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Abstract

The growth and development of the hominoid os ilium, both cortical (external) and
trabecular (internal), was studied from a comparative point of view. Os ilia
representing Homo sapiens (modern human), Pan troglodytes (common
chimpanzee), Gorilla gorilla (gorilla), and Cercopithecus sp. (old world monkeys)
were analysed. Ontogenetic allometric changes in external iliac morphology, and
external-internal combined (hominoids only), were assessed using landmark based
geometric morphometric methods. External landmarks were digitised directly from
bones and internal landmarks were taken from radiographs. The internal landmarks
described the position of two trabecular bundles (struts): a posterior one, spanning
the auricular surface and acetabulum and an anterior one, passing from the anterior
1liac crest towards the acetabulum and/or ischium. Analyses of ontogenetic changes
in bone density distribution (which utilised data taken from high resolution computed
tomography) revealed that the 1liac struts appeared soon after birth. Probably as a
result of selective loss of bone from the posterior portion of the iliac fossa. After
infancy, the position of the iliac trabecular struts changed with respect to external
morphology. This finding is consistent with the notion that trabecular bone is more
plastic than cortical tissue. Trabecular tissue may exhibit greater plasticity because
(1) after infancy cortical tissue loses some capacity to model in response to applied
loads, but trabecular bone maintains the ability to model throughout ontogeny (2)
cortical tissue 1s more functionally and/or phylogenetically constrained. In support of
this 1t was found that the African apes and cercopithecines share common
ontogenetic allometries, calculated trom external landmarks, which are distinct from
that of modern humans. The results of this study have implications regarding the

manner in which fossil remains are investigated. Comparative and developmental



studies of external bony morphology may be more appropriate for inferring
phylogeny, whilst studies of trabecular morphology might be better suited for

reconstructing locomotor behaviour.
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Analysing Growth and Development of the Hominoid Ilium

Principals of Scaling, Relative Growth and Allometry

The Hominoid Pelvis. (a) The pelvis is situated between the trunk
and lower limbs. (b) Pelves representing Homo sapiens, Pan
troglodytes and Gorilla gorilla. The pelvis consists of the os
sacrum and two os coxae. Drawings adapted from
http://www.gpc.edu/~pgore/students/f97/glenda/pelvis.gif.

Huxley’s and Teissier’s (1936) concept of allometry. The term
allometry refers to the pattern of ontogenetic covariation between
the dimensions of two measured morphological features. Bivariate
ontogenetic allometric regressions were used to calculate
exponents (o) that described the association between two
measured dimensions. Although allometry was primarily
concerned with covariation between the sizes of parts of an
organism the exponents describe changes in proportions that occur
with increases in size.

Gould’s (1966) and Cock’s (1966) modes of allometry. Ellipses

denote developmental or growth stages e.g. size classes or dental
eruption class. Allometry can be separated into three distinct
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Ontogenetic allometry is based on an ontogenetic series of
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(1998).

Jolicoeur’s (1963) concept of multivariate allometry. A principal
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Figure 1.5. Published example of multivariate allometry. The graph depictsa 16
principal component analysis of adult pelvic dimensions in the
Homininae. The percentage variance pertains to the amount of
variation in the original data set explained by each principal
component. Black arrows indicate the growth trajectory for each
species. Multivariate allometric analyses are useful for
determining whether (and how) the proportions of structure
change with increasing size because many variables can be
considered simultaneously. Figure adapted from Berge &

Kazmierczak (1986).

Figure 1.6. Centroid size. Centroid size is calculated as the square root ot the 19
sum of squared distances of a set of landmarks from their centroid
(mean).

Figure 1.7. Geometric morphometrics: the thin plate spline technique is used 20

to visualise differences in form between two landmark
configurations. (a) A “reference” specimen 1s drawn onto an
infinitely thin metal plate (depicted above as a mesh) with nails
placed at each landmark. (b) A “target” specimen is superimposed
onto the reference and the nails are dragged to meet the new
landmark coordinates; a process referred to as “morphing”. This
causes a deformation in metal plate. The deformation describes
inter-specimen differences in shape between the reference and
target specimens. Splines are most useful for comparing the
shapes of complicated structures. To aid the visualisation dashed
lines demark the outline of the landmark configurations.

Figure 1.8. Thin plate spline comparison of the shape of modern human os 22
coxae, neonate and adult. (a) Os coxal morphology was recorded
using two-dimensional co-ordinate data. (b) Anatomical landmark
data was utilised in a thin-plate spline analysis. The spline denotes
a single neonatal specimen (reference) morphed onto a single
adult specimen (target). Figures adapted from Berge (1996).

Figure 1.9. Kendall’s shape space and computation of principal components. 24
(a) An approximation of Kendall’s shape space based on triangles.
(b) A schematic indicating the projection of triangles (represented
by points) from Kendall’s shape space into a shape space tangent
to the mean triangle. Black arrows denote the projection. This
produces the principal components of shape variation (PC 1, PC
2). Figure (a) adapted from Kendall (1984) and (b) from Rohlf
(2000).

Figure 1.10. Steps for a geometric morphometric analysis of landmark co- 26
ordinate data.
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Figure 2.1 Discrimination of hominoids on the basis of os coxal morphology. 35
Published canonical variates analyses comparing hominoid os
coxal morphology (a) McHenry & Corruccini (1975) (b) Steudel
(1978) (c¢) Steudel (1981).

Figure 2.2. Morphological affinities of hominoid pelves. Published principal 37
components analyses comparing hominoid pelvic morphology (a)

McHenry & Corruccint (1975) (b) Berge (1984a) (c) Berge
(1998). Outlines demark boundaries of data points.

Figure 2.3. Thirty six os coxal dimensions were measured for this study. (a-b) 42
lateral view (¢) antero-lateral view (d-f) Medial View.

Figure 2.4. Interspecific comparison of adult hominoid os coxal morphology. 45
Canonical variates analyses based on os coxal dimensions:
cllipses represent 95% confidence limits. (a) Measured linear
dimensions (b) linear dimensions scaled according to geometric
mean.

Figure 2.5. Interspecitic comparison of adult hominoid os coxal morphology. 46
Principal components analyses based on os coxal dimensions:
ellipses represent 95% contfidence limits. (a) Measured linear
dimensions (b) linear dimensions scaled according to geometric
mean.

Figure 2.6. Hominoid obstetric constraints and mechanics of birthing. (a) The 50
relationship between the size of the maternal pelvic inlet and size
of the newborn head. Maternal pelvis and neonatal cranial outlines
are indicted diagrammatically, but scaled so the transverse
diameters of the maternal pelvic inlets are common across species.
Figure modified from Rosenberg & Trevathan (2002). (b) Human
obstetrical mechanics differ from the African apes in two key
ways (1) flexion of the foetus and (11) rotation of the foetus. This is
Ilustrated by the sagittal position of the head in the pelvic outlet
(between the coccyx and symphysion) and the oblique position of
the- shoulders within the pelvic inlet (between the coccyx and
inferior border of symphysis). Figure modified from Berge

(1984b).

Figure 2.7. Locomotor behaviour percentages (based on continuous 51
locomotor bout sampling) for adult African ape species.
Abbreviations denote: LC, locomotion; Arb, arboreal; Ter,
terrestrial; S, suspensory, B, bipedal; Q, quadrupedal; QS,
quadrumanous scrambling; QC, quadrumanous climbing. Data
taken from Carlson (2005).

1X



Part I1
Chapter 3

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

External Iliac Morphology of Hominoids
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Interspecific comparison of hominoid 1liac growth trajectories in
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troglodytes; G, G. g gorilla. Developmental stages defined
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completely fused. The percentage variance pertains to the amount
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Interspecific comparison of hominoid iliac growth trajectories.
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An ontogenetic series of H. sapiens ilia compared in size-shape
space. The ellipses demark 95% confidence Ilimits for
developmental stages based on permanent molar eruption and
distal femoral epiphyseal fusion; MO, permanent molars un-
erupted; M1, all first molars erupted; M2, all second molars
erupted; A, adults with distally fused femoral epiphyses. The thin-
plate splines depict residual variation in shape along the second
principal component. Dashed grey arrows denote direction of
transformation.

An ontogenetic series of P. 1. troglodytes ilia compared in size-
shape space. The ellipses demark 95% confidence limits for
developmental stages based on permanent molar eruption and
distal femoral epiphyseal fusion; MO, permanent molars un-
erupted; M1, all first molars erupted; M2, all second molars
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An ontogenetic series of G. g. gorilla ilia compared in size-shape
space. The ellipses demark 95% confidence limits for
developmental stages based on permanent molar eruption and
distal femoral epiphyseal fusion; MO, permanent molars un-
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Cross-sectional growth velocity curves for body mass in (a) H.
sapiens (adapted from Tanner et al., 1966) (b) G. gorilla and (c)
P. troglodytes (adapted from Leigh, 1996). Superimposed grey
rectangles denote eruption age range for second permanent
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et al., 1951), G. g gorilla (Smith, 1994) and P. t. troglodytes
(Anemone et al., 1991, 1996; Gavan, 1967).

Selected muscular origins and insertions on the Hominoid pelvis.
(a) H. sapiens (b) P. troglodytes (Swindler & Wood, 1982:
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Primary (endochondral) ossification of the modern human fetal 97
tllum. (a) a schematic representation of the fetal ilium showing the
location and direction of the ossification front. (b) A close up of

the chondrification front. Note that bone density decreases infero-
superiorly whilst cartilage density increases. Black arrows
indicate the direction of the ossification front

Partial volume averaging. A uCT slice is comprised of voxels. 103
Partial volume averaging occurs when materials of different
density (i.e. bone and air) occupy the same voxel. The CT value
assigned to each voxel represents an average of the linear
attenuation coefficients (i.e. density). This leads to a blurring of

the bone non-bone boundary. Hence the actual profile along a row

of voxels, solid black line on chart, is represented by a profile
more like the dashed line.

The Fast Fourier transform. (a) a radiographic image or uCT 105
section can be transformed into (b) a secondary image using the

Fast Fourier transtorm technique. If the original image 1s
anisotropic the transform reveals this.

Internal Ihac Morphology

Fetal Trabecular Growth and Development 109

Areas of interest in the 1liac blade. Letters denote regions where 112
measures of trabecular architecture were collected: A, anterior; S,
superior; P, posterior; C, central; CA, central-anterior; CS,
central-superior; CP, central-posterior; B, basal. Numbers denote
measured bone density (bone area fraction) in 36 week old
specimens. The highest bone area fraction (AOI C) was found
close to the site of primary ossification.

Quantifying trabecular material properties in the iliac blade. (a) 115
Radiographic area of interest (b) Binary threshold procedure
(lowest frequency used as lower boundary and second maximum
set as upper boundary) (c¢) Binary threshold where pixels
representing bone are coloured white and non-bone pixels are
designated black (d) One-dimensional FFT (repeated for every
row then every column). The original grey value data is smoothed.
(¢) Two-dimensional FFT with a rose plot superimposed on top
(white line). Black arrows demarcate the bins at 15° intervals.
Grey arrows designate the main trabecular orientation (MO) and
the orientation perpendicular to the MO (PO).
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Figure 6.3. Ontogenetic change in bone density of the superior AOIL: with 118

respect to anterior and posterior areas of interest. Analysing the
data in this manner standardises the specimens for exposure. The
ordinate axis (relative bone density) is the proportion of bone In
the superior area of interest expressed as a percentage of the
density in the anterior and posterior portions of the ilium.
Reduced major axis regression line. Error bars denote mean and
standard deviation.
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Figure 7.1. Early development of trabecular architecture in Sus scrofa. 124
Ontogenetic change 1n (a) bone volume fraction (b) trabecular
anisotropy. Modified from Tanck et al., (2001).

Figure 7.2. Ontogenetic change in hominoid 1liac bone density. (a) H. sapiens 129
(b) P. t troglodytes (¢) G. g gorilla. Developmental stages
defined according to permanent molar eruption; M0, no molars
erupted; M1, first permanent molars erupted; M2, second molars
erupted; M3, third molars erupted. Error bars denote standard
deviation of mean.

Figure 7.3. Ontogenetic change in hominoid iliac trabecular anisotropy. (a) H. 133
sapiens (b) P. t. troglodytes (¢) G. g. gorilla. Developmental
stages defined according to permanent molar eruption; M0, no
molars erupted; M1, first permanent molars erupted; M2, second
molars erupted; M3, third molars erupted. Error bars denote
standard deviation of mean.

Figure 7.4. Ontogenetic change in trabecular bone distribution in modern 137
human ilia. The fan shaped arrangement of trabeculae displayed at
term is reduced to two prominent trabecular struts. Adapted from

Machiarelli et al., (2001).

Part1V The Relationship Between Internal and External Ihac
Morphology

Figure 8.1.  Frost (1990) hypothesised that trabecular elements can re- 139
orientate by modelling 1n response to alternating loading
directions. (a) Loaded trabecula (b) Alternate loading direction
causes trabecula to re-orientate via modelling (¢) Trabecula
aligned to new loading direction. Moditfied from Frost (1990b).

Figure 8.2. Digitised internal (trabecular) landmarks. Pelvic radiographs (a) 142
H. sapiens. (b) P. t. troglodytes and (¢) G. g. gorilla.
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Figure 8.5.

Figure 8.6.

Measured angles of main trabecular bundle orientation. Open
circles denote external landmarks and closed circles denote
internal landmarks. Strut orientation was characterised in relation
to external morphology by calculating angles where lines
demarcating trabecular struts intersected lines connecting external
landmarks. Triangles denote four measured angles of trabecular
orientation, A, B, C and D. Radiograph form Macchiarelli et al
(2001).

Allometric change in iliac trabecular strut orientation in relation to
external morphology. Homo sapiens (a) anterior iliac strut and (b)
posterior 1liac strut. Landmarks were regressed against a measure
of 1liac size (second principal component of PCA analysis) using
TPS regression technique. Deformations of the TPS mesh are
based solely on primary landmarks but secondary landmarks are
Included to aid visualisation of iliac shape. Arrows indicate
ontogenetic change in internal morphology relative to external.
Black dashed line indicates the outline of the iliac blade and
auricular surface. Grey dashed line indicates the outline
acetabulum.

Allometric change in iliac trabecular strut orientation in relation to
external morphology. Pan. t. troglodytes (a) anterior iliac strut and
(b) posterior iliac strut. Landmarks were regressed against a
measure of iliac size (second principal component of PCA
analysis) using TPS regression technique. Deformations of the
TPS mesh are based solely on primary landmarks but secondary
fandmarks are included to aid visualisation of iliac shape. Black
dashed line indicates the outline of the iliac blade and auricular
surface. Grey dashed line indicates the outline acetabulum.

Allometric change in 1liac trabecular strut orientation in relation to
external morphology. Gorilla g. gorilla (a) anterior tliac strut and
(b) posterior iliac strut. Landmarks were regressed against a
measure of iliac size (second principal component of PCA
analysis) using TPS regression technique. Deformations of the
TPS mesh are based solely on primary landmarks but secondary
landmarks are included to aid visualisation of iliac shape. Pointed
arrows indicate ontogenetic change 1n internal morphology
relative to external. Black dashed line indicates the outline of the
1liac blade and auricular surface. Grey dashed line indicates the
outline acetabulum.
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Figure 8.10.
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Figure 8.12.

Part V
Figure 9.1.

Figure 9.2.

Ontogenetic re-orientation of hominoid iliac trabecular struts in
relation to external morphology. (a) Angle A (b) Angle B, (c)
Angel C (d) Angle D. Developmental stages based on permanent
molar eruption; M0, no molars erupted; M1, all first permanent
molars erupted; M2, all second molars erupted; M3, all third
molars erupted. Error bars denote 95% confidence limits about
mean. Open symbols indicate mean angle for that molar eruption
class 1s significantly different from MO class (one-way ANOVA
with Tukey’s post hoc p < 0.05). See Table 8.2 for F and p values.

Trabecular arcades in the modern human pelvis and femur. (a)
Anteversion of the modern human femur decreases during
ontogeny. (b) The posterior 1liac trabecular strut connects with
femoral trabecular struts.

Muscle induced compressive stress in the anterior iliac blade of
modern humans. Dorsal extension of posterior crest may displace
muscle induced compressive forces superiorly. Flattened arrows
indicate main direction of compressive stress.

Forces acting on the hind-limb (and pelvis) of primates during
quadrupedal locomotion. Adapted from Demes et al. (1994).
Arrows Indicate direction of ground reaction force.

Hip extension during quadruedal locomotion on different
substrates in Pan paniscus. Adapted from D’ Aout ef al. (2004).

Functional position of the African ape pelvis and femur, extended
and flexed postures. Open arrows indicate direction of femoral
flexion. The figures depict the lines of action of muscle pull in
the sagittal view. The lines of action refer to fibres of (a) the
gluteals and (b) Iliacus. Muscle lines of actions are demarked by
arrows. Gluteus medius is denoted by open circles, gluteus
minimus by closed circles and 1liacus by open squares.

Conclusions

Inter-specific comparison on ontogenetic change in locomotor
pattern (a) P. t. verus and (b) G. g. beringei. Mass (Kg) refers to
mean body mass of developmental stage. Moditied tfrom Doran

(1997).

Ontogenetic change in orientation of anterior trabecular struts, in
relation to external morphology, in the hominoid ilium. Principal
components analysis (a) external landmarks, supplemented with
iliac  centroid size (b) external and internal landmarks,
supplemented with iliac centroid size. Arrows indicate growth
trajectory.
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