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Abstract: This Thesis consists of two distinct parts. The first is concerned 
with the study of the long memory characteristics of a relatively new class of chaotic 
intermittency maps. In particular we study the symmetric cusp map, the asymmetric 
cusp map, polynomial maps and logarithmic maps. In previous studies by Bhansali 
and Holland, it has been shown that these maps can simulate stationary time series 
with a full range of values for the long memory parameter, including d =  0.5 which is 
usually considered non-stationary, d =  0 which is usually considered short memory 
and d < 0 which is usually intermediate memory. Further more, for each given map 
with a given set of parameters, asymptotic proofs are available to give the ‘true’ value 
of d to be taken as known. This gives us the opportunity to carry out a simulation 
study to test various long memory estimation techniques, namely the GPH method, 
the Local Whittle Method, the FExp method and the FAR method (using both the 
BIC and AIC), when the standard assumptions of linearity and Gaussian distribution 
no longer hold.

Our results, based on 1000 simulations of series length 10,000 for each of 12 
maps, help to reconfirm the asymptotic expectations of d, although we show that 
bias increases considerably near the boundary conditions of 0 and 0.5 and that to 
remove these biases we may need to increase our series length to over a million 
observations.

This gives motivation into the study of a new dual parameter model for long 
memory. Theoretical work is given to show the biases of standard estimation tech­
niques can be significant when an unbounded slowly varying function is present, and 
new extensions to the GPH and Local Whittle estimation techniques to include this 
term are provided. A fully parameterised extension to the FARIMA model is also 
presented and simulation studies are carried out to justify the use of this model along 
side the FARIMA model.

In the second part, we carry out an analysis on some new real human motion data 
provided by Unilever. This data concerns the movement of seven sensors attached to 
a human subject whilst applying a deodorant stick to their underarm, the raw data 
being the (x,y,z) co-ordinates with time stamp of the sensors. We look into methods 
of reducing dimensions with the application of principal component analysis. We 
then provide easier to interpret transformations and group the data in different 
application techniques. Finally, the data is modelled with the use of B-Splines and 
piecewise Bezier curves with the ultimate aim of simulating further life like results.
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Part I



1. INTRODUCTION

This Thesis consists of two distinct parts. The first part is concerned with the study 
of the long memory characteristics of a relatively new class of chaotic intermittency 
maps, and the new extensions to long memory estimation techniques and models 
that the study of these chaotic maps motivates.

The remainder of Chapter 1 introduces basic key concepts of time series analysis 
such as stationarity, the Wold decomposition theorem, the autocorrelation function 
and the frequency domain. It also introduces the commonly used ARMA model and 
the Exp models of Bloomfield [1973].

The fundamental ideas of Chapter 1 are then extended in Chapter 2 to introduce 
long memory processes. Long memory time series analysis is becoming increasingly 
popular in time series literature. Examples of application can be found from varying 
fields such as internet traffic and environmental issues. Early examples can be seen 
in Hurst [1951],[1957], Mandelbrot and Wallis [1968], Mandelbrot [1972] and Mcleod 
and Hipel [1978] amongst others. Despite this increasing popularity, however, there 
is no universally agreed definition of long memory and Chapter 2 gives some of the 
more commonly used definitions, settling on the two key aspects of stationary and 
an ACF that is not absolutely sumable to define long memory for this thesis.

The ARMA and Exp models of Chapter 1 are extended to the long memory 
FARIMA and FExp models, defined by Granger and Joyeux [1980] and Beran [1993] 
respectively. Details of several methods that have been developed for estimating 
the long memory parameter associated with these models are also given, along with 
semi- and non-parametric methods.

These estimators are usually tested for bias, consistency and robustness in sim­
ulation studies involving linear long memory models, see, for example Taqqu and 
Teverovsky [1996], Following the work of Bhansali and Holland [2008b], chaotic in­
termittency maps are used here as an alternative to these linear models. The concept 
of chaos is introduced in Chapter 3, along with descriptions of some fundamental 
properties. Evidence of chaos has been found in a wide variety of sources, such as 
acoustics, chemistry, circuits, lasers and plasmas, see Lauterborn [1981], Simoyi et al 
[1982], Rollins and Hunt [1984], Mork et al [1990] and Sagdeev et al [1990], respec­
tively. The class of chaotic intermittency maps of interest, defined in section 3.2, 
have previously been considered in the modelling of internet traffic, see Bhansali et 
al [2005].

The new work begins in Chapter 4 with an investigative simulation study on the
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rate of decay of the correlations of the series produced by these chaotic intermittency 
maps. The chaotic interinittency maps studied here are the symmetric cusp map, the 
asymmetric cusp map, polynomial maps and logarithmic maps. In previous studies 
by Bhansali and Holland [2008b], it has been shown that these maps can simulate 
stationary time series with a full range of values for the long memory parameter, 
including d =  0.5 which is usually considered non-stationary, d =  0 which is usually 
considered short memory and d < 0 which is usually intermediate memory. Further 
more, for each given map with a given set of parameters, asymptotic proofs are 
available to give the ’true’ value of d to be taken as known. This gives the opportunity 
to carry out a simulation study to test various long memory estimation techniques, 
namely the GPU method, the Local Whittle Method, the FExp method and the FAR 
method, introduced in Chapter 2, when the assumptions of linearity and Gaussian 
distribution no longer hold.

The results of Chapter 4, which only partly agree with the asymptotic theory, 
motivates the new dual parameter long memory model introduced in Chapter 5. 
Section 5.3 introduces a new extension to the FARIMA model which allows for a 
second long memory parameter. This model allows for both ‘weak’ and ‘strong’ long 
memory boundary behaviour and includes the FARIMA model as a special case.

Theoretical work is carried out to give the asymptotic distributions of all the 
newly defined estimators. The proofs for the newly defined extended versions of the 
GPU and Local Whittle methods follow those of Robinson [1995a] and Robinson 
[1995b] and are presented in a level of detail similar to those papers. An application 
of these new methods to the chaotic intermittency maps is carried out and shown 
to improve the results. In addition, simulation studies show these new methods 
can also outperform older methods in more standard linear Gaussian cases, and an 
application to Bellcore Ethernet data shows the fit of the new DFARIMA model may 
be preferable to the standard FARIMA model.

Finally for Part 1, new stochastic extensions of these chaotic intermittency maps 
are introduced in Chapter 6. The study of stochastic versions of chaotic maps has 
been carried out previously by several authors, for example, Chan and Tong [1994], 
[2001], Alves and Arujo [2000], Alves and Viana [2002] and Alves et al [2004].

The new stochastic versions of the intermittency maps introduced here are shown 
to posses the same properties as the deterministic maps in the laminar region and 
hence retain the asymptotic rates of decay discussed in section 3.2. Simulation 
studies are then carried out to reconfirm these findings and use the results to estimate 
the parameters of the maps. The forms of the stochastic maps presented here were 
suggested by Dr M. Holland and have been included and studied in this chapter with 
his permission.

The second part of this thesis focuses on the analysis of consumer data provided 
by Unilever. The data is concerned with the movement of individuals over time and 
space whilst applying a deodorant stick to the area under their left arm, the raw 
data being the (x, y, z) co-ordinates with time stamp of seven sensors attached to
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the individual.
The deodorant stick data being discussed in this paper has been collected and 

supplied by Unilever and is part of a larger series of experiments being carried out 
using the company’s recently acquired motion sensor technology. Motion sensor 
technology has been used previously in several areas, such as virtual simulations of 
factories and equipment to test and improve designs, see for example Faraway and 
Reed [2007], as well as fields such as sport and medicine, see Menache [2000].

A description of the deodorant stick data, including how it was collected and 
recorded is given in section 7.1. It would be of interest to Unilever to discover if 
such an experiment can pick up differences between individuals and products and 
group individuals and products into different application techniques and categories. 
The cost of various experiments at Unilever could also be greatly reduced if suitable 
methods of modelling the data and simulating new data could be found.

Section 7.3 attempts to better interpret the data by application of principal 
component analysis. A new form of the data is then derived in section 7.3.3. This 
new transformed form of the data provides a reduction in dimensionality without 
loss of information whilst simultaneously providing easier to understand definitions 
to the series.

Finally, section 7.4 looks at methods of modelling the data in this new form 
and simulating new data with the same properties as the original. Section 7.4.2 
introduces the use of vector autoregressive models, whilst section 7.4.3 looks instead 
at modelling the data by fitting functions such as B-Splines and Bezier curves.

1.1 Stationarity

A stochastic process {y t} Vt G Z  is said to be weakly or second-order stationary if it 
meets the following three conditions:

1. The E(yt) must exist and be independent of t V t G Z,

E {yi) =  E(y2) =  E(y3) =  . . .  =  //. (1.1)

2. The Var(yt) must also exist and be independent of t V t G Z,

Var(yt) =  E ((yt -  y )2) =  ct2 (1.2)

3. The C ov(yt,yt-u) must be independent of £, V t, u G Z, and therefore a function 
of u.

Cov{yt, yt-u ) ~  E {{yt -  y ){y t-u -  /*)) =  R(u) (1.3)

A process {y t} Vi G Z is said to be strictly stationary if and only if the joint dis­
tribution of yi, j/2, ••• i Vk is identical to the joint distribution of i/i+h, 1/2-t-h, • • • tVk+h 
for all integers h and k. A time series can be weakly stationary without being strictly 
stationary and can be strictly stationary without being weakly stationary.

Hereafter, a stationary process will always refer to a weakly stationary or second- 
order stationary process unless otherwise specified.
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1.2 Hilbert Spaces

Let V be a vector space. A norm on the vector space is a function ||.|| : V —> [0, oo) 
such that for all x, y G V,

||x|| =  0 &  x  =  0,

||Cx|| =  \C\ ||x||, for all C  G K

and

||x+ 2/|| < INI +  \\y\\.

The sequence {x t} G V is called a Cauchy sequence if and only if for all e > 0 
there exists an integer n such that

\\xt — x3|| <  £ for all t ,s  >  n.

If every'Cauchy sequence has a limit in the vector space, V, then V is said to be 
complete.

An inner product is a function V  —> R such that for all x ,y ,z  G V,

(x,x) >  0, (1.4)

(x, x) =  0 O  x =  0, (1.5)

(Cix +  C2y, z) — C\{x, z) +  C2{y, z), for all C\, C2 G E (1.6)

t»

(x ,y) =  (y ,x ). (1.7)

The vector space, V, is an inner product space if it is endowed with an inner 
product (.,.). For an inner product, (.,.), there exists a norm ||x|| =  a/ ( x , x ) in V.

An example of an inner product is the autocovariance for a stationary process 
{y t} with p =  0. Since Cov(yt,yt) =  Var(yt) and Cov(yt,yt - u)=Cov(yt-u, Vt), for all 
( , « G Z ,  equations 1.4, 1.5 and 1.7 are satisfied. Also, for all t,u ,k  G Z,

Cov(C12/t +  C2yt- u,yt-k ) =  H {(C iyt +  C2yt- U)yt~k} ~  H (C m  +  C2yt- u)ti{yt-k)

=  ti(C xytyt_k) -  bJ(Cxyt)bJ(yt-k) +  H(C2yt- uyt-k) -  H{C2yt- u)H{yt^k)
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=  CiCo\(yt,yt-k) +  C2Cov{yt- u, yt-k ),

which satisfies equation 1.6. Note, this gives the standard deviation as a norm, 
since o y =  s/Va,r(yt).

A Hilbert space, H, is a complete inner product vector space. The following 
projection theorem concerning Hilbert spaces can be found in Palma [2007], amongst 
others.

T heorem  1.2.1. Let H be a Hilbert space, let V C H be a closed subspace and let 
x  G H . Then,

a) there is unique point y € H such that

\\x-y\\ =  inf ||a; — z||

b) for y € V ,

||x -  y|| =  inf ||x — z|| <=> (x — y, z) =  0, for all z € V. 
zev

Given a closed subset, V, of a Hilbert space, 11, the space generated by all finite 
linear combinations of elements of V is called the span of V and is denoted by sp(V). 
The space containing all the limits of the sequences in sp(V) is denoted by sp(V) 
and is the closure of sp(V) in 11.

1.3 Wold Decomposition Theorem

Let Ft =  sp({j/s}) with s <  t, that is, Ft contains all the past information of the 
process {y t} at time t. The process is said to be linearly deterministic, or singu­
lar, if and only if F-oo =  • • • =  Foo — F  independent of t. This implies that all 
available information was available at a point infinitely into the past and all values 
since then have been generated from this. Thus the process is perfectly predictable. 
Alternatively, a process is said to be purely nondeterministic or regular if and only 
if F-oo =  {0}.

The following theorem is known as the Wold Decomposition Theorem, the proof 
of which can be seen in Wold [1953].

Theorem  1.3.1. Any stationary process is the sum of two orthogonal processes 
such that one is singular and the other is regular. Furthermore, this decomposition 
is unique and the regular part may be expressed as

OO
yt =

j= 0

(1.8)
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where V’o =  1, Yl'jLotf < °°> E{£t) =  0, E {el) =  a2 Vi € Z, and E(£tes) =  0 
/or s / ( ,  I ,s G Z.

Take {y*} and {? (} to be defined as in Theorem 1.3.1. The process {y t} is said 
to be causal since it is dependent only on the present and the past values of { St}. 
Causality is assumed throughout this thesis. Now, since E{et) =  0 Vi € Z, this gives 
E(yt) =  0 Vt € Z  and the covariances of yt at lag u are given by

/  OO DO \

Cov(yt,tjt-u) =  E{ytyt-u ) =  E  I 53 53 I •V'=o j =o J

Since the {et} are uncorrelated, this gives

OO

Cov(yt,yt-u) =  & ^ Sj V’jV’j+u =  E(u), (1-9)
¿=o

which are finite and independent of t Vu € Z, due to the condition X^=o < °°- 
The sequence {s t} is known as a white noise process. If et and ea, s £  t, are 

independent and identically distributed random variables V s,t 6 Z  then {c£} is a 
strict white noise process. Note that the Wold Decomposition Theorem requires 
only that the sequence {t £} be uncorrelated not independent. Such a series is known 
as a weak white noise process.

1.4 Best Linear Predictor

Let {?/t} and {ft }  to be defined as in Theorem 1.3.1. The process {y t} is said to be 
invertible if there exists a sequence of coefficients {7Tj} such that

oo
£t =  K m -,,

■ 0=0

where 7Tq =  — 1, or equivalently,

yt =  £t +  53 
3=1

Assuming { yt} is invertible, the best linear prediction of yt based on its history 
sp{yt-uV t-2, ■ ■ •) is given by

OO
in — 5 3  7tiy t-E  

3- 1
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and St =  yt — yt, is an orthogonal process representing the part of yt that cannot 
be linearly predicted from the past.

Now, given a finite observed series {yt ■ t G (1 , . . . ,  n )}, the best linear predictor 
of yn+1 based on its finite past sp{y\,. . . ,  yn) is given by

n
Vn+ 1 =  }   ̂4*jV n - j i

j=0

for some G R. Theorem 1.2.1 gives

{Vn+1 -V n + u y j)  = 0 ,  for j  G (1,• • • n),

and from the property of inner products given in equation 1.6, the coefficients 
{cf>j} satisfy

n
^ ^‘ftt(i/n+i—»)Vj) =  (i/n+iii/j)) for j  6 ( l , . . .n ) .
¿=1

if { yt} is a stationary mean zero process, taking the inner product to be the 
autocovariances gives,

^^(f>iR{n +  1 -  i -  j )  =  H{n +  1 -  j ) ,  for j  G (1,. ..n).
¿=1

Estimation of these coefficients and autocovariances from a given time series is 
discussed in sections 1.6.3 and 1.6.2.

1.5 Autocorrelation Function and Partial Autocorrelation Function

For a stationary process { yt}, the function R{u), see equation 1.3, is known as the 
autocovariance function, with R{0) equal to the variance. Correlation between yt 
and y t-u is defined as

Cov(yt,y t- u)
cor{yt,yt-u) =  , •

\/var(yt)var{yt-u)

Since {y t} is stationary, var(yt) =  var(yt- u) =  R(0) and Cov(yt,y t_u) =  R(u), 
this gives rise to the autocorrelation function (ACF)

cor(yt,y t- „) =  =  r{u). (1.10)

The autocorrelation function is often used instead of the autocovariance function 
since, by definition, r(0) =  1 for any process. Some other basic properties of the
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autocorrelation and autocovariance functions are given in the following Theorem, 
see Box and Jenkins [1976] for a proof.

Theorem  1.5.1, For a stationary process {y t}, t € Z, with variance R(0) 7̂  0, 
the autocovariance function, R(u), given by equation 1.3, and the autocorrelation 
function, r(u), given by equation 1.10, have the following properties:

a) The autocorrelation (or autocovariance) function is an even function:

r(u) =  r {—u)

b) The autocorrelation (or autocovariance) function is positive-definite for any 
stationary process:

n n
^ ^ C iC jr (| i  -  j\) >  0 C j,C jG R ,n 6N , 
i=l j—1

such that at least one c, ^  0, i in (1 .. .n).
c) The autocorrelation (or autocovariance) function at lag u is such that

|r(ti)| < r(0).

The plot of the autocorrelations against its lag u is known as the correlogram. 
Inspection of the correlogram may give a general idea of the type of model that 
should be fitted to the data. This is discussed further in section 1.6. Larger values 
of the ACF at higher lags implies the present value of yt is more strongly linearly 
dependent on distant past values. The rate at which the correlogram tends to zero 
thus gives an indication of the memory of the process, which is central to the idea 
of Long Memory, discussed in Chapter 2. Plotting covariances would give the same 
shape as the correlogram, but plotting correlations gives a standardised measure.

The partial autocorrelation function (PACF), i>(u), is the autocorrelation be­
tween yt and y t-u that is not accounted for by lags 1 to u — 1. That is, it is a 
measure of the linear connection between yt and yt-u when the linear influence of 
the random variables that lie between have been filtered out, see for example, Brock- 
well and Davis [1991]. It is defined, for u > 2, by

<J>(u) =  Corr(yt -  V(yt\yt- i ,  Vt-u+1)> Vt-u -  V {yt- u\yt-\, ■ • •, Vt-u+i)) (1-11)

where V(y\X) is the best linear projection of y on X , see section 1.4. For u — 1, 
$(u) =  r{u), since the projection onto {0 } is {0 }. The following theorem, due to 
Ramsay [1974], gives the properties of a PACF for a stationary process.

T heorem  1.5.2. For a stationary process {y t}, i £ Z , the PACF, 4>(u), given by 
equation 1.11,has the following properties:
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a) The PACF is an even function:

5>(u) =  4>(—u)

b) The PACF is non negative-definite for any stationary pmcess:

n n
E E *  c j$ (\ i - j i )  >  0 Vq,Cj € M,n £ N
t=i j=l

c) The PACF at lag u is such that

|$(u)| <  $(0) =  1.

The asymptotic behaviour of the PACF has been studied by Inoue [2000], in 
which he gives the following theorem.

T heorem  1.5.3. Let { yt}  be a stationary process with Wold Decomposition defined 
by equation 1.8, with ipj >  0 Vj € Z, then

!* (« )! ~
r(u)

EU
j = —u r(j)

as u —* oo.

Given the ACF, the Durbin-Levinson algorithm can be used to find the PACF, 
see Durbin [19G0] and Levinson [1947]. The algorithm starts by defining 4>u =  »”(1) 
and v\ =  (1 — r2(l)) , then using the recursive equations

r(m) -  J2T=l 4>m-ijr(m -  j )  
'mm — ' >

Vm—1

^ '¡'m l ^ 

'¡'m2
—  1 (pmm

 ̂ 4>m —l,m —\  ^

<Am—l , m —2

\  't'm.m—l ) ^ 4>m —\,\  )

(1.12)

(1.13)

and

Um — I'm—l ( l  4>mm)f (L14)

where $ m_! =  {<f>m-\,\,4>m-i,2, ■ ■ • ,<t>m-i,m-i)'■ Note, from equation 1.12, 4>mm 
is the correlation between yt and y t-m after the correlation on y t - i , . . . ,  yt-m+1 has 
been removed. Hence, the PACF is given by <J(u) =  4>Uu■

Note that given the PACF, these recursive equations can be solved to find the 
ACF. Hence the PACF contains all the information of the ACF, and vice versa, and 
it is possible to characterise a stationary process by either its PACF or its ACF.
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1.6 A R M  A  Models

The use of Autoregressive Moving Average (ARMA) models are very popular in 
the literature. Their properties were extensively studied by Box and Jenkins [1976] 
and computational packages for simulation, estimation and prediction of ARMA 
processes are now available for a large range of software, such as S and R. As such, 
they have been applied to a wide variety of actual data, for example the much studied 
sunspot data, wheat prices, magnetic resonance image reconstruction etc see Whittle 
[1954], Sargan [1953] and Smith et al [1986]. Discussion of these models are widely 
available in the literature and reviews can be seen, for example, by Anderson [1971], 
Brockwell and Davis [1991],Ilannan [1980] and Wei [1989].

Starting from the Wold representation, see Theorem 1.3.1, a stationary process 
{y t} with mean y  and no other deterministic part can be written as

OO

yt =  m +
3=0

where tj’o =  1, S j l o  V’| <  °o, E(st) =  0, E(e%) =  a1 Vi e  Z, and E(etea) =  0 for 
s ^  t. Note, y  here represents the singular part of the process.

A Moving Average, MA(q), process is one in which this infinite summation is 
truncated at lag q, that is tpj — OVj >  q, thus

<t
Ut =  d- +  ^  •

3=0
For ease of notation, introduce now the lag function, L. The Lag function, L, is 

defined by the property
Lyt =  Vt-1

The function is assumed to have |L| < 1 and can be manipulated as a standard 
algebraic symbol, e.g.

(1 — L)2yt =  (1 — 2 L +  L2)yt =  yt — 2yt-\ +  y t-2- (1.15)

The MA(q) model may now be written as

yt =  /i +  4’(L,)et,

where

4’{L) =  1 +  4>iL +  fa L 2 + -----\~4>qL9. (1.16)

It was shown in section 1.3 that provided the conditions on the innovation series 
{ - ( }  hold, a process is stationary if the coefficients of the Wold representation satisfy
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<  °°- Since, for an MA(q) process, tpj =  0 Vj > q, this summation is 
satisfied for all finite q and hence, provided the conditions on the innovation series 
{ f t }  hold, an M A(q) process is stationary.

From equation 1.9, the ACF of an MA(q) process is given by

9
R(u) =  a2 ipjipj+u, (1.17)

i=  o

where a2 is the variance of the innovations. Note, for u >  q, this gives, by 
definition, ipj+u =  0 for j  € (0 , . . . ,  q) and thus the ACF vanishes after q lags.

Consider the general MA(q) process

Vt =  1>{L)eu (1-18)

where the mean may be taken as zero without loss of generality. The identity,

1
1 — x

(1.19)

will be of use in the following discussion. Now, dividing equation 1.18 by ^(L) 
gives

** i>(L)yt
(1.20)

Factorising ip(L) into (1 -  a jL )(l  -  a 2L ) . . .  (1 — aqL), where the roots of the poly­
nomial are \/cti for i G (1 , . . . ,  q), equation 1.20 can be written in the form

£t
Ai

1 - a i L Vt + 1 — a 2L yt-\------- 1- 1
Aq

~ OtqL yt,

for constants |Ai|, . . .  |A9| < oo, and making use of identity 1.19, this can be written 
as

0°  oo oo
£t = A\ ^ 2  ot\yt- j  +  A2 ^ 2  aiyt-3 + • • • + Aq '¿T o^ yt-j■ (1.21)

3=0 j = 0 3=0

This is known as the autoregressive, AR, representation of the process. Although, 
as previously discussed, an MA(q) process with appropriate conditions on the inno­
vations is stationary for any finite tp, it can be seen that for each of these will converge 
if and only if |cq| <  1, for all i € (1 ,. ..  ,q), and hence the modulus of the roots of 
the polynomial ip(z) must all be greater than 1. If an MA process admits an AR 
representation, with AR coefficients, <j>j such that < °°> where
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<t>j =  J 2 A'ai ’
¿ = 1

it is said to be invertible. Invertibility ensures the uniqueness of the ACF. Note, 
since |o;i| < 1, for all i G ( 1 ,q), <f>j decay at an exponential rate. This exponential
rate of decay implies the AR coefficients are absolutely sumable, that is Yl'jLo I<Aj'I < 
oo.

Considering the MA(1) process, substitution of the ACF into the Durbin-Levinson 
algorithm defined in equations 1.12, 1.13 and 1.14, gives the PACF to be of the form

4>(u) =  -xpu (1 ~ V>2)
1 — i/j2(u+1) ‘

Unlike the ACF which vanishes after lag q, the PACF thus remains for all u, 
decaying to zero at an exponential rate. Exact forms of the PACF for higher order 
MA(q) processes possess complicated forms, but it is widely known that provided 
the roots of V’(^) are all real and greater than 1 then the PACF will decay at an 
exponential rate, see for example Wei [1989].

An autorvxjresmie, AR(p), process is a process {y t} such that tjt is a linear com­
bination of {i/s} with s G (f — 1,/ — 2 ,. . .  ,t — p), plus noise, that is

p
(yt -  e) =  ^2 hivt-j - n )  +  et

j=i

where )i is the mean of the process and {£(} is white noise such that E(st) — 0, 
E(£t) =  a2 Vi e Z j and E(stes) =  0 for s ^  t. This can be written as,

< i> (L ) (y t -n )  = £t

where

4>(L) =  1 — 4>\E — ~  fàE3 — . . .  — <t>pEP. (1-22)

For the general AR(p) process, similar arguments as those in equations 1.20- 
1.21 show for the process to be stationary, each of the modulus of the roots of the 
polynomial <j>(z) must all be greater than 1 and a stationary AR(p) process can be 
written as

i v t - p )  -
j=o
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where ipj decay at an exponential rate, that is 4’j ~  Bp3 as j  —* oo, for some 
constant |p| <  1 and constant or slowly varying II.

Use of tpj Bp3 gives

oo oo n 2 „ 2 nu
R(u) ~  a2 ^  B2p2j+U =  B 2pua2£ p23 =  — =  Bp\  (1.23) 

j=o j=o p

for some constant |/3| <  1 and constant or slowly varying B. Hence the ACF of a 
stationary AR(p) process decays at an exponential rate.

Consider now the PACF of a general AR(p) process. From the definition of an 
AR(p) process,

p
V{yt\yt-\,...,yt-u+\) =  for all u > p .

3=0

Notice that yt -  V { y t \ y t - i , y t - u+i) is therefore given by et, for all u >  p, and 
that this gives the PACF as

$>(u) =  Corr(Et,y t -u -V {y t-u \ yt-i, - ,yt-u+i)) =  0 Vu >  p,

since £t is white noise and therefore uncorrelated with all past observations. Thus, 
similar to the ACF of an MA(q) process, the PACF of an AR(p) process vanishes 
after lag p.

Having considered AR(p) and MA(q) processes, the general autoregressive mov­
ing average, ARMA(p,q), is now introduced. An ARMA(p.q) process, {yt}, is defined 
by as

4>(L)(yt - p )  =  4>(L)et (1.24)

where <f>(L) and 4’{L) are defined by equation 1.22 and equation 1.16 respectively 
and { f t }  is white noise. For ease of notation, from this point on p  is assumed to be 
zero without loss of generality.

The MA representation of an ARMA(p,q) process is given by

Vt m  £ (1.25)

For uniqueness V’ (b) and <f>(L) are assumed to have no common roots. Similarly, 
the AR representation of this process is given by

ft
4>{L)
4iL) yt-
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Arguing as before, for the general ARMA(p,q) process to be stationary each of 
the modulus of the roots of the polynomial <p(z) must all be greater than 1 and for 
the process to be invertible each of the modulus of the roots of the polynomial 4>{z) 
must all be greater than 1.

Also with similar arguments as those presented for the AR(p) and MA(q) pro­
cesses, the coefficients of the MA and AR representations of an invertible and sta­
tionary ARMA(p,q) process decay at an exponential rate. From equation 1.23, this 
implies the ACF of an ARMA(p,q) decays at an exponential rate. This rate of decay 
will be discussed further in Chapter 2.

1.6.1 Linear Filters 

A linear filter, 0(L), is a filter such that

0 (L )=  0jL\ (1.26)
j = - o o

where L is the lag function. The following theorem, widely available in the literar 
ture, see for example Brockwell and Davis [1991], Hannan [1980] and Rozanov [1967], 
will be used to give the effect o f such a filter to an ARMA process.

T heorem  1.6.1. Let {x<} be a zero mean stationary process and 0(L) be a linear 
filter as defined by equation 1.26, such that

OO

1 3  \°i\ <  00
j = — o o

then '•*
a) The process yt =  0 (L )rt is zero mean stationary
b) If

x t =  tp{L)st,

where 4'(L) is lag polynomial, then

Vt -  0(L)4’ {L)et -  4’ (L)0(L)st =  £(L)et , 

where £(/,) =  4,{L)Q{Lj)-

For an ARMA(p, q) process, { x j ,  defined by equation 1.25, if 6{L) can be written 
as £(L)/r)(L), where C(^) is a polynomial of finite order s and rj(L) is a polynomial 
of finite order h, then the process {y(} defined by
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Vi =  0{L)xt = m  4>{L)
t?(L) <j){L) ‘

is an ARMA(p+h, q+s) process. However, to ensure uniqueness, any common 
factors in the numerator and denominator must be cancelled out. Thus, if there are 
k such common factors, 0 < k < min(p +  h, q +  s), the resulting process will be an 
ARMA(p+h-k, q+s-k) process.

Define now the autocovariance generating function (ACGF), g(L), of a process 
as

00

g (L )=  Y ,  (1-27)
U  =s - O O

such that the coefficient of Lu is the covariance at lag u. For any stationary process, 
{y (} with Wold representation, yt =  ip{L)£t, where the order of tp(L) can be infinite, 
the ACGF is given by

9 ( L ) Y  ( ¿ T * * - ) * “u =  — oo i= 0
oo oo

a2 Y ^ L iH ^ L~h
i= 0  h =  0

=  o 2'ip(L~1)ip(L)

For an ARMA process, with Wold representation given by

V>(L)

(1.28)

y t -  n = 4>(L) £t

it follows from equation 1.28 that the ACGF of an ARMA model is given by

, . x  tP jL -'W L ) _2 r i 9 q s

Also, if two uncorrelated ARMA processes are added together, such that

y t -  v m e t + <p(Ly

where E(&) =  0, E(£t2) =  g2, E (6 6 -u ) =  0 for u ^  0 and E(et£s) =  0 for all s and 
t, the ACGF is given by
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since the cross product terra will disappear when taking expectations. These 
properties can be extended to the multiplication of several Lag polynomials and the 
addition of three or more uncorrelated ARMA models.

1.6.2 Sample Mean and ACF

In this section the asymptotic distributions of the sample mean, sample covariance 
function and sample correlation function for ARMA processes are given. These 
distributions can then be used to carry out statistical inference for the observed 
time series. Reviews of asymptotic theory can be found by several authors, for 
example Serfiing [1980] and Billingsley [1986].

The first theorem put forward will be the Central Limit Theorem, proving the 
normality of the sample mean of IID random variables. A proof can be found from, 
for example, Theorem 6.4.1 of Brockwell and Davis [1991].

T heorem  1.6.2. Let {x t}~ IID (p ,a 2 )  andx he the sample mean, given by

1 n
x  = - y > ,

n t=i

then

y/n{x — p) A(0,cr2), as n —> oo

Now, consider an observed series, {?/<}, t € (1 ,. ..  ,n), taken from an ARMA(p,q) 
process. As discussed in section 1.6, the ACF of an ARMA(p,q) process decays at 
an exponential rate and is thus absolutely sumable. The following theorem which 
can be found in Anderson [1971], amongst others, is therefore applicable and gives 
the asymptotic consistency of y as n —* oo.

T heorem  1.6.3. Let {yt}, t G ( l , . . . ,n )  be an observed series from a linear sta­
tionary process with mean p and ACF such that

OO

|rt(u)| < oo,
U  =  — OO

and

oo

£  * ( « )  =  c ,
u =  —oo

for some constant C. Let ÿ be the sample mean of {y t}. Then, as n —> oo, ÿ is 
v/n consistent for p.
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Under the further assumption that the innovation series, are HD with zero 
mean and finite variance, the asymptotic distribution of the sample mean for an 
ARMA(p,q) process is given by the following Theorem, taken from Theorem 8.4.1 
of Anderson [1971].

Theorem  1.6.4. Let yt =  V +  Yl<jL -o o i!j £t> where {s t}, are IID with zero mean and 

finite variance, a2, and Y^jL-oo iV’j| =  B  <  oo. Then, as n —> oo,

V n ( y - f i )  -*d M (0,B 2cr2).

Note, Theorem 1.6.4 applies to ARMA(p,q) processes, which have been shown in 
section 1.6 to have exponentially decaying MA coefficients, and can also be applied 
to series which are not causal. This theorem does not, however, apply to series with 
ACF which are not absolutely sumable. The situation in which $3u°= -oo r (u) does 
not converge is addressed in Chapter 2.

The next statistic to be examined will be an estimate of the autocovariance 
function, R(u). The sample autocovariance of an observed time series {y t} at lag u 
is given by

£ (« )  =  -  i t  ( v t -  y)(m-u -  y) (1.30)
^ t = u+l

with the sample variance given by R(0). The following theorem is due to Bartlett 
[1946],

T heorem  1.6.5. Let {y t}, t G ( l , . . . ,n ) ,  be an observed series from a stationary 
linear process with innovations {e*} such that B(st) =  0, B (e2) =  a2, B{stSs) =  0 
when t ^  s, B (ef) =  rja4 and A’(e2£2) =  B (ef)E (e2) =  a4 when t ^  s, V t, s G Z 
and Tj > 0 and absolutely sumable ACF. Define s (i,j)  such that,

OO

s (i ,j)  =  ^ 2  [tt(k )tt(k  +  * -  j )  +  R(k +  i)R(k -  j f j
k s= —o o

Then, the distribution of R(h) =  ( f f ( l ) , . . . ,  R(h))' as n —* oo is given by

y/ a ^ R {h )-R (h )^  - iy v (0 ,£ ) ,

where R(h) =  (R( 1 ) , . . . ,  R(h))' and U is the matrix defined =  s(i, j )

The sample correlation at lag u is given by the sample covariance at lag u divided 
by the sample variance,
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r(u) M u)
M o)

(1.31)

The asymptotic properties of the sample autocorrelations were also studied by 
Bartlett [1946] and following theorem is due to his work.

T heorem  1.6.6. Let {y t), t € ( l , . . . ,n ) ,  be an observed series from a stationary 
linear process with innovations {?e} such that E(st) =  0, E(e2) =  a2, E(et^s) =  0 
when t ±  s, E{e4) =  r/rr4 and E(e2e2) — E(e2)E(e2) =  a4 when t ^  s, V t, s e  Z 
and r; >  0 and absolutely sumable ACF. Define s ( i , j ) such that,

00
s(i,j) = + v - u )  + r(j + u)r{j -  u) +  2r(u)r(u)r(j)2

j  — OO

- 2  r(u)r(j)r(j — u) — 2r(u)r(j)r(j —

Then, the distribution o f r{h ) =  ( r ( l ) , . . . ,  r(h))' as n —► oo is given by

V r i ( r ( h ) - r { h ) ) ^ N (  0,E),

where r(h) — ( r ( l ) , .. ,,r {h ))' and L' is the matrix defined — s ( i , j )

Since the ACF of an ARMA(p,q) process decay at an exponential rate, Theorems 
1.6.5 and 1.6.6 are applicable, under the additional assumptions on the innovations, 
to the sample autocovariances and autocorrelations.

»•
1.6.3 Parameter Estimation

For an observed time series, {?/<}, for t € (1 , . . . ,  n) assumed to be generated from an 
ARMA(p, q) process in a practical application, the parameters o 2, {4>r}  and {4>j}, 
for i € (1 ,. ..  ,p) and j  G (1 , . . . ,  q), will typically be unknown and must therefore be 
estimated from the observed series. The question of parameter estimation has been 
addressed by many authors, see for example Box and Jenkins [1976], Brockwell and 
Davis [1991] and Wei [1989] for reviews.

Yule-Walker Estimates

The set of Yule- Walker equations where introduced by Yule [1927] and Walker [1931]. 
Use of these equations to find estimates of the unknown parameters is more com­
monly applied to AR(p) processes rather than general ARMA(p,q) processes. The 
case in which q — 0 is thus considered first.
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Let {y t} be an AR(p) process, therefore

r(u) = -  v)iyt-u -  p)) + E(st(yt-u -  m)))

=  E j= o  <^r (u “  .?)> for u ì  °-

and

r(°) = X ^ r(j)+ ff2 = 1 (L32)
j=o

The set of equations 1.32 are known as the Yule- Walker equations, see Yule [1927] 
and Walker [1931]. These can be written as

/ 1 r (l) . . .  r ( p -  1) N  ̂ <t> l ^ f r-(l) \
r (1) 1 . . .  r(p — 2) (f>2 =

r(2)

\ r(p - 1 ) r(p — 2) 1 j U r / < r iv)

<t>\ ^ /  1 r (l) r { p -  1) - 1 (  r ( l )  \
4> 2 =

r (l) 1 rip ~  2) ri 2)

4>P J \ r ( p -  1) rip ~  2) . . . 1 V r(p) )

and

<72 = 1 -  ^  (f>jr{j)
j=0

This can be written in matrix form as

$ p =  Tp1r p,

and
o 1 =  1 -  $ pr p,

where $ p =  (</>i,</>2, . . . ,  4>P)',TP =  and rp =  (r ( l ) ,r (2 ) , . . .  ,r(p))'.
The matrix, Tp, is always invertible since, from Theorem 1.5.1, the ACF is positive- 
definite for any stationary process. If the true ACF is known, this gives exact 
values for the parameters. However, usually the ACF is not known. Estimates of 
the parameters can be found by replacing the autocorrelations with their sample 
estimates, f ( l ) , f ( 2 ) , . . .  ,f(p ), found using equations 1.30 and 1.31. Thus, the Yule 
Walker estimates are given by
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— Tp Tp, (1.33)

and

a2 =  1 -  ip fp , (1.34)

The following theorem, taken from Theorem 8.1.1 of Brockwell and Davis [1991], 
gives the asymptotic behaviour of the Yule-Walker estimates. The result is originally 
due to Mann and Wald [1913].

T heorem  1.6.7. Let {yt} be an AR(p) process, with {e t}  ~  IID(0,cr2) and let 
i p  and <t2 be the Yule-Walker estimates of $  and a2 defined by equation 1.33 and 
equation 1.34 respectively. Then

v / ^ i p - i p ^ i v t o ^ r ; 1)

and •-

o 2

as n —> oo.

Theorem 1.6.7 gives the asymptotic distribution of the parameters when a true 
order, p, is assumed to exist and be known. Theorem 8.1.2 of Brockwell and 
Davis [1991] also gives the following result regarding the asymptotic behaviour of 
the Yule-Walker estimates if the order p is misspecifled.

T heorem  1.6.8. Let {y t}  be an AR(p) process, with {e t}  ~  IID(0,<r2), letm  be the 
misspecified order'rp >  p and let i m be the Yule-Walker estimates of 4>m defined by 
equation 1.33, where 4>m is the coefficient vector o f the best linear predictor $'my m 
of ?/m+1 ■ Then

* m) ±  N {0 , o2Y ^ )

as a - t  oo. In particular

\/n {4>m )  J V ( 0 , 1 )

as n —> oo.

Theorem 1.6.8 will be particularly useful in the order selection of an AR(p) 
process. This will discussed further in section 1.6.4.

In order to avoid the inversion of the matrix r p when finding the Yule-Walker 
estimates, see equation 1.33, it is possible to use the Durbin-Levinson Algorithm,
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see section 1.5, substituting r(u) for r(u). Durbin [1960] and Levinson [1947] show 
for an AR(p) process, the estimated values of <frpi,<frp2,...,4>pp are identical to the 
Yule-Walker estimates of 4>\, . . . ,  cf>p, but the procedure is computationally faster. In 
addition to avoiding the matrix inversion, this algorithm also provide estimates of 
the PACF, These estimates are useful for determining the order of an AR(p)
process and will be discussed further in section 1.6.4.

The Yule-Walker equations can be adjusted for an ARMA(p, q) model. However, 
when q >  0, the corresponding equations are non-linear in the unknown parameters. 
This leads to possible non-existence and non-uniqueness of solutions and requires an 
iterative approach. As such, the Yule-Walker estimates for ARMA(p,q) models with 
q > 0 are often not very efficient, see, for example, Shumway and Stoffer [2000],

Maximum Likelihood Estimates

The maximum likelihood estimates (MLEs) of the parameters are the estimates 
which, for a given series {y (} and assumed model, i.e. ARMA(p,q), maximise the 
likelihood function

n

£ ( y ;0 ) =  I I  f(vt\Yt-i)
t= = i

where Yt-\ =  {ys}s <  t contains all the previous observations and /  is probability 
density function based on the fitted model, with parameters <f>. Maximising the log 
of this function is equivalent, but generally preferred since the log-likelihood function 
is a linear function given by

/((/>) =  log(L(y;</>)) =  ^  log (/(y t|Tt_ i)). 
t= = l

Assuming {et} is Gaussian white noise, i.e. et ~  HD N(0, cr2), V i e  Z, the 
conditional distribution of { yt} for an AR(p) process is IID normally distributed, 
with

^ { v t lYf_i) =  1 + 4>2Vt~2 4" 4" 4>Pyi~P > V a r (yt\Yt—i) = Vi e Z.
From the normal distribution, this gives

/ ( “ ln - ,)  =  v V 2 ^  )  ■

It can then be seen that
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l{<t>,°2) =  - y  log27T- f  log(<r2) -  |log|V,|

( v ' r v ; ' v r + £ ? . „ + .  w o » ) 2)  <1,35)

where <j> =  {4>\, . . . ,  4>p) is the parameter vector and o 2V p is the theoretical 
covariance matrix of y p =  (y\,. . . ,  yp)n for the fitted model in terms of </>, which must 
be included since the observations y -p+1, . . . ,  yo have not been observed. Taking the 
partial derivative with respect to <t2 and equating to zero gives the MLE estimate 
for a2 as

yy'pVp lvP + Er=P+i(<K£)yi)2J
n

and substituting this back into equation 1.35 gives

S(4>)
n

l(4>,cr2) =  -  j l o g { s m  -  ¿ lo g  I V p\ +  C(n)

where, for a fixed n, C(n) is a constant and thus does not effect the maximisation 
procedure.

For the full ARMA(p, q) model, under the assumption that { i t }  are IID N(0, o 2), 
the conditional distribution of yt is still normal with

E(yt\Yt-i) = 4>m-l + --- h 4>PVt-p + H-----h , Var(yt\Yt-i) =  a2.
I*

Notice that the values of { it }  have not been observed and must therefore be 
estimated. One method of estimating the innovation series, { i t}, is via the following 
recursive equations, known as the Innovations Algorithm, see for example, Brockwell 
and Davis [199G]
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y i = 0
iit+1 =  Y jj=i ctj{yt+i-j -  yt+ i-j) 1 <  t <  max{p, q)
vt+i =  £ j= i  4>jyt+i-j +  E j= i  i ’A + i - j t >  max(p, q)

r0 =  R{0)
ct,t-k — Tk k) ck,k-jct,t-jTj), 
Tt =  R{0) — Ylj=0

where
Tt =  ti{(yt -  yt)2) 

and
et — yt — yt-

k =  0 ,1 , . . - ,t  -  1,

The innovations algorithm finds the coefficients cqi in the MA(q) model yt =  
Yli=ocqi£t-i and is thus comparable to the Durbin-Levinson algorithm which finds 
the coefficients (f>pi in the AR(p) model yt =  $piVt-i- An alternative method
of finding estimates of the innovations, suggested by Hannan and Rissanen [1982], is 
to estimate yt from fitting a high order AR model using the Durbin-Levinson algo­
rithm and take it — yt — yt. Note, the innovations algorithm assumes the unknown 
past values of {y*} and {e f} for t < 0 are all zero. Box and Jenkins [1976] suggests 
instead use of back forecasts to estimate the unknown past observations from the 
observed {yt}- As the series length n increases the methods become asymptotically 
equivalent.

The log-likelihood function is given by

*(0,VO =  -^ lo g (5 (0 ,V » ))~  5log|V„| +  C(n))

where ip =  (tply. . . ,  i¡)(¡y  js the vector of MA parameters,

S(<p,rp) _  y'nVñ'Vn  _  -2
n n

with y n =  ( j / i , . . . , yny  and o2V n =  E {yny 'n) is the theoretical covariance 
matrix of the fitted model in terms o f (p and tp-

The calculation and inversion of V „  can be avoided by noticing, see Brockwell 
and Davis [1991], that o 2V n =  C D C ', where C  is the n x n  lower triangular matrix 
defined by

\Ci.i — i n—1
t , ;= 0



1. Introduction 29

and D =  d iag fo , . . .  , rn_i), where Cjk and Tj are defined by the innovations 
algorithm. Now, the innovations algorithm can be expressed in matrix form as

thus

This gives

Vn -  ( C  -  I ) ( V n  -  Vn)  

Vn =  C (Vn ~  Vn)-

V n V n V n  =  (Vn ~  V n ) ' ^ 0  * (Vn ~  Vn) =  ^
3=1 Ti~ X

and

\ c m  = \D\ = rilLlV "l «72 «72 I I  «72
3=0

Tlie MLEs are then given by the parameters which minimise the function

n—1

»•:

1 n—1
¿ (0 ,0 )  =  log (5 (0 ,0 ) )  +  -^ l o g iT j/ a 2) (1.36)

3=0

where

5 (0 , 0 ) =  cr2 ^ 2  =  ( n ~ < l - P ) v 2 -
3=1 Tj’ 1

Tlie asympt'otjc distribution of the MLEs is given in the following theorem, the 
proof of which can be found in Brockwell and Davis [1991].

Theorem  1.6.9. Let {v t} be an ARMA(p, q) process in reduced form defined by

equation 1 .24, «nd let 0  and 0  be the estimates of 0  and 0  which maximise equa­
tion 1.36, then

5 ( 0 ,  * 0 )  a  X n ~ p - q

n — p — q n — p — q

V ^ ((0 '. 0 ') '  -  (0 ', 0 0 0  -  ^V(0, <x2£ ) ,

where, for p, q > 1,

/  E { U t U t ') E ( U t W t ')  V 1
V U(WtUt') U(WtWt') )
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with Uf =  (iq ,. . . ,  ut+i-p)1 defined by

4>{L)ut =  et

and W t =  (wt, . . . ,  Wt+i-q)' defined by

tp(L)wt = e t .

For p =  0, £  =  E iW tW t’ ) - 1 and for q =  0, £  =  E{UtU j)~ l .

The maximum likelihood procedure can be simplified by noticing that since 
Tj —► <r2 as j, n —► oo for all stationary invertible ARMA(p, q) processes, then the 
second term in equation 1.36 is asymptotically negligible. Thus the minimisation of 
equation 1.36 is asymptotically equivalent to minimising

n
s{4>A0 - 2 > i - f o ) 2. (1.37)

3=1

The estimates of <f> and i/> based on this procedure are asymptotically equivalent 
for IID Gaussian innovations to the Least Squares, LS, estimates, presented below.

Least Squares Estimates

Let {y t}  be an observed series of length n taken from an ARMA(p,q) process with 
innovations {s t} which are llL )(0 ,o 2). If the parameters and past values of {et} are 
known, the best linear predictor of yt based on past values {ys} and {£«} for s <  t 
is given by

9 P
y t  =  +  y > ^ ,

3=1 3 -1

and thus et — yt — yt, can be considered the error term. When the {&{} and 
the parameters are unknown, the {e*} can be estimated using methods such as 
the innovations algorithm. The least squares method of parameter estimation then 
estimates the parameters by choosing the values which minimise the sum of squares 
of the error terms, that is

V>, 4> =  a rg m in ^ (y j -  iij)2. (1.38)
3 =  1

Comparison of equation 1.38 with equation 1.37 shows for UD Gaussian inno­
vations, the least squares estimates are asymptotically equivalent to the maximum 
likelihood estimates. The asymptotic distribution of the LS estimates, for a series 
with Gaussian innovations, are therefore also given by Theorem 1.6.9.
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1.6.4 Model Selection

For an observed time series, {yt}, assumed to be taken from an ARMA(p,q) process, 
the estimates of the ARMA parameters discussed in section 1.6.3 depend on the 
knowledge of the order p and q. When these orders are unknown they must be 
estimated from the available {yt}.

The classical approach to model selection for an ARMA(p,q) process, see Box 
and Jenkins [1976], is graphical in nature, using plots of the sample ACF and sample 
PACF. As discussed in section 1.6, for an MA(q) model, from equation 1.17, R(u) ^  0 
when u < q and R(u) =  0 when u > q and as such the sample ACF would be expected 
to be significantly different from zero only for the first q lags. Tests can be carried out 
using the asymptotic distributions given by Theorem 1.6.6. For an AR(p) process, 
the ACF will decay at an exponential rate, but the PACF will disappear after lag 
p. Anderson [1942] shows the sample PACF are approximately N (0,l/n) for large 
n. For an ARMA(p,q) process, both the ACF and PACF decay at an exponential 
rate, however, the exponential rate of decay for the PACF starts after lag p and the 
exponential rate of decay of the ACF starts after lag q, thus inspection of the sample 
ACF and sample PACF may still provide clues of the actual order.

After studying the sample ACF and sample PACF to gain initial estimates of p 
and q and fitting the parameters using methods such as those discussed in section
1.6.3, Box and Jenkins [1976] then suggests model diagnostic checking be carried out 
to test the goodness of fit and, if the model proves inadequate, discover in what way 
it is inadequate. These results are then used to suggest a new model and this new 
model is then tested. This is repeated until a suitable model is found.

Let { f f} be the series of residuals for the fitted model, that is ¿t =  yt — yu where 
lit is the value of yt suggested by the model. Let re(u) be the sample ACF at lag u for 
this residual scrips. Box and Pierce [1970] derive the variances of these residuals and 
show for large n and large u, Var(re(u)) «  1/n, whilst for small u the variances can 
be substantially less than this. These variances can be used to test if the residuals 
are uneorrelated and thus if the fitted ARMA(p,q) model is adequate in capturing 
the time dependence of the observed series.

An alternative to testing each of the re(u) is to note, from Theorem 1.6.6, that 
since the sample ACF of an uncorrelated series is asymptotically normally distributed 
with variance approximately equal to 1/n for large n, then it is possible to show, see 
Box and Pierce [1970], that

K
n ^  re{u)2 -+d x 2 {l< ~ p - q ) 

k=l

and hence a Portmanteau goodness of fit test can be carried out.
If the model proves to be inadequate, that is the residuals appear correlated, Box
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and Jenkins [1976] suggest fitting a model to the residuals and substituting this back 
into the original.

The model selection procedure described by Box and Jenkins [1976] is quite 
strongly subjective to personal choice. Motivated by the desire to remove this ele­
ment of personal choice, Akaike [1974] proposed the use of an information criterion.

Let {x t} be a series of random variables of length n taken from a density g(x). If 
two models are considered, with probability density functions /i(.|#i) and f 2(.\02), 
with parameter vectors 6\ with dimension p\ and 02 with dimension p2, such that 
Pi >  P2i and the maximum likelihood estimates of 0i and 02, then it is known, see 
for example Huber [1967], that, as n —> oo,

D =  -  l2{02)) -+d X2P1- P2, (1-39)

where l\ and 12 are the log-likelihood functions based on f\ and ¡ 2. For choosing 
between two models a hypothesis test can then be carried out, which rejects f 2 in 
favour of X(pi_p2) Q at a significance level of 100«%. For choosing between
many models such tests become complicated.

Now, from equation 1.39, the asymptotic expectation of D  is 2(p\—p2). Consider 
the case in which f\ is favoured to f 2 ii D > 2{p\ — p2), that is, if l)  is larger than 
expected. This is asymptotically equivalent to

2(l1(01) - l 2(0 2 ))> 2 (p 1 - p 2)

2 ( l i ( 0 i ) -p i )> 2 (h (0 2 ) -P 2 )

-2 (l i (0 i )  -  pi) < —2(l2{02) ~P2)‘

Extending this to choosing between multiple models suggests choosing the model 
which minimises —2(l\{0) — p). For ARMA(p,q) models, this suggests the use of 
selecting the order of p and q by minimising the criterion

A1C(p. q) =  - 2  log L(0p>g) +  2{p +  q),

where L(9Ptg) is the maximised likelihood function. Although Akaike [1974] orig­
inally suggested the name AIC simply to mean the first such information criterion, 
which could then be followed by BIC, DIC, IIIC etc, AIC is often referred to as 
‘Akaike’s information criterion’. Work by Shibata [1976], however, proves the use of 
AIC does not produce consistent estimates of p and q. The following result, valid 
for AR(p) processes, is based on Theorem 1 of Shibata [1976].

T heorem  1.6.10. Let {?/*} be an observed series of length n taken from an AR(po) 
process, with true order po- Let p be the order selected using AIC to fit an AR model



1. Introduction 33

to {i/i} over the range p € (0 , . . . ,  P ), ¡or some P  > po- Let {x f} be a series of IID 
random variables with distribution Xi and let Sj =  ^Jt=l Xt' Then, as n —> oo,

P(p =  p)
{

a (p-P o)h(P -p) Po ^  P  ^  P  
0 otherwise

where

aj =  P{S\ >  2,52 >  4 ,. . .  >  23)

bj =  P (S 1 < 2 ,S 2 < 4 , . . .S j < 2 j )

and ao, 6q =  1.

Theorem 1.6.10 shows that although the probability of underestimating the true . 
order for fitting an AR model when using AIC tends to zero, the probability of 
overestimating the order tends to a nonzero constant and thus the estimate is not 
consistent. Ilannan [1980] extended this result, proving that use of AIC also has 
a tendency to overestimate the order of q for an MA(q) process and suggested a 
similar result would hold for the general ARMA(p,q) process. Similar criteria have 
been introduced which alter the AIC in order to remove this inconsistency.

Bhansali and Downham [1977] introduced a generalised version of AIC of the 
form

AIC0(p, q) =  ~2 log L(0p>q) +  a(p +  q),

for some constant a , arguing that although the choice of a -  2 was justified by 
Akaike [1974] ,using information-theoretic considerations, the use of a ±  2 should 
also be considered. They showed that the asymptotic probability of choosing the 
correct model using A lC a increased with a  and suggested use of a  >  1.

Akaike [1977], Rissanen [1978] and Schwarz [1978] considered the use of the 
criterion

BIC(p, q) =  - 2  log L(0P}g) +  log(»)(p +  q), 

and Ilannan and Quinn [1979] introduced the criterion

1IIC(P, q) =  —2 log L(0Piq) +  2clog(log(n))(p +  q),

for some c > 1. The asymptotic properties of the estimated orders for fitting 
AltMA(p,q) models to a given series generated from an ARMA(poi<7o) process using 
these criteria were studied by Hannan [1980], in which the following result is proved.
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Theorem  1.6.11. Let {yt} be an observed series of length n taken from an ARMA(po, 
qo) process, with true order po, qo and innovations such that hJ(£t\{sa : s < t}) =  0, 
£ (£t l{£s : s <  t})  =  <72 and F (e]) <  oo, qr >  4, for all t G (1 ,. . .  ,n ). Let pb and qb 
be the estimates o f pa and qo found using B1C from the range p,q £ (0, . . . , K )  for  
Po, qo < K . Then, as n —> 00,

and

Pb P Po

qb —>p Qo

If in addition the innovations are independent and ph and <37, are the estimates 
of po and qo obtained from use of HIC, then, as n —» 00,

and

Ph -+p Po

Qh ~>p Qo

In addition to showing the consistency of BIC and IIIC, Hannan [1980] also 
proves the consistency of the generalised criterion

AICa(p,g) =  - 2  log L(0Pig) +  a(p +  q),

where a  is no longer considered to be constant, but instead a —* 00 as n —♦ 00. 
This result agrees with the previously mentioned result of Bhansali and Downharn 
[1977].

1.7 The Frequency Domain

The study of the frequency domain and the spectral density for empirical functions 
began with Stokes [1879] and Schuster [1899], who developed the use of the modulus- 
squared Fourier transform to search for hidden periodicities. Slutsky [1929], [1934] 
and Wiener [1930] went on to study many of the statistical properties of the spectral 
density and propose a general form of harmonic analysis for general stationary pro­
cesses. Since then, frequency analysis has been used in many fields such as physics, 
acoustics, economics, biology and psychology, amongst many others.
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1.7.1 Fourier Analysis

Let {y t} be a series of length n. The Fourier representation of {y t} is given by writing 
{y t} as a linear combination of trigonometric terms. First, define Aj as

Aj —
2nj
n

for j  e  (1,2, ...,[ra/2]),

where [n/2] is the integer part of n/2. These A j are known as the Fourier fre­
quencies. Now, the Fourier series of {yt} is given by

[n/2]
yt =  E (aj cos(Ajt) -I- bj sin(Aji)),

3=0
where aj and bj are the Fourier coefficients, where

and

bj =  -  Y '  yt sin (Ajt) j e ( l , . . . , [ ( n - l ) / 2 ] )

aj =  -  y*cos ( V ) j € ( l , . . . , [ ( n - l ) / 2 ] )

(1.40)

1 n
11t = 1

û[n/2] =  -  £  y t { - i y  (when n is even).
t =  l

due to the orthogonality relationships between cos and sin,

anil

¿ 5i„ ( ^ ) si,1( ^ )  =  { ” / 2. k =  j  0, n /2  
otherwise ’

(2itkt\
> cos ( ------  cos ( ------ I =  < n,

\ n '  V n /  | o,

n/2, k =  j^ 0 ,n / 2  
k =  j  — 0, n/2

k ^ j

» / 2  rrkt\ (  2irjt\
E “ s(— )=>"(— ) -»•
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where k and j  are integers in the range from 0 to n/2.
Since exp(i\) =  cos(A) +  isin(A), the Fourier series of {yt} can also be written 

as

where

[n/2]
vt = Y cJe*Ajf’

j = - [ ( n - l ) / 2 ]

cq =  ao

CLj ibj
Cj 2

thus

cij ibj 
j =  ~ 2  ’

■,j =  - Y y t e ~iXjt-
n t=i

(1.41)

Transforming a series {y*} into the series { cj }  as shown in equation 1.41 is related 
to the discrete Fourier transform, w( A), where

™ (A ) =  *A i- 
t = l

It can immediately be seen that

2?r (\ \ Cj =  — ^(Aj),
J n

and hence

tn/2] „
v t=  Y

J = - [ ( n - l ) / 2 ]

It can be seen that no information is lost during the transformation and that 
any bounded series of finite length n can be represented in this way. Now, note that 
A A =  2it/n is equal to A j — \j~\ and consider the case when n —► oo,
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[n/2]

yt — lira V '' w( Aj)elAjíAA (1-42)n—+ oo J
J = -[ (n -1) /2]

OO

=  lira ^ 2  w(\j)elXjtA\
j  =  ~  OO

dX.

The transformation of w(A) back to {yt} shown in equation 1.42 is known as 
the inverse discrete Fourier transform. In order for this representation to exist w(A) 
must be integrable. It is known that for this to hold the condition X)-oo Vt <  00 
must be satisfied, see for example Wei [1989],

1.7.2 Spectral Density

The spectral density for a stationary time series, {y t}, is defined by the Fourier 
transform of the autocovariances

1 00
/(A) =  £  R ( u ) e - ^ ) .  (1.43)

u =  —OO

where A e [—7r, n) represents the frequency in radians. The spectral density can 
be standardised by dividing throughout by the variance and leaving it in terms of 
the correlations. The spectral density at A =  0 is given by

1 oo
/(°>“¿( E «(“>)•

u =  —OO

Note for processes which have an absolutely sumable ACF, for example ARMA(p, 
q) processes, /(0 )  is a finite constant. The requirement for /(A ) to be integrable 
however is the weaker condition that ^ZuL-oc R (u)2 <  oo and thus the spectral 
density can have a singularity at zero yet still be integrable. Since for a stationary 
time series this square sumable condition on the ÁCF holds, the spectral density is 
integrable and the inverse Fourier transform gives

7 ?(u)= i  f(X)eiXud\.
J—n

In particular, the variance of {yt} is defined by

(1.44)
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m  =  f  /(A)dA.
J — 7T

If the function /(A ) defined by equation 1.43 is not integrable, the variance of 
{y t} is thus undefined and hence {t/t} is not stationary. Note, from equations 1.43 
and 1.44 it can be seen that for a stationary time series the ACF and spectral density 
contain the same information and thus the time series can be defined by either. The 
following result is based on Corollary 4.1.1 of Brockwell and Davis [1996].

T heorem  1.7.1. A square sumable function R{u) is the autocovariance function of 
a stationary time series if and only if it is even and

/ ( A) =  ^ ; (  J 2  U(u)e~iXu)  > 0. for all A G (—7r,7r]
U  == — OO

in which case /(A ) is the spectral density.

The nonnegative property of the spectral density shown in Theorem 1.7.1 is clear 
from the nonnegative-definite property of the ACF given in Theorem 1.5.1.

From the definition of /(A ) given in equation 1.43, if {yt}  € R, then /(A ) can be 
equivalently written as

1 ° °
/(A ) =  —  (  Y 2  ^ W cos(Aa)),

u  =  —  OO

and hence /(A ) is even and periodic with period 2x.
For a completely uncorrelated random white noise time series, et, as defined in 

Section 1.3, the covariances are R(u) =  0 when and R{ 0) =  a 1. Hence

o° 2
A  (A) =  —  { a 2 +  2 ] T ( 0 )cos(Au) )  =

u = 1

This gives a completely flat spectrum. A smooth series, with mostly positive 
ACF, will produce a large value of /(0 )  and thus have more weight at lower frequen­
cies. A jagged series, with more negative values of r(u) will produce a smaller value 
of /(0 )  and larger values at / ( it) and thus have more weight at higher frequencies.

A peak in the spectral density at A =  A* shows a possible sign of periodicity 
of period 2n/\*. The detection of hidden periodicity in this way was the original 
reason the spectral density was considered, see Stokes [1879] and Schuster [1899].
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1.7.3 Pcrioclogram

For a series {j/t} of length n, section 1.7.1 showed the yt could be written in terms 
of the Fourier series

[n/2]

v t -  2  cj/e’Aji>
/= - [ ( " -1)/2]

where the Fourier coefficients {c j }  give the weights of the relative Fourier fre­
quencies. A measure of the distribution of {y t} over the various Fourier frequencies 
is given by the periodogram, /(A j), defined as

/ ( =  (1-45)

- h i  £  * • * * “•)■
n— 1

u = - ( n - l )

where R(u) is the sample autocovariance at lag it. The periodogram was first 
introduced by Schuster [1899]. Comparison of equation 1.45 with equation 1.43 
shows the periodogram acts as an estimate o f the spectral density at the Fourier 
frequencies. Consider the case in which the ACF of {yt} is absolutely sumable. 
Since R(u) is v^-consistent for R{u), see Theorem 1.6.5, the periodogram, /(A j), 
will also be asymptotically unbiased for /(A j).

The following theorem gives the sampling distribution of the periodogram from 
a process with, absolutely sumable ACF, see for example Wei [1989].

T heorem  1.7.2. Let {yt} be a series of length n taken from a stationary process 
with absolutely sumable ACF. Let /(A j) be the periodogram defined by equation 1.45. 
Then, for j ,k  € (1 , . . . ,  [n/2]),

and

Cov{I(Xj),l(\k)) = 0, for j  7̂  k.

Note, Theorem 1.7.2 gives A’(/(A j)) =  /(A j) and Var(l(X j)) =  /(A j)2. The 
variance does therefore not depend on n and does not decrease to zero as n —> oo. 
Although /(A j) is unbiased, it is not consistent for /(A j), and since the /(A j) are 
independent this results in often very jagged estimates of the spectral density. The
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condition that the ACF are absolutely sumable is assumed for the following methods 
of producing consistent estimates of / ( \j).

One method of reducing the variance of the periodogram is that of smoothing 
using weighted averaging over 2mn consecutive values, where mn is allowed to vary 
with n such that

m n
M)= E W j-o,

i= -m n

where

mn

E  " ' = 1
i= —mn

6i =  0 -,

and

m „
y  df —> 0, as n —► oo.

t = -m„

Under the assumption that f{Xj)  is approximately constant over [Aj_mn, Aj+mn], 

the mean and variance of f {\ j)  are given by

mn
¿ ’(/(Aj))= E (1-46)

i = —TTln

mn
« / ( A , )  E

t = — mn

and
mn

VartfiXj))** E 0i / 2( V ‘ ) U-47)
t = —Tnn

m n

as n —> oo,
j= -m„

and therefore / (Aj) is consistent for /(A j). Due to this smoothing, neighbouring 
values of the spectrum will no longer be independent. The amount of dependency 
between /(A j) and /(A *) will be proportional to the amount of overlap of in the
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windows used to estimate them. Equations 1.46 and 1.47 can thus be used again to 
show f (\ j)  is consistent for /(A j).

Another method of estimating the spectral density is to first fit an AR(p) model 
to the data, using methods such as those given in sections 1.6.3 and 1.6.4. The 
theoretical spectrum for this fitted AR(p) model then becomes the estimator, /U#(A), 
for the spectrum, /(A ). This method is known as AR spectral estimation. It was 
suggested by Akaike [1969] and Parzen [1974]. As n —> oo, Parzen [1974] proved the 
var iance of J a r {A) to be of the form

^ -V ar(/4fl(A)) —> /(A )2.

Berk [1974] showed that, under the assumption that p —► o o a s n —» oo at a 
sufficiently slow rate and the innovations are IID(0,<72) with E (sf) <  oo, the AR 
spectral method is asymptotically equivalent to the method of smoothing. Hence 
//U?(A) is consistent for /(A ).

Bhansali [1997] extends the result of Berk [1974] to include the case when the 
innovations are «-stable. The following result is based on Theorem 3.1 of Bhansali
[1997].

Theorem  1.7.3. Let { yt}  be a series of length n taken from a process

OO

y t = y itA jgt-j,
j=o

where
E {et) =  0, P(\£t\ > x )  =  x - aL(x),

for some slowly varying function L(x) and 0 <  a  < 2 and

P(et > x)/P{\et\ > x) -* 1/2,P(st < -x)/P(\et\ > x) -> 1/2,

and

J2\J\\^i\S < °°-
j=0

, where 6 =  in in (l,a). Let fA k W  be the AR spectral estimate of f { A) based on 
the fitted model AR(p) and let v >  8 and 0 < 0  < min(0.5,a-1 — J'-1 ). Then, as 
n —> oo, p —> oo, p/n& —* 0,

n l/v sup \fARW ~  /(A)| ->p 0.
A€[—7T,ir]
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A related estimate of the spectral density is known as the ARMA spectral esti­
mation, see Gray and Woodward [1986]. As suggested by the name, this involves the 
fitting of an ARMA(p,q) to the data and taking the estimate of the spectral density 
to be the theoretical spectral density of the fitted model. As with the AR spectral 
estimate the quality of the ARMA spectral estimate is dependent on appropriate 
choices for p and q.

1.7.4 SGF, Gain and Phase

By comparing equation 1.43 with equation 1.27 a connection can be seen between the 
spectral density and the ACGF. Replacing L with e~lX gives a spectral generating 
function, SGF, where

g(e lA)
2 7T

The properties of the ACGF given in section 1.6.1 can thus be exploited to find 
the spectral density. For example, the effect of applying a linear filter W (L) to a 
process {x t} with spectral density f x(A), i.e.

Vt =  W( L ) x t,
making use of the results of section 1.6.1 gives

f y(X) =  \W(e-iX)\2f x(\), (1.48)

where / y(A) is the spectral density of {yt}- The function W (e~'x) is known as the 
frequency response function, and \ W (e~'x)\2 is called the power transfer function. 
Note W (e~tX) is actually the Fourier transform of the coefficients of the linear filter,

W(e~iX) =  Wi e ~ijX
J  =  — O0

Now, consider the form of {xt} given by equation 1.42

xt r  » ( A ) «
J —7T

eiXtd\,

where w(\) is the Fourier transform of {x j} . The effect o f applying a linear filter 
to {x t }  is the same as applying the Fourier transform of the filter to ic(A). Therefore

yt = W{L)x t =  r  W (e~iX)w(\)eiXtd\. 
J — 7T
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Now, write W (e ,A) =  Wi(A) +  iR2(A), where Wi(X) and H^A) are both real, 
thus, in polar form,

• ! -1 f W, (\)\
Vy(e_iA) =  |W(e~iA)|e . (1.49)

The factor by which the amplitude of w(A) is enhanced or diminished by the linear 
filter is called the gain, G (A). From equation 1.49, this is given by the modulus of 
the frequency response function

G(A) =  |iy(e-*A)|

The shift in ic(A) caused by the filter is called the phase, Ph(A), where

PI,(X) = ta n -' ■

This is derived from

Vt =  W (L )x t =  ^  \W (e-iX)\eitan~1( ^ ) w ( \ ) e iXtd\.
J — 7T

=  r  G(X)w(X)eiXt~iPh^dX  
J —7T

=  £ G ( A + m ) „ ( A + m ) e ^ ,

where the (yuits on the integral need not be changed since the function is periodic 
with period 27r.-rfThe shift in the time domain can also be seen by noting

yt =  r  G(X)w(X)eiX̂ PhW/xUX,
J—7T

and hence the change in t caused by the linear filter W (L) is given by Ph(A)/A. 
This shift will typically be depended on A.

1.8 Exp Model

The Exponential model, Exp(s), was introduced by Bloomfield [1973] as an alternative 
to the ARMA(p,q) model. Instead of fitting a model to the series in the time domain, 
the Exp(s) model specifies a form on the spectral density. An Exp(s) process, {y t}, 
has spectral density /(A ) of the form
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/(A ) =  —  exp [ 2 ^ c jCos(jA) 
3=1

From the discussion concerning the effect of linear filters given in section 1.7.4, 
it can be seen that

/ ( A) =  ? b exP ( 2 c,-«»(jA) ] =  4>{e tX)
3=1

a* 
2n

-2
(1.50)

where tp(L) and 4>(L) are the infinite order lag polynomials such that 

yt =  ^(L )et and 4>(L)yt =  eu

where {^t} is an uncorrelated mean zero series with var iance <72 <  oo. Equation 
1.50 thus gives

(1.51)

(1.52)

Consider the Exp(l) process. From the Taylor expansion

OO
=  (L53) 

3=1 J'

and

3 = 1 J '
Hence the MA and AR coefficients { V’j } and { 4> j }  eventually decay at an expo­

nential rate as j  —* oo, provided ci is not unbounded. For |cj| < 1 this is immediately 
clear from equations 1.53 and 1.54. For |cj| > 1, note that

ipj =  y V ’j - i

tp(L) =  exp [ CjL3 
<i=i

and

4>[L)=exp  ( Y 1 ~ c3 ^  
<3=1
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and for bounded c.\, c\/j —► 0 as j  —► oo. Similar arguments hold for {4>j}- Thus 
the Exp(l) process is stationary and invertible with exponentially decaying MA and 
AR coefficients. The ACF of the Exp(l) process, from equation 1.9, is given by

which also decays at an exponential rate as u —> oo. For the general Exp(s) 
process, the Taylor expansions of equations 1.51 and 1.52 give

Similar arguments to those for the Exp(l) process show the Exp(s) process with 
finite s is stationary and invertible with MA and AR coefficients, and ACF, that 
decay at an exponential rate. All of the previous theorems stated for the ARMA(p,q) 
process which require only conditions on the innovations and absolutely sumable 
ACF will therefore still hold for a Exp(s) process under the same conditions on the 
innovations. In particular, the sample mean y is v^-consistent for the mean n by 
Theorem 1.6.3.

When the 6r<Jer s —► oo, conditions must then be placed on the coefficients Cj to 
ensure stationarity. From equation 1.55, the coefficient tpi of the lag polynomial 4>(L) 
is given by Cj and the coefficients Cj should therefore be absolutely sumable. In 
addition, for a finite Exp(s) model to approximate the infinite order Exp(oo) process, 
the coefficients must tend to zero.

Methods of estimating the parameters of an Exp(s) model and generalisations of 
the model are discussed in Chapter 2.

OO 2 j+ u

(1.55)

and



2. L O N G -M E M O R Y  P R O C E S S E S

2.1 Definition of a Long-Memory Process

In order to understand what is meant by ‘long-memory’ if is first useful to consider 
what is meant by ‘short-memory’, so as to contrast the two. Let { j/e} be a stationary 
invertible ARMA(p,q) process with finite p and q. It is shown in section 1.6 that 
{y t} can be written with an infinite AR or MA representation with absolutely sum- 
able co-efficients which decrease at an exponential rate. It is also shown that the 
autocorrelations, r(u), also decay at an exponential rate as u —* oo, that is

r(u) 0 < p <  1, as u —> oo (2.1)

As mentioned in section 1.6, this exponential decay rate implies that the r(u) are 
absolutely suinable. In addition, this absolute sumability of the ACF shows Theorem
1.6.3 is applicable and the sample mean is \/n consistent.

Note, since the spectral density function is defined as

1 00/(A) — ^  X) ^ (u)exP(“ *uA)>
U = s — OO

the absolute sumability of the ACF, along with the positive-definite property 
of the ACF, see Theorem 1.5.1, ensures that 0 <  /(A ) < oo for all A € [0, t). In 
particular, when A =  0,

1/(0) = ̂ - E = o, (2.2)
u = —OO

for some constant C. A stationary process with the properties given in equa­
tion 2.1 and equation 2.2 is said to be a short-memory process.

However, it was observed that certain stationary discrete-time series displayed 
an ACF which decreased to zero slower than an exponential rate. This was found 
to be the case, for example, in certain data sets from hydrology and climatology, see 
Ilurst [1951],[1957], Mandelbrot and Wallis [1968], Mandelbrot [1972] and MTeod 
and Ilipel [1978] amongst others. The absolute summation of the ACFs of these 
time series did not appear to converge to a finite number. Due to this, MTeod and
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Ilipel [1978] defined a long-memory process as a stationary process with ACF, r[u), 
such that

lim |r(u)| —► oo. (2.3)n—oo
u=0

From equation 2.2 it can be seen that this is true if and only if the spectral 
density is unbounded when A =  0. It can also be seen that Theorem 1.6.3 is no 
longer applicable and the sample mean may not be consistent.

One method of classifying long-memory is to assume that the autocorrelations 
of a process {y t} decrease at a polynomial rate with,

r(u) ~  li{u)u2d~l , as u —► oo (2.4)

where B{u) is a constant or slowly varying function as u —* oo and d is referred to 
as the memory parameter. For d G (0,0.5), it is widely known that the ACF of {yt} 
satisfies «filiation 2.3 and thus has long-memory. It is important to note, however, 
that equation 2.3 does not imply equation 2.4 and thus the two definitions are not 
equivalent.

Another widely used definition for long memory is that the spectral density of 
the process is of the form

/(A ) ~  G(l/\)\~2d as A —♦ 0+ (2.5)

with G (l/A ) being a constant or slowly varying function as A —> 0. Note, for 
d G (0,0.5) this is unbounded and thus the process has long memory. For d =  0, 
equation 2.5 tends to a constant if G (l/A ) —> Go, with 0 <  Go < oo, as A —► 04-, 
thus the process will have short memory. If d G (-0 .5 ,0 ), equation 2.5 tends to zero 
as A —+ 04-. This is known as an intermediate memory process, which is known to 
occur, for example, when over differencing takes place, see section 2.2.2.

A third often used definition for long memory comes from taking the coefficients 
of {yx } in the Wold Decomposition, see Theorem 1.3.1, as

4'j ~  j d_1/( j) ,  as j  -*  oo, (2.6)

whore l(j) is a constant or slowly varying function as j  —» oo. The connections 
between equations 2.4, 2.5 and 2.6 are given in the following Theorem, a proof of 
which can be found in Palma [2007].

T heorem  2.1.1. Let {yt} be a stationary regular process. Take d G (0,0.5). Then,
a) if {yt} satisfies equation 2.6 then it also satisfies equation 2.4
and, if B(u) is quasi-monotone slowly varying then
b) if {yt} satisfies equation 2.4 then it also satisfies equation 2.5.
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Despite increasing popularity in the literature there is no universally agreed defi­
nition of long memory. Although equations 2.4-2.6 give the more classical definitions, 
these may not be suitable for non-stationary time series, see Heyde and Yang [1997] 
and Hall [1996]. One almost equivalent alternative to equation 2.3 is by looking at 
the variance of the sample mean directly, that is, let

Em
_  t~i Vt 

y m

and investigate

lim mVar(j/m).m —► oo
If this limit tends to a constant, the sample mean is yfm consistent and the 

process is said to have short memory, whilst if it is unbounded the process is said to 
have long memory, see Ileyde and Yang [1997].

In the review of long memory by Guegan [2005], a process {j/t} with spectral 
density /(A ) is considered to possess long memory if

SUP̂ gf—tt.tt] / ( A) 
inf 7t,tt] / ( a)

is unbounded. This definition includes the case when the spectral density is un­
bounded at A =  0, though also allows for situations when the spectral density is un­
bounded at points away from A =  0. A similar definition also given in Guegan [2005], 
states the process has long memory if, for d € (0,0.5) and some Ao G [—7r,jr]

/(A ) ~  G (l/A ) |A| 2c*, as A —> Ao,

where G (l/A ) is a constant or slowly varying function as A —> Ao.
To avoid confusion, for the remainder of this thesis a process is said to have 

long memory if it is stationary and its ACF is not absolutely sumable. Any further 
assumptions on the process will be stated. The case in which the singularity of the 
spectral density is away from zero will not be considered further in this thesis, a 
review of such processes can be found in Palma [2007].

2.2 Long-Memory Models 

2.2.1 Fractional Gaussian Noise

Brownian motion, B(t), t £ R, is a continuous Gaussian stochastic process such that 
B(0) =  0 almost surely, B(t)  has independent increments, the expected value of B(t) 
is independent of t and Var(B(t) — B(s)) =  a2 \t — s| for some constant a, s G R.
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A standard fractional Brownian motion, Bd(t), is defined as

i, v /l ’O^ +  2) cos(nd) . sdjrti \
a d{t) =  r(d +  i) J -  ” s)+ “  (-«)+<*£(«)

where

(2.7)

{s for s >  0 
0 for s <  0,

and F(j') is the gamma function. The following theorem gives properties of the 
mean, variance, covariance and distribution of Bd(t).

T heorem  2.2.1. Let Bd(t) be standard fractional Brownian motion as defined in 
equation 2.7, then, for d € (—0.5,0.5) and t,s  E R,

B(Bd(t)) =  0,

Cov(Bd(t), Bd(s)) =  i  (\t\2d+1 +  |s|2<i+1 - | t -  s\2d+1)  .

Bd{t) ~  iV(0,|/|2<i+1)

Now, lot {yt : t E Z ) be the sequence defined by

yt =  Bd(t +  l ) - B d(t), (2.8)

then yt is known as standard fractional Gaussian noise (fGN). The following 
theorem, see Taqqu [2003], gives some o f the properties of { y t}.

Theorem  2.2.2. Let {yt '• t G Z ) be standard fractional Gaussian noise, as defined 
by equation 2.8. Then

a) {yt} is stationary for d E (—0.5,0.5)
b )  yt ~ N {  0,1)
c) The ACF of {ijt} is given by

r(u) =  \ (|u +  l|2d+1 +  1« ~  1\U+1 -  2 \u\™ ) , 

which, for d 7̂  0, is of the form

r(u ) ~  d(2d +  1) \u\2d~' , as u —> oo.

d) The spectral density o f {yt} is given by
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/„(A ) ~  ( 2F(2^ + 2 ) )  sin(*(d +  0.5))A-2d

The polynomial rate of decay of the ACF for implies the ACF is not absolutely 
sumable for d >  0 and thus Theorem 1.6.3 regarding the consistency of the sample 
mean does not apply. Note, from the definition of {yt} given in equation 2.8,

y = - ( B d(n +  l ) - B d( l ) ) ,  
n

thus, from Theorem 2.2.1,

y ~ A (  O.n24- 1),

for all n e N.
The class of general fGN processes, see Geweke and Porter-IIudak [1983], are 

those with spectral density of the form /(A ) =  f y{X)fx(y), where f y(A) is the spectral 
density of fGN and f x(A) is the spectral density of a short memory process. One such 
class of models is the set of ARMA models with fGN as the series of innovations. 
Since f x(A) —► C  as A —► 0, for positive constant C, the rate at which /(A ) —> oo for 
general fGN processes are the same as that for fGN.

2.2.2 FARIMA model

Let {y f} be a non-stationary time series, for example, a random walk

t
Vt — V t - i  +  £t — E j,

j  =  — o o

where { f t }  are IID with mean zero and variance cr2, say. Although the original 
series, {y t}, is non-stationary with infinite variance, ]C -ooct2> taking the increments 
of such a series, {y t — yt -i ) ,  can produce a stationary series, in this case { t t}. 
The ARIMA(p,d,q) model was designed to handle such series. It specifies that the 
observed time series, {?*}, has the property

(1 - L ) dyt =  x t (2.9)

where d € Z  is the number of times the series should be differenced, L is the Lag 
function such that Lyt =  yt~\ and } follows an ARMA(p,q) model. The random 
walk mentioned is thus an ARIMA(0,1,0) process.

Granger and Joyeux [1980] noted however that ARIMA processes could cause 
over differencing, and that econometricians had been reluctant to use such models
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for fear of ‘zapping out the low frequency components’. This referred to the situa­
tion in which although the original time series was found to be non-stationary with 
infinite variance, the spectral density of the differenced series was zero at the origin. 
On considering this difficulty, Granger and Joyeux [1980] introduced the fractional 
ARIA1A ,FARIMA(p,d,q), model as an extension of the ARIMA(p,d,q) in which the 
parameter d in equation 2.9 could take non-integer values. Granger and Joyeux [1980] 
showed for d > 0.5, the series is non-stationary. For d G (0,0.5) the series is a sta­
tionary long memory process, whilst for d G (—0.5,0) the series has intermediate 
memory. Other early works on fractional differencing include Granger [1980], [1981], 
and llosking [1981].

It is a well known result that, for d <  0.5, d ^  0 ,-1 ,  —2 , . . . ,

OO

( l - D ^ ^ b j L ^ b i L )
j= 0

with

■ r ( j - d )
3 rv + m -d )

where T(x) is the gamma function. This implies for d ^ Z the polynomial b(L) 
is invertible. Another well known result is that

OO

<  °°>
3=0

»*
for d <  0.5. Hence, a FARIMA(p,d,q) process with d <  0.5 is stationary and 

invertible if the short memory component { xt } is stationary and invertible, the con­
ditions for which are given in section 1.6. The following theorem, see Kokoszka and 
Taqqu [1995], gives the form of the infinite MA and AR expansions of a stationary 
invertible FARIMA process and details of the ACF.

T heorem  2.2.3. Let yt be a FARIMA (p,d,q) process as defined by equation 2.9. 
Then

y t - ' Y j3=0

where 0q =  1 and, for d G (—1,0) U (0,0.5),

jd -l

°j ~  B V(d)’ aS j ~* °°
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and

oo
yt =  +  £t

j=i

where for d € (—1,0) U (0,0.5),

* ~ C f F d )’ "  j ~ * ”

for some B such that 0 < |H| < oo.
Also, if the innovations £t have mean zero and variance a2. Then, for d G 

(—1,0) U (0,0.5), as u —> oo

2
lt{u) ~  B — r( l  -  2d) Sin(7rd)u2d~l , 

ir

for some positive constant B.

Note, when d =  0, {y t} is an ARMA(p,q) process and thus has correlations 
which decay at an exponential rate. Granger and Joyeux [1980] point out that an 
alternative view of d =  0 in terms of the ACF would produce correlations which 
decay at a harmonic rate,

r(u) ~  Bu 1,

for some positive constant or slowly varying B. The FARIMA model can not 
produce such correlations. A new extension to the FARIMA model is introduced in 
Chapter 5 which can produce such correlations.

This next theorem, see for example Palma [2007], gives the rate of convergence 
for the sample mean of a FARIMA(p,d,q) process.

Theorem  2.2.4. Let {y t} t £ (1 , . . .  ,n) be a sample from a stationary invertible 
FARIMA(p,d,q) process as defined by equation 2.9, with innovations et with mean 
zero and variance a2. Let y be the sample mean. Then, for d G (0,0.5), as n —* oo

Var(y)  ~  B — 
7T

r ( l  -  2d)sin(7uQ 
d(2d +  1) ”

for some positive constant B.

The following theorem gives the form of the spectral density of a FARIMA pro­
cess. It follows directly from equation 1.48 and the identity limI_ o  sin(x)/x —► 1.
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T heorem  2.2.5. Let {yt} be a FARIMA(p,d,q) process, defined by equation 2.9 with 
{ j 'i } being an ARMA(p,q) process. Let f y(A) and f x{A) be the spectral densities of 
{r/t} and { i f }  respectively. Then

/ y(A ) =  l l - e - V ^ A )
=  (2sm2 l ) - df x(\) ’

vihich, as A —> 0, gives

fy( A )- A (0 ) |A |- m .

Comparison of the rate of decay of correlations for a FARIMA process and the 
rate at which the spectral density of a FARIMA process tends to infinity as A —*■ 0 
with the corresponding results for fGN given in Theorem 2.2.2 show them to be the 
same in terms of d. Theorem 1 of Geweke and Porter-IIudak [1983] considers this 
relationship and proves a process {yt} is a FARIMA(p,d,q) process if and only if it 
is also a general fGN process with parameter d.

2.2.3 FExp model

The fractional exponential, FExp(s), model extends the Exp set of models intro­
duced by Bloomfield [1973], Early work on FExp models is due to Beran [1993] 
and Robinson [1994a]. Similar to the FARIMA set of models, the FExp model also 
assumes yt to be in the form given in equation 2.9, where { i t }  is now a Exp process 
instead of an ARMA process. The spectral density, f y{A), of a FExp process, {yt} 
is of the form

/ y(A) =  (2sin2 ^ ) - d/ x(A), (2.10)

where fx{A) is the spectral density of { i t } ,  which, see section 1.8, is of the form

S

log(/*(A)) =  X > ,c o s ( jA ) , (2.11)
j=0

for co, . . . ,  ca £ E. Substitution of equation 2.11 in equation 2.10 gives 

i°s(/y(̂ )) = —dlog(2sin2 )̂ + ̂  cj cos(jA).
j=o

Section 1.8 shows the ACF of Exp processes have an exponential rate of decay, 
as do the coefficients in the infinite MA and AR expansions. The spectral density 
for an Exp process is a bounded and positive for all A € [—tt, 7r]. Therefore, from
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the definition of general fGN it can be seen that an FExp(s) process is also a general 
fGN process and thus, by Theorem 1 of Geweke and Porter-IIudak [1983], also a 
FARIMA(p,d,q) process, although possibly with infinite p and q. The asymptotic 
results of Theorems 2.2.3, 2.2.4 and 2.2.5 regarding the infinite MA and AR ex­
pansion coefficients, the rate of decay of correlations, the rate of convergence of the 
sample mean and the behaviour of the spectral density near zero thus still hold for 
FExp processes. Indeed, these results hold for any short memory process xt , see 
Granger and Joyeux [1980].

The FExp model can be generalized in various ways. Diggle [1990] gives an 
example which uses

fx(  A) =  exp(^Ci|A|'),
»=o

for co, . . . ,  ca G R.
A generalised definition of the model is given in Beran [1993]. It is said that 

{?;<} is an FExp process with short memory components h i, . . . ,  h3 and long memory 
component g if its spectral density is given by

/y(A) =  9 W  2dexP
*=o

Where g : [—zr, tt] —> R+ is an even positive function such that

lim
x — * 0

a{ x ) l.

Also ho =  1 and h ,,i ^  0 are even piecewise continuous functions over the range 
[—7r,7r] where for any n, the n*y(p +  1) matrix with column vectors

(*•(“ )■■*•(?) •*■(“ ) ..... * . ( “ ) ) ' for k =  0, . . .  s,

is non singular.
The conditions on the short memory components hi ensure that exp (53i=o c,/î,(A)) 

behaves like a spectral density of a short memory process, that is remain positive 
and bounded, whilst the conditions on 5(A) give the shape of f y(A) as A —» 0 to still 
be approximately equal to that given in equation 2.5.
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2.3 Estimation o f  the Long M em ory Parameter

2.3.1 FARIMA Method

The FARIMA method of estimating the long memory parameter d is a parametric 
method. This means, for an observed series {y t}, a fully parametised model is fitted 
via the maximisation of a likelihood function, and estimates of the short and long 
range parameters are found simultaneously. The likelihood methods of estimation 
discussed in this section are not limited to FARIMA models and thus stated in a 
more general form. The results presented here are due to Fox and Taqqu [1986], 
Dahlhaus [1989] and Giraitis and Surgailis [1990].

Let {yt} be a stationary Gaussian process sequence with spectral density / y(A, 9), 
and autocovariances, R{u,0), where 0 G 0  € Rp are thep unknown parameters, with 
true parameters 0q € 0  and 0  is compact. If 0 ^ 6 '  the set {A|/y(A, 0) =  / y(A,0')} 
is supposed to have positive Lebesgue measure. The forms of / y(A, 6) and R(u,0), 
in terms of A, u and 0, are assumed known, as is the number of parameters required, 
p. Estimation of p when unknown will be discussed later.

For a Gaussian process, {pt}, t £ (1, . . . ,  n), the log-likelihood function is known 
to be

L{6) =  (logdetT* +  y'Tg ly ) , (2.12)

where y  =  (y i , . . . ,  yn)', and T# is the covariance matrix of {yt} dependent on 
the unknown parameter vector, 0. The maximum likelihood (ML) estimate, 0, is the 
value of 0 which maximises L(0). Fox and Taqqu [1986] and Dahlhaus [1989] give the 
asymptotic distribution of 6 under several conditions, omitted here, on the spectral 
density and its partial derivatives. These conditions are satisfied for FARIMA(p,d,q) 
processes, as well as fractional Gaussian noise, see Fox and Taqqu [1986], and FExp(s) 
processes. The following theorem is due to Fox and Taqqu [1986] and Dahlhaus
[1989],

T heorem  2.3.1. Let yt be an observed time series of length n generated from a 
FARIMA(p,d,q) model with Gaussian innovations, true parameters 0o =  {d,0\, . . . ,  
0p,4>u • • • yd’q)', spectral density f y(\,0o), and autocovariances, R{u,0q), 0o € 0  and 
0  is compact. If 0 ^  O' the set {A|/y(A, 0) — / y(A, 0')} is supposed to have positive 
Lebesgue measure.

Let 0 be the estimated parameters which maximise log-likelihood function given 
in equation 2.12. Then 0 is an efficient estimator o f0 Q and, as n —► oo,

\/n ^0 — - 1*d N  (0, r_1 {Oq))
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where T(0) =  (1^(0)) with

r , i W  =  i i  L  \  8 » .  J  l '  « r - J

This theorem shows the ML estimates are ^/n consistent, efficient and asymp­
totically Normally distributed. However, the log-likelihood function given in equa­
tion 2.12 requires the calculation of both the determinant and the inverse of r$ and 
can thus be slow to compute. Use of the Durbin-Levinson algorithm, described in 
section 1.5, can speed up the computational time by expressing the log-likelihood in 
terms of the {i/m} as

where et =  yt -  yt and yt is the best linear predictor of yt given { y3} 1 < s <  t, 
see section 1.4. The numerical complexity of this for a FARIMA process is 0 ( n 2), 
see, for example, Ammar [1998].

Since Tfl is a symmetric positive definite matrix, the Cholesky decomposition 
method can also be used to speed up computations by writing

where U is an upper triangular matrix. This gives det T# =  (det U)2 =  H j=i ujj> 
where Ujj is the element of U in the jth  row and jth  column. The inverse of U is also 
simpler to find than that of T#. However, the numerical complexity of this method 
is still 0 (n 3), see Press et al [1992].

The Whittle approximation to the log-likelihood function has numerical complex­
ity of 0 (n log 2(n)) and can thus greatly reduce computational time. The Whittle 
method is to express Tg approximately in terms of the spectral density. The following 
approximations are made

re =  u'u,

where A =  ^  log (27r) dX is a constant, and
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4 n
V(A)

/(A,0)
¿A

whore 7(A) is the periodogram defined in section 1.7. The Whittle likelihood 
approximation is thus

L , w  - - h  ( / > u ( a . w + / _ ;  .

where the constant A does not effect the maximisation and is thus ignored. 
Further approximation of the integrals by Riemann sums gives the Whittle likelihood 
approximation in a discrete form

Lw(0) =  - JL
2 n

n n
X>g(/(A,-,0)dA) + £

3=1 3=1
/(Aj,<?)

dA (2.13)

The use of this approximation instead of the exact log-likelihood function has 
been found by Fox and Taqqu [1986] and Dahlhaus [1989] to give estimates of the 
parameters with the same asymptotic distribution as the ML estimates. Further work 
by Giraitis and Surgailis [1990] proves the Whittle likelihood estimates still have this 
asymptotic distribution when the assumption of Gaussianity is relaxed and replaced 
with the assumption that the innovations are independent and identically distributed 
with finite fourth cumulant. Hence, when the order of the FARIMA(p,d,q) model is 
correctly specified the Whittle likelihood gives estimates which are Ĵn consistent, 
efficient and asymptotically Normally distributed and these can be computed much 
faster than the ML estimates. The question of order selection is now considered.

Heran et al. [1998] consider FAR(p, d) models with p finite and d G (—0.5, oo), 
that is FARIMA(p,d,0) models. They derive a suitable version of the Akaike infor­
mation criterion, A1C, for this class of processes and show that it is of the same 
form as in the standard short memory situation, but with d treated as an additional 
parameter.

AIC(p) =  - 2  log L{A) +  2(p +  1)

Studying the asymptotic sampling properties of the order selected by AIC, Reran 
et al [1998] show that, as in the short memory case, AIC does not provide a con­
sistent order selection procedure for this class of processes, with the probability of 
underestimated p tending to zero as n —> oo, but the probability of overestimating p 
tending to a non-zero finite constant. They then continue to show the corresponding 
versions of the BIG and IIIC criteria, see Schwarz [1978] and Hannan and Quinn
[1979], are consistent for this class of processes, where



2. Long-Memory Processes 58

BIC(p) =  —2 log L(A) 4- log(n)(p +  1)

and, for c >  1,
IIIC(p) =  -21ogL (A ) +  (2cloglogn)(p 4- 1).

The extension of these results to include FARIMA(p,d,q) models, with q ^  0, 
has not currently been theoretically proven. However, extensive simulation studies 
have been carried out by, for example, Schmidt and Tcherning [1995], Crato and 
Ray [1996] and Bisaglia [2002] which indeed seem to show that use of AIC tends 
to lead to inconsistent estimates of the order, with the model chosen often being 
overparametised, whilst the use of BIC and IIIC select the correct model with a 
higher frequency.

If the fitted model is misspecified, or indeed if a ‘true’ FARIMA(p,d,q) model 
does not exist, the estimates of d and the short memory parameters using either the 
ML or the Whittle likelihood methods can be have large biases and variances, see, for 
example, Taqqu and Teverovsky [1996], Bisaglia and Bordignon [2002] and Smith et 
al. [1997]. This had lead to the development of semi-parametric and non-parametric 
methods of estimating d which are more robust to model misspecification. Some of 
these methods are discussed below.

2.3.2 Geweke and Porter-IIudak (GPU) method

The GPU method was originally proposed by Geweke and Porter-IIudak [1983]. It 
is motivated by the observation that although classical ARMA and ARIMA models 
can capture the behaviour of a FARIMA process at higher frequencies, where the 
spectral density is bounded above and below, they fail to do so at low frequencies. 
They thus suggest looking first at these low frequencies to estimate d, then to filter 
out this d and fit an ARMA model to the remaining series {£ t}. As such, the 
estimate of d does not rely on a specific model being fitted and is thus considered a 
non-parametric method of estimation.

As mentioned in section 2.2, when long memory of a series, { j/f},  is the result of 
fractionally differencing a short memory process, { i t } i  the relationship between the 
spectral densities of {y t} and {.rt} can be defined as

/ s/(A) =  (4sin2( ^ ) ) - d/ I (A),

where f x{A) is a bounded continuous function which tends to a constant as A —> 0. 
This form of spectral density is common to FARIMA and FExp processes and also 
general fractional Gaussian noise, see section2.2.

Geweke and Porter-Hudak [1983] suggest taking the logs of this to give
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hg(fy(X))  =  log (/x(0 ))-c /log (4 s in 2(^ )) + l ° g ( ^ | ) -  (2-14)

Adding log(/(Aj)) to both sides of equation 2.14 and rearranging gives

log(y(Aj)) =  logi/^O)) -¿ lo g (4 s in 2( ^ ) )  + l o g ( ^ ^ )  +  l o g ( - ^ ^ ) ,  (2.15)

Considering only frequencies near A =  0, this gives f x(A) ~  f x(0) and therefore

log (^  ~$j )̂ can be considered negligible. The similarity between equation 2.15 and
the standard linear regression equation is then pointed out and the suggested GPU 
estimate for d is obtained via a standard least squares approach,

E jli  (~ log(4 sin2(^ ) -  ( i ) log(7(Aj))
V '" ' , (. log (4 sin2 (-i-) — p)2

i m \.
£ =  ~ l ] - log(4 sin2( y ) ) .

3 = 1

(2.16)
where m is the number of frequencies to include. Geweke and Porter-IIudak [1983] 

prove the consistency of this estimate for d < 0. Robinson [1995a], studies the 
asymptotic behaviour of the periodogram of long-memory processes and gives the 
asymptotic distribution of a related estimate d(l), in which the initial / frequencies 
are not included, thus only frequencies Xj for j  £ ( / , . . . ,  m) are included.

Ilurvich, Deo and Brodsky [1998] further study the asymptotic distribution of the 
GPII estimate of *d. They relax the requirement of an increasing lower truncation 
number l and give results for the original GPII estimate defined in ecjuation 2.16 
with the summations over j  G (1, . . .  ,m). The following assumptions are made by 
Ilurvich, Deo and Brodsky [1998]. .

Assumption 2.3.1. The series, yt, t £ (1 ,2 , . . . )  is a Gaussian process, with spectral 
density /„(A).

Assumption 2.3.2. Let

/„ (  A) =  (4sin2( ^ ) ) - rf/ I (A),

such that
/ ' (Q) =  0, / " (A )  < C  <  oo, and /"'(A) < C <  oo 

for some positive constant C  and all A in a neighbourhood of zero. 

Assumption 2.3.3. m —> oo, n —* oo, with m/n —► 0 and (m log m)/n —> 0.
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These assumptions are similar to those of Robinson [1995a], however the condi­
tions on l have been removed. Theorem 2.3.2 below uses these to give the asymptotic 
bias, variance and MSE of the GPU estimate d. Theorem 2.3.3 then gives the asymp­
totic distribution of d under slightly stronger conditions on m. These correspond to 
Theorems 1 and 2 of Hurvich, Deo and Brodsky [1998].

Theorem  2.3.2. Let yt be a series of length n. Let assumptions 2.3.1 - 2.3.3 hold, 
with d =  cLq. Let d be the least squares estimates of do, obtained from equation 2.16, 
with the summations taken over j  E ( 1 , . . . ,  m). Then, asn  —* oo,

E { d ~ d o ) =

and

n ( — \ I n  f log(m)3\
9 /x(0) n2 ' \ n 2 /  V m ) '

Var{d) — ---- (- o f ^
' '  24m \my

M S E it) -  E { 0 =  +  +

Theorem  2.3.3. Let yt be a series of length n. Let assumptions 2.3.1 - 2.3.3 hold, 
with d — <Iq. Let d be the least squares estimates of do, obtained from equation 2.16, 
with the summations taken over j  E (1 , . . . ,m ) .  As n —* oo, let m =  o(n4/5) and 
log(n)2 =  o(m), then

Theorem 2.3.3 shows the GPII estimate of d is y/rii consistent. Since m =  
o(n4/ 5), this estimate is less efficient than the parametric ML estimate of Whittle 
likelihood estimates given in section 2.3.1, which are sfn consistent. However, the 
GPII estimate is robust to changes in the short memory component. Prom Theorem
2.3.2 it can be seen that increasing m increases the bias of the estimate whilst 
decreasing the variance, thus the choice of m produces a trade off. Geweke and 
Porter-IIudack [1983] suggested m be taken as n0,5, based on a simulation study. 
Empirical findings of Crato and Lima [1991] and Porter-IIudak [1990] suggest that 
an m be taken in the range n0 5 to n0 7. Hurvich, Deo and Brodsky [1998] suggest an
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optimal choice of m as the value of in which minimises the MSE given in Theorem 
2.3.2, that is

m n4/5.

However, this choice of m requires further knowledge of f x(A) and is 0(ra4/ 5) 
whilst the asymptotic normality of the estimate requires m =  o(n4/5), see Theorem
2.3.3. Ilurvich and Beltra [1994] consider a data driven choice of m, based on a
method of cross validation. They define as the GPU estimate of d, leaving out 
the frequency at j .  They then define

fj 3) =  exp £k=i,k*j
log h

,| l -e x p (—iXk)\ -2 d(-j> +  C

x |1 -  exp(-*Aj)|''2d*( 3),

where C  =  0.577216... is Euler’s constant. They then take the choice of m to 
be that which minimises either the frequency domain cross validation, see Wahba 
and Wold [1975] and Ilurvich [1985],

FDCVp{m) =  ( l ° g ( / j  j) -  log(Ij) -  C ) )2 -  tt2/6
P j =i

or cross-validated log likelihood, stie Beltrao and Bloomfield [1987],

CVLLp(m) =  - J 2  ( lo g (/j“ j) -1- - j
P P i \

+  ^ )  •
/■J3

Although the simulation studies of Ilurvich and Beltra [1994] show the CVLL 
method of choosing m generally gives estimates which outperform those based on
arbitrarily chosen values of m, the theoretical proofs of the behaviour of rn or d using 
these are not given. It should also be noted that use of these data driven criteria 
require another user chosen parameter p, although Ilurvich and Beltra [1994] say the 
chosen m is not very sensitive to p.

2.3.3 The Local Whittle Method

The local Whittle method of estimation for the long-memory parameter d was sug­
gested by Kiinsch [1987], although he did not establish any statistical properties. 
Robinson [1995b] later studied the estimate and derived its asymptotic distribution.
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Similar to the non-parametric GPII method it uses only the lower frequencies of the 
spectral density to estimate d, requiring that

/ (A)  ~  G \ -2d as A —> 0+,

for G £ (0, oo) and d £ (-0 .5 ,0 .5). As with the GPII method, FARIMA, FExp 
and general fGN processes all satisfy this assumption, thus the method is more robust 
to changes in the model than the parametric methods. The suggestion is to then 
use this form of the spectral density in the Whittle likelihood approximation, see 
equation 2.13, for frequencies j  £ ( 1 , . . . ,  m) . This gives the local Whittle estimate 
of d as the estimate of d which minimises the objective function Q(d,G),

1 m  f  \ 2d  1
W G )  =  - £ | l o g G A T M +  ^ |

where 7(A) is the sample spectrum defined in equation 1.45. Since the local 
Whittle method uses assumptions similar to the GPII method it will also be regarded 
as a non-parametric method of estimating d. Now, an estimate of G can be found 
in terms d as

1 m

3=1

and substitution of this into Q(d, G) gives

d =  arg min R(d)

where

1
R(d) =  logG(d) -  (2d)— ^ lo g (A j) .  (2.17)

m 7=1

Robinson [1995b] proves the asymptotic normality of the local Whittle estimate 
under several assumptions. Assumption A l ’ of Robinson [1995b] puts a rate of 
convergence of the spectral density to the required form. Assumption A2’ connects 
this rate of convergence to the maximum choice of m. The weakest condition on m is
given when /9 =  2, which gives m =  o(n4/5). Note, this is equivalent to the condition 
placed on m to prove the asymptotic Normality of the GPII estimate. Assumption 
A3’ is weaker than the Gaussianity assumption required for the GPII method. Under 
these assumptions, Theorem 2 of Robinson [1995b] proves the following result.
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T heorem  2.3.4. Let d be the local Whittle estimate of do found by minimising the 
objective function given in equation 2.17. Let the assumptions o f Robinson [1995b] 
hold. Then, as n —> oo,

Similar to the GPI1 estimate, Theorem 2.3.4 shows the local Whittle estimate 
is y/m consistent for d. However, comparison of Theorem 2.3.4 with Theorem 2.3.3 
shows, for the same choice in m, the asymptotic variance of the local Whittle estimate 
to be approximately 0.6 of the asymptotic variance of the GPU method.

As with the GPU method, the choice of m is a trade off between bias and variance. 
A study carried out by Bhansali and Kokoszka [2001a] suggested a suitable range of 
m to be (n/100, n/Ati). A study of the effect of using different band lengths was also 
carried out by Taqqu and Teverovsky [1996] where the trade-off between variance 
and bias was found to be optimal between a similar range of frequencies. The FDCV 
and CVLL methods discussed in section 2.3.2 could also be used.

2.3.4 The FExp method

The fractional exponential, FExp, set of models were introduced in section 2.2.3. A 
parametric approach to finding the estimate of d could be applied to these models, us­
ing either the exact likelihood or Whittle likelihood approximation, see section 2.3.1. 
The method of estimating d discussed in this section is a semiparametric method. 
It was first discussed by Janacek [1982] , see also Robinson [1994a], though they 
provided no theoretical work. It was later studied by Moulines and Soulier [1999],
[1998] and Ilurvichand Brodsky [2001].

As opposed to the local Whittle and GPII methods, which use a decreasing 
amount of the spectral density at low frequencies, the FExp method finds an estimate 
of d from use of the full spectrum.. Moulines and Soulier [1999] thus refer to it as 
a bivadband estimate. Since all of the frequencies are to be used in estimation, the 
difficult question of how many frequencies to include that arose for the GPII and 
local Whittle methods is no longer applicable.

For an observed time series, {i/t}, the spectral density is assumed to be of the 
form

A
log(/(A)) =  -d log (2  sin2 - )  4- ^  Cj cos(jA),

3= 0

with d e  (-0 .5 ,0 .5 ) and coefficients q  6 K for j  e  (0 ,1 , . . . ) .  In general, this 
expansion has infinitely many nonzero coefficients. A nonparametric estimate o f the 
spectral density is found by truncating this infinite summation at some finite s such
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that the finite series provides a reasonable approximation to the true spectral density. 
Once a suitable s has been chosen, the coefficients along with d can be estimated. 
Moulines and Soulier [1999] make use of linear regression similar to the GPU method 
to carry out the estimations, though suggest also that a Whittle likelihood approach 
could be applied.

To reduce variance, the periodogram, /(A-,), is first smoothed in a method sug­
gested by Robinson [1995a]. The periodogram is first divided into nonoverlapping 
segments of equal size m and then averaged over each of these segments to produce
Yk,

Yk =  log (exp(-V>(m)) ^  /(A j)), 
i&Jk

where k =  1 , . . . ,  K  is the segment number, Jk =  (m(k — 1) +  1 , . . . ,  rnk) and 
Y’(ra) =  r ,(m )/r (m ) is the digamma function added to remove bias. The FExp 
estimator, d, is then the least squares estimator

K  _ » ,
d =  arg _ min V  ( Yk -  dg{\k) -  Y  Cjhj{Xk)j

d,£°  C* k = 1 V 3=0
(2.18)

where A* =  (2k—l)n/2K, hj(x) =  cos(jx ) and g(x) =  log(2sin2 |). Moulines and 
Soulier [1999] give the following Theorem of this estimate under several conditions, 
including that the process is Gaussian.

T heorem  2.3.5. Let {yt} be an observed time series of length n, let d be the 
FExp estimate of d given in equation 2.18 and let the assumptions o f Moulines and 
Soulier [1999] hold. Then, as n —> oo,

(d-d^j  ->d N (0, rmp'(m))

and

(  E  ^ d  - d ' j ^ j - *  rmp'[m).

Moulines and Soulier [1999] show, under the conditions of the proof, the best 
rate of convergence of the FExp estimate to the true parameter is that the MSE is 
0 (n ~ 2/3/(1+2i3)) for a constant (3 >  1/4 which is dependent on the rate of decay of the 
short memory coefficients {cj} .  For (3 >  1/4 the estimate is at least >/n4/ 5 consistent. 
As [3 becomes arbitrarily large, the estimate approaches the \/n consistency of the 
parametric methods. In particular, if the coefficients { c j }  decay at an exponential
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rate, Moulincs and Soulier [1999] show s can be taken as order log(n) and the FExp 
estimate is thus y/n/ log(r?) consistent.

The FExp method o f estimating d depends on the choice of s and m. The value 
for m relates to the amount of smoothing of the periodogram and presents a trade-off 
between bias and variance. Moulines and Soulier [1999] set their choice of m to 4, 
though they suggest that a different choice of m will have little effect.

The choice of s can be found using a suitable criterion. The use of Mallow’s C 
criterion was suggested by Robinson [1994a], without theoretical justification. This 
gives the choice of s decided by

K 5 2
s =  arg min ^ Y { Yk~ ^ ( h )  ~  Y  Cjhj{A*)) +  4n^ - (2.19)

where o]n =  var(\2m) ~  ^k =  (2fc — \)n/2K, hj(x) =  cos(jx)  and
9(x) =  log(2sin2 f) .

Moulines and Soulier [1998] prove that i  is asymptotically optimal in terms of 
minimising the MSE. Theorem 3, and remarks thereafter, of Moulines and Soulier [1998] 
give the following theorem.

Theorem  2.3.6. Let {j/t} be an observed time series of length n, let s be the choice

of s found by minimising Mallow’s C criterion, see equation 2.19, let ds be the FExp 
estimate of d given in equation 2.18 using s =  sand let the assumptions of Moulines 
and Soulier [1999] hold. Then, as n —> oo,

■■ * *
and

E ( j d a -  =  O in -W l'+ W ).

Theorem 2.3.6 shows the estimate d3 is V n W (i+ W  consistent, which, as previ­
ously discussed, is the best rate of convergence for the FExp estimate. The choice 
of s is thus asymptotically optimal.

2.3.5 FAR Method

The FAR method of estimating d was introduced and studied by Bhansali and 
Kokoszka [2001a] and Bhansali et al [2006]. It is a scmiparametric method simi­
lar in approach to the scmiparametric FExp method. The observed series, {y t}, is 
assumed to be taken from a process of the form
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(1 -  L)dyt =  x t (2.20)

where

00

xt = et +  (2-21)
i=i

with d G (—0.5,0.5). Brillinger [1981] shows such a form can be found for {xt} 
provided it has a nonzero spectral density, f x{A), and ACF which decay such that

OO
( ! +  M**) Ir («)l < °°-

u = —OO
The FAR method is thus applicable to a wide range of long memory processes, 

including FARIMA, FExp and general fGN. As with the FExp approach, for a given 
time series of length n, the summation in equation 2.21 is truncated at a finite p. 
The parameters d and {(¡>j) j  G ( l , . . . ,p )  are then estimated by maximising the 
Whittle likelihood function, see section 2.3.1.

Under several assumptions, Bhansali et al [2006] prove the asymptotic normality 
of the FAR estimate of d. Unlike the results for the FExp method, this Theorem is 
valid for non-Gaussian processes.

Theorem  2.3.7. Let {yt} be an observed time series of length n, let d be the FAR 
estimate of d and <j>j be the FAR estimates of <pj for j  G ( I , . . . ,* / ) ,  J =  o(p). Let 
the assumptions of Bhansali et al /2006J hold. Then, as n —* oo,

and, for j  G (1 , . . . ,J ) ,

where

_ _  V '  foj-*) 
j ^  k '

k= 1

To obtain parameter free limits, Bhansali et al [2006] also show that an estimate 
of Tj can be found by
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h i - v
k

and

Tj —* tj, as n —* oo.

Comparison of the asymptotic distribution of the FAR estimate shown in Theo­
rem 2,3.7 with the asymptotic distribution of the FExp estimate shown in Theorem
2.3.5 shows if p and s are chosen equally, the rate of convergence for both will be
the same. For example, if p =  s =  log(n), then both estimates will be y/n/ log(n) 
consistent. The variance of the FExp estimate, in this case, will be asymptoti­
cally times that of the FAR estimate, for some user chosen m, and since

€ (l,7r6/G] for m G N, the FAR estimate is the more efficient.
Bhansali and Kokoszka [2001a] also prove the consistency of the FAR estimates 

for a class of «-stable processes. The following result corresponds to Theorem 4.1 of 
Bhansali and Kokoszka [2001a]

Theorem  2.3.8. Let {yt} be an observed time series o f length n, let 0  be the FAR 
estimate o f 0 . Let the assumptions of Bhansali and Kokoszka [2001a] hold. Then, 
for d € (0,1 — 1 /« ) , as n -*  oo,

0 - P 0.

Theorem 2.3.8 widens the range of processes for which the FAR method of es­
timating d is applicable to include a-stable processes which have innovations with 
infinite variance.

Application of the FAR method requires a value of p to be fitted for the given time 
series. Simulation studies by Bhansali and Kokoszka [2001a] suggest use of criterion 
such as AIC or BIC. The results using both criterion appear to give consistent 
estimates of d for a range o f FARIMA(p,d,q) processes with p, q € (0,1,2) and both 
Gaussian and a-stable innovations, however the estimates found using BIC tend to 
dominate those of AIC.

theoretical justification of the use of AIC or BIC, equivalent to Theorem 2.3.6 
for using Mallow’s C criterion for the FExp method, have not yet been established.
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This chapter introduces the concept of chaos, with particular focus on a range of 
chaotic interrnittency maps which can be used to produce non-linear non-Gaussian 
time series with long memory properties. A chaotic system, as defined, for example, 
by Hilborn [2000], is one which, although purely deterministic, is aperiodic (never 
exactly repeats) and can appear to have random behaviour.

Evidence of chaos has been found in a wide variety of sources. Moon and Holmes
[1979] found chaotic behaviour in the strain of a steal beam oscillating between two 
magnets. Shaw [1984] found the behaviour of light through dripping water to be 
chaotic. Applications of chaos in biology can be found in Glass and Mackey [1988]. 
Lawrance and Balakrishna [2001] dicuss how chaotic maps can be designed to have 
autocorrelations suitable for application to communications. Further applications 
in areas such as acoustics, chemistry, circuits, lasers and plasmas can be found in 
Lauterborn [1981], Simoyi et al [1982], Rollins and Hunt [1984], Mork et al [1990] 
and Sagdeev et al [1990], respectively.

One of the first papers concerning a chaotic system was Iladamard [1898] which 
shows that billiard trajectories are unstable and diverge from one another. Around 
the same time, Poincare [1895] discovered differential equations with chaotic solu­
tions and his work laid the foundations for chaos theory. However, it was not until 
the arrival of computers several decades later that chaos really began to be popu­
lar and as such it is a relatively new area. One definition of chaos, introduced by 
Devaney [1986], states the three conditions for chaos as

1. Sensitivity dependence.
2. Transitivity.
3. A dense set of periodic points.
These conditions will be discussed in greater detail in section 3.1.
The class of chaotic intermittency maps produce time series which, in addition 

to showing long memory properties, seem to switch between periods of smooth be­
haviour and periods of chaotic behaviour. As such, they have been considered for 
modelling internet traffic, see Mondragon [1999] and Bhansali et al [2005], which 
switches between ON/OFF states. Other work concerning the binary discretising of 
chaotic maps for communications can be seen in Lawrance and Wolff [2003]. Bhansali 
et al [200G] also considers use of these chaotic intermittency maps to model financial 
returns, which have also been found to exhibit long memory and switch between
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periods of relative inactivity and periods of high volatility.
This range of chaotic intermittency maps are defined in section 3.2. An investiga­

tive simulation study on the rate of decay of the correlations of the series produced 
by these chaotic intermittency maps will then be carried out in chapter 4. The 
results from these studies motivates the new dual parameter long memory model 
introduced in Chapter 5, where an application of these new methods to the chaotic 
intermittency maps is also carried out. New stochastic extensions of these maps are 
discussed in Chapter 6.

3.1 Basic Properties

The aim of this section is to introduce some fundamental properties of chaotic maps 
relevant to the study of chaotic intermittency maps which will be introduced in 
section 3.2. As such, the focus is on properties of discrete chaotic series generated 
from chaotic maps. Details specific to continuous or multivariate chaotic series are 
not discussed and several other topics are also omitted, such as strange attractors, 
bifurcation diagrams, Fiegenbaum numbers and crises, as they will not be used in the 
study of the chaotic intermittency maps. For further details of these and other topics 
regarding chaos see reviews such as Ililborn [2000],Ott [2002], Szemplinska-Stupnicka
[2003] and Smith [2007].

Now, let {u>t,t G N} be a deterministic sequence, depending only on the initial 
condition icq, produced by iteratively applying a one-dimensional map, £, such that

u>t+1 = C(™t)-

The sequence {w><} is known as an orbit of the map (. If the map is chaotic, taking 
the definition of J)evaney [198G], this orbit will possess the properties presented in 
the following subsections. Note, the sequence need only be deterministic in one 
direction, such that given only wt, wt+i can be determined, although many values 
for u't~ i may be possible, see Lawrance [1991], [1992] and Lawrance and Spencer
[1998]. For the chaotic intermittency maps generally two possible values of wt_\ are 
present for u’t, but these stochastic reverse processes are not considered here.

3.1.1 Sensitivity Dependence

A defining attribute of a chaotic map is that its orbits possess exponentially sensitive 
dependence on initial conditions.

Consider two initial conditions wo and vo =  u>q+<5o, such that the resulting orbits 
are {(/><} G J and {vt =  wt +  St } G J with 0 < St for t G N and J is a closed interval 
of real numbers.

Also let the condition that wt ±  Vj for all t, j  G N hold. Note, if wt =  Vj for some 
t, j  G N it implies tet+* =  Vj+h for all k G N since the maps are deterministic.
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Now, if the orbits possess exponentially sensitive dependence on initial conditions 
then for large t

lim =  eAt
¿o-*0 Oq

(3-1)

for some A >  0. This implies that orbits from a chaotic map with initial conditions 
arbitrarily close will diverge at an exponential rate. The condition that the orbits 
remain within a bounded interval J removes the trivial cases of unbounded maps, 
such as wt =  Wq with wo >  1.

The variable A is known as the Lyapunov Exponent. A positive value for the 
Lyapunov Exponent, as shown in equation 3.1, leads to exponentially sensitive de­
pendence on initial conditions. Alternatively, a negative value for the Lyapunov 
Exponent would imply that neighbouring orbits converge, whilst a Lyapunov Expo­
nent equal to zero implies the order of the error terms stays constant.

In finite time the amount of sensitivity to initial conditions may depend on the 
initial conditions. Some orbits may diverge at different rates. As such, it is important 
to distinguish between the global Lyapunov Exponents, which are constant and show 
the general properties of the map, showing the rate of divergence that eventually 
most typical orbits will possess, and the finite time Lyapunov Exponents, which vary 
according to the local behaviour of the maps.

The sensitivity of initial conditions for chaotic maps means that, although the 
orbits are completely deterministic and bounded, meaningful long term prediction 
is essentially impossible.

Another important point is that the sensitivity to initial conditions calls into 
question the accuracy of any simulated orbits. The simulated orbit will diverge 
away from the ‘true’ orbit at an exponential rate and it may then seem questionable 
that the simulated orbit represents a ‘true’ orbit in any way. This is a far from trivial 
problem and leads to the important topic of shadowing.

Shadowing theory states that although the simulated orbit may diverge from 
the ‘true’ orbit at an exponential rate, there exists another ‘true’ orbit with slightly 
different initial conditions that remains close to the simulated orbit for a long period 
of time. Thus the simulated orbit has essentially the same properties as a ‘true’ orbit 
and simulation studies are meaningful.

The existence of shadowing orbits for invertible hyperbolic maps was established 
by Anosov [1967] and Bowen [1970]. Early discussion of the existence of shadowing 
orbits for noninvertible nonhyperbolic maps can be found in Grebogi et al [1990] 
which gives the basic ‘rule of thumb’ that given an initial error ¿o, and labeling the 
distance between the shadowing orbit and the simulated orbit at time t as ry, then
Ot <  v /^  for t E (1 , . . . , N ) ,  where N  ~  1/v^o- The point at time N  were the 
shadowing orbit finally diverges from the simulated orbit is known as a glitch. Work 
by Dawson et al [1994] showed how this ‘rule of thumb’ can break down and that 
the existence of shadowing orbits for any meaningful length of time could not be
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found for some maps with finite time Lyapunov Exponents which fluctuated around 
zero. This led to the idea that the existence of the shadowing orbits was dependent 
on the finite time Lyapunov Exponents and Sauer et al [1997] established that the 
distribution, p(y), of the log shadowing distances, yt =  \og(r¡t), is exponential with

p ( y )  =  ? Í 2 ! Í e -2|m |(y-log(í0))/cr2

and the expected time between glitches, N, is

E(N)  ~  So2H/tr2 (3.2)

where rn is the mean of the finite time Lyapunov Exponent and a is its standard 
deviation. It can be seen from equation 3.2 that as |m| ¡a 1 —> 0, the expected 
time between glitches can be small regardless of the size of ¿o. thus in this case a 
shallowing orbit may not be found and results from simulations may not represent 
the true properties of the maps.

Even when the existence of a shadowing orbit has been established it has been 
remarked that this shadowing orbit may not be typical of the map, see for example 
Quinlan and Tremaine [1992]. If the shadowing orbit is atypical, the simulated orbit 
may not possess the typical properties o f ‘true’ orbits from the map. The important 
question of under what conditions shadowing orbits are typical or atypical remains 
open. A detailed survey of shallowing methods can be found in Ilayes and Jackson
[2005].

In summary, although deterministic, the sensitive dependence of initial conditions 
displayed by orbits from chaotic maps leads to an element of uncertainty which is 
producing increasing interest in the topic of chaos for statisticians.

3.1.2 Transitivity

According to Devaney [1986], the second defining property of a chaotic map is tran­
sitivity.

Define a map £ : J —* J. The map, £, is said to be transitive if for every pair of 
subintervals A, B  C J there exists an n such that

<n(A) n B ¿  0,

where £” represents n iterations of the map (.
Allowing the size of the subinterval A to tend to zero, this is related to the 

property of an orbit being dense. An orbit, { wt} is said to be dense if for every 
subinterval B  C J there is an element of {ict} in B. If a map has an orbit which is 
dense then it is transitive.
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The transitivity of chaotic maps is related to the recurrence properties. Let 
t«o 6 11 C J, Let 'J'b (wq) be the recurrence time, that is the time it takes for the 
orbit to first return to B. Now, define /ffi(n ) as

HB{n) =  P(TB(wo) < n\w0 € B)  n € (  1 ,2 ,. . . ) .  (3.3)

Due to the transitivity property of chaotic maps B B(n) —► 1 as n —► oo, that is 
given the initial condition wo is in the subinterval B,  the orbit is expected to return 
to B  eventually almost surely. Young [1999] shows the rate of convergence of //^ (n ) 
to 1 is related to the rate of decay of the autocorrelations. The following Theorem 
is a restatement of Theorems 2 and 3 of Young [1999].

Theorem  3.1.1. Let Hsi™) be defined by equation 3.3 for a chaotic map £ : J —> J. 
Then, as n —+ oo,

a) If 1 — 11b (ti) =  0 (n ~ a) for some a  >  0 and every B  C J , then

Cov(wQ,wn) =  O (n~a)

b) If 1 — Ils ip )  =  O{0~n) for some 6 < 1 and every B  C J, then there exists 
0 <  1 such that

Cov{uiQ,wn) =  O

The results of this theorem were used in the proofs for finding the asymptotic 
rates of decay for the autocorrelations of the chaotic intermittency maps discussed 
in section 3.2 and hence showing that the orbits possess long memory behaviour.

3.1.3 Periodic Points

Another distinguishing feature of chaotic maps is the existence of a dense set of 
periodic points.

A period-n point of a map £ : J ► J is a point wq such that

O o )  =  wo, (3.4)

where n is the smallest integer for which equation 3.4 holds. A fixed point is a 
point wq such that

C(u,o) =  wo,

that is n =  1 in equation 3.4.
The behaviour of an orbit near a fixed point, with initial condition wq  4- So and 

first iterate wq +  ¿i, say, can be seen by looking at the Taylor expansion of the map

< ( w o  +  ¿ o )  =  « ’o  +  ¿ i  =  C(wo) +  C ; (w ; o ) ^ o  +  o ( C ' ( t e o ) ^ o ) (3.5)
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=> ¿1 =  C ^ o ^ o  +  o (C'iu'oifo) ,

where C'(u’o) is the derivative of C evaluated at w q . From equation 3.5, it can 
be seen that if |£'(ieo)| <  1 then |<5i| <  |<5o| and thus an orbit near the fixed point 
becomes closer to the fixed point after each iteration. This is known as a stable 
fixed point. The extreme case when |£'(u;o)| =  0 is known as a super stable fixed 
point. Alternatively, if |C#(wo)| > 1 then |#i| > |A01 and thus the orbit diverges away 
from the fixed point. This is known as an unstable fixed point. If |̂ , (wo)| =  1 then 
|il| «a |(50|. This is known as an indifferent or neutral fixed point.

For a neutral fixed point, an initial condition near the fixed point produces an­
other point approximately the same distance from the fixed point. This produces a 
laminar region of the orbit, that is, a section of the orbit which remains smooth for 
possibly very long periods of time. The eventual repulsion or attraction of the orbit 
from this laminar region depends on the higher order terms of the Taylor expansion. 
Bhansali H al [2005] thus further classify neutral fixed points. If, for a neutral fixed 
point wo of a map (  which is continuous near w0 and small 6, |C(ieo ±  i)| >  1, the 
orbit w'ill eventually leave the laminar region and this is known as a weakly repelling 
neutral fixed point. If |('(u'o ±  ¿)| <  1 the orbit will slowly converge to the fixed 
point and this is known as a weakly attracting neutral fixed point. The neutral fixed 
point, wq, is attracting/repelling if IC(wo +  i)| <  1 while ¡C(wo — ¿)| >  1 for some 
small positive or negative 6. In this situation, the orbits attraction or repulsion 
depends on which side of the fixed point it lies.

Note that the time it takes for an orbit to escape from a laminar region is related 
to recurrence times, in that they essentially measure the same thing, in that leaving 
the laminar region is equivalent to returning to non-laininar region.

If an orbit seenis to switch back and forth between smooth behaviour and chaotic 
behaviour it is said to be intermittent, as is the case with orbits from the chaotic 
intermitteney maps to be introduced in section 3.2. This form of intermittency was 
first studied by Manneville and Pomeau [1980]. Other forms of intermittency include 
orbits which seem to switch between periodic and chaotic behaviour and orbits which 
seem to switch between periodic and quasi-periodic behaviour.

In general, period-11 points can be classified in a similar manner as fixed points.
Take the map =  £", then, from the definition of period-n points given in equa­
tion 3.4, a period-n point of the map C is a fixed point of the map £n. Stable, unstable 
and neutral period-n points of the map C are thus those points which produce stable,
unstable and neutral fixed points of the map ( n respectively.

Due to the required properties of sensitivity dependence and transitivity, dis­
cussed in sections 3.1.1 and 3.1.2, for a map to be chaotic, in terms of the definition 
by Devaney [1980], it must not possess any stable period-n points for any finite value 
of n. If a map is transitive, the probability of a typical orbit coming within a small
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neighbourhood of any given period-n point tends to 1. If this period-n point is sta­
ble, once the orbit enters this neighbourhood it will converge to the periodic orbit 
of size n and thus be asymptotically not transitive or diverging almost surely.

However, the third defining feature for a map to be chaotic in terms of the 
definition by Devaney [1986] is the existence of a dense set of periodic points. This 
means for any subinterval B  C J there exists at least one periodic point. Taking B 
to be arbitrarily small, this implies the existence of infinitely many periodic points, 
all of which must be either unstable or neutral for all finite period lengths. It should 
be noted that the number of periodic points, although infinite, is countable whilst 
the number of points in J is uncountable, therefore the probability of choosing a 
periodic point at random from a uniform probability distribution over J is still zero. 
Periodic orbits are thus atypical for chaotic maps.

For one dimensional maps, Sarkovskii [1964] gives the following Theorem which 
can help determine which period lengths are present in a map.

Theorem  3.1.2. Consider the following ordering of all positive integers

3 ,5 ,7 ,... ,2 x 3,2 x 5,2 x 7 ,. . .  ,22 x 3,22 x 5,22 x 7 , . . . ,23,22,2 1, 1

that is all odd numbers except 1, followed by two times all odd numbers except 1, 
followed by two squared times all odd numbers except 1 and so on until 2°° times all 
odd numbers except 1 and then all the powers of 2 in decreasing order until 1.

I f a one dimensional map, £ : J —► J, has a periodic orbit with period p\ then, for 
any P2 such that p2 appears after p\ in the ordering of positive integers considered 
the map has a periodic orbit with period P2•

This theorem implies if the one dimensional map £ : J  —► J has a periodic orbit of 
period p where p is not a power of 2 then the map has an infinite number of periodic 
orbits, including all orbits of periods which are powers of 2. For example, if a map 
has an orbit of period 3 it must have orbits of all other possible period lengths. In 
addition, since one dimensional chaotic maps, by the definition o f Devaney [1986], 
must have infinitely many periodic points, they must include all orbits of periods 
which are powers of 2.

Work done by Li and Yorke [1975] shows the existence of a period 3 orbit, in 
addition to implying all other period length orbits exist, also implies the existence of 
an uncountable set of orbits which remain nonperiodic. Li and Yorke [1975] describe 
this situation as ‘chaos’. If the period 3 orbit is stable, these nonperiodic orbits still 
exist, but they are unstable and the probability of choosing a point on a nonperiodic 
orbit at random from a uniform distribution over J is zero. Hence, starting at a 
typical initial condition for a map with a stable period 3 orbit will produce an orbit 
which converges to a stable state and the map is thus not typically chaotic.
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3.1.4 Invariant Density

This section introduces some additional features of some chaotic maps which will be 
of use during the discussion of the chaotic intermittency maps which will be intro­
duced in section 3.2, namely ergodicity, invariant measures and invariant densities. 

Consider a map £ : J  —i► J. Take an infinite number of initial conditions randomly

from J with a smooth density Xo(w) such that xo(w)dw is the fraction of initial 
conditions in the interval [a, 6]. Applying the map £ to each initial condition produces 
a new set of values with a new density, x i ( w)- Further iterations of the map produce 
densities X'2(ie), \'3(w), and so on. An invariant density, x(a>), for a map, ( ,  is a 
density such that

Xi+i(w) = xtH = xH,
that is, a density which is invariant to iterations of the map. The existence of an 

invariant density is assumed for the remainder of this section. Discussion of when an 
invariant density exists can be found in Sinai [1972] and Bowen and Ruelle [1975].

The invariant density of a map, ( , can be used to find invariant measures, that 
is measures of a map which remain constant over iterations. For example, let y.{w) 
be the invariant measure defined by

fi{w) =  L  wx(w)dw, (3.6)

that is fi(w) is the mean of the infinitely many points taken randomly from the 
invariant density. Other invariant measures include

1*
H{w2) = w,

and

y(w£n(w)) =  J  w£n(w)x{w)dw, (3-7)

which represent the mean of each of the infinite points taken randomly from 
x(w) squared and the mean of each point multiplied by the point produced after n 
iterations of the map C- bi general, for any Holder continuous function, that is a 
function, 4>{w), for which there exists a 7 € (0,1) and a C  <  00, independent of x, y, 
such that

\4>(x) -  4>(y)I <  C  |x -  2/I7 , (forall)x, y £ Ü
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where D is the domain of the function, then

(  <j>(w)x(w)dw. (3.8)
j

A useful mathematical tool is the Perron-Frobenius operator, (P (̂f>)(w), may be 
defined as

although a more general definition can be seen in Baladi [2000]. The invariant 
density, x ( w)> of a map £, is a fixed point of this operator such that

where R ^ ( u )  is the covariance between <f>(Çu(w)) and 4>(w). Since ip(w) can be

to zero gives an upper bound on the rate of decay of the correlations.
Now, thus far the invariant measures have been defined in terms of infinitely many

density of these points. In particular the mean, variance and autocovariance of the

generated by repeated iterations of a map (  from a single initial point wQ. Other 
than the choice of initial value wq, the orbits are completely deterministic and use 
of stochastic methods has been debated, see for example Berliner [1992b]. However, 
due to the difficulties of long term prediction discussed in section 3.1.1, probabilities, 
such as P(wn <  0.5|mo) =  p for p € (0,1) and large n, may intuitively seem to make 
sense even when the initial value, w q , is known.

Now, if the map is ergodic and wq is a typical value taken from the invariant 
density, then, for an invariant measure defined by equation 3.8,

)=W

as shown by Lawrance [2001]. Also, see Lawrance et al [1995],

5í

normalised such that fj ip(t)dt =  1, the rate at which ( P ^ x ) ( w) — x ( w) tends

points taken randomly and independently from the invariant density. In this setting, 
it can be seen that the invariant density, \(te), for a chaotic map is a probability

infinitely many points taken randomly from x(w) can be defined as n{w), —
p(w)2 and (j,(wCn(w)) — n(w)2, respectively. Consider now an orbit {wt}, i e  N,
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and

liin — (Jj{/c € [0,n — 1] : Ck(w) £ A }) =  /  x { w)dwi for A C J. ti—>oo n Ja

Hence, for an ergodic map the mean, variance and autocovariances of each orbit 
simulated from a typical initial value wq tends to the true mean, variance and auto­
covariances of the map, as n —> oo. Ergodicity also gives meaning to probability, in 
a relative frequency sense, to be assigned to the event that a typical orbit of length 
n visits a set A c  J.

This also implies that if initial values are taken from a smooth initial density 
Xo(w) 7̂  x ( w)i such that all the initial values are within J, then, for an ergodic 
map, —> x(u ’) as n —» oo. In addition, if the map, £, is ergodic and the initial
condition wo is taken randomly from the invariant density, the orbit {wt}, t £ N, 
is a stationary process, see, for example, Berliner [1992a]. For further discussion on 
ergodicity. see, for example, Walters [1975].

3.2 Chaotic Intermittency Maps

The general properties of chaotic maps given in section 3.1 highlight the possibility 
of defining maps which produce orbits with long-memory characteristics. Section
3.1.4 stated, with reference to Berliner [1992a], if the map, ( ,  is ergodic and an in­
variant density, \(w), exists, an orbit {u’t}, t £ N,with initial condition, wo, taken 
randomly from \(u;), is a stationary process. Section 3.1.3 discussed how the exis­
tence of neutral fixed points in the map can lead to longer escape/return times and 
Theorem 3.1.1, given in section 3.1.2, relates these return times to the possibility of 
subexponential decay of the orbits ACF.

The class of chaotic intermittency maps introduced in this section where first 
studied by Manncville and Pomeau [1980], motivated by the need to model series 
exhibiting long periods of laminar behaviour with short bursts of erratic behaviour. 
These maps have seen much development since then, see for example Bhansali et al
[2005], [2000] and Bhansali and Holland [2008b]. Each of the maps have at least one 
neutral fixed point, are ergodic and admit an invariant density. The orbits produced 
by these maps are thus stationary and possess ACFs with subexponential decay 
rates. The majority of long-memory models discussed in the literature are largely 
based around the concept that fractionally differencing produces a linear process 
with short memory. The methods of estimating the long-memory parameter are also 
often based around this assumption.

The set of chaotic intermittency maps provide a new alternative method of gen­
erating long memory time series. They are non-linear and yet can produce sta­
tionary processes with long-memory properties. Furthermore, chaotic intermittency
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maps have been found whose long-memory parameters lie on the boundaries of long- 
memory, yet still remain stationary. This is discussed further in Chapter 5.

The four main chaotic intermittency maps brought together in this study are the 
asymmetric cusp map, the symmetric cusp map, the polynomial map and the loga­
rithmic map. These are defined in sections 3.2.1 - 3.2.3, where some generalizations 
of these maps are also discussed.

The class of cusp maps have been investigated previously by Balakrishnan et al [1997],
[2001], [2001]. Bhansali and Holland [2008b] define the family of extended symmetric 
cusp maps by

the map shows sensitivity dependence on [—1 +  <5, —5] and such that ( T,e{w) maps J 
on to itself where J =  [—1,1]. The derivative of these maps near w — - 1  is

therefore w =  — 1 is a neutral fixed point and the maps have a laminar region 
near this point and a chaotic region away from it, leading to intermittency.

Theorem 3.2 of Bhansali and Holland [2008b] gives the following result for the 
rate of decay of correlations for orbits from extended symmetric cusp maps.

T heorem  3.2.1. For the family of extended symmetric cusp maps with t9 < 1, 
there exists a constant Crj  such that the ACF, R{u),of typical orbits is of the form

This family of maps is a generalization of the symmetric cusp map, which is 
defined as,

Cs(w) =  1 -  2v^H

over J =  [—1,1]. For the symmetric cusp map, Bhansali and Holland [2008b] 
prove the covariances of the symmetric cusp map, Rs{u),  ar e of the form

3.2.1 The Cusp Maps

where r  > 0,0  € (0,1), S >  0 is a small constant and ( (w)  is chosen such that

Cr,e(w) =  1 +  (1 +  t)(w +  1)t for — 1 <  w < —1 +  6,

R(u) ~  CTtgu}

as u 00 (3.9)
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which is in agreement with Theorem 3.2.1 when t6 — 0.5. Balakrishnan et 
al [1997] gives the invariant density of the symmetric cusp map, xs(w),  over J =  
[—1,1] as

. . 1 — w ,
xs(w) =  ~ Y ~ ,  (3.10)

and zero everywhere else. Substitution of this into equations 3.6-3.7 can give 
explicit forms for the mean, variance and covariance at lag one, namely E(wt) =  
-1 /3 ,  Var(wt) =  2/9 and lis (l) =  8/63 for t € N.

Theorem 4.1 of Bhansali and Holland [2008b] shows the spectral density of a 
typical orbit from the symmetric cusp map, as the orbit length n —> oo, is of the 
form

f s (\) =  G log ( [ as A —> 0,
\2sm ( f ) /

for a positive bounded constant G. Note, since sin(a:) —► x  as x  —> 0, this is 
equivalent to

/ s (A) =  C l o g ^  as A —> 0. (3.11)

Now, as discussed in section 2, the long memory parameter, d, of a process x t is 
defined such that the ACF, llx(u), is of the form

Rx(u) ~  B («)u 2d_1 as u —> oo, (3-12)■■ *
and the spectral density, /*(A), is of the form

/i(A ) =  C(X)\~2d as A —> 0, (3.13)

where Ji(u) and G(A) are constant or slowly varying functions. Comparison of 
equations 3.12 and 3.13 with equations 3.9 and 3.11 shows the asymptotic value of 
the long memory parameter from typical orbits for the symmetric cusp map is given 
by d =  0. A value of d — 0 is usually associated with short memory, however the 
correlations still decay at a subexponential rate, specifically a harmonic rate, and 
the spectral density is still unbounded at zero. Hence, despite d — 0, the orbits still 
possess properties of long memory and can thus be considered to be on the lower 
boundary of long memory.

A related family of maps is the family of extended asymmetric cusp maps, defined
by
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{ w +  (w +  1)1+T, — 1 <  w <  — 1 +  S,
C(w), -1  +  5 < w < - 6 ,

1 -H*. -i< « ,< 0,
-Cr,e(-w). 0 < W< 1 ,

where r  >  0,0  G (0,1), S >  0 is a small constant and C(w) is chosen such that 
the map shows sensitivity dependence on [—1 +  <5, — <5] and such that C t , b ( w )  maps J 
on to itself where J =  [—1,1], This family of maps differs by the negative sign for 
0 < w < 1 which makes the maps asymmetric and produces another neutral fixed 
point at w =  1. They are a generalization of the asymmetric cusp map, £4(11;), which 
is defined over J =  [ - l , l ]  as: 1 — 2\/{-w)

2 \ /M  “  1
if — 1 <  w < 0, 
if 0 <  w < 1.

(3-14)

An alternative generalization of the asymmetric cusp map, given by Bhansali et 
al [2005], is the maps (g(w) such that

Ce(w)

0 - 2 ^ w ) ,
0 -  2\f(^w) + 8(0 -  1 )(1/2 + w)3, 
2 ^ / f ^ J) - 0  +  8 ( 0 - l ) ( l / 2 - w ) 3, 

> 2 j ¡ P w ) - 0 ,

-1  < w <  -1 /2 , 
-1 /2  < w <  0, 
0 < w < 1/2, 
1/2 < w <  1,

where 0 G [1,16/15) and the map is defined over J =  [—1,1]. When 0 =  1 the 
asymmetric map defined in equation 3.14 is produced.

The asymmetric map has a uniform invariant density, Xa (w), such that

X A ( w )  =  i ,  (3 .15 )

over the full range of J  =  [— 1,1] and zero elsewhere. Substitution of this into 
equations 3.6-3.7 can give explicit forms for the mean, variance and covariance at 
lag one, namely E(wt) =  0, Var(wt) =  1/3 and 7^(1) =  3 /5  for t £ N. Bhansali 
et al [2005], [2006] hypothesise that the ACF of typical orbits from the asymmetric 
map, lij\(u) are of the form

Ra (u) =  O as tt -♦ oo,

that is, they decay at a harmonic rate as with those for the symmetric cusp map. 
Theorem 4.1 of Bhansali and Holland [2008b] is once again applicable to show the 
spectral density of a typical orbit from the asymmetric cusp map, as the orbit length
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n —* oo, is once again of the form given in equation 3.11. As with the symmetric 
cusp map, the asymptotic value of the long memory parameter is d =  0 although 
the orbits still possess long memory properties.

3.2.2 The Polynomial Maps

The polynomial map, see Liverani et al [1999] and Young [1999], is defined over the 
range J  =  [0,1] by

( w (l +  2awa) if 0 <  < 1/2,
Ca('«d -  j  2w -  1 if 1/2 <  w <  1.

Where a >  0 is a parameter of the map.
When a  G (0,1) the invariant density, see Thaler [1980], Xa(w) over J is known 

to be of the form

X a W  =  (3.16)

and zero elsewhere, where Va(w) depends on the value of a  and for each fixed a 
it is a piecewise continuous, uniformly bounded function which is also bounded away 
from zero. An explicit expression for Va(vj), and therefore Xa(w) is unknown. This 
implies the mean and variance cannot be found as they were with the cusp maps.

For the polynomial map, Bhansali and Holland [2008b], with reference to results 
given by Sarig [2002] and Gouezel [2004b], give the correlations for typical orbits, 
ra (u), to be of the form

lim u(1'/a,)~1ra(u) =  N, (3.17)
u—*oo

for some finite constant N.  Hence the correlations of typical orbits decay at a 
polynomial rate and the spectral densities as the orbit lengths n —* oo, for a  ^  0.5, 
are of the form

f a ~  G(A)A(1/o)~2 as A —► 0, (3.18)

where 0 <  G(A) < oo is a constant or slowly varying function as A —> 0. For 
the case when ft =  0.5, equation 3.17 shows the correlations decay at a harmonic 
rate and thus Theorem 4.1 of Bhansali and Holland [2008b] is once again applicable 
to show the spectral density is of the same form as for the cusp maps given in 
equation 3.11. Comparison of equations 3.17 and 3.18 with equations 3.9 and 3.11 
shows the asymptotic value o f the long memory parameter from typical orbits for 
the polynomial map is given by

d =  1 —
2 a ’
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When a  E (0,1/3] this gives the corresponding asymptotic value of d <  —0.5. The 
correlations are thus asymptotically like a fractionally differenced process which has 
been differenced a further p =  [1 — l/2a ] times, where [x] is the integer part of x. For 
a E (1/3,0.5) this gives the corresponding asymptotic value of d E (—0.5,0) and thus 
the orbits admit intermediate memory. For a E (0.5,1) this gives the corresponding 
asymptotic value of d E (0,0.5) and thus the orbits admit long memory. For the 
special case of a  =  0.5, the asymptotic value of d is zero. However, as with the 
cusp maps mentioned in section 3.2.1, although d — 0, the correlations still decay 
at a subexponential rate and the spectral density has a singularity at zero, hence 
the orbits still displays long memory properties and can be considered to lie on the 
lower boundary of long memory.

3.2.3 The Logarithmic Maps

The logarithmic map was introduced by Holland [2005] as an extension of the poly­
nomial map. It is defined over the range J =  [0,1] by

/■ ( \ _ /  w [1 +  2(log 2) f1+^l«;(— log ic)1+ ]̂ if 0 <  w < 1/2,
W 5 W -  y 2W — l if l / 2 < u > <  1.

Where ¡3 is a parameter of the map. The multiplying function 2(log2)~(1+^  is 
chosen to ensure that limm_ i / 2- C/?(w) =  1*

As with the polynomial map, the exact form of the invariant density, xp{w), for 
the logarithmic map is currently unknown, however it is known, see Holland [2005], 
that the invariant density over J for ¡3 E (0,0.5) is of the form

W<"> - zzfflspsr (319)
and zero elsewhere, where Vp(w) depends on the value of (3 and for each fixed (3 

it is a piecewise continuous, uniformly bounded function which is also bounded away 
from zero. For ¡3 E [0.5,1] the invariant density is a bounded piecewise continuous 
function.

The logarithmic map can be combined with the polynomial map, see Holland 
[2005], to give the family of generalized polynomial-logarithmic maps defined over 
the range J =  [0,1] by

CaAW)
if 0 < w < 1/2, 
if 1/2 <  w <  1,

(3.20)

where Lp(w) is a slowly varying function dependent on a parameter ¡3 which is 
twice differentiable.
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Theorem 3.3 of Bhansali and Holland [2008b] , making use of Gouezel [2004a], 
gives the covariances, Iip(u), of a typical orbit from the logarithmic map to be of 
the form

M » )
/ W V 2 )  i /  1 \
2¿?(log uY  \(\og u)PJ

as u —> oo, (3-21)

where fip =  E(u’t) for the logarithmic map and the covariances of the generalized 
polynomial-logarithmic map, Ha>p(u) to be of the form

liatp{u) =  va>pL*p{u)ux x!a +  o ( l *p{u)u1 a s u —>oo, (3.22)

where ua$  is a constant dependent on a and (3 and Lp is a slowly varying function 
dependent on (3.

For the logarithmic map, Theorem 4.2 of Bhansali and Holland [2008b] is appli­
cable which gives the spectral density, fp {A), of a typical orbit with length n —> oo 
of the form

fp ~  C(X)A '1 j l̂og

where (7(A) is a constant or bounded continuous function.
Comparison of equations 3.21 and 3.23 with equations 3.9 and 3.11 shows the 

asymptotic value of the long memory parameter from typical orbits for the loga­
rithmic map is given by d =  0.5. A value of d =  0.5 is usually considered to be 
non-stationary, however, for ¡3 G (0 ,21og(2) -  1), the map is ergodic and admits an 
invariant density and thus typical orbits are stationary . Hence the orbits produced 
by the logarithmic map can thus be considered to be on the upper boundary of long 
memory.

For the generalized polynomial-logarithmic map, Theorem 4.3 of Bhansali and 
Holland [2008b] is applicable which gives the spectral density, f a,p(A), of a typical 
orbit with length n —* oo of the form

fa,¿3 ~  Gp ( i )  A(1/ o)- 2 as A -> 0, (3.24)

where Gp(A) is a non-bounded slowly varying function at infinity dependent on

Comparison o f equations 3.22 and 3.24 with equations 3.9 and 3.11 shows that, 
as with the polynomial map, the asymptotic value of the long memory parameter 
from typical orbits for the generalized polynomial-logarithmic map is given by d =  
1 — 1 /(2 a ). When a  =  0.5, the map produces orbits with asymptotic d values of zero,
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whilst when a  =  1 the map produces orbits with asymptotic d values of 0.5. The 
behaviour at these points is then dependent on the choice of Lp{w) and the value of 
¡3. When d =  0, the orbits could display short memory, boundary behaviour o f long 
memory or even boundary behaviour of intermediate memory. When d =  0.5, the 
orbits could be stationary or non-stationary.



4. E S T IM A T I O N  O F  T H E  C O R R E L A T I O N  D E C A Y  R A T E S  F O R  
C H A O T I C  I N T E R M I T T E N C Y  M A P S

4.1 Simulation Study

The simulation study carried out here examines the question of estimating, in a 
statistical sense, the rate of decay of the correlations for the chaotic intermittency 
maps introduced in section 3.2 when only a finite series length, T, o f the orbits 
produced by the maps are available and the generating maps is treated as unknown. 
The situation in which some information regarding the map is considered to be 
known is explored further in chapter 6.

A range of methods were used in estimation, chosen to cover the three approaches 
o f estimation for the long memory parameter o f non-parametric, semi-parametric 
and parametric and hence provide comparison between the three. For the non- 
paramctric estimates, the local Whittle and GPII methods are implemented, for the 
semi-parametric approach, estimates are found using the FAR and FExp methods 
and finally the FARIMA method is used to find parametric estimates. An intro­
duction to each of these methods was given in chapter 2, whilst further details of 
application of these methods here can be found in section 4.1.1.

The motivation behind this study has two main goals. First, the empirical 
properties of these estimation techniques are often studied in the literature us­
ing series generated from linear long memory models, see for example Taqqu and 
Teverovsky [1996], and many of the methods of estimating the long memory param­
eter assume both linearity and sometimes Gaussianity of the series under investi­
gation, see chapter 2 for a review. Non-linear examples of long memory processes 
are usually the result of a transformation applied to linear process, see, for example, 
Giraitis and Taqqu [1999], Palma and Zevallos [2004] and Palma [2007]. The chaotic 
intermittency maps introduced in section 3.2 thus give an important alternative to 
the majority of long memory processes previously studied, in that they exhibit exam­
ples of non-linear, non-Gaussian time series which are the result of the intermittency 
rather than a transformation. The polynomial map with a  ^  0.5, in particular, has 
spectral densities near zero o f the standard form assumed by all of the estimation 
methods considered and the results should, therefore, throw light on the robustness 
of these estimation techniques in this non-standard case.

In addition, the orbits of the cusp maps and the polynomial map with a  =  0.5 
show boundary long memory behaviour for which a long memory parameter of d =  0 
can still show signs of ‘weak’ long memory and the logarithmic maps have a value of
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d =  0.5 yet are still stationary. Long memory models such as FARIMA(p, d, q) and 
FExp(s) models can not account for this boundary behaviour, and thus examples 
of this behaviour in the literature seem quite limited. The results should, therefore, 
provide information about the empirical behaviour of these estimation techniques 
when the long memory parameter takes these boundary values. Some specific cur­
rent examples of boundary behaviour can be found in Martin and Eccleston [1992], 
Martin and Walker [1997] and Palma [2007] page 61, though a general model has not 
previously been defined and the effect on the sampling properties of estimates has not 
been discussed. This is explored in greater detail in Chapter 5, where the sampling 
properties of the GPU and Local Whittle methods in such situations are derived 
and a new extension to the FARIMA model to include these boundary conditions is 
defined.

These particular methods have been chosen as the finite sample properties of 
the estimates produced in standard situations have been extensively studied in the 
literature by various authors.

Robinson [1995b] compares the two non-parametric methods for time series of 
length n =  64, n =  128 and n =  256, finding the GPU estimates to be generally less 
biased whilst the local Whittle estimates have smaller variance. Also noted is the 
biases of the local Whittle estimates tend to be negative, whilst the estimates of the 
GPII methods tend to have negative bias for smaller values of do and positive bias 
for larger values of do.

Taqqu and Teverovsky [1997] investigate the finite sampling properties of the 
local Whittle estimates on simulated FARlMA(p,do,q) series, for p, q € (0,1). They 
find for series lengths of n =  100 the sample standard deviations are much larger than 
the asymptotic results and indeed so large that the method is deemed unsuitable. 
However, for series length n =  104 they find the theoretical asymptotic results appear 
to hold very well in practise and that provided m is chosen correctly the local Whittle 
method seems robust to changes in the short memory component. It is also suggested 
that the asymptotic results may hold reasonably well for a series length of n =  103 
although the results are not presented.

Ilurvich and Beltra [1994] carry out simulation studies for the performance of the 
GPII method on simulated FARIMA(l,do,0) series of lengths n G (500, 1000, 2000, 
3000) using various values of l and m. They find the choice of l =  1 to be superior 
to l >  1. They also report the biases and MSEs of the estimates tend to be small 
provided the AR parameter is not close to unity.

Other simulation studies by Bhansali and Kokoszka [2001a], Taqqu and Teverovsky 
[1996] and Taqqu, Teverovsky and Willinger [1995], amongst others, show the asymp­
totic results for the GPII and local Whittle methods appear to hold for time series 
of lengths n >  1000 generated from linear Gaussian processes. Bardot et al. [2003] 
also give empirical evidence to suggest the GPII and local Whittle methods may 
all be robust to estimating do from a FARIMA(0,do,0) process with non-Gaussian
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innovations.
For the parametric FARIMA method, studies by Taqqu and Teverovsky [1996], 

Bisaglia and Bordignon [2002] and Smith et al. [1997] have shown that when 
the model is correctly specified, the parametric approach out performs the non- 
parametric and semi-parametric approaches, though when the ‘true’ model is mis- 
specified or does not exist this method can lead to large bias and/or variance.

Results by Bhansali and Kokoszka [2001a] show heavy tailed and bimodal dis­
tributions begin to appear when estimating the long memory parameter using the 
FARIMA method from an o-stable FARIMA process, that is a FARIMA process 
with innovations, st, such that

P {M  > x) =  x~aL(x),

for some slowly varying function L(x) and

. P{et > x)/P(|et| >  x)  -> a, P {s t <  -x)/P{\et\>  x) -*  b,

as x  —> oo, where a and 6 are nonnegative numbers satisfying a +  b =  1. They 
thus warn against naive use of the FARIMA method when ‘outliers’ may be present, 
although a theoretical explanation as to why this occurs is not given. For the FAR 
method, Bhansali and Kokoszka [2001a] prove the estimates are still asymptotically 
consistent for «-stable FARIMA process with a  6 (1,2) and their empirical results 
support this finding. It is also seen that the FAR and FExp methods are more 
robust to model changes than a parametric approach with smaller variances than 
the non-paramct,ric approach.

A second motivation for this simulation study is to explore the extent of which 
the asymptotic rates of correlation decay of the chaotic intermittency maps remain 
valid for finite vaiites o f T, since the rate of convergence to these asymptotic results 
is currently unknown.

Previous simulation studies involving the chaotic intermittency maps discussed 
in section 3.2 can be found in Bhansali, Holland and Kokoska [2006] and Bhansali 
and Holland [2008b]. The simulation study of Bhansali, Holland and Kokoska [2006] 
begins with estimates of the invariant densities of the polynomial and logarithmic 
maps with various values of a  and ft respectively. Since explicit theoretical forms 
for these invariant densities are unknown, it is not possible to quantify how well the 
simulations fit. However, in a neighbourhood of w — 0, it is noted that the estimated 
invariant densities for the polynomial map take values close to w~a and the estimated 
invariant densities for the logarithmic map take values close to w~x log (l/te )_1~  ̂
and thus their shapes accord with the asymptotic results given by equations 3.16 
and 3.19.

Bhansali, Holland and Kokoska [2006] then continue their simulation study, pre­
senting results on correlations, partial correlations and the autoregressive order se­
lected for the polynomial and logarithmic maps with various values of a  and ft,
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respectively, and also the asymmetric cusp map. They find the overall tendencies 
generally agree with the asymptotic results. For the polynomial map it is found, 
particularly for a > 0.5, that the correlations tend to be positive for all lags up to 
u =  100 and that the rate of decay of correlations decreases as a  increases. Addi­
tionally, the mean AR order selected is clearly shown to increase with a, with the 
change due to a  being most noticeable as a  increases from 0.55 to 0.8. The distribu­
tions of estimates of the means and correlations seem to not be Normal, particularly 
for a  >  0.5, and this deviation from Normality increases with a. Similar results 
are reported for the logarithmic map, with the memory seeming to decrease with (3, 
though the effect of ¡3 being less noticeable than that of a for the polynomial map. 
For the asymmetric cusp map, the correlations, although generally larger for smaller 
lags, appear to decay more rapidly than the logarithmic map and polynomial map 
with a  >  0.5, though still remain significantly positive at large lags.

Although the general patterns seem to agree with the asymptotic results, Bhansali, 
Holland and Kokoska [2006] also show that attempts to estimate a for the polynomial 
map from regression of log(R(u)) onto log(u) and (3 for the logarithmic map from 
regression of log(R{u)) onto log(log(u)) provides somewhat poor approximations to 
the actual values of a  and [3 and varies considerably depending on how many initial 
values of the covariances are ignored.

Bhansali and Holland [2008b] give simulation results on the symmetric cusp map 
and further results on the polynomial and logarithmic map in the frequency domain. 
For the symmetric cusp map, the estimated invariant density generally accords with 
the theoretical triangular density, though the relative frequency of the orbit remain­
ing close to the neutral fixed point is underestimated, whilst the relative frequencies 
away from the neutral fixed point are overestimated. The correlations are shown to 
remain significantly positive for large lags and appear similar to those of the asym­
metric cusp map reported in Bhansali, Holland and Kokoska [2006]. The simulated 
results in the frequency domain, for all three maps, only partially agrees with the 
asymptotic theory. The results for the symmetric cusp map show if d is estimated by 
a log-periodogram regression, this estimate could have strong positive bias. For the 
polynomial map with a < 0.5 evidence of intermediate memory is not seen and the 
behaviour of the orbits appears less sensitive to the choice of a  than the asymptotic 
theory implies. Conversely, estimates of d for the logarithmic map suggest the be­
haviour of the orbits appears more sensitive to the choice of ¡3 than the asymptotic 
theory implies, with the agreement between the theoretical results and the simulated 
results decreasing as ¡3 increases.

The simulation study presented here builds on the works of Bhansali, Holland 
and Kokoska [2006] and Bhansali and Holland [2008b], focusing now on estimation 
of the long memory parameter, d. The study looks at the polynomial map, the 
logarithmic map, the symmetric cusp map and the asymmetric cusp map, discussed 
in section 3.2. The studies by Bhansali, Holland and Kokoska [2006] and Bhansali 
and Holland [2008b] have suggested some difficulties in estimating d may occur due
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to a lack of convergence of the properties of the simulated orbits to the asymptotic 
results. Further simulation studies are carried out in section 4.2 which attempt to 
resolve some of these issues.

4.1.1 Plan o f Study

The computational set up for this simulation study follows closely from the sim­
ulation studies suggested in Bhansali, Holland and Kokoska [2006] and Bhansali 
and Holland [2008b], which also study the chaotic intermittency maps described in 
section 3.2.

For the asymmetric cusp and symmetric cusp maps the invariant densities are 
known, see equation 3.15 and equation 3.10 respectively. The initial values for all 
simulated orbits of these maps were taken randomly from these distributions. Since 
the invariant densities are not known for the polynomial and logarithmic maps, the 
initial values were generated instead via an exponential distribution with mean 0.2, 
truncated at 1, as suggested in Bhansali, Holland and Kokoska [2006].

For each simulated orbit from each map a stretch of TV =  107 iterations were 
generated from these initial values, but only the last T  =  104 observations, {wt, 
t =  M H- 1,..,,A1 + T } ,A 1  — 107 — 104, were retained. This ‘burn in’ time, as 
suggested in Bhansali, Holland and Kokoska [2006], helps to avoid possible ‘ transient’ 
effects. The polynomial map was generated using six different values for alpha, 
namely, a  =  0.3,0.45,0.5,0.65,0.8 and 0.9. The logarithmic map was generated 
with four different values for beta, /? =  0.05,0.15,0.25 and 0.3. More values of a 
were considered than fi since the theoretical value of d for the polynomial map is 
related to a. For each of the maps, 1000 orbits were simulated in the above manner.

For each simulated orbit, the local Whittle, GPU, FARIMA, FAR and FExp 
methods o f long memory parameter estimation were applied to find estimates of the
long memory parameter d. These estimated d for each method were then retained for 
study. The following choices were made for each method, see section 2.3 for further 
details.

For the local Whittle method, rn was chosen as 155. This was based on studies 
by Bhansali and Kokoszka [2001a] and Taqqu and Teverovsky [1996], which suggest 
rn be taken in the range of 1/50 to 1/20 of all frequencies and show that usage 
o f approximately the first 1/32 of the spectrum tends to give reliable results. A 
brief simulation study carried out here showed the estimated values of d remained 
essentially the same over a similar range for the chaotic intermittency maps.

The GPU method was implemented with m=100. This is equal to T0 5 which was 
suggested by Geweke and Porter-IIudack [1983] and is within the range considered by 
Crato and Lima [1994] and Porter-IIudak [1990]. As with the local Whittle method, 
brief simulation studies suggested little change with the GPU estimates over the 
range of 1/50 to 1/20 of all frequencies.
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For the FARIMA method, the Whittle likelihood estimates were estimated for all 
FARIMA(p,d,q) models with p,q 6 (0, . . .  ,5). The estimates of d from the models 
chosen by minimisation of AIC and BIC were both then retained. The order chosen 
by each selection criteria and the estimated short memory co-efficients for each were 
also retained. The exact likelihood estimates were not obtained due to computational 
time.

Whittle likelihood estimates were also used for the FAR method, which was 
implemented over the range p =  0, . . . ,  20 and again the estimates of d from the 
models chosen by minimisation of AIC and BIC, along with the order chosen by 
each selection criteria and the estimated short memory co-efficients for each, were 
then retained.

The semiparametric FEXP method was used with m =10 and hj(x) =  cos{jx).  
The choice of s was found using Mallow’s C criterion over the range of s =  0 , . . . ,  20. 
These choices are based on the method given by Moulines and Soulier [1998]. Simu­
lation studies showed the estimates were not very sensitive to the choice of m. Other 
forms of hj(x) were not considered. The estimates of d and the selected choice of 
s, along with the estimated short memory coefficients for the selected model, were 
recorded for each simulation.

4.1.2 Simulation Results

The histograms of the estimates of d for the FARIMA method using AIC and BIC 
are given in figures 4.1 and 4.2 respectively. As previously mentioned, a parametric 
approach can lead to poor estimates when the assumed underlying model is mis- 
specified and this is reflected here. The results seem comparable to those found by 
Bhansali and Kokoszka [2001a] when the method is applied to a-stable FARIMA 
processes and add as an additional warning against naive use of these methods.

The estimates found using AIC show a general lack of convergence to a single
value for d, with values covering the whole range of d G (—0.5,0.5) for all the maps. 
It can be seen to best converge for the polynomial map with a  =  0.3, for which it
centres around d =  0. The situation gradually deteriorates as a  increases, with the 
distributions for a  > 0.65 appearing somewhat bimodal. This suggests that the lack 
of convergence may be due to extended periods in the laminar region, the length of 
which increase with a. The theoretical justification of these results is left for future 
work.

The estimates found using BIC also show signs of heavy tails and bimodal dis­
tributions, particularly for the asymmetric cusp map. The distributions of these 
estimates are generally more regular, as the higher penalty term in the criterion 
results in models with fewer parameters fitted, reducing the variability. As with the 
estimates using AIC, the spread of the estimates for the polynomial map increases 
with a, again suggesting that the difficulties may be caused by the extended periods 
in the laminar region. It is unclear why the asymmetric cusp map has such an effect
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on the estimates, though it seems reasonable to hypothesise that it is related to this 
map having a second neutral fixed point which is not present in the other maps.

The mean and \J M SB  of all the methods are given in table 4.1 and the standard 
deviations are given in table 4.2. The asymptotic values of d shown are based on 
the asymptotic results for each of the maps, given in section 3.2. The theoretical 
asymptotic standard deviations are found from the theoretical work presented in 
Chapter 2. Since several of the methods have theoretical standard deviations which 
depend on the fitted model, the theoretical standard deviations are computed for 
each simulation and the intervals given in table 4.2 are the 90% coverage intervals 
of these theoretical standard deviations, with the upper and lower 5% of theoreti­
cal standard deviations removed. It must be noted that many of the assumptions 
required in deriving these standard deviations do not hold, and these values are 
included only for reference.

Comparison of the sample standard deviations with the asymptotic standard 
deviations shows the sample standard deviations tend to be much larger, usually 
between two to four times the magnitude of the upper limits of the asymptotic 
deviations, for all methods. For the polynomial map with a  =  0.3, however, the 
sample standard deviations from the Local Whittle and GPU methods are reasonably 
close to the asymptotic results, and for all methods this map produces the estimates 
with the smallest standard deviations. Since the polynomial map with a  =  0.3 has 
orbits which spend the least amount of time, of all the maps considered, in the 
laminar regions, it gives further evidence to suggest the length of stretches in the 
laminar region of orbits effects the variability of the estimates produced.

The mean for the FARIMA method using AIC can be seen to be close to zero
regardless of the map and as such the \/MSE is smaller for maps with d close to 
zero. This is again due to the general lack of convergence of these estimates, which 
is reflected in the’.standard deviations being generally larger for this method than 
any other, the sole exception being for the asymmetric cusp map.

As expected by the asymptotic results, the mean of d using BIC increases with 
a  for the polynomial map. However, as also noted by Bhansali and Holland [2008b], 
the empirical evidence shows no evidence of intermediate memory for a  < 0.5. This 
can also be seen to be true for the other methods of estimation. As expected from 
figure 4.2, the standard deviations also increase with a.

Also in agreement with Bhansali and Holland [2008b], for the logarithmic map, 
although the asymptotic value of d is constant, the mean of the estimates can be 
seen to decrease with /?, suggesting the slowly varying function in the correlation 
decay effects the empirical results. This pattern appears for all estimation methods, 
although less so for the FARIMA method using AIC. Similarly, the mean estimates 
for the polynomial map with a =  0.5 and the cusp maps could also be effected 
by the presence of unbounded slowly varying functions in the correlation decays. 
This is explored further in chapter 5. Although the rate of decay of the correlations 
for the cusp maps is asymptotically equivalent to the polynomial map with a =



Map Asymptotic Mean and y/MSE for the Estimated d
d Local Whittle GPU FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) -0.67 0.017 0.015 -0.012 0.059 0.030 0.064 0.069
(0.69) (0.69) (0.67) (0.73) (0.70) (0.73) (0.74)

Poly (0.45) -0.11 0.087 0.082 0.016 0.12 0.10 0.15 0.15
(0.21) (0.22) (0.20) (0.25) (0.23) (0.27) (0.26)

Poly (0.5) 0 0.12 0.10 0.018 0.14 0.12 0.18 0.18
(0.14) (0.15) (0.17) (0.18) (0.16) (0.19) (0.19)

Poly (0.65) 0.23 0.22 0.21 0.048 0.22 0.21 0.28 0.28
(0.092) (0.12) (0.29) (0.14) (0.15) (0.094) (0.078)

Poly (0.8) 0.38 0.28 0.28 0.076 0.21 0.19 0.26 0.29
(0.17) (0.19) (0.37) (0.24) (0.29) (0.18) (0.13)

Poly (0.9) 0.44 0.41 0.42 0.072 0.27 0.25 0.33 0.43
(0.11) (0.13) (0.46) (0.28) (0.32) (0.23) (0.089)

Symmetric 0 0.28 0.24 0 .072 0.27 0.19 0.32 0.38
(0.29) (0.27) (0.25) (0.32) (0.33) (0.43) (0.38)

Asymmetric 0 0.31 0.26 -0.023 0.044 0.037 -0.069 0.38
(0.32) (0.28) (0.23) (0.31) (0.31) (0.32) (0.39)

Log (0.05) 0.5 0.29 0.29 0.076 0.21 0.19 0.26 0.30
(0.26) (0.27) (0.48) (0.33) (0.38) (0.28) (0.23)

Log (0.15) 0.5 0.26 0.26 0.057 0.18 0.17 0.24 0.28
(0.29) (0.30) (0.49) (0.36) (0.39) (0.29) (0.25)

Log (0.25) 0.5 0.23 0.24 0.052 0.18 0.17 0.22 0.25
(0.31) (0.32) (0.49) (0.35) (0.38) (0.31) (0.27)

Log (0.3) 0.5 0.22 0.22 0.054 0.17 0.16 0.21 0.24
(0.33) (0.34) (0.49) (0.36) (0.38) (0.31) (0.29)

Tab. 4.1: The values in brackets are the y/MSE. All values are given correct to 2 significant figures.
to
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Estimated Standard Deviations o f d
Map Local Whittle GPU FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) 0.053 0.074 0.118 0.050 0.056 0.041 0.044
Poly (0.45) 0.073 0.097 0.151 0.091 0.083 0.055 0.058
Poly (0.5) 0.082 0.106 0.169 0.110 0.111 0.063 0.061

Poly (0.65) 0.092 0.122 0.224 0.144 0.153 0.079 0.064
Poly (0.8) 0.138 0.167 0.219 0.161 0.211 0.137 0.102
Poly (0.9) 0.105 0.124 0 272 0.227 0.260 0.203 0.088
Symmetric 0.090 0.119 0.239 0.187 0.270 0.284 0.076

Asymmetric 0.083 0.111 0.226 0.302 0.309 0.309 0.088
Log (0.05) 0.138 0.167 0.219 0.161 0.211 0.137 0.102
Log (0.15) 0.141 0.174 0.213 0.166 0.210 0.129 0.098
Log (0.25) 0.147 0.179 0.202 0.141 0.190 0.123 0.099
Log (0.3) 0.145 0.180 0.192 0.137 0.181 0.118 0.099

Asymptotic Standard Deviations from Fitted Models
Map Local Whittle GPU FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) 0.040 0.064 (0.023,0.067) (0.021,0.043) (0.022,0.030) (0.021,0.026) (0.018,0.027)
Poly (0.45) 0.040 0.064 (0.024,0.064) (0.019,0.038) (0.022,0.032) (0.019,0.028) (0.018,0.027)
Poly (0.5) 0.040 0.064 (0.024,0.057) (0.019,0.039) (0.022,0.033) (0.018,0.028) (0.015,0.027)

Poly (0.65) 0.040 0.064 (0.022,0.060) (0.017,0.043) (0.020,0.032) (0.017,0.026) (0.015,0.027)
Poly (0.8) 0.040 0.064 (0.020,0.077) (0.016,0.036) (0.016,0.028) (0.016,0.022) (0.015,0.027)
Poly (0.9) 0.040 0.064 (0.022,0.057) (0.016,0.038) (0.019,0.028) (0.015,0.024) (0.015,0.044)
Symmetric 0.040 0.064 (0.023,0.084) (0.012,0.037) (0.012,0.036) (0.008,0.021) (0.010,0.029)
Asymmetic 0.040 0.064 (0.035,0.061) (0.017,0.044) (0.023,0.042) (0.017,0.032) (0.021,0.036)
Log (0.05) 0.040 0.064 (0.019,0.061) (0.016,0.040) (0.016,0.029) (0.015,0.023) (0.015,0.027)
Log (0.15) 0.040 0.064 (0.020,0.072) (0.016,0.041) (0.016,0.029) (0.015,0.022) (0.015,0.027)
Log (0.25) 0.040 0.064 (0.019,0.049) (0.016,0.036) (0.016,0.029) (0.015,0.022) (0.015,0.027)
Log (0.3) 0.040 0.064 (0.019,0.055) (0.016,0.034) (0.016,0.029) (0.015,0.022) (0.015,0.027)

Tab. 4.2: The value in brackets are the 90% coverage intervals of the asjnmptotic standard deviations based on the fitted models, disre­
garding the lower and upper 5%. For the Local Whittle and GPH methods, the asymptotic standard deviation depends only 
on m, which was fixed, and is thus quoted as a single number.
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0.5, the results show a stronger positive bias for the cusp map, suggesting a slower 
convergence to the asymptotic results.

Since the polynomial map with a / 0  have spectral densities of a more standard 
form, it may reasonably be expected that the estimates from these maps outperform
the others. For a > 0.5, the values of the sample means and y/MSEs reported in 
table 4.1 shows the empirical evidence appears to support this claim. The means for 
the local Whittle, GPU and FExp methods for the polynomial map with a =  0.65 
and 0.9 in particular seem very close to the asymptotic results. The means for the 
polynomial map with a =  0.8 seem negatively biased for all methods, although it is 
not clear why this is the case. The FAR method, using both AIC and BIC, seems 
to perform well in terms of mean for the polynomial map with a  =  0.65, although 
higher values of a  leads to larger negative bias.

The means for all of the maps for the FARIMA method using BIC seem bounded 
away from d =  0 and d =  0.5, producing positive bias for the cusp maps and 
polynomial map with a  < 0.5 and negative bias for a >  0.65 and the logarithmic 
maps.

The histograms of the estimates of d for the FAR method using AIC and the 
FEXP are given in figures 4.3 and 4.4 respectively. The histograms for the FAR 
method using BIC are similar to those in figure 4.3 and thus omitted. As semi- 
parametric methods, these estimates are expected to be more robust than the FARIMA 
method to misspecification.

The estimates found for the FAR method using AIC still show signs of heavy 
tails and bimodal distributions and are very similar in appearance to those for the 
FARIMA method using BIC. Note in particular that the same difficulties occur for 
the asymmetric cusp map and that as with the FARIMA method, the distributions 
become more irregular for the polynomial map as a  increases. The FAR method 
using BIC shows less signs of heavy tails and thus comparing like for like the FAR 
method does reduce these difficulties compared to the FARIMA method, as expected.

Although some skewness can be seen, the distributions for the FEXP estimates 
are more regular for all of the maps, showing no signs of bimodal distributions. 
They are not, however, normally distributed. Indeed, the Kolmogorov-Smirnov test 
for Normality shows that the distributions of the estimates for all methods over all 
maps are significantly non-Gaussian at the 0.1% significance level.

As with the FARIMA method, table 4.1 shows the mean and standard deviation
of d to increase with a  for the polynomial map and the mean to decrease with 0  for 
the logarithmic map. There are also signs of the standard deviation also decreasing 
with 0.

To investigate more closely the difference in behaviours of the FAR and FExp 
methods, a single orbit of length 10000 from the polynomial map with a  =  0.9 is 
taken. For this orbit, the FExp estimate of d is 0.46 with s fitted as 5, whilst the 
FAR estimate using AIC is -0.48, with p fitted as 5. The raw periodogram along with 
the theoretical spectral densities for the fitted FAR model using AIC and the fitted 
FExp model are shown in figure 4.5. It can be seen that despite giving an estimate
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Log Frequency
Fig. 1.5: Log-Log plots of the raw spectral density from an orbit of the polynomial map with 

a <).!). The bold line is the theoretical spectrum from the fitted FExp model and 
tin- line with circles is from the fitted FAR model using A1C.
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of d as -0.48 and thus suggesting strong intermediate memory, the FAR spectral 
estimate still appears close to the raw periodograin, although a small decrease can 
be seen near A =  0. Taking the

V m s e  = N
1

5000

5000

E M j W t w
j= 1

where l(\ j) is the raw periodogram gives the \fKTSE for the FAR spectral es­
timate as 4.06 whilst the \/MSE for the FExp estimate is 5.51, thus the FAR 
spectral estimate indeed seems to fit the periodogram better. This suggests the 
short memory component of the FAR model fitted is attempting to model the long 
memory behaviour, altering the estimated value of d. A similar comment was made 
by Bhansali and Kokoska [2001a], which suggested extra parameters caused by over­
fitting attempted to model the long memory, altering the estimate of d.

The histograms for the non-parametric methods are close to normal in appearance 
and thus omitted. In replacement, normal Q-Q plots are provided for the local 
Whittle method in figure 4.6. The Q-Q plots for the GPH method are similar in 
appearance and thus not shown.

It can be seen from figure 4.6 that the distributions of the estimates from the 
local Whittle method and, although not shown, the GPU method are close to normal 
other than near the tails. It can also be seen that the shape of the distributions docs 
not greatly vary between maps, nor are they strongly dependent on a or /?. This gives 
further evidence to the greater robustness of non-parametric methods in comparison 
to parametric and semi-parametric methods.

However, from table 4.2 it can be seen that as with the other methods, the stan­
dard deviations of the non-parametric methods increase with a for the polynomial 
map. It can also be seen that for the majority of maps, the standard deviations for 
the non-parametric method are greater than those for the FAR method using BIC 
and the FEXP method, whilst table 4.1 shows the mean biases are often of similar 
magnitude.

4.2 Further Simulation Studies

Since the results of the simulation study carried out in section 4.1 generally shows 
a lack of convergence of the orbits from the chaotic intermittency maps to their 
asymptotic properties values of d, two further simulation studies are carried out 
here to provide further empirical evidence that these asymptotic theories hold.

These new simulation studies follow the same general structure of the previous 
simulation study, described in section 4.1.1. The deviations from this outline for 
each are explained.
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Fig. 4.6: The normal Q-Q plots of the estimates of d for the local Whittle method
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4.2.1 Extended Length Simulation Study

The extended length simulation study attempts to discover if the estimated values of 
d tend to converge to the asymptotic results as the series length increases. As such, 
the initial values for each simulation were generated as described in section 4.1.1 and 
the first M  =  107 — 104 iterations were once again disregarded. The length of the 
orbit retained for s t u d y ,w a s  then allowed to increase up to T =  106 in 10 steps of 
105. Due to the large computational time required, only 100 repetitions of each map 
were generated and only the local Whittle and GPH methods of estimation were 
applied, as these require the least computational time. For both of these methods
m was taken as T 1/2. The results for both the local Whittle and GPU methods in 
terms of mean, standard deviation and distribution are very similar and thus only 
the results for the GPII method are reported.

Figure 4.7 shows the development of the normal Q-Q plots for the GPII estimates 
from the logarithmic map with ¡3 =  0.05 as T  increases. It can be seen that as T  
increases the distributions become closer to normality and there is no significant 
evidence to reject normality of the distribution at the 0.1% significance level for 
T  =  1,000,000. This is also true for the estimates from the other maps, the plots 
for which are omitted.

Figure 4.8 shows the mean values of the GPII estimates for the polynomial maps 
as T  increases. It can be seen that for the polynomial map with a  <  0.5 the estimates 
do not appear to be decreasing towards 1 — l/2 a , but instead seem to remain near 
zero as T  increases. Hence, even at T =  1,000,000 no evidence of intermediate 
memory can be seen.

For the polynomial map with a  =  0.5 the GPII estimates do appear to decrease 
slightly towards zero, but at a very slow rate. Since the theoretical spectral den­
sity for this map still has a singularity at zero this may be expected. Neither the 
local Whittle or the GPII methods are applicable when such boundary behaviour is 
present. Chapter 5 investigates the bias caused by the boundary behaviour further.

For the polynomial map with a  > 0.5 the GPII estimates seem to tend towards 
the asymptotic values of d. Although the mean estimates are still below the values 
given by the asymptotic theory, this value is consistently within 1 standard deviation 
of the mean. This suggests that the asymptotic results of the polynomial map with 
a  > 0.5 seem to hold and also that the GPII method can provide unbiased estimates 
of d for these non-linear, non-Gausian series. The same is true for the local Whittle 
estimates.

Figure 4.9 shows the mean values of the GPII estimates for the symmetric and 
asymmetric cusp maps and the logarithmic maps as T  increases. Similar to the 
polynomial map with a  =  0.5, the GPII estimates for the asymmetric and symmetric 
cusp maps appear to possibly be decreasing towards the asymptotic value of d =  0, 
but at a very slow rate. As with the polynomial map with a  =  0.5, the cusp maps 
possess lower boundary long memory behaviour, or ‘weak’ long memory, which the 
GPH and local Whittle methods are not designed for, explored further in chapter 5.
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M
ea

n 
Es

tim
at

ed
 d

 
M

ea
n 

Es
tim

at
ed

 d

4. Estimation of the Correlation Decay Rates for Chaotic Intermittency Maps 105
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4. Estimation of the Correlation Decay Rates for Chaotic Intermittency Maps 106

The GPH estimates for the logarithmic maps appear to increase with T, reducing 
the magnitude of the bias, but again at a slow rate. The results also still show 
dependency on (3. The logarithmic maps display behaviour at the upper boundary 
of long memory and the amount of bias accounted for by this behaviour will be 
investigated further in Chapter 5.

Table 4.3 shows the sample standard deviations for the GPU estimates as the se­
ries length increases. The asymptotic values quoted are n/\/24m, where m has been 
chosen as m =  'i'1/ 2, see Ilurvich et al [1998]. For the polynomial map with a =  0.3 
the sample standard deviations are very close to those suggested by the asymptotic 
theory and indeed seein to get closer as T  increases. In general, the sample standard 
deviations of the local Whittle estimates from the chaotic intermittency maps are 
very similar to those reported in table 4.3 for the GPII estimates with the ratio of 
the two seeming to tend towards 1 and are thus omitted. The only exception to this 
is for the polynomial map with a =  0.3, for which the ratio is close to the asymptotic
ratio of 7t/\ /6. The results thus seem to show that the asymptotic theory regarding 
the standard deviations for both the GPII method and the local Whittle method 
still holds for the polynomial map with a •— 0.3. This also suggests that the large 
bias of the estimates may be due more to a lack of convergence of the map to its 
theoretical properties than a failure of the estimation methods.

For the other chaotic intermittency maps, including the polynomial maps with 
a >  0.45, although the sample standard deviations seem to decrease as T  increases, 
they do so at a slower rate than suggested by the asymptotic theory. For the poly­
nomial map with a >  0.5, the decrease in sample standard deviations suggests 
consistency of the GPII and local Whittle estimates still holds.

The standard deviations for the polynomial maps appear to be smaller than the 
other maps. The standard deviations for the logarithmic maps are seen to be the 
largest and appear to increase with ¡3.

4.2.2 Systematic Sampling Simulation Study

Systematic sampling of a series refers to producing a new series by taking every nth 
observation of the original series. Work done by Chambers [1998] shows this new 
series will have the same asymptotic d value as the original. Ilwang [2000], however, 
shows a reduction in the estimated d for a finite sample can be expected.

In the chaotic intermittency maps, the main effect of systematic sampling will 
be to break up long periods in the laminar region. The overall amount of time spent 
in the laminar regions should remain approximately unchanged and the asymptotic 
values of d will be unaffected, but the reduction of long periods of consecutive values 
within the laminar region may improve the behaviour of the estimates.

The initial values for each simulation were generated as described in section 4.1.1. 
The first A/ =  107 — 104 iterations were once again disregarded. The length of the 
orbit retained for study, T, was then taken as T — 106. Two new series were then



Length 1 in 10,000s
Map 1 10 20 30 40 50 60 70 80 90 100

Poly (0.3) 0.074 0.039 0.033 0.026 0.024 0.025 0.025 0.027 0.022 0.022 0.021
Poly (0.45) 0.097 0.072 0.066 0.062 0.070 0.067 0.062 0.062 0.064 0.058 0.056
Poly (0.5) 0.106 0.076 0.071 0.070 0.069 0.064 0.059 0.055 0.055 0.056 0.056
Poly (0.65) 0.122 0.091 0.090 0.086 0.082 0.076 0.077 0.074 0.074 0.076 0.074
Poly (0.8) 0.167 0.075 0.069 0.058 0.060 0.059 0.059 0.056 0.053 0.052 0.047
Poly (0.9) 0.124 0.057 0.056 0.050 0.049 0.053 0.051 0.048 0.046 0.049 0.049
Symmetric 0.119 0.091 0.084 0.079 0.073 0.070 0.067 0.066 0.068 0.070 0.068

Asymmetric 0.111 0.079 0.070 0.070 0.060 0.057 0.058 0.063 0.061 0.058 0.057
Log (0.05) 0.167 0.106 0.097 0.100 0.091 0.092 0.077 0.073 0.070 0.071 0.067
Log (0.15) 0.174 0.105 0.107 0.105 0.101 0.102 0.090 0.097 0.084 0.085 0.083
Log (0.25) 0.179 0.115 0.119 0.108 0.109 0.111 0.100 0.096 0.095 0.097 0.096
Log (0.3) 0.180 0.117 0.117 0.109 0.111 0.111 0.103 0.099 0.098 0.100 0.099

Asymptotic 0.064 0.036 0.030 0.027 0.025 0.024 0.023 0.022 0.021 0.021 0.020

Tab. 4.3: The sample standard deviations for the GPH estimates as the series length increases. The asymptotic values are 7r/\/24m and
m = r 1/2.
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taken from this orbit. The first, sj°, was created by taken every 10i/l observation 
of the original series up to T — 105. The second, s400, was created by taking every 
100^ observation of the original series up to T  =  106. The lengths of each of sj° 
and st100 are thus 104. For each of the maps, 1000 such s}° and s£100 series were 
generated, and the long memory parameter for each was recorded using the methods 
as described in section 4.1.1.
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Fig. 4.10: The histograms of the estimates of the long memory parameter for the s£10̂ series 
from the polynomial map with a =  0.65

Figure 4.10 gives the histograms of the estimates of the long memory parameter

for the Sj10) series from the polynomial map with a  =  0.65. In comparison with the 
results given in section 4.1, the FAR and FARIMA methods now appear to converge
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much more to a single value of d. The distributions of the FAR and FARIMA esti­
mates seem much closer to the distribution of the FExp estimates. The distributions 
of the local Whittle and GPII estimates appear to have become more asymmetric, 
with positive skew. It can be seen that all of the distributions are significantly differ­
ent from normal, particularly in the tail behaviour. The distributions for the other 
maps are similar in appearance, being significantly different from normal with heavy 
tails and thus the figures are omitted.

The sample means of the estimates of d for the s[10̂  and s[100̂ series are given 
in table 4.4. For the polynomial map with a  <  0.5, the sample means from both
the s<l0> and s[100̂ series are close to zero for all methods. This is similar to the 
results given in section 4.1 and still no evidence of intermediate memory is seen. For 
the polynomial map with a  =  0.5, the sample means are also close to zero. This 
reduction in bias is expected, however, by the work of Ilwang [2000], which shows 
systematic sampling reduces the estimated d for a finite sample. Comparison of the

sample means for all the maps for the series with the sample means from the

sj100̂ series shows a reduction in the sample means of the estimates in almost every 
case.

For the polynomial map with a >  0.5, the sample means still appear to increase 
with a, although a negative bias can be seen throughout. Note, that for the polyno­
mial map with a  =  0.8, the sample means have actually increased for the s[10̂ series 
compared to those reported in section 4.1, causing a reduction in bias. The sample 
means for the estimates using the FARIMA (AIC) method have also increased for 
the polynomial maps with a =  0.65 and a — 0.9 showing better convergence and 
reduction in bias. Such results are not anticipated by the general theory of the effect

- 9 •
of systematic sampling.

For both the cusp maps, the sample means of the local Whittle, GPU and FExp 
estimates have decreased significantly compared to those reported in section 4.1.

The sample means for the s|100̂ series are close to zero for all of the estimation 
techniques.

The y/MSE for the estimates for the sj10' and Sj100̂  series are given in table 
4.5. It can be seen for the polynomial map with a  <  0.5 the y/MSE has been 
reduced for every estimation method, except the FARIMA (AIC) method for the 
polynomial map with a  =  0.3 for which it has remained almost the same. This 
result is not surprising however, since the original estimates showed positive bias 
and systematic sampling has been shown to reduce estimates. More significantly,
systematic sampling has reduced the y/MSE for all of the estimation methods for
the polynomial map with a  =  0.8 for the sj10̂ series and the majority of estimates 
from the FARIMA and FAR methods using both AIC and BIC and the FExp method 
have also shown reduction in y/MSE for the polynomial maps with a =  0.65 and



Map Asymptotic Mean for the Estimated d for series.
d Local Whittle GPU FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) -0.67 -0.008 0.003 -0.001 0.023 0.004 0.023 0.008
Poly (0.45) -0.11 0.012 0.016 0.015 0.068 0.038 0.070 0.053
Poly (0.5) 0 0.040 0.042 0.038 0.097 0.068 0.098 0.084
Poly (0.65) 0.23 0.167 0.166 0.109* 0.181 0.162 0.184 0.196
Poly (0.8) 0.38 0.297* 0.302* 0.151* 0.241* 0.236* 0.254 0.300*
Poly (0.9) 0.44 0.357 0.369 0.179* 0.272 0.249 0.286 0.360
Symmetric 0 0.114 0.103 0.075* 0.191 0.136 0.209 0.189

Asymmetric 0 0.118 0.106 0.043* 0.146* 0.125* 0.219* 0.204
Log (0.05) 0.5 0.283 0.289 0.097* 0.197 0.180 0.196 0.275
Log (0.15) 0.5 0.254 0.261 0.072* 0.183 0.166 0.180 0.253
Log (0.25) 0.5 0.223 0.230 0.065* 0.163 0.164 0.165 0.227
Log (0.3) 0.5 0.217 0.224 0.064* 0.149 0.135 0.157 0.220

Map Asymptotic Mean for the Estimated d for s[1U0̂ series.
Poly (0.3) -0.67 -0.007 0.002 -0.008 -0.001 -0.003 -0.001 -0.001
Poly (0.45) -0.11 -0.006 0.004 -0.003 0.005 0.001 0.006 0.004
Poly (0.5) 0 -0.003 0.008 0.000 0.013 0.008 0.012 0.012
Poly (0.65) 0.23 0.071 0.076 0.039 0.070 0.078 0.071 0.088
Poly (0.8) 0.38 0.246 0.255 0.097* 0.184 0.179 0.183 0.233
Poly (0.9) 0.44 0.325 0.340 0.134* 0.234 0.231 0.248 0.310
Symmetric 0 0.022 0.026 0.019 0.053 0.043 0.054 0.054

Asymmetric 0 0.024 0.029 0.026* 0.083* 0.053* 0.082* 0.072
Log (0.05) 0.5 0.248 0.259 0.054 0.152 0.158 0.163 0.237
Log (0.15) 0.5 0.213 0.224 0.033 0.131 0.148 0.149 0.211
Log (0.25) 0.5 0.181 0.189 0.030 0.107 0.124 0.121 0.185
Log (0.3) 0.5 0.167 0.174 0.029 0.097 0.119 0.110 0.168

Tab. 4.4: The sample means of the estimates of d for the s£10) and s[100) series. The starred values are those which are have increased 
after systematic sampling has been applied.
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\/MSE of d for (10)st senes.
Map Local Whittle GPU FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) 0.661* 0.674* 0.669 0.690* 0.672* 0.689* 0.675*
Poly (0.45) 0.140* 0.154* 0.158* 0.182* 0.160* 0.183* 0.169*
Poly (0.5) 0.096* 0.119* 0.109* 0.107* 0.100* 0.103* 0.097*

Poly (0.65) 0.136 0.169 0.187* 0.073* 0:155 0.084* 0.076*
Poly (0.8) 0.128* 0.154* 0.298* 0.166* 0.250* 0.168* 0.100*
Poly (0.9) 0.120 0.135 0.346* 0.218* 0.324 0.216* 0.113
Symmetric 0.152* 0.161* 0476* 0.202* 0.180* 0.211* 0.198*
Asymmetric 0.156* 0.164* 0.183* 0.207* 0.183* 0.231* 0.218*
Log (0.05) 0.266 0.284 0.442* 0.323 0.398 0.347 0.252
Log (0.15) 0.295 0.310 0.464* 0.339 0.406 0.360 0.274
Log (0.25) 0.324 0.337 0.467* 0.355 0.394 0.367 0.299
Log (0.3) 0.332 0.344 0.466* 0.370 0.427 0.376 0.307

y/MSE of d for (100)st series.
Map Local Whittle GPH FAREMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) 0.661* 0.673* 0.661* . 0.666* 0.664* 0.666* 0.666*
Poly (0.45) 0.118* 0.139* 0.121* 0.117* 0.116* 0.118* 0.118*
Poly (0.5) 0.052* 0.076* 0.063* 0.020* 0.031* 0.018* 0.027*
Poly (0.65) 0.194 0.207 0.219* 0.170 0.181 0.168 0.159
Poly (0.8) 0.177 0.196 0.326* 0.214 0.281 0.226 0.170
Poly (0.9) 0.155 0.166 0.364* 0.243 0.320 0.236 0.164
Symmetric 0.087* 0.103* 0.090* 0.061* 0.076* 0.065* 0.075*

Asymmetric 0.083* 0.098* 0.100* 0.089* 0.088* 0.090* 0.088*
Log (0.05) 0.301 0.316 0.480 0.375 0.410 0.376 0.293
Log (0.15) 0.334 0.344 0.495 0.392 0.411 0.380 0.319
Log (0.25) 0.365 0.375 0.494 0.410 0.425 0.405 0.344
Log (0.3) 0.375 0.385 0.496 0.416 0.423 0.413 0.357

Tab. 4.5: The %/MSE for the estimates for the s[10' 
systematic sampling.

and S|100> series. The starred values represent a \/MSE which has decreased after
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a  — 0.9. The results from section 4.1 showed a negative bias for these maps and 
systematic sampling would be expected to increase this bias.

For the cusp maps, Table 4.5 shows the \/M SEs have all been reduced by sys­
tematic sampling for the both the cusp maps and table 4.6 shows a reduction in 
variance for FARIMA and FAR methods using both AIC and BIC and the FExp 
method. This further suggests the benefits of systematic sampling to reduce the 
length of consecutive values in the laminar region.

The sample standard deviations for the estimates for the and s[100̂  series 
are given in table 4.6. The magnitudes of the sample standard deviations are ap­
proximately the same for both systematic sampling approaches. For the polynomial 
maps it can be seen that systematic sampling gives a reduction in sample standard 
deviations for almost every case. This reinforces the idea that too many consecutive 
values in the laminar region leads to the large variances shown in section 4.1 and 
that systematic sampling can reduce this variability.

Apart from slight increases for the FARIMA method using AIC for the s[10̂ 
series, the sample means of the estimates for the logarithmic maps given in table
4.4 show a decrease compared to those given in section 4.1, which increases the
negative bias. Tables 4.5 and 4.6 also show increases in the \/MSE and sample 
standard deviations for the local Whittle, GPU, FAR and FExp estimates. For the 
FARIMA method using both AIC and BIC reductions in the \/MSE and sample 
standard deviations can be seen, implying systematic sampling can still improve these 
estimates. However, in general systematic sampling does not appear to improve the 
estimates for the logarithmic maps, suggesting large sequences of consecutive values 
within the laminar region are not the main cause of difficulty in estimating d for 
these maps.

4.3 Conclusions

As previously mentioned by Bhansali and Holland [2008b], the finite sample proper­
ties of the chaotic intermittency maps only partly agree with the asymptotic theory. 
In addition, the methods of estimating d applied are not suitable for the boundary 
cases of long memory displayed by several of the maps.

For the polynomial map with a < 0.5, no empirical evidence of the theoretical 
intermediate memory was found here or in the simulation studies of Bhansali, Hol­
land and Kokoska [2006] and Bhansali and Holland [2008b]. The extended length 
simulation study, section 4.2.1, showed that if the orbits do tend towards intermedi­
ate memory they appear to do so at a very slow rate, with no signs at a series length 
of 106. It seems plausible that although the asymptotic theory has shown regions of 
the polynomial maps with a <  0.5 which possess intermediate memory, there exist 
regions of the maps that possess short memory and this short memory dominates.

For the polynomial map with a  =  0.5 the orbits possess ‘weak’ long memory, with



Estimated Standard Deviations o f d for series.
Map Local Whittle GPH FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) 0.046* 0.070* 0.068* 0.013* 0.029* 0.012* 0.017*
Poly (0.45) 0.066* 0.088* 0.096* 0.034* 0.058* 0.026* 0.039*
Poly (0.5) 0.087* 0.112* 0.102* 0.045* o:o73* 0.030* 0.048*

Poly (0.65) 0.120* 0.156* 0.142* 0.054 0.139* 0.070* 0.068
Poly (0.8) 0.102* 0.136* 0.1§6* 0.098* 0.207* 0.117* 0.066*
Poly (0.9) 0.082* 0.111* 0,221* 0.133* 0.258* 0.147* 0.075*
Symmetric 0.101 0.123 0.160* 0.066* 0.117* 0.029* 0.059*

Asymmetric 0.101 0.125 0.178* 0.147* 0.133* 0.073* 0.078*
Log (0.05) 0.154 0.190 0.182* 0.112* 0.237 0.169 0.113
Log (0.15) 0.162 0.197 0.181* 0.119* 0.230 0.165 0.118
Log (0.25) 0.168 0.203 0.171* 0.113* 0.205 0.149 0.121
Log (0.3) 0.174 0.204 0.163* 0.119* 0.222 0.154 0.127

Estimated Standard Deviations o f d for series.
Map Local Whittle GPH FARIMA(AIC) FARIMA(BIC) FAR(AIC) FAR(BIC) FEXP

Poly (0.3) 0.045* 0.070* 0.055* 0.008* 0.020* 0.008* 0.016*
Poly (0.45) 0.052* 0.077* 0.054* 0.011* 0.030* 0.015* 0.025*
Poly (0.5) 0.052* 0.076* 0.063* 0.016* 0.029* 0.013* 0.025*
Poly (0.65) 0.110* 0.138* 0.106* 0.053* 0.096* 0.053* 0.070
Poly (0.8) 0.122* 0.155* 0.169* 0.097* 0.201* 0.119* 0.093*
Poly (0.9) 0.099* 0.129 0.190* 0.121* 0.239* 0.130* 0.093
Symmetric 0.084* 0.100* 0.089* 0.029* 0.063* 0.036* 0.052*

Asymmetric 0.080* 0.094* 0.097* 0.034* 0.070* 0.037* 0.051*
Log (0.05) 0.165 0.205 0.178* 0.139* 0.227 0.166 0.129
Log (0.15) 0.171 0.207 0.164* 0.132* 0.211 0.146 0.134
Log (0.25) 0.177 0.209 0.151* 0.118* 0.198 0.144 0.139
Log (0.3) 0.173 0.204 0.154* 0.105* 0.185 0.138 0.131

Tab. 4.6: The sample standard deviations for the estimates for the s.( 10) and st(100) series. Co
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a singularity in the spectral density despite a d value of zero. It is suggested that 
the positive bias of the estimates of d for this map are caused by the inapplicability 
of the estimation techniques to these type of boundary long memory behaviour and 
estimates do seem to improve as the series length increases. This is discussed further 
in Chapter 5. For the polynomial map with a  >  0.5, the empirical evidence generally 
seems to agree with the asymptotic theory that d =  1 — l/2a .

For the asymmetric and symmetric cusp maps, the asymptotic theory again sug­
gests ‘weak’ long memory of the same type as that for the polynomial map with 
a  =  0.5. Although this may explain some of the positive bias for these maps, this 
bias tends to be much larger than for the polynomial map with a  =  0.5, suggesting 
another source of bias is also present. The simulation studies of Bhansali, Holland 
and Kokoska [200G] and Bhansali and Holland [2008b] show for finite samples the 
periodogram near zero has steeper gradient than allowed for by the theory, the rel­
ative frequencies near the fixed point are often higher than the theory suggests and 
the ACF is larger at the lower lags than the other chaotic intermittency maps. This 
suggests a slow convergence rate of the maps to the asymptotic properties, possibly 
due to higher correlations at lower lags. The extended length simulation study, see 
section 4.2.1, shows the estimates appear to tend towards zero at a slow rate, whilst 
the systematic sampling study, see section 4.2.2, shows removal of the short range 
correlations can improve the estimates significantly.

The logarithmic map produces orbits at the upper boundary of long memory, 
being stationary despite a value of d =  0.5. As with the lower boundary case, 
the estimation techniques applied are not designed for this situation which could 
account for the negative bias. This is also discussed further in Chapter 5. However, 
since the magnitude of this bias seems similar to the cusp maps, it suggests another 
cause of bias may also be present. The simulation studies of Bhansali, Holland 
and Kokoska [200G] and Bhansali and Holland [2008b] suggest the finite sample 
behaviour only partly agrees with asymptotic theory, but since explicit forms of the 
ACF and spectral density are unknown this is difficult to quantify. The extended 
length simulation study does give some suggestion that the asymptotic results may 
hold, but that the rate of convergence is very slow.

The distributions of the estimates in all cases were not normal for T  < 106 and 
the variances were generally much larger than the asymptotic theory would suggest. 
However, as seen in the extended length simulation study, the variances for the local 
Whittle and GPU estimates were seen to decrease as the series length increased, 
although at a rate generally slower than suggested by the asymptotic theory, and 
the distributions appear to become more regular. This suggests for the local Whittle 
and GPU methods some form of the consistency and possible asymptotic normality 
of the estimates may still hold for deterministic non-linear non-Gaussian chaotic 
intermittency maps, although at a slower rate. For the polynomial map with a =  0.3, 
the asymptotic variances indeed appeared to hold. However, the persistence of the 
bias term when boundary long memory behaviour is present suggests these methods 
are not suitable in these situations, see Chapter 5 for further discussion.
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The presence of the laminar regions caused difficulties in the FARIMA and 
FAR methods, generally giving poorer performance compared to the other esti­
mation methods. Often, the fitted model explained the long memory by a near 
noil-stationary short memory component and a negative value of d. This resulted in 
heavy tailed or even bimodal distributions of the estimates. The systematic sampling 
study showed the distributions could also be improved in terms of bias, standard de­
viation and y/MSbJ, without changing the frequency of observations in the laminar 
region and that the difficulties arise due to long periods of consecutive values in 
the laminar region. The presence of such behaviour in actual time series should be 
obvious to find and this serves as a warning against use of these methods in such a 
situation.

The FExp method, although also producing estimates with non-Gaussian and 
large standard deviations and biases, generally outperformed the other methods in
terms of bias, standard deviation and VM SB. theoretical justification as to why 
this method did not suffer as much from the same difficulties as the FAR method 
requires further work, although it is suggested that the effect of the laminar region 
is more apparent in the time domain and thus has more noticeable effect on the 
methods based on a time domain representation of the series.



5. DUAL PARAMETER LONG MEMORY MODEL

The standard methods of estimating the long memory parameter of a series, {x £}, 
discussed in section 2.3, assume the spectral density of the series, f x to be of the 
form

where B (A) is a positive constant or bounded function as A —+ 0. The frequency 
analysis of the chaotic intermittency maps carried out by Bhansali and Holland 
[2008b], as discussed in section 3.2, shows the assumption that B (A) is bounded at 
A =  0 does not hold for the symmetric and asymmetric cusp maps, the logarithmic 
maps or the polynomial map with a  =  0.5. The spectral density of an orbit, wt, 
from any of these maps can be generalised as

where 7 is an additional parameter and B {A) is a positive constant or bounded 
function as A —► 0 as before, see section 3.2. The function log(l/A ) is slowly varying 
but unbounded at A =  0. Thus, the extra parameter, 7, efTects the rate at which the 
spectrum approaches infinity at zero and hence influences the long memory behaviour 
of the process. This parameter, 7, may thus be considered a second long memory 
parameter.

In particular, when d =  0 and 7 > 0, the spectrum will still tend to infinity as 
A tends to zero, though at a logarithmic rate rather than the standard polynomial 
rate when d G (0,0.5). The autocorrelations of the series will thus not be absolute 
sumable and hence the series will still possess long memory. This is the case for 
orbits from the cusp maps and the polynomial map with a  =  0.5, which have, 
asymptotically, d =  0 and 7 =  1, as the orbit length n —► 00. This boundary 
behaviour of long memory can be referred to as ‘weak’ long memory. Note, when 
d =  0, if 7 =  0 the spectrum is bounded above and below at A =  0 and the process 
has short memory, whilst if 7 < 0, the spectrum will tend to zero as A —> 0, which 
could be considered a form of ‘weak’ intermediate memory. The behaviour at this 
boundary condition is thus decided by the value of 7.

Alternatively, the boundary condition when d =  0.5 is normally non-stationary. 
However, as mentioned in Bhansali and Holland [2008b], when d =  0.5 and 7 <  0,

/* (A) ~  \~2dB(\) as A —► 0, (5.1)

as A —> 0 (5.2)
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the scries will still be stationary, as is the case for orbits from the logarithmic map, 
with asymptotic values of d =  0.5 and 7 =  —1 — /?asra—+oo. This upper boundary 
condition is referred to as ‘strong’ long memory. For 7  > 0, this upper boundary 
will be non-stationary as in the standard case.

Note, also, equation 5.2 includes the standard form given in equation 5.1 as a 
special case where 7 =  0. For d e (0,0.5), a value of 7 < 0 reduces the amount of 
long memory, whilst a value of 7 > 0 increases it.

Previous works by Martin and Eccleston [1992], Martin and Walker [1997] and 
Palma [2007], page 61, introduced processes which produced ‘weak’ long memory. 
Other than the logarithmic map, very few processes currently considered in the 
literature appear to possess upper boundary long memory. The process studied 
by Martin and Eccleston [1992] and Martin and Walker [1997] is defined by its 
correlation structure, which is such that for some constant A, where 0 < A <

From Theorem 4.1 of Bhansali and Holland [2008b], the spectral density of this 
process near zero is of the form

(21og(2) ) -1,

(5.3)

Comparison of this with equation 5.2 shows this process has values of d =  0 and
7 =  1 and thus admits ‘weak’ long memory behaviour.

The process given by Palma [2007], page 61 is defined by the Wold expansion

OO

J — l

where {47} is white noise. Palma [2007] gives its ACF is of the form

(5.4)

and

as u —* 00.



5. Dual Parameter Long Memory Model 118

Application of Theorem 2.15 on page 188 of Zygmund [1988] then gives the 
spectral density of this process as

• / ( A ) ~ B l o g Q ^  , A —► 0,

for some bounded B. Comparison of this with equation 5.2 shows this process 
has values of d =  0 and 7 =  2, also admitting ‘weak’ long memory behaviour.

A similar process considered in section 5.4 has been developed by Prof. R. 
Bhansali and is included here with his permission. It is defined by its spectral 
density

/(A ) =  log ^2sin > A e [ —7r,7r]. (5.5)

The following theorem, also by Prof. R. Bhansali, gives the ACF of this process.

Theorem  5.0.1. For a process with spectral density defined by equation 5.5, the 
ACF is defined by

R (  o) =
2tt3I P

R( 1) =  4tr,

R(u +  1) =
u

u +  1
R(u) + 4 7 T

2 u ■+■ 1
u(u +  l ) 2 ’

u > 2,

and, for some bounded B, as u —► oo,

R{u) ~  B log(tt)
u

Similar to the process of Palma [2007], this has values of d =  0 and 7 =  2 and 
thus admits ‘weak’ long memory.

Not considered by these authors are methods of estimating d and 7, and the 
potential bias of estimating d using standard estimation techniques when 7 /  0. 
The results of Chapter 4 showed this bias could be substantial. Further study of 
these biases could thus be an important issue for consideration. In section 5.1, the 
bias created in estimating d for the GPII method when falsely assuming 7 =  0 is 
given and the method is extended to include this extra parameter. Similar treatment 
is then given to the Local Whittle method of estimating d in section 5.2.

Section 5.3 introduces a new extension to the FARIMA model which allows for 
a second long memory parameter. This model allows for both ‘weak’ and ‘strong’ 
long memory behaviour and includes the FARIMA model as a special case.
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5.1 Dual Parameter GPH M ethod

This section introduces an extension of the GPU method of estimating d, described 
in section 2.3.2, to include the extra long memory parameter 7. To avoid confusion, 
the new extended method will be referred to as the dual parameter GPH (DGPIi) 
method whilst the GPI1 method previously presented will be referred to as the 
standard GPH method. After defining the DGPII method, Theorem 5.1.1 will extend 
the results of the asymptotic properties of the periodogram given by Robinson [1995a] 
for the case when 7 ^ 0 .

These properties will then be used in Theorem 5.1.3 to show the bias that occurs 
for the standard GPU estimates when 7 7̂  0. Theorem 5.1.4 will then show under 
certain conditions the new DGPII estimates of d and 7 are asymptotically consistent 
and normally distributed.

The standard GPII method of estimating d, described in section 2.3.2, estimates 
d from the linear regression equation

« / ( A , ) )  =  log(« (0 ))  -  dlog(A?)) +  +  l o g ( A ^ ) .

where 1(\j) is the periodogram function, with Aj — 2nj/n, j  £ ( / , . . . , m), 
log (R (A j)/il(0 )) is considered negligible, n is the series length and m/n —* 0, m —► 00 
as n —> 00. This regression equation comes from assuming the spectral density to be 
of the form given in equation 5.1, or equivalently by assuming 7 =  0 in equation 5.2, 
then taking logs.

Similarly, taking logs of equation 5.2 without this assumption on 7 and substi­
tuting in the periodogram leads to the equation

log(/(A j)) =  log(R(0)) -  dlog(Xj) +  7log(log(-ji-)) +  iog( ^ ^ l )  +  iog( ^ ^ ) .

(5.6)
This extends the linear regression equation to include the 7 parameter. The 

DGPII method is then to use this equation to find d and 7 using standard linear 
regression techniques.

Now, let { j:( } be an observed time series of length n from a stationary process 
with spectral density /(A ). Then,

Wj = w(\j) = En
1 x *e

\j2rxn

it

is the discrete Fourier transform of the observed series and

h  =  H xj) =
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where the bar above the Wj represents the complex conjugate. Define Vj as

where D is a positive bounded constant. The following two assumptions now 
stated are direct extensions of those given by Robinson [1995a] whilst studying log 
periodogram regression in the standard case, and Theorem 5.1.1 below is an exten­
sion of Theorem 2 of Robinson [1995a], noting that the Vj given in that paper are 
equivalent to the Vj given in equation 5.7 with 7 =  0.

Assumption 5.1.1. There exists B E  (0, oo), d E  (—0.5,0.5), 7 E  (—00, 00), or d — 0.5 
with 7 E  (—oo,0), and a  E  (0,2] such that

/(A ) =  BX~M log Q y  +  O ^Xa~2d log as A -»  0,

Assumption 5.1.2. In a neighbourhood (0, e) of the origin, /(A ) is differentiable and

i m i  = as A —* 0,

The following Theorem holds with no further assumptions required on x t or /(A ).

Theorem  5.1.1. Let assumptions 5.1.1 and 5.1.2 hold. Then for any sequences of 
positive integers j  =  j(n ) and k =  k(n) such that j  > k and j/n —> 0 as n —* 00

(a) B{vjVj) =  1 + 0  ^  )

(b) B {v)) =  O ( M )

(c) E (vjvk) =  O

(d) E(vjVk) =  0

Proof. The proof is a direct extension of that given for Theorem 2 in Robinson 
[1995a], with the substitution of the assumptions 5.1.1 and 5.1.2 given here and re­
defined by equation 5.7. The following identities will be of use during the proof.

For any functions g(x)  and h{x),

< max
o < x < f c

\9(x)\ f  
Ja

|h (x ) | dx, (5.8)
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and

rb rb pb
I |#(.r) — h(z)| dx <  /  \g(x)\dx+ /  \h(x)\dx. (5.9)

J  a «/a J a

For a function, g{x),  such that g(x) >  0 for all x  € [a, c] and any constant b e 
(a, c), then

[  g(x)dx <  (  g(x)da 
Ja Ja

( 5 .1 0 )

and

J g(x)dx <  J g(x)dx.  ( 5 . 1 1 )

For an’ even function, such that g(x) =  g(—x),  and some real constants a,b and
c,

J g(x — c)dx =  J g(x  +  c)dx.

The mean value theorem states, for a function g(x),  there exists some constants 
a,b and c, such that a <  b < c  and

9'(b) =
g(c) -  g(a) 

c — a ( 5 .1 2 )

Now, take

and let

<Uk =  * - ' ( o 9 ( j ) A 7 ' , A 4- ' l o g ( l / A j ) ^ i o g ( , / A t ) 7 / 2 ,  ( 5 . 1 3 )

be proportional to Fejer’s kernel, such that the following properties hold for 
this kernel, see for example Anderson [1971] and Bruckner, Bruckner and Thomson
[1997].

n n *

E E e“ ' “ )A •i=i t=i

K(\) =  I < ( -A),

K ( A ) >  0 ,
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K(X)  <  ^ 2 ,  for all 0 <  |A| <  ir,

also

and

r  I<(X -  Xj)d\ =  1, V j € ( l , . . . , m )
J —7T

W i ) =  f "  f ( \ ) K ( X - \ j ) d \ .
J —  7T

The proof of part a) is to first show that

E(wjWj)  -  f {Xj)  =

(5.14)

(5.15)

(5.16)

(5.17)

and then to note that

-  BXJ2rl log ( i ) ’  =  O ( ( ¿ ) ‘  A j“ log ( i ) 1)  , 

from assumption 5.1.1.
Now, substitution of equation 5.16 into the left hand side of equation 5.17 and 

making use of the integral given in equation 5.15 being equal to 1 gives

(  f nj,f(X))K(X -  Xj)dXj -  f{Xj) =

r  {/(X) — f (Xj ) )K(X — Xj)dX. (5.18)
J —7T

Choose a positive constant e near zero, such that 2Xj <  e. The integral in 
equation 5.18 is separated into the following components

Each of these will be proved to be 0(rjjj), proving equation 5.17 and thus com­
pleting the proof of part a).

The identity given in equation 5.8 shows the component of the integral given in 
equation 5.18 over (—7r,e) U (e, 7r) is bounded by

I f + f I <  mnxK{X -  Xj) i  |/(A) -  f(Xj)\d\
\J~ir Je I J —K
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which is o(r]jj) by Lemma 5.1.1.
Next, using identity 5.9 the integral over ( s , —\j/2) can be split to give

f - X j / 2
< j e \ m \ K (x

p —Xj/2
-X ^ d X  +  lfiXj)] K(X — Xj)dX.

and the integral over (2Aj , s )  can be split to give

r  | <  r  ¡ m i m
J2Xj  J2Xj

K {  X Xj)dX.

These are both o(rijj) by Lemma 5.1.2
Making use of the mean value theorem, equation 5.12, implies

m - f ( x j ) =  r m x - X j ) t

for some b G ( A , A j )  and substitution of this into the component of the integral 
given in equation 5.18 over (Xj/2,2Xj), along with use of identity 5.8 gives the 
bound

f2Xj

JX j /2

Now,
t*

'“(vSSU  I ''« ')  -  (5-20)
from the form of / ' (A) given in assumption 5.1.2 and, using the upper limit of 

K(X — Xj) from equation 5.14,

L
max 

/2<X<2X
|/'(A)|) /  31A — Ajl K(X

•j /  J X j / 2
Xj)dX. (5.19)

-  Aj| A'(A -  Xj)dX — O (5.21)

see Robinson [1995a], with reference to Zygmund [1988] and Robinson [1994b]. 
Substitution of equations 5.20 and 5.21 into equation 5.19 gives

= O ( A r ' - ^ l o g O / A ^ ^ )  = 0(Vjj).
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To complete the proof of equation 5.17, note, from the form of / (A)  and f (Xj)  
given in assumption 5.1.1

and

(5.22)

/ V 2  \f(Xj)\dX =  | / ( A j ) |  f V 2 IdX =  O (A ]-2d log(l/Aj)7j  . (5.23)
J —\ j  /2 J  —Aj/2

Now, the use of the identity given in equation 5.8 gives

< max K i X - X j )  (|/(A)| +  |/(Aj)|) dA
|A1<Aj / 2  J - A j /2

and substitution of the bound of K(X — Xj) given in equation 5.14 and the bounds 
of the integral given in equations 5.22 and 5.23 gives this is

= °{érj (y * 10̂ 1/^)7) ) = °(^)-
This completes the proof of part a).
Proving parts b), c) and d) is equivalent to proving

Eiw))  =  0(r/jj),

U{wjwk) =  0(r]jk),

and

U(WjWk) =  0(r)jk),

respectively.
Let V(X)  be Dirichlet’s kernel,

¿>(A) =  x y \
t=x
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and

^ * (A)==2^ Z)(^ “ A)D(A- A*) - (5.24)

The following properties hold for these functions, see, for example, Zygmund
[1988], Robinson [1994b] and Bruckner, Bruckner and Thomson [1997]

m , i  <  p p

rCAj

J —CAi
\D(X)\dX =  0 ( l og j ) ,

(5.25)

(5.26)

for 0 < C  < oo,

E ^ k{X)d\ =  0 for 1 < j  +  k <  n.

while

E ( w * ) =  f  ( / ( A ) ) £ j t _ , . ( A ) d A ,
J — 7T

E  (WjWk) =  f /(A )i'zjjt(^)^, for 0 < k <  j  < n,
J—7T

and

(5.27)

(5.28)

(5.29)

E(w(Xj)w{Xk) ) =  f  f ( X ) E j - k(X)d\, 
J — I t

for 0 <  k < j  < n. (5.30)

Note, substitution of the upper limit of D( A), given in equation 5.25, into the defi­
nition of Ejk(X), given in equation 5.24, gives

. I 3 * W I  -  Im  -  A ) l  I K *  -  A » ) l  —  irn\\ — \j \ |A -  Â Ü

< 2 . 1__________
7m min (]A — Xj\, |A -  A*])2

From the integral in equation 5.27 being equal to zero, equation 5.28 is equivalent
to
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U K 2) =  f  (/ (A) -  Ej -j(X)d\.
J — 7T

Similar to the proof of part a), this integral is decomposed into

r - s  r -2Xj  f - X j / 2  fX j /2  f2Aj re f *
+  +  +  +  /  + / + /

J —k J -e  J-2\j J —Xj/2 J\j/2 J  2Aj Je

and each of these will be proved to be 0(r]jj). The calculations are similar to 
those in part a) and thus presented in an abbreviated form.

I f  '  +  f K\ <  max f  |/(A) -  /(A,)| dX =  o(Vjj) (5.32)
\J-w Je | W>£ J -n

The upper limit of Ej,~j{X) from equation 5.31 gives

l ^ 'j . - j ( A ) l  ^  i v , *  .2 ’7TO |A +  Aj|

implying Lemma 5.1.2 is applicable to give

r \ r
J -e  J 2\j

Making use of the mean value theorem,

—Aj/2 f2Xj
+  /-2Xj J \ j t  2

=  O I ( max 
V \Aj/2<A<2Aj

i m l )  |A -  Ajl dA j  . (5.33)

“  °  (C /S 5 Ï2 A , l/,(A)l)  ^ J J ,, |Ü(A)I " )  “  0(TO)
Finally,

<  max 
|A|<A

x Ej,-i{X) [ Xj/2 (|/(A)| +  |/(Aj)|)dX 
•it2 J-Xj/2

= ° ( w ) '

This completes the proof of part b).
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The proof of part c), it is equivalent to proving the integral given in equation 5.29 
is 0(r)jk). Making use of the integral from equation 5.27 being zero, the integral of 
equation 5.29 is expanded to

[ 2Xj ( m - n x j V E j k W d x
7(A j + A * ) / 2

(5.34)

f (Xj+Xk)/2
b /  ( m - f ( h ) ) E jk(X)d\

J X kl2
(5.35)

f (X j+Xk)/2
■ ( / ( A , ) - / ( A * ) )  /  Ejk(X)dX 

J\k/2
(5.36)

•A*/2 r - A * / 2 \
+  /  ] ( /(A) — f(Xj))  Ejk(X)dX. 

-Xk/2 J - X j  J
(5.37)

r Xi+  r ) ( f ( x ) - f ( x 3) ) E3kWdx.
J — k J2Xj  J

(5.38)

Using the same arguments as in parts a) and b), use of Lemmas 5.1.1 and 5.1.2 
show equation 5.38 is o(r)jk).

For equation 5.34, making use of the mean value theorem gives

/  J ( f ( X ) - f ( X j ) ) Ejk(X)d\
J(Xj+Xk)/2

| / '(A) |)  P  |A -A j | | ^ , _ j (A)|dA
/  J(Xj+Xk)/2 }

— O I [ max
V VXj+x̂ x^Xj

=  (  max \f'(\)\) -  / 2Aj \D(\ -  A*)| dX =  0 ( Vjj) =  0(r,jk).
\(Xj+Xk)/2<X<2Xj 1 7  n J{Xj+Xk)/2

Consider equation 5.35. Now, following Robinson [1995a], the cases when lim „_00 j /k 
oo and l i m o o  j/fc  —► oo are treated separately. Firstly, when limn_oo j/k < oo, 
substitution of / ( A )  — / ( A * )  =  f f{b) | A  -  A * | ,  for b G  ( A ,  A  j) gives

/•(A j+A *)/2
/  ( / (A) — f(Xk)) LJjk(X)dX

J X k/2
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max
* k / 2 < \ < ( \ j + \ k ) / 2 ) U

1 f ( * S + * k ) / 2

=  (  max ! /^(A) 1̂  — [  \D (Xj — X)\dX
\A fc/2<A<(Aj+A*)/2 "" K n )  n J Xk ' J

A*/2 

1 /'(■\)+ k̂)/2

Afc/2

I A - A * t | / ^ - * ( A ) | d A t

=  o ( ^ A fc- 2dlo g ( l /A * r ) .

Now, for limra_,00 j/fc  < oo,

o  ( ç f - K 2d lo g ( l /A * r )  =  O lo g ( l /A j)^  =  o  f a * ) . (5.39)

For limn-«» j/A: —► oo, first note

/•(Aj-f Afc)/2 /■(Aj 4

/  | ^ * ( A ) | d A =  /
A*/2 jA fc/2

(Aj+Afc)/2 I j 

27m

< ( max . 
\A fc/2<A<(Aj+Afc)/2 27m

D (X j -  X)D(X -  Xk)

(Aj+Afc)/2

dA (5.40)

1 |\ /•( A j+A fc)/2
—  ^ ( A .  - A )  )  /  | i > ( A - A * ) | d A
™  1/ Jxk/2

O (  1  )  /  | ^ > ( A - A * ) | r f A
\ n X j - n X k J  J Xk/2

= o f ( j - k r ‘  f j D w i d k j ,

since Aj =  2nj/n. Thus, using identity 5.9 gives

f(A j+A fc)/2

JA*/2
( f ( X ) - f ( X k) ) E jk(X)dX

/  \  r (A j+ A jc) /2
( .  m a x  | / ( A ) |  +  | / ( A * ) | )  /  | % ( A ) | c i A
\ \ k / 2< \< \ j  J  J Xk>\k/2

(5.41)

and substitution of equation 5.40, the form of /(A ) given in assumption 5.1.1 and 
the integral given in equation 5.26 shows this is
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=  o A7M log(l/A ¿ y  +  Afc- Mlog(l/A *)7)  ( j  -  k ) - 1 £  |A>(A)|

=  O ( x ^ h g i i / x  ky  (j -  k r 1 log ( j ) ) . 

Now, for lim ^oc j j k  —* oo

^k2d l°g(l/A /t)7 U ~ k y 1 log (j) -> A ^ lo g U /A * )7 ( j ) - 1 log (j)  (5.42)2d l

=  o ( ( j ) °

as n -+ oo. Thus equation 5.35 is O  (rjjk).

Next, consider equation 5.36. Again looking at the case when lim„_,oo j/k  < oo, 
substitution of f (Xj )  — f (Xk) =  f { b ) (X j  — A*) for some b e  (Xk,Xj) gives

/>(Aj+Afc)/2
( / ( A j ) - / ( A * ) )  /  Ejk(X)dX

•/Afc/2

/  \ /• (A j+ A fc)/2
< (Xj - X k) (  max /  (A)f /  |%(A)| dX

\A*<A<Aj /  J\k/2

-  O  ( ( A t- ‘ - M l , .8 d A » r )  / " '  |U(A)| d\\ =  O ,

which, for limn—oo j/k <  oo, is 0 ( r ] j k). 

For lim,1_ 00 j/k  -»  oo,

/•(Aj+A*)/2

(/(A,-) - / ( A * ) )  /  Ejk(X)dX
J A/A*/2

r(A j+A *)/2

< (l/(A J-)| +  |/(A*)|) /  Ejk(X)dX
JXk/2

o ( ( | / (A ,) |  + |/(A,)|) | U (A )M a )  = O  ( A j - ^ l o g f l / A t ) 1 ( j  -  * ) - '  l o g ( j ) )  ,
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which, for limn-^ooj/k —* oo, is 0(rfjk).
Finally, consider equation 5.37. Now, note, from the upper limit of Ejk given in 

equation 5.31,

max- \ k /2<X<Xk/2 \Ejk(X)\ =  0 (5.43)

Using identity 5.8 with 5(A) =  JSjjt(A) and h( A) =  |/(A)|-f|/(Aj)|, then substitut­
ing in the result given in equation 5.43 and the form of /(A ) given in assumption 5.1.1, 
the component of the integral given in equation 5.37 over (—A*/2, A*/2) is bounded 
by

O
rXk/ 2

T -  /  ( l / ( A ) |  +  | / ( A j ) | )
A* J -Afc/2

d\ =  0(r)jk)

and, using the same arguments as those given for equation 5.41, the component 
of the integral given in equation 5.37 over (—A j,— A*/2) is bounded by

O f  max |/(A)|i t *  |0(A —A*)|dA)
\Ak/2<\<\j 3 J-Xj J

= O logil/Xj)! +  A^logU/A*)1))  =  0(m ).

This completes the proof for part c ) .
The proof for part d) is similar to that of part c). However, there is no longer 

the need to distinguish between close and distant j , k.
Using the same arguments as in the previous parts,

o(Vjk),

= 0(Vjk)-

- ° ( G  , Æ K ^ / w i  +  i / ( A î ) I )  - ° o» ) .

/ V !  “ ° ( Y >  I / W l )  7  Î '  W ) l " )JXk/2 y  \^ */ 2< A <A j J J J —\j J
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max
IA|<Ak/2

/A */2  >
Ui,-kW  /  ( l / W I  +  l / i A j O D d A

^ -A fc/2 i
=  ° ( rijk)-

=  ° {Vjk)-

This completes the proof.
□

Two further assumptions are now required to prove the asymptotic bias of the 
standard GPII estimates when 7 ^ 0  and the asymptotic distribution of the new 
DGPII estimates. These assumptions are identical to assumptions 5 and 6 of Robin­
son [1995a].

Assumption 5.1.3. The series, xt, t G (1 ,2 ,. . . )  is a Gaussian process.

Assumption 5.1.4. As n —> oo

m 1/2log(m) l(log(n))2 m 1+1/ 2a 
-  -I- —--------------1-----

l m n

Now, let

„  Wj =  log(y|^y) -  ^(1), j(=  m)

where ip is the digamma function.

Theorem  5.1.2. Under assumptions 5.1.1-5.1.4, as n —> oo, there exists indepen­
dent zero mean random variables, £j, with variance o 2 =  7t2/6, such that

Uj —*d £j

f o r j e ( l , . . . , m ) .

The proof of Robinson [1995a] requires only assumptions 5.1.3 and 5.1.4 and the 
properties of Vj given in Theorem 5.1.1 and thus still holds.

The following theorem makes use of this to give the bias of the standard GPU 
method when the assumption that 7 =  0 is false. The properties of the DGPII 
estimates which also makes use o f this are discussed afterwards.
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T heorem  5.1.3. Let xt be a series of length n such that assumptions 5.1.1-5.1-4
hold with d =  do and 7 =  70. Then the expected value of the GPU estimate d of d is 
given by

m  ^  +  k 4 |  +  °  ( l o g ( ^ )  k*(tog( * ) ) ]  ’

as n —* 00, m —► 00, m/n —> 0.

Proof. Let Y  be a vector (y i y m)' of observations, X  be a matrix of regressors 
and Z  be an additional, unaccounted for, matrix of regressors such that

Ô =  ( X ' X ) ~ 1X ' Y .

Standard linear regression techniques give

E(B) =  B +  { X ' X y ' X ' Z i  (5.44)

Now, for the GPU method of estimating d, X  is an (m — /) x 2 matrix, with first 
column filled with l ’s and second column given by (log((27r//n)2) , . . . ,  log((27rm/n)2))', 
Z  is an (m -  l) x 1 vector (log(log(ra/27ri)),. . . ,  log(log(27rm/n)))' and B  is a 2 x 1 
vector ( B , —do)'.

The residual vector U is given by (ii|....... um)(. Theorem 5.1.2 shows the effect
of replacing these with independent zero mean variables is asymptotically negligible 
as n —*■ 00 under assumptions 5.1.1- 5.1.4.

Substitution into equation 5.44 gives

E(d) =  d o - 7
E jl< (log(27rj / » )  -  ¿i)(log(log(rc/27rm)) -  L2)

2E JL/(log(27rJ /n ) ~ ^ i ) 2
(5.45)

where

1 m
Li = -------——  V lo g (2 ?r j/n )

m — / +  1 7—'
3=1

and

1
L2 = ------ —-7  V log (log (n /2 jr j)).

j=i

It has been shown, see Phillips [2001], that, given a slowly varying function L(j),
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3=1

— V '  L(j) =  L(m) +  2 -----2mL'(m) — m2L"(m) +  o(m L\m ) +  m2L"{m)\
<n '  L\m) \ ' )

(5.46)
as m —> oo. Use of equation 5.46 gives

E,m-0°s (¥ ) -  ¿.)(Mi°g (sj ))  -  U)
2 E r . , 0 o g ( 2 ? ) - X 1p

__________ 1__________
lo g (2 m )lo g (lo g (^ -))

as in —* oo. This completes the proof. □

Remark 5.1.1. The bias term added to the GPII method of the estimated d, when 7 
is ignored tends to zero at a logarithmic rate. Hence, the GPU method still gives an 
asymptotically unbiased estimate for d.

Remark 5.1.2. Standard linear regression theory suggests the asymptotic variance of 
the GPII estimate remains unchanged. Hence, the variance will decrease at a faster 
rate than the bias, causing problems in hypothesis testing.

The following theorem now gives the limiting distribution of the DGPII estimates 
d and 7. The proof follows directly from Phillips [2001], Theorem 5.1, and is thus 
omitted.

T heorem  5.1.4. Let x t be a series of length n. Let assumptions 5.1.1-5.1.4 hold, 
with d =  d\), 7 =  70» Let d and 7 be the least squares estimates o f do and 70 respec­
tively, obtained from the regression equation 5.6, with j  £ ( / , . . . ,  m) and m/n —* 0,

as n —* 00. Then

y/rn
|log(27rm/n)|

2 ( d -  
1

|log(27rm/n)|
do)
(7 -  7o)

1 -1  ' 
- 1  1

Remark 5.1.3. Note that the asymptotic results of Theorems 5.1.3 and 5.1.4 are 
obtained from taking the limits as n and m tend to 00 of the various summations 
which appear in standard linear regression results. Hence, for a fixed n and m, these 
summations can be evaluated exactly, to give the exact theoretical results. Figure
5.1 shows the asymptotic results are only a good approximation for time series of 
length n > 10e and thus in practise the exact theoretical results should be used.
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Theorectlcal and Asymptotic B ias of the estimated d for the GPH method

Theorectlcal and Asymptotic Standard Deviation of the estimated d

1*402 1*404
I

1*406 1*408 1*410

Series length (n)

Theorectlcal and Asymptotic Standard Deviation of the estimated gamma

1*402 10404 10406 10408 1*410

Series length (n)

Theorectlcal and Asymptotic Covariance of the estimated d and gamma

T
1*402 104081*404 1B4101e+06

Series length (n)

Fig. 5.1: The exact theoretical results, shown as dots, compared with the asymptotic results, 
shown as a line, for Theorems 5.1.3 and 5.1.4, with m = \Jn.
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5.1.1 Technical Lemmas

This section contains technical lemmas required in the proof of Theorem 5.1.1.

Lem m a 5.1.1. Let A'(A) be an a function such that |A(A)| < A/n\2 for some 
constant A and A ^  0. Then, wider assumptions 5.1.1 and 5.1.2, as n —> oo,

max
|A|>e

I<(\ -  Xj) r  |/(A) -  /(Aj)| dX =  o(Vjj) 
J  —IT

Proof. Making use of identity 5.9 to separate this integral gives

f *  \ / W - n * j ) \ d \ <  r | / ( A ) | d A +  r  |/(Aj)| dX.
J —n Ji t  Jit

Now, since J^nf(X)dX — R(0) <  oo, substitution of the form of f(Xj)  given in 
assumption 5.1.1, gives

max
|A|>f

A ( A - A j ) J * J f ( \ ) - f { X j ) \ d X <  ( m a x K ( X - X ^

( f l ( 0) +  ( ¿ ^ . o g  ( 1 ) \ o  ( i ) 7) )  £  W a )

then substituting the assumed upper limit of A(A — Xj) gives that this is

= o
l +  X -2dlog(l/Xjp'

n

where è — e — X,• >  Xj tends to a positive constant as n —► oo, since

° Q ) V X f‘jn ,+2J J ( ( ■ )

1+2 d
Thj

log(j) log (l/A j)7n

for d G (-0.5,0.5]. This completes the proof.
□
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Lem m a 5.1.2. Let A(A) be an a function such that |A(A)| < A/nX2 for some 
constant A and A ^  0. Then, under assumptions 5.1.1 and 5.1.2, as n —> oo,

|/(A)| A'(A -  Xj)d\ +  1 ^ ) 1  j  *3' 2 A  (A -  Xj)d\ =  o(% )

and

b) f  \fW\ K{X — Xj)dX +  | /(A j) (  f  A ( A  -  Xj)dX =  o{m ) 
J 2Aj J 2Aj

Proof, a) Making use of the identity given in equation 5.8 gives

r - \ j/ 2

|/(A)| A (A -  Xj)dX +  |/(Aj)| J  A(A -  Aj)dA (5.47)

<
G ,

max l/(A)l \ r  ^(i-2d)/2A (_A  _  Xj)dX
V  4 / 2

+ |/(Ai )| r  A (-A  -  Aj)c/A
J\j/2

Now, as Aj —» 0,

o t )  -  (5.48)

from the form of /(A ) given in assumption 5.1.1. Also, substitution of the as­
sumed upper limit of A  (A) gives

r  X^~2d̂ 2 A ( -A  -  Aj)dA
4 / 2

= o ( ~  r x ^ - ^ d x
\n  4 / 2

and since Aj > 0, identity 5.10 can be used on the upper limit of immigration to 
show this is

= o ( ~  r x^3- 2̂ 2dx
\n 4 / 2

-  o
,-(l+2c/)/2
Cl_______

n

for d G (—0.5,0.5], and similarly
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L  * < -*  -  H  ■  °  ( » C  = '0  G ) ■ (5-49)

since Xj =  2nj/n. Substitution of equations 5.48 - 5.49 into equation 5.47 gives 
the required result.

b) Substituting A =  A — Xj, an identical argument can be used to show 

f  |/(A)| K{X  — Xj)dX +  ¡/(Aj)| r  K(X — Xj)dX
J 2 \ j  J 2 \ j

- o ^ x ^ i o g i i / X j y ^ o ^ j ) .

This completes the proof
□

5.2 Dual Parameter Local Whittle Method

The Local Whittle method of estimating d, introduced and described in section 2.3.3, 
is extended in this section to include the extra long memory parameter 7. As with 
the extension of the GPII method, to avoid confusion the Local Whittle estimates 
will be referred to as the standard Local Whittle estimates, whilst the new extended 
method will be referred to as the dual parameter Local Whittle method. To motivate 
the need for this extension into dual parameters, Theorem 5.2.1 shows the bias of the 
standard Local Whittle estimate when 7 7= 0, although still o (l), is of a higher order 
than the theoretical variance which from Robinson [1995b] is 0 ( l /m ) .  The dual 
parameter Local Whittle estimates are then introduced and shown in Theorem 5.2.2 
to be asymptotically consistent estimators of do and 70.

Now, let the standard Local Whittle estimate of d be given by

d =  arg min H(d)

with

- m  1 m
R(d) =  log 0(d ) -  2 d -  ] T  log(Aj), G(d) =  -  X f  Ij. (5.50)TTt 7713=1 3- 1

This is derived by substitution replacing /(A ) by GX 2d in the objective function

IiI f T '1
« 0 . - 0 + 7 ^ j

(5.51)



5. Dual Parameter Long Memory Model 138

where i(A ) is the periodogram defined in equation 1.45 and the assumption is 
made that

/(A ) ~  G\~2d as A -*  0+, (5.52)

that is, that 7 =  0 in the dual parameter spectrum. The bias of these estimates 
when 7 7̂  0 is found under the following assumptions.

Assumption 5.2.1. The observed series, { z t}, is generated by a process with spectral 
density /(A ), such that

/(A ) ~  GoA"2*  log ( x ) 7° as A -+ 0 +  .

where Go G (0,oo) and (do,7o) G 9  =  ((-0 .5 ,0 .5 ), (—00, 00)) U (0.5, (—00,0)). 

Assumption 5.2.2. For A G (0,<S), /(A ) is differentiable and

¿ . o e( / ( A ) ) - o ( l ) ,

{x (} is a time series generated from a linear process, such that

00 00
x t -  E (x0) =  2 > ? < 0 0 ’

3=0 j= 0

where E (et\Ft-\) =  0, E(e^\Ft- i )  =  1, a.s., t =  0 ,± 1 ,± 2 , . . . ,  and Ft is the o- 
field of events generated by ea, s < t. Also, there exists a random variable e such 
that E(e2) < 00 and for all u >  0 and some K  >  0,

P{\et\>v)<KP{\£\>v)

Assumption 5.2.4. As n —► 00, m —* 00, but

lo g M  , 0
log(n)

Comparing these to the assumptions made in Robinson [1995b] for the standard 
Local Whittle estimate, it can be seen that Assumption 5.2.1 is a generalisation of 
assumption A l in Robinson [1995b], allowing 7 7̂  0, assumptions 5.2.2 and 5.2.3 are 
identical to assumptions A2 and A3 of Robinson [1995b] and assumption 5.2.4 is a 
stronger condition on the upper bound of m in relation to n. This may be stronger 
than required during the proof of the following theorem which shows the bias of the 
standard local Whittle estimate when the assumption that 70 =  0 does not hold,

as A —> 0 +  . 
Assumption 5.2.3.
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but it is used later to prove the consistency of the new dual parameter local Whittle 
estimates.

Theorem  5.2.1. Let {x<} be a series o f length n generated by a linear process, such 
that assumptions 5.2.1- 5.2.4 hold.

Let d be the local Whittle estimate of do found by minimising the function R(d), 
given in equation 5.50, with respect to d. Then, for 7 ^ 0 ,  as n —* oo,

0 < E d do I r̂: It I ■ log log ( f t )
21°g(m) V'°S (ftfe) j  '

Proof. The derivative with respect to d of R(d), defined in equation 5.50, is given by

, ZE T L jijA ^logiA j) 2 ^ ,
m  =  ^ ’= L ’  (5.53)

1 3̂=1 13 3=1

Now, Lemma 5.2.11 shows

- 2  YJ’l  A2^ _<iuhog f  4 -V +7 0 m
‘ i (d)  =  / T Ü --------m S ‘° g (^ )  +  0,(1) as »  -  oo, (5.54)

and substitution of d =  do gives

” - 2 5 7 ^  log fy -^  7 2 m
/¡'((¡o) =  ------- — ----- ----------------Io8(Aj ) +  or (l)  as n -> oo.

E3“- . i° s ( £ )  > -
By Lemma 5.2.12

Thus, if 7 =  0

implying

l t {d q) =  —27 +  op (1) as n —> oo. 

R'{do) —> R'{d) = 0 ,  a s n -> o o

(5.55)

d —* do, as n —> oo, 

as proven by Robinson [1995b].
Lemma 5.2.1 shows the second derivative of R(d) with respect to d, R"(d), is 

positive for all d € R. This implies that the first derivative, R'(d), increases with
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d and thus if d is defined such that R'{d) — 0 then this point is an unique global 
minimum of R(d).

Further, for d > d

R'(d) >  0, (5.56)

whilst for d < d

R'(d) <  0. (5.57)

Consider the case when 7 >  0. The limit in probability of R'(do) given in 
equation 5.55 is negative. From equation 5.57, this implies do <  d in probability. 

For 7 >  0 and d >  d0, as n -* 00 equation 5.54 is bounded by

R'(d) >
minjA'*1 ll" l log(j7) , ) 2 ^ 1",. 1loK(A]) 2

— S 1°S(Â  +  0p(1) (5-58)

\  b  V 2nm /  /  j = l  j = l

Define d\ such that

R'{d\) >  0 +  Op(l)

as n —► 00. Since R'(di) > 0 in probability, d\ > d in probability. This gives, for 
7 > 0, as n —> 00,

do ^p d d\

From equation 5.58 and the definition of di

m -2 (d i-d o ) M f t ) V  1 
l o e ( Ä ) j

giving

d\ — do + M
2 log(m)

log log (f t)
log ( * )

(5.59)

Now, define ¿2 such that
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R\d2) <  0 -  op( 1)

as n —> oo. Since R'{d2) <  0 in probability, d2 < d in probability. This gives, for 
7 <  0, as n —► oo,

d2 d do

Similar arguments as before gives

d2 — do — 111
21og(m)

log l°g fe ) 
>°s ( i f e )

Combining the cases of 7  >  0 and 7  <  0 gives

(5.60)

.. d2 d d\

and substitution of d\ and d2 given in equations 5.59 and 5.60 gives the required 
result. This completes the proof.

□
The new dual parameter Local Whittle method is now introduced. The standard 

Local Whittle method is based on assumption 5.52 on the spectral density near zero. 
Here, this assumption is replaced with

/(A )~ C A ~ 2dl o g Q y  as A —> 0 4-. (5.61)

•t»
Substitution inti’» equation 5.51 gives the dual parameter local Whittle estimates 

of d and 7 as

with

K  7 ) =  arg min R2(d,'y)

R2(dn )  = logC(rf,7) -  — 2>g(Aj) +  “ X̂ ogOogii/Ai)), (5‘62)m tn 4—
3 = 1

2
m

3=1

1 m
^ d' ^  =  m ^  log(r/A)^’

X ] %
(5.63)

The following Theorem shows the consistency of the dual parameter Local Whit­
tle estimates of do and 70 under the same assumptions given for Theorem 5.2.1 which 
showed the bias of the standard Local Whittle estimate of do.
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Theorem  5.2.2. Let assumptions 5.2.1-5.2.4 hold.
Letd and 7 be the dual parameter local Whittle estimates of do and 70 respectively, 

found by minimising the function R2(d,7 ) given in equation 5.62 with respect to d 
and 7. Then

d ►p do

and

7 ~*p 7o

as n —> 00, m —> 00, m /n  —*■ 0.

Proof. The proof is an extension of that given by Robinson [1995b] for the standard 
Local Whittle estimate. For 0 <  <5 <  0.5, let Ns =  { (¿ ,7 )  : |d — do| < 6, ¡7 — 7o| < 
<5}n9 and Ns =  (1R2 — Ns)flQ. Define S(d, 7) =  R2(d, 7) — /?2(do,7o).

Then

P > =  P  ( d €  Ns'j =  P  ^inf R2(d, 7) <  inf R2

< P  ^inf5(c/,7) < 0^

and

(17 — 7o| > 6 )  =  P ( 7 € Ns) =  P  (in f R2{d n )  < mfR 2(d,'y)\
\ n 6 Ns J

< P | in f5 (d ,7 ) < 0  
\Ns

because (do, 7o) G Ns- 
Thus, if P  ( i n f S(d, 7) <  0 )—► 0 as n —*-oo the proof will be complete. Let
=  ((do — 0.5 +  77, 0.5], (—oo,oo))fl9  and ©2 =  9  — ©i, for some small positive 

constant r\. Note, ©2 is empty if do <  —77. This gives

P  ( inf S(d, 7 ) < 0̂ ) =  P  (  inf S(d, 7) < 0 )  +  P  (  inf S(d, 7) < o V  (5.64)
\Ns J  \ ^ n © i  /  \N « n 0 2  J

Consider the first probability on the right of equation 5.64. Separate S(d, 7) into 
two parts such that
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S{d, 7 ) =  U { d ) - T ( d ,  7),

where

T(d, 7) =  log f ? ( ^ o , 7 o )
£'(^oi7o)

log
G(d, 7 ) 
G K 7 )

/ 1 m
2(d -  ¿0) I — log 0 ) “  (l°g(™) -  1)

3 = 1

- l o g
2 (d — do) +  1 

m log (l/A m) ^ - ^

m /  . \ 2(d—do)
log(l/Aj)(.To-7 )

+  ( 7  -  7 o )
1 l

~X ]lo gO og(l /A j) )- lo g( lo g( l/ Am)) I ,

U{d) =  2(rf -  4 )  -  log (2{d -  ¿0) +  1),

1 mC(d,7) « G o - ^ A j ^ l o g i l / A , - ) 70' 7
772 , 7

and G(d, 7) is defined by equation 5.63.
The first probability on the right o f equation 5.64 is bounded by

'.*■« I1 ( sup|'i’(i/,7)| > Jnf (5.65)
\ G, Nsn©i )

since T(d, 7) > U(d) implies S(d, 7) <  0.
Note, Robinson [1995b] proves

inf
A^n©!

62
U(d) > j ,

whilst Lemmas 5.2.13-5.2.16 show under assumptions 5.2.1-5.2.4 each of the terms 
of T(d, 7) is Op(l/log(Xm)) as n —> 00. Thus the probability given in equation 5.65 
tends to zero, implying the first probability on the right of equation 5.64 also tends 
to zero.

For the case do < —77 the proof is complete. For d0 >  —r/, the second probability 
in equation 5.64 must be considered. Take

m
p =  Pm =  exp(m_1 ^ l o g ( j ) )  

j=1
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and S(d,7) =  log(D(d,-y)/i)(do,7o)), where

(1 m \ 1 ”L  / i \ H d- do) J

i=i

Lemma 5.2.17 shows

1 m / n \ 2(<i—do)
=  ( l + o ( l ) ) ( - )

m j=i

= (l+o(l))D(d),

say. Using the identity log(l +  x) <  2 |x| for |x| <  0.5 gives

D(d) -  D(do)
S(d}1 )< ( l+o(\) )

O(d0)

The upper bound of this given in Lemma 5.2.18 shows

P  ( i n f 5 K 7) < 0 ) < P  -  1) J2<fe iog ii/A j)j) ~*alj <  0 I , as n —» 00,

where

¿ V 2r,- X)
p)
,s2 (-do-0 .5 )

( Î ) (" ' 1 < J < P
J / . \  A x

(^J , p < j < m

and Lemma 5.2.19 shows this probability is in turn bounded by

>  1^ , as n —► 00. (5.66)

Finally, Lemma 5.2.9 shows under assumptions 5.2.1-5.2.4, equation 5.66 is o (l) 
as n —> 00. Thus equation 5.64 is o (l) as n —► 00, as required. This completes the 
proof.

□
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Robinson [1995b] strengthens his assumptions A1-A4 to a new set of assumptions 
A l ’-A4’, under which his Theorem 2 shows the asymptotic distribution of the stan­
dard Local Whittle estimate is normal. Theorem 5.2.3 below provides an extension 
of Theorem 2 given in Robinson [1995b] and is presented here under similar strength­
ening of assumptions 5.2.1-5.2.4. It is seen that, as with the dual parameter GPH 
estimates, the dual parameter local Whittle estimates are asymptotically collinear 
with a normal distribution.

Introduce the following assumptions,

Assumption 5.2.5. For some /? G (0,2],

/(A ) =  G0\~2da log ( l  +  0(A^)) as A —> 0 +  .

where Co G (0, oo) and (d0, 70) G 0  =  ((—0.5,0.5), (—00, 00)) U (0.5, (—00,0)).

Assumption 5.2.6. Define a(A) such that /(A ) =  |a(A)|2/27r. For A G (0,<$), a(A) is 
differentiable and

»

fis A —► 0 "h .
Assumption 5.2.7. Assumption 5.2.3 holds and also

L’(iT(|/'t-i) =  |F't-i) =  tH, a.s., t =  0 ,± 1 ,± 2 , . . . ,

for finite constants p3 and ha-
Assumption 5.2.8. “There exists some u >  0 such that as n —► oo,

log(m)6+2t/ +  Iog(log(n))2 i Q 
log(n) log(m)|/

Note, under assumptions 5.2.5-5.2.8, assumptions 5.2.1-5.2.4 still hold. Assump­
tion 5.2.5 strengthens assumption 5.2.1 by giving a rate of convergence and is a 
generalisation of assumption A l ’ of Robinson [1995b], allowing 7 ^  0. Assumptions
5.2.6 and 5.2.7 are identical to assumptions A2’ and A3’ of Robinson [1995b]. As­
sumption 5.2.8 is a stronger upper bound on the rate at which rn -*  00 as n -> 00 
than given in assumption A4’ of Robinson [1995b], which is of use during the proof 
of Theorem 5.2.3.

Theorem  5.2.3. Let d and 7 be ^te dual parameter Local Whittle estimates of 
do and 70 found by minimising the objective function given in equation 5.50. Let 
assumptions 5.2.5-5.2.8 hold. Then, as n —> 00,
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2m1/ 2 
l o g ( n )

2 ( d -  d0)
7 ^ j ( 7 - 7 o )

Proof. Let Rd(d,7) be the partial differential of Ri{d, 7) with respect to d, R1{d, 7) 
be the partial differential of #2(^,7) with respect to 7, and Rdd(d, 7), Rd-yid,7), /?77(d,7) 
be the partial differentials of these with respect to d and 7 respectively. Then, The­
orem 5.2.2 implies the Taylor expansions

0 =  Rd(d, 7) =  Rd(d0, 70) +  Rdd{d, 7 ) ^  ~ 4 )  +  Rdy{d, 7)(7 -  70) (5.67)

and

0 =  /¿7(d, 7) =  Ry(d0, 70) 4- R-fdid, 7 )(d ~  do) +  R ^{d , 7X7 -  70) (5.68)

both hold, where d — do d - d r a n d  I7 - 70I <  | 7 - 7 o | .

Note, under assumptions 5.2.5-5.2.8, as n —► 00, Lemma 5.2.22 shows

^ ( < t î )  =  4 +  7 ( ^ ) ,

Lemma 5.2.23 shows

Rd-y(d,i) =  1 ,  s. ~  ;— , n 4 , y, +  °p ( ] — m  1 / N2 l°g(log(n/(2irm))) J , log(27rm/n) log(27rm/ra)2 \log(2wm/n)z J

Lemma 5.2.24 shows

log(27rm/n)2 log(2^m /n)3 p \log(27rm/n)3/  ’

and Lemmas 5.2.25,5.2.27 and 5.2.29 show

ml/2
—2~/?d(do,7o) ~*d X

and

log(27rm/n)m1/ 2/27(d0,7o) — Y

where
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Substitution of these into equations 5.67 and 5.68 gives

1 ~ { l +  n i f c l

i 1 +  E i f a )  i 1 +  ï ï i f a )

2mi/‘2(d — do)
(  y  )  +  °p(i).

which can be written as

'lo g(A m)
2m'/* I ^  ^  2 ( J - * )  W * ) +0|)(1)

log(^m) y  — ^loË^m) +  i j  ( lt)gÿ™I +  2) j  V R i fe y (7 -7 o )

(5.69)
Let A  be the 2 x 2  matrix in equation 5.69. Standard matrix inversion techniques

give

det A  =  +  log(A,m) -  Î2Ë(*2 )1  _  log(Am) +  1 =  1

and

a  i

lienee,

' log(Am) +  2 lo g (A m ) + 1
log (Am) _|_ ^ l<*g(Am) ^

2/n1̂ 2 f  2 (d — do)
h>g(Am) 1 “  7o)

log(A,n) _j_ 2^

log (An +  1

/ilÄ l + i'j \  /  x  \

] U ) + * (1)

where

- * d N (  0 ,£ )

>J
log (Am) J 2 j 

jog (Am) _j_ J

(  l°S(*m) _|_ 2 
^ log (Am) j

1 - 1
-1  1

log(Am) _|_ 2  ̂ ^l°ë(Am) j  

log (Am) _|_ Jj ^ l°g(Am)
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as required. This completes the proof. □

5.2.1 Technical Lemmas

The Lemmas required for the proofs of Theorems 5.2.1, 5.2.2 and 5.2.3 are listed in 
this section.

Lem m a 5.2.1. The second derivative with respect to d of R(d) defined in equa­
tion 5.50 is positive for all d £ R.

Proof. From the first derivative of R{d), given in equation 5.53, the second derivative 
of R(d) with respect to d is

4E,” , E r . ,  W f - ' “  0°g(Ai)2 -  ios(^)iog(AO)it (a)------------------------------- ~ 2

(E”„, XT‘>)
Due to the symmetry in j  and k, this can be written as

2 E r -  E r . .  (log(A,)2 -  21og(Aj)log(Afc) +  log(At )2)

_  2 E  E r . .  -  iog(At)) ;  (5 70)

(E r - .A Y h f

Since Ij,Xj >  0 for j  € (1 ,. . .  m) and the bracketed terms in both numerator and 
denominator are squared, equation 5.70 implies R"(d) >  0 for any real value of d. 
This completes the proof.

□
Define gj such that

gj =  Gq\J2(1° log (5.71)

and write Ij/gj — 1 as
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¿ - 1  =  ( l - S )  ¿  + i ( , , - l a / + ( 2^ - 1),
9j \  SjJ Qj Jj v '

where I,j =  Ie =  |u’£(Aj)|2, we(\) =  (2nn)-Q*Y!t=\£teltX, fj =  f(^j) and oy= 
a(^j)= YfiZo aiellXj • Tlie properties given in Lemmas 5.2.2-5.2.4 are generalisations 
of the properties proven by Robinson [1995b] when 70 can be taken as nonzero.

Lemma 5.2.2. Under assumptions 5.2.1- 5.2.4, for any v > 0,

< v, asn—* 00, Vj € (l, . . . ,m).

Proof. From assumption 5.2.1

which gives

fj =  9j +o(9j),

11- 1 + 0(1)1 =  0(1),

as required.

Lemma 5.2.3. Under assumptions 5.2.1- 5.2.4, for any v > 0,

E 1 El
fj

<u, asn-*  00, Vj G (1, . . . ,  m).

□

Proof. Under assumptions 5.2.1- 5.2.4, Lemma 5.2.2 and Theorem 5.1.1 shows that

E
(

<  P ( 1 +  A j log (j +  1)
^  <  V, a s n —* 00, V j  G ( 1 , . . .  , m ) ,

for some bounded \Aj\ < 00, Vj G (1,. . . ,  m), as required. 

Lemma 5.2.4. Under assumptions 5.2.1- 5.2.4,

□

Si
E fj ~  N  fej 0  ( ^ )

1/2'
as n —> 00,
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Proof. Under assumptions 5.2.1- 5.2.4, the proof of Theorem 5.1.1 shows that

E(l j)  =  9j ( l  +  V ° g ( j + 1 ) )  - (5-72)

ajE(wjWej) =  gj ^1 +  Dj  — " - - " j  ,

x f t  , ^  los ( i  +  i)Aajb {w jwej)  =  gj I I  +  C j ------- ------ \ ,

and

la j|2 W ' j )  =  9, ( l  +  ^ lQg(j?+ 1 ) )  , (5.73)

for bounded |i4j|, \Bj\ , |Cj|, |£)j| < oo, Vj e  ( 1 , . . . ,m) as n —► oo. The remain­
der of the proof then follows directly from Robinson [1995b] and is thus omitted. □

Use of Lemmas 5.2.2-5.2.4 shows the proofs of Robinson [1995b] still hold to give 
the following results of Lemmas 5.2.5 - 5.2.9

Lem m a 5.2.5. Under assumptions 5.2.1-5.2.4, as n —* oo,

m E
j = l (H(i) 2 ( 4 - * )

Lem m a 5.2.6. Under assumptions 5.2.5-5.2.8, as n —* oo,

E
£ ( H

^ , , , .os 1/3 m/3+1 m 1/ 2
=  Op ( m 1/2 +  (mlog(m) ) +  — —  +

Lem m a 5.2.7. Under assumptions 5.2.5-5.2.8, for Vj defined such that, as n —► oo,

m .

X S  = 0>
3 = 1

1 m

j=i

and
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then, as n —> oo,

_1_
m

=  1 + o ( l ) ,
j= 1

( £ - • ) )

Lem m a 5.2.8. Under assumptions 5.2.5-5.2.8, for Vj and ty defined such that, as 
n —* oo,

m Y 2 vjVj =  1 +  o(l),
3=1

then, as n —* oo,

Lem m a 5.2.9. Under assumptions 5.2.1-5.2.4, for a small positive constant rj, with 
d0 >  -r /,

and

m
V -  Pm =  exp(m-1 ^ l o g ( j ) )  

3=1

then as n —* oo

aj = ) A 2 ( - d o - 0 . 5 )
1 <  j  < P 

p < j  <  m

>  1 0 ( 1).

Lem m a 5.2.10. Under assumptions 5.2.1- 5.2.4, as n —► oo,

^ f ] o g ( A /  =  ( - l ) 6
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+ o :
p m !/2 max

, m )

log
æ

f>+7o

for some integer b.

Proof. Take gj as defined in equation 5.71. Then

1 m  - m

j=i
(5.74)

j=i

1 ^  /
=  Y *  —Go)^'d~d{,) log (l/A j)6+7°

m 9j J

= ( - l ) 6- f '  i -  -  l") GoAf(i- i<u)log(l/Aj)i’+70+ ( - l ) i,- f 'G o A J2(ii- iiü)log(l/Aj),’+7«>
m 2—‘ \oj J 3 m L—‘  33=1 y j  '  3 =1

and substitution of A j =  2nj/m  gives this is

b I „  (2 n m \ 2(d~do)\ I 11 m /  T \ /  i \ 2(4-*)
=  « . A , ) “ *= < - i n c " ( — j

m /  ■ \ 2(d—do)
l o g ( l /A /+1°- W ^ - Ym ' V m )3=1 X 7

(A^d) +  A2(d) ) ,

say.
Consider /li(d ).

1 m I /  / \ /  ' \ 2(d—d(
< max

je(i,.
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Under assumptions 5.2.1- 5.2.4, Lemma 5.2.5 can be used to give

“ °p Æ . , ) '
as n —» oo. (5.75)

Substitution of equation 5.75 into equation 5.74 gives the required result.

Lem m a 5.2.11. Under assumptions 5.2.1- 5.2.4, as n —► oo, the first derivative 
with respect to d of R(d) defined in equation 5.50 is equal to

l({d)
J - L .A f - 'M l o g  ( ,L ) 7

Proof. Write R'{d), given in equation 5.53 as

1+7

m 3 =1

" ' «  =  W  +  C

where

1 m

j=l

and

1 m
m  = - E ' i xr

3=1

3=1
Lemma 5.2.10 with b =  1 gives

(5.76)

-\-Op
1

m 1/*
max

3 6 (1 ,....m)
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and Lemma 5.2.10 with b =  0 gives

-\-Op
(

max
m 1/2

Note,

(5.77)

log

and use of standard growth identities gives

m
=  0 (1)

thus the first terms in each of equations 5.76 and 5.77 are of higher order as 
m —► oo. Substitution of equations 5.76 and 5.77 back into R'(d) thus gives the 
required result.

□
Lem m a 5.2.12. Under assumptions 5.2.1- 5.2.4, as n —* oo, the first derivative 
with respect to d of R(d) defined in equation 5.50 evaluated at the point do equal 
to

11'(d0) =  —27 +  op (1) as n —► oo. 

Proof. Lemma 5.2.11 gives

-2 S r - i A f * - * 1 log ( j - ) 1+7 2
R'(d) =

in
¿ l o g ( A j )  +  O p ( l) .

j= i

and substitution of d =  do gives

R'(d0) =
¿ E r - i i o s t e ) 1

9
— y ^ io g (A j)+ o p (i)
m
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Phillips [2001] shows that for any slowly varying function L(j),

- m

— L (j)a =  L(m)a +  am2L/,(m )L(m )a~1 +  (a2 — a)(mL,(m ))2L(m)a_2

+ o^ (m //(m ))2L(m )a~2^

i - 1
(5.78)

as m —* oo. The use of this formula with L (j) =  log , a =  1 +  7 ,7  and

L(j) =  log (Aj) and a =  1 gives the required result in a straightforward manner and 
is omitted to save space.

□
Lem m a 5.2.13. Under assumptions 5.2.1-5.2.4

'G(d, 7)log = ° ’ { à n )G(d, 7 ) ;

Proof. The inequality |log(l +  x)| <  2 |x| for |x| < 0.5 can be used to show

log f 1 <  2 G(d, 7) =  2 Aid,'))
G (d,7) B[d, 7)

where

A(d,~f) =

G(d, 7)

m log ( l /A m) ( ¿ - O

and

2jd — dp) +  1 2(d-do),
m log (1 / Am)̂ 70~7^

™ /  ,• \ 2(d-do)

■ E l i )
j=i '  '

for cjj =  C 0Xj 2,l° log(l/A j) 'ro. Since

log(l/A j) _  log(n) -  log(27rj) 
log(l/A m) log(n) -  log(2jrm)

1, as n —► 00, Vj e  (1 ,. ..  , m), (5.79)

from assumption 5.2.4,
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A(d,y)  —> A(d), as n —> oo

where

and Lemma 5.2.5 shows this is 0(m ~05) as n —* oo. Consider B(d,7).

inf B{d,~f) >  1 — sup
®i ©1

/
2(d

l m l ° e ( x - )

Equation 5.79 can be used once again to show

4 )  +  l  f /  j  V (d- do), (  1 A (70_7)
° S \Xj

sup
©1

2(d -  dtr \ I 1 m / A\ W - h )
1og(1/Ai

u )(70-7) ^  \ m jm log (l/A
)(70~7) I _  I

sup
©1

2(d — do) + m /  ■ \  2{d—du)

Til
3=1 V '

-  1 as n —► 00

and Robinson [1995b] Lemma 1 proves that equation 5.80 is 0 ( l /m  °'5)
fore

inf B(d, 7) > 1 -  o (l) >  0 as n —► 00,

implying

ü (d , i )
as n —► 00,

which completes the proof.

Lem m a 5.2.14. Under assumption 5.2-4

sup
©1

log 2(d — d 0) 4- 1 
m lo g (l/A m)(70-7)

lo g U /A ,)^ "7*

as n —► 00.

(5.80)

There-

□
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Proof. The inequality |log(l +  x)| <  2 |x| for |x| < 0.5 can be used to show that

m  , 2(d — do) + 1sup log --------------- ——  x ' 1
©1 l l m log (l/A m)(70

1 ™ \  2(d~do)
M I A ,

j = l  v '
y  jo- 7)

<  sup
©,

2 (d — do) +  14-1 W ~ 4 > )

< ^ 7 ) E ( m )  M l / A jj  = l N 'm lo g (l/A m)
^ (70 -7)

and under assumption 5.2.4, arguing as with equation 5.80, Robinson [1995b] 
Lemma 1 proves that this is 0 ( l /m ” 0-5).

□
Lem m a 5.2.15. As m —* 00,

1 m
— J 2  -  (i°g(w ) - 1)m

i=1

This is shown by Robinson [1995b] Lemma 2. 

Lem m a 5.2.16. d s  m -> 00,

- ° ( é n )

1 . m. /  1 \
— 5Zlog(log(l/Aj))-log(log(l/Am)) = 0 ^ _ _ y j  (5 .8 I)

The proof follows directly using equation 5.78, see Phillips [2001].

Lem m a 5.2.17. Under assumption 5.2.4, as n —► 00,

1 J I L  /  4 \  2(d—do)
^ o I o g ( l / A . ) -7 / .

1 m /  4 \  2(rf-do)
= (1 + »(!)) i  E  ( f )  '»s(l ß i ) ^ h

Proof. From equation 5.78, see Phillips [2001],

1 m
-  V  log (l/A j)^ -70  ̂ =  log(l/A m)(7~^) (1 +  o (l)) 
m *-—d
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From assumption 5.2.4, for all j  € (1 ,. ..  ,m ),

log(l/A m) ^ ° >  log(l/A j)~7 =  log(l/A m)<7- 7° - 7> +  o (l) =  log(l/A m)-70 +  o (l) 

Finally, from assumption 5.2.4, for all j  € (1 , . . . ,  m),

l°g (l/A m)_70 =  log(l/A j)~70 +  o (l)

thus

1 m /  \ 2(d-d0)
D(d, 7 ) =  ( l  +  o ( l ) ) — 5 3  -  ) i ^ / i l o g f l /A j ) - 7», 

m ~ [  \P/

as required. 

Lem m a 5.2.18. For

and

D(d)

P =  Pm =  exp (m 1 ^ 2  log (i)) 
j=i

1 m / A \ 2(4-4u)
= - £ ( - )  y2<i° log(l/Aj)_70fj,

m \PJ

(5.82)

then, for d G 02 defined in the proof of Theorem 5.2.2 and do >  — v, as n —► oo,

P  ( -  1 < o )  < P  ( I  £  ^  ~  l ^ 2d° log(l/A j ) - 7“ / j < 0 ) ,\D(d0) 3=1

where

. . . / G )

l ( i )

(2»J—1 )

2(—d0—0.5)
1 < j  <  P 

, p < j < m
(5.83)

1
¿(do) =  -  log(l/A j)_7% ‘ >  0

711 3 = 1

Proof. Note,
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since j , l j  >  0 and Aj < 1 as n —* oo. Thus

P i m
D(clo)

- K O P  (D(d) -  D(d0) < O) .

From the definition of p, 1 < p <  m, and for d 6 02 and do >  —u

—do — 0.5 > d — d o>  v — 0.5.

Since inie>1(j/p)2̂ d~dô  >  {j/p)^n~l>i for 1 < j  < p, while inf®2(j/p)2^ ^  > 
(j/p)*(-4>-os) for p < j  <  m, it follows that

1 m
inf V(d) >  -  £  *i32da log (l/A j)_”1'°ij,
fe>a Tfi , ~7

which iinplies

1
inf c m  -  b{do)) > -  x > ,  - 1 ) j2do iog(i/A  m oij-te>2 711 . I3=1

Thus

P ( j ) ( d )  -  D(d0) <  o )  <  P
 ̂ Tf l

as required.
□

Lem m a 5.2.19. For d 6 02 defined in the proof of Theorem 5.2.2, do >  —u and 
p,aj and gj defined in equations 5.82, 5.83 and 5.71 respectively, as m —► oo,

P
j=i

<  p
j -1

Proof. Note, since 27rjn  >  0 and Aj  =  2kj f n

P m



5. Dual Parameter Long Memory Model 160

< P

From Lemma 5.2.15 p ~  exp(log(m) — 1) =  m /e as m —► oo giving 

y " ' a,- ~  n1~2’, f x 2r)~ldx ~  - —  as n —» oo.
j r [  Jo 2ev

Hence

1 ^  1 A  , 1 ,— > a, — 1 >  — > a, — 1 ~  ------- 1 as n —* oo.m *—' ~ m 2en3=1 j=l

and rj can be chosen such that equation 5.84 is greater than 1. Therefore

(5.84)

> 1 m

) SP(j =l / »»*' « 
3 = 1 / V j-1  \2v / > 1

which completes the proof.

The following definitions will be used during the following Lemmas.

□

ot/ i \k m
Gik(d, 7) =  — ——  A2d lo g (l/A j)"7 log(Aj)* log (log (l/^ j))klj,

OÙ—l \k m
Fik{d,7) =  £  A f  log(l/A j)~7 log(j)‘ log(log(l/\j))kIj

m J=i

and

oi7_i \k m
Eik{d,i) = — - —  Yi J2dl°g (l/Aj ) _7 loe0')‘ log(log(l/Aj))*/i- (5.85)m 3=1

Note,

Fikidn) =  (^ ¡j) Fik(d, 7 )

and, for i =  0,

(5.86)
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Uokid, l )  =  ( ¿ ) 2̂ 'b * (rf.7 ) =  ( ¿ ) MGok(rf,7) (5.87)

Lem m a 5.2.20. Under assumptions 5.2.5-5.2.8,for a constant s, such that 0 < 2s < 
log(rn)2 and the sets Af =  ((d ,y) : (|d — d0\, |7 — -y0|) < £log(m)l~3“ " l(l, 1)), for v 
defined in assumption 5.2.8 and A1 =  R2 — A1,

Mi* (do, 7a)

T?Iog(27r/n)2+^-i | 2r?log(27r/n)3+l/~j
es log(log(n/27r))Ä es log(log(n/27r))*:+1 ) + ^ ( ( ^ 7 ) €  A?)

—► 0, as n —* oo

Proof. Note, using the identity

x  < (1 4- x )log (l +  x),

for x  >  0, gives

•2((i-du) » ( a ” -
For (d, 7) G A/, |d -  dol. Ì7 — 7o| <  £log(m)l 3 by definition, thus, for Xj 

2irj/n and j  G (1 , . . . ,  m)

and, under assumption 5.2.8,

log ^ (m log  ( ¿ ) ) 2t  l 0 g ( m)  )  =  2slog(m)(-3^ lo g  (m log ( ^ ) )  

=  2f log(m)(-3 ' ,,) (log (m) 4- log (log ( ^ ) ) )  =  o (l).

n  \ \ 2 e l o g ( m ) ( 3
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Hence, for some constant a >  1,

,2(d — 1^ <  a log ( j 2̂ d ^ l o g
G )

'io-'r
(5.88)

Use of equation 5.88 and the definition of Eik{d, 7) given in equation 5.85 gives, 
for (d, 7) G M ,

l^ikid, 7) h>ik (do, 7o)

h  log (•i2<,'"io) log ( £ ) ”" ’) logW)i log (bg (r j))  j2J°log (sj) 11
=  a \ d - d0\\E(i+1)ik(d0, 10)1 +  ^ |7 -  7o| |̂ ’i,(*+i)(^o,7o)| •

Note, for i ,k >  0,

|¿'’(i+i),*(^0)7o)| < |log(m)*log(log(n/27r)),E |f:;oo(do,7o)| •

Also, for (d, 7) G M , \d -  d0|. |7 -  7o| <  elog(m )(_3_1/) by definition, thus,

|#»fc(d,7) -  ^’¿Jt(do,7o)|

<oe|log(m)* 2 v log(log(n/27r))* +  2 log(m)* 3 "log(log(n/27r))fc+1| ¿,’00(^0,70)

=  as |log(m),~2~1' log(log(n/27r))fc +  21og(m),' 3~l/log(log(n/27r))'i+1| ° Goo^o,

where the last equality is from the property given in equation 5.87. Thus, as 
n -*  00, for M  =  R2 -  AI and all 77 >  0,

tik{do, 7o)

r/log(27r/n)2+l/ * 27?log(27r/n)3+|y *
as log(log(n/27r))fc as log(log(n/27r))*+1

(5.89)

) + p ( ( J , 7 ) e  A /) .
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Note, for i, k £ (0,1,2),

7?log(27r/ii)2+1' * 2r7log(27r/n)3+" *
a£log(log(n/2ir))* as log(log(n/27r))A+1

oo, as n 00

and substitution of d = do and 7 =  70 into Lemma 5.2.13 shows that Goo (do, 7o) —> 
Go <  00 as n —> 00, thus the first probability on the right hand side of equation 5.89 
tends to zero. The second probability tends to zero from the arguments of Theo­
rem 5.2.2.

□
Lem m a 5.2.21. Under assumptions 5.2.5-5.2.8, as n —► 00,

oU—it* m.
/•;*w,,7o) -  G0- + - 1 -  E i o g o r  iog(iog (i/A,-))*77*'

3- 1 

\ 2 >^  /"log(m)2 log log(l/A m)2>\ _  _ _ /n ,
=  °p V --------------m 1/2-------------- ) P 1 ’ fort,k G

Proof. Note for i, k £ (0 ,1,2), r e (1 , . . . ,  m — 1),

log(r)Mog(log(l/Ar))* - l o g ( r  +  l)*log(log(i/Ar+1))fc =  O (log(m)2 log(log(l/Am))2)

(5.90)
By definition,

u' M n o )  -  C o2 ^  ¿ l ° g ( j ) M ° g  ^log

logü)Mog ( l o g ( ^ ) ) ‘ ( | - l )

which, by summation by parts is,

Gp2'

m E
3 = 1

<
„  m —1 . r / I \

p  |iog(r)‘ iog(log(l/Ar))* -  log(r + l ) i l0g(log(l/Ar+1))* | ¿ 2  (J : -  l)

+  il£ L  log(m)' log log(l/A m)*
711 m -
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and use of Lemma 5.2.6 and substitution of equation 5.90 show this is

=  0 ^ log(m)no^glog( l / A „ ) ^  fo r i i /t e (0 i l i2 )>  M n J < x ,

Under assumption 5.2.8 this is op(l) as required.
□

Lem m a 5.2.22. Let Rdd{d,l) be the second partial derivative of R2{d, 7) with respect 
to d twice. Under assumptions 5.2.5-5.2.8, as n —> 00,

Proof. From the definition of Rik(d, 7) given in equation 5.85, Rdd{d, 7) is given by

E2,o(d, nf)Eo,o(d, 7) -  E l0(d, 7)
Eoto(d, 7)

Thus, use of Lemma 5.2.20 gives

Rdd(d, 7)
(E2,o(do,lo) +  Opin^MEo^dono) +  °p(n2d)) ~  ( ^ i , o ( d o . 7 o )  +  o p ( n 2i ?) )

(L o,oW ).7o) +  Ojfn̂ Ÿj

dividing numerator and denominator by (n/2n)'ld and using the property given 
in equation 5.86 gives this is

_  '̂2,o( ^ .7 o)^'o,o(^o»7o) ~~ ^'i2,o(^Oi7o) 

^o,o(d° ’ 7o)
and use of Lemma 5.2.21 gives this is

+  °p(1)

= 4 j (i +  °pW) as n —> 00.

Using the extended version of equation 5.78 given in the proof of Phillips [2001] 
Lemma 7.3 shows that for any slowly varying function L (j),

¿ ¿ » . • - ( i t ™ ) ' - - 3  (m L '(m ))2 -  4m3L,(m)L,,(m) + o (
V L(m)

(5.91)
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and taking L (j) =  log(j) gives mL'(m ) =  1 and m3L,(m)L,/(m) =  —1, therefore

7) =  4 ^1 +  o i 1 +  M 1)) -  4 +  ° p  ( log(m)
, as n —> oo,

as required. □
The proofs of Lemmas 5.2.23 and 5.2.24 are similar to that of Lemma 5.2.22 and 

thus omitted.

Lem m a 5.2.23. Let {d, 7) be the second partial derivative of J?2(d, 7) with respect 
to d then 7. Under assumptions 5.2.5-5.2.8, as n —► 00,

"*>11V = fci(2l'L/n) -  loS(2L jn? + ( b « ?  M lo g (» /(2 ™ ))))  •

Lem m a 5.2.24. Let 7/77(ci, 7) he the second partial derivative of ^2(^,7) with re­
spect to 7 twice. Under assumptions 5.2.5-5.2.8, as n —► 00,

y/77 (cl, 7)
1

rr + CT + ‘ ’ - G
1

log(2rm /n)2 1 log(27rm/n)3 ' ~p Vlog(27rm/n)3 log (log(n/(27rm))) 

Lem m a 5.2.25. Under assumptions 5.2.5-5.2.8, as n —> 00,

rit 1/2
—r— Hd(do, 7o) — yV(0,1)

)

Proof. Standard calculations give

.«i/2 „ . .  , 1 / , i : r . i i° e f t ) 7 2'l" b g ( i A i ) - 2» /, '
2 l ‘,<,' h 'Xl ,„1/2 (  l /m £ ™ ,A f " l o g ( l /A J)-™jy L .  S( 2)J=1

Til 1/2

'E7=1 (log(Aj)Aj,i<’ log(l/A J)-'»°yj -  ( l /m S r = i  log(A.)) ^

l / m £ £ i * f ° l o g ( l / A

and substitution of d =  4  and 7 =  7o into Lemma 5.2.13 shows that £00(^0,70) 
Co, thus this is
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i (log(Aj)A?* logU /A j)-™ ^ -  ( 1 / i . a  log(A,)) A f " l o g t l /A j ) - » / , )
mV2 1 G0 +  o{ 1)

Letting vj =  log(j) — 1/mY^Li l°g(s)> with £ j= i  vi =  0> this is

1
m U2 l g > ' ÿ l (1 +  0 (1 )) ' (5.92)

Note, Vj is defined exactly as in the proof of Robinson [1995b] and thus Lemma 5.2.7 
is applicable giving,

as required. This completes the proof.
□

Lem m a 5.2.26. Under assumptions 5.2.5-5.2.8, for

m
Vj =  -log(27rm /n )(log(log(l/A j )) -  l /m ^ lo g ( lo g ( l /A i ))V

v «=i

then, as n —> oo,

1
m 1/'2n 5 ~2\Vj\ -  ° ( i )

3=1

and

(5.93)

1_
m Y^Vj =  1 +  o(l). 

j=i
(5.94)
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Proof. Note, from the definition of r/j

mU'2n j=i

log(27rm/n)m1/,2
n

1 m
- T ,

j=i
l°g(log(l/A j) -  l /m ^ lo g ( lo g ( l /A s))

s=i

<  2
log(27rm/n)m1//2

n
1 m

— 5 3  l1°e (1°g (1/Aj))|
3=1

= o 'log(27r m /n )m 1/2 log(Iog(l/Am))
n

thus, from assumption 5.2.8, equation 5.93 is satisfied. 
Next

-  m f  1 m  /  m

— 5 Z  T)j =  log(2;rm/n)2 I — X ^ og(log (l/A .,)2 -  i l /m ^ lo g ( lo g ( l /A a)) 
j=i y j= i \ «=x

=  l°g (2 »ro /« )2 + °  ( fa g-p ^ s ) )  =  1 + ° (D

thus equation 5.91 is satisfied
□

The proof of Lemma 5.2.27 is similar to Lemma 5.2.25 with the replacement of 
Vj by t]j made possible due to Lemma 5.2.26 and is thus omitted.

Lem m a 5.2.27. Under assumptions 5.2.5-5.2.8, as n —► oo,

log(2rm //?)m 1//2/?7(do,7o) — N (0 ,1)

Lem m a 5.2.28. Under assumptions 5.2.5-5.2.8, for

m
Vj =  log(j) - l / m ^ 2  log(s)

S —  1

and

m

r)j =  -  \og(2irm/n) ( log(log(l/A.,')) -  1/m ] T  log(log(l/As) ) ) ,
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then, as n —* oc,

- 1
m

m

VjVj =  l +  o (l),
j = l

Proof.

—.1 m /  1 m  - m  - m
~ ^ l vi rh =  l°g(27Tm/n) ( — ^ lo g ( j ) lo g ( lo g ( l /A j) )  -  — ^ l o g t f )  — ]C log (log (l/A j))

j=i \ i i i

=  log(27rm/n) f -—  1 ■ +  o ( -— .2) ' )  =  1 +  o( 1),\log(27rm/n) \log(2nm/n)i J J

as required. This completes the proof.
□

Lem m a 5.2.29. Under assumptions 5.2.5-5.2.8, as n —* oo,

.<4ccw (m 1/2 Rti(d0,'f0),\og(2Trm/n)m1/2 Ry (do >7o)) —► — 1

where Acov(A, D) is the asymptotic covariance of A and D.

Proof. Let A =  m l/2Rli(do,'y0) and D =  log(27rm/n)m1//2/?7(do, 70). The proofs of 
Lemmas 5.2.25 and 5.2.27 show , as n —► 00,

and

and E (X ) —» 0 and E (Y ) —> 0. Lemma 5.2.28 shows Lemma 5.2.8 is applicable 
and thus E (X Y ) —► —1, as n —♦ 00. Therefore , as n —> 00, cov(A\ T) —> —1 and 
thus Xco\{A,B) —* —1 as required.

□
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5.3 Dual Parameter FARIMA model

The discussion of the GPU and Local Whittle estimates in sections 5.1 and 5.2 show 
the importance of considering the dual parameter long memory case when 7 ^ 0 .  
Under the assumptions given in sections 5.1 and 5.2, Theorems 5.1.3 and 5.2.1 show 
the standard GPII and stand Local Whittle methods of estimation, respectively, 
produce estimates with biases which reduce at a slower asymptotic rate than their 
variances as the series length n —* oo, whilst Theorems 5.1.4 and 5.2.2 show the 
new dual parameter GPII and dual parameter Local Whittle methods, respectively, 
produce asymptotically consistent estimates of both d and 7. However, Theorems
5.1.4 and 5.2.3 show the asymptotic distributions to be collinear and the variances 
to decay at a slower asymptotic rate, making these estimates only suitable for longer 
time series.

In this section a parametric approach to estimating the dual long memory param­
eters is introduced, based on the new dual parameter FARIMA (DFARIMA) model, 
an extension of the FARIMA model which allows for the spectrum near A =  0 to be 
of the form given in equation 5.61. Define now a DFARIMA(p,d,c,q) process, yt, as

Vt =  (1 ~  L ) -d (1 -  log(l -  L))~c ^ ¡ ± e t (5.95)

where L is the lag operator, 0(L), <j>{L) are polynomials of order p  and q respec­
tively with no common roots, such that 0(z) 0, 4>{z) ^  0 for |z| <  1 and £t is a
white noise sequence with finite variance.

This is a linear model, which can include the boundary conditions of long mem­
ory at d =  0 and d — 0.5 and reduces to a FARIMA model if the new parameter, c, is 
set to zero. The spectral density of this process as A —> 0 is given in Theorem 5.3.1, 
the asymptotic infinite AR and MA representations are given in Theorem 5.3.2 and 
the asymptotic autocorrelations are given in Theorem 5.3.3. Proposition 5.3.1 then 
shows that this new model still fits the criteria o f Fox and Taqqu [1986], Dahlhaus
[1989] and Giraitis and Surgailis [1990] and thus that the asymptotic sampling dis­
tributions given in these papers for the exact and Whittle likelihood methods still 
hold, that is, that the estimates of d and the new parameter c are \/n consistent 
and efficient in the sense of Fisher. Numerical values are given for the asymptotic 
sampling distribution of the estimates of d and c from DFARIMA(0,d,c,0) process 
and this is compared with the sampling distribution of d from a DFARIMA(0,d,0,0) 
process as an example.

The following theorem now gives properties of the spectral density near A =  0.

T heorem  5.3.1. Let yt be a DFARlMA(p,d,c,q) process defined by equation 5.95. 
Then the spectrum, f y(A), of yt satisfies
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as A —* 0./ y(A )~ G A "2dl o g Q )  ^

where 0 <  G < oo is a constant as A —► 0.

Proof. From equation 5.95 the spectrum, f y{A), is given by

f y ( \ ) = \ l - e ~ iX\-2d 

Standard results give

log
1 — e

" 2c |0(e"iA)|2 <t2 
|<̂ (e_iA)|2 27T

U — e—* A |2

and

|̂ >(e_,A)|2 27T

where 0 <  G <  oo is a constant as A —> 0. 
Also, converting to polar coordinates gives

1 -  e " iA =  2sin(A/2)e -itati-1 /  c o « ( X / 2 ) \ 
\  >iu(Ä/a) )

1 — e<A =  2sin(A/2)e'tan

where tan"1 is the inverse tan function. Use of these gives

log
1 — e~lA

(5.96)

=  ( l  -  e " iA)  ( l  -  eiA)  =  (2sin(A/2))2 —► A2 as A —♦ 0 (5.97)

(5.98)

=  ( l  -  log ( l  -  e " iA) )  ( l  -  log ( l  -  eiA) )  (5.99)

=  1 — log ( l  -  e tA)  -  log ( l  -  e,A  ̂ +  log ( l  -  e ,A)  log ( l  -  e,A)

°  lQg (  ( i r - e - 4  d  _  eS ) )  +  '°e  ( '  -  e~,x) loe t 1 -  e‘x)

l o g  - j ) + 1 o r  ( 2 . ¡ n ( A / 2 ) ^  ' i  m k j l  j  1„ „  ( 2 s i n ( A / 2 ) e “ “ " ' ( ain(A/2)

=  log A\\2(2sin (| ))
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+

=  Ice (2sm (A/2))2 +  log ( S ^ j ) )

Substitution of the limits given in equations 5.97, 5.98 and 5.99 into equation 5.96 
then gives

Note, comparison of Theorem 5.3.1 to equation 5.61 shows 7 is equivalent to 
-2 c . Dual parameter GPII and dual parameter Local Whittle estimates of c, cqph

where 7q p h  and ^ i w  are the dual parameter GPU and dual parameter Local Whittle 
estimates of 7 given in sections 5.1 and 5.2, respectively. From this point on the c 
notation is adopted.

Theorem  5.3.2. Let yt be a DFARlMA(p,d,c,q) process as defined by equation 5.95. 
Then

as A —> 0.

as required. □

OO

y t — y Kß j Et-3
J—0

where 0q — 1 and, for d 6 [—0.5,0) U (0,0.5],

00

while, for d =  0, c ^  0
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Oj ~  B j  1 log(j) c \ as J  -> 0 0

and

Vt = Y  $jDt-j +  £t 
j=i

where for d G [—0.5,0) U (0,0.5],

j -d - 1
4>i ~  B r(Id ) log^ ' ^ ’ as j ^ ° °

while, for d =  0, c 0

4>j ~  B j - 1 log( j ) c~\ as j - > o o

for some B such that 0 <  B <  oo.

The proof of this follows directly from Zygmund [1988], Theorem 2.31, page 192, 
and is thus omitted.

Theorem  5.3.3. Let yt be a DFARIMA(p,d,c,q) process as defined by equation 5.95. 
Then,

a) for d e  (0,0.5)

7 (u) ~  Bu2d 1 log(u) 2c, as u —> oo

b) for d =  0.5, c >  0.5

7 (u) ~  B log(u)1_2c, as u —>oo

c) for d =  0, c 0

7 (u) ~  Bu 1log(u) 2c as u —> oo

for some 0 < B <  oo, where 7 (u) is the autocorrelation function of yt.

Proof. The proof of part a) follows directly from Theorem 5.3.2 and Proposition 4.3 
of Inoue [1997] and is thus omitted.

b) Proposition 4.3 of Inoue [1997] shows when 0U ~  u_p/(u) as u —► 00, for some 
slowly varying function l(u) and constant 0.5 <  p <  1, then

7(u)
u0‘i

1
(x2 +  x)P

dx as u 00. (5.100)
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However, the bounds on p are not required to derive this integral, only to equate it 
to 13(2p — 1,1 — p) where 13(p, q) is the Beta function, which cannot take arguments 
less than or equal to zero. Indeed, the proof is based on Bingham, Goldie and 
Teugels [1987] Corollary 1.4.2 and Theorem 1.5.2 both of which require only p e l ,  
thus equation 5.100 still holds at the boundary conditions of p =  0.5 and p =  1 under 
the proof given by Inoue [1997].

From Theorem 5.3.2, when d =  0.5, p =  0.5. The integral is separated into two 
parts

1 f u 1 f ° °  1Jo (x2 +  x)0'5 dx Jo (x2 +  x)0-5 dx +  Ju (x2 4- x)0-5 dx

The second integral tends to zero as u —► oo, leaving

I  ..— 05dx =  log(2\Jv? +  u +  2u 4-1) ~  log(u) as u —► oo.
Jô xj

Hence

7(n) u0\ log(u) as u —> oo,

and substitution of 0U from Theorem 5.3.2 gives the required result,
c) Beginning again from equation 5.100, Theorem 5.3.2 shows p =  1 when d =  0. 

The integral is again split into two parts,

rJo
1

(x2 4- x)
dx Ll/u J

(x 2 4- x ) d x  +  J l f ,

f°°___1J\/u (̂2 d4-x)
dx,

where the first integral tends to zero as u —* oo, leaving

Hence

rJi/u (-T2 +  X)
dx — log(n 4-1) ~  log(u) as u oo.

7 («) /V/ u0\ log(u) as u oo,

and substitution of 0U from Theorem 5.3.2 gives the required result. □

Attention now turns to estimation of the parameters for the DFARIMA model. 
The following proposition shows the work done by Fox and Taqqu [1986] and Dahlhaus
[1989] still holds.

P roposition  5.3.1. Let yt be a DFARIMA process defined by equation 5.95 with 
spectral density f y(A) defined by equation 5.96. Then the conditions o f Fox and 
Taqqu [1986] and Dahlhaus [1989] for Theorem 2.3.1 hold for this process.
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Proof. Let

f y(X,6,c) =  b(X ,c)fx(X,6),

where /i(A , 6) is assumed to satisfy the conditions of Fox and Taqqu [1986] 
and Dahlhaus [1989]. Then, f y(X,6,c) will also satisfy the conditions of Fox and 
Taqqu [1986] and Dahlhaus [1989] if the following conditions on 6(A, c) hold for 
T) >  0 and some constants C, C\ and Ci which can be chosen independently of c but 
not of T).

B l) b(X,c) is continuous for all (A,c), A ^  0

C\{ri)Xn <  6(A,c) <  C2{rj)X~ri

B2) d/dcb(X,c), d2/dc2b(X,c) and d3/d<?b{X,c) are continuous at all (A,c), A ^
0,

< C {v )|AP

< c w r

< Civ)\X\-n

B3) d/dXb(X,c) and (P/dX2b{X,c) are continuous at all (A, c), A ^  0,

db(X,c)
dc

d2b(X,c)
dc2

and
93&(A,c)

dc3

and

db( A, c) 
OX

d2b(X,c)
dX2

d2b{X, c) 
OX dc

<c(n)\x\-l-\

< c(v)\x\-2-\

<  CC^IAI-1- "

d3b( A, c) 
dX20c

B4) d/dXb{X,c)~l and d2/dX2b{X,c)

cM(A,c)_1
ÖX

_1 are continuous at all (A,c), A ^  0, 

<  C M IA I '1- ’
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and
02b( A, e)*1 

OX2 < C (v )  |A|-2- "

B5) For all A G (0 ,7r) and c G (—oo, oo),

0 <  a < b(A, c) <  h < oo, 

for some constants a and h.
Take f y(X ,0,c) as the spectral density of the new DFARIMA model, f x(X,0) as 

the spectral density of a standard FARIMA model, which has previously be shown 
to satisfy these conditions, see Fox and Taqqu [1986] and Dahlhaus [1989], and 
6(A, c) =  |1 — log(l — e~,A)|~2c. Note, b(\,c) is continuous for A G (0 ,7r) and all 
its partial derivatives are bounded above and below away from A =  0, thus B5 is 
satisfied and it need only be shown that b(X,c) satisfies assumptions B1 - B4 as 
A —> 0. Also, b(X,c) ~  log (l/A )-2c as A —► 0. Since this is a slowly varying function, 
B1 is satisfied.

Now

Dkb(X,c)
i)ck

2* log(log(l/A))* log(l/A ) - 2 c < C (t7)|AP as A -»  0

thus B2 is satisfied. 
Next,

db(X,c) 2clog(l/A ) 2c 1
A

< C ( t7)|A|-1- ,> as A 0,

02b( A, c) 2c(2c +  1) log (l/A )_2c_2A +  2clog(l/A )_2c_1
cM2 A2 < C{rj)\X\-2~V as A 0,

02b(X,c) 21og(l/A)“ 2c_1 -  4clog(log(l/A ))log(l/A ) 2c 1
öXöc A

< C'i??)IA| 1  ̂ as A —♦

and

&%( A, c) (8c + 2 )lo g (l/A ) 2c 2 — 2(4c2 +  2c) log(log(l/A)) log(l/A ) 2c 2
OX2 Oc A

| 21og(l/A)~2,:~1 -  4clog(log(l/A ))Iog(l/A ) 2c 1 <  C7(r?)|A|—2—77 as A 0,
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thus B3 is satisfied. Finally, substitution of b(A, —c) into these equations shows 
B4 is satisfied. This completes the proof.

□
Proposition 5.3.1 shows the asymptotic theory of Fox and Taqqu [1986], Dahlhaus 

[1989] and Giraitis and Surgailis [1990] still holds. The work of Fox and Taqqu 
[1986] and Dahlhaus [1989] gives the asymptotic distributions of the exact maximum 
likelihood and Whittle maximum likelihood methods as stated in Theorem 2.3.1 
under the assumption that yt is Gaussian. For the Whittle likelihood estimates, the 
work of Giraitis and Surgailis [1990] relaxes the assumption of Gaussianity.

Note, for a DFARIMA(p,d,c,q) process, using the form of the spectral density 
given in equation 5.96 gives

( S l o g ^ A ) ) )  =  _  , o g  ^]og +  ^  ( _ ± _ )  (, 101)

+ ( “ " _1 ( s O T ) ' )

Integration of this function with respect to A is not straightforward and thus explicit 
forms for T given in Theorem 2.3.1 can be difficult to find. This problem can be 
overcome by use of Riemann sums, that is, by taking

~  2 ^ “  l -------m ------- )  V-------00,------- )  •

where Aj =  2nj/n and n can be chosen as large as computationally convenient 
to improve accuracy. Now, for estimates from a DFARIMA(0,d,c,0) process, noting

use of the Riemann sums approximations, with n =  107, gives

1.64491
-1.11786

-1.11786 \ 
1.04235 J ‘

(5.102)

(5.103)

Note, an exact value of Tn is given by 7r2/6  =  1.64493, thus the approximation 
of this value is correct to four decimal places, see for example Palma [2007] page 
105. Use of Theorem 2.3.1 now gives the asymptotic distribution for estimates d, c
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of do, <’o from a DFARIMA(0,d0, eo,0) process, found by maximising either the exact 
likelihood or the Whittle likelihood, as n —> oo, as

2.242 2.404 
2.404 3.538 ) )

(5.104)

Note, the asymptotic correlation between d and c is approximately equal to 
0.85. Although some correlation is therefore present, the covariance matrix of the 
estimates is non-singular. Hence, the parametric estimates do not suffer from the 
same asymptotic colinearity as the non-parametric methods.

Note also that the asymptotic variances do not depend on the true values d0 
and cq. Since neither equation 5.101 or equation 5.102 depend on do  or cq, this will 
be true for all values of p,q  G (0 ,1 ,2 ,.. . ) ,  however, as with the FARIMA model, 
dependence on 0 \ ,...,0 P and < ^ 1 ,...,^  will occur, see for example Palma [2007] 
page 10G.

For two further examples, the estimate of do for the DFARIMA(0/lo,0,0) process, 
which is equivalent to a FARIMA(0,</q,0) process, has asymptotic distribution

\fn(d — do) —*d Af(0,0.608), as n —► oo (5.105)

see for example Palma [2007] page 104 and use of the Riemann sums again gives 
the asymptotic distribution of the estimate of Co for a DFARIMA(0,0,co,0) process 
as

\/n(c — co) —*d N {0 ,0.959), as n —* oo. (5.106)

Due to standard.2 x 2 matrix inversion equations, the asymptotic variances for 
d and c when estimated simultaneously, given in equation 5.104, are both larger 
than the corresponding asymptotic variances when estimated separately, given in 
equations 5.105 and 5.106, by a factor of

Tnraa „  (1.64) (1.04) _
In 1m  -  11, ~  (1.64X1.04)- (-1.12)2

where Fy are the elements of the 2 x 2  matrix F for the DFARIMA(0,do,co,0) 
model and the approximations come from the Riemann sums given in equation 5.103.

5.4 Simulation Study

In this section a simulation study is carried out to investigate the finite sample 
behaviour of the new methods of estimating d and c discussed in sections 5.1-5.3. 
The results are presented in two parts. Section 5.4.1 presents the results for the new 
non-parmnetric estimates found using the DGPII method discussed in section 5.1



5. Dual Parameter Long Memory Model 178

and the dual local Whittle method presented in section 5.2. These are compared to 
the theoretical distributions given in Theorems 5.1.4 and 5.2.3 respectively. Results 
for the standard GPII and the standard local Whittle methods are also presented and 
the biases when c ^  0 are compared to the theoretical asymptotic biases presented 
in Theorems 5.1.3 and 5.2.1. The results show a tendency towards the asymptotic 
results as the series length increases, however these non-parametric methods are 
shown to be unsuitable for shorter time series.

In section 5.4.2 results are presented from the parametric approach of fitting a 
DFARIMA(p,d,c,q) using the Whittle Likelihood method of estimation. Assuming 
p and q to be known, the finite sample distributions are compared to the theoretical 
asymptotic distributions given by Theorem 2.3.1. Assuming p and q to be unknown, 
AIC and BIC are used to find estimates of p and q from a range of possible values and 
the results are recorded. In particular, when the series is generated from a process 
with 0, both AIC and BIC tend to favour the fit of a DFARIMA(p,d,c,q) model 
to a standard FARIMA(p,d,q) model.

5.4.1 Empirical Results o f  the Non-Parametric Methods

In this section, the finite sampling properties of estimates of d and c from the stan­
dard GPII, standard local Whittle, dual parameter GPII and dual parameter local 
Whittle methods are investigated and compared in a simulation study. The pur­
pose of this study is to discover if the asymptotic results for these methods given 
in sections 5.1 and 5.2 hold for time series of finite length. As such, the time series 
under study are simulated from what can be considered the ideal case, that is, from 
a linear Gaussian process with spectral density of the form

m  =  G0 |A|-2d°
-2co

for A G ( —7T, 7r). (5.107)

These are simulated using the method proposed by Davis and Ilarte [1987], which 
is described in the following Theorem.

T heorem  5.4.1. For j  G (0, . . . ,n /2 ) , take Zj to be a sequence of independent 
complex normal random variables with independent real and imaginary parts. Let zq 
and zn/2 be real with variances, a2 =  2, whilst the real and imaginary parts of Zj for  
j  G (1 ,. ..  ,n /2  — 1) have variance a2 =  1. Finally, for j  G (—n /2 ,. . ., —1), let Zj = 
z^j, where the bar above the z^j represents the complex conjugate. Then, the series 
yt, defined by

Vi
1

2n!/2

n/2

Z jf{^ j)l/2e
j = l - n / 2

i X j t / n

for t G (1 , . . . ,  n), has spectral density /(A ).
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Three series lengths are considered, rq =  103, n2 =  104 and n3 =  105. For each 
series length, time series are generated from the spectrum given in equation 5.107 
with do € (-0 .5 ,-0 .25 ,0 ,0 .25 ,0 .5) and cq € (1 ,0.5 ,0,— 0.5, — 1). Finally, each of the 
(>ii,dk,cv) combinations was replicated 1000 times. It is noted that the asymptotic 
results given in sections 5.1 and 5.2 are not designed to allow for the cases do =  0.5 
when c < 0 or do =  —0.5 when c >  0, but they were retained in the simulation study 
to more fully examine the behaviour of the estimates at the boundary conditions.

For each simulated series the standard GPII and standard local Whittle methods 
were used to find estimates of do and the new dual parameter GPII and dual param­
eter local Whittle methods were used to find estimates of do and cq for three different 
values of m, as described in sections 5.1 and 5.2. For simulated series of length nj, 
the three values of m were m u =  10, mj2 =  30 and mj3 =  50, for simulated series 
of length ?>2, the three values of m were m21 =  100, m22 =  150 and m23 =  200 and 
for simulated series of length no, the three values of m were m31 =  500, m32 =  1000 
and t»33 =  1500.

Since there is a zero or singularity in the spectral density at A =  1, these values of 
m were chosen to avoid the effect of this point by taking Am <  1/3. Also, since it is 
assumed m/n —> 0 as n —* oo, the values of m were chosen to reduce the proportion 
of frequencies used for longer time series.

For the GPII-type methods a lower point of truncation for frequencies used, A/, 
should also be chosen, see section 5.1. However, theoretical work done by Hurvich, 
Deo and Brodsky [1998] shows for the standard GPII method when c =  0, l can be 
taken as equal to 1 with negligible asymptotic effect, whilst simulation studies by 
Ilurvich and Beltra [1994] show for the standard GPII method, when c =  0, taking 
l > 1 leads to finite sample estimates with increased variance and only a very small 
reduction in bias. Using various values of /, it was also found here that no significant 
advantages for either the standard GPU method or the dual parameter GPII method 
were gained by taking l >  1 when c ^  0 and it is believed that the theoretical work 
done by Ilurvich, Deo and Brodsky [1998] can be extended to include the case when 
c 0, though this is left for future work. Due to these arguments, and for comparison 
to the local Whittle-type estimates, / is taken as equal to 1 throughout for the results 
presented in this section.

The results for the standard methods of estimating do are presented first,, A 
discussion of the finite sampling properties for these standard methods can be found 
in section 4.1.

The standard deviations for d estimated using the standard local Whittle and 
standard GPII methods with a series length n3 and bandwidth m32 are shown in 
table 5.1. In general, the standard deviations seem to show no dependence on the 
true value of do or Co and agree with the asymptotic results of Robinson [1995a] and 
Robinson [1995b], Since no new theoretical work has been presented in sections 5.1 
and 5.2 regarding the standard deviations of the estimates of do from the standard 
GPII and standard local Whittle methods, the standard deviations for these methods
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SD for standard LW estimates of d SD for standard GPH estimates of d
Series Length n=100000, Bandwidth m =1000

Asymptotic SD= 0.016 Asymptotic SD= 0.020
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1

0.5
0

-0.5
-1

0.104
0.031
0.017
0.017
0.017

0.034
0.017
0.017
0.017
0.017

0.017
0.017
0.018
0.018
0.017

0.017
0.016
0.017
0.017
0.017

0.017
0.017
0.017
0.017
0.017

0.026
0.022
0.022
0.022
0.022

0.021
0.022
0.022
0.021
0.021

0.022
0.021
0.022
0.021
0.021

0.021
0.021
0.021
0.021
0.021

0.020
0.021
0.021
0.021
0.021

Tub. 5.1: Sample standard deviations for d estimated using the standard local Whittle and 
standard GPU methods with a series length of n = 100000 and a bandwidth of 
m = 1000.

for the remainder of (n , m) combinations have been omitted to save space. Suffice to 
say, the standard deviations agree by in large with the previous simulation studies 
mentioned in that the shorter series lengths of m  have slightly larger standard de­
viations than the asymptotic theory suggests, though the asymptotic theory seems 
to hold very well for lengths ni and n$.

Interesting, however, is the behaviour of the standard deviations for do =  -0 .5  
and Q) >  0. Table 5.1 shows the sample standard deviations for the estimates of do 
from the standard local Whittle method for do =  —0.5 and co > 0 are significantly 
larger then the other values of do and co and, to a lesser extent, the same is true for 
the standard GPU method. This is visible for every (n, to) combination considered 
in this simulation study.

Theorem 3.2 of Phillips and Shimotsu [2006] shows for d0 <  —0.5, as n —♦ oo the 
local Whittle estimate will converge either to the true value of do or to 0 depending 
on the choice of rn. The simulation study presented in Phillips and Shimotsu [2006] 
shows in practice this tends to lead to larger standard deviations and large positive 
biases when do <  —0.5. Ilurvich and Ray [1995] give theoretical results to show 
estimates of do found via the standard GPU method also tend to zero as the series 
length increases for cq =  0 and do <  —0.5. The simulation study presented in Ilurvich 
and Ray [1995] shows in practice this also seems to lead to larger standard deviations 
and large positive biases for estimates of do from the standard GPU method.

Since a positive value of eo causes a decrease in the memory of the process, the 
case when d0 =  —0.5 and Co >  0 is on the upper boundary of the range of do covered 
by Theorem 3.2 of Phillips and Shimotsu [2006] and Ilurvich and Ray [1995] and the 
results presented in table 5.1 suggest these theoretical results may still hold in some 
form at this boundary condition.

The biases for the standard local Whittle method are presented in table 5.2, 
although in the interest of space only the results for the second value of to for each
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Bias for standard Local Whittle estimates of d theoretical Bias
Series Length n=10(J0, Bandwidth m =30

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.280 -0.045 -0.270 -0.370 -0.400 -0.45 -0.45 -0.45 -0.45 -0.45

0.5 -0.019 -0.150 -0.200 -0.220 -0.240 -0.22 -0.22 -0.22 -0.22 -0.22
0 0.03G -0.019 -0.045 -0.053 -0.068 0.00 0.00 0.00 0.00 0.00

-0.5 0.170 0.140 0.130 0.120 0.110 0.22 0.22 0.22 0.22 0.22
-1 0.310 0.320 0.300 0.290 0.261 0.45 0.45 0.45 0.45 0.45

Series Length n=10000, Bandwidth m =150
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.130 -0.142 -0.264 -0.270 -0.280 -0.33 -0.33 -0.33 -0.33 -Ò.33

0.5 -0.058 -0.131 -0.141 -0.140 -0.150 -0.16 -0.16 -0.16 -0.16 -0.16
0 0.013 -0.003 -0.008 -0.017 -0.018 0.00 0.00 0.00 0.00 0.00

-0.5 0.140 0.133 0.120 0.110 0.110 0.16 0.16 0.16 0.16 0.16
-1 0.2G0 0.262 0.252 0.250 0.240 0.33 0.33 0.33 0.33 0.33

Series Length n=100000, Bandwidth m =1000
Ï *' m d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.011 -0.190 -0.230 -0.230 -0.234 -0.26 -0.26 -0.26 -0.26 -0.26

0.5 -0.084 -0.110 -0.120 -0.123 -0.121 -0.13 -0.13 -0.13 -0.13 -0.13
0 0.004 -0.000 -0.002 -0.003 -0.003 0.00 0.00 0.00 0.00 0.00

-0.5 0.120 0.110 0.110 0.114 0.114 0.13 0.13 0.13 0.13 0.13
-1 0.230 0.232 0.232 0.231 0.225 0.26 0.26 0.26 0.26 0.26

Tab. 5.2: Sam ple and theoretical biases for d estim ated using the standard loca l W h ittle
m ethod.
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series length are presented. For a fixed series length, the bias increases with m when 
Co 7̂  0, as expected from Theorem 5.2.1. The theoretical biases are obtained from 
the upper and lower bounds presented in Theorem 5.2.1. Since Theorem 5.2.1 gives 
bounds for the expected bias rather than the biases in an explicit form, it is expected 
that the modulus of the sample biases be smaller than those of the theoretical biases. 
Table 5.2 shows this is generally the case and the same holds for those results not 
shown.

When cq =  0 the results seem to agree with those presented by the previous 
simulation studies already mentioned, that is the biases are small in magnitude, with 
a tendency towards being negative and decrease as the series length n increases. 
When co 7̂  0, however, table 5.2 shows the biases seem to be close to the upper 
and lower bounds presented in Theorem 5.2.1. For series lengths of n >  104 in 
particular, the biases should generally be considered unacceptable. Comparison with 
the standard deviations given in table 5.1 shows the biases when Cq ^  0, although 
decreasing with n, are generally larger than the standard deviations for n =  105, 
m =  103. This is also true for the other (n, m) combinations included in this study, 
implying tests on the parameters may lead to incorrect conclusions.

The case when do =  —0.5 and Co > 0 again stands out. Far from the strongly 
negative bias which would be expected if Theorem 5.2.1 were to hold, the biases 
tend to be positive, suggesting again that some form of Theorem 3.2 of Phillips 
and Shimotsu [2006] may still hold for this boundary condition and that Theorem
5.2.1 does not hold under these conditions. Interestingly, however, table 5.2 suggests 
Theorem 5.2.1 may still hold for do =  0.5 with Co <  0, which is no longer stationary.

The biases, for the second value of m for each series length, for the standard 
GPU method are presented in table 5.3. The remaining results are omitted in the 
interest of space, though it is noted, as with the standard local Whittle estimates, 
the bias increases with m when co ^  0. This is as expected from Theorem 5.1.3.

As mentioned in remark 5.1.3, the rate of convergence to the asymptotic results 
given in Theorem 5.1.3 is expected to be slow and in practise it is preferable to calcu­
late the actual theoretical biases rather than the asymptotic limits. The theoretical 
biases given in Table 5.3 are thus the actual theoretical biases, not the asymptotic 
limits given by Theorem 5.1.3.

Generally, the biases for the estimates from the standard GPU method are similar 
in magnitude to those for the standard local Whittle estimates. As for the estimates 
for the standard local Whittle method, when co =  0 the biases are small in magnitude 
and decrease as the series length n increases. This is in agreement with the results 
presented by the previous simulation studies already mentioned. When q> ^  0, 
table 5.3 shows the biases seem close to the theoretical ones, the asymptotic limits 
of which are given in Theorem 5.2.1. The magnitude of these biases should generally 
be considered unacceptable for series lengths of n > 104. As with the standard local 
Whittle estimates, comparison with the standard deviations given in table 5.1 shows 
the biases when cq ^  0 are generally larger than the standard deviations for n =  105,
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Bias for standard GPU estimates of d theoretical Bias
Series Length n=1000, Bandwidth m =30

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.163 -0.094 -0.276 -0.358 -0.388 -0.35 -0.35 -0.35 -0.35 -0.35 '

0.5 -0.032 -0.138 -0.187 -0.215 -0.227 -0.17 -0.17 -0.17 -0.17 -0.17
0 0.051 -0.009 -0.034 -0.052 -0.067 0.00 0.00 0.00 0.00 0.00

-0.5 0.18-1 0.150 0.135 0.125 0.110 0.17 0.17 0.17 0.17 0.17
-1 0.316 0.319 0.304 0.281 0.242 0.35 0.35 0.35 0.35 0.35

Series Length n=10000, Bandwidth m =150
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 -0.080 -0.198 -0.257 -0.264 -0.276 -0.26 -0.26 -0.26 -0.26 -0.26

0.5 -0.085 -0.125 -0.135 -0.140 -0.144 -0.13 -0.13 -0.13 -0.13 -0.13
0 0.016 -0.001 -0.004 -0.017 -0.018 0.00 0.00 0.00 0.00 0.00

-0.5 0.138 0.129 0.119 0.113 0.111 0.13 0.13 0.13 0.13 0.13
-1 0.263 0.256 0.219 0.246 0.230 0.26 0.26 0.26 0.26 0.26

Series Length ri—100000, Bandwidth m =1000
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 -0.183 -0.218 -0.229 -0.231 -0.234 -0.23 -0.23 -0.23 -0.23 -0.23

0.5 -0.103 -0.114 -0.117 -0.117 -0.118 -0.11 -0.11 -0.11 -0.11 -0.11
0 0.004 0.001 -0.002 -0.004 -0.004 0.00 0.00 0.00 0.00 0.00

-0.5 0.117 0.114 0.112 0.111 0.110 0.11 0.11 0.11 0.11 0.11
-1 0.230 0.228 0.227 0.224 0.220 0.23 0.23 0.23 0.23 0.23

Tab. 5.3: Sam ple arid theoretical biases for <1 estim ated using the standard G P H  m ethod.
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m =  103. Again, this is also true for the other (n, m) combinations included in this 
study, once more implying tests on the parameters may lead to incorrect conclusions.

For the case when do =  —0.5 and co >  0, the biases of the estimates of do using 
the standard GPH are not as negative as would be expected if the theoretical results 
which give the asymptotic theory of Theorem 5.1.3 were to hold. This once again 
suggests some form of the theoretical results of Ilurvich and Ray [1995] may still hold 
for this boundary condition. However, as with the standard deviations presented in 
table 5.1, the extent to which the results of Ilurvich and Ray [1995] seem to hold 
for the standard GPII method seem less than the extent to which Theorem 3.2 of 
Phillips and Shimotsu [2006] seems to hold for the standard local Whittle method.

Standard local Whittle method Standard GPH method

Series length Series length

Dual parameter local Whittle method lor d Dual parameter local Whittle method lor c

S eries  lenglh Series length

Dual parameter GPH method lor d Dual parameter GPH method for c

Series length Series length

Fig. 5.2: The proportion of sampling distributions which were not significantly different from 
the normal distribution at the 5% significance level for each series length and band­
width.
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Bias for standard GPH estimates oi d theoretical Bias
Series Length n=1000, Bandwidth m =30

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.163 -0.094 -0.276 -0.358 -0.388 -0.35 -0.35 -0.35 -0.35 -0.35

0.5 -0.032 -0.138 -0.187 -0.215 -0.227 -0.17 -0.17 -0.17 -0.17 -0.17
0 0.051 -0.009 -0.034 -0.052 -0.067 0.00 0.00 0.00 0.00 0.00

-0.5 0.184 0.150 0.135 0.125 0.110 0.17 0.17 0.17 0.17 0.17
-1 0.346 0.319 0.304 0.281 0.242 0.35 0.35 0.35 0.35 0.35

Series Length n—10000, Bandwidth m =150
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
l -0.080 -0.198 -0.257 -0.264 -0.276 -0.26 -0.26 -0.26 -0.26 -0.26

0.5 -0.085 -0.125 -0.135 -0.140 -0.144 -0.13 -0.13 -0.13 -0.13 -0.13
0 0.016 -0.001 -0.004 -0.017 -0.018 0.00 0.00 0.00 0.00 0.00

-0.5 0.138 0.129 0.119 0.113 0.111 0.13 0.13 0.13 0.13 0.13
-1 0.263 0.256 0.249 0.246 0.230 0.26 0.26 0.26 0.26 0.26

Series Length n= 100000, Bandwidth OoII

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 -0.183 -0.218 -0.229 -0.231 -0.234 -0.23 -0.23 -0.23 -0.23 -0.23

0.5 -0.103 -0.114 -0.117 -0.117 -0.118 -0.11 -0.11 -0.11 -0.11 -0.11
0 0.004 0.001 -0.002 -0.004 -0.004 0.00 0.00 0.00 0.00 0.00

-0.5 0.117 0.114 0.112 0.111 0.110 0.11 0.11 0.11 0.11 0.11
-1 0.230 0.228 0.227 0.224 0.220 0.23 0.23 0.23 0.23 0.23

Tnl>. 5.3: Sam ple and theoretical biases for tl estim ated using the standard G P H  m ethod.
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m =  H)'1. Again, this is also true for the other (n ,m ) combinations included in this 
study, once more implying tests on the parameters may lead to incorrect conclusions.

For the case when do =  —0.5 and co > 0, the biases of the estimates of do using 
the standard GPH are not as negative as would be expected if the theoretical results 
which give the asymptotic theory of Theorem 5.1.3 were to hold. This once again 
suggests some form of the theoretical results of Hurvich and Ray [1995] may still hold 
for this boundary condition. However, as with the standard deviations presented in 
table 5.1, the extent to which the results of Hurvich and Ray [1995] seem to hold 
for the standard GPU method seem less than the extent to which Theorem 3.2 of 
Phillips and Shimotsu [2006] seems to hold for the standard local Whittle method.
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Fig. 5.2: The proportion of sampling distributions which were not significantly different from 
the normal distribution at the 5% significance level for each series length and band­
width.
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Since the theoretical asymptotic distributions are normal for the estimates of d0 
and co from the standard local Whittle, standard GPII, dual parameter local Whittle 
and dual parameter GPII methods a test for normality was carried out on each of the 
sampling distributions for each (do,co,n;, uiy) combination. The null hypothesis for 
the tests was normality of the sampling distributions vs. the alternative hypothesis 
of non-normality. The tests used Shapiro-Wilk’s W statistic, see Shapiro and Wilk 
[1965], which was shown to be generally superior in detecting non-normality than 
several other statistics in a comparative study by Shapiro, Wilk and Chen [1968],

Generally, the p-value of the normality tests did not depend on the values of d0 
and r<). The exception to this was when do =  —0.5 with co — 1, as for this case 
the sampling distributions of the estimates of do and co for all four methods proved 
significantly different to the normal distribution for all series lengths and bandwidths 
chosen. Disregarding this case, there are therefore 24 sampling distributions of each 
estimate for each series length and bandwidth combination. Figure 5.2 shows the 
proportion of sampling distributions which were not significantly different from the 
normal distribution at the 5% significance level for each series length and bandwidth. 
It can be seen that as the series length n increases the proportion of sampling dis­
tributions for estimates of both do and co which were not significantly different from 
the normal distribution increases for all four estimation methods, reinforcing the 
theoretical asymptotic normality of the estimates.

There is also evidence to suggest that the sampling distributions for the estimates 
of eo from the dual parameter local Whittle and dual parameter GPII methods seem 
to converge to normality at a similar, and possibly faster, rate then the sampling 
distributions for the estimates of do from the standard local Whittle and standard 
GPII methods, whilst the sampling distributions for the estimates of do from the 
dual parameter local Whittle and dual parameter GPII methods seem to converge 
to normality at a slower rate.

Attention now turns to the standard deviations and biases of the simultane­
ous estimates of do and e0 using the new dual parameter GPII and local Whittle 
methods. The theoretical asymptotic distributions for these estimates are given in 
Theorems 5.1.4 and 5.2.3.

The sample standard deviations for d and c estimated using the new dual param­
eter local Whittle method for the second choice of bandwidth for each series length 
are given in table 5.4. The results for the other choices of rn, omitted to save space, 
show the sample standard deviations decrease as m increases. This agrees with the 
theoretical results given by Theorem 5.2.3.

As expected by the asymptotic distribution given in Theorem 5.2.3, the standard 
deviations generally show no dependence of the true do and c q . The exception once 
again being for the case when do =  -0 .5  and co >  0. Whilst the observation of 
the increased standard deviations for the standard local Whittle estimates at these 
points suggested some form of Theorem 3.2 of Phillips and Shimotsu [2006] may 
still hold, the observation of increased standard deviations for the dual parameter 
estimates at these points suggests Theorem 3.2 of Phillips and Shimotsu [2006] may
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SD for DLW estimates of d SD for DLW estimates of c
Series Length n-= 1000, Bandwidth m =30

Asymptotic SD=  0.315 Asymptotic SD = 2.178
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 1.058 0.831 0.771 0.770 0.767 2.718 2.283 2.175 2.152 2.148

0.5 0.933 0.740 0.768 0.775 0.787 2.492 2.097 2.178 2.172 2.208
0 0.802 0.820 0.800 0.772 0.765 2.233 2.329 2.243 2.174 2.150

-0.5 0.791 0.818 0.817 0.796 0.810 2.238 2.300 2.277 2.228 2.257
-1 0.798 0.805 0.785 0.804 0.798 2.251 2.233 2.190 2.213 2.208

Series Length n= 10000, 3andwic th m = 150
Asymptotic SD=  0.188 Asymptotic SD=  1.732

d d
c -0.5 -0.25 0 0.25 0.5 t © Cn -0.25 0 0.25 0.5
1 0.569 0.370 0.308 0.300 0.294 1.929 1.336 1.164 1.136 1.099

0.5 0.429 0.294 0.302 0.310 0.311 1.535 1.105 1.138 1.171 1.180
0 0.310 0.303 0.297 0.313 0.305 1.171 1.141 1.129 1.173 1.143

-0.5 0.314 0.298 0.305 0.308 0.315 1.179 1.117 1.143 1.148 1.183
-1 0.316 0.309 0.312 0.322 0.326 1.185 1.150 1.162 1.210 1.202

Series Length n= 100000, 3andwic th m = 1000
Asymptotic SD=  0.091 Asymptotic SD=  1.048

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.329 0.164 0.109 0.110 0.101 1.285 0.675 0.465 0.471 0.432

0.5 0.155 0.105 0.104 0.106 0.108 0.640 0.449 0.452 0.455 0.464
0 0.106 0.104 0.109 0.109 0.111 0.460 0.446 0.469 0.471 0.479

-0.5 0.106 0.107 0.111 0.108 0.107 0.455 0.460 0.480 0.465 0.459
-1 0.106 0.109 0.108 0.109 0.110 0.457 0.471 0.466 0.466 0.472

Tab. 5.4: Sam ple standard deviations for d and c  estim ated using the new dual param eter
local W h ittle  m ethod.
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also be able to be generalised to give similar results for the dual parameter local 
Whittle method.

The magnitudes of the standard deviations for the dual parameter local Whittle 
estimates shown in table 5.4 are of some concern. Although decreasing as the series 
length n increases, as suggested by Theorem 5.2.3, even for series lengths of n =  
10000 the sample standard deviations for the estimates of do seem to be around 0.3 
and since do is often in practise assumed to be in a range such as [0,0.5], the size of the 
standard deviation implies no meaningful conclusions can be made. Also of concern, 
the sample standard deviations seem to converge very slowly to the asymptotic 
results. The sample standard deviations for the estimates of do are all larger than 
the asymptotic theory suggests. Interestingly, the sample standard deviations for 
the estimates of cq are often smaller than the asymptotic theory suggests

SD for DGPII estimates of d SD for DGPH estimates of c
Series Length n=1000, Bandwidth m = 30

theoretical SD=  0.873 theoretical SD = 2.495
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 1.179 0.920 0.912 0.873 0.901 3.084 2.580 2.587 2.495 2.552

0.5 1.017 0.854 0.881 0.926 0.931 2.854 2.458 2.519 2.604 2.640
0 0.931 0.930 0.908 0.921 0.882 2.623 2.666 2.580 2.629 2.522

-0.5 0.910 0.917 0.938 0.914 0.899 2.599 2.610 2.659 2.584 2.544
-1 0.920 0.912 0.900 0.914 0.916 2.637 2.577 2.563 2.583 2.573

Series Length n= 10000, Bandwic th m = 150
theoretical SD = 0.350 theoretical SD== 1.329

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.537 0.390 ~ 0.359 0.366 0.356 1.892 1.447 1.373 1.401 1.350

0.5 0.435 0.351 0.371 0.373 0.360 1.597 1.343 1.405 1.414 1.376
0 0.379 Ü.3G5 0.362 0.374 0.373 1.437 1.384 1.379 1.416 1.400

-0.5 0.383 0.367 0.371 0.368 0.379 1.415 1.395 1.406 1.388 1.426
-1 0.381 0.351 0.381 0.368 0.388 1.438 1.332 1.434 1.393 1.449

Series Length n= 100000, 3andwic th m = 1000
theoretical SD = 0.127 theoretical SD== 0.550

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.195 0.115 0.131 0.132 0.129 0.807 0.620 0.580 0.568 0.557

0.5 0.141 0.131 0.128 0.131 0.133 0.616 0.559 0.557 0.564 0.571
0 0.131 0.131 0.131 0.131 0.130 0.565 0.564 0.576 0.582 0.562

-0.5 0.129 0.131 0.138 0.131 0.130 0.559 0.563 0.601 0.581 0.557
-1 0.131 Ü.13G 0.131 0.133 0.132 0.566 0.587 0.582 0.571 0.567

Tab. 5.5: Sample standard deviations for d and c estimated using the new DGPH method.
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The sample standard deviations for d and c estimated using the new dual pa­
rameter GPII method for the second choice of bandwidth for each series length are 
given in table 5.5. As with the dual parameter local Whittle method results for 
the other choices of m show the sample standard deviations decrease as m increases 
and are omitted to save space. This agrees with the theoretical results given by 
Theorem 5.1.4.

The magnitudes of the standard deviations for the dual parameter GPII estimates 
shown in table 5.4 are also of some concern. As with the comparison between the 
standard GPII and standard local Whittle methods, the sample standard deviations 
for the dual parameter GPII method seem to be slightly larger whilst decreasing at a 
similar rate to those for the dual parameter local Whittle method. A comparison of 
Theorem 5.1.4 with Theorem 5.2.3 shows asymptotically the standard deviations for 
the dual parameter GPH method should be approximately 1.8 times the size of those 
for the dual parameter local Whittle method. A comparison of tables 5.4 and 5.5 
shows the sample standard deviations tend to be approximately 1.2 times larger for 
the dual parameter GPII method compared with the dual parameter local Whittle 
method, regardless of dQ, co or series length.

The theoretical standard deviations given in table 5.5 seem to fit the sampling 
standard deviations very well, though it is noted these are not the asymptotic stan­
dard deviations but the theoretical standard deviations evaluated exactly, as sug­
gested in remark 5.1.3. Also note once again that as expected by Theorem 5.1.4, 
the standard deviations generally show no dependence of the true do and cq. The 
exception once more being for the case when do =  —0.5 and co > 0, where the stan­
dard deviations are larger. This suggests the results of Ilurvich and Ray [1995] may 
also be able to be generalised to give similar results for the dual parameter GPII 
method. However, as with the standard methods, the effect of these points on the 
standard deviations for the dual parameter GPII estimates seems smaller than that 
on the standard deviations for the dual parameter local Whittle estimates.

The biases for the estimates of do and co from the dual parameter local Whittle 
method are shown in table 5.6. Comparison with the biases for the estimates of do 
from the standard local Whittle method, shown in table 5.2 show for series lengths 
of n > 104 there is generally a significant reduction in bias when cq ^  0 for the dual 
parameter local Whittle estimates.

For the series length n =  1000, the biases of the estimates of do are generally 
similar in modulus or the standard local Whittle estimates are superior. Since the 
standard deviations are also much smaller for the standard local Whittle estimates 
when n =  1000, the dual parameter local Whittle method seems unsuitable for this 
series length.

For a series length n =  10,000 it is difficult to suggest which method is superior. 
There is a trade ofF between the large biases of the standard local Whittle estimates 
when c ^  0 and the large standard deviations of the dual parameter local Whittle 
estimates and thus both methods may easily lead to incorrect conclusions during 
hypothesis testing.
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Bias for DLW estimates of d Bias for DLW estimates of c
Senes Length n=1000, Bandwidth m =30

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 2.502 1.238 0.223 -0.250 -0.412 5.782 3.141 0.856 -0.363 -0.7Ö2-

0.5 0.633 0.000 -0.288 -0.356 -0.481 1.239 0.390 -0.349 -0.401 -0.903
0 0.063 -0.172 -0.326 -0.477 -0.492 0.385 -0.124 -0.645 -0.849 -1.061

-0.5 -0.103 -0.271 -0.370 -0.492 -0.538 -0.043 -0.435 -0.667 -0.901 -1.152
-1 -0.111 -0.315 -0.401 -0.452 -0.660 -0.112 -0.522 -0.723 -0.821 -1.572

Series Length n==10000, Jandwidth m =150
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 1.558 0.519 -0.016 -0.114 -0.136 4.865 1.562 -0.092 -0.236 ^ 0 4 T T

0.5 0.378 0.011 -0.079 -0.116 -0.145 1.324 0.324 -0.136 -0.267 -0.427
0 0.086 -0.060 -0.078 -0.141 -0.171 0.564 -0.013 -0.256 -0.392 -0.521

-0.5 -0.002 -0.051 -0.103 -0.137 -0.164 -0.023 -0.134 -0.219 -0.387 -0.531
-1 -0.020 -0.084 -0.118 -0.146 -0.234 -0.124 -0.199 -0.392 -0.399 -0.772

Series Length n= 100000, Jandwidth m =1000
.• t d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.818 0.112 -0.014 -0.029 -0.042 2.128 0.421 -0.019 -0.106 -0.145

0.5 0.151 0.002 -0.021 -0.028 -0.037 0.421 0.009 -0.059 -0.099 -0.147
0 0.036 -0.008 -0.021 -0.036 -0.039 0.159 -0.026 -0.115 -0.124 -0.152

-0.5 0.020 -0.008 -0.022 -0.035 -0.036 0.128 -0.043 -0.092 -0.121 -0.15G
-1 0.003 -0.015 -0.027 -0.036 -0.060 0.027 -0.101 -0.128 -0.141 -0.224

Tab. 5.0; Sample biases for d and c estimated using the new dual parameter local Whittle 
method, theoretical biases are all zero.
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For the series length n =  105 it is suggested that the dual parameter local Whit­
tle method is preferred. When cq 0, the standard local Whittle method leads 
to estimates with large biases and small variances, suggesting a high probability of 
incorrect conclusions. However, the biases of the dual parameter local Whittle esti­
mates are much smaller when c ^  0 and the standard deviations are of an acceptable 
size.

Bias for DGPH estimates of d Bias for DGPH estimates of c
Series Length n=1000, Bandwidth m =30

d d
c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 2.746 1.437 0.404 -0.130 -0.282 6.480 3.430 0.969 -0.342 -0.693

0.5 0.795 0.175 -0.135 -0.180 -0.343 1.890 0.406 -0.350 -0.399 -0.836
0 0.212 -0.011 -0.195 -0.333 -0.380 0.465 -0.004 -0.465 -0.814 -0.906

-0.5 0.065 -0.125 -0.237 -0.350 -0.419 0.156 -0.295 -0.574 -0.875 -1.030
-1 0.005 -0.196 -0.257 -0.325 -0.560 0.012 -0.492 -0.622 -0.755 -1.323

Series Length n==10000, 3andwic th m =150
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 1.390 0.495 0.039 -0.092 -0.118 4.650 1.670 0.140 -0.339 -0.391

0.5 0.356 0.058 -0.043 -0.083 -0.128 1.200 0.202 -0.146 -0.280 -0.438
0 0.127 -0.016 -0.053 -0.107 -0.144 0.427 -0.057 -0.190 -0.345 -0.485

-0.5 0.037 -0.015 -0.073 -0.101 -0.144 0.114 -0.057 -0.235 -0.322 -0.479
-1 0.025 -0.055 -0.096 -0.123 -0.216 0.088 -0.195 -0.328 -0.419 -0.714

Series Length n= 100000, 3andwic th m =1000
d d

c -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
1 0.456 0.100 -0.003 -0.020 -0.038 1.800 0.396 -0.008 -0.076 -0.144

0.5 0.098 0.008 -0.014 -0.025 -0.038 0.382 0.033 -0.049 -0.097 -0.149
0 0.040 0.005 -0.016 -0.032 -0.038 0.162 0.017 -0.062 -0.124 -0.151

-0.5 0.033 0.001 -0.018 -0.034 -0.037 0.133 0.003 -0.069 -0.135 -0.145
-1 0.010 -0.006 -0.023 -0.035 -0.067 0.037 -0.028 -0.096 -0.136 -0.257

Tab. 5.7: Sample biases for d and c estimated using the new DGPII method, theoretical 
biases are all zero.

The biases for the estimates of da and co from the dual parameter GPII method 
are shown in table 5.7. Comparison with the biases for the estimates of do from the 
standard GPII method, shown in table 5.3 gives similar conclusions as the comparison 
between the standard local Whittle and the dual parameter local Whittle estimates.

For the series length n =  1000, due to unacceptably large standard deviar 
tions combined with no noticeable improvement of biases, the dual parameter GPII 
method seems unsuitable.

For a series length n =  10,000, there is a trade oil between the large biases of the
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standard GPII estimates when 0 and the large standard deviations of the dual 
parameter GPII estimates. As before, both methods may easily lead to incorrect 
conclusions during hypothesis testing.

For the series length n — 105 it is suggested that the dual parameter GPII 
method is preferred, due to the large reduction in biases of the dual parameter GPU 
estimates when c ^  0 and the more acceptable sizes of the standard deviations.

Finally, comparison between the biases for the estimates of do and cq from the 
dual parameter local Whittle method, shown in table 5.6, and the biases from the 
dual parameter GPU method, shown in table 5.7, show little difference between the 
methods. Since the standard deviations of the dual parameter local Whittle method 
are generally slightly smaller, this seems the preferred method of the two.

In conclusion, the results of the simulation study presented here reinforce the 
theoretical work done in sections 5.1 and 5.2 which suggest when c ^  0 the standard 
non-parametric methods commonly used in the literature can lead to strongly bi­
ased results. Unfortunately, the new dual parameter methods designed to reduce this 
bias can have unacceptably large standard deviations for series lengths of n <  104. 
However, for series lengths of n =  105 the new methods appear to lead to superior 
estimates and the asymptotic results given in sections 5.1 and 5.2 suggest this ad­
vantage to increase further for longer time series. With increasingly high frequency 
sampling of time series such as internet traffic, series of the lengths required become 
increasingly common.

5.4.2 Empirical Results for Fitting DFARIMA Models

In this section results are presented for estimating d0 and cq using the parametric 
approach of fitting a DFARIMA(p,do,eo,q) model to the observed time series via 
maximising the Whittle likelihood approximation. Several previous simulation stud­
ies have boon carried out using FARIMA(p,do,q) models, which are a special case of 
the new DFARIMA(p,do,co,q).

Taqqu, Teverovsky and Willinger [1995] give results on times series o f length 
n ~  10,000 generated from Gaussian FARIMA(0,do,0) processes and FGN with 
various values of d0. They show the Whittle likelihood estimates to out perform all 
of the non-parametric methods they consider, with typical sample biases of around 
0.001 in modulus and sample standard deviations less than 0.01.

Taqqu and Teverovsky [1996] extend on these results including also FARIMA(p,d0 
, q) processes with p,q G (0,1) and in addition to finding the Whittle likelihood 
estimates of the parameters from the correct model, they study also the effect of 
under and over fitting. For a series length n =  10,000, they find once again that 
fitting the cor rot: t model leads to estimates of small sample bias and sample standard 
deviations. They also find that for this series length, over fitting the model can lead to 
increased sample standard deviations, although often does not significantly alter the 
results, whilst under fitting leads to smaller sample standard deviations with much
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larger sample biases. They also consider times series of length n =  100 generated 
from Gaussian FARIMA(0,do,0) processes and find that, when the correct model is 
fitted, sample biases less than 0.05 in modulus and sample standard deviations less 
than 0.95 are reported, whilst over fitting for this series length can lead to greatly 
increases sample biases and sample standard deviations.

Bhansali and Kokoszka [2001a] also consider the effects of over and under fitting 
the model when the true model is a FARIMA(p,d,q) model with p,q € (0,1,2) and 
find for time series of length n =  1000 this can lead to increased sample biases and 
sample standard deviations. They then consider use of criterions to choose the model 
for each time series. In particular, they compare AIC and BIC, show that both can 
lead to reductions in bias and standard deviation compared to arbitrarily fitting a 
model, and find BIC to be preferred overall.

Following from these works, the simulation study presented here first investi­
gates the sampling properties of the estimated parameters when the model is cor­
rectly specified. Results are then shown from when the model is over and under 
parameterised. Finally, the use o f AIC and BIC to fit the model are considered.

The initial study focuses on the following four models
1) DFARIMA(0,d =  0.25, c =  1,0)
2) DFARIMA(ar=0.5,iZ =  0.25, c =  1,0)
3) DFARIMA(0,d =  0.25, c =  l,ma=0.25)
4) DFARIMA(ar=0.5,d =  0.25, c =  l,ma=0.25)
with Gaussian innovations. These are simulated using the method proposed by 

Davis and Ilarte [1987],see Theorem 5.4.1, from the spectral density given in equa­
tion 5.96. The ar and ma parameters were chosen before any simulations were carried 
out with the only consideration being that they not be equal to insure no common 
root between the ar and ma polynomials. For each model, three series lengths are 
considered, n\ =  100, «2 =  1000 and «3 =  10,000. Since the asymptotic distribution 
of the parameter estimates, given by Theorem 2.3.1, shows the parameter estimates 
to be x/M-consistent it was assumed a series length of n =  10,000 would be sufficient
and thus a series length of n =  105 is not considered in this section. Each simulated 
time series is replicated 1000 times.

Taking the values of p and q to be known, for each simulated time series the 
estimates of the parameters were found by maximising the Whittle likelihood ap­
proximation. The sample biases, sample standard deviations and p-values for the 
Shapiro-Wilk test of normality with the null hypothesis of a normal distribution are 
given in table 5.8. Since p and q are known, Theorem 2.3.1 is applicable and the 
theoretical asymptotic standard deviations have been calculated using the discrete 
approximation method mentioned in section 5.3 with n set to 107.

It can be seen in table 5.8 that both the biases and standard deviations decrease 
as the series length n increases and the p-values tend to increase as the series length 
n increases. This fits with the asymptotic theory of Theorem 2.3.1, which states the 
estimates are consistent and asymptotically normally distributed.
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DFARIMA(0,d = 0.25, c == 1,0) ----------- -—------- - '

Sample Bias Sample Standard Deviation ------- '
n d c ar ma d c ar ma d c ar

y
ma

100 -0.080 -0.058 - 0.204 0.230 - - 0.0 0.1

1000 -0.014 -0.012
(0.15)
0.054

(0.19)
0.065 . . 0.2 0.6

(0.05) (0.06)
10,000 -0.004 -0.003 - - 0.014 0.020 - - 0.6 0.3

(0.01) (0.02)
DFARiMA( ar=0.5,d =  0.25, 5= 1 ,0 )

Samp e Bias Sample Standard Deviation P-Value
n d c ar ma d c ar ma d c ar ma

100 -0.210 -0.208 -0.039 - 0.286 0.359 0.367 - 0.0 0.0 " o r

1000 -0.061 -0.024 0.031
■ - (0.22)

0.137
(0.21)
0.078

(0.28)
0.131 0.0 0.0 O.o

10,000 -0.004 0.000 0.005
(0.07)
0.024

(0.07)
0.027

(0.09)
0.032 _ 0.6 0.1 0.1

W (0.02) (0.02) (0.03)
DFARIMA(0,d =  0.25, c =  l,ma=0.25)

Samp e Bias Sample Standard Deviation P-Value
11 d c ar ma d c ar ma d c ar ma

100

1000

10,000

-0.023

-0.013

-0.004

-0.007

-0.046

-0.016

-

-0.011

-0.039

-0.014

0.217
(0.55)
0.087
(0.17)
0.045
(0.05)

0.380
(1.76)
0.251
(0.56)
0.146
(0.18)

-

0.301
(1.23)
0.178
(0.39)
0.103
(0.12)

0.0

0.0

0.2

0.0

0.0

0.7

-

"ôo

0.0

0.6

DFARIMA(ar=0.5,d =  0.25, c = l,ma=0.25)
Samp e Bias Sample Standard Deviation P-VaïmT~

11 d c ar ma d c ar ma d c ar
100

1000

-0.190

-0.072

-0.131

-0.057

0.022

0.054

-0.003

-0.047

0.293
(0.56)
0.129
(0.18)

0.368
(1.79)
0.240
(0.57)

0.321
(0.28)
0.114
(0.09)

0.254
(1.24)
0.185
(0.39)

0.0

0.0

0.0

0.0

0 ^

O .o

0.0

0.0

10,000 -0.010 -0.024 0.010 -0.025 0.043
(0.06)

0.159
(0.18)

0.036
(0.03)

0.131
(0.12)

0.5 0.0 0.1 0.0

Tub. 5.8: Results of estimating the parameters of the DFARIMA models when the true model 
is fitted, theoretical”standard deviations are shown in brackets beneath the sample 
standard deviations, theoretical biases are all zero. The p-values stated are for the 
Shapiro-Wilk test of normality with the null hypothesis of a normal distribution.
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The sample biases for all four models with series length n >  1000 are of modulus 
less than 0.072. For models 1 and 3 this is also true for the sample biases of the 
estimates with series length n =  100. For models 2 and 4, the biases of the estimates 
of do and cq are larger with a modulus of around 0.2. However, even for these 
models the sample biases of the ar and ma coefficients are small for a series length 
of n =  100. The asymptotic theory that the parameter estimates are unbiased thus 
seems to hold reasonably well for series lengths of moderate size.

The p-values for the Shapiro-Wilk test of normality with the null hypothesis of 
a normal distribution, given in table 5.8, are correct to 1 dp. Thus a value of 0.0 
represents the sampling distribution is significantly different from normality at the 
5% significance level. It can be seen that for model 1, the sampling distributions 
were not significantly different from the normal distribution for series lengths of 
n >  1000, and the sampling distribution of the estimate of cq was not significantly 
different from the normal distribution even for a series length of n =  100. For models 
2-4, the sampling distributions of the estimates did show significant different from 
the normal distribution for series lengths n < 1000, however for a series length of n — 
10,000 the majority of the sampling distributions of the estimates from these models 
were not significantly different from the normal distribution. This reinforces the 
results of Theorem 2.3.1 which state that the estimates are asymptotically normally 
distributed.

Comparison of the theoretical asymptotic standard deviations, see Theorem 2.3.1, 
with the sample standard deviations, shown in table 5.8, indicates a close fit to the 
asymptotic results when n =  10,000 for all the estimates from all four models be­
ing considered. For series lengths n <  1000 the theoretical asymptotic standard 
deviations are often quite different from the sampling standard deviations reported, 
particularly for the estimates of cq  and the ma coefficient in models 3 and 4. In­
terestingly, however, the difference is often that the sampling standard deviations 
are actually much smaller than the asymptotic theory would suggest, although the 
results for model 2 have sampling standard deviations slightly larger than the theo­
retical ones.

The results given in table 5.8 show the sample estimates generally seem to agree 
with the asymptotic results of Theorem 2.3.1 in that they have small biases and 
standard deviations and seem to tend to a normal distribution as the series length 
increases. However, these results are only applicable when the true values of p and q 
are known. Since this is rarely the case in applications, resulted are now presented 
assuming p and q to be unknown. In addition, it of interest to see some possible 
effects on estimating the parameters when co ^  0 is falsely assumed to be zero and 
also when cq  =  0 is falsely assumed to be present.

In view of this, five further models are presented
5) FARIMA(0,d =  0.25,0)
6) FARIMA(ar=0.5,d =  0.25,0)
7) FARIMA(0,d =  0.25,ma=0.25)
8) FARIMA(ar=0.5,d =  0.25,ma=0.25)
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Over Parameterised
True Model: DFARlMA(0,d =  0.25,c =  1,0)

Fitted model: DFARIMA(l,d,c,l) Fitted model: FARIM A(l,d,l)
n 100 1000 10,000 100 1000 10,000

Sample Bias of d -0.216 -0.054 -0.011 -0.329 -0.293 -0.267
Sample SD of d 0.327 0.163 0.050 0.250 0.058 0.015

True Model: FARIMA(0,d = 0.25,0)
Fitted model: DFARIMA(l,d,c,l) Fitted model: FARlM A(l,d,l)

n 100 1000 10,000 100 1000 10,000
Sample Bias of d -0.095 0.129 0.163 -0.199 -0.036 -0.006
Sample SÛ of d 0.318 0.185 0.143 0.338 0.097 0.028

Under Parameterised
True Model: DFARIMA(ar=0.5,d =  0.25, c =  l,ma=0.25)

Fitted model: DFARIMA(0,d,c,0) Fitted model: FARIMA(0,d,0)
n 100 1000 10,000 100 1000 10,000

Sample Bias of d 0.034 0.043 0.040 -0.238 -0.204 -0.196
Sample SD of d 0.205 0.057 0.016 0.103 0.028 0.009

True Model: FARlMA(ar=0.5,d =  0.25,ma=0.25)
Fitted model: DFARIMA(0,d,c,0) Fitted model: FARlMA(0,d,0)

n 100 1000 10,000 100 1000 10,000
Sample Bias of d 0.017 0.039 0.036 0.670 0.630 0.611
Sample SD of d 0.214 0.056 0.017 0.125 0.031 0.007

Tab. 5.9: Mean sample bias and standard deviations for the estimated values of d0 when the 
fitted model has been over and under parameterised.
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9) A sequence of IID N(0,1)
with Gaussian innovations. Models 5 -8  are equivalent to models 1-4 with co =  0. 

As previously, these are simulated using the method proposed by Davis and Harte 
[1987],see Theorem 5.4.1. Model 9, that is the sequence of IID N(0,1), is included 
for completeness.

The results given in table 5.9 show the sample biases and standard deviations 
which occur when estimating do whilst over or under fitting the model. In order 
to investigate the effects of over fitting the model, series are generated from models 
1 and 5, which have p,q =  0, and the estimates of do are estimated from fitting 
FARIM A(l,d,l) and DFARIM A(l,d,c,l) models. The investigation o f the effects 
of under fitting reverses this, with series generated from models 4 and 8, which 
have p, q =  1, and estimates found fitting FARIMA(0,d,0) and DFARIMA(0,d,c,0) 
models.

When fitting a FARIMA model to the data, the results tend to agree with those 
presented in Taqqu and Teverovsky [1990]. When a FARIM A(l,d,l) model is fitted to 
a FARIMA(0,d,0) process, i.e. the model is overfitted, the bias seems to be small for 
n >  1000 and the sample standard deviations, although reasonably small, are large 
compared to the sample standard deviations shown when a FARIMA(0,d,0) model 
is fitted. When a FARIMA(0,d,0) model is fitted to a FARIM A(l,d,l) process, i.e. 
the model is underfitted, the bias is much larger with smaller standard deviations. 
Similar results for under fitting also appear when fitting a FARIMA(0,d,0) model to 
a DFARIM A(l,d,c,l).

The case of fitting a FARIM A(l,d,l) model to a DFARIMA(0,d,c,0) process 
behaves similar to the underfitting cases, resulting in large bias and moderately 
small standard deviations. Indeed, the fitting of a FARIM A(l,d,l) model to a 
DFARIMA(0,d,c,0) process, although overfitting the values of p and q, essentially 
underfits the presence of co. This suggests increasing the number of short range 
parameters does not compensate for ignoring the presence of Co.

The results from fitting a DFARIMA(p,d,c,q) model, also shown in table 5.9, 
seem somewhat different. The results from fitting a DFARIM A(l,d,c,l) model to 
a DFARIMA(0,d,c,0) process, an example of overfitting, seem to follow the general 
pattern in that the biases are small, for n > 1000, whilst the standard deviations are 
larger than those reported in table 5.8 when the true model was fitted. However, the 
results when a DFARIM A(l,d,c,l) model is fitted to a FARIMA(0,d,0) process, an­
other example of overfitting, are very different. Both biases and standard deviations 
seem much larger. In addition, although the standard deviations appear to decrease 
as the series length n increases, the mean bias actually appears to be increasing.

The results for under fitting a DFARIMA(0,d,c,0) model to DFARIM A(l,d,c,l) 
and FARIM A(l,d,l) processes also vary from those for underfitting a FARIMA 
model. They appear to give both small biases and small standard deviations. The
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parameter c thus seems to be able to compensate for the underfitting of p  and q. 
It may be of interest for future research to examine how well this result holds for 
larger values of p and q and how dependent it is on the choice of the short range 
parameters.

DFAHIMA(0,d =  0.25, c =  1,0)
Model fittec using AIC Model fitted using BIC

Sample Bias Sample SD Sample Bias Sample SD
n d c d c d c d c

100 -0.254 -0.551 0.262 0.525 -0.269 -0.553 0.276 0.525
1000 -0.104 -0.274 0.165 0.447 -0.099 -0.255 0.161 0.435

10,000 -0.020 -0.0G0 0.067 0.247 -0.004 -0.003 0.014 0.020
DFAItl VlA(ar==0.5, d = 0.25, c == 1,0)

Model fitted using AIC Model fittec using BIC
Samp e Bias Sample SD Sample Bias Sample SD

n d c d c d c d c
100 -0.103 -0.843 0.204 0.078 -0.178 -0.959 0.190 0.174

1000 -0.097 -0.226 0.130 0.403 -0.080 -0.476 0.111 0.466
10,000 -0.001 0.012 0.031 0.078 -0.004 0.000 0.024 0.027

DFAltIMA(0,d = 0.25, c =  l,ma==0.25)
Model fitted using AIC Model fitted using BIC

Sample Bias Sample SD Samp]e Bias Sample SD
n d c d c d c d c

100 -0.300 -0.765 0.232 0.338 -0.387 -0.830 0.280 0.325
1000 -0.175 -0.565 0.121 0.354 -0.162 -0.573 0.103 0.321

10,000 -0.019 -0.060 0.057 0.208 -0.081 -0.321 0.033 0.118
DFAR1MA Ar=0.5,d =  0.25, c =  l,ma=0.25^

Model fitted using AIC Model fitted using BIC
Sample Bias Sample SD Sample Bias Sample SD

n d c d c d c d c
100 -0.174 -0.938 0.171 0.210 -0.239 -0.999 0.075 0.022

1000 -0.134 -0.391 0.101 0.220 -0.139 -0.516 0.117 0.296
10,000 -0.021 -0.064 0.054 0.205 -0.082 -0.315 0.024 0.020

Tab. 5.10: Mean sample bias and standard deviations for the estimated values of d0 and cQ 
when the true model is assumed unknown and a model is fitted using either AIC 
or BIC from a choice of DFAR1MA and FARIMA models.

In the study presented here, having considered some possible effects of over and 
under fitting, attention now turns to model fitting. The work of Beran et al [1998] 
show the suitability o f using AIC and BIC for fitting FAR(p) models and suggest 
a wider suitability to the fitting of other long memory models. They show BIC 
generally gives consistent estimates of p whilst AIC overestimates p around 30% of 
the time.
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Time series were generated from models 1-4 as before. The true model was then 
assumed unknown and AIC and BIC were then used to choose from models 1-9. 
Table 5.10 shows the mean sample bias and standard deviations for the estimated 
values of do and cq. Note, when the model fitted was a FARIMA(p,d,q) model the 
value of c was taken to be zero.

Comparison with the sample biases and standard deviations from the estimates 
of do and cq when the true models are fitted, given in table 5.8, show the biases 
tend to be larger, whilst the standard deviations for model 1 seem to be larger, the 
standard deviations for models 2 and 3 seem similar in magnitude and the standard 
deviations for model 4 seem generally smaller.

For all four models the biases and standard deviations are seen to decrease as 
n increases when using either AIC or BIC in model fitting. The large biases and 
standard deviations for series length n =  100 suggest this is too short. The results 
for n > 1000 are much more acceptable.

In comparing the results using AIC with those using BIC, the results for AIC 
seem to have smaller mean biases the majority for the majority of the results, whilst 
the results for BIC seem to have reduced standard deviations.

The proportion of times each model was chosen using AIC and BIC for series 
length n =  10,000 are shown in figure 5.3. It can be seen when the true model 
is either 1 or 2, both AIC and BIC correctly identify this model the majority of 
times, with BIC slightly outperforming AIC. When the true model is either 3 or 4 
though, it can be seen that AIC correctly identifies the model around 50% of the 
time, whilst BIC tends to select models 1 and 2 respectively. In view of the results 
for underfitting given in table 5.9 this is perhaps not surprising, since the underfitted 
model still seems to give a good fit.

Also included in figure 5.3 are the proportions of each model chosen when the 
series were generated from models 5-9, the cases when Co =  0. For these models, 
both AIC and BIC correctly identify the model the majority of the time, with BIC 
outperforming AIC. This is consistent with previous studies, see for example Beran 
et al [1998]. Particularly worth noting is that both AIC and BIC correctly seem 
to distinguish between cases when Co =  0 and cq ^  0 the vast majority of the 
times. The large increase in both bias and standard deviation seen in table 5.9 when 
DFARIM A(l,d,c,l) models were fitted to FARIMA(0,d,0) processes should thus not 
be too serious an issue in practise when the model is fitted using a suitable criterion.

Finally, table 5.9 has previously shown that arbitrarily fitting a FARIMA(p,d,q) 
process can lead to large biases. However, since the majority of the literature to date 
has ignored the possibility of cq /  0, it is of interest to explore further how the fitting 
of FARIMA(p,d,q) models to DFARIMA(p,d,c,q) processes may efTect the estimates 
of dQ.

Table 5.11 shows the biases and standard deviations for the estimates of do when 
the true model, assumed unknown, is one of models 1-4, whilst the model fitted using 
either AIC or BIC is restricted in choice to FARIMA(p,d,q) models with p, q G (0,1).
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True Model: 1

1 8 3 otlier

Modal Fitted

True Model: 2

2 4 1 other

Model Fitted

True Model: 3

Model Fitted

True Model: 4 True Model: 5 True Model: 6

Model Fitted Model Fitted Model Fitted

True Model: 7

7 1 8 other

Model Fitted

True Model: 8

8 2 1 other

Model Fitted

True Model: 9

9 5 2 other

Model Fitted

Fig. 5.3: M odels chosen by A IC  and BIC when series length n =  10,000.
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Model fitted using AIC
Sample Bias Sample SD

True Model 1 2 3 4 l 2 3 4
n

100 -0.355 -0.133 -0.346 -0.202 0.232 0.164 0.209 0.273
1000 -0.296 -0.145 -0.308 -0.091 0.060 0.040 0.052 0.127

10,000 -0.267 -0.141 -0.289 -0.062 0.015 0.012 0.017 0.095
Model fitted using B1C

Sample Bias Sample SD
True Model 1 2 3 4 1 2 3 4

n
100 -0.389 -0.115 -0.354 -0.153 0.200 0.165 0.196 0.248
1000 -0.310 -0.142 -0.301 -0.086 0.068 0.044 0.047 0.118

10,000 -0.267 -0.141 -0.285 -0.061 0.015 0.012 0.018 0.093

Tab. 5.11: Mean sample bias and standard deviations for the estimated values of tlu when 
the true model is assumed unknown and a model is fitted using either AIC or 
BIC from a choice of FARIMA models.

It can be seen that even for series length n =  10,000 the sample biases using both 
AIC and BIC to fit the model can be substantial. Indeed, the biases for models 
1 and 3 using both AIC and BIC are greater in modulus than do and would thus 
suggest intermediate memory when in fact quite strong long memory is present.

In summary, when the correct, model is known, the empirical results give weight 
to the results of Theorem 2.3.1 which state the estimates of the parameters are 
asymptotically /̂«-consistent and normally distributed. When the correct model is 
unknown, it has been found that use of AIC and BIC can distinguish between the 
cases when c = 0 and c ^  0 and tend to fit models which lead to good estimates of 
do- Finally, since restricting the range of models available to either c = 0 or c /  0 
can lead to large biases, it is strongly recommended that a range of FARIMA(p,d,q) 
and DFARIMA(p,d,c,q) models be taken into account when fitting a model.

5.4.3 Application to Other Series

In this section, the new methods of estimating d and c are applied to the processes 
given by Martin and Eccleston [1992], Martin and Walker [1997] and Palma [2007] 
and the further example of ‘weak’ long memory due to the unpublished work of 
Prof R. Bhansali. Application to the much studied Bellcore data is also then made. 
Previous studies of data from the same source include Clegg [2006] and Leland and 
Wilson [1991] and Leland et al [1993].

The three processes defined by equations 5.3, 5.4 and 5.5 will be referred to as 
processes I, II and III respectively. Process I, that of Martin and Eccleston [1992], 
Martin and Walker [1997], is defined with A.— 0.5 for this study. For each of these
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processes 1000 series of length 105 were generated using the method of Theorem 
5.4.1, with Gaussian innovations. The new dual local Whittle and DGPH methods 
were then applied with m =  1000 to find estimates of d and c. The standard local 
Whittle and GPII methods were also applied with m =  1000 for comparison and to 
see if the theoretical biases given by Theorems 5.2.1 and 5.1.3 respectively appear 
to hold.

A DFARIMA approach to estimation was also applied, but due to higher require­
ments of computational time this method was only applied to the first 104 observa­
tions from each scries. The approach is to fit DFARIMA(p,d,c,q) and FARIMA(p,d,q) 
models to the data using the Whittle likelihood estimates of the parameters with 
p, q G (0,1,2) and choose from these fitted models using a suitable criterion. The 
use of AIC and BIC were applied here.

Figures 5.4, 5.5 and 5.6 show the Normal Q-Q plots of the estimates of d for 
the series generated from processes I, II and III, respectively. It can be seen that 
the distributions of the new dual local Whittle and DGPII estimates of d appear 
very close to normality for all three processes. The standard local Whittle and GPII 
estimates also appear close to normality for all three processes, but appear to deviate 
slightly further than the new dual parameter estimates near the tails.

The estimates of the DFARIMA method for process I are significantly non- 
Gaussian using both AIC and BIC, although when using BIC the distribution of 
the majority of the estimates appears well approximated by the normal distribution, 
but the overall distribution appears bimodal. For process II, the estimates from the 
DFARIMA method using AIC appear to have very heavy tails but the estimates 
using BIC appear much closer to normality. For process III the estimates from the 
DFARIMA method using both AIC and BIC appear reasonably close to normality, 
with some deviate in the upper tail behaviour.

Since the estimate of c is often strongly correlated with that of d, the Normal 
Q-Q plots of the estimated values of c are similar in shape to those shown for d and 
thus omitted.

For processes I and II the models chosen by AIC and BIC were DFARIMA models 
with c ^  0 for 100% of the simulated series. For process III however, only 1.3% of 
the fitted models using both AIC and BIC were DFARIMA models with 0. The 
remaining 98.7% of the models fitted were FARIMA models.

The sample means and standard deviations of the estimates of both d and c are 
shown in table 5.12. The theoretical values of the bias and standard deviations for the 
standard local Whittle and GPII methods and the standard deviations for the new 
dual Local Whittle and DGPII methods are calculated as in section 5.4.1. For the 
DFAFUMA method, since no ‘true’ finite parameter DFARIMA model exists for these 
processes, the theoretical standard deviations for each fitted model were calculated 
as in section 5.4.2 and a 90% coverage of these theoretical standard deviations, 
removing the upper and lower 5%, is reported. For process III it can be seen that 
the theoretical standard deviation of c is reported as 0. This is due to less than 5%
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Local Whittle Method GPH Method

Theoretical Quantiles Theoretical Quantiles

DFARIMA (AIC) Method DFARIMA (BIC) Method

Theoretical Quantiles Theoretical Quantiles

Fig. 5.4: N orm al Q -Q  plots o f  the estim ates o f  d for the series generated from  process I.
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Local Whittle Method GPH Method

Theoretical Quantiles Theoretical Quantiles

Dual Local Whittle Method DGPH Method

Theoretical Quantiles Theoretical Quantiles

DFARIMA (AIC) Method DFARIMA (BIC) Method

Theoretical Quantiles Theoretical Quantiles

Fig. 5.5: N orm al Q -Q  plots o f  the estim ates o f  d for the series generated from  process II.
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Local Whittle Method GPH Method

Theoretical Quantiles Theoretical Quantiles

DFARIMA (AIC) Method

Theoretical Quantiles

DFARIMA (BIC) Method

J

1

Theoretical Quantiles

Fig. 5.6: N orm al Q -Q  plots o f  the estim ates o f  d for the series generated from  process III.
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Sample theoretical
Estimate Series I II III I II III

Local Whittle mean 0.097 0.168 0.229 0.13 0.26 Th26
sd 0.017 0.017 0.018 0.016 0.016 O.Olfi

GPU mean 0.097 0.166 0.226 0.11 0.23 ~(L23
sd 0.021 0.021 0.022 0.02 0.02 0.02

DLW d mean -0.011 0.021 -0.027 0 0 ~ t T
sd 0.114 0.113 0.107 0.091 0.091 0.091

DLW c mean -0.469 -0.636 -1.106 -0.5 -1 -1
»♦ sd 0.495 0.486 0.459 1.048 1.048 1-048

DGP1I d mean -0.005 0.025 -0.022 0 0
sd 0.136 0.137 0.132 0.127 0.127 0.127

DGPII c mean -0.445 -0.619 -1.089 -0.5 -1 -1
sd 0.591 0.591 0.568 0.550 0.550 0.550

DFAR1MA (AIC) d mean -0.109 -0.003 1.114 0 0 ~ cT
sd 0.135 0.052 0.023 (0.02,0.09) (0.02,0.04) (0.02,0.04)

DFARIMA (AIC) c mean -1.049 -0.995 0.006 -0.5 -1 -1
sd 0.443 0.168 0.056 (0.03,0.21) (0.03,0.16) 0

DFARIMA (BIC) d mean -0.148 -0.004 1.114 0 0 ~~o —
sd 0.062 0.022 0.023 0.02 0.02 (0.02,0.04)

DFARIMA (BIC) c mean -1.133 -1.003 0.006 -0.5 -1 -1
sd 0.173 0.027 0.056 0.03 0.03 0

Tab. 5.12: Means and standard deviations for the estimated values of d and c. The values 
in brackets represent a 90% coverage.
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of the models chosen containing c. For the DFARIMA method using BIC for the 
other two processes the theoretical standard deviations are reported as a constant 
since over 95% of the simulations had a DFARIMA(0,d,c,0) model fitted and the 
theoretical standard deviations do not depend on c  or d.

For the standard local Whittle and GPII estimates, the sample standard devia­
tions appear to agree with the asymptotic theory, whilst the biases appear slightly 
smaller than expected, particularly for process II. As with the results presented in 
section 5.4.1, the sample standard deviations of the dual local Whittle estimates 
of d are larger than the asymptotic theory suggest, whilst the sample standard de­
viations of the estimates of c are smaller. The sample standard deviations of the 
estimates of d and c once again agree much more with the theory. The means of 
the estimates of d for the dual local Whittle and DGPII methods are close to zero 
for all three processes. The means of the estimates of c for the dual local Whittle 
and DGPII methods are close to —0.5 and —1 for processes I and III respectively, in 
agreement with the asymptotic theory. The means of the estimates of c for the dual 
local Whittle and DGPII methods for process II however are around -0.6, whilst 
the asymptotic theory suggests c =  — 1. The smaller than expected biases of the 
standard local Whittle and GPII estimates for process II also suggest a value of c 
such that -1  <  c <  —0.5.

The results for the DFARIMA method for process II however give estimates of 
d and c close to 0 and -1 respectively and thus support the asymptotic theory. The 
standard deviations are of similar magnitude to those suggested by the asymptotic 
theory, though appear larger when using AIC. The results of the DFARIMA method 
for process I show the means of the estimates of d and c are negatively biased using 
both AIC and BIC, whilst the sample standard deviations are generally much larger 
than allowed for by the theory. For process III, the majority of models fitted were 
FARIMA(p,d,q) models and thus the mean of c is close to zero. The mean of d for 
using both AIC and BIC can be seen to be very strongly biased, suggesting instead 
of ‘weak’ long memory that the process has a unit root. This bias is, however, not 
due to the fitting of FARIMA instead of DFARIMA models, as the fitted DFARIMA 
models also had unstationary values of d. The cause of the bias is likely caused 
by the behaviour of the spectral density away from zero, in particular the fact that 
/ ( 7r/3) =  0, a situation which is not compatible with the DFARIMA and FARIMA 
spectral densities.

Results are now presented for the Bellcore Ethernet data. Previous studies of 
data from the same source can be seen in Clegg [2006], Leland and Wilson [1991] 
and Leland et al [1993], however the results reported here are for a different time 
period. The data gives the time and size of packet arrivals seen on an Ethernet 
at the Bellcore Morristown Research and Engineering facility during October 1989. 
From these, two series are generated. The interarrival times series records the times 
between packet arrivals and the bytes/O.Ols series records the total amount of bytes 
received for each 0.01 second time period. The data contains the information of
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Dual Local Whittle Method Dual Local Whittle Method

DGPH Method DGPH Method

Fig. 5.7: Estim ates o f  d and c  for the Bellcore interarrival tim es series using the dual local
W h ittle  and D G P H  m ethods for various values o f  m .
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Dual Local Whittle Method Dual Local Whittle Method

No. of Frequencies used

DGPH Method DGPH Method

Fig. 5.8: Estimates of d and c for the Bellcore bytes/O.Ols series using the dual local Whittle 
and DGPH methods for various values of m.



5. Dual Parameter Long Memory Model 209

1,000,000 packet arrivals over 1759.62 seconds. The interarrival times series is thus 
length 999,999 and the bytes/O.Ols series is length 175,962. Similar series studied by 
Clegg [2006] suggest d approximately in (0.155, 0.246) for the interarrival times series 
and d approximately in (0.12, 0.325) for the bytes/O.Ols series when c is assumed to 
be zero.

The DFARIMA method was applied to the first 104 observations of each se­
ries. For the interarrival times series, the use of AIC and BIC both agreed on a 
DFARIMA(l,d,c,0) model being fitted, with d =0.439, c=  0.926 and <f>= 0.505. For 
the bytes/O.Ols series, the use of AIC and BIC again agreed on a DFARIMA(l,d,c,0) 
model being fitted, with similar parameters of d =0.469, c=  0.865 and <j> =  0.646. 
This suggests d may actually be larger than previously thought for these series.

The dual local Whittle and DGPII methods were applied to the full length of 
each series. Plots of the estimates of d and c using the dual local Whittle and DGPII 
methods for various values of m for the interarrival times series and the bytes/O.Ols 
series can be seen in figures 5.7 and 5.8 respectively. For the interarrival times 
series, the estimates of d and c seem to be quite level for m G (15000,27500) and 
also for m G (35000,50000). For m =  20,000, the dual local Whittle estimates 
of d and,£ are 0.36 and 0.39 whilst the DGPII estimates of d and c are 0.36 and 
0.36. For m =  45,000, the dual local Whittle estimates of d and c are 0.48 and 
0.82 whilst the DGPII estimates of d and c are 0.49 and 0.85. Note, the results 
for m € (35000,50000) are similar in magnitude as the estimates found using the 
DFARIMA method. The estimates for m G (15000,275000) are smaller in size but 
still suggest d may be larger than previously thought.

For the bytes/O.Ols series, the estimates of d and c seem to be quite level for 
m G (6000,28000). For m =  15,000, the dual local Whittle estimates of d and c are 
0.37 and 0.11 whilst the DGPII estimates of d and c are 0.38 and 0.12. These are 
similar in magnitude to the estimates for m G (15000,275000) for the interarrival 
times series, again suggesting d may be larger than previously thought.

5.4.4 Application to Chaotic Intermittency Maps

The simulation study on the chaotic intermittency maps carried out in section 4.1 
showed the standard methods of estimating d appeared strongly biased for the sym­
metric and asymmetric cusp maps, the logarithmic maps and the polynomial map 
with a  < 0.5. The asymptotic biases expected from the standard local Whittle and 
GPII methods are given by Theorems 5.2.1 and 5.1.3 respectively and these can now 
be compared to the empirical results for the chaotic intermittency maps.

In addition, the simulation study of the chaotic intermittency maps described 
in 4.1 was repeated and estimates of d and c were found using the new dual local 
Whittle, DGPII and DFARIMA methods, that is 1000 orbits of length 104 after a 
burn in time of M — 107 — 104 were retained for each map and the estimates of d
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Map
c

Local Whittle GPH
Asymptotic Empirical Asymptotic theoretical Empirical

Poly (0.3) 0 0 0.69 0 0 0.69
Poly (0.45) 0 0 0.20 0 0 0.19
Poly (0.5) -0.5 0.11 0.12 0.36 0.12 0.10
Poly (0.65) 0 0 -0.01 0 0 -0.02
Poly (0.8) 0 0 -0.10 0 0 -0.10
Poly (0.9) 0 0 -0.03 0 0 -0.02
Symmetric -0.5 0.11 0.28 0.36 0.12 0.24

Asymmetric -0.5 0.11 0.31 0.36 0.12 0.26
Log (0.05) 0.525 -0.12 -0.21 -0.38 -0.12 -0.21
Log (0.15) 0.575 -0.13 -0.24 -0.42 -0.14 -0.24
Log (0.25) 0.625 -0.14 -0.27 -0.45 1 O -0.26
Log (0.3) 0.65 -0.15 -0.28 -0.47 -0.15 -0.28

Tab. 5.13: List of biases for the standard local Whittle and GPU estimates. The asymptotic 
values come from Theorems 5.2.1 and 5.1.3 respectively. The theoretical biases 
for the GPH method are found directly from equation 5.44. The empirical biases 
are the mean biases of those observed during the simulation study presented in 
section 4.1.

and c recorded for each. The initial values of each orbit were generated as described 
in section 4.1.1. To be comparable with the results from the standard estimation 
methods, the value for m for the dual local Whittle method was taken as 155 and 
the value of m for the DGPII was taken as 100.

For the DFARIMA method , the Whittle likelihood estimates were found for 
all DFARIMA(p,d,c,q) models with p,q € (0 ,. . . ,5 )  and the choice of model was 
obtained by minimising both the AIC and BIC. The fitting of FA RIM A models 
was not included again as these results have previously been reported and generally 
seemed to fail to give a good fit.

Table 5.13 gives a list of sample biases for the standard local Whittle and GPU es­
timates taken from section 4.1 and the corresponding theoretical biases. The asymp­
totic values come from Theorems 5.2.1 and 5.1.3, whilst the theoretical biases for 
the standard GPU method are found directly from evaluating equation 5.44.

For the polynomial map with a  < 0, the estimated values of d show large positive 
bias, but since the asymptotic value of c for these maps is zero, this bias is not 
explained by Theorems 5.2.1 and 5.1.3. As previously mentioned in section 4.3, it is 
believed that if these maps converge to their asymptotic properties they do so at a 
very slow rate.

For the polynomial map with a  =  0.5, the asymptotic theory suggests the orbits 
possess long memory parameters of d =  0 and c =  —0.5. It can be seen that the 
theoretical biases of the standard local Whittle and GPU estimates are quite close 
to the empirical results and thus this ‘weak’ long memory behaviour accounts for 
the biases seen. Also in agreement with the theoretical results, for the polynomial
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map with a  >  0.5, the biases were small to begin with although some negative bias 
is seen for the polynomial map with a  =  0.8.

For the symmetric and asymmetric cusp maps, the asymptotic theory again sug­
gests long memory parameters of d — 0 and c =  —0.5. However, the theoretical 
biases seem to account for less than half of the bias seen in the empirical results. 
As discussed in section 4.3, the remainder of the bias is believed to be attributed 
to a slow convergence rate of the maps to their asymptotic properties and large au­
tocorrelation at smaller lags. The results of the systematic sampling study shown 
in section 4.2.2 show the biases for the standard local Whittle and GPH estimates 
when sampling every 10th observation appear close to the theoretical biases of 0.11 
and 0.12.

For the logarithmic maps the theoretical biases seem to account for roughly half 
of the bias of the empirical results. It can be seen that as /? increases the value of 
c and thus the theoretical biases also increase. This dependence on ¡3 is reflected in 
the empirical results, although the rate of change of the sample biases with (3 seems 
faster than that suggested by the theoretical work.

Figure 5.9 shows the Normal Q-Q plots for the new dual parameter local Whittle 
estimates of d. It can be seen that other than in the tails, the distributions of the 
estimates appear close to normality. As with the distributions of the standard local 
Whittle estimates, the estimates from the logarithmic maps seem to deviate further 
from normality than for the other chaotic intermittency maps. The estimates of d 
from the DGPII method have quite similar distributions and the estimates of c for 
both methods are similarly distributed as the estimates of d due to strong correlation 
between the estimates.

The Normal Q-Q plots for the DFARIMA estimates of d using AIC and BIC are 
shown in figures 5.10 and 5.11 respectively. Similar to the results for the FARIMA 
estimates given in section 4.1, the distributions of the estimates of d from the 
DFARIMA methods appear to deviate further from normality than the estimates 
from the dual local Whittle and DGPII methods. Also the estimates found using 
AIC seem to be less normally distributed than those found using BIC. Comparison, 
however, with the Normal Q-Q plots for the FARIMA methods shows the DFARIMA 
estimates appear closer to normality and although heavy tailed behaviour is still ap­
parent, the DFARIMA distributions appear unimodal.

The sample means and sample deviations for the dual local Whittle, DGPII and 
DFARIMA estimates of d and c are shown in table 5.14. For the polynomial map 
with a < 0.5, the sample means of the dual local Whittle and DGPII estimates 
of d are less than zero showing signs of the intermediate memory suggested by the 
asymptotic theory. The means for the polynomial map with a — 0.45 in particular 
seem very close to the asymptotic value of d =  —0.11. However, the sample means 
of the dual local Whittle and DGPII estimates of both d and c show large negative 
bias for all other maps. The sample standard deviations of the dual local Whittle 
and DGPII estimates of both d and c can be seen to be unacceptably large for all 
the maps, making it difficult to draw meaningful conclusions from these results.

For all the maps, the sample means of the estimates of d and c from the DFARIMA
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Fig. 5.9: N orm al Q -Q  plots for the new dual param eter loca l W h ittle  estim ates o f  d.
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Poly (0.3) Poly (0.5) Poly (0.65)
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Fig. 5.10: N orm al Q -Q  plots for the D F A R IM A  estim ates o f  d using A IC .



Sa
m

pl
e Q

ua
nt

ile
s 

Sa
m

pl
e 

Q
ua

nt
ile

s 
Sa

m
pl

e 
Q

ua
nt

ile
s

5. Dual Parameter Long Memory Model 214

Poly (0.3) Poly (0.5) Poly (0.65)

Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles

Poly (0.9) Symmetric Asymmetric

00
o

©
6

Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles

Log (0.05) Log (0.15)

Theoretical Quantiles Theoretical Quantiles

Log (0.3)

Theoretical Quantiles

Fig. 5.11: N orm al Q -Q  plots for the D F A R IM A  estim ates o f  d using BIC .



Sample Means
Map Asymptotic

d
Asymptotic

c
Dual Local Whittle DGPH DFAREMA (AIC) DFARIMA (BIC)

d c d c d c d c
Poly (0.3) -0.67 0 -0.20 -0.84 -0S17 -0.75 0.024 -0.048 0.075 0.041
Poly (0.45) -0.11 0 -0.13 -0.86 -Ò.10 -0.78 0.090 -0.12 0.18 0.062
Poly (0.5) 0 -0.5 -0.16 -1.0 -0.14 -0.96 0.092 -0.17 0.20 0.05

Poly (0.65) 0.23 0 -0.029 -0.95 -0.0010 -0.87 0.20 -0.18 0.30 0.063
Poly (0.8) 0.38 0 0.17 -0.92 0.10 -0.82 0.27 -0.34 0.35 -0.10
Poly (0.9) 0.44 0 0.32 -1.2 0.20 -0.57 0.29 -0.42 0.37 -0.17
Symmetric 0 -0.5 -0.19 -1.7 -0.18 -1.7 0.15 -0.85 0.42 0.019

Asymmetric 0 -0.5 -0.27 -2.2 -0.25 -2.1 0.20 -0.27 0.31 -0.12
Log (0.05) 0.5 0.525 0.062 -1.2 -0.04 -1.1 0.25 -0.053 0.27 -0.017
Log (0.15) 0.5 0.575 0.13 -0.62 0.030 -0.83 0.26 0.084 0.27 0.05
Log (0.25) 0.5 0.625 0.01 -0.83 -0.10 -1.0 0.19 0.0043 0.23 0.043
Log (0.3) 0.5 0.65 0.048 -0.70 -0.070 -1.0 0.22 0.022 0.23 0.051

Sample Standard deviations
Poly (0.3) 0.30 1.1 0.35 1.3 0.084 0.28 0.037 0.036

Poly (0.45) 0.33 1.1 0.40 1.4 0.10 0.33 0.050 0.029
Poly (0.5) 0.36 1.2 0.41 1.4 0.15 0.50 0.075 0.13

Poly (0.65) 0.45 1.5 0.52 1.8 0.15 0.51 0.063 0.11
Poly (0.8) 0.45 2.0 0.45 1.5 0.19 1.1 0.16 1.0
Poly (0.9) 0.46 2.7 0.42 1.5 0.28 1.3 0.27 1.3
Symmetric 0.44 1.4 0.48 1.6 0.20 0.78 0.084 0.20

Asymmetric 0.42 1.4 0.48 1.6 0.20 0.59 0.21 0.48
Log (0.05) 0.51 2.2 0.47 1.5 0.16 0.66 0.078 0.49
Log (0.15) 0.53 1.9 0.49 1.6 0.18 0.56 0.044 0.055
Log (0.25) 0.54 1.9 0.42 1.5 0.22 0.71 0.070 0.12
Log (0.3) 0.57 2.0 0.52 1.7 0.24 0.79 0.075 0.17

Tab. 5.14: Sample means and Sample standard deviations for the new dual parameter estimates of d and c.
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method using AIC are smaller than the corresponding sample means using BIC, 
whilst the sample standard deviations are smaller for the estimates found using 
BIC. For the DFARIMA method using both AIC and BIC the sample means of the 
estimates of d for the polynomial map with a  < 0.5 are once again positive and 
generally close to zero.

For the polynomial map with a =  0.5, the DFARIMA method using AIC has 
sample mean of d close to zero and negative sample mean for c, although the estimate 
of c is still positively biased. The sample mean of the estimate of c using BIC is still 
close to zero and large positive bias can be seen for the estimate of d. As a increases 
the use of BIC becomes preferred in terms of mean and standard deviation.

Polynomial a  < 0.5 Polynomial a  > 0.5
Method Mean y/MSE Method Mean \/MSE

FARIMA (AIC) 0.344 DFARIMA (BIC) 0.118
Local Whittle 0.346 Local Whittle 0.126

GPH 0.350 GPH 0.148
DFARIMA (AIC) 0.356 DFARIMA (AIC) 0.202
FARIMA (BIC) 0.385 FARIMA (BIC) 0.220

Dual Local Whittle 0.404 FARIMA (AIC) 0.374
DFARIMA (BIC) 0.408 Dual Local Whittle 0.471

DGPH 0.437 DGPH 0.482
Cusp Logarithmic

Method Mean yjM SE Method Mean \/MSE
FARIMA (AIC) 0.238 DFARIMA (BIC) 0.257

GPH 0.275 Local Whittle 0.298
Local Whittle 0.305 GPH 0.309

FARIMA (BIC) 0.315 DFARIMA (AIC) 0.335
DFARIMA (AIC) 0.316 FARIMA (BIC) 0.351
DFARIMA (BIC) 0.391 FARIMA (AIC) 0.486

Dual Local Whittle 0.446 Dual Local Whittle 0.693
DGPH 0.453 DGPH 0.694

Tab. 5.15: Average \JMSE for the various methods of estimating d in increasing order.

For the cusp maps the estimates of d for the DFARIMA methods are still very 
strongly positively biased. The sample means of the estimates of c are also generally 
positively biased, although negative bias is seen for the symmetric cusp map using 
AIC. The sample means of the estimates of c for the logarithmic maps are close to zero 
using both AIC and BIC and the sample means of the estimates of d are similar in 
magnitude as those for the standard estimation techniques shown in section 4.1. The 
sample means of the estimates of d for the logarithmic maps still show dependency 
on /? , decreasing as ¡3 increases.

In comparison with the FARIMA methods, the sample standard deviations of
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the DFARIMA methods using the same criterion are generally smaller. The sample 
standard deviations for the DFARIMA method using AIC are only larger than the 
FARIMA method using AIC for the polynomial map with a  =  0.9 and the logarith­
mic maps with (3 =  0.25 and 0.3. The sample standard deviations for the DFARIMA 
method using BIC are only larger than the FARIMA method using AIC for the poly­
nomial map with a  =  0.9 and equal correct to 2d.p. for the polynomial map with 
a  =  0.8. The sample standard deviations for the DFARIMA method using BIC 
for the logarithmic maps are the smallest of all the methods considered here and in 
section 4.1.

Table 5.15 gives the average vA lS E  for the new dual parameter estimation 
methods of estimating d in increasing order. The average y/MSE for the standard 
local Whittle, GPII and FARIMA estimates are included for comparison. The dual
local Whittle and DGPII method are seen to perform badly in terms of y/MSE for 
all groups of maps. The standard deviations for these estimates are very large and 
the sample biases appear negatively biased. These methods thus seem unsuitable 
for the chaotic intermittency maps.

For the polynomial map with a  <  0.5 and the cusp maps the FARIMA methods 
outperform the new DFARIMA methods, although as mentioned in section 4.1, this is 
generally.caused by the FARIMA methods failure to converge whilst the DFARIMA 
methods converge more on the wrong model. For order of performance is the same 
for the polynomial maps with a > 0.5 and the logarithmic maps. In both cases 
the DFARIMA method using BIC outperforms the other estimation methods in 
terms of yfM SE. Comparison with table 4.1 shows the DFARIMA method using
BIC also performs better in terms of \JMSE than the FAR and FExp methods for 
the logarithmic maps and only the FExp method gives better performance for the 
polynomial maps with a  >  0.5. The DFARIMA method using AIC also outperforms 
the FARIMA method using both AIC and BIC for these two groups of maps.



6 .  S T O C H A S T I C  I N T E R M I T T E N C Y  M A P S

The estimates of d found in section 4.1 assume the map generating the orbits are 
unknown and attempt to find the rate of decay of the correlations using standard 
long memory parameter estimation techniques. If the generating map is known, 
however, the asymptotic decay rate of the autocorrelations is also known. Hence an 
alternative method of finding the rate of decay of the correlations for each orbit is 
to discover from which map the orbit was generated. For the deterministic chaotic 
intermittency maps described in section 3.2, this becomes a trivial problem. This 
section introduces new stochastic versions of the maps in which this problem is no 
longer trivial.

The study of stochastic versions of chaotic maps has been carried out previously 
by several authors. For example, Chan and Tong [1994], [2001], discuss how due 
to factors such as measurement error, even when a chaotic map provides a useful 
model for a physical phenomenon, the fit of a deterministic map would rarely be 
suitable. Lawrance and Ililliam [2005] consider methods of reducing noise in chaotic 
communications by means of a distribution transformation.

Even without the presence of error, if a chaotic system is purely deterministic 
but the exact form is unknown, it may not be conceivable that the specified class of 
models would contain the true model, and thus the modelling of chaotic data with 
noise is considered a more robust and practical approach.

In the study of stochastic versions of chaotic maps, it is important to ensure the 
random element does not alter the fundamental properties of the maps. Work done 
by Alves and Arujo [2000], Alves and Viana [2002] and Alves et al [2004] study the 
effects of noise on chaotic systems and the conditions required such that as the level 
of noise decreases the system approaches that of the original deterministic system 
without noise.

The new stochastic versions of the interrnittency maps introduced here are shown 
to posses the same properties as the deterministic maps in the laminar region and 
hence retain the asymptotic rates of decay discussed in section 3.2. Section 6.1 in­
troduces the stochastic polynomial map and section 6.2 introduces the stochastic 
logarithmic map. The generalised stochastic polynomial-logarithmic map is intro­
duced in Section 6.3 and Section 6.4 then presents the results of a simulation study 
of these stochastic maps. The forms of the stochastic maps presented here were sug­
gested by Dr M. Holland and have been included and studied in this chapter with 
his permission.
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6.1 Stochastic Polynomial Map

For the polynomial map, the asymptotic value of d for an orbit is given by

d = ( 6. 1)

see Sarig [2002] and Gouezel [2004b]. This implies that estimation of d is equiva­
lent to estimating a. If the orbit is known to be generated from the polynomial map 
this becomes a trivial problem, with

log -  ■)
log (2 wt)

for all wt <  0.5.
This problem becomes non-trivial with the introduction of a stochastic element 

to the map. Here, as suggested by Dr M. Holland, the stochastic polynomial map is 
defined over the range [0,1] by

( w (l +  eu~ewa) if 0 <  w <  1/2,
[ 2w — 1 if 1/2 <  w < 1. (6.2)

where 0 is a positive constant and u is a realisation of a random variable, U, with 
zero mean. This replaces the multiplicative term 2Q in the deterministic polynomial 
map with the random element eu~9.

The choice of making the map stochastic in this manner is not unique and was 
decided upon for several reasons. Firstly, consider the use of an additive noise term, 
A, such that

z+( , f w (l +  (2w)a) +  A if 0 <  u; < 1/2,
\ 2 w -  1 if 1/2 < «/ <  1.

To ensure the orbit remained within the region of [0,1], the distribution of A 
must be such that — w < A < 1 — w and therefore such a term would need to 
be dependent on the value of Wt at each iteration, as independence would imply 
A — 0. Further, when the orbit entered the laminar region, this additive term could 
immediately return the orbit to the chaotic region on the next iteration and would 
therefore remove the intermittent nature of the deterministic map, altering the maps 
properties. Thus a multiplicative term is used. However, had this multiplicative term 
been placed outside the brackets, further difficulties may also occur. For example, 
consider the map

r f Aw(l +  (2w)a) if 0 <  w < 1 /2 ,
Q\w) “ I  2w — \ if 1/2 < « ; < ! .
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where A is a random variable. If A <  0 or A >  1 the map could escape the 
region of J =  [0,1], hence the distribution of A must be such that A G [0,1]. This 
implies that multiplication by A will reduce the size of the mapped value. Note, of 
particular concern, is that once an orbit entered the laminar region it may remain 
there possibly indefinitely. This would greatly alter the properties of the map from 
those of the deterministic case.

Finally, it was decided for simplicity that the random variable would be indepen­
dent of a. Note, that writing the random element in the form eu~e is equivalent to 
use of a random variable A, with u =  log(yl) +  6 and does not alter the map. This 
notation is used to simplify the equations when it comes to estimating a  in section 
6.1.1.

Now, for the stochastic polynomial map as defined by equation 6.2, the distribu­
tion of U must be such that the map remains within the region [0,1] for all m G [0,1] 
and all a  G [0,1], hence the distribution of U must be such that

m(l +  eu~ewa) < 1
u < 0 +  log(l — m) — (1 +  a)log(m ) (6.3)

=  6 +  a log(2) <  0 for a  G [0,1],

that is, the upper bound of U is given by 6. Note, this upper bound implies 
wt+i =  1 can only be achieved when wt =  0.5 and a  =  0 and u =  0, hence the 
general stochastic polynomial map will not cover the full range of J  =  [0,1] for 
a > 0.

The following theorem gives the conditional mean and variance of uq given mo­
lt is proved for a more general case in section 6.3.

Theorem  6.1.1. Let E(eu~d) — A, where 0 < A <  1 and E{e2 û~6'i) — B, where
A2 < B <  1. Given an initial value wo <  0.5, the value wi generated from wo 
using the stochastic polynomial map will have expected value, m i, generated by the 
deterministic map

Co,¿ (m 0) =  m0(l +  Amo)  =  mi 0 <  m0 < 1/2 (6.4)

and variance, v\, generated by the deterministic map

CqA B ^ o) =  v"^a+1)(B -  A2) =  vi 0 < v Q<  1/2 

with initial values mo =  vq =  mo.

Due to the chaotic nature of the maps, a general extension of Theorem 6.1.1 to 
include the conditional means of {me} given mo for t >  2 would become increasingly 
complicated as t increased and of little practical value. However, the following theo­
rem uses Theorem 6.1.1 to give properties of an orbit generated from an initial value
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arbitrarily close to zero such that there exists a small 8 such that wt <  8 <  0.5 for 
all t G (1 ,...  ,n). The proof can be found in section 6.3.

Theorem  6.1.2. Let 0 < wo < 0.5 be the initial value of an orbit w \ ,...,w n gen­
erated using the stochastic polynomial map such that wt < 8 <  0.5 V t 6 (0 ,. ..  ,n). 
Then, as wq —* 0 and 8 —> 0, the orbit w\, . . . ,  wn will tend to the orbit m i , . . ; , mn, 
generated by the deterministic map

Ca,A(m) =  m (l +  Ama) 0 < m <  1/2 

with initial value mo =  wq .

Theorem 6.1.2 shows that the behaviour of the stochastic polynomial map is the 
same as the deterministic polynomial map near the fixed point. Since the asymptotic 
rate of decay of the autocorrelations in the deterministic case are derived from this 
behaviour near the fixed point, this suggests that the asymptotic rate of decay of 
autocorrelations for the stochastic maps are the same as those for the deterministic 
polynomial maps.

6.1.1 Estimation o f  Alpha for the Stochastic Polynomial Map
-if-»

Since the relationship given in equation 6.1 still appears to hold, the estimation of 
a  for the stochastic polynomial map is equivalent to estimating the long memory 
parameter, d. Given an orbit w \ ,...,w n from the stochastic polynomial map,

wt+i =  u't(l +  eUt~6w?), for wt <  0.5, t € (1 ,. ..  ,n  -  1). 

Rearranging this and taking logs gives

log —  ~  =  - 0  +  alog(mf) +  ut, for wt < 0.5, t G (1 ,. . .  ,n  — 1) (6.5)

and standard linear regression techniques give the least squares estimate of a  as

- x ) ( y t - y )
(6.6)

where yt =  \og{wt+\/wt -  1), x t =  log(tct) for wt <  0.5 and h <  n -  1 is the 
number of observations, wt, t € ( 1 , . . . ,  n — 1), such that wt < 0.5.

Note, the series of {y t} and {x t}  may not be consecutive values as they are 
obtained only for t such that wt <  0.5. In the case when wt > 0.5 they are disregarded 
as they possess no useful information of a. Once the orbit {wt} returns to below 
0.5 the values of yt and x t are once again obtained. Hence only n values of yt and 
Xt are available and the summations in equation 6.6 are over these available values.
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Note also, that although the invariant density of the stochastic polynomial map is 
unknown, it is known that if wo ^  1, the probability of the orbit returning to the 
state wt <  0 tends to 1 as t —► oo and hence h —*■ oo as n —► oo.

The asymptotic distribution of a  is given in Theorem 6.1.3 under the following 
assumptions on U.

Assumption 6.1.1. {ut} for t € ( l , . . . ,n ) ,  are independent identically distributed 
random variables with E(ut) =  0

Assumption 6.1.2. {ut} for £ € (1 ,. ..  ,n), have distribution such that

for any real finite constants {% }, i e ( l , . . . , n ) ,

Assumption 6.1.3. max({ut})  <  6 for t € ( 1 , . . . ,n)

The first two assumptions are required to make use of Lyapunov’s central limit 
theorem. The last is the upper limit of U as discussed in equation 6.3.

T heorem  6.1.3. Let {«;<} be an observed orbit of length n generated from the 
stochastic polynomial map with {ut} such that assumptions 6.1.1-6.1.3 hold, let 
n <  n — 1 be the number of observations, wt, t E  (1 , . . . ,  n — 1), such that wt <  0.5 
and let d be the least squares estimate of a given by equation 6.6. Then, as h —* oo, 
the conditional distribution of a given {wt} is

n~*°° K2^t=i^\\utat r )>

where Oy is the variance of the random variables ut, x t =  log(tut) for wt < 0.5, 
x =  xt/h and all summations are taken over the range of available values of {;rt} 
and {y t}.

Proof. Substitution of yt =  —6 +  axt +  ut into equation 6.6 gives

a — a =
■EjLifo-arXut-ti)

Ef=iO* - * ) 2
(6.7)
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where

n
=  ^ 2 at(ut ~  “ )>

t=i

(xt -  x)
T lL M -* )2

for t £ (1 ,. ..  ,n).

Now, given observed { i f }  for t 6 ( 1 , . . . ,n), {at} are finite real constants. There­
fore the random variables zt — atut have variance

var(zt) =  a2t a^,

where ofj is the variance of each of the ut. Thus under assumptions 6.1.1 and
6.1.2 the Lyapunov’s central limit theorem states

(6.8)

as n 
result.

oo. Substitution of equation 6.8 into equation 6.7 gives the required

□
Remark 6.1.1. Since (xt—x )2 >  0 for all t £ (1 ,. ..  ,n ), with the P ((x t—x)2 =  0) —► 0, 

this gives * ( (  5Zr=i(xt — a;)2)  ^ — C ^1/i2 f°r some C  > 0, as n —> oo. Thus the

estimated a  is hxl2 consistent for a under assumptions 6.1.1-6.1.3.

6.2 Stochastic Logarithmic Map

For the logarithmic map, the asymptotic value of d is 0.5 for all ¡3 € (0,2 log(2) — 1). 
The knowledge that the orbit is generated from a logarithmic map therefore gives 
the asymptotic value of d without further knowledge of the parameter ¡3 required. 
However, the asymptotic value of the secondary long memory parameter, the newly 
introduced parameter c, is dependent on (3 and given by

1 3r ¡3
c ~  2 ’

see Bhansali and Holland [2008b] with reference to Zygmund [1988]. 
Introduction of a stochastic element to the map is made in a similar manner 

to that of the stochastic polynomial map. Here, the stochastic logarithmic map is 
defined over the range [0,1] by

(6.9)
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t (  \ _ f  w(l +  eU 6w(— log(w;))1+^) if 0 < w <  1/2, 
j  2w -  1 if 1/2 <  w <  1.

where 8 is a positive constant and u is a realisation of a random variable, U, with 
zero mean. Similar restrictions to the distribution of U must be made as with the 
stochastic polynomial map such that the map remains within the region [0,1] for all 
w G [0,1] and all 0  G (0,2 log(2) — 1), hence the distribution of U must be such that

ic(l +  eu~eu;log(l/it;)1+^) < 1
< 8  +  log(l -  in) -  2 log (in) -  (1 +  0) log (log(l/in))
< 8 +  log(2) -  log (log(2)) for 0  G [0,2 log(2) -  1]

(6.10)
Note, since log(2) — log (log(2)) ~  1.06, this is a weaker condition on the upper 

limit of U than that for the polynomial map given in equation 6.3. As with the 
stochastic polynomial map, a value of wt+i =  1 is only achievable when wt =  0.5, 
0 =  0 and u takes its upper boundary value and hence the stochastic logarithmic 
map with 0 >  0 does not cover the full range of J  =  [0,1].

The following Theorems give the corresponding properties of the stochastic log­
arithmic map as those given for the stochastic polynomial map in section 6.1. The 
proofs can be found in the generalised case in section 6.3.

Theorem  6.2.1. Let E(eu~e) =  A, where 0 < A <  1 and E{e2 û~9̂ ) =  B, where
A2 < B  < 1. Given an initial value wo <  0.5, the value wi generated from u<q 
using the stochastic logarithmic map will have expected value, m i, generated by the 
deterministic map

(a,A(mo) =  m0(l +  Am0(-log (m o))l+i3) =  mi 0 <  m0 <  1/2 (6.11)

and variance, v\, generated by the deterministic map

Co,A,b {vo) =  VQ(—log(vo))2(l+^ (B  -  A2) =  tq 0 < v0 <  1/2 

with initial values mo =  vo =  wo-

Theorem  6.2.2. Let wo be an initial value of an orbit w\,. . .  ,w n generated using 
the stochastic logarithmic map such that u>t < 6 <  0.5 V t G (0, . . . ,n ) .  Then as 
wo —* 0 and 6 —* 0, the orbit w±,. . .  ,wn will tend to the orbit m i , . . . ,  mn, generated 
by the deterministic map

Ca.vt(^) =  w (l  +  Am (—log(m ) )1+l3) 0 < m <  1/2

with initial value mo =  wo.
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Similar to the stochastic polynomial map, Theorem 6.2.2 shows the asymptotic 
rate of decay of correlations for the stochastic logarithmic map appears to be the 
same as that for the deterministic logarithmic map and thus the asymptotic value of 
d equal to 0.5 and the relationship between ¡3 and c should still hold in the stochastic 
case.

6.2.1 Estimation o f  Beta for the Stochastic Logarithmic Map

The method of estimation of /3 for the stochastic logarithmic map is similar to that of 
the estimation of a for the stochastic polynomial map given in section 6.1.1. Given 
an orbit w\,. . .  ,wn from the stochastic logarithmic map,

w't+l =  tnt( l +  eu»~®iot(-log (ta t) )1+/?)> for wt <  0.5, t £ (1 ,. ..  ,n  -  1). 

Rearranging this and taking logs gives

log (  ■ Z t+\— =  - 0  +  /31og(-log(u>i)) +  ut, for ict <  0.5, i e ( l , . . . , n -W ( r  loS { wt ) ) J
( 6.12)

and standard linear regression techniques give the least squares estimate of ¡3 as

a ELi (xt-x){yt-y) 
E f= i

(6.13)

where yt =  log((u-t+i -  wt)/ (w ? (- log(wf)))), x t =  log (-log (w f)) for wt <  0.5 
and n <  n —1 is the number of observations, wt, t e (1 ,. ..  , n - 1), such that wt <  0.5.
The asymptotic distribution of /3 is given in Theorem 6.2.3 under assumptions 6.1.1 
and 6.1.2 and the following assumption on the upper limit of U.

Assumption 6.2.1. m ax({ui}) < 6 +  log(2) — log (log(2)) for t e (1 ,.. . ,n)
The first two assumptions, as with the proof for estimating a  from the stochastic 

polynomial map, are required to make use of Lyapunov’s central limit theorem. The 
last is the upper limit of U as discussed in equation 6.10. The proof follows the same 
arguments as those for Theorem 6.1.3 and is thus omitted.

T heorem  6.2.3. Let {w t} be an observed orbit o f length n generated from the 
stochastic logarithmic map with {u t} such that assumptions 6.1.1,6.1.2 and 6.2.1 
hold, let h < n  -  1 be the number o f observations, wt, t € ( 1 , . . . , »  — 1), such that 
wt <  0.5 and let (3 be the least squares estimate o f ¡3 given by equation 6.13. Then, 
as h —► oc, the conditional distribution of $  given {tee} is
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0 3 - / ? ) -+d A  ( 0 , 4 )

where Oy is the variance of the random variables ut, xt =  log(—log(u>t)) for 
wt < 0.5, x =  y^xt/n and all summations are taken over the range of available 
values of {x t }  and {yt}-

Similar to the estimate of a  for the stochastic polynomial map, remark 6.1.1 still
holds to show the estimate of ¡3 for the stochastic logarithmic map is \/h-consistent 
for ¡3.

6.3 Stochastic Polynomial-Logarithmic Map

The stochastic polynomial-logarithmic map generalizes the stochastic polynomial 
and stochastic logarithmic maps introduced in the sections 6.1 and 6.2. It is a 
stochastic version of the deterministic polynomial-logarithmic map defined in equa­
tion 3.20. Here, the stochastic polynomial-logarithmic map is defined over the range 
[0,1] by

. , , _  f w (l +  eu- dwa(-\og(w ))1̂ )  if 0 <  w <  1/2,
CqW “ \ 2 « ; - 1  if 1/2 < w < 1 .

where 6 is a positive constant, a  G (0,1], ft G [-l,21og(2 ) — 1), where for 
a  =  1, ¡3 >  0 and u is a realisation of a random variable, U , with zero mean. Similar 
restrictions to the distribution of U must be made as with the stochastic polynomial 
map such that the map remains within the region [0,1] for all w G [0,1]. From 
the arguments for the stochastic polynomial and logarithmic maps, it can be seen 
that if the map remains within this region when w =  0.5, a  =  0 and ft =  - 1  it 
will remain for all other required values of w and (3. Note, when (3 =  —1, the map 
becomes a stochastic polynomial map and hence the upper limit of u is given by 6 
from equation 6.3. Also note, for the case when a  =  1, the map becomes a stochastic 
logarithmic map and (3 must be greater than zero to ensure the orbits are stationary.

In general, if ¡3 were allowed to take values less than -1, such that for ft* < —1, 
ft G (/?*,21og(2) — 1), then the distribution of U must be restricted such that

0.5(1 -F eu-0O.5° log(2)1+/3')  <  1
O u  <  0 -  (1 + /?* )log (log (2 )).

Since log (log(2)) «  —0.37, this becomes a stronger condition on the upper limit 
of u than those for the stochastic polynomial or logarithmic maps and if ft* <  
— 1 +  0 /log  (log(2)) the upper limit of U becomes less than zero which contradicts 
the assumption than U is a zero mean random variable.
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The following Theorems give the generalisations of the properties of the stochastic 
polynomial map given in section 6.1 and the stochastic logarithmic map given in 
section 6.2 for the stochastic polynomial-logarithmic map.

Theorem  6.3.1. Let E(eu~9) =  A, where 0 < A <  1 and E{e2 û~9̂ ) =  B, where 
A 2 <  B  < 1. Given an initial value wq < 0.5, the value wi generated from wq using 
the stochastic polynomial-logarithmic map will have expected value, m\, generated by 
the deterministic map

Ca,A{m0) = m0(l + Amo(-/o3(m0))1+/3) = m f 0 < m0 < 1/2
and variance, v\, generated by the deterministic map

C « , a , b ( v o )  =  v20il+a)(-log (v 0)) 2̂ H B  - A 2 )  =  Vl 0 < v o <  1/2 

with initial values mo =  v q  =  wo.

Proof. Let mo =  vo — wo <  0.5. The expected value of w\ given u>o is obtained by

E(wi\w0) =  E{w0(l +  eu- 9w fi(-log(w0))1+l3)\wo)
-  w0(l  +  E (eu~9)wft(-log(w0) )1+i3)
=  m o ( l  +  AmQ(-log(mo))l+ii)
=  m i

as required. Similarly, the expected value of w2 given w0 is obtained by

E(wj\w0) =  E(u%(l +  eu~9w ^(-log(w 0) ) l+f3)2\w0)
=  wlE{\ 4- 2eu~9W o(-log(w0) )1+l3 +  (-log (w 0))2̂ 1+^\w0)
=  Wq (l  +  2Awfi(-log(w0) )1+l3 +  Bw la(-log{w o ))2{l+p'>) ,

giving the variance of wi given wo as

V'ar(uqlieo) =  E(w\\wq) — E(wi\wq) 2

=  u;g(l - l  +  (2 A -2 A )w fi(-lo g (w Q))1+P +  ( B - A 2)wla(-log (w Q))2(i+0)\ 
=  v l(l+a\ -log {vo ))2̂ \ B - A 2)
=  Vl

as required. □

Remark 6.3.1. The constants A and B  exist since 0 <  eu~9 <  1 and 0 < e2(u -®) <  1 
because u <  0.
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Remark 6.3.2. The mean and variance of wi conditional on wq for vjq > 0.5 is 
trivial, with mi =  2mo-l and t'i =  0, since the stochastic element is only present 
when wq <  0.5.

Theorem  6.3.2. Let wq be an initial value of an orbit uq, . . . ,  wn generated using 
the stochastic polynomial-logarithmic map such that wt < 6 <  0.5 V i G (0, . . . ,n ) .  
Then as wq —► 0 and 6 —* 0, the orbit uq , . . . ,  wn will tend to the orbit m i , . . . ,  mn, 
generated by the deterministic map

Ca,A{™) — ni(l -f Am (—log(m ))1+P) 0 < m <  1/2

with initial value m o  =  w q .

Proof. Take wq < 6 <  0.5. Making use of theorem 6.3.1 gives the conditional 

expected value of w\ as mi and the variance as w^l+a\ —log(wo))2̂ +^ (B  — A2) < 
¿2(i+Q)(_/oi/(J ))2(i+^)(.tf — A2). Hence, as S —> 0, the variance of uq tends to zero 
and uq —»mi.

Let Wk —► m* < 6 <  0.5, with k G ( l , . . . , n  — 1), then, from theorem 6.3.1, the 
conditional expected value of uq+i is given by m*+i and the conditional variance is

given by rr^l+a\ —log{mk))2^ +^ { t i - A 2) <  ¿2(1+° ) (—/og(<5))2(1+^ )(ii—A2). Hence, 
as S —► 0, the variance of Wk+i tends to zero and Wk+i —► m*+i. Thus the proof is 
completed by induction. □

6.3.1 Simultaneous Estimation of Alpha and Beta

As with the stochastic polynomial and logarithmic maps, estimates of a  and ¡3 for 
the stochastic polynomial-logarithmic map can be found using linear regression tech­
niques. Given an orbit w\,.. . ,w n from the stochastic polynomial-logarithmic map,

wt+i =  wt(l +  eUt~ew °(— log(u;f))1+/3), for wt <  0.5, t € (1, . . .  ,n  — 1). 

Rearranging this and taking logs gives, for wt <  0.5, t € ( 1 , . . . , «  — 1),

log ( ^
S \wt(-\og{w t))

and the least squares estimates of a  and ¡3 by regression of yt =  log((ict+i — 
u)i)/(tu((-log(it!t)))) onto x it =  log(wi) and x 21 =  lo g (-  log(uit)) for wt <  0.5, that 
is

J =  - 0  +  alog(wf) + /31og (-log (u ;t)) +  ut, (6.14)

f  = {X 'X )~l X 'Y, (6.15)
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where f  =  (0, a, ¡3)', Y  is the vector of yt and X  is the matrix with columns of 
l ’s, X\t and X2t- As previously there are h values of {y t} and X  is a n x 3 matrix, 
where n <  n — 1 be the number of observations, wt, t € (1, . . .  ,n — 1), such that 
Wt <  0.5. Under assumptions 6.1.1-6.1.3, Lyapunov’s central limit theorem and the 
arguments of theorems 6.1.3 and 6.2.3 suggests the conditional distribution of these 
estimates to be approximately of the form

( f  — T0) »  N ^0,Oy ( X 'X ) " 1 j  (6.16)

for large finite n, where o\, is the variance of the random variables ut.
A rigorous asymptotic proof of the distribution is not straightforward and left 

for future works. The difficulty arises due to the regression on two slowly varying 
functions of wt, with the density of wt itself unknown. The results of Phillips [2001] 
are not directly applicable in this case since the regressors are not smooth, but they 
suggest the matrix of regressors may be asymptotically singular.

Interestingly, recall that estimating a and ¡3 is equivalent to estimating d and c 
respectively and note the similarities between the regression given in equation 6.5 and 
the regression required for the DGPII method given in equation 5.6. The method 
presented, here is a time domain approach specifically designed for the stochastic 
polynomial-logarithmic map whilst the DGPII method is a spectral approach appli­
cable to a more general set of processes, but the difficulty of asymptotic multicolin­
earity may be common to both.

6.4 Empirical Studies

In order to find empirical evidence to support the theorems of section 6 for the 
stochastic polynomial, logarithmic and polynomial-logarithmic maps, several simu­
lation studies are now carried out. First, empirical evidence is sought to support 
theorems 6.1.2, 6.2.2 and 6.3.2, that is, that the stochastic maps behaviour near 
the neutral fixed points tends to that of the deterministic maps. This is important, 
since the relationships between the map parameters a  and ¡3 and the long memory 
parameters d and c depend on these properties and thus estimation of a  and ¡3 can 
only be considered equivalent to estimating d and c if these theorems hold.

Having looked at the laminar region behaviour of the stochastic maps, studies are 
then carried out to estimate a  and ¡3 from simulations of the maps, and to compare 
the distributions of these estimates with the theoretical ones given in theorems 6.1.3 
and 6.2.3 and equation 6.16. As these results assume the type of map has been 
correctly specified, a final simulation study is then carried out to test if the correct 
map can be fitted when assumed unknown.
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6.4.1 Laminar Region Behaviour

Theorems 6.1.2, 6.2.2 and 6.3.2 show that orbits from the stochastic versions of the 
polynomial, logarithmic and polynomial-logarithmic maps tend towards the corre­
sponding orbits from the deterministic versions of the maps with the same parame­
ters. This result is essential for the assumption that the parameters of the stochastic 
maps have the same relationship with the asymptotic long memory parameters of the 
orbits as those for the deterministic case, since it is the behaviour near the neutral 
fixed point which these relationships are based on for the deterministic case.

Since theorems 6.1.2, 6.2.2 and 6.3.2 are applicable as wq —* 0, seven values 
of wq were considered, namely wq G {10-5 ,10~6,10~7,10~8,10~9,10-10,10-11}. 
The values of a  and (1 included in the study were the same as those used in 
the study of the deterministic maps, that is a  G {0.3,0.45,0.5,0.65,0.8,0.9} and 
/? G {0.05,0.15,0.25,0.3}. The parameter 0 was taken such that 0 G {0.5,1,1.5} and 
the distribution of U was taken as uniform, such that U ~  Uni(—9,9) for a chosen 
0.

This choice of U was made such that U is a zero mean random variable which 
satisfies assumptions 6.1.1-6.1.3. FYom Theorem 6.1.1, the conditional one step ahead 
variance of w\ given wq is given by

V ar(w\\wç,) =  w^a+l^Var(eu 9).

Now, for U ~  Uni(—9,9),

Var(e
e p2(u-e)

-dU
(  f 9 eu~9 V
\ L ^ r dU)  •29 \J„o 29

which, by standard integration techniques, gives

Var(eu~e) =
9 -  1 +  2e~20 -  (1 +  9)e -49

492

Figure 6.1 gives a plot of V ar(eu 9) against 9, showing as 9 —* 0 the variance 
tends to zero, since the random variable U tends to a constant zero, but also as 
9 gets larger than 1.62 the variance begins to decrease again, since e u~e — eue~6 
and e~e —> 0 as 9 —Too. The theoretical effect of 9 on the variance after multiple 
iterations becomes more complicated. Use of Theorem 6.2.1 and Theorem 6.3.1 
show similar results would be seen for the stochastic logarithmic and stochastic 
polynomial-logarithmic maps. Hence, no obvious trends due to 9 are expected from 
the results of these maps for this form of U.

For the stochastic polynomial map, 1000 orbits each of length T — 1000 were 
generated for each of the 7 x 6 x 3  possible {tno> a, 6} combinations. An orbit of length 
T =  1000 generated from the deterministic polynomial map given in equation 6.4
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ra4-*o

Theta

Fig. 6.1: The variance of eu s against 0 for U ~  Uni(-0,6).

is also simulated for each of the 7 x 6 x 3  possible { wq, a, 0} combinations. The 
stochastic orbits are referred to as {u>(}, whilst the corresponding deterministic orbits 
are referred to as {nit}.

Similarly, for the stochastic logarithmic map, 1000 orbits each of length T  =  1000 
were generated for each of the 7 x 4 x 3  possible { wq,(3, 0} combinations and a 
deterministic orbit of length T  =  1000 generated from equation 6.11 corresponding 
to each choice of parameters was also simulated. For the stochastic and deterministic 
polynomial-logarithmic maps, two values of a  and ¡3 were used, a  G (0.45,0.8) 
and P G (0.05,0.3), and 1000 stochastic orbits and 1 deterministic orbit each of 
length T  =  1000 were generated for each of the 7 x 2 x 2 x 3 possible { wq, a, /?, 0} 
combinations.

To compare the stochastic orbits with the corresponding deterministic orbits, 
the ratios wt/rnt for t G (1, . . . ,1000) were obtained for each simulated orbit. The 
theoretical results suggest this ratio should tend to 1 as wq —► 0.

The results for the stochastic polynomial map with wq =  10-5 and 0 =  1 are 
presented in figure 6.2. The thick center lines represent the mean of the ratios of 
wt/rrit for each t G (1 , . . . ,  1000), whilst the thinner lines represent the mean plus 
and minus one standard deviation.

It can be seen that the standard deviations of these ratios decrease as a increases 
and that, for a  >  0 . 5 ,  the mean ratio is close to 1 for all t G ( 1 , . . . ,  1 0 0 0 ) .  Indeed, 
for a  > 0.8, the variability of the ratios is too small to be seen on this scale, with the 
maximum standard deviation for a  =  0 . 8  being 0 .0 0 0 7 7  and the maximum standard 
deviation for a — 0 . 9  being 0 .0 0 0 2 6 ,  but the scales have been kept constant for ease 
of comparison between the varying values of a. For a  <  0 . 5 ,  many of the simulated 
orbits escaped from the laminar region for this choice of w0 =  10~5 and thus Theorem
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Fig. 6.2: The mean ratios of wt/mt, <6 (1,. .. ,  1000), for the stochastic polynomial map with 
Wo — 10~5 and 6 — 1. The thinner lines represent plus and minus one standard 
deviation.
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6.1.2 does not apply to these orbits. For the initial part of the orbits which remain 
in the laminar region, however, the mean ratios are still close to 1 as expected.

w0=1O 8 wo= 1 0 7

wo=10 to w0= ic r11

£
f

1 t

Fig. 6.3: The mean ratios of wt/mt, t £ (1,. .. ,  1000), for the stochastic polynomial map 
with a = 0.3 and (9=1. The thinner lines represent plus and minus one standard 
deviation.

Figure 6.3 gives the results for the for the stochastic polynomial map with a  =  0.3 
and 0 = 1  and ic0 € (lO "6,10~7,10~8, HT9, lO“ 10,10~n ). The thick center lines 
once again represent the mean of the ratios of wt/mt for each t £ (1 , . . . ,  1000), 
whilst the thinner lines represent the mean plus and minus one standard deviation. 
As the initial value wq decreases, the standard deviation of the ratios decrease and 
the mean ratios seein to tend to 1 as the theoretical results suggested.

As expected, the effect of 0 does not appear consistent. Figure 6.4 shows the
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Alpha =0.5, Theta = 0.5 Alpha =0.9, Theta = 0.5

9
15cc

Alpha =0.5, Theta = 1 Alpha =0.9, Theta = 1

Alpha =0.9, Theta « 1 5 Alpha =0.9, Theta ■  1.5

Fig. 6.4: The mean ratios of wt/mt, t € (1,. .. ,  1000), for the stochastic polynomial map 
with a = 0.5 and 0.9 and wQ = 10~5. The thinner lines represent plus and minus 
one standard deviation.
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means of the ratios wt/mt for t G (1 , . . . ,  1000), for the stochastic polynomial map 
with a G (0.5,0.9), wq =  10~5 and 9 G (0.5,1,1.5). The mean of the ratios appears 
close to 1, which is in agreement with the theoretical results. However, the standard 
deviations of the ratios for the stochastic polynomial map with a  =  0.5 appear to 
decrease slightly as 6 increases, whilst the standard deviations appear to increase 
slightly with 6 when a =  0.9.

The trend of the standard deviations of the ratios tending to zero whilst the 
mean of the ratios tends to one as w q  —► 0 is common for all values of alpha and for 
each initial value the standard deviations of the ratios decrease as alpha increases. 
The remaining graphs for the stochastic polynomial map are thus omitted.

Beta = 0.3 Beta = 0.25

t

Beta = 0.15 Beta = 0.05

t t

Fig. 6.5: The mean ratios of t G (1,..., 1000), for the stochastic logarithmic map
with Wq = 10~5 and 0 = 1. The thinner lines represent plus and minus one standard 
deviation.
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The results for the stochastic logarithmic map with wo =  10-5 and 9 = 1  are 
presented in figure 6.5. As previously, the thick center lines represent the mean of 
the ratios of wt/mt for each t £ (1 , . . . ,  1000), whilst the thinner lines represent the 
mean plus and minus one standard deviation.

For all values of 0, the standard deviations of the ratios appear small and the 
means appear close to zero, as suggested by the theoretical results. Note the scale is 
smaller than the graphs for the stochastic polynomial maps. This follows from the 
pattern of the standard deviations decreasing as a  increases for the stochastic poly­
nomial map, as the stochastic logarithmic map is similar to a stochastic polynomial 
map with a =  1.

The graphs show that as 0  decreases, the standard deviations of the ratios also 
decrease. This is true for all values of 6 and all values of w q . In addition, as with 
the stochastic polynomial map, the standard deviations decrease further as u>o —> 0.

For the generalised polynomial-logarithmic map, the results of both the stochastic 
polynomial and stochastic logarithmic maps can again be seen, in that for orbits 
which remain in the laminar region the means of the ratios wt/mt for t £ (1 , . . . ,  1000) 
are close to 1 and the standard deviations of these ratios decrease as a  increases, 
0  decreases and wq —► 0. The effect of varying 0 is once more not consistent. The 
graphs for these maps are similar in appearance to those already shown and thus 
omitted.

Overall, the empirical evidence from this study gives strong evidence to sup­
port theorems 6.1.2, 6.2.2 and 6.3.2, suggesting the stochastic maps behave as the 
corresponding deterministic maps near the neutral fixed point.

6.4.2 Estimation o f Alpha and Beta

The previous study gave evidence to suggest the asymptotic relationships between 
the parameters a  and 0  and the long memory parameters d and c established for the 
deterministic maps still hold for the new stochastic versions. These relationships are 
given in equations 6.1 and 6.9 and show that estimation of a  and 0  is equivalent to 
estimating the asymptotic long memory parameters d and c.

Regression methods of estimating a  and 0  from the stochastic polynomial, logar 
rithmic and polynomial-logarithmic maps were presented in section 6, and the the­
oretical distributions of these estimates were presented in theorems 6.1.3 and 6.2.3 
and equation 6.16. A simulation study is carried out here to test the fit of these 
theoretical distributions to finite sample estimates.

As in the previous simulation study, the values of a  and 0  included in the study 
were the same as before, namely a £ {0.3,0.45,0.5,0.65,0.8,0.9} for the stochastic 
polynomial map, 0  £ {0.05,0.15,0.25,0.3} for the stochastic logarithmic map and 
{ot,0) £ ((0.45,0.8), (0.05,0.3)) for the stochastic polynomial-logarithmic map. The 
parameter 9 was once again taken such that 9 £ {0.5,1,1.5} and the distribution 
of U was again uniform, such that U ~  Uni(—9,9) for a chosen 9. These choices 
satisfy assumptions 6.1.1-6.1.3. The variance of this form of U given 9 is ay  =  92/3,
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and from Theorems 6.1.3 and 6.2.3 and equation 6.16 this implies the variance of 
the estimates of a  and ¡3 are expected to increase with 0.

The initial values for each simulated orbit, from all three stochastic maps, was 
generated from an exponential distribution truncated at 1, as with the deterministic 
case. A ‘burn-in’ time of M  =  107 — 104 was then included, and the following 
T  =  104 values were retained for study. The stochastic nature of the maps should 
place less importance on the choice of initial values and this ‘burn-in’ time may no 
longer be necessary. For each (a, 9) combination for the stochastic polynomial map, 
(/?, 9) combination for the stochastic logarithmic map and (a, ¡3,9) combination for 
the stochastic polynomial-logarithmic map, 1000 orbits were simulated in this way.

Having retained an orbit of length T  =  104, only the values of wt+1 and wt such 
that Wt < 0.5 are used in the regression process. For comparison, only the first n 
such pair of values were taken from each orbit, where n was chosen as 100, 1000 and 
4000. The upper value of 4000 for n was chosen as all of the simulated orbits had at 
least 4000 observations less than 0.5, whilst many did not have as many as 4500.

Estimated a  for the Stochastic Polynomial Map
Bias W Ja1

V* 0 o
' 

o1!a n=1000 n=4000

oor-HII OOOIIs n=4000
0.3 0.5 0.002 -0.001 0.000 0.876 1.318 1.010
0.3 1 -0.005 -0.001 0.000 1.290 1.149 1.094
0.3 1.5 -0.011 0.002 -0.001 0.814 1.047 1.100

0.45 0.5 0.001 -0.001 0.000 0.955 0.824 1.047
0.45 1 0.005 -0.001 0.000 1.141 1.322 0.901
0.45 1.5 -0.001 -0.002 -0.001 1.049 0.943 1.028
0.5 0.5 0.004 0.000 0.000 1.092 0.908 0.661
0.5 1 -0.005 -0.003 -0.001 1.055 0.951 0.994
0.5 1.5 -0.003 -0.002 0.000 1.004 0.856 1.061
0.65 0.5 0.000 0.000 0.000 1.107 1.022 0.929
0.65 1 0.004 0.000 0.000 1.237 1.257 0.899
0.65 1.5 0.008 -0.003 -0.001 0.904 0.925 0.998
0.8 0.5 -0.002 -0.001 0.000 1.051 1.171 1.355
0.8 1 0.013 0.001 0.000 1.069 0.964 0.897
0.8 1.5 -0.003 -0.002 0.000 1.059 0.968 1.188
0.9 0.5 0.001 0.000 0.000 1.098 1.073 1.275
0.9 1 -0.014 -0.002 0.000 1.100 0.686 1.071
0.9 1.5 -0.023 0.000 0.000 1.188 0.970 1.130

Tab. 6.1: The mean biases and sample variances divided by the theoretical variances for the 
estimates of a from the stochastic polynomial map.

For the stochastic polynomial map an estimate of a  was found for each value of 
n using equation 6.6, for the stochastic logarithmic map estimates of ¡3 were found
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using equation 6.13 and for the stochastic polynomial-logarithmic map estimates of 
a and /3 were found simultaneously using equation 6.15.

Since the theoretical standard deviations are conditional on the value of sn =

where Sjn was the value for the tth simulated orbit from a given (a, 9, n) combi­
nation. The theoretical standard deviations are then estimated using these values.

Table 6.1 gives the mean biases and sample variances divided by the theoretical 
variances given by Theorem 6.1.3 for the estimates of a from the stochastic poly­
nomial map. It can be seen that even using only 100 observations, the biases are 
generally small and the sample variances are close to the theoretical ones in magni­
tude. When 4000 observations are used in the regression, biases are approximately 
zero to three decimal places. The results give strong empirical evidence in support 
of Theorem 6.1.3.

Figure 6.6 shows histograms of the estimates of a  for the stochastic polynomial 
map with a =  0.3. The theoretical distributions from Theorem 6.1.3 have been 
added on and the range of the x-axes for each histogram have been kept fixed for 
ease in comparison. It can be seen that the sample distributions appear close to the 
theoretical ones for all values of 9 and n. It can also be seen that, as expected by 
the theoretical results, the sample variance increases as 0 increases and decreases as 
n increases.

Theorem 6.1.3 shows no direct dependence of the distribution of a  — a on the 
value of a. The sample distributions of the estimates of a  agree with this and the 
results given in table 6.1 show no significant trend in terms of bias or variance of the 
estimates as a  increases. The histograms for the remaining values of a  are similar 
in appearance to those for a  =  0.3 and thus omitted.

Table 6.2 gives the mean biases and sample variances divided by the theoretical 
variances found from Theorem 6.2.3 for the estimates of ¡3 from the stochastic loga­
rithmic map. These theoretical variances are estimated from the orbits as with the 
stochastic polynomial map. Once again the biases appear small even when n =  100 
and the ratios of the sample variances with the theoretical values are close to 1 for 
most (/3,9,n ) combinations. The case when f3 =  0.15 with 9 =  1.5 and n =  100 
has an unusually high ratio of <72/<t2 =  2.304. This is caused by six large negative
outliers of ¡3 ss —2, the reason for which appears to be all of the observed values 
used being less than 0.003 for these six orbits. Several of the other sample distribu­
tions for estimates of (3 and a  also have one or two outliers for similar reasons when 
n =  100. Removal of these outliers for this case gives a ratio of a1 ¡a 1 =  1.011.

/ __________  v 0.5
( 5Z”=i(l°g(u,i) — log(tci))2 J i an estimate of this value was taken for each (a, 9, n)

combination as
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Fig. 6.6: Histograms of the estimates of a for the stochastic polynomial map with a = 0.3. 
The lines represent the theoretical distributions.
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Estimated (3 for the Stochastic Logarithmic Map
Bias a jo

(3 0 n=100 n=1000 n=4000

ooIIa n=1000 n=4000
0.05 0.5 -0.001 -0.001 0.001 1.530 0.854 1.147
0.05 1 0.013 -0.006 -0.003 1.286 1.132 0.922
0.05 1.5 -0.042 -0.002 0.002 1.371 0.988 1.197
0.15 0.5 -0.007 0.000 0.000 0.980 1.038 0.828
0.15 1 -0.012 -0.002 0.000 1.103 1.272 1.080
0.15 1.5 0.005 0.009 0.003 2.304 0.895 0.843
0.25 0.5 -0.008 -0.001 -0.001 1.203 0.904 1.063
0.25 1 -0.012 -0.003 -0.003 0.960 0.929 0.968
0.25 1.5 0.000 0.004 0.002 0.783 0.850 1.117
0.3 0.5 0.000 0.000 0.000 0.922 1.179 1.145
0.3 1 -0.001 -0.001 -0.001 1.206 0.830 1.075
0.3 1.5 0.000 0.007 -0.001 0.814 0.815 0.978

Tab. 6.2: The mean biases and sample variances divided by the theoretical variances for the 
estimates of /? from the stochastic logarithmic map.

As with the stochastic polynomial map, the sample variances for the estimates 
of ¡3 from the stochastic logarithmic map decrease as n increases and increase as 0 
increases. The histograms for any given value of ¡3 are similar in appearance to those 
for the stochastic polynomial map shown in figure 6.G. As expected from Theorem
6.2.3, the mean biases and sample variances show no significant dependence on the 
value of (3.

The mean biases and sample variances divided by the theoretical variances based 
on equation 6.16 for the estimates of a  and (3 from the stochastic polynomial- 
logarithmic map are shown in table 6.3. As with the stochastic polynomial and log­
arithmic maps, the estimates of a  and ¡3 from the generalised stochastic polynomial- 
logarithmic map show generally small biases and ratios of a2 ¡a 2 close to 1. However, 
from table 6.1 it can be seen that for the estimates of a  from the stochastic poly­
nomial map, none of the ratios of a2/a2 were larger than 1.4 and from table 6.2 it 
can be seen that for the estimates of (3 from the stochastic polynomial map, only 
two of the ratios of a2/a2 were larger than 1.4 for n =  100 and none of the ratios 
were larger than 1.4 for n > 1000, whilst from table 6.3, for the estimates of a  from 
the stochastic polynomial-logarithmic map three of the ratios of a2¡a 2 were larger 
than 1.4 for n =  100, one of the ratios was larger than 1.4 for n =  1000 and one of 
the ratios was larger than 1.4 for n =  4000. The probability of outliers thus appears 
larger when a  and ¡3 are estimated simultaneously.

Note also from table 6.3 that the signs of the biases of the estimates of a  and 
[3 are generally the same and the magnitudes of the sample variances appear con­
nected. This is due to strong correlation between the estimates of a  and (3 from the
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Estimatec a  for the Stochastic Polynomial-Logarithmic Map
e Bias d/<7

a 0 6 n=100 n=1000 n=4000

ooIIa n=1000 n=4000
0.45 0.05 0.5 -0.003 -0.003 -0.002 1.092 1.132 0.839
0.45 0.05 1 0.020 -0.007 0.000 1.065 1.528 1.232
0.45 0.05 1.5 -0.063 0.001 -0.002 1.496 0.978 1.124
0.45 0.3 0.5 0.008 -0.002 -0.001 1.510 0.953 0.899
0.45 0.3 1 -0.062 -0.005 -0.001 0.962 0.990 1.077
0.45 0.3 1.5 0.012 -0.003 -0.006 0.635 1.223 0.996
0.8 0.05 0.5 0.001 -0.001 -0.002 1.254 0.885 1.124
0.8 0.05 1 -0.079 -0.004 0.000 1.111 1.311 0.943
0.8 0.05 1.5 -0.096 0.001 0.004 1.115 1.407 1.459
0.8 0.3 0.5 0.000 -0.005 0.000 0.884 1.239 0.850
0.8 •• 0.3 1 0.064 -0.001 0.002 1.924 1.306 0.958
0.8 ” 0.3 1.5 0.214 -0.005 -0.002 2.173 1.098 0.992

Estimated (3 for the Stochastic Polynomial-Logarithmic Map
a P e Bias a/a

0.45 0.05 0.5 -0.007 -0.006 -0.005 0.951 1.082 0.937
0.45 0.05 1 0.068 -0.015 -0.001 0.893 1.378 1.206
0.45 0.05 1.5 -0.073 -0.002 -0.002 1.228 0.856 1.049
0.45 0.3 0.5 0.016 -0.004 -0.001 1.450 0.916 . 0.755
0.45 0.3 1 -0.133 -0.010 -0.004 0.889 0.852 1.111
0.45 0.3 1.5 0.034 -0.008 -0.013 0.672 1.115 0.994
0.8 0.05 0.5 -0.006 -0.003 -0.004 1.145 0.824 1.051
0.8 0.05 1 -0.156 -0.005 0.003 1.119 1.225 0.901
0.8 0.05 1.5 -0.198 0.012 0.012 0.939 1.369 1.409
0.8 0.3 0.5 -0.007 -0.010 0.000 0.885 1.243 0.863
0.8 0.3 1 0.243 -0.006 0.006 1.888 1.300 0.976
0.8 0.3 1.5 0.230 0.000 -0.002 2.158 1.008 0.970

Tab. 6.3: The mean biases and sample variances divided by the theoretical variances for the 
estimates of a and /? from the stochastic polynomial-logarithmic map.



6. Stochastic Intermittency Maps 242

1 Parameter, n =100

t
I i— i— I— i— i 

0 0 0 2 0 4 0 6 0 8

Estimated Alpha

1 Parameter, n =1000 1 Parameter, n =4000

f :l,
0 40 0 44 0 48

Estimated Alpha

0 43 0 45 0 47

Estimated Alpha

2 Parameters, n =100 2 Parameters, n =1000 2 Parameters, n =4000

i j U k  nuTh-. hunth
00 02 04 06 0.8 

Estimated Alpha

040 044 048

Estimated Alpha

1
043 045 047

Estimated Alpha

1 Parameter, n =100

j f k  ,r
-05  00 05

Estimated Beta

1 Parameter, n =1000

-0  10 0 00 0 10  0 20 
Estimated Bata

1 Parameter, n =4000

0 00 0 04 0 OB

Estimated Beta

2 Parameters, n =100

! J APV
-05  0.0 0.5

Estimated Beta

2 Parameters, n =1000 2 Parameters, n =4000

I :ir«dTA I
-010 000 010 020 

Estimated Beta

0 00 0 04 0 08

Estimated Beta

Fig. 6.7: Row 1: Histograms of the estimates of a from the stochastic polynomial map with 
a = 0.45. Row 2: Histograms of the estimates of a from the stochastic polynomial- 
logarithmic map with a = 0.45 and (3 = 0.05. Row 3: Histograms of the estimates 
of (3 from the stochastic logarithmic map with a =  0.05. Row 4: Histograms of the 
estimates of f3 from the stochastic polynomial-logarithmic map with a = 0.45 and 
¡3 = 0.05. The lines represent the theoretical distributions and 6 = 0.5 for all.
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stochastic polynomial-logarithmic map. Due to this correlation, the sample variances 
of the estimates of a  and f3 estimated simultaneously are much larger than those of 
the estimates of a  and ¡3 estimated separately from the stochastic polynomial and 
logarithmic maps. Examples of this increase in variance are shown in figure 6.7. 
Note that the results suggested by equation 6.16 still account for this increased vari­
ance and the theoretical distributions still fit the sample distributions well. As with 
the estimates of a and ¡3 from the stochastic polynomial and logarithmic maps, the 
values of a  and /? do not seem to alter the sample distributions from the stochastic 
polynomial-logarithmic map.

The results from this simulation study strongly support the theoretical results of 
theorems 6.1.3 and 6.2.3 and equation 6.16, suggesting that consistent estimates of 
a  and /3 can be found for these stochastic maps, and hence consistent estimates of 
the asymptotic values of the long memory parameters d and c.

6.4.3 Discrimination between the Maps

The results of the simulation study presented in section 6.4.2 support theorems 6.1.3 
and 6.2.3 and equation 6.16 and suggest consistent estimates of a  and (3 can be 
found for these stochastic maps. However, these results assume it is known which 
of the stochastic maps an orbit is generated from. In this section this assumption 
is relaxed and two methods of model selection are introduced to determine if the 
correct generating map can be found from the data.

Figure 6.7 shows that although the stochastic polynomial-logarithmic map in­
cludes the stochastic polynomial and logarithmic maps as special cases, estimation 
of a  and (3 simultaneously can greatly increase the variance of these estimates and 
should thus be avoided. Mistakenly fitting a stochastic polynomial map to a loga­
rithmic map, or vice versa, will lead to bias, as the stochastic polynomial map has 
a value of /? =  — 1, whilst the stochastic logarithmic map has a value of a  =  1. It 
is therefore important to correctly identify which of the maps an orbit is generated 
from.

The first approach to model selection is the use of a criterion such as AIC or 
BIC, see section 1.6.4. For a given orbit, all three regressions are carried out from 
equations 6.5, 6.12 and 6.14 and the sample standard deviations of the residuals are 
recorded for each. The criterion is then of the form

C — log(<72) +  k—, 
n

where b 2 is the sample variance of the residuals, n is the number of observations 
used in the regression, p is the number of parameters such that p =  1 for the 
stochastic polynomial and logarithmic maps and p — 2 for the stochastic polynomial- 
logarithmic map and k is the penalty. The model chosen is then the one with the 
minimum value of C. For AIC k =  2 whilst for BIC k =  log(n).

The second approach to model selection is to fit a stochastic polynomial-logarithmic 
map, estimating a  and ¡3 simultaneously, and to then use the theoretical distribu­
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tions of d and [3 given by equation 6.16 to test the null hypothesises //o i : a =  1 vs. 
Hn  : a  <  1 and II02 : 0  =  —l vs. II12 : ¡3 >  0. If there is significant evidence to 
suggest a  < 1 and no significant evidence to reject ¡3 =  — 1 this suggests the orbit 
is generated from a stochastic polynomial map, whilst the reverse of these results 
would suggest a stochastic logarithmic map. If there is significant evidence to re­
ject both null hypothesises this suggests the orbit was generated from a stochastic 
polynomial-logarithmic map. If there is no significant evidence to reject a =  1 or 
¡3 =  - 1  it suggests a special case of the stochastic-polynomial map. In terms of long 
memory, this would be equivalent to finding no significant evidence to reject d =  0.5 
and c =  0 and thus that the orbit is non-stationary.

Such a finding would clearly be more likely with orbits generated from maps in 
which a  was close to 1 and/or ¡3 was close to zero. Indeed, since the stochastic 
polynomial map has a value of ¡3 =  — 1, whilst the stochastic logarithmic map has 
a value of a  =  1, discrimination between the maps is expected to be less successful 
when a  is close to 1 and/or (3 was is to zero whichever method is used. Note, 
however, that although it becomes more difficult to discriminate between the maps, 
the negative effect of fitting the wrong map is also reduced, since the bias of the 
estimate of a  when a stochastic logarithmic map is fitted is 1 — a, whilst the bias of 
the estimate of f3 when a stochastic polynomial map is fitted is f3 +  1.

The simulation study carried out here follows the previous two. The values of a  
and ¡3 included in the study were the same as before, namely a  € {0.3,0.45,0.5,0.65, 
0.8,0.9} for the stochastic polynomial map, ¡3 € {0.05,0.15,0.25,0.3} for the stochas­
tic logarithmic map and (a, 0) G ((0.45,0.8), (0.05,0.3)) for the stochastic polynomial- 
logarithmic map. The parameter 9 was once again taken such that 9 G {0.5,1,1.5} 
and the distribution of U was again U ~  Uni(—0,0) for a chosen 9.

The initial values for each simulated orbit, from all three stochastic maps, was 
generated once more from an exponential distribution truncated at 1. A ‘burn-in’ 
time of M =  107 — 104 was then included, and the following T  =  104 values were 
retained for study. For each (a, 6) combination for the stochastic polynomial map, 
(0, 9) combination for the stochastic logarithmic map and (a, 0 ,9 ) combination for 
the stochastic polynomial-logarithmic map, 100 orbits were simulated in this way.

For estimating a, 0  and a2 only the values of w£+1 and wt such that wt < 0.5 are 
used in the regression process. As before the first n such pair o f values were taken 
from each orbit, where n was chosen as 100, 1000 and 4000.

For each simulated orbit, knowledge of the generating map was assumed unknown 
and the use of AIC, BIC and hypothesis testing was used to estimate which gener­
ating map best fit the orbit, as described above, with the hypothesis tests carried 
out at the 5% significance level. Table 6.4 gives the percentages that each of the 
selection methods chose each map for each group of orbits with n =  100 and 0 =  1.5. 
The effect of 6 is discussed later, see table 6.7.

The results are less than satisfactory for this value of n. The correct model is
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n = 100, e =  1.5
AIC BIC iypothesis test

Polynomial Map a 0 Both a 0 Both a 0 Both None
a =  0.3 81 14 5 85 14 1 55 2 3 40
a =  0.45 74 24 2 76 24 0 27 1 1 71
a =  0.5 73 23 4 77 23 0 32 0 2 66

a  =  0.65 57 36 7 61 36 3 9 3 6 8200dII« 54 42 4 56 42 2 3 0 3 94

P II o
 

! to 50 39 11 54 41 5 1 2 6 91
Logarithmic Map a 0 Both a 0 Both a 0 Both None

0 =  0.05 32 67 1 32 67 1 3 15 1 81
0  =  0.15 25 70 5 26 72 2 0 31 3 66¡3 =  0.25 27 69 4 27 73 0 6 32 0 62(i — 0.3 24 73 3 24 75 1 2 35 3 60

Poly-Log Map a 0 Both a 0 Both a 0 Both None
«  =  0.45,0 =  0.05 52 34 14 60 36 4 38 19 13 30
a  = 0.45,0 = 0.3 36 43 21 44 47 9 30 36 13 21
a  = 0.8,0 =  0.05 42 56 2 43 57 0 12 27 1 60
a = 0.8,0 =  0.3 27 68 5 27 73 0 9 39 1 51

Tab. 6.4: the percentages the AIC, BIC and hypothesis testing methods chose each map 
for each group of orbits with n = 100 and 6  = 1.5. The headings a, 0, ‘Both’ 
and ‘None’ refer to the method choosing the stochastic polynomial map, the 
stochastic logarithmic map, the stochastic polynomial-logarithmic map and the 
non-stationary stochastic polynomial-logarithmic map respectively.
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fitted at best 85% of the time, though generally the success rate is less than 70 %. 
Correct identification of the stochastic polynomial-logarithmic map occurs at most 
21% of the time, which occurs when a =  0.45 is small, (3 =  0.3 is large and the 
model is selected by AIC. Note, even fitting one of the three models randomly would 
achieve a greater success rate o f around 33%. The small sample effect thus makes 
discriminating between the maps difficult.

The use of AIC or BIC generally outperforms the use of the hypothesis tests for 
this orbit length, as the hypothesis tests often find no significant evidence to reject 
either null hypothesis. As expected, the percentage of times no significant evidence 
was found to reject either null hypothesis increases as a  —> 1 and (3 —» 0. These 
patterns are seen in both the stochastic polynomial and logarithmic maps and the 
stochastic polynomial-logarithmic map.

Due to the higher penalty term, the use of BIC chose a single parameter map 
more often than the use of AIC, When the true generating map was either the 
stochastic polynomial map or the stochastic logarithmic map, this led to BIC outper­
forming AIC. However, when the true generating map was a stochastic polynomial- 
logarithmic map the opposite is true. Both criteria selected the same map for the 
majority of the orbits.

As with the use of the hypothesis tests, the correct model was less likely to be 
identified by AIC and BIC as a  —> 1 and/or ¡3 —> 0. The results for the stochastic 
polynomial-logarithmic map, in particular, show a smaller value of a  increases the 
percentage of times a stochastic polynomial map is fitted, whilst a larger value of (3 
increases the percentage of times a stochastic logarithmic map is fitted.

Table 6.5 shows the percentages the AIC, BIC and hypothesis testing methods 
chose each map for each group of orbits with n =  1000 and 0 =  1.5. The percentage 
of times in which the correct model is identified is much higher for all three methods 
of model selection than the results for n =  100. For each case other than the 
stochastic polynomial map with a  =  0.9 the correct map is identified more than 
59% of the time, and usually more than 80%. The patterns picked up from the 
results for n — 100 still appear present, and the correct model appears less likely to 
be identified as a —► 1 and/or ¡3 -+ 0.

For the stochastic polynomial and logarithmic maps the use of BIC outperforms 
the use of AIC or the hypothesis tests in identifying the correct model. However, 
when the true generating map is the stochastic polynomial-logarithmic map, the use 
of BIC identifies the correct map the least out o f the three selection methods.

The only situation in which the correct map is not identified the majority o f the 
time is for the stochastic polynomial map with a =  0.9 using the hypothesis tests, 
for which the non-stationary model was not rejected for 80% of the orbits. This is 
because the theoretical standard deviation of the estimate of a  from equation 6.16 is 
approximately 0.08, hence at the 5% significance level the null hypothesis of a  =  1 
will only be rejected for estimates of a <  0.84, which should theoretically occur only 
23% of the time. This sample frequency of 20% is thus in near agreement with the 
theoretical results.
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n =  1000, e =  1.5
AIC BIC Hypothesis test

Polynomial Map a 0 Both a 0 Both a P Both None
a =  0.3 96 0 4 100 0 0 98 0 2 0

a = 0.45 91 0 9 99 1 0 94 0 6 0
a =  0.5 85 0 15 98 0 2 90 0 10 0
a =  0.65 93 1 6 98 2 0 96 1 1 2

P 1! o bo 83 15 2 85 15 0 67 3 2 28
a =  0.9 60 33 7 67 33 0 18 0 2 80

Logarithmic Map a /3 Both a S3 Both a 0 Both None
[3 =  0.05 0 92 8 1 99 0 0 96 4 0
¡3 =  0.15 0 97 3 0 99 1 0 97 3 0
¡3 =  0.25 0 94 6 0 100 0 0 96 4 0
S3 =  0.3 0 90 10 0 100 0 0 95 5 0

Poly-Log Map a /3 Both a P Both a 0 Both None
a =  0.45, (3 =  0.05 0 0 100 0 0 100 0 0 100 0
a =  0.45,/? =  0.3 0 0 100 0 0 100 0 0 100 0
a =  0.8,/? =  0.05 0 13 87 0 41 59 0 15 85 0
a =  0.8,/? =  0.3 1 14 85 1 ' 38 61 1 15 84 0

Tab. 6.5: the percentages the AIC, BIC and hypothesis testing methods chose each map for 
each group of orbits with n = 1000 and 9 = 1.5. The headings a, ¡3, ‘Both’ 
and ‘None’ refer to the method choosing the stochastic polynomial map, the 
stochastic logarithmic map, the stochastic polynomial-logarithmic map and the 
non-stationary stochastic polynomial-logarithmic map respectively.
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n =  4000, 6 =  1.5
AIC BIC lypothesis test

Polynomial Map a 0 Both a 0 Both a 0 Both None
a  =  0.3 90 0 10

oo
0 0 93 0 7 0

a  =  0.45 91 0 9 100 0 0 96 0 4 0
a  =  0.5 86 0 14 100 0 0 94 0 6 0
a =  0.65 93 0 7 100 0 0 97 0 3 000oIIa 92 0 8 100 0 0 97 0 3 0
a  =  0.9 79 14 7 86 14 0 75 3 3 19

Logarithmic Map a 0 Both a 0 Both a 0 Both None
0  =  0.05 0 90 10 0 100 0 0 94 6 0
0  =  0.15 0 94 6 0 100 0 0 98 2 0
0  =  0.25 0 90 10 0 100 0 0 91 9 0cooII 0 93 7 0 100 0 0 97 3 0

Poly-Log Map a 0 Both a 0 Both a 0 Both None
a  =  0.45,0 =  0.05 0 0 100 0 0 100 0 0 100 0
a =  0.45,0 =  0.3 0 0 100 0 0 100 0 0 100 0
a  =  0.8,0 =  0.05 0 0 100 0 0 100 0 0 100 0
a =  0.8,0 =  0.3 0 0 100 0 0 100 0 0 100 0

Tab. 6.6: the percentages the AIC, BIC and hypothesis testing methods chose each map for 
each group of orbits with n = 4000 and 6 = 1.5. The headings a, (3, ‘Both’ 
and ‘None’ refer to the method choosing the stochastic polynomial map, the 
stochastic logarithmic map, the stochastic polynomial-logarithmic map and the 
non-stationary stochastic polynomial-logarithmic map respectively.
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The results for the stochastic polynomial map with a =  0.9 also select the correct 
map a much lower percentage of the time than the other values of a  using AIC and 
BIC. This is expected, since the stochastic logarithmic map has a value of a  =  1, 
and thus discrimination between the maps when a  —> 1 becomes more difficult.

Table 6.6 shows the corresponding percentages for n =  4000. For this length 
of observations, the correct map is identified at least 75% of the time in all cases 
and generally more than 90% of the time. The pattern of the frequency of correctly 
identified map decreasing as a  —> 1 and/or (3 —► 0 is less clear than with the smaller 
series lengths, although the results for the stochastic polynomial map with a  =  0.9 
are still significantly worse than the results for the other values of a for all the 
methods. As previously mentioned, this is due to the stochastic logarithmic map 
having a value of a =  1, and thus there being less difference between the maps when 
a  =  0.9.

The use of BIC does particularly well, with the correct model identified 100% 
of the time in each case other than the stochastic polynomial map with a  =  0.9 
for which 14% of the orbits are mistakenly identified as generated from a stochastic 
logarithmic map.

Table 6.7 shows the effect of 0 on the percentage of times the correct model 
was identified using each selection method for n =  100. It can be seen that as 6 
decreases the percentage of correctly identified models increases. For 9 =  0.5 the 
correct map was identified in the majority of cases even for n =  100. The previously 
noted patterns that were present for 6 =  1.5 still appear for 6 € (0.5,1). The 
use of AIC and BIC still seem to outperform the use of hypothesis tests for the 
stochastic polynomial and logarithmic maps, whilst BIC gives the worst results for 
the stochastic polynomial-logarithmic map. The correct model appears less likely to 
be identified as a —* 1 and/or ¡3 —► 0 for each value of 9.

The effect of 9 for n € (1000,4000) is similar to that for n =  100 in that as 9 
decreases the percentage of correctly identified models generally increases. However, 
even for 9 =  1.5 all three selection methods tend to choose the correct model, as 
seen in tables 6.5 and 6.6, thus the effect of 9 is generally far less noticeable and the 
tables of results are thus omitted. The most significant change caused by 9 is for the 
stochastic polynomial map with a — 0.9, with the percentage of times the correct 
map is identified by the hypothesis testing increasing from 18% to 85% for n =  1000 
and 9 =  0.5 and increasing from 75% to 95% for n =  4000 and 9 =  0.5.

The results of this simulation study show that due to the large variance of the 
estimates of a  and (3 when estimated simultaneously, the use of a criterion such 
as AIC or BIC is often preferred to hypothesis testing to correctly identify the 
generating map when it is assumed unknown. As the orbit length increases, the 
probability of correctly identifying the generating map also increases and for n > 
1000 the fitted map is generally reliable for a  <  0.8 and/or (3 >  0.05. Having found 
the correct map, the results from section 6.4.2 suggest consistent estimates of a 
and (3 can be found and the results of section 6.4.1 suggest these are equivalent to
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estimating the asymptotic values of the long memory parameters d and c.

n =  100
AIC BIC Hypothesis test

0 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
Polynomial Map

a  =  0.3 94 89 81 99 92 85 94 71 55
a  =  0.45 83 89 74 92 91 76 83 66 27
a  =  0.5 87 82 73 91 86 77 82 52 32
a =  0.65 83 64 57 89 66 61 64 19 9

P II o ÒO 62 57 54 67 61 56 28 7 3
a  =  0.9 67 45 50 71 46 54 8 5 1

Logarithmic Map
¡3 =  0.05 91 70 67 98 76 67 89 39 15iooII«X 89 83 70 97 85 72 90 47 31
/3 =  0.25 94 80 69 99 82 73 94 55 32COoII 92 84 73 98 87 75 96 64 35

Poly-Log Map
a =  0.45,/? =  0.05 97 50 14 86 17 4 93 34 13
a  =  0.45,/? =  0.3 97 61 21 94 30 9 97 45 13
a  =  0.8,/? =  0.05 49 3 2 22 0 0 37 0 1
a  =  0.8,/? =  0.3 50 8 5 31 2 0 42 3 1

Tab. 6.7: The percentages the AIC, BIC and hypothesis testing selection methods chose the 
correct map for each group of orbits with n = 100 and 0 € (0.5,1,1.5).
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7. D E O D O R A N T  S T I C K  D A T A  A N A L Y S IS

The second part of this thesis focuses on the analysis of consumer data provided by 
Unilever. The data is concerned with the movement of individuals over time and 
space whilst applying a deodorant stick to the area under their left arm, the raw 
data being the (x, y, z) co-ordinates with time stamp of seven sensors attached to 
the individual.

The deodorant stick data being discussed in this paper has been collected and 
supplied by Unilever and is part of a larger series of experiments being carried out 
using the company’s recently acquired motion sensor technology. Motion sensor 
technology has been used previously in several areas, such as virtual simulations of 
factories and equipment to test and improve designs, see for example Faraway and 
Reed [2007]. There is also increasing demand for such technology in entertainment, 
such as movies and video games, as well as fields such as sport and medicine, see 
Menache [2000]. In addition to the deodorant stick data studied here, Unilever is 
also starting to apply motion sensors to other product areas such as brushing teeth 
and combing hair.

Unilever has several objectives in carrying out this study. First, it would be of 
interest to them to discover if such an experiment can pick up differences between 
individuals and products. Assuming such differences could be found, it would then 
be useful to group individuals and products into different application techniques 
and categories. Also, the cost of various experiments at Unilever could be greatly 
reduced if suitable methods of modelling the data and simulating new data could be 
found. Unilever has recently obtained robotic arms which could be used to replace 
many experiments on individuals at a reduced cost provided that the simulated data 
is realistic. More generally, the use of such sensors is still in its early stages for 
experiments at Unilever and they are being used in an increasingly large range of 
applications. Therefore, it would be of great use to Unilever in terms of designing 
future experiments to see examples of what methods of analysis can be applied.

A description of the deodorant stick data, including how it was collected and 
recorded is given in section 7.1. Section 7.2 looks at a univariate series from the 
data which Unilever team believed may give useful information about the differ­
ences between individuals and products during application. To this aim, ANOVA 
techniques are introduced and applied in sections 7.2.2 - 7.2.3.

Section 7.3 attempts to better interpret the data. After principal component 
analysis is carried out on the data in section 7.3.2, a new form of the data is derived 
in section 7.3.3. This new transformed form of the data provides a reduction in
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dimensionality without loss of information whilst simultaneously providing easier to 
understand definitions to the series.

Finally, section 7.4 looks at methods of modelling the data in this new form 
and simulating new data with the same properties as the original. Section 7.4.2 
introduces the use of vector autoregressive models, whilst section 7.4.3 looks instead 
at modelling the data by fitting functions such as B-Splines and Bezier curves.

7.1 Data Collection

The study of the deodorant stick data involves ten different individuals and four 
different deodorant stick products. Details of these individuals and products have 
not been supplied and thus they will be referred to only as Person i , i 6  (1,...,10) 
and Product j , j  E  (1,...,4). The order of these labels was chosen arbitrarily. The 
majority of (i, j )  combinations were repeated 6 times, although four were repeated 
7 times and Person 8 used each product only once, see table 7.1. Each set of data 
is thus labelled as Xijk, with k E  (1,...,7) representing the repetition number and i  

arid j  representing the Person and Product numbers respectively. There are a total 
of 224 sets of data.

Product (j)
Person i)

1 2 3 4 5 6 7 8 9 10
1 7 6 6 6 6 6 6 1 6 6
2 6 6 6 6 6 6 6 1 6 6
3 6 6 6 6 6 6 6 1 6 7
4 7 6 6 6 6 6 6 1 6 7

Tab. 7.1: Number of repetitions, K. for each (i,j) combination.

For each (i,j, k) th trial, Person i applied Product j  to their left armpit region, 
whilst the (jt, y, z) co-ordinates of seven sensors were recorded at equally spaced 
time intervals, with 100 observations per second. Each individual was not told when 
to start and stop and thus the application time varies from 1.05 seconds to 15.59 
seconds, with a mean of 5.23 seconds and a standard deviation of 3.50 seconds. The 
majority of data sets also have a few seconds of recorded observations before and 
after application, the lengths of which also vary greatly.

The seven sensors were attached to the following seven locations for each (i,j , k ) 
th trial:

1. The head of the deodorant stick of Product j .
2. The bottom of the deodorant stick of Product j .
3. The left wrist of Person i.
4. The left elbow of Person i.
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5. A point on the left side of Person i, approximately 30cm directly below the 
left shoulder.

6. A point on the left side of Person i, approximately 40cm directly below the 
left shoulder.

7. The left shoulder of Person i.
For the remainder of this paper the sensors will be numbered according to this 

list, the order of which was decided originally by Unilever. For each (i ,j , k) th trial, 
there are 21 time series, the (x ,y ,z ) co-ordinates producing three for each sensor. 
Thus each Xijk{t) , the observations from Xijk at a time i, is a vector of length 21.

Sensors 1 and 2 were fitted to describe the movement of the deodorant stick during 
application. Sensors 3, 4 and 7 are assumed to give information on the location and 
movement of the left arm which is lifted during the application process. Sensors 
5 and 6 were fitted in an attempt to record the effect of the application process 
to the underarm of the individual. In particular, it was assumed that products 
with greater friction would cause the underarm skin to stretch and contract more 
during application and that differences in products may therefore be detected by the 
distances between these two sensors. This claim is studied further in section 7.2

The results were intended to be as natural as possible and to this aim the indi­
viduals were also not told an exact place to stand nor an exact direction to face. The 
result of this is that the (x , y, z) co-ordinates are not all recorded from the same x, y 
and z axis relative to the individual. Indeed, each individual was free to move around 
even during application if so desired and thus the axes may not be fixed relative to 
the individual for even the duration of one trial. In order to avoid these difficulties, 
the use of a new set of data, Yijk, was introduced, which records the 21 Euclidean 
distances between each pair of sensors, using the standard formula for finding the 
distance at each point in time, d, between two points (xa,y a, za) and (Xb,yb,zi>) as

d =  y/(Xa — Xb)2 +  (ya — Ub)2 +  (z0 ~  Zb)2.

For ease, the notation {a, b}ijk will be used to represent the time series generated 
by the distances between sensors a and b for the ijk th trial, where the sensors are 
numbered by the list given above. Also, the subtext ijk  may be dropped when not 
necessary and it will be made clear from the context if referring to a specific trial.

The study of this multivariate data Yijk begins in section 7.3. In section 7.2 an 
initial study of the univariate data obtained from the distance between sensors 5 and 
6, series {5,6}, is carried out.

It should also be noted that the 224 trials were taken on several different days 
over several months. However, early studies by Unilever have suggested no significant 
reason to suggest the day of the trial will have an effect on the data, and this variate 
has thus been ignored for simplicity.
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7.2 Under Arm Data

The original idea for placing two sensors on the side of the individual under the left 
arm (sensors 5 and 6 from the list in section 7.1) was the belief by the Unilever team 
that the stretching and contracting of the skin between these two sensors would give 
useful information about the differences between individuals and products during 
application. The time series defined by the distance between these two sensors over 
time is therefore studied first as a univariate case to see what information could be 
obtained.

Since the start and end times of the deodorant stick application are unknown 
they must first be estimated from the data. This is discussed in section 7.2.1, which 
introduces change-point analysis to determine these points. Analysis of variance 
techniques are then applied to various statistics from the series in section 7.2.2 to 
investigate if product and individual effects are present. Section 7.2.3 continues this 
ANOVA in the frequency domain.

7.2.1 Change Point Analysis

For each of the 224 trials, the underarm series, {5 ,6 }, follows a general pattern. It 
begins fairly constant whilst the individual is at rest, before application. There is 
then a sudden sharp increase as the individual raises their left arm and the skin 
between sensors 5 and 6 stretches. The distance between the sensors remains at this 
higher level during application of the deodorant stick, stretching and contracting 
a relatively small amount due to the movement of the deodorant stick. When the 
application is finished, there is a sudden sharp decrease as the individual lowers 
their left arm, followed by a fairly constant level as the individual returns to rest. 
An example can be seen in figure 7.1.

Since the deodorant stick application process is of interest in the study, it would 
be useful to be able to take out the ‘middle section’ of each time series, namely 
the section after the arm is raised until the arm is lowered, during which time the 
application occurs. This can be done quite easily by inspection after plotting the 
data. However, inspection of 224 time series can be a lengthy task and subject to 
opinion. It was therefore useful to develop an algorithmic method of deciding on the 
start and end times of this middle section.

The problem of finding unknown points such as the start and end points of the 
application can be approached by change-point analysis. Early work on this subject 
can be found in Page [1955], [1957] and various others such as Pettitt [1980], Hinkley
[1971] and Ilinkley and Schechtman [1987] etc. Various tools are suggested in these 
papers to help find unknown change-points and indeed to discover if there is any 
significant evidence to suggest a change point is present at all. Since the existence 
of the change points are known, proving the points to be significant is unnecessary 
and instead focus is given only on finding them. Two examples of simple approaches 
o f locating a change point are the CUSUM plot and a mean squared error (MSE)
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approach.
Let xt, t € (1,..., T), be an observed time series, with estimated mean x. Then 

the CUSUM plot is a plot of Si against i, i G (1,...,T), where

S i  =  ] P x t - x .  ( 7 . 1 )

t=i

Now, it is assumed that Xt is of the form

X t= V i+ £ t ,  t < m ,  x t =  H2 +  £t, t > m  (7.2)

and thus a change has occurred at the unknown point t =  m. From equation 7.1 
it can be seen that a positive gradient in the CUSUM plot is produced by values 
above the mean and a negative gradient is produced by those below. Long sections of 
positive or negative gradient would thus be produced by a large series of consecutive 
observations above or below the mean. This suggests a change-point in mean most 
likely to have occurred at the max or min of the CUSUM plot, giving the estimated 
change point, m, as

to =  arg max | Sm \

The MSE approach also assumes xt to be of the form given in equation 7.2 and 
thus gives the estimate of m as

where

m
fri =  arg min

1

T

X m l ) “b ^   ̂( Xt X m 2)
m +1

Xml — E T f i *m X m 2  —
Sm+1
T — m

For each method, once one change point is found, the observed time series can 
be split and the further change points can be found by repeating the method on the 
sample up to or from the first change point.

However, for the deodorant stick data these basic methods are not suitable in 
their present form. They tend to split the data such that the estimated starting 
point is too early and the estimated end point is too late. The reason for this is 
that the time series do not have an instantaneous change in mean at a single point 
but a sudden steep trend, changing the mean gradually over several points. The 
assumption of x t following equation 7.2 therefore does not hold. In fact, there are 
four change points to be found, separating the sections into a relatively zero trend, 
then a strong positive trend, then a relatively zero trend, a strong negative trend



7. Deodorant Stick Data Analysis 257

and a final flat trend. A suitable extension of the MSE approach for the deodorant 
stick data can be given under the new assumption that xt is of the form

xt =  <

V

Hi +  £t
H2 +  b i t  +  £t 

H3 +  £t 
Hi ~  ^2  ̂+  £t 
H5 +  £t

1 < t  <  m\ 
mi <  £ < rr»2 
m2 < t <  m3 
m3 < £ < 7774 

7774 <  £ <  'i ’

(7.3)

where 1 < in* <  mi+i < T, the /¿j for * G (1 , . . . ,  5) are constants and bi,b2 >  0 
represent the trends created whilst raising and lowering the arm and £t is the error 
term. The application process thus takes place when £ G (m2, . . .  , 7773). For a given 
set of change points, (mi, m2, 7713, 7714), the model given in equation 7.3 can be fitted 
in a piecewise manner using least squares estimates of /ij for i G (1 , . . . ,  5) and bi, b2. 
The residuals from this fitted model, i t t G (1 , . . . ,T ) ,  are thus dependent on the 
change points (mi, m2 , m3 , mu) and the extended MSE approach of finding these 
change points is to use the estimates which minimise the mean of squares of these 
residuals,

(7771, 7772, 7773, 7774) =  arg min T

T
Y .  êt(mi, m2, m3,m i)2. 
7=1

(7.4)

The computational time of finding the MSE for all possible combinations of 
(m i, 7772, m3, 7774) can be considerable. This time can be greatly reduced by restricting 
the search area for each change point. Using the CUSUM plot, the local min of S, 
will be a point between mi and m2 and the local max will be a point between m2 and 
m3, since the shape of x t is such that the overall mean, //, will be m  <  /x <  ¿¿3 and 
¿75 < h < H'3- Let the local min and max of the CUSUM be ci and C2 respectively. 
Now, it is known from studying the deodorant stick data that the raising and lowering 
of the arm generally takes around 1 second, that is m2-m i  «  100 and 7774-7773 «  100, 
hence it is assumed that mi G (ci — 100,ci), m2 € (c i,c i 4- 100),m3 G (c2 — 100,C2) 
and 7774 G (02,02 +  100). This has reduced the number of possible combinations of 
(7721, m2, 777.3, 7774) from 0 (7 ’4) to 100'1 =  108.

The computational time can be reduced further by working in steps, minimising 
equation 7.4 first for every 20th value of each of ( 7771, 7772, 7773, 7774) ,  to find initial 
estimates ( 77741, 77721, 77731, 77741). The search areas are then reduced to assuming mi G 
(77141 -  10, 77711 +  10), m 2 € (777-21 -  10, 77721 +  10),7773 G (77731 -  10, 77731 +  10) arid 
7774 G (77741 -  10,77111 +10). These areas are reduced again by repeating thi3 process 
looking at every 5th value and the finally every value is considered. This reduces 
the number of (mi, m2, 7773, 7774) combinations considered from 108 to 3 X 54 =  1875.

A brief simulation study was carried out to test this method of finding the change
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Actual Data

Simulated

Fig. 7.1: Examples of the shape of actual and simulated data from which change points were 
estimated.
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points (m j,m2,m 3,>714). The series Xt was simulated with mi =  100, m2 =  200, 
m3 =  1000, m4 =  1100, T  =  1200, =  100, /z3 =  200, /i2 =  0, m  =  -800,
61,62 =  1 and

St — 3 sin +  Vt,

where rjt ~  vV(0, 1) are IID. The choice of these values are somewhat arbitrary, 
chosen simply to ensure the overall general appearance of the simulated data is 
similar to that of the actual data. Figure 7.1 shows an example of an actual time 
series and a simulated series for comparison.
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Fig. 7.2: Histograms of the estimated values of (mj, m2, m3, m4) from 1000 simulations of 
xt.

Estimates of the change points (m i,m 2,m 3,m 4) were found and recorded for x t 
using the previously suggested method. The simulation was repeated 1000 times, 
with new r/t being generated each time and the other parameters remaining con­
stant and the values of (m i,m 2,m 3,m 4) recorded for each. The histograms of these 
estimates are given in figure 7.2.



7. Deodorant Stick Data Analysis 260

It can be seen that the true values of (m i,m2,m 3, 1714) are found approximately 
20% of the time, whilst the vast majority of the estimates are within ±10 of the true 
values. Assuming this to be an accurate reflect of the deodorant stick data suggests 
the application start and end times can be estimated to within 0.1 sec.

When estimating the change points from the actual data, it was decided to use 
the series {4 ,6 } rather than {5 ,6 }, that is, the distance between the elbow sensor 
and the lower underarm sensor. This clearly must follow the same general pattern 
as {5 ,6 }, increasing as the arm is raised and decreasing as the arm is lowered, hence 
the points (mi, m2, m3,m.4) are the same for both, but the series {4 ,6 } was chosen 
as it was generally the series which most closely matched the assumed form of xt , 
being less effected by the movement of the deodorant stick.

7.2.2 ANOVA Application

An application of ANOVA techniques to the underarm data, series {5 ,6 }, is carried 
out here by summarising each of the 224 time series into several easy to interpret 
statistics and carrying out an ANOVA on each. The change point analysis is first 
carried out on the series {4 ,6 } to find the change points (m i,m2, m3, 7714) for each 
series. These points are then used on the series {5 ,6 }. The middle section between 
points m2 and m3 is considered to represent the application time. The time from 
t =  1 to mi is referred to as the ‘before’ section, whilst the time from m4 to T  is 
referred to as the ‘after’ section of the series.

1. Middle Section Mean and variance:- It was believed that the distance between 
the two sensors of the underarm during application could give an idea of how much 
the deodorant stick pulls and stretches the skin during application. It may be logical, 
therefore, to assume greater friction may cause more stretching and contracting, 
resulting in a possible difference in mean and/or variance. If a significant difference 
is found, it may be possible to determine which product creates greatest friction with 
the individual.

2. Middle Section Starting Point, Ending Point and Length:- While applying 
the deodorant, each individual was not told exactly when to start or finish the 
application. The individual was only told when the recording of the data had begun 
and were then allowed to lift their arm, apply the deodorant and lower their arm in 
their own time. This puts forward the possibility that the length of application may 
subconsciously indicate a preference to a certain product, i.e. The more a person 
likes the feel of a certain product, the longer they may wish to apply it and vice versa. 
The starting and end points refer to the points m2 and m3 respectively. Assuming 
the person has no prior knowledge of the products, the starting points would be 
expected to show no dependence on the product and may show nothing more than 
the reaction time of the individual. The products were all supplied in identical 
cases, so no opinion could be made of the products, subconscious or otherwise, via 
appearance. If the starting points did show signs of significant difference between 
products, it could possibly be accounted for by smell. The end points, assuming fairly
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constant starting points would give results similar to the analysis of the lengths of 
the middle sections.

3. Before and After sections mean and variance:- As with the motivation behind
the study of the lengths of the middle sections, it was suggested that a study of the 
‘end sections’ may also show subconscious behaviour, ‘end sections’ here referring 
to the section of the series with t G ( l ,m i) and t G Both sections may
be considered to show the person at rest. However, if a product feels ‘sticky’ , the 
individual may not lower their arm as much, which should result in an increased 
mean for the end section. They may also move their arm slightly more due to its 
less comfortable position resulting in a higher variance. Thus the difference between 
the mean and variance of the first and end section, i.e. the increase o f the mean and 
variance due to the ‘sticky’ effect was also recorded.

4. Overall mean and variance:- The overall mean and variance, i.e. the mean and 
variance of all available observations for each set of underarm data, would likely be 
most strongly influenced by the raising of the arm. It is therefore conceivable that 
a difference in feel of the deodorant stick products may cause the individual to raise 
their arm more or less which could provide information about the products.

For each of these statistics, h^k say, one-way and two way ANOVA techniques 
were carried out. For the two way ANOVA results, one set of data was removed from 
each ( i ,j )  combination with 7 repetitions to give proportional sampling and thus an 
orthogonal design matrix. The tests were carried out for each statistic based on the 
three models given below in equations 7.5, 7.6 and 7.7.

hijk ft Ai *f* £ijki (7.5)

hijk — H" Bj Sijk (7.6)

hijk =  ß  +  Ai +  Bj +  Ca +  Sijk» (7.7)

where Ai is the effect of the i th Person on the (i , j ,k ) th statistic, 13j is the 
efTed of the j  th Product on the (i , j ,k ) th statistic, Cjj is the interaction effect of 
the i th Person and j  th Product on the (i ,j, k) th statistic and Sijk are assumed to 
be independent and normally distributed, The results are given in table 7.2.

It must be noted that the Gaussian assumption on the errors may not hold and 
thus the reliability of these results is questionable. The Normal QQ plots from the 
residuals of the middle section means are shown in figure 7.3. Figure 7.3a) gives 
the QQ plot of the residuals under the assumption of a constant mean regardless 
of individual or product, and figures 7.3b)-d) give the QQ plot of the residuals of 
equations 7.5-7.7 respectively. The QQ plots for the other statistics are similar in 
appearance and thus omitted.

It can be seen that there is some evidence at the 5% level to reject the null 
hypothesis that the residuals are normally distributed near the upper tails. However,
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a) No Effect b) Individual Effect

norm quantiles norm quantiles

c) Product Effect d) Both Effects

norm quantiles norm quantiles

Fig. 7.3: Normal QQ plots of the residuals of the models fitted by equations 7.5-7.7 from 
the middle section means. The dotted lines represent the 95% confidence intervals 
that the residuals are normally distributed.
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Statistic Model 1 Model 2 Model ¿5
Person Product Person Product Interaction

Middle Section Mean *** ***
Middle Section Variance —
Middle Section Length *** ***

Starting Point *** ***
End Point *** ***

Before Section Mean *** ***
Before Section Variance

After Section Mean *** ***
After Section Variance

Difference in before/after Means **
Difference in before/after Variances

Overall Mean *** *** —
Overall Variance *** ***

Tab. 7.2: ANOVA results for the statistics of the Under Arm Data. * - significant at 5% 
level, ** - significant at 1% level, *** - significant at 0.1% level. A blank box shows 
no significance at the 5% level.

this deviation from the normal distribution seems slight, whilst the significant results 
are generally significant even at the 0.1% level. There appears to be strong significant 
evidence to suggest that different individuals may have an effect on the majority of 
these statistics for the data. It suggests that different individuals possess different 
application techniques for the deodorant sticks.

In comparison, no significant evidence is seen to suggest any difference between 
products. The current explanation suggested by Unilever is that the individuals 
may subconsciously alter the force with which they apply the deodorant sticks such 
that they always achieve the amount of friction they are used to. If this is the case 
it may be very difficult to find any way to distinguish between products from this 
data. Future experiments of Unilever are intended to record also the amount of force 
applied during application, which would be useful in further investigating this claim.

A study of human motion during an experiment done by Faraway et al [1999], 
involving reaching, showed motion can be dependent on many factors concerning the 
individual, such as age, gender, joint mobility and muscle strength. Such information 
is not available for the data studied here, though future studies may wish to explore 
further which factors are significant for differences in deodorant stick application.

7.2.3 Frequency Domain ANOVA Analysis

Having carried out an ANOVA for statistics in the time domain, attention now turns 
to the frequency domain. With the focus still to discover any significant common 
components between different people or products, the frequency analysis of time 
series collected in an experimental design suggested by Brillinger [1972] is carried
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out. Since a common method of deodorant stick application may consist of a repeated 
up and down motion, a periodic or near periodic element may be present, making 
frequency analysis particularly appealing.

For simplicity, it is first assumed that only a common component in products 
may be present, that is

x ijk(t) =  fajk +  +  bi(t) +  £ijk(t) (7.8)

with i S (1,...,I) representing the person number, j  € (1,...,J) representing the 
product number and k € (1,...,K) representing the repetition number and where 
Hijk are constants, a(t) is a stationary time series common to all %ijk, the are 
stationary time series common to each person and the £ijk{t) are stationary time 
series unique to each x,jk . It is assumed that the cumulants of a(t),bi(t) and £ijk(t) 
are all absolutely sumable and the means of each series is zero. In this first model it 
is assumed that no effect of different products is present and thus these time series 
can be taken as further replications. A model including possible effects from both 
individuals and products is discussed later.

Looking at the model given in equation 7.8, it follows that

E(X{k) =  ftik

fxikXikW ~  faaW  +  fbb(ty +  /ee(A) 

fx,klxik2 (A) =  f aa( A) +  fbb( A), k l j i k 2  (7.9)

fxiikiXiikzity =  / a a ( A ) ,  ¿ 1 ^ * 2  ( 7 - 1 0 )

where, since no product effect is assumed, the subscript j  has been removed and 
now k € (1,...,JK) is the repetition number. Here f yz represents the power spectrum 
given by

1 00
/ y*(A) =  —  Yh cov(yt,z t -u)e~lXu.

u=-oo

From equation 7.9 and equation 7.10 it can be seen that if /fcb(A) =  0, time series 
from the same individual will have no greater linear dependency than time series 
from different individuals and if f aa(A) =  0 time series from two different individuals 
will not be linearly dependent. Brillinger [1972] points out that given x lk is of the 
form in equation 7.8, it can be written that

Xikl =  Ai +  Du +  Eiki (7.11)

1 e  (1,...,L), where Xiku A/, Hu and Eiki are the discrete Fourier transforms of 
Xik(t) a(t), bi(t) and £ik(t) at A/, respectively. The advantage of this notation is that 
Xm  is now asymptotically complex normally distributed with mean 0 and covariance
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matrix f xx(A) and AuBu and E%ki are asymptotically complex normally distributed 
with mean 0 and covariance matrixes / aa(A), fbbW  and / ee(A) respectively. Applying 
standard ANOVA techniques to equation 7.11 then gives two F statistics for each 
value o f A to test the significance o f f aa(A) and /&&(A). The first, under the null 
hypothesis that / 00(A) =  0, is given by

f A'/ä..,ä..(A)
2 L , 2 I ( K —\)L

J2i52k f x n , - x i . , x i k - x i .W / ( i ( K  — i))

The second, under the null hypothesis that fbb(A) =  0, is given by

K E i f 1)
A ) / ( / ( A - l ) )

where f x...,x.Xx)i Ixik-xi.,xik-xi.{^) and A) are the sample estimates
of fi ..,s ..W J x ,k-x i.,x,k-x i.{>>) and fx i -x..,xi.~x..W  given by

. L . I K

W  =  7 7 7 £ Xikl
L i=i IK  ¿=i k=i

<xik-

2

and

f Xi -x  .„it ,-x..(A) ~  L Y 1  i ^ Y l Y l Xikl
¡=1 k=l ¿=1 fc=l

This method assumes a constant series length, T  and a constant number of 
replications, K . To satisfy these constraints the data obtained from Person 8 is 
removed, as only 1 time series is available for each product and 6 time series for each 
of the remaining ( i ,j )  combinations are taken, resulting in a loss of 8 time series 
with a new total of 216. Since it is not possible to extend any of the time series, the 
constant T  must be taken as the minimum of the remaining 216 series lengths, namely 
T  =  112. Since the true starting and finishing points of the application process, m2 
and m3, may not have been correctly estimated it was decided that each time series 
longer than 112 observations would have an equal number of observations removed 
from the beginning and end of the series such that only the central 112 observations 
were retained for analysis. It was also noted that if Person 10 was also removed, 
the minimum series length of the remaining time series would almost double, giving 
T — 212. Thus the analysis was repeated without the 24 time series from Person 10, 
giving a new total of 192 time series, each of length 212 observations, retained for
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study. Again, the 212 observations were taken from the central portion of each time 
series. A choice of L =  10, equal to the value given in Brillinger [1972], is studied 
first and then the analysis is repeated with L =  5 to see if this will alter the results.

The model given in equation 7.8 shall be referred to as Model 1. The analysis 
was then repeated for the model

•^ijki^p) —  f^ijk " b  ~ b  £ijk(.fy

where are constants, a ( t )  is a stationary time series common to all Xjjjt, the 
C j ( t )  are stationary time series common to each product and the £ i j k { t )  are stationary 
time series unique to each x^k- This exchanges the assumption of no product effect 
with the assumption instead that no person effect is present. This model shall be 
referred to as Model 2. The details for Model 2 are similar to those for Model 1 and 
thus omitted.

Brillinger [1972] also mentions that this method can be extended to include ran­
dom effects data collected in more complicated experimental designs in a straight 
forward manner. It is thus extended to the combined effect model of

x i j k ( t )  =  H i j k  +  0 , { t )  +  b i ( t )  +  C j ( t )  +  d i j ( t )  +  £ i j k ( t )

where mjk are constants, a(t) is a stationary time series common to all the 
b j ( t ) are stationary time series common to each person, the C j ( t )  are stationary time 
series common to each product, the d { j ( t )  are stationary time series common to each 
( i ,j )  combination and the are stationary time series unique to each Xijk- This
shall be referred to as Model 3.

Using the same arguments as before, four F statistics can be produced for each 
value of A for Model 3. The first, under the null hypothesis that / aa(A) =  0, is given 
by

I J K A)

The second, under the null hypothesis that /¡¿(A) =  0, is given by

_____ J K J 2 i  A ,  - x . . „ x , - x „ , ( A ) / ( / - l )

2 L , 2 I J ( K - l ) L

2 ( I - \ ) L , 2 I J { K - \ ) LY l i Y l j f x i j k - x i j . y X i j k - x i j . i t y / i U i K  i))

The third, under the null hypothesis that / cc(A) =  0, is given by 

II< E i  4 . - x...,£,..-x,'..(A)/(J-1)

J 2 i f x i j k - x i j . , x i j k - x i j . W I ( U ( K  l)) K,2 ( J - l ) L , 2 I J ( K - l ) L
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The fourth, under the null hypothesis that /^ (A ) =  0, is given by

F  1 2 i  1 2  j  f î i i . - X i . . - X . j . + X . . . , X i j , - X i

1 2 j  1 2 k  f x i jk ~ X i j . )X i jk

-x.j.+xJA ) / ( ( / - 1 ) ( J - 1 ) )
~  F 2 ( I - l ) ( J - l ) L , 2 J J ( K - l ) L

For each, if the F statistic is larger than the critical F value for a given significance 
level the null hypothesis is rejected and significant evidence is present to suggest the 
corresponding series of a(t), bi(t),Cj(t) or dij is significant. Once again this analysis 
is carried out without the data from Person 8 and with 6 time series for each of 
the remaining ( i ,j )  combinations, resulting in 1 =  9, J =  A,K  =  6 ,7 ’ =  112. The 
analysis is then repeated without Person 10 such that /  =  8, J  =  4, K  =  6 ,7 ’ =  212. 
For each the choices of L =  10 and L =  5 are made and the results between the two 
compared.

Testing a(t), Model 3 Testing b(t), Model 3 Testing c(t), Model 3 Testing d(t), Model 3
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Fig. 7.4: The F statistics for each frequency A € (0,n) for the 216 series from 9 individuals 
with T = 112 and L = 5. The horizontal lines represent the critical F values at the 
95% significance level.

The F statistics and corresponding critical F values at the 95% significance level 
for each frequency A € (0 ,7r) for the 216 series from 9 individuals with 7 ’ =  112 and 
L =  5 are given in figure 7.4. It can be seen that the F statistics do not significantly 
change depending on which model is used. This is expected due to the independence 
of the F statistics in the combined model. This similarity is also seen for the other 
values of L and 7' and thus the remaining results for the Models 1 and 2 are omitted.

From figure 7.4, there appears to be significant evidence to suggest the effect of 
the individual is present at frequencies near A =  0 and that an interaction effect 
between individual and product may also be present at low frequencies. No strong 
evidence of effects of individual or product seem present away from A =  0, other than
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a smaller peak in the F statistic near A =  1.5 for the person effect. The component 
a(t) common to all the series also appears significant at low frequencies and appears 
more significant than the individual effect near A =  1.5 and A =  2.6.

Testing aft), Model 3 Testing bft), Model 3 Testing eft), Model 3 Testing dft), Model 3
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Fig. 7.5: The F statistics for each frequency A e (0,7r) for the 216 series from 9 individuals 
with T =112 and L =  10. The horizontal lines represent the critical F values at 
the 95% significance level

Figure 7.5 shows similar results near the low frequencies are found when L is taken 
as 10 instead of 5 in that it seems to show significant evidence o f the presence of an 
individual effect, an interaction between individual and product and a component 
common to all. In addition, the product efTect also shows some significance at the 
95% level for this value of L.

The significant peak near A =  2.6 for the common component is still present 
for this value of L, but there is no longer any significant evidence to suggest the 
presence of a common frequency near A =  1.5. For this value of L the F statistic 
for the individual effect is generally just above the critical values at the 95% level 
and thus significant, whereas for L — 5 the F statistic for the individual effect is 
generally just below. This shows a sensitivity of the results to the choice of L.

Testing aft), Model 3 Testing bft), Model 3 Testing eft), Model 3 Testing dft), Model 3
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Fig. 7.6: The F statistics for each frequency A £ (0, tt) for the 192 series from 8 individuals 
with T =  212 and L — 5. The horizontal lines represent the critical F values at the 
95% significance level.

With the removal of person 10, the value of T  can be increased from 112 to 
212. Figure 7.6 gives the F statistics and .corresponding critical values at the 95%
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significance level for the remaining 8 individuals with the increased series length, 
T =  212, and L =  5. Comparison with figure 7.4 shows the effect of the individual 
now appears far more significant, being above the 95% significance level critical value 
for every value of A. This suggests a series length of T  =  112 may have been too 
small to pick up on this. The component a(t) common to all series again shows signs 
of significance, but the frequencies at which this significance occurs are different from 
those found for T  =  112. The product and interaction effects show no significant 
evidence of being present for this series length even at low frequencies.

Testing a(t), Model 3 Testing b(t), Model 2 Testing c(t), Model 3 Testing d(t), Model 3
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Fig. 7.7: The F statistics for each frequency A € (0,7r) for the 192 series from 8 individuals 
wilh.!/' = 212 and L = 10. The horizontal lines represent the critical F values at 
the 95% significance level.

Figure 7.7 shows the F statistics for the remaining 8 individuals with T =  212 and 
L =  10. As with the smaller series length of T  =  112, the results still appear to show 
some sensitivity to the choice of L. Comparison of figure 7.7 with figure 7.6 shows 
that although the effect of the individual is significant for all A in both, the choice 
of L — 10 seems to increase this significance at higher frequencies. The common 
component shows less significance for this value of L, with significant evidence to 
suggest its presence only at small frequencies. The product and interaction effects 
are generally not significant, although this choice of L gives some signs of significance 
for the product effect near A =  1.

Overall, the presence of a common component to all series seems significant near 
low frequencies, though its significance away from A =  0 is questionable due to 
contradictory results dependent on L and T. The presence o f an individual effect 
seems significant at least at low frequencies and the results for T  =  212 suggest 
significance for the majority of frequencies regardless of the choice o f L. The results 
for the product and interaction effects show some small signs of significance, but 
these once again seem largely dependent on the choice of L and no consistent signs 
of significance can be seen.

The results here are thus in agreement with those of the time domain ANOVA 
results given in section 7.2.2, suggesting evidence o f different people having different 
application techniques but suggesting that differences between products are not clear 
from this data.
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7.3 Multivariate Analysis

During this section, the focus of the analysis is returned to the entire data sets Y¡jk 
defined in section 7.1. The notation {a, 6}*^ will again be used to represent the time 
series generated by the distances between sensors a and b for the ijkth  trial, where 
the sensors are numbered by the list given in section 7.1 and the subtext ijk  will be 
dropped when not necessary.

Since there are 224 sets of data, each containing 21 time series, this gives a to­
tal of 4704 time series of varying lengths to look at. The use of data reduction 
tools are thus desirable and section 7.3.1 looks at the use of Principal Component 
Analysis (PCA) to achieve this. Section 7.3.3 then attempts to reconstruct mean­
ingful (a:, y, z) coordinates such that the data can be more easily interpreted and 
comparisons between trials can be made.

7.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a data-analytic technique used to describe a 
multivariate structure. PCA was originally considered by Pearson [1901] in relation 
to two variables, fitting a line to a scatter plot for the case in which x  and y were co­
dependent. This line is now known as the line of best fit. This method was extended 
to the method of principal components for multivariate data, where the line of best 
fit between two variables is the first principal component (PC), see Hotelling [1933].

The use of PCA has been applied to many varied areas of research, includ­
ing examples of psychology and education found in Harmon [1976], quality control 
found in Fisher et al. [1986], chemistry found in Weiner [1973], photography found 
in Simonds [1963], market research found in Vavra [1972] and economics found in 
Bartlett [1948]. Several other examples of areas of application for PCA can be found 
in Jackson [1991].

The method of PCA relies on the following result from matrix algebra.

Theorem  7.3.1. Let S be a p x p  symmetric, non-singular matrix. Then there exists 
an orthonormal matrix U  such that

U 'S U  =  L

where
U 'U  =  l p

and L  is a diagonal matrix with elements l\,h . . .  ,lp. Also

and

|5|-= |L| =  l i h . . . l p
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1 rS  — 1 rL  — 11 +  ¿2 "I- ■ ■ ■ ~ Ip-

The columns of U, u i, « 2, •••> up, are known as the characteristic vectors 
or eigenvectors of S. The diagonal elements of L, l\, ¿2, . . .  ,lp, are known as the 
characteristic roots or eigenvalues.

Now, let S  be the covariance matrix of p variables x  =  ., xp)' and let V
be the matrix of eigenvectors of S. The PCs of x  are given by z, where

z =  U'( x  — x ),

and x  is the vector of the means of x. These PCs are unique, and given the 
vector z, the original variables can be found via

x  — U z +  x,

from the orthonormal property of U. Note, the covariance matrix, Sz, of z  is 
given by

Sz =  U 'SU  =  L.** *
Hence, the PCs are an uncorrelated transformation of the original variables, with 

Var(zi) =  U for i € (1 ,. . .  ,p). From Theorem 7.3.1 it can be seen that

p p
'jT V ar(xi) =  ^ V a r ( z i ) .
¿=1 ¿=1

The PCs are thus ordered such that ¿1 >  h > • • • >  lP so that the first PC 
accounts for the largest proportion of the total variance of the original variables, 
and the last PC accounts for the smallest.

If several of the original variables are strongly correlated, the majority of the 
variance of these variables may be able to be explained by relatively few PCs, pro­
viding a reduction in dimensionality and possibly aiding in interpreting the main 
sources of the variability. The use of PCA to reduce the dimensionality writes x  in 
the form,

x  =  x  +  U kz k +  U,

where U k and z k are the first k eigenvectors and PCs for k < p and E is a vector 
of the error terms e i , . . . , e p, each with zero mean. If the vector £  can be assumed 
negligible, then the dimensionality has been reduced from p to k.
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Choosing the number o f PCs to retain

Various methods of choosing k have been developed, and a brief introduction to some 
of these methods is presented here. For more through reviews of these techniques 
the reader is referred to Jackson [1991] section 2.8 and JollifTe [2002] chapter 6.

The first method presented here is to choose the smallest k such that a cer­
tain proportion, C , of the original variances is explained by the retained PCs. This 
method is often used due to its simplicity. However, since the choice of what pro­
portion of the variances to account for is somewhat arbitrary, this method may not 
result in an ideal selection of k. Jolliffe [2002] suggests smaller values of C  may be 
appropriate when p  is large, whilst larger values of C  may be required if the first few 
PCs dominant but smaller, less obvious structures are still of interest.

A related method of choosing k is to instead choose the smallest k such that the 
variances of the error terms are below a certain threshold, C. This can either be 
done for each error term separately, such that

Var(ei) <  C , for all i £ (1........p), (7.12)

or for the sum of the error variances,

p
Y y a r ( £i) <  pC. (7.13)
¿—l

Note, equation 7.12 implies equation 7.13 is true, thus the choice of k that satisfies 
the second will be less than or equal that of the first.

The next method looks at the individual variances of the PCs. It suggests removal 
of all PCs with a variance less than the average, l. This method is sometimes referred 
to as the Guttman-Kaiser criterion, having been developed by Guttman [1954] and 
Kaiser [19G0], Simulation studies by Jolliffe [1972] showed this method tended to 
retain too few PCs, and suggested instead the use of l* =  0.71 as the cut-off for 
the variances. Jolliffe [1986] extended this idea to develop the broken stick method. 
The idea is that if a stick of unit length were randomly broken into p segments, the 
expected length of the fcth-longest segment would be

9k - E -

Hence, the expected proportion of the variance explained by the kth largest 
PC would also be g* by chance alone. The broken stick method thus retains only 
those PCs for which the proportion of the variance explained is greater than the 
corresponding value of 5*.

Graphical methods of determining the number of PCs to retain are also often 
used. A plot of U against i, called a SCREE plot by Cattell [1966], tends to show
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that li for i >  k tend to be small and lie close to a straight line. The method of 
choosing k is to determine by inspection the point at which this break occurs. Cattell 
and Jaspers [1966] suggest retaining all PCs up to and including the first one after 
this break.

There are several difficulties with this method. The location of the break may 
not be obvious, or indeed, no break may be present and the plot could appear like 
a fairly smooth curve. Another difficulty may arise when there appears to be more 
than one break. Jackson [1991] suggests it is customary to use the first break in 
this case, but gives examples in which later breaks may be of interest. Also, if the 
first few values of li are much larger, it may be difficult from a plot to see the detail 
required to determine the break point. This difficulty can be reduced by a plot 
instead of log(/*) against i. These plots are known as log-eigenvalue (LEV) plots. A 
study of these plots can be found in Farmer [1971].

Finally, several statistical tests have been developed to estimate k, see for example 
Bartlett [1950] and Bentler and Yuan [1996],[1998]. However, in order to use these 
tests to find a suitable k, they must generally be repeatedly applied to remove or 
include PCs one at a time. Since multiple tests are performed, this implies the overall 
significance level will not be equal to that of each individual test. Further, since the 
number o f ’tests to be carried out is random, it makes the true overall significance 
level of the tests difficult to find. For the test of Bartlett [1950] in particular, Jolliffe
[1970] found that this method tended to retain too many PCs, performing similar 
to using the Guttman-Kaiser criterion with a cut-off of around l* =  O.lT or 0.2 ,̂ 
far smaller cut-off than the optimal value suggested in Jolliffe [1972] of l* =  0.71. 
Jackson [1991] thus suggests use of this test to find a maximum value of k.

7.3.2 PCA o f Yijk

Let Y^k be the form of the deodorant stick data that represents the distances between 
sensors, defined in section 7.1. PCA is now applied to Y^k in an attempt to reduce 
the dimensionality.

As described in section 7.3.1, PCA writes the multivariate time series Y^k in the 
form

YijkiP) — Hijkl\jk{t) + Yijk(t),

where Yijk(t) is a 21 x 1 vector, Rijk is a 21 x r matrix of coefficients, Pijk(t) is 
a r x 1 vector of PCs and Yijk(t) is a 21 x 1 vector of residuals, uncorrelated with 
l\jk{t). The value r is the number of PCs to be retained such that 0 < r <  21. The 
notation r has been used instead of the k used in section 7.3.1 to avoid confusion 
with the repetition number.

Let Y (t), t G (m2, . . . ,  m3) be the first set of multivariate data such that i ,j ,  k =  1
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and m2 =  146, m3 =  1323 are the estimated start and finish points of the deodorant 
stick application found using the method described in section 7.2.1.

The 1st PC of Y (t) accounts for 72% of the total variance of Y (t), the 2nd PC 
accounts for 14% and the 3rd PC accounts for a further 6%. In order to account for 
over 70% of the total variance r is thus chosen as 1, whilst to account for over 80% 
r is taken as 2 and to account for over 90% r is taken as 3.

R o o t  N u m b e r

Fig. 7.8: The SCREE plot for Y(t),t 6 (m3, . . . ,  rkj)- The horizontal lines represent the 
mean of the characteristic roots, l and l* = 0.71.

The SCREE plot for the characteristics roots are given in figure 7.8. There 
appears to be possibly two breaks, the first near * =  4 and the latter near i =  8, 
although the location of these are not obvious. This suggests perhaps retaining 
r — 4 PCs. Figure 7.8 also shows the values of l and l* =  0.71 used for the Guttman-
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Kaiser criterion, which both suggest taking r =  3. The broken stick method suggests 
taking r — 2, with only the first two eigenvalues explaining greater than the expected 
proportion of the overall variance.

These methods suggest retaining at most 4 of the PCs, showing a large reduction 
in the overall number of series required.

As each of the 21 series present in Y (t) is the distance between a pair of moving 
sensors, interpretation of these two PCs becomes difficult. In an attempt to aide with 
the interpretation, PCs of various subsets of Y (t) were also taken and compared with 
the two PCs of the full set to find simpler to interpret approximations. Although 
initial choices of which subsets to study could be made from the matrix of rotation 
coefficients, R, by excluding series with coefficients close to zero, some use of trial 
and error was also required. It was assumed that the first PC may be related to the 
movement of sensor 1, as this is at the head of the moving deodorant stick. Looking 
therefore at subsets involving distances from sensor 1 it was found that the first PC, 

could be approximated by

f\(t) =  —0.4{ 1,3} -  0.5{1,4} 4- 0.5{ 1,5} +  0.5{1,6} -  0 .4{1,7}. (7.14)

Looking-similarly at subsets involving each of the other sensors, it was found 
that the 2nd PC, Pi(t), could be approximated by

P2(t) =  0 .6{3,5} +  0 .8{3,6} +  0.1{3,7}. (7.15)

Figure 7.9 shows how close the approximations appear to the actual PCs of Y(t). 
The correlation between Pi{t) and Pi(t) was 0.995, whilst the correlation between 
P2(t) and P2{t) was 0.826. Looking at equation 7.14, it is apparent that that each 
of the series included in f\ (f) involve distances from sensor 1 and hence the first 
PC may indeed be related to the movement of sensor 1, which is used to represent 
the movement of the deodorant stick. Further interpretation as to how P\{t) may 
measure this movement is somewhat vague, but since it is weighted sum of the 
distances from sensor 1 to sensors 5 and 6, which can generally be considered to be 
‘below’ sensor 1, minus the weighted sum of the distances from sensor 1 to sensors 3,
4 and 6, which can generally be considered to be ‘above’ sensor 1, it suggests Pi(t) 
represents a form of ‘up and down’ movement of sensor 1. This movement, however, 
can not be assumed to be in any fixed direction relevant to the individual.

Looking similarly at P2(t), it appears that the 2nd PC is related to the movement 
of sensor 3, the sensor attached to the individual’s wrist. It is a weighted sum of 
the distances from sensor 3 to sensors 5, 6 and 7, the three sensors attached to the 
individual’s side and shoulder. The 2nd PC thus seems to relate to the raising and 
lowering of the wrist away from and towards the individual. Again, the interpretation 
is vague and no fixed direction can be assumed.
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Fig. 7.9: The 1st and 2nd PCs of Y(t) and the corresponding approximations given in equa­
tions 7.14 and 7.15 respectively.
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Close approximations to the first two PCs of Y(t) can also be made from series 
involving sensors 2 and 4 respectively instead of sensors 1 and 3, although these are 
inferior, with correlations of 0.779 and 0.813 respectively. This seems to be because 
the two sensors on the deodorant stick and the two sensors on the individual’s arm 
appear to move in a similar fashion for this trial and are therefore more or less 
interchangeable.

The PCA was repeated for all 224 trials and the proportion of the variance 
explained by each PC was recorded for all. The minimum, maximum, mean and 
standard deviations of the proportions of the variances explained by the first four 
PCs can be seen in table 7.3. The table shows that to explain over 90% of the original 
variance, the number of PCs retained should be taken as r E (1,2,3,4), depending 
on the trial, with a value of r =  2 being sufficient on average.

Min
Sepai

Max
rately

Mean SD Min
Cumu
Max

atively
Mean SD

1st PC 0.446 0.948 0.735 0.128 0.446 0.948 0.735 0.128
2nd PC 0.025 0.410 0.175 0.095 0.721 0.976 0.910 0.052
3rd PC 0.013 0.201 0.051 0.032 0.866 0.992 0.961 0.026
4th PC 0.003 0.072 0.019 0.013 0.926 0.996 0.981 0.014

Tab. 7.3: Proportion of variance explained by PCs for Y,jk-

Table 7.4 shows the number of trials each value of r was chosen for several criteria 
mentioned in section 7.3.1. The maximum number of PCs that any of these methods 
suggest to retain is r =  5, although this occurred for only 1 trial using the Guttman- 
Kaiser criterion with the cut-off at 0.71. The modal value of the estimated r using the 
cut-off points of 70% of the total variances is 1, the modal value using the Guttman- 
Kaiser criterion with the cut-off at 0.7/ is r  =  3 and the modal values for the other 
methods are all r =  2. The mean values of r for each method are between 1 and 
3. These results suggest a large reduction in dimensionality can be obtained for all 
trials.

Having determined that each of the trials generally appears to require r <  4 trials, 
two further individual trials are looked at to discover if there are similarities in the 
interpretation of these retained PCs between trials. Let ^ ( i ) > i € (m22, . . . ,  m32) be 
the set of data for which the first four PCs explain the smallest proportion of the 
overall variance of all the trials. This is the trial corresponding to / =  9, j  =  1, k =  2, 
with ri(22 =  142 and m32 =  507. Also, let P3(i), t € (m23, . . .  ,m 33) be the set of data 
for which the first two PCs explain the largest proportion of the overall variance of 
all the trials. This is the trial corresponding to i =  5, j  =  1, k =  5, with m33 =  163 
and /hut — 412. As seen in table 7.3, the first 4 PCs of ^ (t )  account for 93% of the 
total variance for this set of data, whilst the first 2 PCs of Y3(t) account for 98% 
of the total variance for this set. The values of r chosen using the cut-off points of
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Cut-Off Point Guttman-Kaiser Broken Stick
f 70% 80% 90% l 0.7/
1 130 90 20 10 2 85
2 94 122 131 113 83 123
3 0 12 67 92 101 16
4 0 0 6 9 37 0
5 0 0 0 0 1 0

mean 1.42 1.65 2.26 2.45 2.79 1.69
SD 0.49 0.58 0.65 0.65 0.74 0.60

Tab. 7.4: The number of trials each value of r was chosen using the cut-off points of 70%L 
80% and 90% of the total variances, the Guttman-Kaiser criterion using l and 0.71 
and the broken stick method. The rows labelled mean and SD give the mean and 
standard deviations of the chosen r for each method.

70%, 80% and 90% of the total variances, the Guttman-Kaiser criterion using l  and 
0.71 and the broken stick method for ^ ( i )  were r =  2 ,3 ,4 ,3 ,3  and 2 and for ^3(2) 
were r =  1 ,1 ,1 ,2 ,2  and 1 respectively.

As with the PCs for Y(t), approximations of the PCs for Y2W and V3(t) were 
made using subsets of each. The 4 PCs of Yzit) were approximated by

P12(t) =  —0.4{ 1,3} -  0 .5{1,4} +  0.5{ 1,5} +  0 .5{1 ,6} -  0.3(1,7},

P22(t) =  0.9(2,3} +  0.4(2,4} -  0 .1(2,6},

P32(t) =  -0 .5 (2 ,4 } +  0.5(2,5} +  0.7(2,6} 

and
=  -  0 .6 (1 ,4 }+  0.8(1,7}.

The correlations of these series with the original four PCs are 0.999, 0.948, 0.949 
and 0.897 respectively. The form of P u (/) can be seen to be very similar to that
of P\(t) given in equation 7.14, thus the 1st PC seems to once again give a vague 
measure of the ‘up and down’ motion of sensor 1. The approximations to the next 
two PCs involve only distances from sensor 2. This suggests the next two PCs 
are related to the movement of sensor 2, though perhaps in two different general
directions. The form of P22(t) suggests the 2nd PC may be the movement of sensor 
2 away from the arm, whilst the form of /^ ( t )  suggests the 3rd PC may be the 
movement of sensor 2 away from the individual’s side. The form of p42(t) again 
involves distances from sensor 1, suggesting the 4th PC may be the movement of 
sensor 1 along the direction connecting sensors 4 and 7, the sensors on the elbow and
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shoulder. Note, this direction is still not fixed as both sensors are freely moving, but 
if the arm is sticking out to the side it may relate more to a horizontal movement of 
sensor 1, as opposed to the vertical movement suggested by the 1st PC.

The 2 PCs of Y${t) were approximated by

A s (0  =  —0.5{1,3} -  0.5{1,4} +  0.4{1,5} +  0.5{1,6} -  0 .2{1,7}

and
P23(t) =  0 .4 {l,6 } +  0.6{2,3} +  0.7{3,6}. (7.16)

The correlations of these series with the original two PCs are 0.995 and 0.989 
respectively. The form of can also be seen to be very similar to that of 
suggesting the ‘up and down’ motion of sensor 1 is once again mainly responsible 
for the 1st PC of Ya(t). A reasonable approximation in appearance to the 2nd PC 
of Ya(t) was not found in terms of distances from one sensor. The form of lJ23(t) is 
difficult to meaningfully interpret even in a vague sense.

In general, the 1st PC for each Yijk(t) t G (fh2y i ) , . . . ,m,3ijk), i G (1 ,... ,1 0 ), 
j  G (1 , . . . ,  4), k G (1 , . . . ,  Kij) appeared very similar to the first PC of the subsets of 
the series 41,3},{1,4},{1,5},{1,6} and {1,7}. The minimum correlation between the 
two series for any trial was 0.613, although only 12 trials had a correlation of less 
than 0.8. In comparison, 189 of the trials had a correlation of greater than 0.95 and 
116 of the trials had a correlation of greater than 0.99, with a maximum correlation 
of 0.999972. The form of P  given below in equation 7.17, gives the average form of 
these approxi mat ions to the 1st PCs, with the coefficients of P  being the mean of 
the coefficients over the 224 trials.

P =  —0.45{1,3} -  0.47{1,4} +  0.47{1,5} +  0.48{1,6} -  0.34{1,7}.
(0.03) (0.03) (0.02) (0.02) (0.1)

(7.17)
The values in brackets are the standard deviations o f the estimated coefficients 

over the 224 trials. It can be seen that the variances of the first four coefficients are 
all small, whilst the variance of the last coefficient is relatively large in comparison. It 
is believed this is due to sensor 7 not always being ‘above’ sensor 1 as the individuals 
may on occasion raise the deodorant stick above the shoulder level.

The results of the PCA of the data sets Tjjit(i) have shown that a large reduction 
in dimensionality can be achieved whilst still accounting for over 90% of the variances. 
The 1st PC for each, accounting for between 45% and 95 % of the total variance, 
appears to be related to the movement of sensor 1, though the direction of this 
movement is vague. The remaining PCs often also appear to be associated with the 
movement of a particular sensor or pair of sensors, though again no fixed directions 
for these movements can be claimed. For some of the trials, not even a vague 
description of the PCs can be meaningfully found.
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The difficulty arises in the form of the data sets Yijk{t), as even the original data 
is difficult to interpret in terms o f how each sensor is moving. Section 7.3.3 attempts 
to overcome this difficulty by transforming the data into a more suitable form.

7.3.3 Graphical Representation

The original raw data, Xijk, defined in section 7.1, contained the (x, y, z) coordinates 
of each of the seven sensors, however the axes from which these coordinates were mea­
sured did not remain fixed between trials, making comparisons difficult. The data 
was thus transformed into Yijk, which consists of vectors Yijk{t) for t € (1 , . . . ,  T^k) 
such that each Yijk(t) is a vector of the 21 between sensor distances at the time t.

The PCA on these Yijk(t), carried out in section 7.3.2, showed that the inter­
pretation of the data in this form, however, can often be difficult. This section 
overcomes the difficulties of both Xijk and Yijk by transforming the data back into 
a form of coordinates by creating axes from the data which are fixed relative to the 
sensors.

A set of axes for a 3 dimensional space can be defined by three points in space. 
The first point to be defined is the origin, (0,0,0). The simplest method to define 
this point is to take one of the sensors and fix it at this location. Out of the seven 
sensors, the sensor most likely to remain in a constant position is sensor 6, the lowest 
sensor on the individuals side, since sensors 1 and 2 are on the moving deodorant 
stick, sensors 3 and 4 are on a possibly moving arm and sensors 5 and 7 are closer 
to the moving parts, thus more likely to be effected by them. Thus, for all trials at 
all times, sensor 6 is set to the origin (0,0,0) and all other positions are measured 
from this one.

The second point should be a point in the direction of an axis. Again, since 
sensors 1,2,3 and 4 may all be moving considerably, only sensors 5 and 7 need be 
considered. Since sensor 5 is closer to sensor 6 small variations would have a greater 
effect on the direction of the line. Therefore sensor 7 is chosen to define the ‘up’ or 
y axis. This is done by setting sensor 7 to the position (0, {6 ,7}e, 0) for all trials at 
all times. Note the distance between sensors 6 and 7 is still allowed to vary and that 
the position of sensor 7 has not been fixed, only the y axis has been fixed relative to 
this position.

Finally, the third point should finish the definition of the x, y plane and the z 
axis can be taken as the normal to this plane without further points required. Sensor 
5 is the most straight forward choice for this. In addition to the previous reasons 
which make sensors 1,2,3 and 4 illogical, sensor 5 gives an easier interpretation of 
the x, y plane. Since sensors 5, 6 and 7 all lie along the individuals side, the x, y 
plane can be taken to be a representation of this individuals side. Since it would 
be desirable for the x  and y axes to be at right angles to each other, the position 
of sensor 5 is not set to ({5,6}*, 0,0), but instead set to (at,bt, 0), where at is the 
distance of sensor 5 from the newly defined y  axis and bt is its projection onto this



7. Deodorant Stick Data Analysis 281

y axis. Using standard techniques, these are given by

and

h
{5,6}?+ {6,7}?-{5,7}?

2{6,7}t (7.18)

at =  \J{5 ,6}? -  bj. (7.19)
' The z axis is then taken as the normal to this plane at the origin such that the 

positive z direction is away from the individual. Note that these new axes are not 
fixed in space. Instead, they are free to move with the individual, with the x ,y  
plane always along the individuals side, regardless of how the individual may stand 
or move during application.

For any of the remaining sensors, the location of sensor s on the new axes can 
be found using the following formulae based on standard geometric techniques.

Let s be located at the point (xt, yt, zt) at time t. Then

{* ,6 }? +  {6 ,7}? — {*,7}?
Vi 2{6,7}f

is the projection of s on the y axis. Now, let ct be the distance from the projection 
of s onto the line joining sensors 5 and 6 to the origin,

-  K 6)t + { 5 , 6 } ? - { a , 5}?
* 2{5,6}t

and at and bt be defined as in equation 7.19 and equation 7.18 respectively. Then

xt
cty/af +  6? -  btyt 

at

and

=  \J{+  6}? -  x? -  y\?.

The data can now be represented once again in terms of (x, y, z) coordinates of 
each of the sensors. Notice that the three time series describing the location of sensor 
6 will all be zero constants and can thus be disregarded. Notice also that the same 
is true for the x and z series of sensor 7 and the z series of sensor 5 and these can 
also be disregarded, hence the total number of time series for each trial is 15 rather 
than 21. The notation Zijk will be used to represent this new set of multivariate 
time series and the notation x s, ys and zs will be used to represent the time series of 
the x, y and z coordinates of sensor s, where it will be made clear from the context 
if referring to a general ijkth  trial or a specific trial.
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Comparison o f Z^k with the PCs o f Yijk

Having transformed the data from Yijk into an easy to interpret form, Zijk, as 
described in section 7.3.3, it is now of interest to discover if this new form supports 
the basic interpretations of the PCs of Yijk suggested in section 7.3.2.

y lor sensor 1

0 200 400 600 800 1000 1200

71m* (m*)

1st PC for 5 series

0 200 400 600 800 1000 1200

Tim * (ms) 

1st PC for Y

0 200 400 600 800 1000 1200

Time (mo)

Fig. 7.10: A comparison of ¡/i, with the 1st PC of the subset oiY (t) and the 1st PC of Y(t).

Let Y(t),Y2{t) and Yz(t) be the three specific sets of data studied in section 7.3.2 
and let Z(t), Z2(t) and Za(t) be the corresponding transformed sets of data. It 
was suggested that the 1st PC of each was related to the ‘up and down’ movement 
of sensor 1. In the new Z-notation, this is represented by the y series of sensor 
1. Figure 7.10 shows plots of the series y\ from Z(t), the 1st PC of Y (t) and the
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previous approximation of this PC given in equation 7.14. Visually it is difficult 
to distinguish between the three series, suggesting the 1st PC of P(f) is indeed 
attempting to describe the motion of y\. The correlation between 2/1 and the 1st PC 
of Y(t) is 0.97. Similar results are found for Yi{t) and Ys{t), and the correlations 
between the 1st PCs of these data sets and the corresponding y\ series are 0.98 and 
0.95 respectively, again supporting the claim that the 1st PC attempts to describe 
2/ 1-

• For the 2nd PC of Y (t), the approximation given in equation 7.15 suggested 
a relationship with the movement of sensor 3. The series 2/3 has a correlation of
0. 80 with this 2nd PC and a correlation of 0.98 with the approximation given in 
equation 7.15. For V2 (i), the 2nd and 3rd PCs both seemed related to the movement 
of sensor 2, whilst the 4th PC once again seemed related to the movement of sensor
1. Comparison with Zi[t) shows correlations of 0.77 between 22 and the 2nd PC 
and 0.73 between 2/2. The 4th PC had some small correlation with both x\ and z\ 
of 0.32 and 0.27, though generally did not strong correlation with any of the series 
of 2k(i). Recall, however, that only the method of accounting for 90% of the total 
variance suggested retaining this 4th PC whilst the other methods suggested a value 
of r < 3.

For the 2nd PC of ^ (t ) ,  the approximation given in equation 7.16 did not lend 
itself to any simple interpretation. The correlation of this PC with the series 2/3 
of Z$(t), however, is 0.95, suggesting this PC is related to the movement of the 
individuals wrist in the y direction. Since the approximation given in equation 7.16 
showed this PC was similar to the weighted sum of 0.4{1,6} +  0.6{2,3} +  0.7{3,6}, 
this suggests that the series { 1,6} may increase as the arm raises, that is that the 
deodorant stick and the arm may raise at similar times during the application.

PC aq y\ «1 x 2 yi z2 X3 2/3 23 2/4 24 x 5 2/7 NC R
1 11 181 22 2 7 1 0 0 0 0 0 0 0 0 0
2 1 0 5 48 28 21 1 28 0 11 5 0 15 61 42
3 1 0 1 9 27 7 1 21 1 11 2 0 2 141 20
4 5 0 6 6 0 4 3 20 1 4 2 2 5 166 0

Tab. 7.5: The number of trials for which the PCs of Yijk are most correlated with each 
series of the corresponding Zijk■ NC stands for the number of trials for which 
the PCs had no correlation greater than 0.7. R stands for the number of these 
non-correlated PCs which would be retained, taking r as the closest integer to the 
mean the 6 rs from the methods reported in table 7.4 for each trial.

A comparison of the first 4 PCs of each Yijk with the corresponding Z,jk is given 
in table 7.5, which shows the number of trials for which the PCs show correlation 
of greater than 0.7 with a series from the transformed data. For the 1st PC of each 
trial, 181 of the 224 trials show the strongest correlation with the series 2/1, with 
214 trials related to sensor 1. This suggests once more that the majority of the 1st
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PCs axe related to the movement of sensor 1, most often in the y direction. The 
10 trials for which the 1st PCs were not most correlated with a series of sensor 1 
were all most correlated with a series from sensor 2, the other sensor attached to the 
deodorant stick. Hence the 1st PC for all the trials seems related to the movement 
of the deodorant stick.

The 2nd, 3rd and 4th PCs can not be consistently interpreted between trials, 
and in many cases showed no correlation stronger than 0.7 with any of the series of 
Zijk■ It can be seen, however, that as with the 4th PC of many of these PCs 
which show little correlation to any Zijk would not be retained if the choice of r for 
each trial was taken as the average r from the 6 methods reported in table 7.4.

The 2nd and 3rd PCs seem most often related to the movement of sensor 2, 
usually in the x  direction, though they are also often related to the movement of 
sensor 3. The 4th PC, when retained, can be seen to be most often associated with 
the movement of sensor 3.

7.4 Modelling and Simulation

7.4.1 Grouping

The following procedure for grouping time series is suggested by Alonso and Maharaj
[2006], based on the work of Politis and Roinano [1994]. Let X  and Y be two time 
series of length n, such that X  is generated from the probabilistic model Px  and Y is 
generated from the probabilistic model I ’y . It is of interest to test if the generating 
processes are the same for both series, that is, to test the hypothesis

U0 : Px  =  IV  vs. lh  ■■ Px i  IV  (7.20)

The method of grouping time series presented here will be useful for several 
stages of the modelling and simulation of the deodorant stick data. Firstly, if no 
significant evidence can be found to reject the null hypothesis that two series are 
generated from the same model, then a single model can be fitted using both of 
the series. This allows a greater number of observations to be used for each model 
and fewer models to be required. Since the results o f section 7.2 show the effect 
of individual seems strongly significant, this suggests, for example, that use of one 
model per individual may suffice. Once the trials have been grouped this claim can 
be explored.

After fitting models to the data, the grouping method presented here will also be 
of use to determine if data simulated from the models are significantly different from 
the original series. In this case, Px  would represent the unknown true generating 
process and /V  the fitted model. Hence, this method of grouping can be used to 
check the fit of the models.

Finally, grouping the data is of interest in its own right. It explores the possi­
bility that several individuals may apply the deodorant stick in a similar manner, 
adding further insight into the process. If several individuals are found to apply the
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deodorant stick in a similar fashion, this discovery would improve the justification 
of using simulated data in future studies by Unilever, showing that a wider use of 
these techniques may be expected.

The statistic suggested by Alonso and Maharaj [2006] to carry out the test pre­
sented in equation 7.20 is given by

■ a 2

*=i

where l)\(k) and Ry(k) are the sample ACF of X  and Y respectively. An 
estimate of the distribution of this statistic is found by taking consecutive subsamples 
of X  and Y , (xi,Xi+\,. . .  ,£<+/) and (yj,Vj+i, ■.. ,yj+t), each of length / > k, and 
generating the subsample statistics

m 2
-  RYj(k j) (7.21)

*= 1

for i , j  G (1 , . . . ,  n — / +  1). Using these subsample statistics, the null hypothesis 
is rejected rt the o%  significance level if and only if 7^>rn > gn<i(l -  a), where

{In,l( 1 -  oc) =  inf : Gihi{x) > 1 -  a j

and

G n,,{x) =
(n — 1 +  l ) 2 ^

n —/-f 1 n—l-f 1

E  E  '
J = 1

( r , ! " ’ <  x ) (7.22)

with 1(E) being the indicator function of the event E taking values zero and one. 
For the deodorant stick data, the statistic Tn,m was found for each series of 

^¡¡ti(l) between each pair of trials. Since the trials are not of constant length, for 
each pair of trials with series lengths n\ and n2, say, with rri > n2, then the series of 
length hi was reduced to the length n2 by omitting an equal number of consecutive 
observations from the start and finish of the series. The choice of / was then taken 
as [h,2/2], the integer part of n2f  2. The decision to make l dependent on n2 allows 
larger / when more observations are available. The choice of m was taken as m =  10. 
This is the same as that taken by Alonso and Maharaj [2006], and brief simulation 
studies here found varying m to produce little effect. For each pair of trials, the 
distribution of the T,lt,n statistic was estimated as in equations 7.21 - 7.22.

Figure 7.11 shows the results of the grouping tests applied to the yx series of each 
pairwise trial at the 5% significance level. Note that within the trials of each individ­
ual the majority of tests show no significant difference in the generating processes.
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Individual

Fig. 7.11: Results of the grouping tests applied to the yt series of each pairwise trial. The 
grey indicates no significant evidence to reject the null hypothesis of the same 
generating process at the 5% level, whilst the white shows a significant difference 
between the series was found.
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The same is seen for the results of the other series, the figures for which are similar 
in appearance and thus omitted. This suggests that each individual generates data 
in the same manner for each trial, meaning that their method of deodorant stick 
application seems constant between trials. Grouping by product within each indi­
vidual shows no similar structure, and as with the results of section 7.2, no significant 
evidence can be found to suggest differences in products from the data.

Studying figure 7.11 further shows the generating processes of individuals 1, 5 
and 7 appear very similar judging by the proportion of non-significant tests between 
these individuals. Individual 2 also appears similar to these three individuals, but 
to a lesser extent as it shows more results with a significant difference between 
them. Individuals 3 and 10 also show signs of having similar application techniques 
with each other. The generating process of individual 8 appears to be ‘between’ 
individuals 4 and 9, as it shows signs of being similar to both, whilst 4 and 9 show 
no strong signs of being similar to each other. Individual 6 seems to have a more 
unique method of application, with no strong similarities with any of the other 9 
individuals.

The results given in figure 7.11 reinforce the idea that a single model may be 
sufficient to model the data from each individual. These models are discussed further 
in sections 7.4.2 and 7.4.3.

7.4.2 Vector AR Models

This section introduces the multivariate equivalent of the AR model, known as the 
vector aut.o-regressive (VAR) model. The review given here is limited to defining 
the model, introducing estimates of the coefficients, determining the order o f the 
model to be fitted and a diagnostic check on the residuals. These methods are then 
directly applied to the deodorant stick data in the form Zijk{t). Several surveys 
of VAR modelling are currently available, including Watson [1994], Lutkepohl and 
Breitung [1997], and Lutkepohl [2001], and the reader is referred to these for further 
details.

Given a set of K  time series of length n written in the K  X n matrix Z, the VAR 
model assumes the form

Z ( i ) - / / z =  e ( L ) ( i i ( f ) - ^ )  +  e(t), (7.23)

where Z(t) is the K  x 1 column vector of Z  corresponding to the time t, fiz is 
the A' x 1 row means of Z, e(t) is a K x  1 vector of white noise residuals such that 
E (e(t)e(t +  u) ')= 0 for u ^  0 and E(ff(i)e(t)')—£, where E is a 1< x K  covariance 
matrix and 0 (L ) is a K  x K  matrix of lag coefficients in which the entry of the zth 
row and the jth  column for i , j  € (1 , . . .  A ) is a lag polynomial of the form

6iji L +  0ij%L2 + ----- f- Oijplf

where L is the Lag operator such that Lyt =  yt- j.
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Without loss of generality, it is assumed that p z  — 0- Now, let X  be the K p  x n 
matrix, with column vectors

X (t) =

(  Z { t -  1) \ 
Z { t -  2)

for t G (1 ,.. .n),

\ X(t — p) /

let © be the K  x Kp  matrix of coefficients [©i : ©2 : • • • : ©p] where ©/ is the 
K  x K  matrix of {6 iji}  and let U be the K  x n matrix with column vectors e(t). 
The VAR model of equation 7.23 can then be written as

Z =  GX +  U. (7.24)

It can be seen that equation 7.24 is a matrix regression equation of Z  on X . The 
least squares estimates of the coefficients are thus given by

© =  Z X '(X X ') -1. (7.25)

As in the univariate case, see section 1.6.3, under the assumption that the s(t) 
follow a multivariate normal distribution the LS estimates given in equation 7.25 
are equivalent to the maximum likelihood estimates. The following theorem on the 
asymptotic distribution of these estimates can be found in, for example, Lutkepohl 
[1991] with reference to Mann and Wald [1943].

Theorem  7.4.1. Let Z be a K  X  n matrix of observed values following the model 
given in equation 7.24, where U is a K  X  n matrix with column vectors e(t), such 
that E(et)=0, E(£(t)s(t +  u )')=0 for u ^  0 and E(£(t)e(t)')=  E, where E is a non­
singular K  X  K  covariance matrix. Assume also that all fourth moments of the
elements U exist and are bounded. Let © be the LS estimate of the matrix 0  given 
in equation 7.25. Then, as n —► oo,

\/nvec(Q — ©) — N(0, E©),

where vec denotes the column stacking operator that stacks the columns of a 
matrix in a column vector and

E@ —  ,oo © E.

Remark 7.4.1. As in the univariate case, see section 1.6.3, assumptions must be 
made for the values of Z(t) for t G {—p +  1 , . . . ,0 ) .  Two common approaches involve 
setting these values to zero or shifting the time stamp, such that the first p observed 
vectors are retained for this purpose and the series length is replaced by n =  n — p.
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Remark 7.4.2. An estimate of £  can be found from the residuals, e(t) =  Z  — ©A, as

É = i £ é ( i ) é ( < ) '
t=1

The results of section 7.4.1 suggested a common set of coefficients between dif­
ferent trials for each individual may fit the deodorant stick data. The extension of 
equation 7.24 to fit a common model is straight forward. Let Z\, X\ and U\ and 
Z-2, A 2 and U2 be the values of Z , A  and U from two different trials with common 
coefficient matrix 0 . Let Zc =  [Z\ : Z2], A c =  [A i : A 2] and Uc =  [U\ : U2], be the 
combined matrixes for the two trials.

Now, note that

Zc =  © A c +  Ue

and hence the least squares estimates of the coefficients are thus given by

© = Z CX'C{ X eX'c) - 1- (7-26)

Under »the assumption of equality in the covariance matrixes, £1 =  £2, the 
distribution given in Theorem 7.4.1 still applies. The addition of several further 
trials follows the same argument.

The estimates of the coefficients depend on the order of the model, p. As in the 
univariate case, this order is generally unknown and must be estimated from the 
data. One approach is the use of a suitable criterion. The multivariate versions of 
AIC and BIC, see section 1.6.4, fit the value of p which minimises

AIC(p) =  log ^det ^£p)) +  2“ ~> 

and

B IC (p ) =  log (det ( ¿ p ) )  +  l o g ( n ) ^ - ,

respectively.
As in the univariate case, see Theorem 1.6.10, the use of AIC asymptotically 

overestimates the order with positive probability. The use of BIC, however, under 
general conditions, estimates the order p consistently. See, for example, Paulsen 
[1984].

Having fitted a VAR(p) model to the data, it is important to check the fit. Since 
the model assumes e(t) to be multivariate white noise, the residuals of the fitted 
model should be uncorrelated. An inspection of the ACF of each series of residuals 
may thus be informative, and should show no obvious signs of autocorrelation for 
u / 0 .
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A formal Portmanteau goodness of fit test can be carried out on the residuals to 
test the null hypothesis IIq : E(£(i)e(i 4- u)') =  0, for u =  1 ,... ,  h > p  against Hi: 
3u € (1 ,...  h) : E(e{t)e{t 4- u)') ±  0. The test statistic has the form

h
Qh =  n Y ,t r  (C'UC ^ C UC ^

U = 1

where C'u — n -1 £ ”=u+1 £(t)£(t — u)'. Under the null hypothesis, Qh has an 
approximate x2 distribution, with K 2(h — p) degrees of freedom, see Ahn [1988].

The adjusted portmanteau statistic is given by

h -

Qh =  n2 V  — tr ( c ’uC ^ C uC ^ )
"  n — u \ /
U = 1

and has been noted to give potentially superior small sample properties, see 
Lutkepohl and Kratzig [2004].

Since the test result may depend on the choice of h, it is often a good idea to 
apply a range of different values. For small values o f h, the x 2 -approximation to 
the null distribution may be poor. However, a large value of h may result in a loss 
of power.

The VAR(p) model was fitted to each of the 224 sets of deodorant stick data in the 
form Zijk(t). Since the number of coefficients estimated is equal to 152p whilst the 
number of observations for each set of data is equal 15n, the order was chosen using 
both AIC and BIC from the range p € (0,. ..,m in (c ,20)), where c =  [(n — 1)/15], 
the integer part of (n — 1)/15, to ensure 152p < 15n. The smallest value of c is equal 
to 6, for the case when n =  105. The p — value for the adjusted Portmanteau test 
with h =  5,10 and 25 was recorded for each fitted model for which h >  p.

Each of the fitted models were then used to simulate 200 new sets of data from 
each trial, that is, 100 from the model fitted using AIC and a further 100 from the 
model fitted by BIC. To avoid assumptions on the distributions of the error vectors, 
s(t), the simulated data used a bootstrap approach, reusing the residual vectors, 
e(t), of the fitted models in a random order. The simulated series were compared to 
the actual data using the grouping method described in section 7.4.1.

For each simulated set, Zijk(t), the data was transformed into the form Yijk{t) 
using the standard formula for finding the distance, d, between two points (x a, ya, za) 
and (xb, yb, zb) as

d =  \/(xa -  xbf  +  (ya -  llb)2 4- (*« -  zby .  (7.27)

PCA was then carried out on the simulated Yijk{t) and the results compared to 
those given in section 7.3.2 for the actual data.
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The results for the trial Z m (t), referred to as Z(t), will be presented first. This 
is the data previously discussed in section 7.3. Since the series length of Z(t) is 
n =  1178, this gives a value of c =  [1177/15] =  78 and hence the order for the 
VAR(p) models were chosen using AIC and BIC from the range (0 ,... ,20).

The use of AIC selected a VAR(4) model for the data. This resulted in 152 x 4 =  
900 parameters to be estimated, and thus the model is not written out in full. The 
parameters were estimated via the LS method given in equation 7.25. Figure 7.12 
f) shows the acf of the residuals for the model. Although a small correlation can 
be seen at lag 5, the adjusted Portmanteau test gave p-values of 0.0769, 0.2077 and 
0.3069 for h =  5,10 and 25 respectively. Hence the null hypothesis of uncorrelated 
residuals is not rejected at the 5% level, and the fitted model seems to account for 
the autocorrelation structure.

The fitted VAR(4) model was then used to simulate a new set of Z(t) data by 
resampling the residual vectors i{t)  in a random order for use as the error terms. 
A comparison of the actual and simulated series of y\ can be seen in figure 7.12. 
Comparison of figures 7.12 b) and 7.12 d) shows the ACFs appear similar, although 
the simulated series seems to possibly decay quicker.

The use of BIC selected a VAR(2) model for the data. The plots for this model 
are similar in appearance to those for the AIC model and thus omitted. The adjusted 
Portmanteau test gave p-values of 0.0077, 0.0862 and 0.1769 for h =  5,10 and 25 
respectively. It can be seen that when h =  5, the null hypothesis of uncorrelated 
residuals is rejected even at the 1% significance level, and the VAR(2) model may 
therefore be insufficient to capture full autocorrelation structure of the data.

In order to further evaluate the fit of the two models to the data, 1000 more sets 
of simulated data were generated from each, resampling the residuals in a random 
order each time to create the error terms for the simulations. Each simulated series 
was then compared with the corresponding actual series using the grouping method 
presented in section 7.4.1, with l taken as 500 and the choice of m taken as 10. The 
proportions of these simulations which showed significant evidence to reject the null 
hypothesis of having the same generating process as the original data are shown in 
table 7.6.

The results agree with those suggested by the Portmanteau statistics, in that 
the proportions for the AIC model, other than for x 5 at the 1% level, are all within 
the proportions which would be expected by chance. Hence, no significant evidence 
is present to suggest the VAR(4) model fitted using AIC is different from the true 
generating process of the data. However, the model fitted using BIC shows significant 
evidence to reject this claim for the series 22, 23, 23 and 24, although no significant 
evidence to suggest the VAR(2) model differs from the true generating process for the 
remaining 11 series. This suggests an order of p =  2 is sufficient for the majority of 
the series, whilst a higher order is required to capture the properties of the remaining 
series.
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a) Original y Serlas

c) Simulated y Series

e) Residuals of y Series

b) Acf of Original y Series
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d) Acf of Simulated y Series
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f) Act of Residuals of y Series

AC
F

0 
0.

4 
0.

8 
1_1

__
1 

1_L

Ó -*■ =*:----- .  T j  j  ]  j  -  '¿t  í  i  i " i

o S 10 15 20
Lag

Fig. 7.12: Comparison of the y\ series of Z(t) with the corresponding series simulated from 
the VAR(4) model fitted by AIC.



7. Deodorant Stick Data Analysis 293

Significance Level
VAR 4) using AIC VAR '2) using BIC

Series 10% 5% 1% 10% 5% 1%
XI 0.00 0.00 0.00 0.01 0.00 0.00
y\ 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
X2 0.01 0.00 0.00 0.01 0.00 0.00
2/2 0.01 0.01 0.00 0.00 0.00 0.00
z2 0.06 0.01 0.01 0.12 0.05 0.04
*3 0.01 0.01 0.00 0.14 0.12 0.10
2/3 0.01 0.01 0.00 0.00 0.00 0.00
*3 0.01 0.00 0.00 0.30 0.13 0.06
X4 0.00 0.00 0.00 0.00 0.00 0.00
2/4 0.00 0.00 0.00 0.01 0.00 0.00
z4 0.01 0.01 0.00 0.26 0.13 0.07
X5 0.09 0.03 0.02 0.00 0.00 0.00
2/5 0.00 0.00 0.00 0.00 0.00 0.00
2/7 0.00 0.00 0.00 0.00 0.00 0.00

Tub. 7.6: Proportion of 100 simulations of Z(t) which reject the null hypothesis given in 
equation 7.20 at each significance level.

From each of the simulated Z(t), a set of Y(t) was created by transforming the 
data using equation 7.27. The PCs of the simulated Y (t) were then found. The 1st 
PCs of the Y (() generated using the VAR(4) model accounted for between 68% and 
81% of the total variance, whilst the 1st PCs of the Y (t) generated using the VAR(2) 
model generally accounted for a smaller proportion of between 61% and 76%. The 
1st PC for the actual data, as discussed in section 7.3.2, accounted for 72% of the 
total variance, hence the 1st PCs of both models account for a similar proportion as 
with the original data.

Following the arguments of section 7.3.2, the first PCs of the subset of 5 series 
involving sensor 1 were considered as an approximation to the 1st PC of the full data 
sets. The mean equation for the coefficients o f these PCs for the 1000 simulations 
from the VAR(4) model is given by

P =  -0 .38 (1 ,3 } -  0.45(1,4} +  0.43(1,5} +  0.49(1,6} -  0.47(1,7}, 
(0.09) (0.05) (0.07) (0.08) (0.21)

where the figures in brackets show the standard deviations o f each coefficient. 
Comparing this with equation 7.14 shows the 1st PC of this subset of series to be 
of a similar form to that of the original data. The correlations between the 1st PC
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of the subset and the 1st PC of the full data sets were in the range 0.985 and 0.998 
with a mean of 0.992. The correlations between the 1st PC of the full data sets and 
the corresponding simulated y\ series were in the range 0.952 and 0.975 with a mean 
of 0.9G6.

The results for the VAR(2) model are similar, with mean equation for the coef­
ficients of the subset PCs for the 1000 simulations given by

P =  —0.32{1,3} -  0.46{1,4} +  0.47{1,5} +  0.51(1,6} -  0.43(1,7}, 
(0.11) (0.06) (0.06) (0.07) (0.13)

where the figures in brackets show the standard deviations of each coefficient. 
The correlations between the 1st PC of the subset and the 1st PC of the full data 
sets were in the range 0.986 and 0.998 with a mean of 0.993. The correlations between 
the 1st PC of the full data sets and the corresponding simulated y\ series were in 
the range 0.951 and 0.978 with a mean of 0.963. The actual data had corresponding 
correlations of 0.995 and 0.970. The interpretation of the simulated PCs thus appears 
equivalent to that of the actual data.

a) Order Selected by AIC b) Order Selected by BIC

3
S’k.LL.

0 1 2  3 4

P P

Fig. 7.13: Histograms of the orders selected for the VAR(p) models for the 224 trials using 
AIC and BIC.

The results are now reported for the remaining trials. Figure 7.13 shows the 
histograms of the orders of p for the VAR(p) models fitted to the 224 trials using 
AIC and BIC. It can be seen that the selected order appears to vary greatly between 
the two criterions. The order selected by BIC has a value of 1 or 2 for almost all 
the trials, with a maximum fitted order of 3. The use of AIC, on the other hand, 
has a minimum order fitted of p =  2, with a large proportion of the trials fitting a 
VAR(20) model, the upper limit of the range of fitted values.
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For each fitted model, 100 simulated sets of Z^k were generated by resampling 
the residuals of each model, and these simulated Zijk were then transformed into 
Yijk using equation 7.27.

AIC Min
Sepa

Max
rately . 

Mean SD Min
Cumu
Max

atively
Mean SD

1st PC 0.344 0.999 0.788 0.186 0.344 0.999 0.788 0.186
2nd PC 0.001 0.431 0.117 0.104 0.656 1.000 0.906 0.095
3rd PC 0.000 0.172 0.042 0.040 0.753 1.000 0.947 0.060
4th PC 0.000 0.082 0.018 0.020 0.835 1.000 0.965 0.040

BIC Min Max Mean SD Min Max Mean SD
1st PC 0.339 0.958 0.687 0.144 0.339 0.958 0.687 0.144

2nd PC 0.017 0.393 0.170 0.091 0.577 0.975 0.857 0.079
3rd PC 0.011 0.193 0.061 0.038 0.747 0.987 0.918 0.049
4th PC 0.004 0.084 0.027 0.016 0.832 0.991 0.945 0.032

Tub. 7.7: Proportion of variance explained by PCs for the simulated Yl3k-

Table 7.7 shows the proportion of variance explained by PCs for the simulated 
Ÿijk• Comparing the results with those given in table 7.3 for the actual, the 1st PCs 
of the models fitted using AIC appear to explain more of the variability, whilst those 
of the BIC models explain less. The standard deviations of the amount of variance 
explained is larger for the models using AIC then BIC, though both are larger than 
those reported for the actual data.

The mean equation for the coefficients of the sensor 1 subset PCs for the 1000 
simulations are given by

pa =  0.52{1,3} +  0.49{ 1,4} -  0.40{1,5} 
(0.18) (0.11) (0.10)

0.41 {1 ,6 } +  0.27(1,7} 
(0.11) (0.15)

for the models fitted by AIC and

Pb =  0.44(1*3} +  0.52(1*4} 
(0.13) (0.06)

0.45(1,*5} -  0.48(1,'6} +  0.21(1*7} 
(0.07) (0.06) (0.14)

for the models fitted by BIC, where the values in brackets are the standard 
deviations of the estimated coefficients over the 224 trials. Comparison of this to 
equation 7.17 shows similarity between the simulated series and the actual data, al­
though the variance in the coefficients has significantly increased. Note, the standard 
deviations are again larger for the models using AIC.
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a) 1st PC and y Series using AIC b) 1st PC and y Series using BIC
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Fig. 7.14: Histograms of the pairwise correlations between the simulated y\ series, the 1st 
PC of the simulated V ijfc(f) and the 1st PC of the subset of 5 series from Yijk(t).
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Figure 7.14 shows the histograms of the pairwise correlations between the simu­
lated yi series, the 1st PC of the simulated Yijk(t) and the 1st PC of the subset of 
5 series from Yijk(t). It can be seen that, as with the actual data, the correlation 
is close to 1 in the vast majority of the simulations. The correlations appear more 
likely to be smaller for the models fitted using AIC.

As with the results for Z(t), the general results for the 224 trials seem to show 
that the PCs of the simulated data retain the properties of the actual data, in that 
the’ 1st PC accounts for the majority of the variance and can be described by the 
movement of sensor 1 in the y direction.

Individual
Criterion 1 2 3 4 5 6 7 8 9 10

AIC 13 5 14 5 15 4 15 12 14 10
BIC 1 2 1 2 1 2 1 2 2 1

Tab. 7.8: The order selected for the common VAR(p) models fitted to all the trials of each 
individual.

Now, since the results of section 7.4.1 suggested the trials for each individual to 
have the same generating process, equation 7.26 is used to estimate the coefficients 
for a pooled VAR(p) model for each individual. The order selected for each individual 
using AIC and DIC can be seen in table 7.8. A large difference can once again be 
seen between the order chosen by AIC and BIC.

For each of the models for each individual, 50 simulated sets of data were gen­
erated, taking the error terms in the VAR(p) models from the pooled residuals for 
each individual. For each of these 50 simulated sets of data, the y\ series were then 
compared with each of the y\ series from the original sets of data for each individual.
This resulted in 50 x K tj  comparisons being made for the ¿th individual, with 
i € (1 , . . . ,  10. From table 7.1, it can be seen that 1300 comparisons were made for 
individuals 1 and 10, 200 comparisons were made for individual 8 and 1200 com­
parisons were made for the remaining 7 individuals. The proportions of these tests 
which rejected the null hypothesis of the simulated series having the same generating 
process as the original series for each individual at the 10%, 5% and 1% significance 
levels are shown in table 7.9.

It can be seen that only for individuals 2, 4 and 6 does the pooled models fitted 
using AIC appear adequate for the simulation of the y\ series at any of the three 
significance levels. The models fitted using BIC perform somewhat better, although 
they still show significant evidence to reject the null hypothesis for three individuals 
at the 10% and 1% significance levels, and 6 individuals at the 5% significance level.
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AIC BIC
i 10% 5% 1% 10% 5% 1%
1 0.27 0.23 0.23 0.08 0.08 0.00
2 0.00 0.00 0.00 0.29 0.12 0.00
3 0.46 0.44 0.44 0.04 0.00 0.00
4 0.02 0.00 0.00 0.08 0.08 0.04
5 0.44 0.44 0.44 0.00 0.00 0.00
G 0.02 0.02 0.02 0.13 0.13 0.00
7 0.31 0.31 0.29 0.08 0.04 0.00
8 0.38 0.25 0.12 0.00 0.00 0.00
9 0.23 0.21 0.19 0.25 0.21 0.08
10 0.40 0.40 0.40 0.08 0.08 0.08

Tab. 7.9: The proportion of the y\ series simulated from the VAR(p) models given in table 
7.8 which reject the null hypothesis of having the same generating process as the 
original trials for the ith individual at the 10%, 5% and 1% significance levels.

7.4.3 B-Splines and Bezier Curves

Due to the generally smooth behaviour of human motion, previous studies of human 
motion data by Faraway et al [1999], Faraway and Reed [2007] and Faraway et al
[2007] suggest the use of fitting smooth functions such as B-Splines to the data. 
The fit of these functions is determined by the set of co-efficients known as the 
control points. These control points are then often linked to covariates of interest, 
such as the age, height, weight and gender of the individual, by using a regression 
model. Faraway et al [2007] found these models to be easy to use and interpret, whilst 
producing realistic simulations and acceptable levels of error for their purpose. Their 
data consisted of hand trajectories produced whilst the individuals moved an object 
from a fixed starting point to a given end point in a single motion. They used a 
special form of B-Splines, known as Bezier curves and found four control points were 
sufficient, with the first and last defined by the end points and only the interior two 
control points requiring modelling.

This method is not, however, directly applicable to the data studied here for sev­
eral reasons. First, since no additional information about the individuals or products 
are available, the model may lack necessary detail. More importantly, however, is 
that since the deodorant stick application process lacks distinct goals in terms of 
movement, the control points being modelled may not be describing the same part 
of the movement between trials. For example, if one trial consists of three up and 
down motions, whilst another consists of four, extra between trial variability will be 
introduced into the control points as they will no longer be in alignment. Finally, 
since the application process is generally more complex than the motions given in 
these previous studies more control points will be required to give good approxima­
tions to the actual data. It would be desirable if simulated control points retained
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any autocorrelations found in this series of control points estimated from the actual 
data.

Taking these differences into account, it is suggested that a time series model 
such as a VAR process is instead fitted to estimated control points. This section 
introduces both B-Splines and Bezier functions and describes methods of using these 
to model the deodorant stick data. Application of these methods is then carried out.

Let t-i £ [0,1], be a series of m +  1 values such that to <  ti <■■• <  tm. These 
points are referred to as knots. The curve, C(t), described by a B-Spline basis can 
be written as

m—n—1
c ( o =  y , ^ m o ,

»=0

where Pi are the control points and bi>n(t) are B-Splines of degree n obtained 
from the recursive equations

and

if U < t < ti+i 
otherwise

MO = M,n—1(0,
where the U, i £ (0 , . . . ,  m) are the knots. Note that i +  n + 1  can not exceed m, 

since ti+n+1 is not defined for i +  n +  1 >  m. This limits both the number of control 
points and the degree of the B-Splines, n. Note also that bi<n{t) =  0 for t <  ti and 
t >  ij+n+i, for all i G (0 , . . . ,  m — n — 1). This allows improved localised fitting of 
the curve.

For the case in which the knots are equidistant, the B-Splines are known as 
uniform B-Splines, and are otherwise referred to as non-uniform. For uniform B- 
Splines, the basis B-Splines for a given degree n are shifted copies of each other. In 
this case, a non-recursive definition for the m — n basis B-Splines can be given as

bi,n(t) =  bn(t -  U), i € (0 , . . . ,  m — n — 1)

with

bn(t) =
n +  1

n

n+l

E  (< -  ‘ <n
»=o

i,n

and
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^¡,*1

where

(t -  n ) i  =  |

is the truncated power function.
Bezier curves of a degree d are a special case of B-Splines defined by taking 

m =  2d +  1, with the first d +  1 knots as to =  ti =  • • • =  =  0 and the remaining
knots as ij+ j =  • • • =  tm =  1. A Bezier curve, C(t), is defined by

d
C(t) =  J 2 W ? ( t) (7-28)

¿=o

where l\ are once again the control points and B f(t) are the Bezier basis functions 
of degree d, known as Bernstein polynomials, defined by

u i t t )  = ( \) (‘a - 1 ) « - \

Unlike the general B-Splines, all of the Bezier basis functions are supported on the 
whole interval [0,1]. This implies Bezier curves lack the local fitting and numerical 
stability properties that can be found with other forms of B-spine. Faraway et al 
[2007] therefore suggest that Bezier curves are not suitable for complex movement 
such as can be seen in the deodorant stick data here and suggests use of either 
more general B-Splines or piecewise Bezier functions, such that the original curve is 
divided into segments and a separate Bezier curve fitted to each.

Applying these curves to the deodorant stick data in the form Z(t), the times­
tamps, t G (m 2 ,..., m3), must first be transformed to t G (0 , . . . ,  1). This is done in 
a linear fashion, such that the new timestamps are still equidistant and the original 
ordering remains. The B-Spline model then assumes that

m - n - l

Z{t) =  £  t f M O +  £(<). (7-29)
¿=o

where Pi are the 15 x 1 control point vectors and E(t) is the error term. The 
piecewise Bezier model assumes that

™+i j

J o

(t -  ti)n if t -  ti >  0
0 if t -  U <  0

¿(0 = £cut)+ £(*>.
¿=o .

(7.30)
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where the CiiCi(t) are Bezier curves defined by equation 7.28 for the segment 
between t, and fj+i and zero otherwise and £ (f) is once again the error term. To 
ensure the segments are connected, the last control point vector of must equal
the first control point vector o f Ci+i i(i(t) for i € (0 , . . . ,  s — 1). Note, however, that 
this connection need not be smooth.

Fitting these curves requires several choices to be made. The B-Spline model 
requires a choice for the number of knots, m + 1 , the location of these knots and the 
degree of the B-Splines, n. Similarly, the piecewise Bezier model requires the number 
of segments, the location of the breaks and the degree d of each Bezier curve. Once 
these choices have been made, estimates of Pi can be made using standard linear 
regression techniques. It should be noted that the location of the knots and break 
points need not correspond to the locations of observed values.

For simplicity it is assumed that the degrees of the B-Splines and Bezier curves 
to be fitted are constant for all trials. For B-Splines the degree is related to the 
smoothness of the curve. If a curve C(t) is produced from a B-Spline basis of degree 
n > 1, only the derivatives up to and including the (n—2)th derivative will be smooth 
curves. However, since biin(t) >  0 for U < t <  ¿¿+n+1 for a lii e  (0 , . . . ,  m — n — 1), 
larger degrees reduce the localised fit of the curves. Since the deodorant stick data in 
the form is measuring the distances travelled by each sensor in each direction, it 
is foreseeable that the first and second derivatives may be of future interest as they 
measure the velocity and acceleration of the sensors. Although these derivatives are 
not considered here, the choice of n =  4 is made to ensure these derivatives would 
be smooth if required.

For a Bezier curve with degree d, the number of control points is equal to d +  
1. Larger values of d can provide a closer fit to the curve, but do so with an 
increased number of control points required and a reduction in stability. Although 
the smoothness of the individual segment Bezier curves are again related to the 
degree, the use of piecewise Bezier curves implies even the original curve may not be 
smooth, and thus this is of less concern. Faraway et al [2007] suggest use of d =  3 as 
a suitable compromise between fit and stability for human sensor data. Since brief 
studies also found little to be gained from higher values of d for the deodorant stick 
data, the choice of d — 3 is also made here.

Given the number of knots and break points, if the locations of the knots and 
break points were allowed to vary, in addition to modelling the control points, a 
model would also be required for these locations. Possible interactions of these 
locations with the control points would cause increased difficulty. The locations of 
the knots and break points are therefore assumed to be equidistant. Although this 
may not ofier the best possible fit for each trial, it may significantly simplify the 
models

The number o f knots and breaks can be chosen through use of a criterion such 
as AIC or BIC, see section 1.6.4. For a range of values for the number of each, the 
respective curves are fitted and the sample standard deviations of the residuals, b2,
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are recorded. The criteria are then of the form

C =  \og(&2) +  k ^ ,

where T  is the number of observations, p is the number of knots/breaks and 
fc =  2 for AIC and k =  log('i') for BIC.

Having fitted a B-Spline or piecewise Bezier curve, the control points, Pi, are 
recorded and a model is fitted to them. It is assumed that the autocorrelation 
structure of these control points may be significant and thus VAR models are fitted, 
as described in section 7.4.2.

The models are first fitted to the trial corresponding to i =  1 , j  =  l ,k  =  1, that 
is the data Z{t) defined in section 7.3.3. For the B-Splines model, the number of 
B-Splines fitted ranges from 1 to 60 in steps of 1. For each fit the sample variance 
of the residuals is recorded and used to discover the best fit in terms of minimising 
AIC and BIC. In this case the two criteria agree and the number of control points 
fitted is 49 for both. Figure 7.15e) shows the series o f the estimated control points 
vector corresponding to the y series of sensor 1.

A VAR(p) model is fitted to the series of control point vectors in the manner 
described in section 7.4.2. The series length for which the model is applied however 
has been reduced to 49 from the original 1178. The use of AIC and BIC are once 
again in agreement for the choice of p =  2 for the VAR(p) model.

In order to simulate a new set of data, the fitted VAR(2) model is first used to 
simulate a new set of control points. Since the distribution of the error terms is 
unknown, the simulated control points are generated by resampling the residuals of 
the fitted model. The length of the simulated series is kept the same as the original, 
such that 49 control points are simulated. An example of the series corresponding to 
the y series o f sensor 1 for such a simulation is given in figure 7.15f). A comparison 
of figures 7.15g) and 7.15h) shows the acf for the simulated control points appears 
very similar to the originally fitted control points.

Having simulated a new set of control points, substitution of these control points 
into equation 7.29 provides a new simulation of Z{t). Under the assumption that 
the error term, £(t), in equation 7.29 is unnecessary and may be largely due to 
measurement error, this term is set to zero for the simulations. The original y series 
of sensor 2 for Z(t) is compared with a simulated series in figures 7.15a)-d). As with 
the control points, the simulated series and the ACF of the simulated series appear 
similar to the original.

The grouping test presented in section 7.4.1 was applied to the simulated series 
to test if the generating process was significantly different from the original. The 
comparison of t/i with the simulated series shown in figure 7.15b) with l =  500 and 
m =  10 had a p-value of 0.1909 and thus did not reject the null hypothesis that the 
generating processes were the same at the 5% level. The test was repeated for the
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Fig. 7.15: A comparison of the y series of sensor 1 from Z{t) and the corresponding simulated 
series using the B-Spline model.
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remaining 14 series of Z(t) in comparison of their corresponding simulated series and 
the p-values were all in the range (0.0610, 0.9915). The null hypothesis was thus not 
rejected for any of the 15 series of Z(t) at the 5% level.

The grouping test was also applied to the original and simulated control points 
with l — 25 and m =  10. The p-value for the points corresponding to the y\ series 
was 0.7424, and the remaining 14 />values were in the range (0.0976,0.8256). The 
null hypothesis was thus once again not rejected for any of the 15 series of control 
points at the 5% level.

Significance Level
Z(t) Pi

Series 10% 5% 1% 10% 5% 1%
XI 0.37 0.18 0.05 0.03 0.00 0.00
Vi 0.02 0.00 0.00 0.01 0.00 0.00
Zl 0.00 0.00 0.00 0.04 0.00 0.00
x2 0.04 0.02 0.01 0.01 0.00 0.00
2/2 0.18 0.13 0.10 0.03 0.00 0.00
22 0.06 0.01 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
2/3 0.00 0.00 0.00 0.00 0.00 0.00
23 0.38 0.33 0.29 0.01 0.00 0.00
X4 0.00 0.00 0.00 0.06 0.02 0.00
2/4 0.00 0.00 0.00 0.00 0.00 0.00
24 0.38 0.30 0.21 0.09 0.03 0.01
*5 0.00 0.00 0.00 0.02 0.00 0.00
V5 0.00 0.00 0.00 0.01 0.00 0.00
V7 0.00 0.00 0.00 0.02 0.00 0.00

Tab. 7.10: Proportion of 1000 simulations of Z{t) and the B-Spline control points which 
reject the null hypothesis given in equation 7.20 at each significance level.

A further 1000 sets of simulated data were then generated in the same manner 
from the fitted model and the grouping test was applied to each in comparison with 
the original data. For the simulated control points l was taken as 25, whilst for the 
full simulated series l. was taken as 500. The choice of m was taken as 10 for both. 
The proportions of these simulations which showed significant evidence to reject the 
null hypothesis of being generated from the same process as the original data are 
shown in table 7.10.

It can be seen that, for the simulated control points, the proportions of simu­
lated series which show significant difference to the original data are all within the 
proportions which may be expected by chance under the null hypothesis. Hence, no 
significant evidence is found to reject this model for the control points.

Although this is also true for the majority of the simulated data generated from
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the simulated control points, it can be seen that a large proportion of the simulated 
series of xq, 1/2, 23 and 24 do show significant evidence to reject the null hypothesis 
that they are generated by the same process as the original data. This suggests a 
possible lack of fit for these four series. It should be noted, however, that the results 
of section 7.3.3 showed the majority of the variability of Z (t) is accounted for by 
the series y\ and 2/3, and the model appears to produce a good fit for both of these 
series.

For the Bezier model, the number of segments fitted ranges from 1 to 30 in steps 
of 1. As with the B-Splines model, the sample variance of the residuals was recorded 
for each and used to find the number of segments which minimised AIC and BIC 
. The use of AIC fitted a model with 25 segments, whilst the use of BIC fitted a 
model with 21. Since the last control point of the ¿th segment is set to equal the 
first of the (i -f l)th segment, the total number of control points for the model fitted 
by AIC is 76, whilst the number of control points for the model fitted by BIC is 63.

A VAR(p) model Is fitted to each of the series of control point vectors in the 
manner described in section 7.4.2. For the control points of the AIC Bezier model, 
the use of AIC fits a VAR(4) model. For the control points of the BIC Bezier model, 
further use of BIC fits a VAR(3) model.

As witirt.he B-Spline model, new sets of data are simulated by first using the 
VAR(p) models to simulate a new set of control points. Then, having simulated 
a new set of control points, substitution of these control points into equation 7.30 
provides a new simulation of Z(t). The error terms used for simulating new control 
points from the VAR(p) are once again generated by resampling the residuals of the 
fitted model and the length o f the simulated series is kept the same as the original. 
The error term, £ (i), in equation 7.30 is again assumed negligible and set to zero 
for the simulations.

A comparison of the y series of sensor 1 from Z(t) and the corresponding simu­
lated series generated from the Bezier model fitted using BIC can be seen in figure 
7.16. The grouping test presented in section 7.4.1 was again applied to the simulated 
series to test if the generating process was significantly different from the original. 
The comparison of y\ with the simulated series shown in figure 7.16b) with l =  500 
and m =  10 had a p-value of 0.2159. The grouping test applied to the original and 
simulated control points corresponding to the 2/1 series with l =  25 and m =  10 
had a p-value of 0.5987. Thus no significant evidence was found to reject the null 
hypothesis that the generating processes were the same at the 5% level.

The test was repeated for the remaining 14 series of Z(t) in comparison of their 
corresponding simulated series and the p-values were all in the range (0.0067, 0.9729). 
The null hypothesis was rejected at the 5% level for the series x\, 23 and 24. Note, 
as seen from table 7.10, these are the same series which the B-Spline model often 
also failed to adequately simulate. The remaining 14 p-values in the comparison of 
the original and simulated control points were in the range (0.0686,0.8861). The null
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Fig. 7.16: A comparison of the y series of sensor 1 from Z(t) and the corresponding simulated 
series generated from the Bezier model fitted using BIC.
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hypothesis was thus not rejected for any of the 15 series of control points at the 5% 
level.

A figure containing a comparison of the y\ and the corresponding simulated series 
generated from the Bezier model fitted using AIC is omitted since it is similar in 
appearance to figure 7.16. The comparison test for the simulated y\ had ap-value 
of 0.4188, whilst the p-value for the corresponding simulated control points was 
0.2755. Thus no significant evidence was found to reject the null hypothesis that the 
generating processes were the same at the 5% level for the yi series of this simulated 
data.

For the remaining 14 series, however, the p-values for the simulated series were 
in the range (0, 0.7741) and the p-values for the simulated control points were in 
the range (0, 0.4392), with significant evidence at the 5% level to reject the null 
hypothesis for series x 2, z2, x 3, Xi and 24 and 5 of the 15 series of control points. 
The VAR(4) model fitted to the control points using AIC does not seem to fit the 
data well. The large number of estimated parameters may have made the model less 
stable.

Significance Level
tv Fitted by AIC Fitted by BIC

..... Z(t) Pi Z(t) Pi
Series 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

x x 0.01 0.01 0.00 0.15 0.00 0.00 0.20 0.03 0.00 0.05 0.04 0.03
Vi 0.26 0.18 0.13 0.13 0.07 0.04 0.01 0.00 0.00 0.02 0.02 0.01
z\ 0.02 0.01 0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.05 0.04 0.03
x 2 0.49 0.18 0.10 0.17^ 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.01
V2 0.38 0.22 0.13 0.11 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00
z2 0.53 0.20 0.07 0.17 0.00 0.00 0.08 0.05 0.01 0.01 0.00 0.00
X 3 0.48 0.17 0.06 0.17 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.04
2/3 0.19 0.15 0.12 0.10 0.07 0.05 0.00 0.00 0.00 0.02 0.01 0.01
Z3 0.00 0.00 0.00 0.17 0.00 0.00 0.51 0.33 0.12 0.03 0.02 0.02
X 4 0.51 0.33 0.09 0.17 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.03
2/4 0.39 0.07 0.01 0.13 0.01 0.00 0.08 0.04 0.01 0.10 0.08 0.07
24 0.50 0.24 0.03 0.17 0.00 0.00 0.11 0.07 0.04 0.08 0.05 0.04
* 5 0.10 0.07 0.05 0.14 0.02 0.00 0.00 0.00 0.00 0.07 0.06 0.04
Vn 0.23 0.20 0.17 0.13 0.09 0.06 0.00 0.00 0.00 0.05 0.04 0.03
2/7 0.30 0.16 0.09 0.13 0.02 0.00 0.06 0.04 0.01 0.11 0.08 0.06

Tab. 7.11: Proportion of 1000 simulations of Z(t) and the Bezier control points which reject 
the null hypothesis given in equation 7.20 at each significance level.

A further 1000 sets of simulated data were then generated from both the AIC 
and BIC Bezier models. The grouping test was applied to each simulation in com­
parison with the original data, with the same choices of / and m as previously. The
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proportions of the simulations from the A1C and BIC Bezier models which showed 
significant evidence to reject the null hypothesis o f being generated from the same 
process as the original data are shown in table 7.11.

The proportion of simulated series from the Bezier model fitted using AIC which 
show significant evidence to reject the null hypothesis are higher than expected by 
chance for every series except x\, z\ and 2 3 .  Indeed, for several of the series more 
than 10% of the simulations rejected the null hypothesis at the 1% significance level, 
including the simulations of y\. The results for the simulated control points from 
this model show every series having greater than or equal to 10% of the simulations 
being significantly different from the original estimated control points at the 10% 
significance level. At the 5% and 1% significance levels, the results for the control 
points generally improve, however the simulations for the series 3 /1 , 3/3 and 3/5 still 
appear significantly different. This is concerning, since 3/1 and 3/3 have previously 
been found in section 7.3.3 to represent the first two PCs of Y(t), accounting for 
the majority of the variance within the data. These results suggest the AIC Bezier 
model may not fit the data well.

The proportions of simulations which reject the null hypothesis for the BIC Bezier 
model are generally smaller than the corresponding values for the AIC Bezier model, 
with only the simulations for x\, 2 3  and 24 having proportions larger than expected. 
These are three of the four series which also showed a lack of fit for the B-Spline 
model and, in comparison, the proportions for these series are smaller for the BIC 
Bezier model. Despite this, the simulated control points for the BIC Bezier model 
show much larger than expected proportions of the simulations being significant at 
the 1% level for the majority of the series.

The performances of the BIC Bezier model and the B-Spline model in simulating 
new sets of Z(t) are comparable. Although the simulations from the BIC Bezier 
model seem to better capture the original ACF of the series x\, 3/2, 2 3  and 24 the 
series are generally not smooth. The simulations from the B-Spline model, on the 
other hand, are smooth and can be used to find the first two derivatives if required. 
The choice of which of these models to use may therefore depend on the practical 
usage of the simulations.

Having fitted the B-Spline and Bezier models to Z\u(t), the models were then 
fitted to the remaining trials. For each of the 224 trials, two B-Spline models were 
fitted to Zijk using both AIC and BIC to choose the number of control points, m —4, 
from m € (5 ,...  ,64). Two Bezier models were also fitted to Z^k using these criteria 
to choose the number of segments from s G (1 ,...,3 0 ). The resulting number of 
control points and segments fitted can be seen as histograms for the 224 trials in 
figure 7.17.

For the B-Spline model, the use of AIC finds the modal number of control points 
required for the trials to be 50, whilst for the Bezier model, the modal number of 
segments is 24. The distributions of these numbers using BIC is more bimodal, with 
the higher modes in agreement with the results using AIC. Recall that the B-Spline
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B-Spllnes (AIC) Bezier Curves (AIC)

no. of control points no. of segments

B-Spllnes (BIC) Bezier Curves (BIC)

no. of control points no. of segments

Fig. 717- T h e  num ber o f  control points and segm ents fitted to  the 224 trials using A IC  and
B IC .
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models fitted for Z  (f) had 49 control points using both AIC and BIC and the Bezier 
models fitted had 21 segments using BIC and 25 segments using AIC. Figure 7.17 
shows these values to be fairly typical amongst the trials.

Having found the control points for each model, a VAR(p) model was then fitted 
to them, with the choice of p G (0 ,. . .  10). For models in which the number of control 
points had been decided by use of AIC, the order p of the VAR model was also found 
using AIC. Similarly, where the number of control points had been decided by use 
of BIC, the order p of the VAR model was also found using BIC. Histograms of the
orders chosen can be found in figure 7.18

B-Splines (AIC)

Order fitted to control points

B-Splines (BIC)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Order fitted to control points

Fig. 7.18: The order of the VAR(p) models 
using AIC and BIC.

Bezier Curves (AIC)

Order fitted to control points

Bezier Curves (BIC)

0 1 2  3  4

Order fitted to control points

to the control points for the 224 trials

It can be seen that the order fitted, p, was less than or equal to 3 for the B-
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Spline models and less than or equal 4 for the Bezier models using both AIC and 
BIC. The use of AIC tended to fit these maximum orders, particularly for the Bezier 
model, and fitted a minimum order o fp  — 1. The use of BIC, in comparison, fitted a 
VAR(O) model, that is, multivariate white noise, to the control points of the B-Spline 
model in 20 trials and the control points of the Bezier model in 12, though generally 
favoured the fit of a VAR(l) model for both.

As mentioned in section 7.4.2, the results of section 7.4.1 suggest a single model 
for each individual to be sufficient. Hence, the number of control points for each 
individual are assumed constant and a single VAR(p) model is fitted to each of the 
individual’s trials. The AIC and BIC are found using the pooled residuals and the 
pooled VAR(p) models introduced in section 7.4.2 are once again used to fit the 
number of control points and the order p of the VAR model. The fitted number of 
control points and the order o f the fitted VAR(p) model for each individual can be 
seen in table 7.12.

B-Spline Model Bezier Model
AIC BIC AIC BIC

i c P c P c P c P
1 44 2 28 1 67 4 34 2
2 49 3 43 2 73 4 58 3
3 38 2 20 1 67 4 25 1
4 50 3 49 3 76 4 73 4
5 40 2 18 1 61 3 22 1
6 50 3 49 3 76 4 73 4
7 44 2 33 2 70 4 40 2
8 48 2 46 2 73 4 55 3
9 49 3 36 2 70 4 46 3
10 44 2 28 1 70 4 34 2

Tnh. 7.12: The number of control points, c, and the order of the VAR(p) model fitted to the 
control points when fitting a single model to the ith individual.

Note from table 7.12 that both the number of control points and the order of 
the VAR(p) model fitted to these control points is smaller for the B-Spline model 
for every individual using both AIC and BIC to fit the model.

For each of the four models for each individual, 50 simulated sets of data were 
generated, taking the error terms in the VAR models from the pooled residuals for 
each individual. For each of these 50 simulated sets of data, the y\ series were 
then compared with each of the y\ series from the original sets of data for each
individual. This resulted in 50 x Y^=i comparisons being made for the ¿th 
individual, with i € ( 1 , . . . ,  10. From table 7.1, it can be seen that 1300 comparisons 
were made for individuals 1 and 10, 200 comparisons were made for individual 8 and
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1200 comparisons were made for the remaining 7 individuals. The proportions of 
these tests which rejected the null hypothesis of the simulated series having the same 
generating process as the original series for each individual at the 10%, 5% and 1% 
significance levels are shown in table 7.13.

B-Spline Model Bezier Model
AIC BIC AIC BIC

i 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
1 0.08 0.04 0.00 0.11 0.04 0.00 0.10 0.09 0.04 0.03 0.00 0.00
2 0.07 0.07 0.05 0.10 0.04 0.00 0.07 0.05 0.00 0.08 0.04 0.00
3 0.04 0.03 0.01 0.08 0.04 0.00 0.04 0.00 0.00 0.04 0.00 0.00
4 0.03 0.00 0.00 0.02 0.00 0.00 0.03 0.01 0.00 0.08 0.00 0.00
5 0.02 0.00 0.00 0.03 0.01 0.00 0.04 0.00 0.00 0.01 0.00 0.00
6 0.21 0.16 0.12 0.16 0.14 0.09 0.35 0.33 0.31 0.31 0.24 0.14
7 0.10 0.10 0.04 0.12 0.10 0.04 0,10 0.07 0.05 0.08 0.07 0.05
8 0.10 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.00 0.10 0.05 0.00
9 0.11 0.04 0.00 0.12 0.12 0.04 0.40 0.40 0.37 0.30 0.22 0.15
10 0.08 0.02 0.00 0.11 0.04 0.04 0.28 0.22 0.12 0.03 0.00 0.00

Tab. 7.13: The proportion of the yi series simulated from the models given in table 7.12 
which reject the null hypothesis of having the same generating process as the 
original trials for the ith individual at the 10%, 5% and 1% significance levels.

It can be seen that the fit of all four models for individual 6, and to a lesser 
extent individual 7, seem inadequate, with large proportions of the simulated series 
showing significant difference to the generating process of the original trials. The 
simulations from the Bezier models and the B-Spline model fitted using BIC for 
individual 9 also appear significantly different from the original series. The B-Spline 
model fitted using AIC appears to generate simulations closer to the original data 
for individual 9.

The performances of each of the four models appear similar overall. In addition 
to the difficulties already mentioned, the B-Spline model using AIC appears to lack 
fit for individual 2, the BIC B-Spline model lacks fit for individual 10 and the AIC 
Bezier model lacks fit for individuals 1 and 10. All four models appear to provide 
a good fit for individuals 3,4,5 and 8. Overall, the simulations for at least one of 
the models have shown no significant difference from the actual data for 8 of the 10 
individuals.

Comparison of table 7.13 with tables 7.10 and 7.11 gives an idea of the rela­
tive performance of the pooled model with the separated model for individual 1. 
The proportions of significantly different series have increased for both the B-Spline 
models and the BIC Bezier model, although the fit of the pooled models are still 
appear sufficient. The proportions for the AIC Bezier mode! have actually decreased, 
although a lack of fit can be seen in both cases.
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7.5 Summary

Several key issues have been addressed during the analysis of the deodorant stick 
data. The data has been transformed into an easy to interpret form with a reduction 
in data without any loss of information. The key series have then been identified by 
comparison of this new form to the PCs of the old.

The results of the various tests have shown significant evidence of differences 
between individuals and suggested common application techniques exist. This thus 
gives' credibility to the use of the deodorant stick data from these 10 individuals to 
simulate further data for future research at Unilever, as it shows that even between 
10 randomly selected individuals similarities between the application techniques can 
be found, and hence these application techniques may be common in the population 
as a whole. The study has also found that the current experiment is unsuited to find 
significant differences between products.

Various models for simulating the data were then fitted. Although the VAR mod­
els often accounted for the correlation structure of the original data, they produce 
simulated series which appear more jagged. In general, the B-Spline and Bezier 
models have been found to be able to provide simulations similar to the original 
data in both appearance and structure of ACF, and these methods could be used to 
produce the’ Simulations desired by Unilever.
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