1. 

SIMO and Ju's model was also implemented by ZHU and CESCOTT0224 

and used in sheet forming. The strain rate used in the simulation was not 
quoted but the velocity of the punch was set to 40mm/s. 

In another paper, ZHU and CESCOTT0223 have used a damage model 
in the numerical simulation of impacted beams. The CDM formulation in 
this case is standard and it does not add any dynamic feature. The dy­
namic analysis is restricted to the consideration of inertia terms on ordinary 
equilibrium equations only and not on the damage evolution. 

In fact, damage rate-dependent models geared towards the impact of 
structures, where the strain rates are high, have not yet been developed, at 
least within the framework of the CDM presented in Appendix A. 

A basic CDM model, taking care of the increase of stresses due to strain 
rate effects, can be added to the standard damage model presented in Ap­
pendix A. There, it was shown that, for a bilinear material, the damage 
evolves according to 

. ·8:FD 
D = ~ 8Y , (5.1) 
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(5.2) 

(.5.3) 

(5.1) 

(5.5) 

(5.6) 

In equations (5.2)-(5.6), D is the damage, E and E' are the elastic and 
hardening moduli, v is Poisson's ratio and a eq and ah are the equivalent and 
hydrostatic stresses, respectively. The function II, defined in A ppendix A, 
indicates that the damage rate is greater than zero only when the accumu­
lated plastic strain, p, is greater than PD, which is a parameter function of 
the material and stress state. The constant S will be commented on later. 

The set of constitutive equations including elasticity, plasticity and dam­
age are given by equations (A.42)-(A,48) in Appendix A. 

The potential :FD in equation (5,4) is proposed by LEMAITRE 126 and 
renders the damage evolution one of its simplest form '". 

The plastic multiplier, .x, used in equation (5.1) comes from the condition 

oj oj. oj!. of. oj. 
at = oajj aij + oRR + oa

y
ay + oDD = O. (.5.7) 

when the yield function is rendered as 

(5.8) 

·Other potentials were refered to in Chapter 1. 
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R is the hardening term, CTy is the (static) yield stress and ueq is the effective 
stress presented on page 76, Chapter 4. 

To incorporate strain rate effects in the damage evolution, equation (5.2), 
one starts with a dynamic yield function written as 

(5.9) 

where the subscript d stands for dynamic and id = id(€eq) is a strain rate­
dependent term which contributes to the expansion of the yield surface due 
to the material strain rate sensitivity. 

In this case, the plastic multiplier, ~, is obtained via the condition 

(5.10) 

A change of the plastic multiplier, ~, due to dynamic effects can be 
attributed to the term 

(5.11) 

in equation (5.10). 

The stress-strain-strain rate relation presented in Chapter 2 

(5.12) 

repeated here for convenience, adds to the static yield surface the dynamic 
term 

(5.13) 

whose time derivative is 

did - - .n-t .. 
dt = mne: c. (5.14) 

In rigid-plastic analyses, it is difficult to evaluate the strain rate change, 
the term € in equation (5.14), as a structure is loaded. In the present work, 
the strain rate will be evaluated in Chapter 6 and it is anticipated that only 
an average (constant) value can be estimated, making equation (5.14) to be 
zero. 
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Under this restriction, the plastic multiplier, '\, becomes indepen(knt 
of any consideration of strain rate effects since equation (5.10) reducf's to 
equation (5.7). 

It follows that equation (5.1) in the dynamic case changes only due to 
the potential F n and to the strain energy density release rate, Y, at most. 

The potential Fn, as commented in Chapter 1, is a key issue in deriving 
CDM models. Here, it is considered that it has the same form as in the static 
case, equation (5.4), except that Y resumes a dynamic effect. This is to say 
that the triaxiality, CTh/CTeg, the Poisson's ratio, II, the elastic modulus, E, 
the coefficient S, the equivalent stress and the damage ought to be dynamic 
parameters. 

It is considered that the elastic mod ul us and the Poisson's ratio are 
material constants, not affected by the strain rate. Also, it is assuml'd that 
all the components of the stress tensor are affected in the same way by the 
strain rate. Hence, the ratio CTh/ CTeg is not strain rate df'pendent. 

Under these assumptions, it follows that the coupled dynamic damage 
evolution, Dd, equation (5.2), strain rate effects being preserved, is obtain£'d 
by solving 

(.S.H» 

or 

(5.16) 

when using equation (5.12). 
The parameters in, nand E were determined as shown in Chapt£'r 2. 

The dynamic threshold accumulated plastic strain, Pn d , and the parametN 
S will be commented on later. 

5.2 Particular integration of the damage equation 

For some special cases, it is possible and useful to integrate the dynamic 
damage kinetic equation. This specialization will be here pursued for two 
different material models, perfectly plastic and linear hardening material, 
with strain rate effects taken into account. 

In the following integration, the triaxiality ratio, CTh/CTeg, is assumed con­
stant, which makes the factor R" invariant with stress. In practice, this 
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load regime is called proportional loading. It occurs when the following 
requirements are fulfilled 128 *: 

• the load increases proportionally to a unique parameter, 

• the initial state is non deformed with no hardening, 

• the material obeys the PRANDTL-REuss law, 

• hardening is expressed with a potential, 

• the elastic strains are negligible. 

Considering first an elastic, perfectly plastic material with a static flow 
stress O'eq = 0'0, the kinetic damage law, equation (5.2), may be integrated 
to give a static perfectly plastic version of the damage, 

Io
D lP 0'5 Rv dD= ---dp, ° PD 2ES 

(5.17) 

0'5Rv ( ) D= --- P-PD 
2ES 

for P? PD· (5.18) 

In the case of proportional loading, the accumulated plastic strain equals 
the equivalent strain, ie 

P = Ceq and PD = cD, (5.19) 

rendering equation (5.18) as 

0'5 Rv ( ) D= 2ES Ceq -CD for (5.20) 

It may be appreciated that equation (5.20) is quite simple. Indeed, by 
knowing the triaxiality value, the equivalent plastic strain plus some material 
parameters, E, S, II, 0'0, cD, one can evaluate the damage field and predict 
failure, as it will be seen. 

·These requirements are necessary but not sufficient. The numerical simulation of 
notched specimens in Chapter 3 fulfils these conditions. Yet, the triaxiality is not constant 
(see Figure 3.16 on page 67). 
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~E' 
000 1 

Eeq 

Figure 5.1: Definition of the flow stress. 

The material model can be improved by considering a linear hard ning 

law such that 

(5.21) 

Here, E' is the hardening modulus and (Too is a initial flow stress u ually 

different from (To, Figure 5.l. 
By inserting equation (5.21) in equation (5.2), using quation (5.19), 

and performing the integration for proportional loading, the static damage 
evolves with the plastic strain according to 

for Ceq ~ cD. (5.22) 

Consider now the integration of equation (5.2) wher not on ly lin ar 
hardening but also strain rate sensitivity is taken into account. 

ow, inserting the quation 

(;eqd = (Too + E'ceq + min, (5.23) 

into equation 

(5.24) 
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one has, after the integration, 

Accordingly, the total damage, Dd, may be seen as split into the static, 
Dsl, hardening, DE" and dynamic, Ddl, parts, rendering equation (5.25) as 

(5.26) 

where 

l1~oRIJ ( Dil' = ---- Ceq - cD), 
2ES 

(5.27) 

and 

(5.29) 

If the strain rate, i, and the hardening coefficient, E', are set to zero, 
the flow stress, 1100, becomes 110 and the static damage equation reported in 
the literature,126 equation (5.20), is recovered, as expected. 

A useful particular case of equation (5.26) occurs when the term DE' 
is set to zero. One has then the damage evolution for a perfectly plastic 
material where strain rate effects are preserved, 

(5.30) 

Observe that, for the threshold dynamic plastic strain, cD
d

, its static 
counterpart, cD, was used. This is suggested by the experimental data shown 
in Figures 2.15 and 3.7, on pages 35 and 57, respectively. These data support 
a constant threshold plastic strain, independent of the strain rate, as already 
commented on Chapter 4. 
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5.3 Damage strength material parameter 

The parameter S in equation (5.2), the damage strength material parameter, 
is regarded as a material constant. 127 LEMAITRE,126 for instance, quotes a 
value of 2.4MPa for AISIl010 steel at room temperature and 2.5 1O-7MPa 
for concrete in tension. The higher its value the lower the rate of damage 
growth. 

The damage strength parameter can be seen as an adjustable, material 
dependent, parameter since its main function is to bring the prediction of 
equation (5.2) closer to experimental data. 

Fortunately, the parameter S is not very sensitive to the strains. It is 
possible to chose it as a constant which best fits the experimental data. 
Indeed, by adopting E = 209.8MPa, v = 0.286, from the tensile test data 
on page 31, cD = 0.17 from page 98, a triaxiality of ah/aeq = 0.5, which 
was calculated in reference 2 for the specimen in Figure 4.5, page 82, and 
stress-strain data from the tf'nsile tests on damage specimens, ChaptN 4, 
equation (5.20) behaves as indicated in Figure 5.2 when S=2.2MPa. 

Clearly, a constant value for the damage strength material parameter, 
yields a reasonable fit to the experimental data. The benefits in having S as 
a material constant justify any slight deviation in the comparison with the 
experimental data. 

5.4 Influence of triaxiality on failure strain 

It is accepted that the hydrostatic stress is a major variable in dictating duc­
tile failure, as already commented in Chapter 3. The higher the triaxiality 
the lower the failure strain. It is important to incorporate this trend in a 
failure criterion. Equally important for a failure criterion is to predict the 
failure site. This section explores how CDM can be applied to assess the 
interplay between triaxiality and failure strain. Also, it is shown how strain 
rate effects are taken into account via the formulation developed in section 
5.2. 

From equation (5.30), it is straightforward to express the equivalent fail­
ure strain as a function of the critical damage, the triaxiality, the strain rate 
and a few material parameters: 

2ESDcr 
CJa = R ( + - 'fi)2 + cD· vao me (5.31) 
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Figure 5.2: Static damage versus equivalent strain evolution as predicted 
by equation (5.20) with S = 2.2MPa, uh/ueq=0.5 and stress-strain exper­
imental data. The open symbols represent experimental data from Chap­
ter 4. 

This equation is plotted in Figure 5.3. The parameters used are for mild 
steel, tested as presented in the previous chapters. In particular, the flow 
stress 0'0 is a critical variable and does alter the so-called master curves of 
ductile fracture. Its value was set to 600MPa. By choosing different flow 
stresses, one can obtain lower and upper boundaries for these master curves. 

It is possible to use a linear hardening constitutive law to obtain the 
failure strain. The resulting equation, though, equation (5.25), is cubic for 
the failure strain, making it difficult to use. 

It is now opportune to discuss the above iso-failure curves in the light of 
the experimental results obtained in Chapter 3. 

Figure 5.3 shows clearly that an increase of the hydrostatic stress makes, 
in a way, the material more brittle, for the failure strain decreases. Nev­
ertheless, it was shown in Chapter 3 that the actual failure site in small 
radius notch specimens occurred at the base of the notch. In this region, the 
triaxiality is quite low, compared to the high values achieved at the middle. 

Therefore, the triaxiality does not exclusively control the failure, as a 
first glance in Figure 5.3 would suggest. Here, the equivalent plastic strain 
must be fully considered in order to determine the failure site and under 
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Figure 5.3: Influence of the triaxiality and strain rate on failure st rain . 
Thin and thick lines represent equation (5.31) for strain rates of 0 and 
100s- 1 , re pectively. The parameters are representative of a mild st I. 
The various symbols are experimental data, labeled with the averag st rain 
rate in the test. Circles, triangles i\nd squares are [or th 114 , n2 and n05 
specimens, respectively. The plus igns are experimental data based on the 
final geometry of the test specimens with different average strain rates. 
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which conditions failure takes place. This raIses an important issue. an 

CDM predict not only that an increase of triaxiality decreases th failure 

strain but, also and at the same time, that failure can take place in regions 

of low level of triaxiality? 

To judge whether CDM is capable of predicting correctly the failure ite 

in structures, the notch specimens are quite useful. One can valuate th 

damage along their minium cross-sections and infer whether the maximum 

damage coincides with the failure site. Observe that, for the n05 and n2 
notched specimens, the triaxiality is higher at the middle wher as the equiv­
alent plastic strain is higher at the notch base. 

Figure 5.4(a) depicts the triaxiality ratio and the equivalent strain a long 

the minimum diameter for the n05 cylil)drical notch specimen loaded stati­
cally according to the Finite- Element simulations in Chapter 3. These data 
were calculated for a diameter contraction matching the one occu rring at th e 
actual instant of failure of the n05 specimen . They can be substituted into 
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equation (5.20), valid for perfectly plastic materials, proportional loading 
and no sensitivity to strain rate. By using the material data available for 
mild steel and setting, as before, 0'0 = 600MPa, the damage profile along 
the minimum cross section can be traced according to Figure 5.4(a). 

The predicted damage in Figure 5.4(a) occurs when the specimen is fail­
ing, from which it can be concluded that the specimen will fail at the notch 
base, regardless of the larger value of triaxiality in the middle. This failure 
site was experimentally obtained, as Figure 3.19, on page 72, shows. 

It is relevant that the maximum damage value in Figure 5.4(a) is 0.41, to 
be compared with the critical value of 0.45 measured for the same material 

used to make the n05 specimen. 
This small error could suggest that a simple model for damage evolution 

and a perfectly plastic material law are capable to predict quantitatively the 
failure behaviour. This has, though, to be put in contrast with similar results 
but now for the statically tested n2 and n4 specimens, Figure 5.4(b) and (c). 

The experimental failure site for specimen n2 is at the notch root, as 
theoretically predicted in Figure 5.4(b), but the damage is too low. Also, 
as commented in Chapter 3, the failure site for the n4 specimens is at the 
centre, again as predicted in Figure 5.4(c). But now the damage value seems 
to be too high; the specimen would be expected to fail at an earlier stage. 

5.5 Dynamic limit forming diagrams 

It is illustrative to apply the so far developed formulation to a more practical 
case. 

Consider the deep drawing of a thin sheet under a plane stress state • 
with the assumptions of negligible elastic strains, proportional loading and 
no strain rate effect on the triaxiality. Equation (5.31) can be used to predict 
the strain to failure of this problem. 

In the plane stress case, the stress tensor reads 

(5.32) 

By noting that the principal strains, Crr and cJlJI, are related to the stress 

·This example is presented in references 126 and 211 in a different form and for the 
static case. 
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Figure 5.4: Stress triaxiality, equivalent plastic strai n and damage along 
the minimum cross-section of mild steel cylindrical sp cimens with a notch 
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deviators, O'~x and O'~y, according to 

and 

it follows that 

. 3 O'~x • 
exx = -2-eeq 

O'eq 

3 0" • - yy. 
eYII - -2 -Ceq, 

O'eq 

, 
cxx O'xx 

Cyy = O'~II . 

The equivalent stress reads then 

1 eyy (eyy )2 +-+ - , 
cxx exx 

whereas the hydrostatic stress is 

- , +' '(1 + ClIY) O'h - O'xx 0'1111 = O'xx -, 
Cxx 

when using equation (5.35). 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

Introducing the ratio O'h/O'eq, from equations (5.36) and (5.37), in equa­
tion (5.31) yields 

2ESDcr /(O'o + mtii)2 (5.38) 
c/a= 2+cD. 

~(1 + v) + (1 - 2v) [ (1+~)2 2] 
3 l+!n+(!n) 

CZ% CZ% 

By using the material data available for mild steel, the above equation can 
be plotted for different cyy/cxx ratios, generating then the dynamic fracture 
limits in metal forming, Figure 5.5. To use it, one can choose a strain ratio 
Cyy/cxx and, from the diagram, pick out the failure equivalent strain. By 
noting that 

Ceq = ~..jc~x + c~lI + cXXcYII' (5.39) 

it is possible to determine the pertinent maximum strain state the sheet 
under consideration supports, without failing. 

Clearly, the strain rate plays an important role. The damage model 
predicts that an increase of the strain rate decreases the failure strain sub­
stantially. 
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CDM is becoming a more and more useful technique for pr('dicting failure. It 
grew out of a simple concept, of damage, and became more formal by apply­
ing thermomechanics concepts. The simplicity it bears is rather appealing, 
being perhaps the major motivation underlying its development. 

The previous sections followed more or less established routes in the CDM 
formalism, except for the inclusion of strain rate effects. The use of simple 
stress-strain-strain rate constitutive laws in the CDM theoretical framework 
is missing in the literature. The double purpose of such effort is to bring 
dynamic effects into playas well as to keep a balance between accuracy and 
simplicity. Hence, a rate-dependent damage mechanics can be used to solve 
some simple problems analytically. 

It is important to highlight some points of the formalism here developed. 
The potential used to derive the damage evolution is quite simple. In the 

case of proportional loading and for perfectly plastic materials, the model is 
proportional to the equivalent plastic strain. This is in agreement with some 
theoretical evidences. ORTIZ and MOLINARI,168 for instance, in studying 
the dynamic expansion of a spherical void in an unbounded solid, concluded 
that the expansion of the void is linear with time or, for proportional loading, 
linear with strain. A linear growth of damage with the plastic strain is also 
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a good approximation for the data in Chapter 4. 
It is not difficult, though, to add a non-linear term to the equations. 

Indeed, various authors,191,207-209 by choosing potentials. slightly different 
from the one in equation (5.4), have modeled damage in other materials. 

The potential in equation (5.4), introduced by LEMAITRE, and part of 
the formalism developed by him, have been criticised. 

First because the model is isotropic. 103 This implies that the damage is 
the same regardless the orientation, which conflicts with some experimental 
data, as in CORDEBOIS and SIDOROFF.49 

It is not clear how important the effect of anisotropy is in terms of an­
ticipating or retarding the failure in an actual structure. Also, although 
it can be expected that the damage parameter exhibits anisotropic effects, 
experimental results have to be interpreted with care. It is difficult to mea­
sure the damage anisotropy in a material. If the damage is investigated 
using the elastic modulus change, as in CORDEBOIS and SIDOROFF49 and in 
CHOW and WANG,39,40 it is fundamental to consider the non-uniformity of 
the stress and strain fields, as shown in reference 2. Moreover, the damage 
has to be monitored locally, a procedure not followed in references 39,40,194 
and not stated in reference 49. These comments assume special relevance 
when considering that damage in different directions do not differ from each 
other by a great amount. 

LEMAITRE'S model considers that ductile damage is due to the release of 
the elastic strain energy only. Ju 102 criticises the fact that plastic strains do 
not contribute to the microcrack growth process, whereas TAHER l90 suggest 
an alternative model, in the spirit of LEMAITRE'S, capable to couple damage, 
stress, and elastic and plastic strains. 

In working with the potential given by equation (5.4), the resulting dy­
n·amic damage evolution equation was integrated for perfectly plastic and 
bilinear materials. Formally, it is possible to adopt other stress-strain laws 
but the integration may be difficult and the resulting expression not suitable 
for the purposes of this work. This was anticipated by equation 5.22, where 
the simplest hardening model, ie linear, yielded an equation of difficult use. 

The triaxiality influence on failure strain is well captured by CDM, as 
illustrated in Figure 5.3. Nonetheless, it should be kept in mind that the 
comparison with the experimental data in the figure is misleading since the 
data are in fact a manipulation, according to BRIDGMAN'S theory, of some 
measurable parameters. The correct way to interpret Figure 5.3 is that 
CDM grasps the well known decrease of failure strain with the increase of 
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triaxiality. But the failure site may not be at the maximum triaxiality region. 
Indeed, it was shown in Chapter 3 that, for acute specimens, failure st.arts 
at the base of the notch root. 

This experimental evidence is qualitatively predicted by CDM, according 
to Figures 5.4(a), (b) and (c). Observe that in these figures, the stress-strain 
information comes from a full elastic-plastic analysis and are introduc('d in 
a perfectly plastic damage evolution equation. 

The value of the damage in the n05 specimen, D = 0.41 in Figure 5.1 (a.), 
is similar to the critical damage of 0.45, as it should be for a faill('d specimen. 

However, for the n2 specimen, Figure 5.4(b), the damage is quite low and 
even so the specimen has failed. Because the triaxiality at the failure site for 
the n05 and n2 specimens are more or less the same, the equival('nt plastic 
strain for the n2 specimen would have to increase substantially in order to 
yield a critical damage of 0.45. 

For the n4 specimen, Figure 5.4(c) shows that the damage is larger than 
the critical value, suggesting that the specimen should ha.ve failed at an 
earlier stage. 

The reasonable results for the n05 specimen are difficult to sustain in 
face of the poor results for the n2 and n4 specimens. One explanation for 
such discrepancy could be an influence of the axisymmetric stress field on 
the critical damage, a supposition not supported by some experimental data, 
Figure 4.20 on page 97. 

Turning now to Figure 3.10, on page 60, a good agreement of the nu­
merical simulation with the experiments in notched specimens is shown, but 
up to a certain point. The expected softening regime near fracture is not 
grasped by the solution, clearly because the numerical model does not COII­

sider damage. At this point, the damage should playa decisive infiu('nce 
in dictating the strain and stress field, fields used to obtain the results in 
Figure 5.4. How important is this influence it is not known, unless a fully 
elastic-plastic-damage model is implemented in a Finite-Element code. 

Noteworthy in Figure 5.4 is that the triaxiality does not seem, in princi­
ple, to dictate the failure site, as it is usually accepted.86, 144, 146, 175 CDM is 
capable of predicting that, in this case, failure takes place at regions of low 
triaxiality and high plastic strains. 

According to these results, it is possible to conclude that CDM can ef­
fectively predict the failure site in notched specimens. It also suggests, with 
theoretical arguments, that the importance attributed to the triaxiality in­
fluence on failure is overestimated. 
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As far as strain rate effects are concerned, most of the discussion has to 
be postponed to Chapter 7, where failure will be predicted using the model 
here developed. However, it is interesting to observe that the use of perfectly 
plastic and linear hardening materials, together with the implicit assumption 
that the strain rate does not affect the hardening modulus, implies that the 
strain rate affects the flow stress only. This influence of strain rate on flow 
stress can be catered for by both the COWPER-SYMONDS law, equation 
(2.14), and by equation (5.12). In both cases, the coefficients C, q, m and 
n in these equations are constants. This means that equation (5.12) has no 
particular advantage over the COWPER-SYMONDS constitutive law. 

The present rate-dependent model will be used to predict failure in im­
pacted beams. Observe that the model requires the knowledge of plastic 
strains. This is not possible in the framework of rigid-plastic analysis, un­
less it is considered that the strains are distributed within a certain region 
of a structure. 

The determination of strains in a perfectly plastic material is the subject 
of the next chapter. 



6 Strains in a 
Perfectly Plastic 

Material 

THE RIGID-PLASTIC methods of analysis are quite important as a d('sign 
tool for engineering structures. By assuming that the stress-strain materia.l 
behaviour is well represented by a single parameter, the flow stress, the 
governing equations of a problem are solved, sometimes in closed form. This 
helps a great deal in providing a physical understanding of the phenolll('na 
underlying the analysis. 

However, the plastic methods of structural analysis have a major disad­
vantage, namely, the impossibility of calculating the strains. This is due to 
the lack of uniqueness between stress and strain since, in a p('rfectly plas­
tic material, the same flow stress is associated with an infinite number of 
different strains. On the other hand, it has been shown in Chapter 5 that 
the strains are a fundamental parameter for the evaluation of the damag<'. 
Hence, knowing them is imperative. 

One way to approximately evaluate the strains is by defining a hinye 

length, ie a region in a structure where the otherwise infinite curvature is 
somehow distributed along it. Examples of such definitions may be found in 

the literature. 
N ONAKA 165,166 proposed a deflection dependent hinge length for beams. 

He assumed that, for a clamped beam, the plastic region is formed by two 
isosceles right tr"iangles, one in compression and the other in tension. As 
the beam displaces, one triangle expands and, concomitantly, the other con­
tracts. Lw and JONES137 have assumed, again for beams, a variable hinge 

length proportional to the beam thickness and to the distance from the neu­
tral axis to the central axis of the beam cross-section. SHEN AND JONES 180 

chose another approach. By analysing experimental data from MENKES and 
OPAT,147 they proposed a hinge length related to the beam thickness and 

123 
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to the plastic work dissipated in a hinge. Their empirical relation has not 
been directly compared to other beam materials and configurations, so it is 
not known whether it leads to reasonable values of strains. Also, WEN et 
al. 213 have used a constant hinge length, equal to the thickness of a beam, 
for evaluating the strains due to bending. 

It is the aim of this chapter to explore the concept of hinge length and 
the strains plus strain rates derived from it. To this end, bending, shear 
and membrane hinge length will be defined. The various hinge length def­
initions are then tested against experimental and numerical data available 

in the literature. This comparison is extended to simple expressions for the 
equivalent strain developed in the chapter. Also, strain rate expressions are 
derived from the equivalent strain by assuming an appropriate impact time, 
based on experimental data. 

6.1 Bending hinge length 

Consider a beam loaded by a concentrated load at any position on its span, 
Figure 6.1, which produces infinitesimal displacements. At the core of it and 
at the point of maximum displacement, the matericl.1 is fully plastic. This 
is also the region where the moment achieves its peak value. As one moves 
away from this point, the plastic zone dies out, initially at the inner core 
and later at the outer surface. This decrease of the plastic zone is directly 
related to the decrease of the moment. Accordingly, for small displacements 
of the beam, the region where the plastic strain takes place is bounded by 
the yield moment, My. Hence, a definition of bending hinge length may be 
stated as 

Bending hinge length, 1M, is the distance along a structure be­
tween two points A and B where MA = Mo and MB = My. My 
is the initial yield moment in a structure. Mo is the fully plastic 
collapse moment. 

This definition, if leading to reasonable results, is interesting since rigid­
plastic methods of analysis are, usually, capable of readily describing the 
moment behaviour along a structure. Hence, once the moment function is 
known, it is possible to calculate the hinge length. Moreover, the bending 
moment distribution in static cases is described by relatively simple equa­
tions, which allows closed form expressions for the hinge length. 
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x 

Figure 6.1: a) A beam loaded off centre showing the bending hinge length 
definition. b) Associated bendinr moment distribution. The beam di -
placement is exaggerated. 

As an example of application of the hinge length concept, onsider a 
portion on the right hand side of the load point in the simply s upport d 
rectangular beam of Figure 6.1. From the relation * 

(6.1) 

the bending hinge length is written as 

(6.2) 

For a rectangular beam with thickness H, the collapse moment Mo and th 
yield moment My are related as 

Mo 3 
Sf = M = 2' 

y 

"Throughout all the Chapter, it is assumed that £\ ~ £2. 

(6.3) 
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rendering, from equation (6.2), the hinge length as 

(6.4) 

A similar expression can be obtained for the left side of the beam. 
The factor 8 f is the shape factor used in plasticity. For simple cross­

sections, this factor is a pure number and, at most, a geometrically dependent 
parameter. Hence, the bending hinge length as here defined is not material 
dependent. 

Results for other beam configurations may be easily obtained, as sum­
marised on Table 6.1. 

The strain due to bending may be calculated as follows. For a concen­
trated load applied off centre, Figure 6.1, the curvature 11:1 of the centroidal 
axis at the right side of the load is 

(Jl 
11:1=-· 

IMl 

The curvature is related to the axial strain through 

el = 11:1Z, 

(6.5) 

(6.6) 

where z defines the through-thickness co-ordinate. For moderate displace­
ments, the angle 81 may be approximated by 

W 
81 = L

1
' 

(6.7) 

inducing a strain due to bending at the outmost external fibre, Z = H /2, of 

3H 
eM1 = 2L2 W . 

1 

(6.8) 

This curvature and strain attain their maximum values around the point 
loaded region, as experimental and numerical evidence, to be presented later, 
confirms. It is assumed that the curvature decreases linearly from its max­
imum value, at x = 0, to nil, at x = 1M. This linear behaviour of the 
curvature implies a cubic function for a beam profile in the hinge region •. 

• A cubic profile in this region does not lead to an exact solution in the sense of the 
upper and lower bound theorems of plasticity. Accordingly, it cannot be used to calculate 
the exact collapse load of the beam in Figure 6.1. 
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Table 6.1: Bending hinge length for various beam configuration . sJ i 
the shape factor used in plasticity 

beam configuration bending hinge len gth 

rectangular gen ra l 
cross-section cross-section 

r i . t L L 

1 - L lM = (1 - rj l)L M -3 

h,~ i 1 - h lM I = (1 - f l) LI ... MI - 3 

1 - fa.. lM2 = (1 - :, I)L2 M2 - 3 
v, tH, 1 U,! 1 I, ,Uj 

l - L lM = J L M -73 
1 - I -s, 

1 r ,~ L L 
1(. l - L l -~L M -'6 M - 2s 1 

1 r ' ,~ lM - h l SC i 
1 - 6 MI = 2sf Ll 

... L, l - fa.. l 8, - J - M2 - 6 M 2 = 28 , L 2 
v, 

11 H, 1 !l,p!' ,I 1 1 ,~ 
lM = +s lM = [, 

J 2(1 -SJ I ) 
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A similar procedure can be developed for the left-hand side of the beam. 
It is evident that, for off-centre loads, there is a discontinuity of curvature 

and strain due to bending. The closer the load is applied to the support, 
the stronger the discontinuity of the curvature at the loading point. In fact, 
a very sharp change of the curvature occurs in this region and data to be 
presented later will confirm the assertion. 

Likewise, the curvature and bending strain can be calculated for different 
loads and boundary conditions. 

6.2 Dynamic bending hinge length 

The previous definition of bending hinge length was based on a static mo­
ment distribution, strictly valid only for small displacements of the beam. 
It would be interesting to assess whether the use of a dynamic moment dis­
tribution, ie the moment profile occurring in the various phases of a beam 
loaded dynamically, would change substantially the static bending hinge 
length definition. 

A simple analysis may reveal the basic influence of a dynamic moment 
distribution. Consider, at first, a clamped beam struck at its middle by a 
mass G travelling at a velocity Vo, Figure 6.2. This problem is interesting 
because the influence of the mass of the tup can be assessed. 

For very small tup to the beam mass ratio, the first phase of motion 
dominates the response of the beam.97 Hence, the following consideration is 
valid for those ratios larger than one-half, approximately. 

After the first phase of motion, * when travelling plastic hinges are mov­
ing from the centre towards the supports, the moment distribution along the 
beam reads97 

M = M _ 2Mo(3& - {J){J2 
o (}'2(3 + 2&) 

where 

/1 = mxjG and 

and m is the mass per unit beam length. 

6Mo/1 
&(3+2&)' 

0$ /1 $ a, 

a= mLjG, 

(6.9) 

(6.10) 

·Only the second phase of motion will be studied because failure will occur at this 
phase when shear effects are not considered. 
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Figure 6.2: Clamped beam struck at its middle by a falling mas ' . 

This equation is plotted in Figure 6.3 for two different beam to tup m 

ratios. It is clear that the moment function changes with th tup mas ; th 
smaller the tup mass the longer the hinge length. As r mark d, for a v ry 
small tup mass, the first phase of motion is more relevant and might be 
used to yield a hinge length in the spiri t of the present definition. Jlow v 1', 

the concern here is with a relctively large tup mass, which m an that th 
travelling hinges phase is not very important and that th tati mom nt 
distribution is not very different from the dynamic one.99 

Consider now a clamped beam impulsively loaded throughout its ntir 

span with a velocity Va, Figure 6.4. The moment distribution aft I' th 
plastic hinges become stationary is given by 

MIMo = 1 + (xl L)3 - 3(x/ L)2. (6.11) 

In comparison with the static moment distribution for a uniform pr tlr 

loading, the difference between the values of xlL for which My/Mo = 2/3 
in equation (6 .11), case of rectangular cross-section, is only 5.3%. 

It is possible to explore further, for different beam upports and loads 

how the hinge length would change as the moment profile alters with th 
various phases of motion. However, further calculations for oth r b am n­
figurations show that the difference between the static and dynami mom nt 

behaviour is not significant in the phase of motion when th hing s at' ta­

tionary. 
A dynamic moment distribution is potentially more accurate to valuat 

the bending hinge length according to the present definition. This possibl 
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MlMo 
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o 

-0.5 

-1 

Figure 6.3: Static and dynamic moment distribution, in the econd phase 
of the motion , along the clamped beam shown in Figure 6.2 and truck by 
different masses. m is the beam mass per unit length, L i half of the beam 
length and G the tup mass. The horizontal thin line defines M,,/Jfo = 2/3. 

v. 

Fig u re 6.4: A clamped beam loaded impulsively with a velocity Fo · 
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increase in accuracy, though, is overshadowed by the simplicity of the static 
moment expressions. The dynamic moment function is generally a cu bic, 
which renders the algebraic manipulation quite involved. 

6.3 Shear hinge length 

The idea of a hinge length based on the bending moment distribution may 
be expanded to define a shear hinge length. 

Shear hinge length, lQ, is the distance along the length of a struc­
ture between two points A and B where QA = Qo and Q8 = Qy. 
Qy is the initial yield shear force and Qo is the plastic collapse 
force, ie the forces which cause initial yielding of the cross-section 
and produce a fully plastic cross-section of a structure, respec­
tively *. 

The evaluation of the shear hinge length is more involved than the bend­
ing one. Restricting the discussion to beams, it is known that shear effects 
are potentially more significant for dynamic loads. This suggests that it is 
necessary to infer lQ from a full analysis of a dynamically loaded beam. 

Consider first the simply supported beam depicted in Figure 6 .. 5 and 
subjected to a uniformly distributed impUlsive velocity of magnitude "0. 
During the first phase of motion, it is possible to show97 that the shear force 
is distributed along the beam span according to 

(
X - ~o) 

Q = -Qo L - ~o ' (6.12) 

when L ~ 3H/2. Here, Qo ~ (1oBH/2 is the transverse shear force neces­
sary to fully deform, plastically and independently, the rectangular beam of 
length 2L and cross-section dimensions B and II made from a material with 
flow stress (10' ~o = L - 3H /2 defines the position of the stationary bending 
hinge. 

If now the previous definition of shear length is applied, ie 

Q Qy 2 
Qo = Qo = 3' (6.13) 

·To satisfy the equilibrium at the outer surfaces of a structure, the shear stress must 
be zero. However, for a perfectly plastic material, it is accepted that flow can occur at any 
point of the transverse section. Though not exactly true, this approximation is useful to 
infer the stress and strain state at the plastic region. 
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L 

Figure 6.5: A simply supported beam loaded impulsively with a velocity 
Va. 

:; 
G ~lt 

~ 
/' i'-
/ ~ x i'-. 

/ L, L, i'-

Figure 6 .6: Clamped beam struck transversely by a mass G. 

one has 

3 - v'6 
lQ = 2 H = O.27SH. (6.14) 

A similar procedure applied to the previous beam but now clamped at 
both sides yields 

IQ = (3 - v6)H = O.551H. (6.15) 

In the case of a mass G impacting at any position on a rectangular 
lamped beam with a velocity Vo, Figure 6.6, the analysis was established 

by LIU and JONES.136 Accordingly, three cases may be drawn: CASE I, 

3 < Vl ~ V2; CASE II, 1 < VI ~ 3 and 3 < v2; CASE IJI, 0 < VI < 1 and 
3 < V2, where VI = L1/ Hand V2 = L2/ H. 
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For CASE I, the shear force is symmetrical about the struck point and 
the followings relations, extracted from reference 136, hold 

awo = -2Qo, (6.16) 

•• 2 
Q = mW1[x - x /(2~0)] - Qo, (6.17) 

(6.18) 

Q = 2Qo[x/~0 - X
2 /(2~5)] - Qo, (6.19) 

where IVo and W1 are the transverse displacement at the impact point and 
at the right-hand side of the beam adjacent to the impact point, respcctivply, 

Wo = WO/LI' WI = WI/L I, 9 = mLI/G, Z1 = ~O/LI and u = aV02/(2Afu). 
By adopting Q = 2Qo/3 and ~o = 3l{136 in equation (6.19) and solving 

it for x, one has 

IQ = (3 - V6)1l = O.551H, (6.20) 

which is identical to the case of a fully clamped beam loaded impulsively 
throughout its span. 

For CASE II and provided 1.5 ::; £11 < 3, there are two different hinge 
lengths, for the shear force distribution at the left of the tup is different from 
that at the right. In the first phase of motion, the shear force is distributed 
in such a way that the shear hinge lengths are 

(6.21) 

and 

(6.22) 

at the right and left of the tup, respectively. 
For CASE III, the load is applied at a distance from the support less than 

the beam thickness and the shear hinge lengths read 

(6.2:3) 
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and 

lQ2 = -(3 - v'6)H, (6.24) 

at the right and left of the tup, respectively. 
Observe that the shear hinge length depends on the load position, type 

of support and beam thickness, not on the material. Also, it is rather small, 
a fraction of the beam thickness. 

In all the above equations, only the first phase of motion is being con­
sidered. This is because in the dynamic case, shear is more relevant in this 
phase. The expressions for these beam configurations are simple, in line with 
the bending hinge length definiton. 

6.4 Membrane hinge length 

Generally speaking, large values of displacement in a structure induce se­
vere membrane forces. These membrane forces will spread the otherwise re­
stricted plastic strain region. For a centrally loaded beam, when axial inertia 
is disregarded, the membrane force is constant along the beam length. This 
suggests that the membrane strain spreads evenly along the beam length. 
Hence, the membrane hinge is the whole beam length, regardless of the load 
type or support configuration. 

The axial strain, eN, at the right side of the beam in Figu re 6.1, due to 
the normal force N, reads 

(6.25) 

This expression may be expanded in series and, for values of the ratio 
(WjL.)2 which are not too large, only the first term may be retained, yield­
ing 

CN1 = ~ (~)2 (6.26) 

For one side of the beam, this strain is assumed to be evenly distributed 
along the beam length, L1, and through the cross-section. Since the rigid­
plastic analysis usually gives the displacement, the membrane strains can be 
calculated. Observe that, for the present model, this strain is not dependent 
on the type of support or material. 
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It is not the aim here to expand further the present bending, shear and 
membrane hinge length definitions to structures other than beams. However, 
the main features of these hinge definitions seem to be applicable to more 
complex structures, eg plates and shells. 

6.5 Equivalent strain 

Because the primary interest here is to predict failure in clamped beams, 
the following equations will be deduced for a clamped beam subjected to a 
concentrated load acting at any position on its span. 

The equivalent strain is defined in rectangular co-ordinates as 

Ceq = V; V(cxx - €yy)2 + (Cyy - czz)2 + (czz - cxx)2 + 6(€;y + €;z + €~z), 
(6.27) 

and it is an important parameter for failure prediction. It is the aim now to 
express it as a function of the kinematic and geometry of a beam in the x-z 
plane. In this case, it is assumed that 

and 

Cxy = Cyz = 0 

Cxr 
Cyy = czz = -2' 

rendering the equivalent plastic strain as 

Ceq = 
2 

2 + Ixz 
Crr 3' 

where IXZ = 2€xz is an average shear strain, calculated as follows. 

6.5.1 Shear strain 

(6.28) 

(6.29) 

(6.30) 

The shear strain, taken to be constant along the shear hinge length, is eval­
uated approximately as213 

(6.31) 

where IV" is the indentation. 
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The results in section 6.3 point towards a common approximate value for 
the shear hinge length of 

(6.32) 

in the case of a clamped beam, simplyfying equation (6.31) to 

W" 
'YZ% = 4]f' (6.33) 

A shear hinge length of about half of the beam thickness was also found 
experimentally by measuring the angles of initially square grids pasted on 
impacted beams (see Chapter 7). 

As far as the shear displacement, W", is concerned, experimental data in 
Chapter 7 suggest that the following relation holds well 

WI 
W"f = k Ll ' (6.34) 

where Waf is the final indentation (shear displacement), WI is the final beam 
displacement (including WSf ) and k a constant. Also. numerical investiga­
tions by Yu and JONES,217 suggest that it is reasonable to assume 

or 

Waf 
W,,= WI W, 

W 
Wa = k L

1
' 

where W is the beam displacement. 

(6.35) 

(6.36) 

In words, the shear displacement increases proportionally to the beam 
displacement. 

From equations (6.33) and (6.36), it follows that the shear strain at the 
impact point of a clamped beam is 

where 

4kw 
"YZ% = -r;-' 

W 
w= H' 

(6.37) 

(6.38) 
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6.5.2 Axial strain 

The axial strain in a clamped beam is the result of the strain due to bending, 
eM, and the strain due to the membrane force, eN. 

The strain due to bending, at the point of maximum displacement of the 
beam, is 

(6.39) 

where the strains at the left- and right-hand side of the point load were 
averaged. 

For a clamped beam, the bending hinge lengths, 1M! and 1M
2

, are 

Ll 
1M! = - (6.40) 

m 

and 

(6.41) 

Observe the introduction here of the parameter m. Suppose that a 
clamped beam is loaded very close to the support, say at Ll = ll. The 
bending hinge length for this case would be too small, 1M! = 1116, yielding 
very large values for the strain eM. This can be compensated by letting 111 

to assume values different from 6, as discussed in sequence. 
Comparisons of the axial strains with experimental and numerical results, 

as later presented, indicates that, for some cases, a fairer agreement may be 
obtained when the origin of the coordinate z in equation (6.39) is allowed to 
vary between the centroidal and the neutral axis. 

It can be shown that the distance between the neutral axis and the 
outmost fibre for a clamped beam is91 

Z = 1 + NINo H = 1 + nWIll ll. 
2 . 2 (6,42) 

By setting n = 0, the maximum value z achieves is the (usual) half-thickness 
of the beam. For a clamped beam, the parameter 0 $ n $ 1 can be adjusted 
in order to improve the prediction, as it will be seen. 

According to these simplifications, the strain due to bending, equation 
(6.39), reduces to 

(6.43) 
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when defining 

and 

w 
W=-

H 

H 
h=-, 

Ll 

and using equations (6.40) and (6.41). 

(6.44) 

(6.45) 

(6.46) 

The strains due to the membrane force, equation (6.26), are different on 
each side of the beam span. At the point load, they are averaged such that 

(6.47) 

or 

(6.48) 

when adopting equations (6.44)-(6.46). 
Equations (6.37), (6.43) and (6.48) can now be manipulated to give the 

equivalent plastic strain in a clamped beam. The axial strain, Crr, in equa­
tion (6.30), has to be calculated from CM and CN. This is done by adding 
them, ie 

(6.49) 

or 

(
hw)2 h2w 

Cxx = [1 + mn + (1 + 6n)el""2 + [m + 6{21-
4
-, 

(6.50) 

from equations (6.43) and (6.48). 
This additive property of the strains is accepted here without further 

proof and has been used elsewhere.213 However, it is not known whether 
this geometrical relation leads to a consistent set of equilibrium equations. 
In other words, the principle of virtual velocities has to be satisfied if this 
additive property strictly holds. 
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Now, by introducing equations (6.37) and (6.50) into equation (6.30), 
one has a final expression for the maximum equivalent strain in a beam, 

eeq = { 
2}2 2 hw h2w 4kw 

[1 + mn + (1 + 6n)~2l (2) + [m + 6el-4- + {'" } 
v3L 1 (6.51) 

6.6 Equivalent strain rate 

The variation of the strain rate taking place in an impacted structure has 
very complicated features. 

A rough estimative of the average strain rate, Em, occuring in a clamprd 
beam, is given by PERRONE and BHADRAI71 as 

. W,Vo 
E - --=--

m - 3v'2L~' 
(6.52) 

where Wj is the final displacement and Va is the initial velocity. 
The authors arrived at this equation by studying the simple model of a 

mass supported by two strain rate sensitive wires of equal length, where only 
membrane strains are presented. Equation (6.52) has been used by others 
in an attempt to estimate the strain rate in beams loaded at any position 
on the span. However, it is evident that the strain rate as such increases 
quadraticaly with the decrease of L}. 

To show that the PERRONE and BHADRA 171 equation does not describe 
faithfully the strain rate in off centre loaded beams, take the strain rate 
variation at the bottom underneath of an aluminium beam impacted at 
one-quarter of its span. Results of a numerical simulation of this problem, 
by Yu and JONES,217 indicate that the strain rate behaves as shown in 
Figure 6.7. In the same figure, the prediction according to PERRONE and 
BHADRA,l71 equation (6.52), is plotted. The predicted strain rate is not 
good. It underestimates the peak strain rate a great deal, in part because 
the moment is disregarded in the model leading to equation (6.52). 

This poor result motivates the search for a better accurate description 
of the strain rate in a clamped beam. Since the hinge length definitions 
yielded the equivalent strains, the average strain fate is a matter of defining 
the impact time. 

Numerical data of reference 217 and experimental data from Chapter 7, 
indicate that a reasonable approximation to the total motion time of a 
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Figure 6.7: Strain rate versus time at the bottom underneath an alu­
minium beam impacted at one-quarter of its span. The thick line is the ten­
sile strain rate, according to the numerical simulation in reference 217. The 
horizontal lines are the predictions according to Perrone and Bhadra,l71 
equation (6.52), and according to equation (6.55) for various values of n. 

clam ped beam is 

(6.53) 

where WI is the final displacement achieved by a clamped beam subjected 
to an initial velocity Vo. 

By differentiating equation (6.51), using t as above and disregarding 
shear strains, it is possible to obtain the equivalent strain rate as 

(6.54) 

where wI = WI/L I . 

Observe that the above equation was derived disregarding the shear 
strain. This makes equation (6.54) simpler to use, yet leading to reason­
able results. 

Equation (6.54) can now be used to calculate the average strain rate at 
the bottom, underneath the clamped beam struck at one-quarter of its span 
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analysed in reference 217. Adopting m = 6, since the load point is not close 
to the support, and ~ = 1/3, one has 

. 5Vo 1 + 6n _ 
Eeq =6L

1
{h+ 3 wJ}' (6.55) 

The result is presented in Figure 6.7, where it can be seen the role of n 

as an adjustable parameter. 

This simple model does not capture the variation of the strain rate 
throughout the motion. However, it is useful as an approximation for an 
average strain rate. Unfortunately, due to a lack of numerical and experi­
mental data, it was not possible to further compare the strain rate equations 
for beams loaded at other positions. 

6.7 Validation of the hinge length definitions 

It is important to assess whether the hinge lengths defined here agree with 
what takes place in a structure. Most importantly, the strains yielded by 
the expressions of the previous sect!0nS should be investigated inasmuch as 
accuracy is concerned. To draw the comparison, experimental and num('rical 
data will be used, as hereafter shown. 

6.7.1 Qualitative validation 

Considering first some experimental evidences, the work of MENKES and 
OPAT147 presents aluminium beams loaded impulsively along their entire 
span. For moderate impulses, where shear effects are not dominant, one 
can plot the beam deformed profile and mark on it the boundaries of the 
bending hinge length definition which, for a clamped beam and distributed 
load, is L/V6. The result is presented in Figure 6.8. It can be seen that the 
hinge length as here defined predicts that nearly all the beam has a non-zero 
curvature, as a glance in Figure 6.8 suggests. 

Figure 6.9 shows the permanent deformed profile of mild steel beams 
struck at different positions by different masses and velocities. The bend­
ing and shear hinge lengths are marked in the figure. The bending hinge 
length for these clamped beams is L/6. The shear length varies according 
to the load point but, as discussed, it is assumed to be one-half of the beam 
thickness, regardless of the side and position of the tup. 
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Figure 6.8: Displacement profile offully clamped aluminium beams loaded 
impulsively throughout all their span. 147 The smaller distance between the 
vertical lines define the boundaries where the curvature is zero, according 
to the bending hinge length based on a static moment distribution. 

It can be seen that the boundaries of the bending hinge length more or 
less coincide with the regions where the curvature drops to zero. The grids 
marked on the beam in the figure (b) show regions where shear is present *, 
more or less coinciding with the shear hinge here defined. 

6.7.2 Quantitative validation 

Yu and JONES
217 conducted a Finite-Element simulation of some experi­

ments on beams by LIU and JONES.135 Their results are specially interesting 
in the present context because they provide a detailed description of some 
field variables. 

Consider the simulation of a clamped aluminium beam with a length of 
101.2mm struck by a mass of 5kg at one-quarter of its span and at a velocity 
of 5.34m/s. Yu and JONES217 obtained a curvature profile at the instant 
of maximum deflexion of the beam as depicted in Figure 6.10. In the same 
figure is also plotted the theoretical curvature calculated by 

and W 6W 
K.2 = Ll = L2' 

2 M2 2 
(6.56) 

• Shear occurs wherever the angles of the grid comers differ from 90° . 
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where subscripts 1 and 2 refer to right and left side of the tup, respec­
tively. As assumed, these values are the maximum achieved along the beam 
length. They decrease linearly from these maximum values to zero, at the 
boundary of the hinge length. 

It was remarked before that, for off-centre loads, there are two bend­
ing hinge lengths, implying a curvature discontinuity at the impact point. 
However, no load is concentrated in a point and, in this case, the maximum 
curvature at the left (right) of the point load is assumed to occur at the left 
(right) of the tup, whose thickness is 5.08mm. Also, the maximum curvature 
was set constant from the left side of the tup until its middle. 

The good correlation for the curvature does not necessarily imply ac­
curate values for the strains. Fortunately, the same reference 217 presents 
the evolution of the maximum axial strain (no shear) at the bottom of the 
impact region. This maximum strain, which is the sum of membrane and 
bending strains, is an experimental curve inferred from Lw and JONES.135 

Figure 6.11 presents the experimental value plus the theoretical prediction, 
derived from equation (6.51) when ~ = 1/3, m = 6, and shear is neglected, 
ie 

(
5h2W) 

Ceq = 18 [6 + (6n + 1)w]. (6.57) 

Consider now the shear strains. For an aluminium beam struck at its 
quarter span, Yu and JONES 217 calculated the shear strains along the cross­
section immediately to the right and left side of the tup, when the beam 
reaches its maximum deflection. An average value is about C:u = 0.05, or 
'Yxz = 0.10. From equation (6.33), the average shear strain reads 

W" 0.225 
Cxz = lQ = H/2 = 0.06, (6.58) 

with H = 7.62mm and W,,=0.225mm given by reference 217. 
The above results suggest that the theory can predict the strains in a 

clamped beam with a tolerable error. But the fact that the strains are 
not very large precludes one to conclude that larger strains are equally well 

predicted. 
To illustrate this point, it is interesting to consider a ductile clamped 

beam loaded at its middle. This is the subject of a recent numerical simula­
tion by Yu and JONES.

216 The authors have compared their Finite-Element 
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(a) Beam impacted at the middle span. 

(b ) Beam impacted at around one-fifth of it pan. 

Figure 6.9: (a) Beam struck by a round tup at it mid- pan by a mass of 
6.5kg and Vo = 14.9m/s. (b) Beam struck by a harp tup at one-fifth of 
its span by a mass of 19.5kg and Vo = 6.14m/s. The white lines mark the 
boundaries of the (a) bending and (b) shear hinge length , r pectively. 
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Figure 6.10: Curvature profile of a fully clamped aluminium beam stru k 
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results with experimental data from tests on mild steel beams, obtaining v ry 

good agreement. 
According to Yu and JONES,216 the equivalent strain at the low r s urra. c 

of the beam, underneath the striker, evolves with the maximum displa In nt 

as shown in Figure 6.12. In the same figure, it is also shown th st rain as 

predicted by equation (6.51) when ~ = 1 and m = 6, ie 

(6.59) 

The figure shows the interesting feature that the equival nt st rain in­
creases significantly when the displacement to failure is about to bra h d. 
This is important because the strains at failure need to be known as a ural 

as possible. Hence, the change of n = 1/2 to n = 1 improv s th pr di t,j n 
of the strain to rupture. The character of n as an adjustabl param t r 

becomes once more evident. 
It is important to remark that, in face of the good agreement b tw n x­

periments and the Finite-Element simulation in reference 216, th numeri al 
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Figure 6.11 : Maximum axial strain (no shear) at the bottom of the load 
point underneath a fully clamped aluminium beam versus its displacement. 
T he beam was struck by a falling mass at one-quarter of its span . Thin 
and thick lines represent experimental results from reference 135 and the 
prediction of equation (6.57) , respectively. 

eq uivalent strain describes what actually takes place at the bottom of the 
beam . At the same time, the theoretical equation for the equivalent strain, 
being able to yield a reasonable prediction , is considered atractive due to its 
simplicity and closed form. 

Eq uation (6.59) is dependent on the geometry of the beam, on n, on m 
and on the factor k. As said before, m = 6 because the beam is not loaded 
close to the support. The factor k can be considered a material parameter. 
Experimental results for mild steel beams to be presented in the next chapter 
give k = 2.29mm. It is not known whether k would change significantly for 
other metals. 

Y u and JONES216 have also evaluated the shear strains for the mild steel 
beam st ruck at its middle. The maximum value quoted throughout all the 
response is Exz =O.33, which yields 'Yxz = 0.66. For comparison the present 
s hear hinge definition yields a maximum shear strain of 

Ws Ws WJlL 
'Yxz = lQ/2 = (H/2)/2 = 2k H/2 = 0.65, (6 .60) 

which is in good agreement with the numerical one. 



6.8 Final comments 

1.2 

0.8 

0.6 n=1/2 

0.4 

0.2 

o ~~--~----~----~----~----~ 

o 5 10 15 20 25 

W (mm) 

Figure 6.12: Equivalent strain at the lower surface underneath th st rik r 
for mild steel beams ver us its displacement. The impact velocity i Vo = 
lO.5m/s. Thin and thick lines represent equation (6 .59) and num ri a l 
results from reference 216 , respectively. 
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The unlimited flow stress of a perfectly plastic material impos s v r r ­

strictions on the knowledge of strains. The strains can be calculat d 

assumes a finite length around the regions where the flow stre s ta k 

Though there exists some definitions of hinge length in the lit ratur 

are not always directly compared with experimental or Finit - I m n r 

suits . This is specially true for the values of strains yielded by th u of 

hinge lengths. 

In this chapter, a new definition of bending and shear hing I ngLh w< 

developed and explored in order to as ess the strains in a p r~ tty pi ti 

material. Emphasis has been place in how these hing length I ad Lo th 

curvature and extensional, shear and equivalent strains. trains and ur­

vatures obtained from the hinge lengths are in reasonable agr m nL with 

experimental and numerical data for aluminium and mild ste I b a m im­

pacted at different positions along their span. 

The comparison presented here used data from beams mad of two v ry 
distinctive materials, especially as far as the strain rate sen itivity i n-
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cerned. Further comparisons, though, for different materials and for different 
load points are due. However, for the scope of this work, the results are rea­
sonable enough to be further explored and applied. 

The shear strain cannot be disregarded since it contributes significantly 
to the equivalent strain. As already seen, shear strain values as high as 
0.3 were calculated for the mild steel beams. It is worthy to note that the 
theoretical shear strain matchs well the numerical one. 

Another side issue approached here is the strain rate. The model of PER­

RONE and BHADRA 171 cannot be applied to off-centre impacted beams with­
out introducing large errors. Hence, by defining a total motion time based 
on initial velocity and final displacement, it was possible to obtain simple 
expressions for the average strain rate. At least for the case of clamped beam 
struck at one-quarter of its span, the results are encouraging. 

There are now some distinct cases to be approached. 
As already commented, for a clamped beam loaded quite close to the 

support, the moment hinge length would be too small (Lt/6) to yield realistic 
values of axial strain. Also, in this case, the beam displacement will not be 
large and it is possible to set n equal zero. Accordingly, for 0 < ~ :::; 1/5, it 
is adopted m = 1 and n = O. The strain rate for these beams, ~ < 1/5, is 
deduced from equations (6.51) and (6.53), disregarding any contribution of 
the axial strains. 

The shape of the indenter will playa decisive role on the strains. U nfor­
tunately, for a round tup, there is no numerical data which allows to compare 
the prediction of strains. Surely, the membrane strains are dominant, for the 
shear strains are quite small due to the tup geometry. This is supported by 
observing the shape of grids pasted on these beams (see Chapter 7). Now, 
the experimental data in Figure 6.11 suggests that the membrane strain are 
better predicted when using a value for n equal one-half. Accordingly, for a 
round tup loading the beam at or near to the middle beam span, the shear 
strains are negligible, allowing to set k = 0, n = 1/2 and m = 6. 

These values for the parameters m and n, when introduced into equations 
(6.51) and (6.54) reduce them to the following: *. 

·It is possible to express these equations in series of w. This might be useful if the 
square roots are to be eliminated from them. 
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• round indenter, no shear, 2/3 ~ ~ ~ 1, k = 0, m = 6 and n = 1/2 

(1 + e)h2 
Ceq = 2 w(3 + 2w) (6.61) 

(6.62) 

• sharp indenter, 1/5 ~ ~ ~ 1, m = 6 and n = 1 

[
(1 + ~2)h2W] 2 [6 7]2 [4kw]2 

Ceq = 4 + W + V3L 1 

. = (1+~2)VO(3h+7- ) 
Ceq 4Ll WJ (6.G·I) 

• sharp indenter, 0 < ~ < 1/5, m = 1 and n = 0 

(6.65) 

. kVo 
Ceq = v'3hL~' (6.G6) 

where W J = WJ / Ll is an adimensional displacement. 
These expressions for the equivalent strain and its rate are relatively 

simple to use. In fact, the simplicity and rationality of the hinge length 
definitions here employed is in harmony with a perfectly plastic material 
constitutive law. 

The theoretical equivalent strain changes continuously along the beam 
length and across the transverse section and can now be mapped throughout 
a whole beam made of a perfectly plastic material. This is exactly what is 
called for by some failure criteria. In this sense and within the scope of this 
work, failure prediction will be a matter of application of the Continuum 
Damage Mechanics, whose necessary parameters are now all available. 
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7 Static and 
Dynamic Beam 

Failure 

A STRUCTURE is said to have failed when any further attempt to incr('as(' 
the load results in a complete local material discontinuity. 

In a real structure, it is difficult to define precisely this limit, sometillH's 
tenous, of the beginning of local material failure, crack formation, crark 
propagation and total collapse. Likewise, it is difficult to test dynamically 
a structure in order to just trigger a local material failure. Hence, failure 
energy, displacement to failure, strain to failure, etc ... are quite imprpcise 
concepts. 

Bearing in mind these comments, this chapter aims to predict the thr('sh­
old energy beyond which local or global material separation takes plare. This 
means to assume that the energy absorbed by the propagation of a crack is 

neglected. 
The chapter starts by describing static and dynamic experim(\nts ainwd 

to induce failure on beams. CDM is then used to predict the displac('Il\(,lIt 
to failure of the beams loaded statically. The displacement to failure of the 
impacted beams is predicted by using the static and rate-dependent version 
of CDM presented in Chapter 5. The results obtained are compared with 
the experiments. A discussion then follows on the main features of static 
and dynamic failure prediction. 

7.1 Experiment in beams 

The same mild steel described in the previous chapters was used to make 
rectangular beams with approximate dimensions of B = 8mm, l/ = 9m/l1 
and L = l02mm. The length of the beams coincides with the rolling direction 
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F igur 7.1: Definition of the final global displacement of beams. The grids 
were used to measure plastic strains. 

of th plate (see Figure 2.5 on page 24). These beams were tested statically 

and dynamically. 

Th maximum displacement of the beams was measured after the tests . 

It was shown in Chapter 6 that the equivalent strain in beams impacted 
by a harp tup takes into account shear. The shear strain in the model is 
dll La the indentation left by the tup. Hence, it seemed more appropriated 

La add the local indentation caused by the tup to the global displacement of 
th b am, as depicted in Figure 7.1. 

This definition of beam displacement has been previously used by LIU 
and JONES.135 However, d ifferent ways of measuring the displacement can 
b adopted, as in Yu and JONES.218 

7.1.1 Static tests 

Th s tatic tests were conducted in a DARTEC tensile machine . The head 

p d was set to O.05mm/s and the beams were fully clamped by the same 
rig us d in reference 135. Two indenter shapes were used to apply the load 

a t di~ r nt positions of the beam span; one round, with diameter 20mm, 

and another rectangu lar, having a width of 5.0Smm. For both indenters, 
th breadth is much larger than the beam breath. Figure 7.2 shows the 
load po ition, the indenter used and the measured load displacement- curve. 
OLh r details of the tests are listed on Table 7.1. 
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F igure 7.2 : Load- displacement experimental (thick line) and lhcor l i at 
(thin line), equation (8 .2), curve for clamped beams loaded lali ally al (a) 
9.5mm; (b) 25.0mm and (c) middle , with a sharp indenter. (d) arne' in 
(c) but with a round indenter. 

7.1.2 Dynamic tests 
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A number of dynamic tests were performed in a drop tower. Two diff r nt 

masses, G = 6.5kg and G = 19.5kg, were attached to the sam round, r, a nd 

s harp s, indenters used in the static tests . The most relevant param f 
the tests are summarised on Table 7.1. 

During t he tests, the velocity- time history of th tup was record d by 

a laser instrument according to the techn ique described in re~ renc 22. A 

typical velocity-time recorded trace, after fi ltering with a cut-off fr qu n y 

of 1kHz, is depicted in Figure 7.3(a) . This trace can be int grat d and 
differentiated to obtain the displacement, Wh, and load his tory, as h wn 

in Figures 7.3(b) and (c). Figure 7.3(d) presents the load ver u di pIa em nl 
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Table 7.1: Main results of the static and dynamic beam tests. The damage parameters are for Uh/Ueq = 1/2 and 
are associated with the experimental displacement to failure 

B. B H L1 W. W, Wh G tup Va >. ieq ~eq D. Ddo Dd comments 
nO (mm) (mm) (mm) (mm) (mm) (mm) (kg) (m/s) (l/s) 

1 8.02 8.54 25.0 16.0 s sta. 1.18 0.46 0.46 0.48 broken at angle 
2 7.96 8.94 51.1 1.4 23.5 s sta. 1.02 0.39 0.39 0.36 broken at angle 
3 8.02 8.40 7.0 9.2 s sta. 1.18 0.46 0.46 0.48 broken (shear) 
4 8.14 9.00 51.1 33.2 r sta. 1.19 0.47 0.47 0.49 broken (necking) 

18 7.92 8.84 44.0 25.4 6.5 r 12.4 6.68 322.0 0.80 0.22 0.59 0.49 not broken, no crack 
21 7.94 8.84 50.0 31.3 30.9 6.5 r 14.9 10.96 432.9 1.07 0.39 0.89 0.86 just broken (necking) 
22 8.00 8.86 50.6 30.6 30.8 6.5 r 14.7 10.60 418.5 1.03 0.37 0.84 0.80 just broken (necking) 
5 8.00 9.00 44.5 1.2 20.5 19.3 19.5 s 6.8 5.65 231.7 0.86 0.32 0.60 0.52 broken (at angle) 
6 8.00 9.00 44.5 0.4 21.0 21.4 19.5 s 6.5 5.16 226.1 0.89 0.33 0.63 0.55 broken (at angle) 
7 8.00 8.70 44.5 21.8 21.9 19.5 s 6.5 5.72 232.2 0.95 0.36 0.68 0.62 not broken, no crack 
8 8.10 8.70 42.0 0.4 19.7 23.1 19.5 s 6.6 5.58 228.2 0.84 0.31 0.59 0.50 broken (at angle) 
9 8.00 8.80 45.0 0.5 20.1 20.8 19.5 s 6.5 5.72 218.1 0.82 0.30 0.57 0.48 just broken (at angle) 

13 8.00 8.90 44.5 1.2 21.0 21.4 19.5 s 6.5 5.42 227.3 0.89 0.33 0.63 0.55 not broken but cracked 
25 8.02 8.42 49.0 0.7 19.9 20.7 6.5 s 9.5 5.03 301.5 0.77 0.28 0.55 0.46 broken (at angle) 
23 7.90 8.90 50.2 0.9 21.6 6.5 s 10.7 5.57 364.3 0.88 0.33 0.68 0.60 broken (at angle) 
24 8.06 8.88 47.5 0.7 20.7 6.5 s 10.2 4.76 340.6 0.84 0.31 0.63 0.54 broken (at angle) 
26 8.10 8.84 49.2 0.7 20.0 6.5 s 9.1 3.94 291.4 0.780.28 0.56 0.46 not broken, no crack 
10 8.00 8.60 14.0 0.5 11.4 11.9 19.5 s 6.0 1.60 126.9 0.59 0.19 0.33 0.24 not broken, no crack 
12 8.10 8.60 15.0 12.4 15.4 19.5 s 6.2 1.83 123.3 0.60 0.20 0.34 0.25 not broken, no crack 
27 7.98 8.60 11.0 2.3 11.3 10.7 6.5 s 8.7 0.88 288.7 0.80 0.29 0.57 0.48 slightly cracked 
29 7.90 8.70 11.5 2.3 12.7 13 6.5 s 8.8 0.92 293.0 0.86 0.32 0.63 0.55 not broken, no crack 
14 8.00 8.50 7.0 3.0 8.6 19.5 s 6.3 0.91 416.9 1.08 0.42 0.90 0.87 broken (shear) 
15 7.90 8.90 8.0 3.4 11.2 11.7 19.5 s 6.2 0.90 387.0 1.23 0.48 1.02 1.06 broken support (shear) 
28 8.00 8.68 7.5 2.3 7.7 6.5 s 8.9 0.61 483.6 0.85 0.31 0.69 0.59 broken (shear) 
16 8.00 8.60 3.0 3.0 3.0 19.5 s 6.1 0.36 262.5 1.15 0.45 0.91 0.91 broken (shear) 
17 8.00 8.80 3.0 3.4 2.6 6.6 19.5 s 6.1 0.34 256.6 0.98 0.37 0.75 0.69 broken (shear) 
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The laser data are potentially important. They were us d for m urin 

the final beam displacement at failure. As Table 7.1 shows, th r is a r a­
sonable agreement between the displacement to failure as record d by th 

laser, Wh, and as measured after the t sts, WJ. 
Generally speaking, the failure takes place when there is a mark d dis­

continuity in the velocity- time signal. But, becau e the tim wh n th b am 
was just impacted is difficult to measure consistently and a urat Iy, it is 
also difficult to precisely define the displacement to failure from th I . r 
signal. A small variation of the start test time affects signifi antly th ar a 
ie the displacement, under the velocity- time trace since, at th b ginnin 
the velocity is high. Moreover, for beams loaded closer to th upp rt, it i 
not always evident when the beam breaks, for the velocity d t ply 
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throughout motion. Bearing in mind these comments and as already indi­
cated, for all the calculations hereafter performed, it was decided to use the 
displacement to failure as measured after the tests and not from the laser. 

In Figure 7.3(a), the test time is marked as calculated according to the 
assumptions commented on in the previous chapter, ie 

(7.1) 

It is seen that the actual test time does not differ significantly from 
the predicted one. The same holds true for a beam impacted at 11.5mm 
from the support. For this case, the velocity evolves with time as depicted 
in Figure 7.4 and the duration of motion is reasonably well forecast. In 
fact, by processing all the data of these dynamic tests, it was concluded 
that the error between the predicted time response, equation (7.1), and the 
experimental value is around 10%. 

The experimental data collected in the dynamic tests allows one to relate 
the final shear displacement, WSf ' to the final beam displacement, WI, and 
load position, L}, Figure 7.5. As it was seen in Chapter 6, the slope in Figure 
7.5 is used to evaluate the shear strains, equation (6.37). The parameters 
used to calculate the coefficient k in that equation are easy to measure, which 
encourages its use for the evaluation of the shear displacement evolution. 
However, it is not known whether a similar trend would develop for other 
materials. 

7.2 Strains measured from grids 

A grid was deposited by electrolysis on the face side of some beams, Figure 
7.1. The grids are squares of side dimensions around one fifth of the beam 
thickness. After the test, the squares became rhomboidal and it is possible 
to measure the new angles and side lengths and calculate the strains. 

Table 7.2 lists the values of plastic true shear strain and plastic true 
equivalent strain measured for some beams. The predicted values for shear 
strain for beams 16, 17 and 27, are given by equation {6.37}. For beams 21 
and 22, the equivalent strain is predicted according to equation {6.61}. The 
necessary geometric data in these equations comes from Table 7.1. 

It is noteworthy that the beams chosen for measuring the strains have 
all failed under very different conditions. Beams 21 and 22 were struck by 
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Figure 7.3: (a) Experimental filtered velocity- time ignal r ord d for 
a round tup impacting a beam at its middle. The v rtical lin in (a) 
marks the duration of motion according to equation (7.1). Figur s (b) , ( ) 
and (d) show the corresponding displacement- time, load- tim and load­
displacement curves, respectively. 
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a round tup at the middle span and failed by n cking. Beam 16, 17 a nd 27 

have failed by shear and were struck very close to the su pport. In th i 

the measurement of the strain was concentrated on the angl s f th rids . 

The extension of the grids in this case is minimum. Having said tha , it is 

important to realise that the measurement of the grid geometry i pron t 
errors because the boundaries between dark and bright squar s som t.im ' 
are not very clear (see Figure 6.9 on page 144). 

It is evident that more experimental data are necessary to fully validat 

the approach taken in the last chapter for the calculation of strain in a p r­

fectly plastic material. Nevertheless, in line with the r asonabl pr di t.i n 
for some cases, it will hereafter be taken for granted that th formulati n 
yields good results for the strains. 
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Figure 7.4: Experimental filtered velocity- time signal recorded for a sharp 
lup impacting a beam at 1l.5mm. The vertical line defines the duration of 
motion according to equat ion (7.1). 
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Figure 7.5: Final shear displacement, W./, versus final displacement to 
impact position ratio , W, / L1 , for mild steel beams. 
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7.3 Beam failure - Static concentrated load 

7.3.1 Introduction 

The application of a transverse concentrated load in a beam giv{'s raise to a 
series of complex phenomena. If the beam is made of a ductile matNial, it 
may displace significantly before a crack takes place. For a beam of constant 
cross-section, the crack starts either around the supports or around the tllP 
used to load the beam. Despite the crack presence, the beam can sllsta.in 
additional loads but, at some stage, if the load continues, the beam will 
fracture, ie a total material separation takes place. 

It is the scope of CDM to determine, among other parametNs, t.he diH­
placement to failure of such beams. Obviously, the static case is (lasier to 
deal with because there is no strain rate or inertia effects. Accordingly, CDM 
will be here used for predicting the displacement to failure of the statically 
loaded beams tested as described in section 7.1. 

It is noteworthy that the tests covered a few different cases. Take bealll 
4; the round tup hardly causes any shear strain but the displac{'m{'nt to 
failure is very high, more than one third of the overall beam length. For 
beam 2, on the other ha.nd, tIle sharp tup induces shear strains and dews 
precipitate failure at a displacement lower than the displacement acili(lv(ld by 

the beam loaded with the round tup. As the load point is moved cloHer to a 
support, shear strains should prevail and the displacement to failure is quill' 

low, around the beam thickness for beam 3. Hence, although the static case 
is easier to study, it challenges the correct prediction of the displacem(lnt to 

failure. 
The beams were intentionally tested in a such way that they can fail by 

Table 1.2: Comparison between measured and calculated shear and axial 
strains on the face side of the impact point of some beams. 

Beam IXZ error st.dev. Ceq error st.dev. 
expo eq.(6.37) (%) expo eq.(6.61) (%) 

16 0.79 1.07 35 0.02 
17 0.91 0.99 8 0.14 

27 1.03 1.09 6 1 datum 
21 
22 

0.87 0.85 
0.91 0.84 

3 
9 

0.12 
0.06 
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shear, ca.se of beam 3, by a more predominat action of membrane strains, 
ca.se of beam 4, by strains due to the moment, beam 2, and, finally, by an 
interplay of shear and axial strains, a.s in beam 1. 

7.3.2 Static failure prediction 

The simplest way to apply the CDM to predict failure in beams, is to employ 
the ela.stic, perfectly-pla.stic version of it, equation (5.2), repeated here for 
convenience, 

0'5Rv ( ) 
D = 2ES Ceq - cD . (7.2) 

Beam 4 was loaded centrally by a round tup. It is assumed that the 
transverse shear displacement is negligible. In this case, the equivalent strain 
comes from equation (6.61), which is substituted into equation (7.2) to render 
the damage evolution as 

0'2R 
D = 2~; [h2w{3 + 2w) - CD]. (7.3) 

This equation states that the damage evolves with the square of the beam 
displacement. Theoretically, the displacement increases up to D = Dcr , 

when failure then occurs. 
The parameters E = 209.8GPa and II = 0.287 in equation (7.3) are listed 

on Table 2.3, cD = 0.17 wa.s determined in section 4.6 and S = 2.2MPa in 
section 5.3. 

The triaxiality, necessary in the calculation of Rv , is, in theory, equal to 
one-third since the beam is a unidimensional structure. But for high values 
of strain, a localised non-uniform region breaks down the beam uniformity, 
increa.sing the hydrostatic stress. This is a difficult parameter to evaluate 
and, hereafter, it will be assumed that the triaxiality is O'h/O'eq = 1/2. This 
value was found in tensile specimens, which exhibits a smooth transition 
between the straight and necked region, qualitatively similar to what takes 
place on the beams. As one ba.sic assumption underlying equation (7.2) 
is that the load is proportional, the triaxiality assumes a constant value, 
independent of the strain state. 

The flow stresses 0'00 and 0'0 were set equal the yield and ultimate stresses 
of the mild steel, ie 330 MPa and 600MPa, respectively, according to Table 
2.3 on page 31. This initial flow stress is of use in the hardening damage 
model. 
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Figure 7.6: Damage evolution at the most critical part of beam load d 
statically. Thin and thick lines represent the linear hardening and p rf tly 
plastic model, respectively. The crosses mark the actual beam failur and 
the continuous horizontal line define the static critical damage. 
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Using now equation (7.3), the damage underneath t h st rik r at t he 
bottom of the beam 4 evolves with the displacement as depict d in Fig­
ure 7.6. It can be seen that t he critical damage is achieved for a di pi a, -

ment of 32.7mm , to be compared with the measured displac m nt to failu r 

of 33.2mm. 
For beam 2, loaded at the middle (~= 1), the indenter with sha rp dg 

induces shea r strains, which have to be taken in to acco un t. Th qu iva­

lent st rain for this case comes from equation (6.63) , to be introdu ed into 
equation (7.2) to yield the damage evolu t ion as 

D = ~~~ { [h:W]' [6+ 7wJ' + [~;J -ED} (7,) 

Accordingly, the predicted damage evolution underneath the s trik J' a.t th 

bottom of beam2, when using the same material parameters as b fol' , i 
shown in Figure 7.6. The calculated displacement to failur is 25 .1mm, L 
be compared with the experimental value of 23.5mm. 

Beam 1 was loaded at L1 = 25.5 by the sharp indenter. The quiva l nL 

strain is again equation (6 .63), the same as for beam 2, xcept that n w 
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~ = 1/3. Appying equation (6.63) in equation (7.2), one has 

D = ~~~ { [h~Wr [6+7wJ' + [~;J -CD}' (7.5) 

as the damage evolution underneath the striker on the bottom of the beam. 
In this case, the damage evolves with the displacement as shown in Fig­
ure 7.6. The predicted displacement to failure is 15.8mm, whereas the ex­
perimental value is 16.0mm *. 

By moving the load point closer to the support, shear strains become 
more important. The equivalent strain is now given by equation (6.65) and 
the damage evolution comes from equation (7.2), 

[h2W]2 [4kw]2 } 4 [1 + 6e2 + (1 + e2 )w]2 + I<i - cD . 
v3L l (7.6) 

The predicted displacement to failure is 9.0mm and the experimental value 
is 9.2mm. 

The evolution of the damage parameter, according to the perfectly plastic 
model, at the bottom underneath the load point for all the four beams tested 
statically, is depicted in Figure 7.6. The same figure shows also the linear 
hardening model. In this case, equation (5.22) has to be used for the damage 
prediction but the plastic strains are the same, ie the ones used in equations 
(7.3) to (7.6). 

7.4 Beam failure - Impact of a mass 

7.4.1 Introduction 

The drop of a heavy mass on a beam may cause severe deformations. By 
increasing the height of the drop mass, the impact position and velocity, 
0r by changing the geometry of the tup, the beam may fail, in the sense 
that a crack is formed locally or throughout the whole cross-section. This 
section shows how the rate-dependent CDM can be used to predict at which 
conditions, ie tup geometry, impact point, impact energy, the beams fail. 

·This value, measured after the test, is smaller than W, = 17.6mm measured from the 
load-displacement curve. This is attributed to spring-back effects and the fact that the 
load does not drop immediately to zero after the beam cracks or breaks. Further loading 
is necessary to effectively separate the two broken parts of the beam. 
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To facilitate the application of the CDM to beams loaded dynamically, it 
is opportune to repeat here the simplest form of the coupled rate-d<'()('nd('nt 
damage evolution, equation (5.30), 

(0'0 + inifl)2R,,' 
Ddo = 2ES (ceq - cD). (7.7) 

Moreover, for illustrative purposes, it is simpler to apply this <'qua.tion 
for a beam loaded at or near the mid-span by a round indenter. In this ca.'i(', 
shear is neglected and the equivalent plastic strain and its rate are giV('1l by 

equations (6.61) and (6.62), respectively. By introducing th('m, with ~ = 1, 
into equation (7.7), one obtains the following damage evolution 

In order to predict the damage throughout the beam response via <,C)ua­
tion (7.8), one needs to know the final beam displacement, obtained from th(' 
initial conditions of the problem. This knowledge of the final displac<'ment 
is necessary for the evaluation of the equivalent strain rate and of the slH'ar 
strain, when it is taken into account. This is all expected because thc st.rain 
rate used is an average value. Hence, the final displacement of t.h<' bC'am 
needs to be known. 

It is at this point that rigid-plastic analysis comes into play. Sev<'ral 
solutions exist for the prediction of the final displacement of a beam, ba.sed 
on initial and boundary conditions. 

For instance, for a clamped beam struck at its middle by a heavy ma.'iS, 

LIU and JONES 136 obtained the non-dimensional final displacement of the 
beam from 

where 

h 
wJ = -(Jl + 4>. - 1), 

2 (7.9) 

(7.10) 

In passing, the non-dimensional energy, >., can be used for other beam COII­

figurations provided the strike position is changed accordingly through L 1 • 

Alternatively, SHEN and JONES179 and JONES99 describe how the final 
displacement of low velocity impacted beams can be predicted using simple 
quasi-static methods. 
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Table 7.3: Material parameters used for the dynamic failure prediction. 

0'0 0'00 E' E S II cD m n Dcr 
(MPa) (MPa) (MPa) (GPa) (MPa) (s) 

600 330 400 209.8 2.2 0.287 0.17 38.4 0.328 0.45 

Nonetheless, it was decided that the final displacement used in equation 
{7.8} is the experimental value and not any predicted one. This holds for all 
the beams analysed. If theoretical values were used, it would not have been 
possible to actually assess the accuracy of CDM in predicting failure. Errors 
other than from the model here proposed would be incorporated. 

The evolution of the damage underneath an impacted beam, below the 
point struck by a round tup, is forecast by equation {7.8}. This equation is 
valid for a perfectly plastic material. Alternatively, it is possible to adopt a 
linear hardening material. In this case, the damage equation was deduced 
in Chapter 5, equation (5.25), and the strain and strain rate are the same 
equations (6.61) and (6.62), respectively. 

For the other beams, struck at different positions by a sharp indenter, the 
damage equations are essentially the same, ie equations (5.25) and (5.30), 
for the linear hardening and perfectly plastic material, respectively. The 
difference between these beams struck by a sharp tup and the ones struck 
by a round tup is that, for the former, the shear strain contributes to the 
equivalent strain. The expressions for the equivalent strain when shear is 
taken into account, plus their range of validity, are listed on page 149. 

The material parameters necessary to apply equations (5.25) and (5.30) 
were presented in the previous chapters for the mild steel used to make the 
beams and are summarised on Table 7.3. 

7.4.2 Dynamic failure prediction 

The experimental non-dimensional displacement to failure of the beams 
struck at the mid-span by a round tup is presented in Figure 7.7{a) and 
identified by crosses. 

The solid circles represent the predicted non-dimensional displacement 
to failure when equation (7.3) is used together with the parameters listed on 
Table 7.3. In this case, no strain rate effects were considered. 

The open circles were obtained from equation (7.8), which adds strain 
rate effects to the damage evolution. 
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Table 7.4: Comparison between measured and calculated displacement 1.0 

failure and damage parameter of static beams. 

Beam Displacement (mm) Max. Critical Damage Ma.x. 
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expo perf.pl. lin.hard. error (%) expo perf.pl. lin.hard. ('rror(%) 

1 
2 
3 
4 

16.0 15.8 15.7 1.9 0.45 0.46 0.48 6.7 
23.5 25.1 25.0 6.8 0.45 0.39 0.36 
9.2 9.0 9.0 2.2 0.45 0.46 0.48 
33.2 32.7 32.4 2.4 0.45 0.47 0.49 

20.0 
6.7 
8.!) 

The triangles are also a dynamic version of the damage equation bllt now 

with linear hardening included, according to equation (5.25). The strain and 
strain rate are given by equations (6.61) and (6.62), respectively. 

Likewise, Figure 7.7(b) presents the experimental non-dimensional dis­
placement to failure but for beams struck by a sharp indenter, with the 
restriction that the impact point is such that ~ ~ 1/5. The predicted stat.ic 
non-dimensional displacement to failure according to equation (7.4) is a!Ho 
shown in the figure, as well as the dynamic version, equation (5.25), wit.h 
and without hardening included. The equivalent strain and its rate are !!;iv(lll 
by expressions (6.63) and (6.64). 

Figure 7.7(c) is as above but for the beams struck very close to the 
support. The equivalent strain is given by equation (6.65) and its rate by 

equation (6.66). 

7.5 Discussion 

7.5.1 Static failure 

The use of a simple failure criterion as the one derived from Continuum 
Damage Mechanics has shown a good capability of predicting failure in stat­
ically loaded beams. The main results shown in Figure 7.6 can be collectt'd 
in Table 7.4. 

In columns 7 and 8 on Table 7.4, the critical damages are those asso­
ciated with the experimental displacement to failure. Hence, for beam 2, 
the predicted damage at failure, according to the linear hardening damage 
model, when TV = 23.5mm, is 0.36, indicating that the beam was, in tlwory, 
able to displace further. 
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Figu re 7.7: (a) Non-dimensional displacement versus non-dimensional im­
pact en rgy for mild steel beams impacted at or near to the mid-span by 
a round tup. Solid circles, open circles and triangles are non-dimensional 
displacements associated with the perfectly plastic static damage model , 
the perfect ly plastic rate-dependent damage model and the linear harden­
ing rate- dependent damage model , respectively. Crosses are experimental 
data. (b) Same as in (a) but for a sharp indenter. (c) Same as in (b) but 
for ~ < 1/5. Only data from broken beams are shown. 
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The critical damage of 0.36 for beam 2 yields the large ITor of 20% in 
the damage parameter, associated with an error of 6.8% of the displa m llt 

to failure. As Table 7.4 indicates, the error in the dis pia ement to failllr i 
smaller than the error in the critical damage for all the barns. Thi u t 
that the displacement to failure of beams is not very sensitive to th a tu a l 

critical damage. 

Large errors in the critical damage parameter ind uces smaller errors on 

the displacement to failure of beams. This may explain why fai lur an 

be reasonable well predicted, as in references 47,191,209 and 110, yet not 

correcting the damage parameter for stress and strain non-un iformities , 

described in Chapter 5 and in reference 2. 

It is evident from Table 7.4 that the displacement to fai lure for th tat­

ically loaded beams is predicted with a good accuracy for all the barns . 
Both perfectly plastic and linear hardening models yield good results, I nd­
ing support to these simple models. 

The linear hardening model, though, predicts a different damage VOlll ­

tion, Figure 7.6. This is expected because this model adds non-lin ar di -

placement terms, as indicated in equation (5 .22). It is difficult to infer from 
these two models how more accurate values of stress, strain and damag , 
obtained numerically, would alter the damage evolution. 
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It is relevant to observe that the flow stresses in both models have not 
been used as adjustable parameters. They come from the tensile test data 
in Chapter 2. Accordingly, the initial flow stress, 0'00, is the material yield 
stress and the flow stress 0'0 equals the ultimate true stress (see Figure 5.1). 

All the parameters were independently measured in tensile tests, the 
exceptions being the damage strength parameter, S, a constant used to fit 
the data of damage evolution in damage specimens, and the critical damage, 
Dcr • Needless to say that the beams are very elementary structures and the 
transference of data measured in a material to such a simple structure is less 
prone to problems. 

Consider now Figure 7.8. It shows the damage along beam 3 when failure 
is about to occur. The damage is strongly dependent on the tup position, 
given by Ll or {, according to equation (7.6). Figure 7.8 indicates that the 
local character of the damage can be predicted analytically and that the 
measurement of the load position has to be done consistently. This strong 
influence of the load point position on the damage field is not so important 
for beams loaded towards their centre. 

The same ideas are valid for the dynamically loaded beams. For off-centre 
loads, numerical results from Yu and JONES216,217 suggest that the edge of 
the tup nearer to the support tends to induce more severe strains. Hence, 
for all the calculations, with { ~ 1/5, Ll measures the distance from the 
support to the, nearest tup edge. This parameter is difficult to predict before 
an impact test since, due to the clearance in an impact rig, it is not easy 
to ensure that the tup strikes the beam exactly at a pre-defined position. 
Accordingly, the load point was measured after the tests with reference to 
the reference frame of the initial configuration. 

7.5.2 Dynamic failure 

The main results for the prediction of the failure in the impacted beams were 
shown in Figure 7.7. 

It is possible, in principle, to disregard any strain rate effect on the ma­
terial behaviour. To this end, one has to employ equations (7.3) to (7.6) for 
the prediction of the damage evolution, when hardening is not considered *. 

By doing so, one forecasts that the non-dimensional displacement to failure 
for all the beams is higher than the actual ones. This is shown by compar-

·The consideration of hardening alters the predicted displacement to failure by a factor 
smaller than 1% when compared to the perfectly plastic model, static case. 
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Figure 7.8: Damage profile at the load region along beam 3 when it is 
about to fail. x = 0 locates the clamped support. 
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ing the solid circles, associated with the perfectly plastic model in Figu r(lS 
7.7(a), (b) and (c) with the experimental data represented by crosses. 

If the predicted displacement is higher than the actual one, it means that 

the predicted damage at the actual failure point is lower than the critical 
one, allowing the beam to displace further, as the solid circles in Figure 7.9 
show. There, the predicted damage at the instant of the actual failure, for 
all the broken beams, is plotted against the non-dimensional input PIH'rgy. 
It is evident that the damage yielded by the perfectly plastic static lIlod<'1 
does not reach its critical value, except for beams 15 and 16 (see Table 7.1). 

The importance of the static tests on the beams is now clear. The dis­
placement to failure was reasonably well predicted in the static case, accord­
ing to Table 7.4. The poorer prediction in the dynamic case, according to 
the non-rate-dependent CDM model, suggests to take into account strain 
rate effects on the damage evolution. 

Indeed, the rate-dependent formulation developed in Chapter 5 and ap­

plied according to section 7.4, yields, in general, a better prediction of the 
displacement to failure of the dynamically loaded beams, as shown in Fig­
ure 7.7(a)-(c). This is particularly true for the rate-dependent hardpning 
model applied to the beams impacted by the sharp tup. The reason is that, 
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Figure 7.9: Predicted damage versus non-dimensional impact energy for 
mild steel beams at the instant of failure. Solid circles, open circles and 
tri angles are the damage associated with the perfectly plastic, the rate­
dep nd nt perfectly plastic and the rate- dependent linear hardening dam­
ag models, respectively. Only data from broken beams are shown. 

in thi model , t he material behaviour is better described. 

The prediction of the perfectly plastic models could be improved by al­
tering the How stress. However, such a procedure would preclude one to 

orr ctly judge CDM capabilities of failure prediction . 

Th theoretical damage according to the rate- dependent model, repre-

ntcd by the open symbols in 'Figure 7.9, always exhibit a value for the 

d amage higher than the critical one . According to this , the beams are al­

low d to dis place further than they actually did. For beams impacted by 

t h sha rp tup , this extra displacement is marginal, Figure 7.7(b)- (c). For 
h round tup case, though, the predicted displacemen t according to the 

s ta tic mod el is closer to the actual one, indicating a poor performance of the 
dynamic model. 

T h linear hardening, rate- dependent model shows that strain rate ef­

r cts cooperate substantially with the damage ev~lution. This is shown in 
Figure 7.10 , wh ere the total damage was split in its static, hardening and 
dy na mic part, according to equation (5.26) on page 112, Chapter 5. The 
ontribution of the strain rate is more important ,than the ha rdening. 
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Figure 7.10: Partition of the damage parameter for mild t el b a m ' at 
the instant of failure. The damage is split in its static, D8 /, hard ning, Del , 
and dynamic, Dd/, parts, according to equation (5 .26) . Beam 1,2, 3 and 
4 were tested statically (Dd l = 0). 
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The relative large error on the forecast critical damages, Figur 7. ,ar­
fects the prediction of the displacement to failure . However , thi rror i noL 
imparted to the displacement to failure straightforwardly, as a ll' ady indi­

cated in Table 7.4 . An extreme example is for the beams impa t d I r 
to the support. In this case, the non-dimensional en rgy, A, is I than 
one and the damage is poorly predicted by the rate- dep ndent mod I, ' i '­

ure 7.9. Even so, the non-dimensional displacement to fail ure was prec1i t I 
within a reasonable error, Figure 7.7(c) . 

Table 7.1 also lists the non-broken beams and the associ at d al ulat d 

damage. They are beams 18, 7, 26, 10, 12, 29. According to t h rat ­
dependent linear hardening model, beams 7, 18, 26 and 29 were xp l d 
to fail because the damage is larger than the critical one. This i a WI' n . 

prediction since these beams did not fail at all. 

7.5.3 Triaxiality 

The damage rate equation was integrated in Chapter 5 under th assumpLi n 
that t he load is proportional. In this load regime, the triaxiality is on tanL 
throughout the structural response, facilitating the integration of qu aLi n 

(5.17). 
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Figure 7.11: Predicted damage versus non-dimensional impact energy for 
mild steel beams at the instant of failure . Solid circles, open circles and 
triangles are the damage associated with the perfectly plastic, the rate­
dependent perfectly plastic and the rate-dependent linear hardening dam­
age models, respectively. Only data from broken beams are shown. The 
tr iaxiali ty value is 1/3. 

In ex perimenting with the beams, it was observed that the failure region 
for beams loaded towards the centre and whose failure mode was by necking, 
exhibited a curved profile simi lar to the one found in tensile specimens. 
Because the maximum triaxiality in the tensile tests was about one-half, it 
was assumed that this value holds good for the beams. Nevertheless, this 
assumption is not supported by any further data, except for the good failure 
prediction in the static case, when ah/aeq = 1/2 was also used. 

By noting that quite a few beams broke at an angle and not by necking, 
iL is instructive to consider a value for triaxiality as found in uni-dimensional 
s tructures before entering in the softening regime, ie one-third. This value 
reduces the parameter R v in equation (7.2) from 1.18 to 1.00. Now, equa­
tions (5.20) to (5 .30), starting on page 110, are all linearly proportional 
to Rv, meaning that Figure 7.9 can be immediately replotted, as shown in 
F igure 7.11 . 

T he static model in Figure 7.11 predicts that no failure at all occurs for 
a ll the beams, contradicting experimental evidences . On the other hand, 
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the rate-dependent linear hardening model offers a good prediction for tli(' 
damage. In fact, the average value of the damage in all the tested I)(,ClIllS, 

at the instant of failure, is 0.55, to be compared with the critical da.mage of 
0.45. For beams 15 and 16, though, hit close to the support, the damage is 
not well predicted. 

This reasonable prediction of the damage when the triaxiality is olle-third 
means that the displacement to failure is well forecast, as Figure 7.12(a)-(r) 

shows. 
It should be underlined that a wide range of parameters were examined in 

the present experimental programme. The variation of the non-dimensiollal 
energy, 0.34 ~ >. ~ 10.96, reflects the range of impacted positions, 31l1111~ 

L1 ~51.1mm, the range of velocities, 0 ~ Vo ~ 14.9m/s and the two tllP 
masses of 6.5 and 19.5kg. The two different tup shapes and the strain rafp 
range, Eeq ~ 484s-1 , together with displacement to failure varying from 
2.6mm to 33.2mm promote a good start for assessing the capability of t.hl' 
CDM and of the rate-dependent model in predicting failure. 

It seems that for all these cases, the failure criterion performs r('a~onably 
well. In other words, the failure can be predicted regardless of wil('ther or 
not it is mode II or III. Generally speaking, the damage prediction according 
to the rate-dependent model is acceptable, with the calculated value'S Iwing 

close to the critical damage. 
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Figur 7.12: (a) Non-dimension al displacement versus non-d imensional 
impact en rgy for mild steel beams impacted around the mid-span by a 
round tup. Solid circles, open circles and triangles are non-dimensional 
displacements associated with the linear hardening static damage model, 
th perfect ly plastic rate- dependent damage model a nd the linear hardening 
rat - dependent damage model, respectively. Crosses are experi mental data. 
T h t ri axia li ty is one third. (b) Same as in (a) but for a sharp indenter. (c) 

ame as in (b) but for ~ < 1/5. Only data from broken beams are shown. 
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8 Conclusions 

The status of the present research is a reflection of an important a~p('et 
of the field of structural analysis, namely that it is difficult to accurat('ly pr('­
dict the collapse of a structure. This observation is endorsed in considering 
that, in the event of failure, structures found everywhere can be pot('ntially 
dangerous. Although this safety aspect has not directly influenc('(1 the goals 
of this work, it underlies it. 

Among the various attempts used to predict structural failur(', th£' Con­
tinuum Damage Mechanics, CDM, was chosen because it was felt that it 
could be used in conjunction with the rigid-plastic methods of analysis. 
The simplicity of this union is reflected in the present work. 

This last chapter intends to give a global view of the pres(lnt work, tI\(' 
main results and contribution achieved and to suggest guidelines for future 
research in the field of CDM. 

8.1 Tensile tests 

At the outset of this research, it was believed that an equivalent stress-strain 
curve was required in dealing with failure, since failure occurs usually at high 
levels of plastic strain. Such an equivalent stress-strain curve demanded that 
the radius in the necking region be measured under dynamic conditions, a 
feature that was not found elsewhere. 

One conclusion of these experiments is the expected result that the dy­
namic equivalent stresses between ultimate and failure strain follow a linear 
profile. The maximum equivalent stress in the various dynamic tensile t('sts 
was measured. This stress was defined as the failure stress, in contrast with 
the true fracture stress, ie fracture load divided by the final area, and the 
equivalent fracture stress, ie the fracture stress corrected for triaxial eff('cts. 
It was found that the failure stress is 8% smaller than the true fracture stress 
and 8% higher than the equivalent fracture stress, Figure 2.17 on page 37. 

This result indicates that the procedure of measuring the necking radius 
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after a tensile test, which aims to take into account triaxial effects, leads to 
the some sort of error as if no correction was attempted. The only difference 
is that, with and without corrections, the stresses will lie below and above 
the actual equivalent failure stress, respectively. 

The failure strain is slightly smaller than the fracture strain, Figure 2.14 
on page 35. Both strains are not strain rate dependent, which is an interest­
ing feature of this material. It can be useful in considering that the critical 
damage parameter under dynamic conditions is likely to be also strain rate 
insensitive, a point to be discussed in sequence. 

The measurement of the strain rate in the necking region reveals a fast 
increase of the strain rate in the softening regime. This increase of more 
than one order of magnitude poses an interesting test for a constitutive law. 
At least for the COWPER-SYMONDS equation, this strain' rate behaviour 
makes the coefficients C and q to be strongly strain dependent. When such 
a constitutive law is used in a structure under a proportional loading regime 
and until failure, the non consideration of this dependence, as it is usually 
the case due to the lack of stress-strain-strain rate data beyond the ultimate 
strain, implies a large error in the stress prediction, as Figure 2.20 on page 
40 indicates. 

If, on one hand, this error in the stress prediction is very large, on the 
other hand, it does not necessarely mean a poor prediction of the struc­
tural response. For instance, Yu and JONES216 have simulated impacted 
beams using true stress-strain data and keeping the COWPER-SYMONDS 
coefficients constant. They obtained a very good agreement between the 
simulation and experiments for the global beam response. 

An accurate stress-strain-strain rate relation was also not necessary in 
a TAYLOR test simulation by ZERILLI and ARMSTRONG. 220,221 The strain 
rates were as large as 100000s-1, but the constitutive equation used was 
based on data obtained at strain rates below 1000s-1. Certainly, the material 
behaviour in the simulation is different from the one inferred by mere extrap­
olation of the constitutive equation.so Even so, the macroscopic response of 
the test specimen was well predicted in terms of the global behaviour. 

8.2 Notch tensile tests 

The results found in Chapter 3 seemed all contradictory with the common 
belief that the triaxiality governs failure. As a matter of fact, the initial idea 
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of testing notched specimens was that they could be used to quantitativ('ly 
assess the influence of the triaxiality on the failure strain. From th(,HP t('Hls, 
a failure envelope curve could be used as a failure criterion. 

However, it was found that the failure site for some specimens wa.s not 
at the maximum triaxiality, it was located, rather, at the minimum. This 
finding offers a tough test for a failure criterion, namely to forecast failure 
sites at low levels of triaxiality. 

An increase of the average strain rate in the necking of notched sp<,cinH'nH 
was measured. A numerical simulation of these dynamic tests would b<, wry 
instructive. It would be posssible, for instance, to assess the accuracy of 
constitutive laws since these notch tests, differently from the bC'am t<'H 1.:-; , 

exhibited a continuous increase of the strain rate, all the way to faillJr<'. 
Therefore, a constitutive law has to be able to predict stresses in the soft<'llillg 
regime, at high levels of plastic strain and strain rates. It is possible t.lwn t.o 
investigate how the prediction would be affected by keeping the paranl<'tNs 
C and q of the COWPER-SYMONDS equation constants. 

Another reason for experimenting with notched specimens was to know 
whether the plastic strain associated with the maximum load would 1)(' <1('­
pendent on the stress state and on the strain rate. As Figure 3.7 on page 57 
shows, it was found that this threshold strain is neither stress nor strain ral.(' 

dependent, a welcome result when considering its use in the CDM analyt.ical 
model. 

The range of triaxiality one obtains by using initial notch radius ranl!;ing 
from 0.42mm to 4.21mm is not as large as the BRIDGMAN analysis suggests. 
Accordingly, BRIDGMAN analysis forecast a range of triaxialities from 0.60 
to 1.87, Table 3.1, whereas this range is restricted to 0.6 to 1.0, a.ccording 
to the Finite-Element results in Figure 3.16 on page 67. 

Moreover, it was shown that the traditional failure envelope curves, C'X­
hibiting a marked decrease of the failure strain with the increase of the t.ri­
axiality, cannot be obtained from the notched tests of the present mat<'fial. 
The ultimately reason is that failure occurred at low levels of triaxiality. 

These comments emphasise that notch tests are not suitable for inf<'fing 
failure curves of the mild steel used here. They turned out to be us<,ful, 
though, as much as they offer an important test for a failure criterion, nanwly 
to predict the failure site in regions of low triaxiality. 
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8.3 Material damage 

Chapter 4 presented various techniques to measure the damage parameter. 
The striking result is that the value of the damage is dependent of the ex­
perimental technique. This finding is relevant in considering that theoretical 
CDM models do not distinguish among the various damage definitions pre­
sented in Chapter 4. 

Taking, for instance, the common damage model presented in the Ap­
pendix A, one can see that damage is defined and used in a broad sense. 
Suppose now that the displacement to failure in Chapter 7 was to be pre­
dicted using as the critical damage the one based on the void area. Certainly 
the results would be far off from the experimental ones. On the other hand, 
a damage definition yielded by a different relation between the effective and 
equivalent stress spaces, as in CORDEBOIS and SmoRoFF'S,49 does lead to 
another damage model. Hence, it is difficult to compare critical damage 
values. This only underlies the fact that the variable damage used in CDM 
is not a specific material constant; it is rather a parameter which depends 
upon its definition. 

The experimental procedures used in Chapter 4 were drawn from the 
literature. Some of them are not suitable for the present material. The 
measure of damage using hardness, in particular, was found to be suitable 
for an aluminium alloy, Figure 4.4, but not for the mild steel used in the 
present experimental programme. This is to put in contrast with the work 
of BILLARDON et al.,21 who obtained good results using this technique in a 
mild steel, even comparable with the change in the elastic modulus. 

A deficiency of the measure of the damage via the void area is worthy of 
comment. 

Suppose that the magnification of the microscope is set to some value 
and used to measure the area of voids. The damage will be the ratio be­
tween voids area and area in the field of vision, according to equation (4.1). 
Suppose now that the magnification is increased by two. The damage is still 
defined by the same area ratio. However, the area of voids has increased 
and the field of vision decreased, with the net result of an increase in the 
damage. The conclusion is that the damage as measured by voiqs area is 
dependent of the magnification, which can bring its value as close as the one 
signalised by the change of elastic modulus. 

It seems that this undesirable situation deserves further studies. In the 
present tests, the magnification was chosen to be 100 because this allowed 
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a field of vision where a set of voids could be seen, being thought that this 
would give a better average value of the damage parameter. A t('chniqu(' 
yielding a good description of the damage, understood as voids, n('('ds to Iw 
developed, perhaps relying on statistics. 

As already commented, the experimental data in Chapters 2, 3 and ·1 
indicate that the threshold strain beyond which damage starts, eD, is not 
strain rate and/or stress dependent. This is important because it allows thl' 

integration of the damage equation in a closed form. However, this find­
ing of a constant threshold strain is in contrast with theoretical argullH'lIts 
of LEMAITRE,126 who introduces a more general accumulate plastic strain 

threshold. 

The results of this work do not suggest an important influence of thE' 
stress field on the damage parameter, Figure 4.22 on page 102. The failure' 
criterion becomes elementary, ie failure starts when D = Dcr , irrE'sr}('ctiv(' 
of the stress field. Of course, this cannot be considered a general fi nding, 
bearing in mind that only one material was tested. LEMAITRE,126 on tl\(' 

other hand, proposes a decrease of the critical damage with an incr('a.'i(' of 
the triaxiality. 

The measure of the damage from the change in elastic modulus is not a)o; 
straightforward as it seems. Whatever specimen geometry used, localisation 
always takes place for ductile materials, changing significantly the str('ss and 

strain field in the region where damage is being monitored. This calls for a 

correction factor, in the spirit of reference 2. If such a correction factor is not 
used, the critical damage parameter may be in considerable error, am'clillg 

the failure prediction. 

Further studies are necessary in order to understand how the critical 

damage value affects the failure prediction. Note that different failure pa­
rameters can be chosen according to the structure. It can be internal pr('ssur(' 

in a pressure vessel, the displacement in a beam, the impact velocity in a. 
plate, and so on. 

8.4 Strain rate influence on the damage parameter 

CDM was applied in Chapter 7 to predict failure in statically and impact('(1 
loaded beams. The only difference of the CDM in these two ca.<;es was th(' 
consideration of strain rate effects on the stresses. However, it would bl' 
interesting to know whether strain rate affects the damage paramet<'f. 
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Generally speaking, the damage parameter should be influenced by the 
strain rate. This is most evident in considering that, for quite a few materi­
als, the strain rate affects the failure strain. Fortunately, this is not the case 
for the mild steel used in the present experimental programme, Figure 2.14, 
which lends support for the use of a strain rate independent critical damage 
parameter. 

It is difficult to measure the influence of the strain rate effect on the 
damage. If the damage is obtained by the change of the elastic modulus, 
it is necessary to measure this last parameter under dynamic conditions. 
HOPKINSON bar tests are not suitable because it is intrinsic to this technique 
that data in the elastic region of the material behaviour are not accurate. 

The ordinary dynamic tensile test can be used to measure an initial 
dynamic elastic modulus. However, such a procedure needs special care 
because of the difficulties involved in the measurement of the load. The use 
of head gauges might be seen as an alternative to load cells but it is difficult 
to determine an accurate calibration factor valid for the very beginning of 
the tests. Moreover, the measurement of the dynamic elastic modulus at 
different levels of plastic strain requires the tests to be interrupted under 
dynamic conditions, which is also difficult. Above all, the geometry of the 
damage specimen will lead to a complicated interaction of elastic waves and 
it is possible that an elastic modulus measured under dynamic conditions is, 
in fact, another stress-strain ratio to add to the ones listed on page 84. 

The measurement of a dynamic damage parameter is a challenge and a 
point worthy of further research. 

8.5 Effective stress 

The effective stress, q, was defined in Chapter 4 as the stress acting over 
the net material area, ie when the voids area, SD, is subtracted from the 
nominal area, S. This stress definition is related to the true stress, (J', by 

_ (J' 

(J' - ---
- 1- Ds' 

(8.1) 

Because the critical damage, DScr = 0.7%, is quite small for the mild 
steel used here, the effective stress space is nearly coincident with the true 
stress space. This does not hold true, though, if the voids induce severe 
stress concentrations in the material. 
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In Chapter 5, the effective stress space was taken to be the <'quival<'lIt 
stress space via equation (5.23). This could be thought a valid proc('dure ill 
face of the low value of void area. Underlying this interchange of strcss dpf­
initions is LEMAITRE'S hypothesis of strain equivalence, stated 011 page 7(L 
This hypothesis allows to replace the stresses in a damaged material by tltl' 

effective stress, so deriving the material behaviour law according to Ap­
pendix A. 

Nonetheless, it is noteworthy that LEMAITRE'S hypothesis implies a COlll­
mon value for the damage measured by either void area or by the cha.nge 
of the elastic modulus, equation (4.7). Clearly, this is not a valid rcsult for 
quite a few materials, as Table 4.4 on page 103 shows. 

This paradox does not seem easy to be understood and overcolllc. Oth('r 
hypothesis relating stress spaces may be of use, as CORDEBOIS and SIDO­

ROFF'S,49 but they should be corrobated by direct experiments. Such a 
difficult task and its relevance points towards further studies. 

8.6 Flow stress 

The flow stress plays an important role in the damage evolution, as eXI)('ct('d. 
In rigid-plastic models, it can be seen as an adjustable parameter to COII­
struct upper and lower bounds for certain solutions. But the aim hpre wa:-; 
not to use the flow stress as such. Rather, it was kept constant in tl)(' static 
case and allowed to increase only due to strain rate effects in the dynamic 
case, according to the material constitutive law developed in Chapter 2, 

equation (2.17). 

The adopted initial static flow stress, 0"00 = 330MPa, and the hani<-II­
ing modulus of E' = 400MPa for the failure prediction in Chapter 7 are 
material parameters measured in tensile tests. They are requested by the 
rate-dependent hardening damage model and have not been adjusted in or­
der to improve the prediction. For the perfectly plastic model, a flow str('ss 
of 0"0 = 600MPa was used. This flow stress coincides with the ultimate 
stress for the mild steel but can be considered a parameter adjusted at will 
to improve the prediction. Again, for the linear hardening model, the illput 
material parameters were not adjusted whatsoever; they were all mea.'mr('d 
independently. 

If one now returns to Figure 7.2, on page 153, it will see a th('oreti­
cal load-displacement curve matching fairly well the experimental one, for 
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beams loaded towards the centre. The prediction is due to HAYTHORNTH­
WAITE,84 rendered as 

o ~ W/H ~ 1, 
(8.2) 

W/H?I, 

where F is the load, W is the displacement at the point load, Hand L are 
the thickness and the length of the beam, respectively, and Mo is the collapse 
moment given by 

Mo = soBH2 
4 

(8.3) 

The engineering flow stress, so, used in the collapse moment, equation 
(8.3), was set equal to 400MPa in order to match the experimental data 
presented in Figure 7.2. This flow stress is different from the flow stress used 
in the damage equations, ie 0'0 = 600MPa, which emphasises the difference 
in the stress spaces used by CDM and by the above solution. In the case 
of the HAYTHORNTHWAITE'S solution,84 the stress space is the engineering 
one, whereas CDM works basicaly on a true stress-strain space. 

8.7 Is COM a strain criterion? 

Chapter 3 has shown that the triaxiality does not rule the failure site. The 
region where failure will occur in notched specimens can be well predicted by 
the CDM, as shown in Chapter 5, Figure 5.4 on page 117. The failure site is 
associated with high values of equivalent strain, which poses the question of 
what is the failure criterion. Is failure predicted when the damage variable 
achieves its critical value or when the equivalent strain reaches some limit? 
Is the failure criterion yielded by Damage Mechanics a strain criterion? 

The simplest damage model used to predict static failure in the beams 
is described by 

for (8.4) 

If the triaxiality is constant so is the parameter R II , allowing to rewrite 
equation (8.4) as 

(8.5) 
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where 

(8,(i) 

and 

(8.i) 

are constants. 

Equation (8.5) states that the damage is linearly proportional to thl' 

equivalent plastic strain. The failure criterion can be set according to 

Dcr + a2 
Ceqcr = (8.8) 

al 

implying that COM can be seen as a plastic strain criterion. This was 
already anticipated in Figure 5.3, on page 115, where a fixed value of t.h(> 
triaxiality yields a fixed value of the failure strain, when strain rate (lff('cts 

are not considered. 
A close look on Table 7.1, page 154, shows that the calculated equivall'llt 

strain at failure is almost constant, as should be the case for the perfect.ly­
plastic COM model. This not only emphasises the importance of a good 
prediction of the strains but? Iso supports the concept of the hinge lpngt.h 

used in Chapter 6, in face of the good agreement between the predicted and 
experimental displacement to failure of the beams. 

It is possible to treat COM as a strain failure criterion only when simple 
stress-strain relations, as the perfect-plastic and bilinear ones, are u:,\(ld. 

However, the set of equations in Appendix A is more general. In the case of 
a more accurate description of the material behaviour, COM fully resunl<'S 

its character of being a stress-strain dependent failure criterion. If now I the 

rate-dependent model developed in Chapter 5 is added, then COM becollH's 
also a strain rate-dependent failure criterion. 

The fact that the rate-dependent CDM yields a stress-strain-strain rate 

dependent failure criterion is important. It can be seen as an energetic failure 
criterion, thought to be a more universal failure criterion45 and enjoying 
theoretical and numerical support. 100, 216 

8.8 Closure 

It was demonstrated in this research that COM can be used to predict failure 
in statically and dynamically loaded beams. Also, the use of COM in a more 
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analytical basis has proved successful and deserves further work. 
It is believed that CDM models, as the one here developed, can be applied 

to more complex loading regimes and to structures other than beams. A 
class of structural problems can be adapted to render CDM applicable. In 
these cases, the failure prediction becomes a more tenable issue and can be 
brought down to a reasonable level of applicability. 

An accurate failure criterion for dynamically loaded structures needs to 
known in detail the stresses, strains and strain rates. Such a knowledge and 
the consideration of the damage on the global response of a structure are fea­
sible tasks nowadays. Accordingly, the implementation of a rate-dependent 
damage model, like the one described in Chapter 5 and Appendix A, in a 
Finite-Element code is important. By so proceeding, one can infer how the 
damage and the strain rate simultaneously influence the global response of 
a structure. 

To generalise the findings of this research to other materials might be 
risky. In this study, a wide range of strain rates and load conditions was 
investigated. Also, the large ductility of the mild steel and its strain rate 
sensitivity promoted a complex picture, successfully dealt with by CDM. One 
is then tempted to suggest that, for materials less strain rate sensitive and 
less ductile than the mild steel, CDM can be considered as a good candidate 
to predict failure in beams. 

The rate-dependent damage model may be used to structures other than 
beams. The good correlation obtained for beams encourages further devel­
opments of the methodology to circular plates and cylindrical shells. 

As stressed in Chapter 1, the literature extensively demonstrates the 
feasability in using CDM together with numerical solution schemes. The 
fact that CDM suits an analytical approach, for both statically loaded and 
impacted structures, as here shown, is seen as a major contribution of the 
present reasearch. 

In closing, the Continuum Damage Mechanics is a feasible approach to 
analytically predict failure in beams subjected to impact loads. An improve­
ment of the predictions is achieved by considering a dynamic version of it. 



Appendix 

A Fundamentals of 
Damage 

Mechanics 

A.I Thermomechanics 

The CDM has a relatively strong formalism thanks to the specialisation of 
thermodynamics laws to the mechanics of the continuum and to the use of 
concepts from plasticity.32, 78, 79 Hence, the necessity of a brief backgrolJnd 

in thermomechanics. 
The second law of thermodynamics may be written as128,226 

. . Ti 
(T"C .. - p(lJI + sT) - q'-' > 0 

'J""J • T - , (A.I) 

where (Tij and Cij are the components of the stress and strain tensor, p is the 
density, T the temperature, q the heat flow and s the entropy density. 

lJI = e - Ts, (A.2) 

is the specific free energy and e is the specific internal energy. Equation 
(A.I) is known as the CLAUSIUS-DuHEM inequality. It can be transfornH'd 
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(1.' - p-- c·· + (1' ·cT!· - P s + - T - p-Vk - qi- > 0, ( 
8'iJ1) .e . (8'iJ1). 8'iJ1· T,i 

I) 8clj I) I) I) 8T 8Vk T - (A.3) 

by noting that 

(AA) 

smce 

(A.5) 

The superscripts e and P stand for elastic and plastic, respectively and 
Vk is any internal variable. The plastic strains can be related with the total 
and elastic strains through 

c,')' = cl!· + cT!· I) I)' 
(A.6) 

implying that such additive property restricts the formalism to small defor­
mations. 140 Even so, ductile damage, where large deformation may occur, 
is commonly treated within the small deformation frame and this rule will 
be here accepted, as already commented in Chapter 1. 

From the CLAUSIUS-DuHEM inequality, equation (A.3), it is possible to 
imagine a phenomenon where the temperature is constant and uniform, and 
the plastic strain rates and internal variables do not change, yielding128 

or 

in view of equation (A.6). 

8'iJ1 
(1ij = P""ile' 

uc" I) 

Similarly, the following relation holds 

and, by analogy, one can write 

_ o'iJI 
S=-­

aT' 

(A.7) 

(A.8) 

(A.9) 

(A.lO) 
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where Ak is a thermodynamic force. 
Disregarding henceforth temperature effects, from above, the CLAUSIUS­

DUHEM inequality reads 

Introducing a potential of dissipation 

and writing the (normality) relations 

and 

84> 
O"ij = £) .p 

UC" I) 

it can be shown that the following inverse relations hold: 140 

.p 81> 
c··= -, 

I) O"ij 

_ ('k = 81>, 
Ak 

with 1> being the corresponding dual potential of 4>. 

(A.11) 

(A.12) 

(A.1:3) 

(/\ .11) 

(A.15) 

(A.1G) 

Observe that the above equations are powerful in the sense that tlJ('Y 
satisfy the basic principles of thermodynamics equilibrium and that they can 
be used to infer the basic laws of plasticity. To this end, take the potential 

(A.17) 

where R is the thermodynamic force associated with the parameter rand 
representing the isotropic hardening, kinematic hardening not being consid­
ered. :F D is a dissipative potential associated with damage. Now, in ordpr 
to force the dissipation between two stable states to be a maximum,79 til(' 
following relations must hold: 

(A.18) 
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a.nd 

r = -.\~ oR (A.19) 

(A.20) 

wh<'r(, f) is the damage and Y its associate variable. The term .\ is a LA­
(;ItANGE multiplier. 

TIl(' so called associated plasticity may be derived from the potential T 
by s('tting Tv to zero in equation (A.17). Accordingly, let 

F = f = (1' eq - R - (1' y (A.21) 

1)(' tl1(' loading function where (1'1J is the yielding stress. The equivalent VON 

MISES stress is 

(Jeq = (A.22) 

with 

(A.23) 

lwing the stress deviator (lSij = 1 if i = j and ISij = 0 if i =I- j). 
PIa.'1tic strains occurs only if f = O. Moreover, the plastic strains grow if 

j = 0, i(' 

i~· ..J.. 0 
I) -r if 

{ 

f= 0 
and 

j=O 
(A.24) 

It. is this consistency condition that allows one to determine the multiplier .\ 
which, in the case of the non-damaged associated plasticity, is the equivalent 
plastic strain rate 

From equation (A.18), the plastic strain rate reads 

3 (1'!. 
• I) • 

Cij = -2 -Ceq, 
(1' eq 

which is a well known standard form. 

(A.25) 

(A.26) 
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A.2 Damage constitutive equations 

The present formulation of the CDM is drawn mainly from LEMAITHE.I~II 

Isotropic damage will be assumed throughout the following d<'fivation, 
meaning identical behaviour in tension and compression, with IlO clOSlIr<' 

crack effect. Only isotropic linear hardening is taken into (lC("()Ullt t.hough 

it is equally possible to consider other hardening laws a.'I W(·ll as killC·lI1at.k 

hardening. It is assumed that there is coupling betwe('n darnag(' and 1.11(' load 
function, which is not a strong restriction but simplifies t.he inlqz;rat.ioll of t h(· 

kinetic damage equation. Also, it is more realistic since damap;<' dol'S occur 

simultaneously with the change in the loading functioll. No \'('llIpPI"atlll"l' 
effect is considered 50 and lastly, the hypoth(,His of strain (lqllivall'lIc(l (S('(' 

Chapter 4) is implicit in all the derivations. 
Define the general potential of disHipation cOllpl('d wit.h damag(' fl .... 

(A.27) 

or 

:F = f + FD, (A.2~) 

with 

f = a eq - R - U Y (A.2!») 

and 

~ u eq 

ueq = 1 - D (A.:lO) 

being the equivalent effective stress. 

The plasticity condition, j = 0, reads 

(A.:l1 ) 

The various coefficients in this equation can be r('solv('d (I.,,: 

iJ f iJo-eq 3 ui; 1 
iJuij = iJuij = 2' ueq 1 - V' (A.:l:l) 

(A.:l:1) 
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!!.L = -1 oR and (A.34) 

Moreover, there exists a class of materials which harden isotropically and 
linearly with the plastic strains, as the data in Chapter 2 suggest. 

By assuming a linear hardening law 

- ,­
R=Er, (A.35) 

whNe E' is the plastic modulus and r is the associated varaible to fl, it 
follows from equations (A.19) and (A.34) that 

'- , . 
R = E,x. (A.36) 

By introducing equations (A.20), (A.32) to (A.36) in equation (A.31), it 
is shown that the plastic multiplier reads126 

I-D- E,-~a{f 
(I-D)' , 

, ., 
3~~ 
2ITeq (l-D)' (A.37) 

Now define the accumulated plastic strain p such that .. 

p= (A.38) 

1'h(' plastic strain rate, equation (A.18), is 

iT? = >.. of = ~ O'ij _-\_ 
I) O'ij 20'eq 1- D' 

(A.39) 

r('ndf'ring equation (A.38) as 

. >.. 
p= 1- D· (A.40) 

Equations (A.39) and (A.40) give the plastic strain increment rate as 

3 O'~' • I) • 
Cij = --po 

20'eq 
(A.41) 

The set of damage elasto-visco-plastic equations is, finally, (v is the Pois­
SOil'S ratio and E is the elastic modulus) 

·For proportional loading, p = i.q • 
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• the strain relation 

.,. .. _.,.e +.,.p 
<O'J - "jj <Ojj' 

• the damage elastic stress-strain relation 

e l+v_ v_ 8 
ejj = -eO"jj - EO"H ij, 

• the plastic strain rate 

3 0"" 
.p 'J • 
eij = -2 -;;-p, 

eq 

• the hardening rule 

R- - E"r-- , 

• the yield function 

• the damage growth 

• the plastic multiplier 
/ ./ 

• 3~~ 
). . 2 U'q (I-D)' 

1 - D = P = E' -~ (I~p 
(l-D)' iJ ' 

A.3 Damage evolution 
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( A .. 1:.?) 

(A .. II) 

(A.·W) 

(A .. li) 

(A..lH) 

It was shown in section A.I that the damage evolution is rlll('d by ('qllation 

. .8FD 
D=).-, 

BY 
(A .. I!») 

where Y is the associated variable. The physical meaning of}' can be ga.illl'd 
by noting that 

- 8'l1 
Y=p­

DD (A.!lO) 
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and 

{)\I! 
aij = p-{) e • 

€ .. 
I) 

Adopting the specific free energy as 

,T. 1 (1 e e ( D) l EI - 2) 
'I" = P '2aijklCjjC/tl 1 - + '2 r , 

<'qllations (A.50) and (A.51) give 

and 

By definition, the elastic strain energy density, We, is 

y=~ 
1- D 

when using equations (A.53) and (A.54). 
It is possible to show that the following relation ho1ds126 

y _ ~ dwel 
- 2 dD ' 

u=const 

(A.51) 

(A.52) 

(A.53) 

(A.54) 

(A.55) 

(A.56) 

(A.57) 

giving the meaning to Y of a elastic strain energy density release rate. 
Bearing in mind that the elastic stress and strain tensors can be split into 

dcviatoric components, a:j' c~/, and hydrostatic parts, ah, Ch, the isotropic 
elasticity law coupled with damage reads 

, 
e , 1 + v aij 

Cij = e-l- D and 
(A.58) 

from which the elastic strain energy density is 

(A.59) 
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or 

W, = 2E(;: D)' { ~(1+ v) + 3(\ _ 2v) (;,:) '} , 
(A.(iO) 

when using the VON MISES equivalent stress definition, <'quat.ion (A.22). 
Finally, the strain energy density release rate may be writt.<'n as 12fl 

-2 R 
(Jeg II 

Y=2E' (A.HI) 

with 

( )

2 
2 (Jh 

RII = -(1 + v) + 3(1 - 2v) -
3 CTeg 

(A.G2) 

To obtain the damage evolution it remains to define the pot.{'ntial TI). 
This potential is established according to micromechanic.s and ph£'1I0IllPIIO­
logical arguments. Also, the potential may be derived on mor£' (\lIlpiri­

cal base, aiming to simplify the damage kinet.ic equation, t.o a.dd it IItlll­

linear behaviour to it or to model a more particular laboratory obs<'rva­

tion. A well known and used potential for ductile failure was propospd by 
LEMAITRE122-124 in the form 

y2 
FD=2S(1_D)' 

rendering the damage kinetic equation as 

. y-
D = SpJI(p - PD), 

or 
-2 R 

• (Jeg 11.-

D = 2ES pJI(p - PD), 

(A.G:l) 

(A.G·I) 

(A.(j!») 

where S is a material constant and fI is the HEAVISIDE stC'p function dpfillPd 

by 

if 

(A.(j()) 
if P < PD· 

The function fI just states that the damage rate is diffN('nt frolll Z('I'O 

when the accumulated plastic strain becomes higher than a cNtain thrC'shold 
strain, PD. This strain in the uniaxial case is denoted by cD. The rplat.ion 
between PD and cD is presented in Chapter 4. 
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Nomenclature 

a radius of the minimum cross-section 
in a notched specimen 

Ak thermodynamic force 
Be load times correction factor, Ie 

C, q coefficients in the COWPER-SYMONDS <'qllation 
d diameter 

disp displacement 
Dd dynamic damage 

Dd' dynamic contribution to the total damag{' 
Ddo dynamic damage based on the flow str{'ss 

D/ damage parameter measur{'d by the change of e\a . ..,t.ic 
modulus without ccrrection 

Ds static damage based on the flow stress 
Ds' static damage based on the initial flow str('ss 

DE' damage due to hardening 
DE damage according to the change in the elast.ic modulus 

based on the hypothesis of strain <'quival('nce 
Dlr damage according to the change in the elastic l1lodulus 

based on the hypothesis of energy equivalplH'{, 

Dj/v damage according to the hardness 
based on the hypothesis of strain ('quival('nc{' 

Ds damage according to the void area 
Dir damage according to the change in the {'I('ct.rical pot,pllt.ial 

based on the hypothesis of strain equival('nc{' 
e engineering strain 
e specific internal energy 

em measured engineering strain 
erE error in the elastic modulus value 

E elastic modulus 
E elastic modulus in the damaged mat<'rial 
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E' 
I 

Ie 
/d 
Iv 
F f, 
F 

FIJ 

9/ 
91 
G 
h 

II 
fl 

In' 
flY' 

l 

k and k' 

kt 

I 
L\, L2 

IM\, 1M) 

IQ 
Tn, n 

m 
Tn and n 

M 
p 

Pv 
q 

Q 
r 

r 

hardening modulus 
yield function 
correction factor 
dynamic term in the yield function 
volume fraction of inclusions 
load 
load near fracture 
general potential 
damage potential 
gauge factor 

gauge length 
impact mass 
beam thickness divided by the length Ll 
beam thickness 
step function 
hardness 
hardness in a virgin material 
electrical current 
constants 
transverse sensitivity of the strain gauge 
length 

Nomenclature 

minimum and maximum distance between the load 
position and the beam supports, respectively 
bending hinge lengths 
shear hinge length 
coefficients in the material constitutive law 
mass per unit length 
parameters used in the equivalent strain equation 
moment 
accumulated plastic strain 
accumulated threshold plastic strain 
heat flow 
shear force 
coordinate 
associated variable to R 
resistivity 
radius 
hardening term 



Sf 

S 
S 

SD 
t 

T 
V 

Vo 
Vk 
w 

calibration resistance 
strain gauge resistance 
defined by equation (5.6) 
engineering stress 
shape factor 
area 
damage strength parameter 
area of voids 
time 
temperature 
voltage 
impact velocity 
internal variable 
beam displacement divided by beam thickn('ss 
elastic strain energy density 
final displacement of the beam divided by the Ipnp;t.h 1,\ 

beam displacement at the loading point 
final beam displacement at the loading point 
final beam displacement at the loading point 
as measured by the iaser 
indentation 
final indentation 
rectangular coordinates 
elastic strain energy density rel(\a~e rate 

Greek symbols 

'Y shear strain 
C true strain 

Cbody strain measured by the diameter contraction 
outside the neck region 

Ca longitudinal elastic strain 
Ct thickness elastic contraction 

Cw width elastic contraction 
cD threshold strain 

cFmaz strain at the maximum load 
CM strain due to the moment 
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eN 
(J 

K 

" .x 
II 

Ill, 112 

{ 

-
'= 
-~ 

'= -ttl 

=-t 

=-8 

membrane strain 
angle 
curvature 
non-dimensional energy 
plastic multiplier 
Poisson ratio 
LdH, L2/H 
LdL2 
apparent elastic modulus 
apparent elastic modulus calculated 
using axial strains 
apparent elastic modulus calculated 
using width contraction 
apparent elastic modulus calculated 
using thickness contraction 
apparent elastic modulus calculated 
using thickness contraction 
and Bridgman correction factor 

=-8 apparent elastic modulus 
as evaluated in the current literature 

p density 
0' true stress 

0'0 flow stress 
0'00 initial flow stress 
O'",q equivalent stress 
0' fa failure stress 
0' fr fracture stress 

O'h hydrostatic stress 
0" . stress deviator 

I) 

0'11 yield stress 
0'1Ifaxial fracture stress 

Nomenclature 

0'1111' load divided by current area in a notch tensile test 
0'1111 stress in the y direction 

if effective stress 
<p potential of dissipation 
4> dual potential of the potential of dissipation 

'11 specific free energy 



Subscripts 

0 initial 
cr critical 
d dynamic 
e elastic 

eq equivalent 
f final 

fa failure 
fr fracture 

r coordinate 
s static 
u ultimate 

x, Y coordinates 

Ylow low yield 

YuP upper yield 
0 coordinate 

Superscript 

time derivative 
.. second time derivative 
- effective variable 
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