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ABSTRACT

One of the most devastating phenomena in a supply chain is the bullwhip

effect, i.e. the amplification of demand variability as it progresses up a supply chain.

As the bullwhip effect is costly to the supply chain, there is a real cost benefit

associated with its reduction. Therefore, this thesis extends the understanding of the

causes of the bullwhip effect and develops strategies to reduce the variability of the

orders to the upstream echelons.

This thesis consists of four discrete studies. The first study deals with the

development of a multi-echelon simulation model, using iThink. It is demonstrated

that design parameter values that give very poor dynamics across the whole supply

chain do not necessarily yield poor dynamics within a single echelon, so it is

essential to consider the whole supply chain when setting parameter values. The

compromise between speed of response and stability in the dynamic responses is

seen. The second study deals with order batching. It is found that the relationship

between batch size and demand amplification is non-monotonic. The results show

that when the quotient of the average demand and batch size is integer, demand

amplification does not grow with the increase in batch size. The third study explores

the stability boundaries of a multi-echelon capacity constrained supply chain and

evolves the policies that minimize the backlog bullwhip effect. The last study deals

with the net variance ratio induced by different forecasting techniques with an order-

up-to level stock replenishment policy. It is seen that the bullwhip effect and

inventory variances have distinct properties depending on the demand forecasting

technique. Further, it is shown that smoothing the order pattern at the retailer's level

increases its net inventory variances. However, the order pattern of the retailer can be

smoothed without adversely affecting the net stock level.
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Chapter1: Introduction

1.1 Research Background and Research Need

A supply chain is a network of facilities that together produce raw materials

and transform them into intermediate goods and then final products that are delivered

to end customers. A supply chain incorporates procurement, manufacturing, and

distribution functions, with activities covering local, regional, and increasingly

global levels. A supply chain can be composed of many functional levels called

echelons or tiers. Each echelon can have numerous facilities. The number of

echelons, the different operational policies at different echelons, the material and

information flows between these echelons and supply chain uncertainties (demand

fluctuations, lead time variations) all contribute to the complexity of a supply chain.

One of the most devastating phenomena in a supply chain is the bullwhip

effect, i.e. the amplification of demand variability as it progresses up a supply chain.

Slack and Lewis (2002) give an introduction to its causes and remedies. Its effects

include inaccurate forecasting leading to periods of low capacity utilisation

alternating with periods of not having enough capacity, i.e. periods of excessive

inventory caused by over production alternating with periods of stock-out caused by

under production. This leads to inadequate customer service and high inventory

costs. Since the bullwhip effect is costly to upstream echelons of the supply chain,

there is a real cost benefit associated with its reduction. Therefore, this thesis extends

the understanding of the causes of the bullwhip effect and develops strategies to

reduce the variability of the orders to the upstream echelons. In general, this thesis

presents general solutions to the different causes of the bullwhip problem in

particular production or distribution ordering procedure. The particular model IS



powerful because it can represent wide range of supply chain strategies including

lean, agile, and vendor managed inventory. Finally, generality of the results is

considered and implications for aggregated production! distribution and inventory

control systems are derived in order to control the bullwhip effect. Inventory

management problems occur at all levels of multi-echelon supply chain (whether

serial or parallel). Hence, the solutions presented in this thesis can be applied to any

system where production! distribution and inventory control systems are integrated.

Like much system dynamics research, the main portion of this thesis uses the

widely referenced 'beer game' model since this reflects validated decision rules in a

real-world supply chain. Decision rules are validated by proving the existence of

amplifications and oscillations in the order rate of the supply chain. The beer game is

a simplified but still realistic representation of a multi-echelon supply chain

consisting of a retailer, wholesaler, distributor, and factory (beer brewer). Sterman

(1989) originally developed a multi-echelon beer game and this policy has been

termed the Automatic Pipeline Inventory and Order Based Production Control

System (APIOBPCS) by Nairn and Towill (1995); this model combines the make to

stock and make to order control manufacturing production strategies. APIOBPCS is

a general rule for issuing orders on the basis of forecasted sales, error of the

inventory, and error of the work in progress. By incorporating a variable desired

inventory level as a function of demand, APIOBPCS can be changed into the

Automatic Pipeline Variable Inventory and Order Based Production Control System

(APVIOBPCS).

Different analytical techniques have been used to investigate the beer game

model but none of these are fully satisfactory (White et al, 2006). One of the most

commonly applied methodologies to study the various aspects of APIOBPCS and
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APVIOBPCS is the control theoretic approach. It is clear that the control theoretic

approach normally involves linearization through the use of linear models in

presenting a view of the whole system. Transferring function analysis, applied in

control theory, can analyze a model with more than five parameters if all parameters

are independent of each other. The order of the system increases with each new

parameter and it is extremely difficult to convert the transfer function of greater than

fifth order between the transfer function domain and the time domain (Holweg et al,

2005). Control strategies can be designed to achieve specific performance levels (e.g

reducing the bullwhip effect), but it is difficult to deal with the complex issues such

as non-linearities, stochastic behavior, adaptive control and multi-echelon systems

seen in supply chain modeling (Agaran et al, 2007).

Previous research involving the APIOBPCS production and inventory control

system is based on various unrealistic assumptions, such as deterministic demand, no

capacity constraints, and no batching, to keep the supply chain model analytically

solvable and tractable. There is a need to study the model under more realistic

assumptions of stochastic demand process, batch ordering and capacity constraints.

Riddalls and Bennett (2001) pointed out that control theorists are unable to optimize

batch size. Potter and Disney (2006) mentioned that the impact of order batching on

bullwhip has not been clearly explored. They pointed out that studying the impact of

batch size on APVIOBPCS, under a stochastic demand process, using the transform

techniques of control theory is extremely challenging. Further, Riddalls et al (2002)

and White et al (2006) pointed out that control theorists are dealing with the linearity

of the model as there are no capacity constraints.

System dynamics simulation, as applied In this thesis, then seems an

appropriate methodology to investigate the impact of batch size and capacity

3



constraints on the dynamic response of the system. It allows one to use a systems

approach in visualizing and solving a problem holistically. Simulation can better deal

with stochastic conditions, batch ordering, capacity constraints, multi-performance

criteria, and other realistic assumptions of supply chain models. It is necessary to

shift from analytical models to system dynamics simulation-based research due to the

complexity of the interactions among different parameters, as well as the randomness

of demand and extensive non-linearties in the supply chain models (Sahin and

Robinson, 2002).

Most of the previous research into the effects of parameter values of production

control systems was focused on single echelons (John et all 1994, Riddalls et al

2002), whereas this thesis studies the effects on the dynamic performance of a whole

supply chain. Production and inventory control systems seldom exist in isolation, but

are connected in series and in parallel to form a complex supply chain. Significant

benefits can be gained by doing what is best for the overall supply chain rather than

what is best solely for the single echelon. Focusing on the design of a single echelon

in isolation without reference to the rest of the supply chain can lead to poor

performance overall.

Multi-echelon supply chains consist of many interacting parameters at each

echelon, such as forecasting constants, lead time, batch size, capacity constraints, and

times to adjust errors in the inventory and work in progress. The relationship

between design parameters is causal, meaning that it is explicitly recognized that

changing the value of one parameter may lead to changes in the effects of another

parameter. Previous studies of the effects of supply chain parameter values reported

the results of changing the value of one, or at most two, parameters at a time. The

'one-at-a-time' approach reveals the effect of one parameter when combined with a

4



particular combination of values for the other parameters, but does not provide the

information for calculating the effects of the parameter when combined with any

other values for the other parameters, i.e. interactions. A more appropriate

methodology is Taguchi's Orthogonal Arrays technique in which levels of each

factor are systematically varied and all possible combinations of factor levels

(parameter values) are considered. Furthermore, it explores the non-linearities, the

main effects of the parameters, the severity of interactions among these parameters,

and finally the best combination of parameter values in respect of the aspect of

performance being analyzed.

Impacts of forecasting methods on the bullwhip effect in an order-up-to level

(OUT) supply chain have been studied by several researchers (Dejonckheere et al,

2003; Alwan et al, 2003; Zhang, 2004; Sun and Ren, 2005; Hosoda and Disney,

2006; Luong, 2007). Previous research into order-up-to level stock replenishment

policy focused on determining the impact of forecasting methods on the bullwhip

effect by using statistical approaches (Lee et al 1997a, 2000; Chen et al 2000a, b),

but Hosoda and Disney (2006, a) point out that "the statistical approaches become

unmanageable when net inventory variances are considered as the expressions for the

covariance between the states of the system are very complex". Simulation is applied

to this analysis in this thesis, so that these intractable expressions between order rate

and inventory variances are avoided and the impact of the exponential smoothing

(ES) and the minimum mean squared error (MMSE) forecasting techniques on both

order and inventory variations can be investigated.

It has been shown that the simple OUT replenishment policy always results in

the bullwhip effect (Dejonckheere et al, 2003), (Hosoda and Disney, 2006, b).

Therefore, the simple OUT policy is modified in this thesis by adding a proportional
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controller into the inventory feedback loop. The impact of the proportional

controller, in this modified OUT policy, on the demand ampliflcation and inventory

variances is analyzed. The modified OUT replenishment rule dampens the variability

in the orders to the upstream echelon but this comes at the price of increased

inventory variances at the retailer's level. It is found that by fine tuning of the

proportional controller, the order pattern can be smoothed to a considerable extent

without affecting the inventory variances.

1.2 Research Objectives

The research aim of this thesis is related to the issue of supply chain modeling

and formulation of different policies to minimize the bullwhip effect. The aim drives

the formation of the research objectives which shape the methodology and the

approach that is needed to conduct the research and to ensure that the thesis provides

a good quality contribution to the industrial and academic knowledge. The analysis

section of this thesis (Chapters 4-7) is comprised of four chapters and each chapter

has different objectives.

).- Chapter 4: To develop a multi-echelon simulation model based on the

APVIOBPCS production and inventory control system model using iThink

software.

• To simulate the effect of different design parameters on the dynamic

responses of the inventory and order rates at the different echelon of the

supply chain.
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• To carry out a sensitivity analysis of the effects of the chain's parameters on

the responses of the system and to explore the best parameter settings for

multi-echelon supply chains in respect of demand amplification.

" Chapter 5: To extend the model by adding batch ordering across each

echelon of the supply chain.

• To investigate the impact of a range of batch sizes on demand amplification

and to analyze the value of information sharing in a batched model.

• To quantitatively measure the impact of supply chain design parameters on

the bullwhip effect, to explore the interaction among these design parameters,

and to evolve the best possible values of these parameters for mitigating the

bullwhip effect.

" Chapter 6: To simulate the APIOBPCS model under more realistic

assumptions by adding capacity constraints at each echelon.

• To explore the stability boundaries of the multi-echelon supply chain under

different capacity constraints.

• To evolve policies to minimize the total backlog bullwhip effect of the supply

chain.

" Chapter 7: To investigate the impact of different forecasting techniques on

the order rate and the inventory variance amplification ratios in a simple

order-up-to level supply chain.

7



• To extend the simple order-up-to level supply chain by adding a proportional

controller in the inventory feedback loop and to analyze the impact of the

proportional controller on the demand amplification and inventory variances.

• To analyze the effects of the parameter values for the proportional controller,

the lead time, and the demand autocorrelation on the bullwhip effect and

inventory variances.

1.3 Research Contributions

Overall, this research brings a number of benefits to both academia and industry.

Academia: In this thesis a "gap analysis" is carried out in respect of the modeling

and control of demand amplification in supply chains. Through extensive literature

review, gaps in theory are explicitly stated in each chapter and a methodology is

presented to fill these gaps. The outcome of this research will enable researchers and

students to identify further research opportunities based on the findings of this

research.

Industry: This research is useful for supply chain operations managers to understand

the impact of design parameters on the stability boundaries of the multi-echelon

supply chain. Manufacturing companies can reduce demand amplification by

carefully selecting order batch sizes and sales (demand) forecasting techniques. The

service level of the multi-echelon supply chains can be greatly improved by fixing

the various levels of capacity constraints and safety stock levels at different echelons.

Furthermore, most of the previous research in supply chain operations involved

mathematical techniques, which can require an academically advanced understanding
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of mathematics that most supply chain operations managers do not have (Agaran et

ai, 2007). In contrast, the use of system dynamics simulation methods can help

practitioners to better understand the basic phenomena and to examine the effects of

production and inventory control system parameters.

1.4 Thesis Contents Overview

This section briefly describes the content and structure of the research.

Chapter 1 begins with the description of the research background followed by

research needs, aims and objectives, research benefits, and thesis organization.

Chapter 2 reviews the evolution in supply chain definitions and the practice of

supply chain management. Discussion in this chapter covers a number of important

issues involving causes and remedies of the bullwhip effect, supply chain modeling

techniques, and the two commonly applied supply chain models in the literature.

Chapter 3 presents the details of the research methodology and tools applied in this

thesis. The discussion includes justification of the research methodology employed,

explanation of the research design, and description of system dynamics and Taguchi

Design of Experiments.

Chapter 4 presents the iThink model of a four-tier multi-echelon supply chain based

on beer game model. The impact of this model's design parameters on the response

of the actual inventory and order rate at each echelon is simulated. Using Taguchi' s

orthogonal arrays technique, the effects of the design parameters are analyzed and

the best setting of the design parameters in the context of the dynamic response is

examined.

Chapter 5 investigates the impact of batch ordering on demand amplification.

Another discussion area in Chapter 5 concerns the quantification of the effect of the
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four-tier supply chains design parameters on the bullwhip effect, the interactions

among these parameters is explored and the 'best' parameter settings for mitigating

the impact of demand amplification are identified.

Chapter 6 deals with the capacity constraints. The stability boundaries of the

capacity constrained multi-echelon supply chain are explored and the impact of

different level of safety stock on the service level of the model under different

capacity levels is investigated. Taguchi's signal-to-noise ratio is applied to minimize

the total backlog in the supply chain.

Chapter 7 discusses the role of exponential smoothing and minimum mean squared

error forecasting and their effect on demand amplification and the net inventory ratio.

Another discussion area involves the modification of the order-up-to level policy to

reduce the net variance ratio.

Chapter 8 draws the conclusions of the research and proposes future work.

The conference papers that have been presented in the course of conducting this

research are included in the Appendix.
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Chapter 2: Literature Review

2.1. Supply Chain Management

The literature on the subjects associated with this research is broad. In this

thesis every chapter has its own contribution; the related literature and gaps in supply

chain theory are explained in each chapter. However, an initial literature review is

presented in this chapter on the issues related to supply chain dynamics, supply chain

models, and modeling techniques commonly applied to production and inventory

control systems.

A supply chain is a network of facilities that together produce raw materials

and transform them into intermediate goods and then final products that are delivered

to the end customers. A supply chain incorporates procurement, manufacturing, and

distribution functions, with activities covering local, regional, and increasingly

global levels. Supply chain management is important to ensure that operations in the

supply chain are smoothly coordinated, integrated, and synchronised. The objective

of supply chain management is to maintain the desired customer service level while

keeping costs low for procurement, production, and inventory. A supply chain can

be composed of many functional levels called echelons. Each echelon can have

numerous facilities. The number of echelons, the operational policies at different

echelons, information flow among these echelons and supply chain uncertainties, all

contribute to the complexity of a supply chain. Examples of supply chain

uncertainties include demand fluctuations and lead time variation.

A review of the literature shows that there are many definitions of supply chain

management. Table 2.1 provides definitions of supply chain management provided

by selected authors.
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Author(s) Definitions

Lamber et al. "SCM is the integration of business processes from end user through

(1998),p.l original suppliers that provide product, services, and information that

add value for customers and other stakeholders".

Menter et al. "SCM is the systemic, strategic coordination of the traditional

(2001 ),p.18 business functions and the tactics across [these] business functions

within a particular company and across business with the supply

chain for the purpose of improving the long term performance of the

individual companies and the supply chain as a whole".

Stadler

(2002),p.9

Chen&

Pluraj

(2004),p.147

Christopher

(2005), p.5

"SCM is the task of integrating organizational units along a supply

chain and coordinating material, information, and financial flows in

order to fulfill (ultimate) customer demands with the aim of

improving competitiveness of a supply chain".

"SCM, as we envision, is a novel management philosophy that

recognizes that individual businesses no longer compete as solely

autonomous units, but rather as supply chains. Therefore, it is an

integrated approach to the planning and control of materials,

services, and information flows that adds value for customers

through collaborative relationships among supply chain members".

"SCM is the management of upstream and downstream relationships

with suppliers and customers to deliver superior customer value at

less cost to the supply chain as a whole".

Table 2.1. Definitions of Supply Chain Management
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2.2 The Bullwhip Effect in Supply Chains

2.2.1 Background

One of the most devastating phenomena in a supply chain is the bullwhip

effect, i.e. the amplification of demand variability as it progresses up a supply chain.

The bullwhip effect was first observed in industry by Jay Forrester in 1961. Forrester

did not use the term "bullwhip effect" but named the effect "Demand Amplification".

In some industries it is also known as the "Whiplash Effect". The term, "bullwhip

effect" was first used by Proctor & Gamble and later made popular by Lee et al

(1997). Executives of Proctor and Gamble observed that even though the demand for

nappies was fairly stable over time, the retailers' orders were highly variable. In turn,

production orders were even more variable. To explain the effect further, the

variance of the orders may be larger than that of sales and distortion tends to increase

as one moves upstream in the chain from retailer to manufacturer. Typical

amplification ratios of 2: 1 have been observed between two echelons (Towill 1992),

whilst amplification has been observed up to 20: 1 between four echelons (Houlihan

1987). Figure 2.1 illustrates a typical picture of demand amplification across four

tiers of a supply chain.

2.2.2. Causes of the Bullwhip Effect

A review of previous research suggests that the causes of the bullwhip effect

fall into two categories. The first category focuses on the operational causes of the

bullwhip effect and the second category involves behavioral causes of bullwhip

effect. Lee et al (1997) identified following four causes of the bullwhip effect:

demand signal processing, order batching, price variations and rationing and gaming

and these are considered here to fall into the operational category.
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Figure 2.1. Bullwhip Effect in Multi-echelon Supply Chain

2.2.3. Demand Signaling Processing

Demand signal processing is the same mechanism that Forrester (1961) called

the inventory replenishment policy. According to Forrester (1961), the way in which

decision makers adjust the parameters of inventory replenishment contributes to

demand amplification. Forrester highlights that different forecasting techniques tend

to accelerate inventory reactions to changes in sales levels. This phenomenon is

discussed in Chapter 7. Demand forecasts, target stock levels, safety stock levels and

pipeline inventory levels are updated at regular time intervals. The differing

rationales for adjusting these parameters create erratic responses. It is possible to

design replenishment rules that have a smoothing effect on orders. Forrester (1961)

suggests that it is not necessary to recover all of the error or shortfall in the inventory

in one time period. Instead, recovery should be spread over a period of time by

ordering only a fraction of the inventory deficit each time period.
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2.2.4. Order Hatching

Order batching, sometimes called the Burbidge Effect, was identified by

Burbidge (1989). It is the practice of placing orders up the supply chain in batches in

order to gain economies of scale, i.e. as a result of the economic order quantity

(EOQ) or similar techniques. Retailers prefer to order weekly rather than daily in

order to avoid ordering costs. Economies of scale in ordering, transportation, and

production may increase order variability. Burbidge (1989) discusses the problem

order batching causes on the shop floor. He shows that different order cycles

generated by the EOQ calculation may cause large, seemingly random fluctuations in

demand. In order to counteract this problem, Burbidge recommends single cycle now

control in manufacturing systems. In reality, many manufacturing companies place

orders with their supplier when they run their material requirement planning (MRP)

systems. Since these MRP systems are normally run on a monthly basis, this results

in significant batches in the supply chain.

2.2.5. Price Variations

Another major cause of bullwhip effect is price variation. Price variation refers

to the practice of offering products at reduced prices to stimulate demand. Customers

take advantage of such opportunities and forward buy products, which ultimately

causes a temporary surge in demand followed by a temporary trough. Lee et al

(1997) recommend that reducing price variations schemes and switching to an "every

day low prices" (EDLP) strategy can generate a more level demand and greater

supply efficiency.

15



2.2.6. Rationing and Gaming

Rationing and gaming, also known as the Houlihan effect was identified by

Houlihan (1987) who recognised that as shortages or missed deliveries occur in the

supply chain, customers tend to overload their orders. This in tum places more

demand on the factory, which inevitably leads to more unreliable deliveries. In

response, downstream customers increase their safety stocks to meet their desired

service level, which further distorts the demand signal. Lee et al. (1997) state that a

similar problem also occurs when customers anticipate shortfalls in supply. In this

scenario, it is extremely hard to forecast or estimate true demand upstream in the

supply chain. Lee et al. (1997) recommend production based on customers' past sales

history as a remedy to the gaming problem.

2.2.7. Behavioral Causes ofthe Bullwhip Effect

Behavioral causes were first considered by Forrester (1961) and further

explored by Sterman (1989). The behavioural explanation emphasises the bounded

rationality of decision making, particularly when there is the failure to adequately

account for feedback effects and time delays. Sterman (1989) argued that bullwhip

effect is caused by irrational behavior of participants. Research into behavioural

causes of the bullwhip effect shows that managers do not adequately account for time

delays, feedback and nonlinearities (Croson and Dhonohue, 2002). Specifically,

managers place orders based on the gap between desired inventory and the current

inventory level, whilst giving insufficient weight to what is already in the supply line

or pipeline. Pipeline underweighting is sufficient to cause the instability observed in

both experimental and real supply chains.

16



2.2.8. Impacts of the Bullwhip Effect

The bullwhip effect has a detrimental impact on the performance of the supply

chain. To counteract the bullwhip effect, companies typically increase their butfer

inventories in an attempt to smooth production rates and to maintain their desired

customer service level. Slack and Lewis (2002) give an introduction to its causes and

remedies. Its effects include inaccurate forecasting leading to periods of low capacity

utilisation alternating with periods of not having enough capacity, i.e. periods of

excessive inventory caused by over production alternating with periods of stock-out

caused by under production. This leads to inadequate customer service and high

inventory costs

2.2.9. Remedies to the Bullwhip Effect

Many researchers have attempted to mitigate the impact of the bullwhip effect,

as it has a highly detrimental impact on the performance of a supply chain. For

example, Forrester (1961) pointed out that demand amplification is due to the

"system dynamics phenomenon" and can be tackled by reducing delays. Sterman

(1989) interprets the phenomenon as a consequence of players' irrational behaviours

or misperceptions of feedback through his "beer game". Lee et al. (1997) suggest that

the bullwhip effect can be mitigated by information as the sharing of fresh and

accurate information on market demand can enable upstream members of the supply

chain to reduce the effect. Wickner et al. (1991) present five strategies to smooth

supply chain dynamics:

1. fine tuning the existing echelon decision rules;

11. reducing time delays;

111. eliminating an echelon by removing the distributor from the supply chain;
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IV. improving the individual echelon design rules by taking account of

pipeline behaviour;

v. integration of information t1ows.

2.2.10. Measuring the Bullwhip Effect

Different approaches can be applied to measure the bullwhip effect. Riddalls

and Benett (2001) give a qualitative approach to measure the bullwhip effect. They

suggest measuring the magnitude of bullwhip effect in two level supply chains by

observing the peak order rate of the upper level. This provides a qualitative measure

of the bullwhip effect but is not suitable for analytic solutions (Poter and Disney,

2006). Many authors have used statistical measures of the bullwhip effect. For

example Chen et al (2000b) measured the bullwhip effect as:

Bullwhi = cr
2
0RATEI ,u(_JRATE= cr

2
0RATE (2.1)

P (J2CONSI JiCONS cr2CONS

ORATE is the orders placed on the upstream members of the supply chain.

CONS is the actual customer sales faced by the retailer, a2 is the unconditional

variance of the orders and Jl is the unconditional means of the orders. In a two level

supply chain, it is normally assumed that unconditional means are identical thus they

cancel (Disney and Towill, 2003).

Franso and Wouters (2000) also use a statistical measure of bullwhip effect in the

grocery supply chain by dividing the coefficient of variation of orders placed by the

coefficient of variation of orders received. Rather than variance, they used standard

deviation ratios as a bullwhip measure:
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Bullwhip = CoutI Cin (2.2)

where Cout = 0" (Dout(t,t+T»/~l(Dout(t, t+T» (2.3)

Cn = 0" (Din(t, t+T»/~l(Din(t, t+T». (2.4)and

Dout(t,t+T) and Din(t, t+T) are the factory orders and completions respectively during

the time interval (t, t+T).

2.3. Supply Chain Modeling Approaches

2.3.1 Background

Production and inventory control systems have been studied for more than

four decades. Beamon (1998) gives an informative view of supply chain models and

modelling techniques. Angerhofer and Angelides (2000) present a taxonomy of

research on system dynamics and discuss several techniques and methods applied in

supply chain modelling. Min and Zhou (2002) present a literature review of past

supply chain modelling efforts and provide guidelines for successful development

and implementation of such models. Riddalls et al (2000) divide the supply chain

modelling approaches into four broad categories. They point out that no one

approach is ideal; all approaches have their advantages and disadvantages. However,

simulation models are accurate and offer an holistic, i.e. systems, approach (Riddalls

et aI., 2000). Because of their ability to view better the whole supply chain rather

than individual entities within it. Models can also be used to replicate the system

behaviour. The four modeling categories identified by Riddalls et al (2000) are

detailed below.
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2.3.2. Continuous Time Differential Equation Models

This modelling approach is appropriate for simulation and control theorists.

Many tools from (engineering) control theory can be implemented to gain insight

into supply chain system dynamics. For example, the Laplace Transform technique is

used to solve differential equations and to move between the time and frequency

domains. Simon (1952) first used the Laplace Transform technique to study a simple

production and inventory control system. System dynamics simulation involving

continuous differential equations was pioneered by Forrester (1961). He provides a

non-linear multi-echelon supply chain model and subsequently, a detailed insight

into supply chain behaviour by using "What if' scenarios. Towill and his colleagues

facilitate a greater level of analysis by simplifying the Forrester model into a simple

linear system. Towill (1982), John et al (1994) and Riddalls and Bennet (2002) detail

studies of various aspects of the Automatic Pipeline Inventory and Order Based

Production Control System (APIOBPCS) model in the continuous-time domain.

Wilson (2007) applies system dynamics simulation in a continuous domain to study

the impact of transportation disruption has in the vendor managed inventory (VMI)-

APIOBPCS. The advantage of continuous time differential equation models is that

complex modes, which are hard to be analysed using analytical methods, can be

better explored. Limitations include (Riddalls et al., 2000):

1. differential equations produce a smooth output, which are not suitable for

the supply chain modeling;

11. this approach cannot solve the lot sizmg problem m production and

inventory control systems.
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However, the complexity of multi-echelon supply chains warrants a perspective that

considers a supply chain structure and the material flows and information feedback

loops inherent to these structures. This is provided by system dynamics simulation

(Wilson, 2007)

2.3.3. Discrete Time Difference Equation Models

Discrete time difference equation models involve the use of difference

equations and the Z-Transform, a discretized or discrete-time translation of the

Laplace Transform. These models have some advantages over the continuous

models. For example, they allow the correct modeling of discrete time variables such

as weekly order rates and they allow the inclusion of pure time delays in a model as

required to model, say, the lead-time or pure-delay caused by a factory operation.

The early use of difference equations and the Z-Transform to study production and

inventory control systems is reported by Vassian (1955). Popwell and Benney (1987)

apply z-Tmasform techniques in order to study materials requirement planning

(MRP) systems. Disney and Towill (2002) consider the stability and the robust

stability properties of a vendor managed inventory (VMI) supply chain using the Z-

Transform. Dejonkckhere et al (2004) investigate the bullwhip effect with the order-

up-to stock ordering policy using the Z-Transform. Disney et al (2006) conduct an

analysis of production and inventory control systems employing order-up-to level

policy in the continuous and discrete domain. They conclude that either domain can

be applied because management insights gained from both domains are very similar.

White et al (2006) investigate the impact of finite and exponential delays on

continuous and discrete VMI-APIOBPCS models. They mention that control

theoretic techniques can be used to attain certain performance levels and these design
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tools can be applied better by using system dynamics simulation. Like continuous

differential equation models, these models are also unable to solve batch sizing and

sequencing problems.

2.3.4. Discrete Event Simulation Systems

A discrete event simulation is one in which the state of a model changes at only

a discrete, but possibly random set of simulated time periods. Discrete event

simulation systems involve jobs (raw materials) and resources (buffer inventories).

This modelling approach represents individual events and incorporates uncertainties.

The structure of these systems can incorporate the stochastic behaviour of a supply

chain, which is an important ability in supply chain modelling. Chang and

Makatsoris (2001) discuss the requirements for discrete event simulation modeling.

Morrice et al (2005) apply discrete event simulation to model the supply chain and

the delivery of Freescale Semiconductor Company. Semini et al (2006) present a

literature review of discrete event simulation modelling in real world manufacturing

logistics decision making. Lacking the descriptive language for the formulation of

these systems and the absence of the theoretical foundations, these systems have

been associated with Monte Carlo Simulation and Black Box techniques.

2.3.5. Operational Research Techniques

Operational research involves mathematical techniques, such as Dynamic

Programming, Linear Programming, Queuing Theory, Simulation, and Markov

Chains. Chandra (1993) highlights the benefits of using operational research

techniques for the solution of batch sizing and the job sequencing problems. These

techniques can be used to solve inventory planning, lot sizing, scheduling, and job
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sequencing problems. However, operational research fails to adequately investigate

the dynamic behaviour of the supply chain (Riddalls et aI., 2000).

2.4. Production and Inventory Control Systems

2.4.1 Background

The literature review of the production and inventory control systems employed

in this research is presented in relevant chapters. Here a brief review of most

commonly applied inventory replenishment policies is presented. The purpose of the

inventory replenishment policy is to assist the production scheduler to place orders

on the factory, providing good smoothing of the actual demand while maintaining the

desired customer service level from safety stock. A number of production smoothing

rules were developed (Deziel and Ellion, 1965; Simon, 1952); the more recent work

involves Dejonckheere et al (2003), Balakrishnan et al (2004), and Dinsey et al

(2006).

Much of the management science literature separates the question of production

and inventory control. According to Benjaffar et al (2005), a production and

inventory system can be treated as independent units when they are decoupled

through large stock holding at the manufacturing facility or at subsequent stages of

the supply chain. It may also be justified to do this when the inventory and

production system belongs to different entities or when transportation lead time is

much bigger than the manufacturing lead time. However, in reality both these

systems are interconnected and rarely exist as separate entities. A number of different

production and inventory control systems for supply chain management have been

developed. Axsater and Juntti (1996) presented a review of inventory replenishment

policies. Baganha et al (1996) explored the strength and weaknesses of these
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commonly applied replenishment policies. The most commonly applied

replenishment policies are as follows (Watson, 1987).

2.4.2. Continuous Review Inventory Policy

In the continuous review policy, the inventory level is continuously monitored

and when it falls below the "reorder level", a fixed quantity is ordered to bring the

inventory back to the desired level (Heisig, 2001). Continuous monitoring of stock

levels must be feasible to implement this system; is it possible and how expensive is

it? The continuous monitoring means that it reacts to surges in demand that cause

stock levels to fall rapidly. As it protects against stock-out, it provides a defense

when demand is difficult to forecast. It also has the advantage of only ordering stock

when necessary, thereby minimizing stock levels and the number of order

transactions. It is suitable when there is a fixed cost of ordering as it avoids ordering

stock in small quantities when it is not really necessary due to stock levels not being

very low, as may happen in the next approach.

2.4.3. Periodic Review Inventory Policy

In a periodic review system stock levels are reviewed at fixed time intervals,

and a variable amount of stock is ordered to bring the stock level up to a

predetermined target level. An advantage of this approach is that it does not incur the

overhead of continuous monitoring, but the subsequent weakness is that it does not

react to low stock levels between the review points so there is a risk of stock-out if

demand increases. If several stock keeping units (SKUs) use the same reorder cycle,

then they can be combined for a single supplier or 'run' of the stock control system,

simplifying procedures and reducing costs. Computations of periodic review
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inventory policy and extensions of such policy are extensively studied by

(Glasserman and Tayur, 1996; Roundy and Muckstadt, 2000).

Lee and Wu (2006) have proved that by choosing the appropriate inventory

replenishment policy the number of backorders and cost of the inventory can be

substantially reduced. In this thesis two different models with a periodic review

inventory system are simulated. The reason for choosing the periodic review system

is that this is the focus of the literature on production and inventory control system

studies. Further, it is an optimal inventory policy where there are variable ordering

costs (to make the ordering of small quantities feasible), lost sales are backlogged (so

stock-out does not result in lost sales) and holding and shortage costs are

proportional (to on-hand inventory or shortages), (Clark and Scarf, 1960; Veinott,

1966). These cost matrices can be used for minimizing the sum of ordering, holding,

backlog, and set up cost (Chuang et al, 2004). Federgruen and Zipkin (1986) showed

that the periodic review system is also optimal with production capacity constraints.

Another reason for choosing the periodic review system is that it provides a

benchmark to estimate the desired inventory level for providing a certain service

level (Benton, 1991).

2.5. Periodic Review Multi-Echelon Supply Chain Model

One of the most commonly studied periodic review models in the supply chain

literature is the Beer Distribution Game. This is a simplified but still realistic

representation of a multi-echelon supply chain consisting of a retailer, wholesaler,

distributor, and factory developed at Massachusetts Institute of Technology in the

1960s. Towill (1982) introduced a greater level of detail into this multi-echelon

supply chain by using the Inventory and Order Based Production Control System
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(lOBPCS) to model each echelon in more detail, applying a basic periodic review

algorithm for issuing orders into the supply pipeline, based on current inventory

deficit and incoming demand from customers. Edghill et al (1989) extended the

model by incorporating variable desired inventory as a function of the demand.

Later, a work-in-progress feedback loop was added to the IOBPCS; "Let the

production targets be equal to the sum of an exponentially smoothed demand (over

Ta time units) plus a fraction (1/ Ti) of the inventory error, plus a fraction (1/ Tw) of

the WIP error." This is the "Automatic Pipeline Inventory and Order Based

Production Control System" (APIOBPCS) (John et al., 1994). Riddalls and Bennett

(2002) analysed the impact of pure delay and explored the stability boundaries of the

single echelon in the APIOBPCS model. Disney (2002) extended the model into the

Vendor Managed Inventory (VMI) scenario. Dejonckheere et al (2004) studied the

order-up-to-level inventory control model and its variants as an important subset of

the APIOBPCS. Adjusting the gain of the inventory and the pipeline allows the

APIOBPCS to mimic a range of make-to-stock and make-to-order scenarios. This

model is particularly powerful as it can represent, by adjusting the design parameter

values, a wide range of supply chain strategies such as lean and agile.

Like much system dynamics research, the main portion of this research uses the

beer game model since this reflects validated decision rules in a real-world supply

chain. Decision rules are validated by proving the existence of amplifications and

oscillations in the order rate of the supply chain. Different analytical techniques have

been used to investigate the beer game model but none of these are fully satisfactory

(White et al, 2006). One of the most commonly applied methodologies to study the

various aspects of the beer game model is the control theoretic approach. It is clear

that this normally involves linearization through the use of linear models in

26



presenting a view of the whole system. Transfer function analysis, applied in control

theory, simplifies the calculation and converts between the frequency and time

domains. A transfer function relates the output of a system to its input in the

frequency domain using (typically) Laplace transforms, or in discrete form, z-

transforms. Transfer function analysis can analyze the model with an order greater

than five if all parameters are independent of each other. The order of the system

increases with each new parameter and it is extremely difficult to convert the transfer

function of greater than fifth order (Holweg et al, 2005). Therefore, we have to

resort to numerical approaches or simulation to study the complex supply chains.

Previous studies assume the value of parameters in a supply chain and report

modeling results by changing the value of one or two variables at a time. The 'one-

at-a-time' approach reveals the effect of one factor with a particular combination of

other factors but does not provide the information for calculating the effects of that

factor in general with any combination of the other factors. It is important to note

that the relationship between design parameters is causal, meaning that it is explicitly

recognized that changing the value of one parameter will lead to changes in the

effects of changing the values of another variable. Hence, the development of

Taguchi's Orthogonal Arrays technique in which levels of each factor are

systematically varied and all possible combinations of factors are considered. Now a

days Design of Experiments (DOE) has gained an increased attention among many

six sigma practitioners and it is likely that DOE will be a key technique for

developing robust product I process in 21st century (Rowland and Antony, 2003).

DOE using Taguchi approach can economically satisfy the needs of process design

optimization projects in the manufacturing industry by providing maximum

information with the minimum number of experiments (Shang et al, 2004). Further,
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Multi-echelon supply chains consisting of many interaction parameters can better be

optimized by Taguchi's Orthogonal Arrays technique.

Riddalls and Benett (2001) point out that control theorists are unable to solve

the lot sizing problem. Potter and Disney (2006) identify that the impact of order

batching on the bullwhip effect has not been clearly explored. They highlight that

studying the impact of batch size under stochastic demand in a production

APIOBPCS control system using the transfer function analysis applied in control

theory is extremely difficult. APIOBPCS is a periodic review system for issuing

orders based on incoming demand signals, feed back loops of inventory and pipeline

line deficit. These feed forward and feedback loops are in tum affected by control

parameters and it is hard to understand the nature of the transfer function analysis

involved. Hence, control theorists are unable to study the impact of batch size under

stochastic demand process. System dynamics simulation seems an appropriate

methodology to investigate the impact of varying batch size on bullwhip effect with a

stochastic demand process. Riddalls et al (2002) and White et al (2006) point out that

control theorists are dealing with the linearity of that model; there is neither capacity

constraints nor order backlog. In obtaining explicit mathematical solutions, linear

models are much simpler whilst mathematical analysis is unable to deal with the

general solutions to non-linear models. The disadvantage of the system dynamics

model with extensive non-linearity is that the general prediction about the outcome

of the model cannot be made. In reality a factory's production is always constrained

by a capacity limit and sometimes it is not possible to cope with a sudden change in

demand. Therefore, studying the model under capacity constraints is necessary to

provide a more realistic picture. Further, the standard control theoretic techniques

can determine a general picture of response, overshoots, and recovery time in terms
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of design parameters. These design tools are well established and can be better used

by system dynamic soft wares and simulation.

2.6. Demand Forecasting in Periodic Review OUT Model

It has been recognized that demand forecasting, lead times (delays) and ordering

policies are among the key causes of the bullwhip effect (Dejonckheere et al (2003).

Most supply chains are forecast driven rather than demand driven (Christopher,

1999). Normally they make forecasts based on historical data and use those forecasts

to maintain their inventory requirements. The impact of forecasting methods on the

bullwhip effect have been studied by several researchers. Dejonckheere et al (2004)

quantify the bullwhip effect for order-up-to policies using exponential smoothing,

moving average, and demand signaling process. Alwan et al (2003) studies the

bullwhip effect in an order-up-to-Ievel (OUT) policy with mean squared forecasting.

Both conclude that with that forecasting policy the bullwhip effect can be eliminated

or mitigated depending on the correlative structure of the demand process, whether it

is negatively correlated, independent and identically distributed (1.1.0), or positively

correlated. Zhang (2004) investigates the impact of forecasting methods on the

bullwhip effect in a simple order up to level policy with first order autoregressive

(ARI) demand process. Findings indicate that moving average (MA), exponential

smoothing (ES), and minimum mean squared error (MMSE) forecasting techniques

lead to bullwhip effect measures with distinct properties with respect to demand

autocorrelation and lead time. Sun et al (2005) makes the comparison of the effects

of MA, ES, and MMSE forecasting on the bullwhip effect in an order-up-to level

model. Hosoda and Disney (2006) use the transfer function technique and have

developed an exact expression for the bullwhip effect and inventory variance using
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minimum mean squared error forecasting in a three stage supply chain. Luong (2007)

develops the bullwhip measure for the AR( 1) demand process in a simple order up to

level supply chain that uses the MMSE forecasting. He found that the bullwhip effect

depends on the value of demand autocorrelation and an upper bound for the demand

amplification exists when the lead time increases.

The impact of lead time on the bullwhip effect is investigated by Chen et al.

(2000, b), Zhang (2004), Chatfield et al (2004), and Kim et al. (2006). Chatfield et al

(2004) analyse the bullwhip effect with stochastic lead time and identify that lead

time variability exacerbates variance amplification in the supply chain. Kim et al.

(2006) measure the impact of stochastic lead time on bullwhip effects for a k-stage

supply chain and find that the bullwhip effect is higher under lead time variability.

Most literature studies on lead time show that longer lead times or larger lead time

variations have a detrimental effect on supply chain performance, implying that lead

time or lead time variability should be minimised.

Replenishment strategies have an impact on the order and net stock variability.

Order variability contributes to the bullwhip effect and finally the upstream cost,

while variations in net stock level affect the ability to meet a desired service level.

Dejonckheere et al (2004) prove that in an order up to level replenishment system,

bullwhip is unavoidable with exponential smoothing, moving average, and demand

signaling forecasting and propose a general replenishment rule for order smoothing.

Balakrishnan et al (2004) emphasized the opportunities to reduce supply chain costs

by dampening upstream demand variability. This has led to the creation of new

replenishment policies that are able to generate smooth order patterns which in tum

can mitigate the demand amplification. In order to control the dynamics of a supply

chain, Hosoda and Disney (2006) add a proportional controller in simple order up to
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level supply chain models with MMSE forecasting. This is named the Generalized

OUT policy. Hosoda and Disney (2006) conclude that a two echelon supply chain

with this generalized OUT policy can reduce the inventory related cost by 10%.

Boute et al (2007) investigate a two level supply chain with I.I.D. customer demand.

They propose that decreasing the order variability at the retailer's level incurs the

cost of increased variance of the retailer's inventory level. Smoothing the ordering

pattern mitigates the bullwhip effect and results in shorter and less variable

replenishment lead time, which in tum can benefit the retailer.

Previous research has focused on determining the impact of forecasting

methods on the bullwhip effect. However, as pointed out by Hosoda and Disney

(2006), the statistical approaches become unmanageable and complex when the net

inventory variances are considered as expressions for the co variances between the

states of the system. While this approach is better suited to the problem, these

intractable expressions are completely avoided in this research. The impact of ES

and MMSE on both order and inventory variations is investigated in this research. A

simple order up to level policy is then modified by adding a proportional controller

into the inventory feedback system. The impact of a proportional controller in a

modified order up to level policy on the demand amplification and inventory

variance will be analyzed in this work. Boute et al (2007) mention that bullwhip

reduction comes at the cost of an increased variance of the inventory levels. Luong

(2007) finds that the problem of quantifying the bullwhip effect still remains

unsolved due to the complex nature of supply chains. In this thesis, the Taguchi

Design of Experiments technique is applied to quantify the impact of different supply

chain model parameters on the both bullwhip and inventory variance. The aim is to
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explore the interaction among these parameters and to identify the best values for

these factors in order to minimize both order and inventory variances

2.7. Summary

Supply chain nowaday is a complex and dynamic system and its performance

IS a result of interactions among supply chain players, such as manufacturers,

suppliers, distributors, retailers, and customers. Interaction between players may

produce both negative (damping) and positive (reinforcing) forms of feedback. A

devastating phenomenon in supply chain dynamics is the bullwhip effect. The

bullwhip effect is costly to upstream echelons of the supply chain, there is a real cost

benefit associated with its reduction. The first section of the literature review

highlights the various causes, remedies, and the ways to measure the bullwhip effect.

Next, detailed discussion of the supply chain modeling techniques been

presented. The advantages and disadvantages of four commonly applied supply

chain modeling techniques have been explored. Different analytical techniques have

been applied to investigate the various aspects of bullwhip effect in multi-echelon

supply chain but none of these is fully satisfactory. The justification of the modeling

technique applied in this thesis has been provided in this section.

The last section presents a brief review of most commonly applied inventory

replenishment policies. The purpose of the inventory replenishment policy is to assist

the production scheduler to place orders on the factory, providing good smoothing of

the actual demand while maintaining the desired customer service level from safety

stock. The strengths and weaknesses of commonly applied replenishment policies

have been discussed. The review of two different periodic review inventory systems

applied in this thesis has been carried out.
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For the rest of the thesis a "gap analysis" has been carried out. The literature

review has been the primary source to identify the problem. Through extensive

literature review, gaps in theory are explicitly stated in each chapter and a

methodology has been presented to fill these gaps.
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CHAPTER3: Research Approach and Methods

3.1. Introduction

This chapter presents a discussion of the research methods and highlights the

overall research structure applied to support the work. It begins with the description

of research objectives which provide the foundation on which the research

methodology and research design is developed. Following this, a brief justification of

the research methods employed is presented. After this, the system dynamics

software used in this thesis for the modeling of supply chains is introduced. Next,

detailed discussion of the research design which encompasses, system modeling,

simulation, experimental design, and analysis is presented. This includes a

introduction to Taguchi Design of Experiments and analysis of variance (ANOV A).

3. 2. Research Objectives

Research objectives lead to areas that require investigation in order to develop

the research design and choose the research strategy to achieve the research

objectives. Van De Yen (2007) argued problem formulation is the first important task

in research and plays a crucial role in grounding the subject. It directly affects how

theory building, research design, and problem solving techniques are performed.

Bryman and Bell (2007) summarized criteria for evaluating research objectives.

Research objectives should be clear, researchable, connected with established theory

and research, and have the potential for making a contribution to knowledge.

As discussed earlier (see Section 1.2), there are five key objectives which

provide a basis for this research. The overall aim of this research is the investigation

of the bullwhip effect in a multi-echelon supply chain model. This objective is
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accomplished by extending the existing supply chain model, by investigating the

different causes of the bullwhip effect, and finally by formulating new policies to

mitigate this effect

3.3. Research Approach

3.3.1. Introduction

Many different types of research are available, having been designed for many

different research areas and applications (Saunders et al. 2003). According to Hussey

and Hussey (1997), research can be classified into four different categories. Among

these categories, the process of research can be divided into qualitative and

quantitative. Qualitative research involves the collection and analysis of non-

numerical data in order to get a better understanding of the subject studied (Denzin

and Lincoln, 2000). Quantitative research involves collecting and analyzing

numerical data and applying statistical tests. The emphasis is on measurement and

analysis of causal relationships between variables (Drongelen, 2001). Simulation

modeling is a quantitative research technique (Wass and Wells, 1994).

Angerhofer and Angelides (2000) present taxonomy of research on system

dynamics and discuss several techniques and methods applied in supply chain

modeling. Riddalls et al (2000) divide the supply chain modeling approaches into

four broad categories. The advantages and disadvantages of these modeling

techniques are discussed in Section 2.3. Different analytical techniques have been

used to investigate the multi-echelon supply chain model but none of these is fully

satisfactory (White et aI, 2006). In this thesis, system dynamics simulation is

combined with Taguchi Design of Experiments. A brief introduction and justification

of the methodology is presented below.
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3.3.2. System Dynamics Simulation

System dynamics is a well known simulation technique capable of modeling

feedback loops explicitly and of evaluating the dynamics of complex processes and

systems. Supply chains are complex, dynamic systems and their performance is a

result of interactions among supply chain players, such as manufacturers, suppliers,

distributors, retailers, and customers. Interaction between players may produce both

negative (damping) and positive (reinforcing) forms of feedback. One of the most

commonly applied methodologies to study the various aspects of the multi-echelon

supply chain model is the control theoretic approach. The problem that faces control

theorists is that, although they are often able to write differential equations on the

dynamic behavior of the model, in many cases these differential equations cannot be

integrated. Instead the control theorists resort to a numerical approach, usually with

the help of computer simulation (Pidd, 2004).

Simulation is ideal for mapping these complex interactions and for predicting

non linear outputs through "What If' analysis. Running "What if' simulations to test

certain policies or strategies on complex models can greatly aid the understanding of

how the system changes over time. Sterman (2002) states; "Simulation is essential

for effective systems thinking, even when the purpose is insight, even when we are

faced with a "mess" rather than a well structured problem".

Feedback is an important mechanism in system dynamics modeling.

Traditionally feedback was generated through experimentation in the real world. In

some scenarios, like altering the batch sizes and capacity constraints, real-world

experimentation is too slow, too costly, or simply impossible. Hence, a simulation

seems an appropriate methodology to study these feedback effects. Furthermore,

mathematical and control theoretic approaches can require an academically advanced
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understanding of mathematics that most supply chain operations managers do not

have (Agaran et al, 2007). In contrast, the use of system dynamics simulation

methods can help practitioners to better understand the basic phenomenon and to

examine the effects of parameters.

3.3.3. Taguchi Design of Experiments

Though useful, simulation only evaluates the effectiveness of a pre-specified

condition and does not provide a solution for optimizing a system. Therefore, system

dynamics simulation must be coupled with some optimization technique to determine

the 'best' combination of system parameter values. To achieve this, the Taguchi

Design of Experiments approach is introduced in this thesis.

Taguchi's method standardizes the statistical technique of design of

experiments (DOE) and proposes a methodology that can satisfy economically the

needs of process design optimization projects in manufacturing industry. In general,

it is applicable to any situation that depends on many influencing factors (i.e.,

variables or parameters), (Roy,2001). When many factors influence an outcome, the

best way to study real behavior is when the influences of all factors have an equal

opportunity to be present. Taguchi Design of Experiments can better capture such

effects. All kinds of industries can utilize DOE. Where there are products and

processes, DOE can be applied. Even a service industry can use DOE when a valid

model is available. However, manufacturing and production processes can better

utilize this technique (Roy, 2001)

Over the last 20 years or so, it has gained increased acceptance in the USA and

Europe as an important ingredient for improving process capability, driving down

quality costs and improving process yields. Recently, it has gained increased
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attention from many six sigma practitioners and it is likely that it will be a key

technique for developing robust product/process in the 21st century (Rowland and

Antony,2003).

Multi-echelon supply chains consist of many interacting factors at each

echelon, such as forecasting constants, lead time, batch size, capacity constraints, and

times to adjust errors in the inventory and work in progress (Holweg et al, 2005). The

relationship between these parameters is causal; changing the value of one parameter

will lead to changes in the effects of the values of another variable. Mathematics

becomes unmanageable to deal with this level of complexity. The application of

Taguchi's orthogonal arrays technique in which levels of each factor are

systematically varied and where a large number of parameters can be optimized with

the minimum number of experiments; seems an appropriate methodology (Shang et

al,2004).

Taguchi recommended a three stage process: system design, parameter design,

and tolerance design. In this thesis, Taguchi's parameter design technique is applied.

Taguchi (1989) argues that parameter design increases system robustness, reduces

experimental cost and improves quality. Parameter design creates fractional factorial

designs using orthogonal arrays. Anderson (2004) states that changing only one

factor at a time cannot detect interaction effect. Fractional factorial design enables

the experimenter to investigate the effect of each parameter (main effect), to

determine whether parameters interact, and to evolve the robust design (Khumwan

and Pichitlamken, 2007). The aim of the robust design technique is to minimize the

variance of the response. Orthogonal arrays of parameter levels determine the

simulation experiments run to evaluate the relative effects of parameter values on
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supply chains with the minimum number of experiments. Fractional factorial design

can be used to explore the linear and non-linear effects of the design parameters.

Taguchi stresses the importance of studying the variation of the response and

has introduced the Signal-to-Noise Ratio (SNR) to facilitate such investigation

(Bendell et al, 1989). SNR is the ratio of the mean (signal) to the standard deviation

(noise). The Taguchi approach compares the mean squared deviation (MSD) of the

performance under different conditions. SNR provides a mechanism to calculate the

robustness of a given combination of design parameter values. The details of the

Taguchi methods applied here are presented in Section 3.6. Analysis of variance

(ANOVA) is used to analyze the data obtained from the experiments designed using

orthogonal arrays.

3.4. System Dynamics Software used (iThink)

The particular system dynamics software used in this research is "i'Think

Analyst". This proprietary software has been developed more for the business

community rather than control engineers. Therefore, it should be more suitable for

use by operations managers. iThink software is bundled with tools to create models

using stocks, converters, flows, and information feedbacks. Once the conceptual

model is defined, structuring the computer simulation is straight forward. Important

characteristics of iThink are that it facilitates the modeling of continuous and discrete

processes and it includes the graphical and tabulated aids to better analyze the

outputs of the model. The Euler's method, proposed by the mathematician Leonhard

Euler, is a most commonly applied explicit method in the software for numerical

integration of ordinary differential equations. In this method, the computed values for

flows provide the estimate for the change in corresponding stocks over the interval
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delta time (DT). In Euler's method as DT gets longer, fewer calculations are made

and the integration error is increased. On the other hand, a smaller DT produces

accurate results by increasing the number of the calculations.

3.4.1. Tools of iThink Software

Commonly applied tools in the iThink software for the building of system

dynamics simulation models are presented in Table 3.1.

Symbol Name

D Stock

0 0 :t') Uniflow

0~ 0 ~ Biflow

0 Converter

• Action Connector

- - - -- -~, Information Connector

Table 3.1. Symbols used in iThink

i. Stocks (Levels). Stocks are also known as levels and represent the accumulation

of both physical and non-physical resources within the system. In the context of this

research stocks represent inventories and goods in transit. Stocks have inflow and

outflow and therefore will rise and fall.

ii.Flows. Activities continue in dynamic systems and these are represented by

dynamic flows between levels. The purpose of flows is to fill and drain

accumulations. Flow variables change the stock over time (e.g. factory order rates

and completion rates). Inflows are always adding to the stock while outflows are

40



subtracting from the stock. In the model studied, the actual inventory of the

production control system is increased by the flow of production and decreased by

shipment..

iii. Converter. In iThink a converter converts an input into an output. The converter

holds values of constants used in the conversion (e.g. gains) and defines external

inputs to the model. The design parameters Ti, Tw, and Ta applied in the supply

chain model in this thesis are represented as converters.

iv. Connector. A connector passes information between converters; between stocks

and converters; between stocks and flows; and between converters and flows. In the

IOBPCS model, a connector is used to connect the converters (Ti, Ta) to the flow

(order rate).

3.5. Description of Research Process Steps

A research process/design is used to structure the overall research. It describes

a flexible set of guidelines that connect research paradigms to strategies of inquiry,

units of analysis and processes of collecting and analyzing data, in ways which are

most likely to achieve the research objective (Easterby-Smith, 2002; Denzin and

Lincoln, 2000). The particular research methodology employed in this thesis

involves system dynamics simulation and Taguchi Design of Experiments. A

description of each of the steps involved in this research is provided in this section.

Figure 3.1 represents the overall research design of this thesis.

3.5.1 System Modeling

Forrester (1971) argues that focusing on the process of modeling rather than on

the results of any particular model speeds up learning and leads to better models,
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better policies and greater chance of implementation and system improvement. In

this thesis, simulation is used as a system dynamics modeling tool. System dynamics

models are symbolic models consisting of a combination of diagrams, graphs and

equations. This thesis follows the standard steps of modeling techniques indicated by

John Sterman (2000) in his book, Business Dynamics: System Thinking and

Modeling for a Complex World (2000). These standard phases are summarized

below.

---II~.HDetennlneOpUmum Level of Parametersll----

System ModeUiag

1.Define the System
2. IdentitY & ClassifY the

Problem
3. IdentitY the Objective

FlIIlClions
4.Built the Simulalion
Model

s.Verifiadion &:
Validation

6. Smsitivity Analysis

,,
Experime.taI Desip SimalaU- &: AuIysis

12.Itun SinmIIlion
13.Analyse Results
14. ~ the Intendions

(Ifnot indudcd)
IS. ANOVA Analysis
16.Determine Optinun

Level
17. Itun Confirmalmy

Teat

7. IdentitY Fadms
8. Select their Levels
9. Define the Interactions

... (lfpossaolc)
10. Select an Orthogonal

Anays(OA)
11. Choose the Quality

Cbaractc:ristiaI

Run Confirmatory Test

Figure 3.1 Research Design

i. Problem Articulation. A common scientific tool applied in studying problems and

solutions is modeling. The model should be built on selected aspects of systems to

investigate the specific problem and should not include the whole complexity of a
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system. Van De Ven (2007) argued that problem formulation is the first important

task in research and plays a crucial role in grounding the subject. The literature

review has been the primary source to identify the problem. Through extensive

literature review, gaps in theory are explicitly stated in each chapter and a

methodology is presented to fill these gaps.

ii. Formulating a Dynamic Hypothesis. This step is also known as the "conceptual

modeling phase" and involves the development of theory that explains the causes

behind the problem. Such theory or hypothesis needs to be converted into a formal

simulation model. The following major activities are involved in this step: A problem

is examined from the literature review, variables involved in the concerned dynamics

are listed and finally a causal diagram is constructed.

The causal loop diagram of the Inventory and Order Based Production Control

System (I0BPCS) used in this research is shown in Figure 3.2. Causal loop diagrams

involve positive loops and negative loops. A positive (i.e. + or R) loop is always

reinforcing and tends to amplify the state of the system. A negative ( i.e. - or B) loop

resists the change by forcing the system either to fluctuate or to move towards

equilibrium. The order rate (ORATE) shows the inflows of the orders to the factory,

which is in tum affected by the feed forward flow (R ) of smoothed sales (SSALES)

and the feedback flow (B) of error in the inventory (EINV). SSALES and EINV are

affected by converters time to adjust error of the inventory (Ti) and time to average

sales (Ta). The factory always takes time to produce something so a delay is

introduced between the order rate and the completion rate (COMRA TE). Once goods

are ready these are accumulated in the inventory. Orders are shipped from actual

inventory (AINV) and the whole cycle starts again.
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Ta

~
Sales

~
Desired __ .. "troouction
InventOlY Order"

Ti/ -

Feed fOlW'ard Loop of sales

Tp

pL + Completion
Delay • Rate --- ..

Figure3.2. Causal Loop Diagram of IOBPCS System

iii. Formulating a Simulation Model. The limitation of causal loop diagrams is

their inability to capture the stock and flow structure of the systems (Sterman, 2000).

Stock and flow diagrams use graphical symbols to distinguish between different

types of entities. In this step a formal simulation model is constructed using the

iThink software. This phase involves constructing the stock and flow diagram,

writing mathematical equations to relate the variables and defining initial values of

parameters. The stock and flow diagram of the basic inventory and order based

production control system (IOBPCS) studies here is presented in Figure 3.3.

Ta

KEY
SSALES = Smoothed Sales
ORATE = Order Rate
COMRATE = Completion Rate
EINV
DINV
Ti
Ta

= Error of Inventory
= Desired Inventory
= Time to Mjust Inventory
= Time to Average Sales

Figure 3.3. Stock and Flow Diagram of IOBPCS
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From a mathematical point of view, stocks are also known as state variables or

integrals; and flows as rates or derivatives. From any stock and flow map, system

integral and differential equations can be constructed and vice versa (Sterman, 2000).

iv. Model Credibility Testing. This phase involves two major steps: testing of the

model and sensitivity analysis. Testing means whether the structure of the model is

the proper description of the real relations between design parameters. Various

model testing techniques are available. One of the most commonly applied technique

is Behavior Reproduction ( Sterman, 2000). Plotting the dynamic outputs against real

data in a graph representing behavior of the model over time is particularly

insightful. In the case of this thesis, these dynamic outputs can be variances in order

rate and inventory level. Sensitivity analysis determines the stability boundaries of

the system. In Chapter 5, the model is tested and a theory is developed by exploring

the impact of batch size on the bullwhip effect. Finally to confirm these findings,

sensitivity analysis is carried out by changing the values of design parameters and the

stability boundaries of the system are explored.

v. Policy Design and Evaluation. Once the structure of the model is completely

understood and sensitivity analysis is carried out, the final step is to improve the

system design by testing different new policies. A policy normally has several

decision rules according to which many system states and decision variables are

related by multiple feedback loops. This is also known as the "optimization phase ".

For testing the outcome of alternative policies and for searching the robust design,

system dynamics simulation must be coupled with an optimization tool. Supply
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chains consist of many interacting parameters per each echelon and relationship

between these parameters is causal. Taguchi Design of Experiments, which can deal

with maximum number of parameters with minimum number of experiments and in

which level of each factor is systematically varied, is introduced as an optimization

tool in this research.

3.6 Taguchi Design of Experiments

Taguchi recommended a three stage process to Improve quality: system

design, parameter design, and tolerance design. In this research, Taguchi's parameter

design technique is applied. This provides a method for creating fractional factorial

designs using orthogonal arrays. The outline of the Taguchi methods applied in this

research is shown in Figure 3.7. The first two steps are the "brainstorming session"

or "planning phase". During this phase the objectives, measurement methods and

levels of outer and inner arrays are decided.

Detennine Facton

Detennine Levels COl" the Facton

Select Orthogonal Auays (OA)

Select the Quality Cbamctcristic

Run SiDlulatiOll

Aualyze Rcaulta: Detennine Optimum Factor Levels

Run Coofinnation Test

Figure3.4. OuUineofTaguchi MethodApplied
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3.7 Orthogonal Arrays

The second stage of Taguchi's method applied is the "designing phase ''. Based

on the factors and levels identified, appropriate orthogonal arrays are selected to

specify the number of experiments and the manner in which each experiment is

conducted. An orthogonal array is a special kind of matrix, which originates from

Euler's Latin Square. Orthogonal arrays are written by notation L with a subscript.

The subscript indicates the number of combinations of the factors in the experiment.

For example, an L 4 (23
) array can be used for three factors at two levels and

comprises four rows and hence the four combinations of the factors involved in the

study.

3.7.1 Classification of Arrays

In the basic design process, a number of parameters or factors can influence the

response of the system. These can be classified into three classes as shown in Figure

3.5 and described below.

Noise Factors

Control Factors

Figure 3.5. Block Dlagra", 01'A.rrays

i. Control Factors. These form the 'inner arrays' and include those factors that are

controllable in real life. In the supply chain model studied, inner arrays are time to

adjust inventory and work in progress discrepancies, capacity, and batch size.
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ii. Noise Factors. These form the 'outer arrays' and include those factors that are

uncontrollable in real life but are controlled during the experiment, examples include

sales and lead time. The level of noise factors changes from time to time.

iii. Signal Factors. These factors include those parameters that are set by the

experimenter to express the intended value tor the response of the product: e.g. temp.

3.7.2 Choice of Orthogonal Arrays

The designing phase of Taguchi's method applied in this thesis involves the

choice of orthogonal arrays. The choice of orthogonal array size used in the design of

an experiment depends on the total degrees of freedom (OaF) required for the

parameters and their interactions. In statistical analysis, OaF is an indication of the

amount of information contained in a data set. The DoF of a factor = the number of

levels of the factor-I. The OaF of an array = the total of all column Dof's for the

array. The DoF of interaction A*B = (DoF of A) x (OaF of B). The columns formed

by the horizontal orthogonal arrays are said to be mutually orthogonal, if for any

pairs of the columns all combinations of parameter levels occur an equal number of

times. The orthogonal arrays must have as many columns as there are factors and

interactions involved. Factors and interactions are assigned to array columns via

linear graphs. Commonly applied orthogonal arrays with their intended use are

presented in Table 3.2.
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Array Intended Use Levels
L. (2 J) 3 Two level Factors

L. (21) 7 Two level Factors

} TwoLevel FactorsLI1(21l
) 11Two level Factors

LI6(2Is) 15 Two level Factors

r.,(231
) 31 Two level Factors

L,( 3·) 4 Three level Factors

} Three Level FactorsLI.(i,31j 1 Two level & 7 Three level Factors

Ll1(31l
) 13 Three level Factors

L 16 (4 s) 5 Four level Factors
}Four level FactorsL2(i,4') 1 Two level & 9 Four level Factors

.
Table 3.2. Commonly applied anays and their intended use. Also known as mixed anays.

3.7.3. Linear Graphs and Interactions

The multi-echelon supply chain model studied in this research is comprised of

seven parameters per echelon. The relationship between these parameters is causal;

meaning that changing the value of one parameter will affect the effect of the value

of another parameter. To explore the interaction among these parameters, Taguchi's

linear graphs and interactions tables are used. Interactions can be explored and can

also be included in the experiment. For the interactions to be included in the

experiment, Taguchi applied linear graphs and interaction tables to help identify

possible combinations of the interaction columns. Linear graphs represent a few

possible combinations while the interaction tables provide all possible combination

of interaction columns.

A few linear graphs for the commonly applied OA are presented in Figures

3.6a-e. Each circle in the linear graph represents a column within the orthogonal

array and an arc represents the interaction between two factors displayed by circles at
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each end of the arc. DoF for the interaction determines the need for keeping the

columns of the array empty. One DoF for the interaction needs one column of the

two-level arrays empty and two OaF requires two columns of the three-level arrays

empty.

3

Figure 3.6 a. Linear Graph for an L4 Arrays

3,4

Figure 3.6 b. Linear Graph for an L9 Arrays

Figure 3M. Linear Graphs for an L16 Arrays

2

Figure 3.6.c. Linear Graphs for an L8 Arrays

11 14

Figure 3.6.e. Linear Graph for an L27 Arrays
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3.8. Choice of Quality Characteristics

Once the factors and their levels have been identified and appropriate

orthogonal arrays selected, the next step ofTaguchi's method is to choose the desired

quality characteristics. Taguchi introduced three possible quality characteristics to

target; smaller-the-best, nominal-the-best and larger-the-best. This research aims to

minimize the bullwhip effect so the quality characteristic of smaller-the-best is

selected.

i. Smaller-the-best. This is usually the chosen Signal to Noise Ratio (SNR) for

characteristics such as minimization of cost, or in this thesis bullwhip reduction. This

is used for quality characteristic which can never take negative values and their ideal

will be zero and as their value increases performance becomes progressively worse.

Equation 2.1 presents the corresponding SNR formula for the quality characteristics

of the smaller the best.

[
I Yi2 J

SNR = -10 * Log 10 i=1 n (3.1)

Where n is the number of observations and Y is the observed data.

ii. Nominal-the-best. This can be used when a specified nominal value is most

desired, meaning that neither a smaller nor a larger value is desirable. The SNR for

nominal the best is determined by the equation 2.2:

SNR = 10 * Log 10 ( Me~n 2 )

Varamce
(3.2)

Mean = --,"i__;=I __ And Varaince

nIYi - Mean 2

= _:_i=__:,I _

n n - 1

51



iii. Larger-the-best. This is used for quality characteristics that do not take negative

values and for which zero is their worst value and is determined by equation 2.3. As

their value becomes larger the performance progressively becomes better. When

SNR is maximum, the response of the system will be least sensitive to noise factors.

(3.3)

3.9. Analysis of Results

In this thesis, experimental results are analyzed to calculate the main effects,

interaction effects, ANOYA, and the 'best' values of the parameters.

i. Main effects. The effect of a design parameter on the measured response when the

parameter's value is changed from one level to another is known as a "main effect".

Main effects are calculated for a particular level of a factor by examining the

orthogonal array, the factor assignment, and the experimental results (Roy, 2001).

For example, to calculate the average effect of Ti at Levell, all results of parameter

Ti at Level 1 are averaged. Main effect plots are used to depict main effects. When

analyzing a factor at three levels, the main effect of the design parameters can be

decomposed into linear and non-linear effect as shown in Figure 3.6.

Measured Response

Linear Effect

Level 1 Level2

Parameter

Figure 3.7. Linear & Quadratic Effect

Level3
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ii. Interaction Effects. If interactions are not included as factors in the OA matrix

then interaction effects among parameters are explored. Interaction here refers to

factors behaving differently in the presence of other factors such that the trend of

influence changes when the levels of the other factors change. Simple but powerful

"interaction graphs" are used to determine the severity of the interactions between

control parameters. If the lines in the graph are parallel there is no interaction

between the parameters, whilst non-parallel lines indicate interaction with

intersecting lines indicating strong interaction (Antony, 2001). The number of two-

factor interactions possible among n factors can be calculated by the formula N=n(n-

1)/2. For example, if five factors are considered in the experiment, the number of

possible interactions will be 5(5-1)/2=10. The interactions among design parameters

of the supply chain model studied are explored in Chapter 5.

iii. Analysis of Variance (ANOVA). The main objective of ANOVA is to find out

how much variation each factor causes relative to the total variation observed in the

result. The ANOV A procedure applied in this thesis is presented below. The

influence of an individual factor is expressed as a fraction (%) of the total variation

in the results or measurements. For a set of experimental results, Yl, Y2, .... , Yn, the

total variation can be calculated by adding deviations of the individual data from the

mean value. To assure that all deviations are counted, the individual deviations are

squared to make them all positive. So ST, the total sum of squares is calculated

using Equation 2.4

NL rv, - y)2
i=1

(3.4)
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This can be reduced to the following form in Equation 2.5.

N 2 T 2

ST = L v, -_
i=1 N

(3.5)

where, T2/N is called the correction factor (C.F) and T is the total of all the results

and N is the number of experiments.

Following a similar approach, the variation caused by an individual factor is

obtained by an expression called the Factor Sum of Squares. This is calculated by

determining the total effect of each level in each factor, by summing the results of

each experiment with the factor at the appropriate level. This sum is then squared and

divided by the number of experiments that included the factor at that level, as shown

in Equation 2.6.

SA = A ~ + A; - C.F
NAl NA2

(3.6)

where, SA is the sum of squares for factor A, N Ai is the total number of experiments

in which level i of factor A is present, and Ai the total of results that include

factor Ai . The next step in ANOV A is to calculate the Mean Square or variance (VA)

as shown in Equation 2.7.

VA (3.7)

Where fA is the DoF for factor A.

DoF plays an important role in the calculation of confidence intervals and in

tests of signiticance with ANOVA (Roy, 2001, p.2ll). In statistical analysis of
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experimental results, the error OoF = Total OoFs - Total of all factors OoFs. If the

error OoF is zero, the sum of squares for the error tenn must also be zero. When both

sum of squares and OoF for the error terms are zero, the variance and F-ratios for the

error term cannot be calculated. The next step in the ANOV A calculation is to

determine the F-Ratios of the factors. F-Ratios are used to see the relative

significance of the factors and are calculated using Equation 2.8.

F =~
A V

e

(3.8)

where Ve is the variance for the error term, obtained by calculating the error sum of

squares and dividing by the error OoF. With Veabsent, pure sums of squares equal

the corresponding sum of squares. Pure sum of squares (S' ) is determined by

Equation 2.9.

(3.9)

In order to measure the contribution of each factor to the total variation, the

percentage influence of each factor is calculated using Equation 2.10.

P A =
S 'A
S T

(3.10)

The last step in the ANOV A calculation is known as pooling. The process of

ignoring a factor once it is deemed insignificant, called pooling is done by combining

the influence of the factor with that of the error tenn. A factor is pooled which has

small contribution (Compare S Values) by adding the sum of squares of non-

contributing factors. After one or more factors are pooled, ANOVA terms are

recalculated and new values for the error terms are established. With the revised
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error values, pure sums, F-ratios, and the percentage of contribution of each factor

can now be recalculated.

iv. Determining the Optimum Values. The final step of the methodology

employed involves: determine optimum values and run confirmatory test. Multi-

echelon supply chains consisting of many interacting parameters in each echelon are

difficult to optimise by direct mathematical techniques. The orthogonal arrays

technique seems an appropriate solution. Performance improvement of the system

occurs in two areas. First the average of the results will come closer to the target

(quality characteristics). The second element of improvement is expected in terms of

variation reduction of the distribution of results around the average. Finally, in order

to validate the findings a confirmatory test is carried out.

3.10. Summary

This chapter has presented the research methodlogy applied in this thesis. It

started with a discussion of research objectives and provided the justification of the

research methods used. The chapter then illustrated the research design, the research

tools employed, and highlighted the key stages involved in system dynamics

modeling ranging from problem articulation to policy design. Next, an introduction

to Taguchi Design of Experiments was provided. Finally, the techniques for

analysing the results involving main effects and interaction effects and analysis of

varaince (ANOV A) were explained.
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Chapter 4: The Four Tier Supply Chain Model; Initial Analysis of
Effects of Parameter Values

4.1. Introduction

This chapter presents a study of the elements of the four tier supply chain (beer

game) model and the initial analysis of the effects of its parameters. Different

analytical techniques have been used to investigate the beer game model but none of

these is fully satisfactory (White et aI, 2006). One of the most commonly applied

methodologies to study the various aspects of the beer game model is the control

theoretic approach, which focuses on linear modeling and involves the use of the

Laplace or z-Transfer Function in dealing with the complex differential equations

used in modeling the dynamics of the system (Sarimveis et ai, 2008). Control

strategies can be designed to achieve specific performance levels (e.g reducing the

bullwhip effect), but it is difficult to deal with the complex issues such as non-

linearities, stochastic behavior, adaptive control and multi-echelon systems related to

supply chain modeling (Agaran et al, 2007). However, control engineering

techniques are well established and can be used with simulation (White et ai, 2006).

System dynamic simulation is ideal for mapping complex interactions among design

parameters and for studying non-linear outputs through "What If' analysis.

Furthermore, control theoretic approaches can require an academically advanced

understanding of mathematics that most supply chain operations managers do not

have (Agaran et ai, 2007). In contrast, the use of system dynamic simulation methods

can help supply chain management practitioners to understand better the dynamics of

a supply chain and to examine the effects of its parameters' values.
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Most of the previous research into the effects of parameter values of production

control systems was focused on single echelons (John et all 1994, Riddalls et al

2002), whereas this thesis studies the effects on the dynamic performance of a whole

supply chain. Production and inventory control systems seldom exist in isolation, but

are connected in series and in parallel to form a complex supply chain. Significant

benefits can be gained by doing what is best for the overall supply chain rather than

what is best solely for the single echelon. Focusing on the design of a single echelon

in isolation without reference to the rest of the supply chain can lead to poor

performance overall. Riddalls et al (2000) also pointed out, "A sequence of locally

optimised systems cannot guarantee a global optimum. " Therefore, the whole supply

chain should be taken as a single entity and the best parameter values should be

derived with respect to the performance of the whole.

Previous studies of the effects of supply chain parameter values reported the

results of changing the value of one, or at most two, parameters at a time. The 'one-

at-a-time' approach reveals the effect of one parameter when combined with a

particular combination of values for the other parameters, but does not provide the

information for calculating the effects of the parameter when combined with any

other values for the other parameters, i.e. interactions. It is important to note that the

relationship between design parameters is causal, meaning that it is explicitly

recognized that changing the value of one parameter may lead to changes in the

effects of another parameter. Hence, Taguchi's Orthogonal Arrays technique, in

which levels of each factor are systematically varied to understand the effects of a

parameter across all possible combinations of values for the other parameters, IS

appropriate.
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Previous studies of supply chain dynamics have focused on deterministic

demand patterns. In reality demand is a stochastic process, so it is necessary to study

the effects of parameter values with stochastic demand processes. Furthermore,

Riddalls et al (2002) have pointed out that no rigorous sensitivity analysis of the

design parameters has been carried out on production and inventory control systems.

Hence, in this chapter sensitivity analysis of the design parameters on the dynamic

response of inventory and order rate has been carried out.

This thesis studies the efTect of the parameters of individual production and

inventory control systems on the dynamic performance of whole supply chains. It

introduces the application of Taguchi Design of Experiments in considering the

effects of varying more than one parameter value i.e. interactions, and it considers

the response to stochastic demand as well as the dynamic response to deterministic

changes in demand.

4.2. Model Description

Since World War II, many researchers have studied production and inventory

control systems and models have been developed to investigate various supply chain

phenomena. A commonly studied supply chain model is the beer distribution game,

which is a simplified but still realistic model with a supply chain consisting of a

retailer, a wholesaler, a distributor and a brewery/factory. The earliest description of

the game dates back to the work of Forrester (1961) in industrial dynamics. Sterman

(1989) developed a multi-echelon beer game and the fundamental control system

employed within it has been termed the Automatic Pipeline Inventory and Order

Based Production Control System (APIOBPCS) (Naim and Towill, 1995). A brief

literature review of the model was presented in Section 2.5. John et al (1994) define
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the Automatic Pipeline Inventory and Order Based Production Control System"

(APIOBPCS) by, "Let the production targets be equal to the sum of an exponentially

smoothed demand (over Ta time units) plus a fraction (1/ Ti) of the inventory error,

plus a fraction (1/ Tw) of the WIP error." It is important to note that in APIOBPCS,

the desired inventory is assumed constant. By incorporating a variable desired

inventory as a function of demand, APIOBPCS can be changed into the Automatic

Pipeline Variable Inventory and Order Based Production Control System

(APVIOBPCS) shown in block diagram form in Figure 4.1. The variable inventory

enables the modelling of supply chains where it is necessary to update the "inventory

cover" over time (Disney and Towill, 2005). As the block diagram shows,

APVIOBPCS has four design parameters n, Ta, Ti and Tw and one system parameter

to model the production delay Tp. Where, n is an inventory cover which determines

the amount of inventory required to obtain the desired service level. The inclusion of

an inventory feedback loop equates to a "make to stock" strategy and the inclusion of

the sales feed forward loop equates to a "make to order" strategy. Combining these

two is representative of typical practice in industry.

Sales Feed rorwerc ElI:pon8nlirli Srnr.lrothlflg SALESr---~--~~~~~tJW~'t~hA~IP~ha~~itl~Td~+----l

Pipeline Feedback

Inventory Feedback

Figure 4.1. Block Diagram of Single Echelon of APVIOBPCS Model
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4.2.1. Production Delay (Tp)

In the APVIOBPCS model the process (such as a factory) at the core of a tier is

called the production delay and is denoted by Tp; the delay between the placement of

the orders and their receipt in the inventory. From a mathematical point of view,

there are different types of delays applied in production and inventory control

models. The simple pure time delay, i.e. COMRA TEt+Tp = ORA TEt is a good

approximation of the real world production lead time (Disney et al., 2000) and is

easy to implement in simulation. However, mathematical approaches are less

amenable to dealing with pure delays as they introduce non-linear behavior (Riddalls

and Bennet, 2002). In this thesis the pure time delay is modeled and simulated in

iThink.

Figures 4.2.a and 4.2.b show the impact of Tp on the actual inventory and order

rate of a single echelon of the supply chain model studied after a step change in

demand. Figure 4.2.a shows that smaller lead times reduce the maximum inventory

deficit and recovery is much quicker, so by reducing lead times companies can

minimize their safety stock requirements. Figure 4.2.b shows that smaller lead times

create a smaller overshoot in order rate in response to a pure step change in demand.

This means that by decreasing lead times companies can reduce their capacity

requirements.
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4.2.2. Demand Policy (Ta)

Allowing demand to be used for scheduling without some form of smoothing

always results in excessive fluctuations in production rates (Stalk and Haut, 1990).

Therefore, demand needs to be smoothed before applying it for scheduling. There are

many methods of smoothing the demand, In the APVIOBPCS model simple

Exponential Smoothing is used, It is the function of previously calculated demand

and is weighted towards recent demand values. In iThink the built-in function

SMTHI calculates the first order exponential smoothed value. In SMTH1, the value

of the smoothing constant, denoted as Ta, represents the time to average sales and

determines the average age of data in the forecast. The value of Ta determines the

degree of smoothing applied to the demand.

1
SSALES! = SSALESH + Ta (SALES! - SSALESt_l) (4.1)

The step-response of the inventory in Figure 4.3.a shows that when Ta

decreases the response is quicker, displaying a reduced peak deficit, rise time and
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settling time. However, decreasing Ta produces poorer filtering properties, i.e. the

smoothing is 'lighter' so that the higher-frequency or 'noise' components of the

demand signal are allowed through. Figure 4.3.b shows that when Ta increases, the

rise time and the settling time of the order rate increase but the magnitude of the

overshoot decreases. This illustrates the general system dynamics compromise

between speed of response and the size of overshoots or over-reactions.

o 10 20 30 40 50 60
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Figure 4.3.a. Impact ofTa on Inventory

140

-Ta=2

----Ta=51

.....~a=~1

l00~--------------~--~
o 10 20 30

Weeks

Figure 4,3,b, Impact of Ta on Order Rate
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4.2.3. The Inventory Policy (Ti)

The actual inventory levels of the system are the accumulated sum of the

difference between the production completion rate and the actual sales. The

mathematical equation describing the actual inventory position is:

AINV, = AINV,_, +COMRA TE, - SALES, (4.2)

where COMRATEI = ORATE'_TP An important component to control the

production rate in the automatic pipeline variable inventory and production control

system is the feedback loop of the error in the inventory. The Error in the Inventory
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(EINV) is the difference between the Desired Inventory (DINV) and the Actual

Inventory (AINV). In the model presented here, DINV is made adaptive by being set

equal to n-weeks of smoothed sales:

DINVt = SSALESt * n (4.3)

In the experiments presented in this thesis n=l. Ti is a divisor applied to the

inventory deficit and controls the rate at which discrepancies between the desired and

actual inventory levels are recovered, i.e. the error in the inventory (EINV):

EINV = DINVt - AINVt

t Ti (4.4)

Forrester (1961) refers to 1 / Ti as the "Recovery Adjustment Time" and proposes not

to recover the error in the inventory in just one time period. Instead, recovery should

be spread over Ti units of time. This is more representative of normal industrial

practice where, following a surge in demand, their will be a staged replenishment of

the inventory, i.e. production targets should not be set to recover the entire inventory

deficit in a single period. The question then arises how much of the inventory

discrepancy should be corrected each time period, i.e. what should be the value of

Ti? The step responses in Figure 4.4.a show that increasing Ti increases the

maximum deficit, the time to rise back to the desired level and the settling time of the

actual inventory. Reducing Ti reduces the maximum inventory deficit, although not

a great deal, whilst the recovery time, in contrast, is much reduced. The negative

aspect of smaller values of Ti is that they can lead to oscillatory behavior; this is seen

later in this chapter in the simulation results.
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Figure 4.4.b shows that reducing the value ofTi has the typically undesirable

effect of increasing the peak overshoot of the order rate, i.e. there is an over-reaction.

Lean manufacturing systems, for example, require a leveled demand rather than one

with large fluctuations. The magnitudes of the anticipated overshoots of the order

rate determine the capacity requirements. If there are to be large peaks in the required

order rate, then the capacity requirements will be greatly increased; extra capacity

that most of the time will be underutilized. However, rapid recovery of the inventory

can be valuable in situations where further increases in demand may cause stock-out

and stock-out is highly penalized. So in setting Ti there is a compromise to be made

between the speed of the inventory recovery and the amount of capacity required to

meet the order rate.
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4.2.4. The pipeline policy (Tw)

Sterman (1989) pointed out that poor understanding of the process pipeline (by

operations managers), which is the delay between orders being placed and their

receipt into the inventory, always disturbs the performance of the system. Hence

adding a Work in Progress (WIP) feedback loop results in better pipeline control.

The Work in Progress (WIP) is the accumulation of orders that have been placed on
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the factory but not yet completed. The main advantage of WIP feedback is that any

changes or disturbances, such as machine breakdowns, in the process pipeline are

compensated for. In other words, if the pipeline becomes clogged up, the use does

not keep turning up the order rate to achieve the desired output. John et al (1994)

stated that the incorporation of WIP information into a production control system

enables a more stable but faster response. In the model, WIP is simulated by the

equation:

WIPr = WIPr_1 +ORATEr -COMRATEr (4.5)

The Error in the Work in Progress (EWIP) is the difference between the Desired

Work in Progress (DWIP) and the Actual WIP. DWIP is set as the product of

smoothed sales and Tp. The actual work in progress is the sum of the difference

between the order rate and completion rate:

DWIPr = SSALESr *Tp' (4.6)

In the WIP feedback loop, EWIP is divided by Tw to control the time taken to adjust

any error in the WIP in the same way and for the same reason that EINV is divided

byTi:

W
DWIPr - WIPrE IP = _ _____c'----_...!...

r Tw (4.7)

Figure 4.5.a shows that Tw has very little effect on the peak deficit in the

inventory. However, increasing the value of Tw makes the response faster, reducing

both the rise time of the inventory and the time to reach the steady state. Figure 4.5.b

shows that increasing Tw increases the magnitude of the overshoot of the order rate
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but with little benefit otherwise. So when setting the value of Tw, there is the usual

systems dynamics compromise to be made between the speed of reaction and the size

of the overshoot, as seen in the speed of recovery of the actual inventory (increased

by increasing Tw) and the peak overshoot of the order rate (decreased by decreasing

Tw).
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4.2.5 Impact of Tp and Tp' on Inventory

In practice the determination of accurate data for WIP is more difficult than for

inventories as WIP may be spread all over a factory or other facility whilst inventory

is held in a few specific locations, e.g. the goods-out area (Taylor, 1999).

APVIOBPCS production and inventory control system requires an estimate of

delivery lead time before generating orders. However, with the advent of new

technologies such as barcode scanners and RFID, this data acquisition is becoming

much easier and more accurate for both. For a stable and robust system, the

estimated pipeline delay should always be kept equal to the actual (current)

production delay. Failing to match estimated WIP with actual WIP leads to the

inventory drift problem (Disney and Towill, 2005). Inventory drift describes the
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situation where inventory never locks onto the target level after a step change in

demand. The main factor in failing to do this is failure in matching the lead time. If

the estimated pipeline delay is not equal to the actual production delay then positive

or negative inventory offset will occur. Figure 4.6 shows the impact of estimated

pipeline delay (Tp') where actual production delay (Tp) is 6 weeks. If the estimated

pipeline delay is less than the actual production delay then the EWIP decreases over

time and inventory never recovers to the desired level. This decrease in EWIP results

in negative inventory offset. If the estimated pipeline lead time is greater than the

actual production delay, EWIP increases, which causes positive inventory offset.

Inventory reverts to the desired level when the error between the estimated pipeline

delay and the actual production delay is zero. There is little effect of the lead time

variations on the order rate. When the estimated pipeline delay is greater then the

actual production delay then the magnitude of the order rate overshoot increases and

vice versa.
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4.3 Impact of Information Sharing on the Order Rate and Inventory

In this section, we will show that in a multi echelon supply chain, it is very

beneficial to share end-customer demand information throughout the chain. The

value of sharing information between echelons (information sharing) has been

discussed by many authors, e.g. (Jones et aI., 1997), (Lee et aI., 2000), (Li et al.,

2005) and (Fiala, 2005). The rise of the Internet has made global information sharing

easy, low cost and fast. In principle, the information that can be shared includes

inventory levels, sales data, demand forecasts, the status of orders, product planning,

logistics and production schedules and can be grouped into three types: product

information; customer demand information; inventory information (Lee and Wang,

2000).

In this thesis the sharing of customer demand information is first studied by

comparing the performance of a supply chain with and without such information

sharing. The basic, non-information-sharing supply chain is the four echelons, beer

game model without information sharing and is constructed by joining together four

APVIOBPCSs. The retailer observes end-customer demand and upstream tiers take

as their demand the incoming orders from their previous tier as shown in the block

diagram in Figure 4.7 and the equivalent iThink model diagram in Figure 4.8. In the

information enriched version of the supply chain model, the retailer shares end-

customer demand (perhaps EPOS data) with the upstream tiers so that they base their

order rate on the end-customer demand and the incoming orders from their previous

tier as shown in the block diagram in Figure 4.9 and the i'Ihink model in Figure 4.10.

In order to lessen the impacts of spikes in customer demand and to avoid ramping

production up and down, which offers no benefits, customer demand is smoothed

before sharing.

69



Glossar~ of Terms

p.m .ActU81~yeriory

OM' Desired ~veriory

ElNi' Error of ~yertl1Y

ORATE Order Rie

CO~TE Co~MRie

~p \\M1lF\'cgess

ClNIP Desired WJrI WIF\'ogress

ElMP ErrCfof W:rh PrCl,1ess

~rfdS~

Ti Tilre to A~ meliory

Ta Tilre to Average Sales ,i.e.
E~ooen!iaI Smoothilg Paraireler

Tw Tilre to A~ Work n PrCl,1ess

Tp ktuaI Mmfmg or
TrrJS!Xrl1fuJ Delay

Estimied ~re De~

Pi~eline Feedbac~

P4 Tne Facto~

Pi~eline FeedbacK

Figure47. BlockDiagram 01 Mul~·EcnelonSu~ply Cnain

70



To1

THE RETAILER

THE WAREHOUSE

Ta 4

THE MANUFACTURER
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To combine the end-customer demand and the incoming orders from the

previous tier in the supply chain, a simple weighted sum is used here. The weights

must add to 100% (when expressed as a percentage) so that they do not distort the

underlying demand value. The percentage applied to the end-customer demand is

called the Information Enrichment Percentage (lEP). With full information

enrichment (IEP = 100 %) a tier bases production on the end-customer demand,

whilst no information enrichment (IEP = 0 %) means production is based on the

incoming orders from the previous tier. Production can be based on a combination

with IEP% of end-customer demand plus (100 - IEP)% of incoming orders from the

previous tier; in the iThink model these percentages are referred to as IEP 1 and IEP2

respectively. Five levels of information enrichment (IEP = 0 %, 25 %, 50 %, 75 %,

and 100 %) are simulated. The tier that is furthest from the end-customer demand

faces the worst impact of demand amplification. Hence, the impacts of information

sharing on the dynamic response of the inventory and the order rate of the factory at

the 4th tier are studied here.

Figure 4.11.a shows the extremely beneficial impact of information enrichment

on the dynamic response of the order rate of the factory after a 20% pure step

increase in demand. Information sharing yields a smaller initial overshoot and much

dampened oscillatory behavior. The order rate of the 100% enriched factory begins

to rise in week 2 while the order rate of 0% enriched factory does not start to rise

until week 4; showing that information sharing speeds you the response as there is no

delay due to having to propagate the signal through the supply chain. The additional

2 week delay equates to the 2 intervening echelons of the supply chain and with more

layers this delay would grow. The dangers of slow information propagation are

outlined by Stalk and Hout (1990), "Once iriformation ages. it loses value. The only
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way out of this disjointed supply chain system between companies is to compress

information time so that the information circulating through the system is fresh and

meaning/ill ".

Figure 4.11.b shows the effect of information sharing on the dynamic response

of the inventory of the factory. The initial peak deficit in the inventory is greatly

reduced as IEP is increased with 100% IEP reducing the deficit by approximately

30%. There is an even more substantial reduction in the subsequent, overstocking

peak of approximately 75%. In essence, the magnitude of the reaction is reduced.

However, one downside of this is that the inventory is slower to climb out of the

deficit. This longer rise time means that there is a longer period during which there is

a backlog in satisfying orders and a higher risk of more stock-out (poor customer

service) should the demand rise again. What is seen, once again, is the systems

dynamics compromise between the speed of response and the size of overshoots or

over-reactions, although in this case the reduction in the size of the overshoot is most

dramatic.

In the beer game model, the end-customer demand is distorted by each

successive tier in the chain. However, in an information enriched supply chain each

tier can base its forecast on the true end-customer demand. The sharing of real

customer demand directly removes the problem of distortion and amplification which

in tum improves the dynamic performance of the whole supply chain. In the example

in Figure 4.11.a, 100% enrichment results in a 55% reduction in the overshoot of the

order rate at the factory. This effect on the order rate would be extremely beneficial

to a manufacturing business as very large fluctuations in order rate are met by costly

over-capacity, buffer stocks or reduced service levels. However, even with
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information sharing, there is still much room for improving the dynamic performance

by tuning the design parameters of the control system, especially Ta and/or Ti.
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Mason-Jones and Towill (1997) also used simulation to study the impact of

information sharing on the order rate and stock level of the factory in the

APIOBPCS. They found that IEP=75 % provides the best dynamic response. Their

argument is that 75% gives a good (best) compromise between reducing the

magnitude of peaks and troughs in the response whilst still giving a fast response: the

systems dynamics compromise.

In terms of order rate, Figure 4.11.a shows that that as the percentage of

enrichment increases the amplification and response time of the order rate decreases.

So it can be concluded that increasing the percentage of information enrichment,

decreases the bullwhip effect. Hence, in terms of bullwhip effect reduction across the

multi-echelon supply chain 100% enrichment should be preferred. The Mason-Jones

and Towill (1997) hypothesis is based on a supply chain model with no capacity

constraints. It is also reasonable to think that production and distribution are ill
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reality capacity constrained and it may not be possible to increase activity levels to

cope with peak demand, even if it is possible to do it; sometimes cost would be so

high that it is not an acceptable solution. Overshoot of the order rate determines the

capacity requirements. Greater the overshoot the more capacity is needed. In such

scenario, increasing the percentage of information enrichment (100 % IEP) to further

damp down the magnitude of order rate overshoot seems appropriate solution.

The objective of the Beer Game Model is to minimize the backlog and the

holding cost of the inventory (Sterman, 1989). Backlog costs twice as much as the

holding cost and sometimes ten times of the holding cost. From the figure 4.II.b, it

can be seen that increasing the percentage of information sharing decreases the peak

inventory deficit and makes the recover quicker. The peak of the deficit and the

recovery time determines the back log cost of the supply chain. Further, the

maximum deficit of the inventory determines the safety stock requirements of the

company. The bigger deficit requires more safety stock to maintain the desired

customer service level. 100 % enrichment reduces the peak deficit of the inventory

and makes recovery quicker as compared to 75 % enrichment. Hence, in terms of

safety stock reduction and the minimization of the backlog cost hundred percent

enrichment should be preferred. Information enrichment reduces the surplus

inventory level by damping the peaks of the overshoot of the inventory. Surplus

inventory is always an excessive stock which adds to the holding cost. For

minimizing the holding cost, 100 % enrichment should be the better solution.

The downside of information sharing is that it increases the rise time of the

inventory. Rise time determines the stock out period and affects the customer service

level. Whilst the large reduction in the peak inventory deficit is a good thing, there is

a longer rise time to replenish the inventory up to the desired level, causing a greater
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period during which there is a risk of stock-out if any other increases in demand or

other supply problems occur. In general, the 75% enriched model performs best for

the rise time of the inventory as found by Jones et al (1997 ), but this is not a strict

rule that can be applied in every supply chain, because in some situations the

damping of the undershoot and overshoot levels and quicker recovery are more

important than the rise time.

4.4 Initial Analysis of the Combined Effects of Parameters

4.4.1 Introduction

The previous sections presented a study of the effects of individual parameters

of the echelons on the dynamic response of the supply chain. The next step is to

investigate the effects of more than one parameter changing and the stability

properties of the multi-echelon supply chain; some parameter value combinations

will interact to give unstable performance. It is normally believed that better

performance can be gained by reducing time delays in the supply chain and this is

not disputed here. However, better performance can also be obtained by carefully

selecting the values of the design parameters of the echelons and the supply chain,

i.e. tuning the control system. This is a low cost and immediately implemented

solution as the physical processes are not altered.

4.4.2 Review of Results in the Literature

The two main design objectives for the robust production and inventory control

system are good inventory recovery and attenuation of demand rate fluctuation on

the ordering rate (Sarimveis et al., 2008). However, these performance objectives can

be conflicting. A trade-off between good inventory recovery and fine rejection of
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random demand disturbances needs to be explored. To do this, the performance

measures discussed above coupled with graphical techniques are used to investigate

the impact of design parameters on the performance of the system. Sterman (1987)

assumed, through his beer game model, that Tw ~ Ti, because managers always put

more emphasis on their inventory levels than the pipeline. Sterman argues this is

reasonable since inventory discrepancies are much more immediately apparent to

managers than the variances in the pipeline. John et al (1994) found that for a

deterministic input in a single echelon of the APIOBPCS model, Ti = Tp,

Tw=Ta=2Tp is a 'good' design. This setting was derived using classical control

theory and simulation. This combination avoids unnecessary fluctuations in the

inventory and order rate whilst the recovery time is not excessively long. Mason-

Jones et al. (1997) explored parameter settings for pipeline feedback that ensures

good control of material flow in a four echelon supply chain. They found that the

setting of the design parameters for inventory, pipeline, and forecasting is directly

related to the production or process lead time. They found that Ti = Tp = Tw and Ta

= 2 Tp are the best settings for the four echelon beer game model. Disney et al.

(1997) used Laplace-transform transfer-functions and simulation and in order to

achieve a trade-off between controlling the bullwhip effect and inventory variances,

they proposed that Ti = 4, Tw = 15, Ta = 8 is a good design. Riddalls and Bennett

(2002) studied the stability boundaries of a single echelon of the APIOBPCS with a

pure time delay to model the production delay. Most notably, they found that the

ratio of Ti to Tw plays the most important role in determining stability; for good

dynamic behaviour (swift response, no overshoot, small inventory discrepancy, non-

oscillatory behaviour) systems with Ti = Tw behave best and are most stable, i.e.

furthest from instability. This finding confirmed the similar earlier finding of
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Sterman (1989). Riddal1s and Bennett concluded that, "it is important to make

inventory and WIP adjustments in similar proportions, otherwise one will overcorrect

for the other, leading to oscillations." They showed how small increases in Tw,

relative to Ti result in much poorer responses in the sense of greater oscillations.

They also emphasised that larger values of Ti are undesirable as they lead to slower

responses and larger inventory depletion.

4.4.3 Dimensions of the Step Response

Before proceeding to present the initial simulation results of the response of the

system to a step change in demand, consideration needs to be given to the features of

the step response that are to be studied.

The Inventory Response

To measure performance in respect of controlling or recovering the inventory levels

in response to changes in demand, the following inventory impact dimensions are

used here (illustrated in Figure 4.12.a):

i. Maximum Inventory Deficit. Following a step increase in demand there

is always an initial drop in the inventory level which is called the 'peak or maximum

inventory deficit'. It reflects the ability of the echelon to satisfy orders through safety

stock and is a fundamentally important measure of performance.

ii. The duration of deficit. After an initial drop in the inventory level due to

a step increase in demand, the inventory always takes time to return to the desired

level. This is called the duration of deficit and is associated with the stock out period.

During periods of deficit customers are not being supplied immediately from stock
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so that customer service levels are reduced. When the response of the inventory is

oscillatory, the tlrst deficit period is used for the measurement.

iii. Maximum surplus inventory. Following the above deficit there may be

an over-reaction in the recovery. The first peak or maximum surplus is measured as

the difference between the peak of the actual inventory and the desired level. It may

be expressed as a percentage of the desired level.

iv. Settling time. The time to recover is the measure of the time when the

inventory level settles back at the desired level. Due to the mathematics of the supply

chain model it takes a protracted time for the inventory level to settle down to exactly

the desired value (error = 0). As a consequence, a more meaningful measure is the

time for the inventory level to settle within a small percentage of the desired value

e.g. ± 1 % to ± 5 %. Like Rice et al (2005), in this thesis the ± 3 % (compromise)

criterion is used.

v. Integral of Time multiplied by Absolute Error (ITAE). The ITAE is a

standard, widely used measure in (Engineering) Control Theory and System

Dynamics. It is the integral of (absolute area underneath) the inventory response

multiplied by time and was originally developed by Graham and Lathrope (1953). It

penalizes both over and under stocking equally and the time weighting factor

penalizes errors of long duration. ITAE is a measure of the total fluctuation in the

inventory response and therefore the amount of inventory that needs to be held in

order to cope with step increases in demand. A smaller value of ITAE implies that

less buffer stock is required and vice versa. Hence ITAE can be considered as a

'surrogate' for an inventory cost metric and is a useful measure of the inventory

recovery (Disney and Towill, 2002). The principle is that the smaller the ITAE value

the better. In discrete form, ITAE is calculated as follows:
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ITAE AINV (4.8)

where n is the time period and En is the error in the inventory at time n, measured as

the difference between the actual inventory level and the desired inventory level.

The simpler Integral of Absolute Error (IAE) could be used without the time

weighting (n), but it is generally viewed as being inferior to the ITAE which gives

greater weighting to the errors occurring longer after the initial change in demand,

thereby highlighting responses with a protracted settling time or extended oscillatory

behavior as well as those with large initial peaks or troughs.

The Order Rate Response

To measure performance in respect of controlling or recovering the order rate in

response to changes in demand, the following order rate impact dimensions are used

in this research (illustrated in Figure 4.12.b):

i. Rise time. This is the time to reach the desired order rate for the first time

following a change in demand and is a measure of the 'speed' of the response.

However, this may be followed by a large overshoot and possibly oscillatory

behaviour during a settling period. Whilst faster rise times may be desirable, they

produce undesirable, larger overshoots and oscillatory behavior, so the usual systems

dynamics compromise is required.

ii. Peak time. This is the time at which the step response reaches its first

maximum peak value and is related to the rise time.

iii. Peak order rate. This is the magnitude of the maximum or peak order

rate seen in the response to a step change in demand. The maximum order rate

determines the maximum capacity required and the maximum 'stress' placed on the
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system. It also indicates how 'dynamic' the capacity must be in satisfying the order

rate. Large peaks in the order rate are the manifestation of demand amplification.

iv. Settling Time. As for the inventory level, the ± 3 % criteria are applied.

v. ITAE. This is as described for the inventory level. Generally, factories and

other echelons want a smooth order rate that achieves its steady state as soon as

possible without too much overshooting and oscillation so that they can plan and

utilize capacity more effectively. In general, the smaller the ITAE the better the

response in this respect.
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4.4.4 The Step Response Experiments

Previous studies of the effects of supply chain parameters reported the results

of changing the value of one or at most two variables at a time. In this thesis,

Taguchi Design of Experiments is introduced to analyze a range of parameter values

and their interactions, but without having to run an experiment for every

combination. This form of analysis is introduced in the following Chapter 5, where

Taguchi Design of Experiments and analysis of variance techniques are applied to

many sampled responses measured using a single measure of the bullwhip effect.

This becomes a somewhat abstract form of analysis in which the actual time-domain

response curves are not studied directly 'by eye'. In general, there are too many

complex responses for the human brain to analyze without consolidating measures,

such as the bullwhip measure, and a systematic method of analysis, such as Taguchi

Design of Experiments and analysis of variance. However, the remainder of this

chapter does perform a more direct and rudimentary analysis of the effects on the

dynamic performance of the 4th tier of the supply chain (as in the previous section) of

changing more than one parameter value to gain a direct, 'visual' understanding of

what is happening to the responses before proceeding to the more abstract and

consolidated perspective seen in Chapter 5.

There are countless potential combinations of meaningful parameter values and

this is why Taguchi Design of Experiments is introduced in Chapter 5. In the

preliminary analysis presented here, orthogonal arrays of parameter values of the

form used in Taguchi Design of Experiments are used to select a representative

sample of parameter value combinations, to explore the stability boundaries of the

. he ' , ti th 4th tisupply cham at t e worst-case ier, e ier.
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Three factors are considered, Ti, Tw and Ta at four levels as defined in Table

4.1. The appropriate orthogonal arrays of experiments are the LI6 arrays in Table 4.2

where the columns are mutually orthogonal.

Factors Level1 Level2 Level3 Level4 Experimental Run Ti Tw Ta

Ti 4 10

Table 4,1, Parameters and their Levels

10

10
11

12
12 13

1.

15

18

Table 4,2, L16 Arrays

Tw

Ta

The test signal is a 20 % step increase in demand from 100 to 120 per week

and the simulation is run for 100 weeks as this is enough to capture most of the

steady-state responses. Those that go beyond this are simply regarded as 'very long'

and unacceptable (well into the region of unacceptable parameter values), although

care is taken to check that they do indeed settle on target. A deterministic step input

evaluates the system's ability to cope with sudden but maintained change. The

response to a step change in demand is of importance not only because it gives a

shock to the system but additionally it is an input that is easily visualized and reveals

the basic dynamic characteristics of the system (Bonney et aI., 1994), (John et al.,

1994).

The order rate and inventory step responses for the sixteen different

combinations of design parameters are given in Figures 4.13 a-d and Table 4.3. The
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responses have been divided into two distinct groups. The first group (Figures 4.13 a-

b) comprises responses that are clearly stable, without highly oscillatory behavior or

large peak overshoots that could be described as over-reaction. The second group

does display this excessive over- reaction in its peak responses and possibly

oscillatory behavior, i.e. the responses are tending towards instability and are

certainly unacceptable for the management of the inventory and production control

system.
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The second group comprises experiments 1-4 and 7-9 and Table 4.2 shows that

they use small values for Ti, i.e. Ti = 4 or 6, with the exception of experiment 9 for

which Ti=8. In general, it is well understood in control engineering that oscillatory

behavior, leading to instability or over-reaction, can be introduced by feedback

loops. With the small values of Ti the feedback of the error in the inventory has a

greater effect as EINVt = (DINVt-AINVt)/Ti is larger, i.e. there is an increased gain

in the loop and this provides an explanation for the over-reaction and oscillatory

behavior seen in the second group. Experiments 5 and 6 do not experience such

behavior, so it can be deduced that the particular values of the other parameters

counteract and control this effect. This leads to the general finding that small values

of Ti can produce feedback that is too lively unless tempered by suitable values of

the other parameters. In stark contrast, experiments 5 and 6 actually produce

particularly good results with relatively small ITAE values, two of the smaller

maximum inventory deficit and maximum order rate values and middling values for

. their duration of deficit and rise time, i.e. they yield a very good compromise.

Experiment 6 actually satisfies the conditions for the best settings found by Mason-

Jones et al. (1997); Tp = Ti, Ti = Tw, and Ta = 2 Tp.

Experiment 9 has Ti=8 and the other experiments with this value do not fall

into the second group. It is noted that the other parameter values for experiment 9 are

the lowest levels, i.e. Tw = 4 and Ta = 2 and this once again gives an explanation for

the over-reaction type behavior seen based on the argument that they are creating

strong or higher gain feedback loops. The responses for experiment 9 are somewhat

different to the others in the second group as the maximum magnitude of the

oscillations in the inventory are much lower and much closer to those seen in the first

group. The oscillatory behavior aside, experiment 9 yields one of the best step
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responses overall with Table 4.3 showing that across all 16 experiments it has the

best (smallest) ITAE for the inventory, the 3rd best ITAE for the order rate and

relatively very short rise time and duration of deficit.

The first group of responses displays much lower ITAE values and maxima in

their responses, and less behavior of an oscillatory nature, in other words, smaller

over-reaction and therefore tendency towards stability. However, experiment 13 can

be viewed as going too far in this direction, resulting in too slow a response with an

extremely long duration of deficit and a very late peak order rate time. Experiment

14 is also wandering out in this direction. In general, with the exception of the slower

experiment 13 and perhaps 14, the first group of experiments, plus possibly

experiment 9 from the second group, is beginning to define the boundaries of

acceptable and highly stable performance and therefore the region of acceptable

control system parameters. The question of experiment 9's inclusion is considered

later when studying the stochastic response.

Experiments 5 and 6 illustrate the general systems dynamics or engineering

principle that high feedback gain systems can soon move from good fast behavior

towards instability with changes in parameter values i.e. there is high sensitivity. On

the other hand, slower systems produce more robustly stable responses but at the cost

of tending towards being too slow, as seen in experiments 13 and 14, which endorse

the finding of Riddalls and Bennett (2002) that larger values of Ti are undesirable as

they lead to slower responses and larger inventory depletion.

According to the ITAE criteria, experiments 15, 9 and 10 are the best in that

order. Experiment 15 has the lowest ITAE for the order rate and the 2nd lowest for

the inventory. Figure 4.13.a shows that experiment 15 does indeed have one of the

best inventory responses as it is very fast but without excessive overshoots compared

92



to the rest of the first group. However, Figure 4.13.b shows that the order rate,

although fast to rise and return close to the target, has a relatively large peak

overshoot. This very large peak would be most undesirable in a typical real-world

production control situation. Much better order rate responses are clearly achieved in

experiment 5, which still has a relatively low ITAE, but only the 5th lowest. It could

be argued that experiments 10 and 16 give the best compromise as they lie between 5

and 15. Generally, the results demonstrate that ITAE must not be used on its own in

selecting parameter values for a production control system. Large, but not excessive,

peak overshoots are not typically so undesirable in electrical and electro-mechanical

engineering and the usual world of 'hard systems' control engineering, from where

ITAE has been adopted as a measure of performance. This is a most notable

difference between the requirements of production control and typical hard-systems

control. Lean manufacturing and the efficient utilization of expensive manufacturing

resources is predicated on demand leveling rather than the large peaks in control

signals seen in the control of electro-mechanical systems with, possibly, high levels

of inertia. Human beings cannot produce twice as much immediately, whereas an

electrical motor can be expected to respond to large increases in electric current.

The finding of Riddalls and Bennett (2002) that Ti = Tw produces the best, or

at least 'good' responses is partially borne out here. When Ti=Tw=4, i.e. small, the

response is of the unsatisfactory type in the second group (experiment 1). However,

for larger values the Ti = Tw condition does produce good results (experiments 6, 11,

16) in respect of all the measures. Looking at the results it is primarily when Ti is

small that the system over-reacts and tends towards instability (see experiments 1-4

and 7-8). In contrast, when Tw is small the other parameters are more able to

compensate (see experiments 5 and 13). So a rider should be added to the original
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finding that Ti = Tw produces good results provided that this is not over-ridden by

too much gain in the inventory feedback loop, i.e. provided that lITi is not too large,

resulting in over-reaction tending towards instability.

4.4.5 Response to Stochastic SALES

A production control system must respond quickly to real, deterministic

change whilst not over-reacting to the stochastic components of demand. This is a

standard control system paradox. If one considers the exponential smoothing, the

noise or high-frequency component of demand is increasingly filtered out by

decreasing a (increasing Ta) but the smoother will be slower to respond to real,

deterministic change such as a pure step change in demand. If the smoother is made

to respond faster by increasing a (decreasing Ta) then the noise will not be so

heavily smoothed.

To study the effects of the parameter values on the response to stochastic

demand, a customer demand that is a normally distributed, stationary stochastic I.I.D.

process with a known mean, IJ., and variance ci is simulated. It is assumed that a is

significantly smaller than u, so that the probability of negative demand is negligible

(Lee et al., 1997). In the experiments conducted here J.l=100/weekand cr2 =20. The

results are the average of 30 simulation runs of the model, each of 300 weeks.

The APVIOBPCS parameter values are the same as those used in the step

response experiments, giving a further 16 experiments.

Selecting a best parameter setting for a stochastic SALES pattern is difficult

and unreliable (Mason-Jones et al., 1997); what is best in respect of the step response

or other deterministic change in demand is not necessarily the best in respect of the

response to stochastic changes in demand. As mentioned before, production-
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distribution systems need a fairly level demand in order to mimrmze capacity

requirements, fully utilize the available capacity and to be able to plan effectively

etc. Therefore, it is the variance of the order rate and inventory responses that are

measured in the experiments and presented in Table 4.4. Figures 4.14.a-b illustrate

the two worst and the two best stochastic responses from the 16 experiments. They

shows very clearly the enormous difference in performance caused by changing the

parameter values.

Experimental Run Order Rate Variance Actual Inventory Variance
Tier 1 Tier4 Tier 1 Tier4

1 1218 89711 5076 711085
2 515 68609 6052 1417288
3 318 53267 5463 1269797
4 266 70398 6337 1572570
5 170 369 3683 16577
6 116 412 4066 21658
7 665 17961 4881 318041
8 326 14733 4957 343654
9 953 42730 4089 149736
10 270 1147 3959 31919
11 134 622 3744 25398
12 100 610 4078 26710
13 76 67 3356 6582
14 104 206 3605 9918
15 507 3609 3830 49893
16 208 1137 3957 31910

Table 4.4. Resu~s of L16 Arrays
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Table 4.4 shows the marked variation in the variances at Tier 4 (Tier 1 is

discussed later) across the 16 experiments and, as one might expect, the highest

variances are recorded by the second group of experiments i.e. for parameter values

that lead to over-reaction tending towards instability. The variances are extremely

large, both in absolute terms and when compared with the results obtained by the

first group. This leads to the conclusion that the second group simply defines an

unacceptable region of parameter values. It should be noted that whilst experiment 9

gave a good ITAE result for the step response and might have been placed in the first

group of responses in respect of being acceptable, experiment 9 clearly gives a poor

stochastic response and so rests firmly in the second group, although it is still much

better than the others in the group.

Within the first group, the ranking of the results, starting with the best or lowest

variance is 13, 14,5,6, 12, 11, 16, 10, 15.As experiments 13 and 14 produced a very

slow step response, too slow indeed, the low variance in the stochastic response is to

be expected. However, as the step response was clearly too slow, the corresponding

parameter values are not acceptable even though they produce the 'best' suppression

of stochastic demand i.e. this setting is too resistant to change, it exhibits too much

inertia. Turning to the next two experiments 5 and 6, these produced particularly

good results for the step response also, so that overall they appear to represent a very

good set of parameter values, and arguably the best. Significantly, experiment 6

satisfies the previously discussed condition Ti = Tw, whilst experiment 5, which has

the slightly better results, is close to this condition suggesting that the condition

should be Tie'Iw rather than the more strict condition. Riddalls and Bennett (2002)

did allude to this in defining the condition that does not lead to oscillation.
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Experiment 6 also satisfies the narrower condition Ti = Tw = Tp and Ta = 2Tp

reported by Mason-Jones at al. (1997) as the condition that gives the best results.

It is noted that a fundamental purpose of Ta and the exponential smoothing of

SALES is to protect the system from stochastic variation and sudden sharp increases

in demand, with the largest value producing the 'heaviest' smoothing. The largest

value is Ta=12 as used in experiments 4,6, 12 and 13. Experiment 13 does indeed

produce the smallest variance and experiments 6 and 12 also produce very small

variances. However, it is noted that experiment 4 (smallest Ti) produces by far the

largest variance and this is extremely large, demonstrating the importance of the

other parameters in determining the stochastic response, for example, sales

smoothing does not compensate for high gain in the inventory feedback (small Ti).

3000

..-..
"¢

co
ID 1500
.c:

~._.,.
e-o
C
~
cu
:::::J
1:5«

-1500

-3000

o

" Expt4
Expt 2 fIV

fI ~
...........

A
~ Expt 13 n f\

~n ~ ~ ~ (
~

~~I>I'- v v.,
V ,.._, r---.v

~

r-- "'- t;L I"-
\ l~
I" V ~ \

Expt14 V ~
~ \~ V VV

:1 ..1. Jo 100 150
Weeks

Figure 4.14.a. stochastic response of AINV 4

30050 200 250

97



1500 ,-------------------------------------------------~

Expt 1
...-..1000
v
co
Q)
.c
t1l.__.,

'-
Q)

"Eo

-1000 +-------~------~--------~------,-------~------~
o 50 200 250 300100 150

Weeks
Figure 4.14.b. stochastic response of ORATE 4

4.4.6 Comparison of Tier 1 and Tier 4 Step Responses

The step responses of Tier I of the supply chain are plotted in Figures 4.IS.a-

d and summarized in Table 4.3. For the highly stable first group of experiments

(Figures 4.IS.a-b) there is an absence of overshooting in the inventory response and

the maximum inventory deficit and settling times are reduced at Tier 1. The order

rate responses have much smaller overshoots, an absence of undershooting of the

target (i.e. no oscillatory or under-damped behavior) and faster rise and settling

times. These results are as one would expect as there is a delay in propagating the

change in SALES at Tier I to Tier 4, which leads to the differences seen between

Tier 1 and Tier 4 where the magnitude of the swings in the responses are amplified

and the responses are much slower.

The second group's inventory responses at Tier 1 (Figure 4.1S.c) have

maximum deficits that are comparable to those of group one, very small or no
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inventory overshoot and, generally, better settling times and shorter durations of

deficit than the first group. In other words, at Tier 1 the second group does not

display the over-reaction tending towards instability seen at Tier 4 and it is not in

general worse than the first group. A similar picture is seen in the order rate

responses (Figure 4.IS.d). The conclusion that can be drawn here is that with

progress up the supply chain, due to the delay in propagating the changes in

response, the boundaries of stability are tightened. Table 4.3 shows that the second

group soon starts to produce much degraded performance compared to the first group

at Tier 2 and by Tier 4 this difference is most marked as discussed already.

Generally, this illustrates the importance of studying the effects of parameter

values on the whole supply chain and not just a single business entity, as there is a

tightening or shrinking of the region of acceptable parameter values to control

demand amplification. In the example presented here the second group of unsuitable

parameters is not evident in the single entity analysis, i.e. the analysis at Tier 1.

Table 4.4 shows that whilst the second group of experiments still produces

the worst response to stochastic SALES (largest variances) at Tier 1, the difference is

far less marked than at Tier 4. The highly non-linear and substantial growth in

variance up the supply chain to Tier 4 demonstrates the severe demand amplification

caused by the second group of parameter values. This non-linearity draws the

performance of the two groups apart so that there is a big gap between the two,

especially in respect of the order rate variance.
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4.5 Summary of Findings including a Qualitative Perspective

A simulation model of the APVIOBPCS production and inventory control

system has been developed, using iThink, to understand the effects of its parameters

on its dynamic responses; this model combines the make to stock and make to order

control strategies. Four APVIOBPCS models have been linked to create a four-tier

supply chain model of the beer game. The value of information sharing (of end-

customer SALES) across this chain to reduce demand amplification has been

demonstrated by seeing peaks in responses reduced, which would in tum reduces

inventory holding and backlog costs and the maximum capacity required.

The effects of the APVIOBPCS parameter values across the whole chain, rather

than a single echelon have been studied. Taguchi Design of Experiments has been

used to derive a sample that is representative of the parameter-value space being

investigated without having to simulate every parameter-value combination, i.e. the

number of experiments is greatly reduced.

It has been demonstrated that parameter values that give very poor dynamics

across the whole supply chain do not necessarily yield poor dynamics within a single

echelon, so it is essential to consider the whole supply chain when setting parameter

values. The condition Ti = Tw = Tp and Ta = 2Tp found by Mason-Jones et al.

(1997) to be a condition for a good or best response across the supply chain, was

borne out by the results presented here, although for the 'best' result the parameter

values were very close to this condition rather than absolutely satisfying it. Riddalls

and Bennett (2001) reported that the condition Ti = Tw avoids oscillatory behavior in

the dynamic responses of the order rate and inventory and this has been borne out

here, except when Ti = Tw is very small (4 in the experiment here) in which case the

over-lively inventory feedback, due to the small Ti, caused very large oscillations
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and, indeed, the worst response; this means that the Ti = Tw condition is subject to

Ti not being very small. It has been noted also that a large Ti can produce too slow a

response, again confirming the findings of Riddalls and Bennett (2001). The close

agreement between the findings of Riddalls and Bennett (2001) and Mason-Jones et

al. (1997) provides a degree of verification of the iThink simulation model

implemented here.

As in human endeavour in general, in selecting parameter values for the

APVIOBPCS supply chain there is a choice between safe and stable without over-

reacting but with the danger of becoming too slow to react to real change, i.e. too

cautious, versus fast to react to real change (as opposed to noise) in a stable manner

but with the danger of over-reacting and moving towards instability. This is seen in

the dynamic responses seen here. Generally, a small Ti leads to over-reaction tending

towards instability. However, within the range of experiments with a small Ti, two

produce the very best results; fast but without load overshoots. Similarly, within the

range of experiments with a larger Ti that yield more stable responses, there are two

experiments that produce very slow responses that would typically be unacceptable

in practice. So two groups of 'good' or 'stable' response have been seen. One of

these groups is within the area of fast responses and one is within the area of slow

and very stable responses.

Consider a Ferrari motor car versus a standard family saloon. The former is

most likely to win a race, but without a good driver and careful control it is also the

most likely to crash and kill. The standard family saloon may not win the race, but it

is the most likely to arrive safely. The choice may depend upon the quality of the

driver and the route to be taken (the demand). In this respect, with careful

management parameter values associated with experiments 5 and 6 may be adopted
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to give good results, but if one cannot safeguard against or afford to risk falling

towards instability, then one might take the safer option of using the other parameter

values of the other first group of experiments. However, in this case one must

safeguard against the danger of slipping into too slow a response as seen in

experiments 13 and 14.

Endorsed by the stochastic response results, it is clear that the two groups of

responses identified here begin to define the regions of acceptable and unacceptable

parameter values, particularly in respect of their closeness to instability. The value of

the ITAE gives a rough-cut between the two groups, although experiment 9 had a

very good ITAE but poor stochastic demand response. So the use of ITAE needs to

be tempered by consideration of the stochastic response. Furthermore, as experiment

15 had the lowest ITAE but a noticeably large original overshoot in the order rate

step response, interpretation of the ITAE must also be tempered by the detailed

features of the dynamic responses; with specific applications/situations determining

which are the most important features and their desired characteristics, e.g. will the

situation tolerate large overshoots to achieve rapid rise times?

The specific results obtained here are those for the specific values of Tp and n.

However, the general, qualitative findings can be carried forward into production

control in general. In particular, there are clear regions of good and bad parameter

values resulting in either high stability or closeness to instability. Within the stable

area there are pockets of too much inertia (slow responses) whilst within the more

unstable area there are pockets of very good, stable, fast response. Supply chains

should be positioned accordingly to meet the conditions within which they are

operating.
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Chapter 5: Analysis of the Bullwhip Effect with Order Batching

5.1. Introduction

Order batching is well recognized as a major cause of the bullwhip effect, e.g.

(Lee et al., 1997). However, there has been little detailed research into precisely how

batch size contributes to the level of demand amplification. Finding the optimal

solution to batching is not easy since it is directly related to inventory holding and

backlog costs. In many production-distribution systems materials move from one

echelon to another in fixed lot sizes. For example, a retailer might order a full truck

or container load from the wholesaler to qualify for a quantity discount and to

optimize transport costs by fully utilizing the fixed-cost truck or container. When the

batch size of purchased goods is outside of the control of a manufacturer, the

production control objective is to set the other control parameters to. mitigate any

amplification effects. For a manufacturer, significant economies of scale can be

achieved by producing in large batches, but the resultant large inventories will

increase the stock holding costs. The inventory manager, however, always favors

policies which meet the forecasted demand with minimal inventory. The

rapprochement of these conflicting objectives is a fundamental aim of inventory

management theory.

It is generally advocated that batch size should be reduced as much as possible

(Burbidge, 1981), but there has been limited detailed investigation into the impact of

batch size on demand amplification, which raises the question, "Does this hold

totally true in respect of minimizing demand amplification?". This chapter addresses

this gap in the research by introducing batching into the 4-tier supply chain model

and then conducting simulation experiments to understand: the impact of batch sizes
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on the bullwhip effect under deterministic and stochastic demand processes; the

impact of information sharing across wide ranges of batch sizes; the impact of design

parameters on the bullwhip effect (which is measured quantitatively) and the severity

of the interaction among these parameters when there is batching; finally, the best

values of design parameters for mitigating the bullwhip effect when there is batching

are explored.

The bullwhip effect is the observed amplification of the demand variability as it

moves up a supply chain. Its causes, effects, and remedies are discussed in the

literature review section. Order batching is one of the key causes of the bullwhip

effect identified by Lee et al (1997) and Riddalls and Bennett (2001). It refers to the

phenomenon of placing orders to upstream echelons in batches. Burbridge (1981)

emphasized the need to reduce the batch size as much as possible. Technical or

economical problems may not allow the implementation of smaller batch sizes.

There is a clear and crucial need to fully understand the impact of varying the batch

size on demand amplification across multi-echelon supply chains in order to enable

operations managers to make better decisions around batching.

Batching is a clustering of items for purchasing, transportation or

manufacturing processes and is also known as Lot Sizing. It is a mechanism that

induces time-phased production that is usually non-synchronized with the actual

demand. In this way, batching results in excessive inventory or backorders. The

reasons for batch ordering include the Economic Order Quantity (EOQ), Periodic

Inventory Review and Transportation Economies. Batching is also related to

Economic Batch Quantity (EBQ) where it is beneficial economically for a company

to produce large batches since it can reduce the number of facility set-ups and

improve manufacturing efficiency. Companies prefer to order in batches to gain
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economies of scale. Long process set-up times are a major cause of large production

batches within factories with the corollary being that rapid changeovers are required

to reduce batch sizes. These large batch sizes can lead to large tluctuations in

inventory levels as first a large batch is produced, far in excess of current demand, so

that the inventory levels rise to high levels only to be reduced until they reach a

reorder point, at which point a new large batch enters the inventory. Furthermore,

batching amplifies the demand as it passes up a supply chain as the real demand is

rounded-up to hole batch sizes for production processes and ordering from suppliers,

and this rounding-up stacks-up along the supply chain when different batch sizes are

used. For example, demand for a product may be 10 units, the production batch size

may be 100 and an outsourced component used in the product (one component per

product) may have an order batch size of 40. The initial demand of lOis amplified to

100 in the factory, which results in a further amplified order for 3x40=120

components, assuming there are no components in stock already. This amplification

can continue unabated up the supply chain. For example, if the component supplier

ordered sub-components in batches of 50, the demand signal would jump to 150.

5.2. Literature Review

Cachon (1999) has studied the impact of order batching in a two level supply

chain with a single supplier and many retailers. The study suggests that the bullwhip

effect at the supplier's level can be reduced by balancing the orders of the retailers, a

longer order interval time, and smaller batch sizes. Balancing the retailers' orders

means that instead of placing the orders at the same time, each retailer should place

orders at a different time because the bullwhip effect at the supplier's level is

maximized when all retailers place orders in a synchronized manner. Riddalls and
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Bennett (2001) studied the impact of batch production cost on the bullwhip effect.

They proposed measuring the magnitude of the bullwhip effect in a two-tier supply

chain by observing the peak order rate of the upper level (the supplier). They found

that the relationship between batch size and demand amplification is non-linear and

depends on the remainder of the quotient of average demand and batch size. The

limitation of their findings is that there is always an initial increase (overshoot) in the

order rate after a step change in demand. Hence, such assessment of the peak of the

order rate as a measure of the bullwhip effect is not an accurate, quantitative measure

of demand amplification.

Holland and Sodhi (2004) studied a two-tier supply chain model in which the

retailer is bound to order in integer multiples of the batch size. Both retailer and

manufacturer follow a periodic review and order-up-to level replenishment policy.

Simulation was run for five different batch sizes and statistical analysis was carried

out to quantitatively measure the impact on the bullwhip effect of batch size across

each echelon. They found that the bullwhip effect across each echelon of the supply

chain was proportional to the square of the batch size. Potter and Disney (2006)

continued the work of Holland and Sodhi by considering the impact of a full range of

batch sizes on demand amplification in a single echelon of APVIOBPCS. They

found that the bullwhip effect from batching can be reduced if the average demand is

an integer multiple of the batch size.

It has been recognized generally that the bullwhip effect can be minimized by

reducing the batch size as much as possible, but there has been little study of the

impact of batch size across a multi-echelon supply chain. Riddalls and Benett (200 I)

pointed out that control theorists are unable to solve the lot sizing problem. Potter

and Disney (2006) mentioned that the impact of order batching on bullwhip has not
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been clearly explored. They pointed out that studying the impact of batch size on the

APVIOBPCS, under a stochastic demand process, using the transform techniques of

control theory is extremely challenging. System dynamics simulation then seems an

appropriate methodology to investigate the impact of varying batch size on the

bullwhip effect with a stochastic demand process. The value of information sharing

as a remedy to reduce the bullwhip effect has been widely recognized. However,

whilst some studies have analyzed the value of information sharing in capacitated

supply chains, there has been little research into the value of information sharing

when there is order batching; this chapter addresses this gap.

Previous studies have identified several possible causes of the bullwhip effect

but little attention has been given to measuring quantitatively the impact of these

causes on the bullwhip effect (Paik et al., 2007). Luong (2007) also pointed out that

the problem of quantifying the bullwhip effect still remains unsolved due to the

complex nature of supply chains. Furthermore, the severity of the interaction among

the design parameters involved in the APVIOBPCS needs to be explored further than

the initial study in the previous chapter. Taguchi Design of Experiments (Orthogonal

Arrays) is applied here in analyzing the effects of the design parameters on demand

amplification and the interactions among the parameters, and identifying the best

combinations of parameter values for mitigating the impact of demand amplification.

5.3. Measure of the Bullwhip Effect

Different approaches can be taken to measuring the bullwhip effect and these

were discussed in Chapter 2. Adopted here is the common approach of dividing the

coefficient of variation of orders placed by the coefficient of variation of orders

received (Chen et al, 2000). The coefficient of variation is defined as the ratio of the
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variance of the output (ORATE) to the variance of the input (Sales) as shown in

Equation 5.1. Following the practice of other authors, in order to make calculations

simple for both deterministic and stochastic demand processes, only the variance of

the output needs to be calculated.

B II hi Var(Orate)
u w Ip=

Var(Sales)
(5.1 )

5.4. Supply Chain Model with Order Hatching

5.4.1. The Hatching Equation

The supply chain model used in this thesis is extended by introducing batch

ordering across each APVIOBPCS echelon. Batching is introduced by the ROUND

function in the iThink software package. The round function rounds values up to the

next integer value. So to convert an ORATE to batches of size (BS), the following

formula is used:

Number of batches = ROUND (ORATE / BS) (5.2)

and the new ORATE is then:

Batched ORATE =Number of batches x BS. (5.3)

Unless stated otherwise, the APVIOBPCS parameter values applied in this

chapter are Ti = Tw = Tp = 6, and Ta = 2Tp = 12, i.e. a 'good' set of values in accord

with the findings of the previous chapter and Mason-Jones et al. (1997).
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5.4.2. Initial Simulation of Step Response

In the initial analysis, the step response is simulated for small, medium and

large batch sizes. The test SALES pattern is a pure step increase of 20% from 2000

to 2400 per week. The results are observed first at the retailer, i.e. Tier I of the

supply chain, in Figures 5.I.a-5.1.d which show that batch size has a major impact on

the response. Figure 5.I.d presents the worst case scenario across the four figures.

This is because it presents results for batch sizes for which demand is not an integer

multiple of the batch size. For these batch sizes the order rate to can never settle on

the new demand level of 2400. Instead, they will oscillate around this level ad

infinitum. Figures 5.I.a-c present the results for batch sizes for which demand is an

integer multiple of the batch size. The larger of these batch sizes force a quicker rise

time as the initial orders are rounded up. However, medium and larger batch sizes

produce large spikes along the response, except when they equal half or the whole of

the new demand when the order rate locks directly onto the desired level.
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5.4.3. Impact of Batch size on Bullwhip Effect

Figure 5.2 shows the impact of the various batch sizes on the bullwhip effect at

the retailer level under a step change in demand. Note, in this graph some of the

plotted output variances give the appearance of being zero. However, they are not

actually zero but relatively very small values that are difficult to depict on a scale

that is large enough to accommodate the other much larger values. This is also true

of the other output variance graphs that appear later. It can be seen that the

relationship between batch size and demand amplification is non-monotonic.

Burbridge (1981) emphasized reducing the batch size as much as possible. However,

when the quotient of the average demand and batch size (average demand I batch

size) is integer, demand amplification does not grow with the increase of batch size

in APVIOBPCS as pointed out by Potter and Disney (2006). In other words, large

batch sizes, that when combined in integer multiples can produce order rates that are

close to the actual demand, produce little effect on the demand amplification, i.e. it is

the size of the remainder of average demand divided by batch size .that is the

determinant here. Hence, unless the batch is made very small (in this case < 400)

demand amplification is not suppressed simply by reducing the batch size as pointed

out by Burbidge, rather it can be controlled by a judicious mix of decreases in batch

size and adjusting the batch size so that the average demand is an integer multiple of

it, i.e. the remainder of demandlbatch size is zero or close to zero. However, it is

noted that use of a large batch size placed at one of the local minima amplification

points has the danger that changes in average demand can lead to large increases in

amplification unless the batch size is adaptive, i.e. there is high sensitivity.
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5.4.4. Stochastic Demand Process

Potter and Disney (2006) reported that studying the impact of batch size under

a stochastic demand process in APVIOBPCS is extremely difficult using a control

theoretic approach of Laplace and Z-transforms. APVIOBPCS is a periodic review

system for issuing orders based on incoming demand signals and feedback loops of

inventory and pipeline deficit. These feed-forward and feedback loops are in tum

affected by control parameters and it is hard to understand the nature of the

transformation involved. Hence, control theorists have been unable to study the

impact of batch size under a stochastic demand process, so the system dynamics

simulation approach seems an appropriate methodology for the investigation.

As in the previous chapter, to simulate a stochastic customer demand, SALES

follows a normally distributed, stationary stochastic 1.1.0. process with a known

mean, u, and variance ci. As before, it is assumed that (J is significantly smaller

than f..l, so that the probability of negative demand is negligible (Lee et al., 1997). A
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normally distributed stochastic demand pattern with a known mean of 2000/week

and standard deviation of 400 is simulated and the results are the average of 50 runs

of the model, each of 500 weeks length.

It can be seen from Figure 5.3 that the pattern, rather than the amplitude, of the

impact of batch size on the demand amplification is the same as seen in Figure 5.2

for the step change in SALES. Again it is found that the output variance (bullwhip

effect) decreases to a local minimum as the quotient of average demand and batch

size approaches an integer value.
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Clearly, reducing demand amplification due to batching is not just about getting

as close as possible to a batch size of one, it is also about how close demand is to an

integer multiple of the batch size. Figures 5.2 and 5.3 show that when the quotient of

batch size and average demand is not integer, increasing the batch size increases the

gap between the minimum variance points and the magnitude of the peak demand
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amplification between these points. Consequently, fairly small changes in large batch

sizes can cause big changes in demand amplification.

If operations managers with large batch sizes monitor trends in average

demand, it may be possible to monitor and anticipate movement up the curve of the

output variance, i.e. to forecast high amplification, and subsequently plan to change

the batch size to reduce this. If the batch size is changed so that there is an integer

multiple of it that matches demand, the bullwhip effect is minimized.

If the batch size is increased beyond the average demand then the output

variance, i.e. the bullwhip effect, increases rapidly and linearly. A corollary to this is

that if the demand starts to decrease below the batch size then the bullwhip effect

will grow rapidly. Again, the operations manager should monitor for this condition.

5.5. Impact of Information Sharing with respect to Batch Size

The impact of information sharing on the bullwhip effect has been discussed by

many authors and they have revealed the value of information sharing, see for

example (Lee et al., 2000), (Ge et al., 2004) and (Lee et al., 2004). Some authors,

such as (Chen, 1998), (Moinzadeh, 2002) and (Li et al., 2005), argue that the value of

information sharing depends on the particular parameter values used within the

supply chain model. Graves (1999) argued that information sharing has no value for

the supply chain. Graves studied an adaptive periodic review inventory policy, where

the end-customer demand is an integrated moving average process, and found that

when upstream echelons know the exact parameters of the demand process then

information sharing has no value. Whilst information sharing is frequently cited as

being the key to reducing demand amplification, there has been little research
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toinvestigate the value of information sharing in a batched model although batching

is acknowledged as a major cause of amplification.

The phenomenon of demand amplification can be seen clearly in Figure 5.4,

which shows the output variance of the step response for Tier 1 and Tier 4 with 0%

and 100% IEP.

Figure 5.4 shows that in percentage terms the increase in demand amplification

between tiers 1 and 4 is greatest with the smaller batch sizes, i.e. a large batch size

may cause a large output variance at tier 1, but then this output variance does not

increase so much in percentage terms, as it passes up the supply chain. So whilst the

drive in manufacturing might be to reduce batch sizes, this will lead to greater

demand amplification in percentage terms at upstream of supply chain. It is further

noted that the value of information sharing is greatest for the smaller batch sizes, as

there is a much greater improvement in the amplification ratio when IEP is changed

from 0% to 100%; where amplification ratio is the ratio of the output variances of

Tier 4 and Tier 1.

In the literature, a typical amplification ratio observed between two echelons is

2: 1 (Towill, 1992) and between four echelons is 20: 1 (Houlihan, 1987). In Figure

5.4, for batch sizes less than 400 an amplification ratio of the order of 20: 1 is indeed

seen between Tier 4 with IEP=O% (no information sharing) and Tier 1. However, this

ratio is far less for the larger batch sizes.

The amplification ratio can be reduced to the order of 8: 1 for the smaller batch

sizes through full information sharing, i.e. IEP= 100% and this agrees with the

findings of (Chen et aI., 2000) and (Chatfield et aI., 2004). For the larger batch sizes,

whilst the amplification ratio is less, making demand amplification arguably a less

significant problem, the use of information sharing can almost eliminate any
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significant demand amplification. There is a dilemma here because information

sharing will have a cost associated with its implementation, and whilst it may deal

with the problem of demand amplification very well, the problem is primarily caused

at Tier I with very large batch sizes for the supply chain studied here. In contrast,

information sharing is clearly of great value when the batch size is smaller. So, with

the increasing drive to reduce batch sizes, there is an increasing justification for

adopting and investing in information sharing.
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Figure 5.4. Impact of Information Sharing on Batch Size

5.6. Sensitivity Analysis

System dynamics approaches typically involve four stages: model

identification, verification, model testing, and policy design (Sterman, 2000). The

purpose of model testing is to increase confidence in the model, leading to the

acceptance of underlying dynamic results. Among the various model testing

procedures, one commonly applied technique in system dynamics simulation is
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sensitivity analysis, which investigates the robustness of the model and determines

the stability boundaries of the system. The above simulation results are based on a

specific set of design parameters, i.e. Ti = Tp = Tw = 6, Ta = 2Tp =12. There is the

possibility that these results are particular to this combination of design parameters.

Therefore, sensitivity analysis is carried out by changing the values of design

parameters associated with the model in order to validate the above findings and to

explore the stability and critical stability boundaries of the system.

The simulation results of the sensitivity analysis are presented in Figures S.5.a-d.

As mentioned in Chapter 4, increasing the values of Ti and Ta slows down the

response of the APVIOBPCS. This is quite logical because the noise and spikes in

demand signals are smoothed into the order calculation and hence the output

variance of the order rate decreases. From Figures 5.4.a and 5.4.d, it can be seen that

the supply chain behaves qualitatively in a similar fashion to a single APVIOBPCS

model with the demand amplification decreasing by increasing the values of Ti and

Ta. It is observed that reducing Tp minimizes the bullwhip effect and this result

verifies the time compression paradigm. However, when Tp ~ 3 the output of the

farthest echelons starts decreasing. A possible explanation for this is that the system

touches the stability boundaries. There is little effect of the Tw. Smaller values ofTw

damp the peaks in the response of the ORA TE providing an opportunity to reduce

the demand amplification although the settling time is increased.
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5.7. Statistical Analysis using Taguchi Design of Experiments

5.7.1. Introduction

The arguably ubiquitous Taguchi approach is used to identify the effects of

different levels of the design parameters on the measure of the bullwhip effect, the

interactions that occur and ultimately the best parameter values. Taguchi

recommended a three stage process: system design, parameter design and tolerance

design. In parameter design, Taguchi applied a mathematical tool called orthogonal

arrays to study the large number of parameters and parameter values with minimum

number of experiments (Shang et aI, 2004) as used in Chapter 4. This is valuable in

studying supply chain dynamics as there is a large number of possible parameter

value combinations

The first step in parameter design is the selection of quality characteristics.

There are three types of quality characteristics in Taguchi methods; smaller-the-

better, larger-the-better, and nominal-the-best. The purpose of this research is to

minimize demand amplification by exploring the best parameter levels, therefore the

smaller-the-better quality characteristic is applied in this study. The next step is the

selection of parameters and their suitable levels. Once the parameters and their levels

are selected, the third step is to choose the orthogonal arrays (OA). The choice of

orthogonal array size used in the design of experiment depends on the total degrees

of freedom (OoF) required for the parameters and their interactions. In this study, the

DoF for six control factors, each with three levels is 6 x (3-1) +1= 13. The L 18

orthogonal arrays, which can be used for one two-level factors and up-to seven three-

level factors, is appropriate for this study.

Table 5.2 that defines, for each experiment, the level of each factor or

parameter to be used. In this array, the columns are mutually orthogonal. That is, for
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any pairs of columns, all combinations of parameter levels occur an equal number of

times. The factor levels used in the experiments reported here are given in Table 5.1.

Levels of the design parameters are chosen such that the stability boundary of the

system is not disturbed as explored in Chapter 4. The positive point of a three level

experiment is that it decomposes the main effect into linear and quadratic effects

which allows non-linear effects caused by the design parameters to be taken into

consideration. A normally distributed, stochastic demand pattern with a known mean

of 1000 and standard deviation of 300 units per period is considered. Like Chatfield

et al (2004), simulation results are the average of the 30 runs of the model, each of

500 weeks length.

Factors Levell Level2 Level3 Experimental Run Tp IEP Ti Tw Ta SS

~1~ileDeiayITpl

WonMiIn ErRII1IIIt PmrIage IEPl n 50' 1001

fmel0 a:1~ .,.,.. '" ITi) 10

ID

fmel0 ad~ Wort in PropslTw) 10 11

12

13

SmooItiIg ConsIft ITa) 12 14
1$I.

kdlblBS) 100 200 300 11
11

Ta~e 5.1. Factors and their Levels Table 5.2.lnner Arrays (L18)

To analyze the results of experiments designed with orthogonal arrays many

approaches have been used (Tsai, 2002). One commonly used approach involves

graphing the effects and the interactions among the parameters and visually
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identifying the significant factors and interactions (Vlachogiannis and Roy, 2005).

This technique involves the 'average values' and is used in this study. The analysis

of the results obtained here with the LIS arrays is given in the following sections

5.7.2. Calculation of Main Effects

The effect of a design parameter on the measured response when the

parameter's value is changed from one level to another is known as a 'main effect'

and is calculated for a particular level of a factor by examining the orthogonal array,

the factor assignment, and the experimental results (Roy, 2001). For example, to

calculate the average effect of information sharing (lEP) at Level 1, all results of IEP

at Level 1 are averaged and so on. Figure 5.6 illustrates the sensitivity of the

bullwhip effect measurement to changes in the parameter values across the

experimental values in Table 5.1. Figure 5.6 shows that the bullwhip effect

measurement is most sensitive to Ti, whilst IEP is the next most significant factor.

Smaller values of Ti produce over-reaction and oscillatory behavior which results in

higher production costs, higher inventory costs and poor customer service levels as

explained in Chapter 4. Forrester (1961) also proposed not to recover the "error of

inventory position" in one time period. Instead, recovery should be spread over time

by ordering only a fraction of the inventory deficit. Suitable values of Ti not only

ensure stability but also determine the capacity requirements; with larger values of Ti

less capacity is required to satisfy an increase in demand.

Information sharing has been proposed as a remedy to the bullwhip effect and

increasing the information enrichment percentage to 100% reduces the bullwhip

measure used here. Smaller Ta values are highly responsive to recent changes in

underlying demand pattern, amplifying the demand, whilst larger values produce
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smooth ordering. Increasing Ta increases the damping effect of the exponential

smoother, so it is not surprising that it also reduces the bullwhip effect. It is observed

that reducing Tp minimizes the bullwhip effect and this result verifies the time

compression paradigm and the importance of compressing Tp (production lead time)

to reduce demand amplification.

Again it can be seen that when the quotient of the average demand and batch

size (average demand / batch size) is integer, demand amplification does not grow

with the increase of batch size. Figure 5.6 shows a very little effect on the bullwhip

measure when batch size is varied from level 1 to level 2. This difference can be due

to either the random demand pattern or the error observed in the ANOVA

calculation. A substantial increase in demand amplification is observed when batch

size increases from level two to level three, which does not satisfy the criterion that

demand is an integer multiple of it. The least sensitivity is seen with Tw. Larger

values of Tw increase the peak overshoot of the order rate but decrease the recovery

time. On the other hand, smaller values of Tw dampen the peaks in the response of

the order rate, but increase the settling time. However, smaller Tw values provide an

opportunity to reduce the demand amplification as explained already in Chapter 4.
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5.7.3. Calculation ofInteraction Effects

The next step is to explore the interactions among the parameters. Interaction

here refers to particular parameter values behaving differently in the presence of

particular values of the other parameters, i.e. the trend of influence changes when the

levels of the other factors change. The number of two factor interactions possible

among N factors is N(N-I)/2 (Roy, 2001). In this experiment of six factors, the

number of possible interactions is 6(6-1)/2 = 15. Simple but powerful "Interaction

Graphs" (Figures 5.7.a-5.7.h) are used to determine the severity of the interactions

between control parameters. If the lines in the graph are parallel there is no

interaction between the parameters, whilst non-parallel lines indicate interaction with

intersecting lines indicating strong interaction (Antony, 2001).
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Eight important interactions are observed in this analysis. Interaction plots are

obtained by graphing the combined effects of the pairs of the factors studied. So, to

test for the presence of interaction between JEP and Ta, the average effects of IEPI

with Tal, IEPI with Ta2, IEPI with Ta3, IEP2 with Tal, IEP2 with Ta2, IEP2 with

Ta3, IEP3 with Tal, IEP3 with Ta2 and IEP3 with Ta3 need to be calculated. For

example, the average effect of JEPI with Tal is obtained by averaging the results of

experimental runs which contain both JEPI and Tal. The "severity of the

interaction" (SI) determines the presence of the strongest and weakest interactions.

The SI values for the experiments conducted here are given in Table 5.3.

Serial No Interacting factor Severity Index Best factor
pairs SI (%) levels

IEP" BS 65 3.3

2 Ta "BS 58 3,3

3 IEP"Ta 50 3,3

4 IEP"Ti 48 3,3

5 Tp"Tw 35 2,1

6 Ti "Ta 31 1,1

7 Ti "BS 27 3.2

8 Tp "IEP 12 1,3

Table 5.3. Severity of Interaction between the factors

Table 5.3 and Figure S.7.a show that the strongest interaction is between IEP

and BS, i.e. information sharing and batch size. The beneficial impact of information

sharing on the demand amplification varies with or is dependent upon the batch size.

This phenomenon has been discussed already in this chapter. The next strongest

interaction occurs between batch size and Ta. Increasing the value of Ta reduces the
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sensitivity of demand amplification to batch size. Put another way, when Ta is small,

larger batch sizes result in a large increase in demand amplification, whereas with the

smallest batch size the smallest and largest Ta values produce similar levels of

amplification. The increase in amplification with batch size does not contradict the

earlier result that the amplification ratio decreases with very large batch sizes. The

range being considered in this section is all within the lower range of batch values

considered earlier i.e. <400.

The third strongest interaction is observed between IEP and Ta; the value of

information sharing is affected significantly by the forecasting error generated due to

inaccurate forecasts. Without information sharing the demand amplification increases

considerably as Ta is reduced, and then the smaller Ta (with the much higher

amplification to start with) benefits most from information sharing, indeed it benefits

considerably.

There is a strong interaction between IEP and Ti. The value of 100% IEP, i.e.

the percentage improvement in the output variance, increases as Ti decreases.

Chapter 4 has already shown that smaller Ti values cause over-reaction and

oscillatory behavior, taking the dynamic responses towards instability. Information

sharing can help to control these effects which are a form of demand amplification,

so the smallest Ti benefits most from information sharing.

The next strongest interaction is observed between Tw and Tp, smaller values

of Tp and Tw create less overshoot in the order rate. When the lead time is larger,

decreasing the value of Tw can dampen down the magnitude of the overshoot of the

order rate.
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The sixth strongest interaction is between Ti and Ta. Smaller values of both Ti

and Ta are highly responsive to recent changes in underlying demand pattern while

larger values produce smooth ordering.

Another important interaction is observed between Ti and batch size. The batch

sizes simulated here produce almost the same amplification for high Ti.

The least significant interaction observed is between IEP and Tp. Information

sharing has more value when the production or distribution lead time is small. All

other interactions have an SI less than 10%
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5.7.4. Analysis of Variance (ANOVA)

To discover which effects are statistically significant, analysis of variance

(ANOVA) is performed to quantify the contribution of each parameter to the total

variation in the experimental data. Details ofthe ANOV A calculation were discussed

in Chapter 3. The ANOVA tests are performed at the 95% confidence level. The

ANOV A results in Table 5.4 show that all the factors involved in this study are

statistically significant. However, Ti makes the largest contribution to the variation in

the measurement of the bullwhip effect, with a contribution of 27 % and next is IEP

at 24%, so that these two parameters account for 51 % of the total variance. This

means that demand amplification at the farthest echelon can be reduced greatly

through fine tuning of Ti and introducing information sharing. The importance of Ti

agrees with the initial results obtained in Chapter 4. Ta and Tp also have a substantial

impact with the percentage contribution of the remaining two parameters being much

smaller.

Factors DOF Sum .rSquar .. Varianc. F-Ralio Po .. SUID Pereent
(0 (S) (V) ()) (S') P(·'.)

l.Production Delay (Tp ) 2 13011567414 6505783707 42 12698467090 16

2. Infonnation Enriclunent Percentage (IEP) 2 19221327927 9610663964 61 18908227603 24

3. Time to Acijust Inventory ( Ti) 2 21244542625 10622271313 68 2093144230 1 27

4.Tune to Acijust WIP ( TW ) 2 4063123195 2031561598 13 3750022871 5

5.Smoolhing Constant (Ta) 2 13368420236 6684210118 43 13055319912 17

6. Batch Size (BS) 2 7156758303 3578379152 23 6843657979 9

Error 5 782750809 156550162 2

Total 17 78848490509 100%

Table 5.4. Results of ANOVA
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5.7.5. Determining the Optimum Values

It should be noted that Tp, the production lead time, is not strictly speaking a

control system design parameter to be optimized at will. It is instead a parameter of

the system under control although a company could chose to reduce Tp through

investment in resources and improved operations management. Nevertheless, Tp is

included in this analysis so that its effect can be understood along with the

interactions it has with the control parameters.

Little research has been carried out to identify 'optimal' or 'good practice'

values and relationships among the different design parameters of supply chains.

Supply chains consisting of many interacting factors are difficult to optimize by

control theoretic techniques (Holweg et al, 2005). Therefore Taguchi's Orthogonal

Arrays technique is introduced to identify the optimum relationship among the

design parameters. The best parameter levels within the range of values considered

here are given in Table 5.5; this is in the context of minimizing the chosen measure

of the bullwhip effect, It is found that use of the largest Ti and Ta can control

excessively large fluctuations in the order rate by damping the reaction to errors in

the inventory. According to the measure chosen here 100% information enrichment

is preferred. This is contrary to the result of Mason-Jones et at. (1997). It is found

that Tp should be made as small as possible, which verifies the value of the time

compression paradigm for reducing the bullwhip effect. It is found that the bullwhip

effect does not increase when the batch size is set so that average demand is an

integer multiple of it. In this study, levels 1 and 2 of batch size satisfy this criterion

and very little increase in demand amplification is observed when batch size changes

from level 1 to level 2 as shown in Figure 5.6. This difference can be attributed to the

error observed in the ANOV A. Both these levels are optimum for mitigating the
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bullwhip effect. The smaller value of Tw damps down the magnification in the order

rate and can be used as a remedy for the bullwhip effect.

However, it must be noted that the 'best' set of parameters with respect to

demand amplification, as measured by the output variance, is not necessarily the best

set of parameters overall. As seen in Chapter 4, there are compromises to be made

between conflicting characteristics of the dynamic responses. So, the set of parameter

values presented here is not being portrayed as definitively the best set, but rather a

demonstration of what might be done in a specific application using Taguchi Design

of Experiments. It also gives a summary guide to how demand amplification can be

reduced using parameter settings.

Factor Level Level Description

1 4

3 100%

3 10

1 4

3 12

1 100

Production Delay (Tp)

Information Enrichment Percentage (IEP)

Time to Adjust Inventory (TI)

Time to Adjust WIP (Tw)

Smoothing Factor ( Ta)

Batch Size (BS)

Table 5.5. Factors at Optimal Condition

5.8. Summary

1. Previous studies paid little attention to measuring the impact of causes of the

bullwhip effect and although information sharing is cited as the key to reducing

this effect, there has been little research into the value of information sharing in

a batched model although batching is acknowledged as a major cause of

amplification. This chapter has addressed these gaps by analyzing the effects of
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the design parameters, and their interactions, in the APVIOBPCS-based supply

chain model with batch ordering. This analysis has gone beyond the

rudimentary study in Chapter 4 by applying Taguchi Design of Experiments

andANOVA.

11. It has been seen that the relationship between batch size and demand

amplification is non-monotonic. Although Burbridge (1981) emphasized

reducing the batch size, the results presented here show that when the quotient

of the average demand and batch size is integer, demand amplification does not

grow with increases in batch size. Large batch sizes, that when combined in

integer multiples can produce order rates that are close to the actual demand,

produce little demand amplification, i.e. it is the size of the remainder of the

quotient that is the determinant. Unless the batch is made very small, demand

amplification is not suppressed simply by reducing the batch size, rather it can

be controlled by a judicious mix of decreases in batch size and adjusting the

batch size so that the remainder of demandlbatch size is zero or close to zero.

However, it is noted that use of a large batch size placed at one of the local

minima amplification points has the danger that changes in average demand

can lead to large increases in amplification, i.e. there is high sensitivity.

... It has been proposed that if operations managers with large batch sizes monitorlll.

trends in average demand, they could anticipate movements up the curve of the

output variance, i.e. high amplification, and subsequently plan to adjust the

batch size to reduce this.

. If the batch size is increased beyond the average demand then the outputIV.

variance, i.e. the bullwhip effect, increases rapidly and linearly. A corollary to

this is that if the demand starts to decrease below the batch size then the
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bullwhip effect will grow rapidly. Again, operations managers could monitor

for this condition.

v. In percentage terms, the increase in demand amplification between tiers 1 and 4

is greatest with the smaller batch sizes, i.e. a large batch size may cause a large

output variance at Tier 1, but this output variance does not increase much in

percentage terms, as it passes up the supply chain. So the ubiquitous drive to

reduce batch sizes in manufacturing can lead to greater demand amplification

in percentage terms. It is further noted that the value of information sharing is

greatest for smaller batch sizes, for which there is a much greater improvement

in the amplification ratio when lEP changes from 0% to 100%.

VI. Whilst the amplification ratio beyond Tier 1 is much less for large batch sizes,

making it a less significant problem, information sharing can almost eliminate

any significant demand amplification. There is a dilemma here because

information sharing will have a cost associated with its implementation, and

whilst it may deal with the problem of demand amplification very well, the

problem is primarily caused at Tier 1 with very large batch sizes. In contrast,

information sharing is clearly of great value when the batch size is smaller. So,

with the increasing drive to reduce batch sizes, there is an increasing

justification for adopting and investing in information sharing.

.. The sensitivity of the bullwhip effect to parameters of the APVIOBPCS hasvu.

been analyzed. The bullwhip is sensitive to all of them. The degree of

sensitivity to each parameter has been considered. Some rationale for the

degrees of sensitivity seen has been given by considering the effects of the

parameters on the dynamic responses of the APVIOBPCS determined in

Chapter 4.
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viii. The interactions between parameters in respect of their effect on demand

amplification has been analyzed. The strongest interaction is seen in the

beneficial impact of information sharing on demand amplification being

dependent upon the batch size. The next strongest interaction is seen In

increased values of Ta reducing the sensitivity of demand amplification to

batch size. The third strongest interaction is observed between IEP and Ta, i.e.

the value of information sharing is affected significantly by the forecasting

error. Without information sharing, demand amplification Increases

considerably as Ta is reduced, and then the smaller Ta (with the much higher

amplification to start with) benefits most from information sharing, indeed it

benefits considerably. There is a strong interaction between IEP and Ti;

decreasing Ti causes over-reaction and oscillatory behavior, as seen Chapter 4,

so the benefit of 100% information sharing increases.

ix. The ANOVA shows that Ti (27%) and lEP (24%) make the largest contribution

to the variance of the bullwhip effect with their combined contribution being

51%. This means that demand amplification at the farthest echelon can be

reduced greatly through fine tuning of Ti and introducing information sharing.

The importance of Ti agrees with the initial results obtained in Chapter 4. Ta

(17%) and Tp (16%) also make a substantial contribution.

Future work should investigate the cost implications of order batching in multi-

echelon supply chains. This research has focused on the periodic review

x.

inventory control system, the continuous review inventory control system

should be considered in future work.
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Chapter 6: Analysis of Capacity Constraints on the Backlog
Bullwhip Effect

6.1. Introduction

Most of the previous studies involving the APIOBPCS model are based on

unconstrained capacity. However, it is more reasonable to think that production and

distribution are in reality capacity constrained so that it may not be possible to

increase activity levels to cope with peak demand. Even if it is possible, the cost may

be so high that it is not an acceptable solution.

A discussed previously, one of the most commonly applied methodologies to

study the various aspects of the APIOBPCS model is the control theoretic technique.

It is clear that these control theoretic models are linear whilst presenting a view of

the whole system. Riddalls et al (2002) and White et al (2006) pointed out that

control theorists are dealing with the linearity of the model as there are no capacity

constraints. Hence, in this chapter model is extended by adding capacity constraints

across each echelon of APIOBPCS.

Linear models can work adequately in physical science but fail to represent the

essential characteristics of industrial processes (Forrester, 1961). In obtaining explicit

mathematical solutions, linear models are much simpler while mathematical analysis

is unable to deal with the general solutions to non-linear models. The reason is that

the inclusion of non-linearities, such as capacity constraints, creates an infinite

number of solutions that can only be solved through simulation or numerical

techniques (Holweg and Disney, 2005). In non-linear systems, cause-effect

relationships between variables are not proportional. Small variations in customer

demand at Tierl (the retailer) can cause disproportionate oscillations and fluctuations
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in the order rate of the farthest tier (the factory). The dynamic behavior of the non-

linear supply chain can best be explored by simulation.

This chapter addresses the gap in the research by introducing capacity

constraints at each echelon of the APIOBPCS-based supply chain simulation model.

Capacity constrains the ability of the factory to process goods by imposing an upper

limit on production capability and thereby determines the service level. Introducing

capacity constraints at each echelon of the supply chain may lead to an increasingly

large orders backlog. This backlog not only affects the customer service level but

also the stability of the supply chain. The variance in each echelon's backlog

increases as one proceeds up the supply chain and this effect is referred as the

"backlog bullwhip effect" (Anderson et al., 2005).

A multi-echelon production and inventory control system is said to be stable it:

on average, it can produce finished goods at the required rate (Glassennan and

Tayur, 1994). By introducing different levels of capacity constraints across each

echelon of the APIOBPCS-based supply chain model, the stability boundaries of the

system are explored. A heavily backlogged system is said to be unstable. In this

thesis, Taguchi's "signal to noise ratio" is applied to evaluate policies that minimize

backlog bullwhip effect across multi-echelon supply chain.

The remainder of this chapter is organized as follows. Section 2 presents the

literature review. Section 3 explains the extended model. Section 4 describes the

initial analysis of the effects of the capacity constraints on the dynamic response of

the inventory and order rate, and explores the stability boundaries of the capacitated

multi-echelon supply chain. Section 5 considers the conditions under which

information sharing is most valuable in the capacity constrained multi-echelon

supply chain. Section 6 applies Taguchi Design of Experiments to evolve the policies
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that minimize the total backlog variances of the multi-echelon supply chain and

Section 7 presents a summary.

6.2 Literature Review

Capacity can be defined as the maximum level of value-added activity over a

period of time that a process can achieve under normal operating conditions (Slack et

al, 2004). Capacity constraints have an unambiguous connection with the capability

to respond to changes in demand and with the replenishment lead time. Many studies

employ supply chain models that ignore capacity constraints (Anderson et aI, 2005).

Ballou (1992) indicated that, when more than two echelons are involved, managing

the inventory throughout the entire chain becomes too complex for mathematical

analysis and is usually carried out with the help of computer simulation. The

complexity of multi-echelon supply chains, warrants a perspective that considers the

supply chain structure, non-linearities, and feedback, which is provided by system

dynamics modeling (Wilson, 2007). However, to take full advantage of simulation,

an appropriate simulation modeling tool is required (Chatfield et al, 2004) such as

iThink, which is used throughout this thesis and for the modeling of a capacitated

multi-echelon supply chain in particular in this chapter

Capacity influences the ability of the production facility to meet customer

orders, but also impacts the cost efficiency through plant and equipment utilization.

Some research suggests that firms should provide enough additional capacity to

enable a rapid response while other research argues that excess capacity may be

detrimental to supply chain performance. Hopp and Speannann (1996) describe the

non-linear impact that capacity has on manufacturing cycle time in a single facility

manufacturing operation. Their findings show that tight capacity is often detrimental
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to system performance. Helo (2000) deals with demand amplification and the trade-

off between capacity constraints and lead time. It is found that capacity constraints

determine the response of the system, and the responsiveness of the supply chain to

varying demand can be increased by increasing capacity levels. Biller et al. (2002)

study capacity relative to t1exibility and evaluate its impact on the overall supply

chain performance. Interestingly, their result somewhat contradicts earlier research in

suggesting that adding effective capacity through t1exibility increases observed

variability in orders along with its associated cost. Wu and Meixell (2005) obtain

similar results in their study of integration in supply chains and show that limited

capacity has a smoothing effect on the bullwhip effect in supply chains.

In multi-echelon supply chains, it is extremely difficult to decide how much

safety stock should be held at each echelon in order to minimize inventory costs and

provide a high level of customer service. Capacity constraints have an unambiguous

connection with the capability to respond to changes in demand, with safety stock

levels (raw materials or finished products), and with the replenishment lead time.

Greater product variety, shorter life cycles, and technological changes have made the

use of buffering inventories difficult. Graves and Willems (2000) studied a periodic

review multi-echelon supply chain. An optimization algorithm was developed for

determining the minimum safety stocks at different echelons in order to achieve the

desired service level. A limitation of their work is that there are no capacity

constraints. When demand forecasts are not accurate and there are capacity

constraints, maintaining safety stocks will be difficult since all capacity is being used

to fill orders (Kempf, 2004). The inventory variances also determine the safety stock

requirements and affect the inventory holding cost (Anderson et al, 2005).
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6.3 The Extended Model

The supply chain model developed in this thesis is extended by adding capacity

constraints across each echelon of APIOBPCS. The limitations of capacity

constraints can be applied on either the order rate or the completion rate. According

to Evans and Nairn (1994), constraining the order rate being placed on the production

facility appears to be the realistic placement within the system and therefore otTers

more insight into the effect of capacity constraints. The block diagram of a single

echelon of the extended model is presented in Figure 6.1. It is important to note that

the desired inventory level is now kept fixed, rather than being a multiple of

smoothed Sales, i.e. the model is based on APIOBPCS rather than APVIOBPCS.

The reason for this is to better explore the impact of different levels of safety stock

and capacity constraints on the backlog bullwhip effect. The order rate (ORATE) is

constrained, which gives the new 'actual' order rate (AORA TE)

DINV

SSALES Feed Forward

Pi eline Feedback

Inventor Feedback

Figure 6.1. Block Diagram of Single Echelon of Capacitated APIOBPCS Model
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6.4 The Stability Boundaries of the Multi-Echelon Capacitated
Supply Chain

The stability of each echelon can be ensured through the related echelon's

'shortfalls', also known as backlogs, which are measured by the shortfall in the

actual inventory. The model is simulated for various levels of capacity 'tightness', is

defined by the total capacity divided by the average demand. Like Zhao et aI., (2002)

and Byrne and Heavey, (2006), three levels of capacity tightness are simulated: Low

(1.33), Medium (1.18), and High (1.05). These levels correspond to the utilization of

resources of 75%, 85%, and 95% respectively. A deterministic step increase in Sales

of 20% from 100 to 120/week is initially applied in the simulation to evaluate the

system's ability to cope with sudden but maintained change. The responses of the

actual inventory and order rate at each echelon are then analysed. The following set

of 'good' parameter values is used as before Ti = Tw = Tp = 6, Ta = 2Tp. DINV is

set to 100

Figures 6.2.a to 6.2.h show the response of the actual inventory and order rates

of the multi-echelon supply chain under the three levels of capacity. Figures 6.2.a

and 6.2.b show the responses without capacity constraints; the bullwhip effect is

clearly seen as the size of overshoots and undershoots grows up the chain. The

introduction of capacity constraints in the other Figures produces a drastic change in

the responses, revealing the 'time-axis' sensitivity of the model. It can be seen that

the recovery time increases with the increase of capacity constraints as shown by

Helo (2000). The negative effects of the tightest capacity constraints are clearly

visible in the inventory and order rate at Tier 4 (Figures 6.2.c and 6.2.d). It can be

seen that the manufacturer experiences capacity shortfall and would not be able to

catch up for 128weeks.
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Capacity shortfall is the measure of the order quantity that exceeds the

available capacity. Designing in capacity shortfall, i.e. tight capacity constraints, is

called the "trailing capacity strategy", where capacity lags the demand and therefore

capacity is fully utilized (Vlachos et al, 2007). Glasserman and Tayur (1994)

analyzed the stability boundary of multi-echelon capacitated supply chain with a

periodic review inventory policy. A multi-echelon production and inventory control

system is said to be stable if, on average, it can produce finished goods at the

required rate. Glasserman and Tayur showed that their system is stable as long as the

mean demand per period is smaller than the production capacity at each echelon in

each period. Figure 6.2.d shows that the actual inventory level is not able to catch up

for 128 weeks when capacity over mean demand is 1.05, i.e. capacity is tightly

constrained. A backlog of unfilled orders thereupon develops at the factory. If the

manufacturer adapts a level production/capacity plan, which involves running the

operation at a uniformly high level of capacity availability (Slack et aI, 2004), the

inventory level would not be able to recover after two and half years. This shortfall

of the inventory for two and half years for a 20% step change in demand makes the

system effectively unstable.

The primary means for buffering against uncertain demand is inventory. The

use of buffer inventories is increasingly difficult because of greater product variety

and short technological life cycles (Helo, 2000). Increased capacity is an effective

alternative to inventory in buffering against demand variability and the use of

protective capacity can substantially reduce the buffer inventories. To counter the

backlog effect due to limited capacity, it may be worth the manufacturer either

decreasing the production delay or investing in extra capacity above the average

order quantity. Such extra capacity can also provide safety capacity if there is
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another increase in demand. When order volatility increases, the shortfall of the

actual capacity will increase, but an investment in safety capacity can greatly reduce

this capacity shortfall (Van Mieghem, 2006).

Capacity constrains the ability of an echelon to process goods. Increasing

capacity results in a 'squeezed' behavior. As capacity increases, inventory is quicker

in recovery but under-damping is observed before locking on to the desired level.

Figures 6.2.e and 6.2.f show the response of the order rate and actual inventory of the

multi-echelon supply chain with medium capacity constraints. It is evident that the

stock level of the capacitated manufacturer will recover after 55 weeks. When the

factory has medium constraints, the appropriate manufacturing strategy would be

'matching capacity strategy', meaning an attempt is made to change demand to tit

the capacity availability (Vlachos et ai, 2007). The objective is to transfer customer

demand from peak periods to quiet periods. During the periods of low demand, the

available capacity can be fully utilized to produce the buffer stock for the peak

demand periods.

"An appropriate balance between capacity and demand can generate high

profits and satisfied customers, whereas getting the balance 'wrong' can be

potentially disastrous." (Slack et ai, 2004). There is a threshold value, beyond which

capacity constraints do not alter the response of the actual inventory and order rate of

the four echelons. In Figures 5.2.g and 5.2.h the supply chain with low capacity

constraints behaves in a similar fashion to the unconstrained chain. The factory

(farthest echelon) should be confident in dealing with the 20% increase in demand,

with a capacity level of 1.33 over the mean demand. This situation has been named

the "leading capacity strategy", where the manufacturer can use excess capacity to

absorb sudden increases in demand (Vlachos et aI, 2007). In this scenario, the
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appropriate strategy for the manufacturer would be the 'chase demand plan' by

which a manufacturer attempts to match capacity closely to the varying levels of

forecast demand and would require a level of physical capacity, which would only be

used occasionally (Slack et al, 2004) A chase demand strategy minimizes or

eliminates the finished goods inventory.
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6.5 Determination of Optimal Safety Stock Levels

In multi-echelon supply chains, it is extremely difficult to decide how much

safety stock should be held at each echelon in order to minimize inventory cost and

provide a high level of customer service (Graves and Willems, 2000). Most of the

previous studies ( Inderfurth and Miner, 1998 ; Graves and Willems, 2000) on safety

stock location are based on systems without capacity constraints. Few researchers

(Paschailidis et aI, 2002; Parker and Kapuscinski, 2004; Sitompul and Aghezzaf

,2006) have attempted to solve the problem of safety stock adjustment in capacity

constrained supply chain.

Most of studies involving capacity constraints are based on a single echelon

with simple periodic review inventory system. Finding an optimal solution for the

safety stock in a capacity constrained multi-echelon APIOBPCS is rather complex

due to feedback and forward loops in the ordering system. In APIOBPCS system

safety stock is determined by the desired inventory level (DINV). In the next section,

extensive simulation is carried out to analyze the impact of different levels of safety

stock on the service level of the APIOBPCS model under different levels of capacity

constraints. Due to extreme complexity and non-linearities, analysis is confined to

two tiers. However, general rules are established which can be implemented across

four tiers.

One of the main objectives of a supply chain is to improve its customer service

level. Satisfied customers are the desired end result of any supply chain management

strategy; as stated by Lee and Billington (1995), "HP management has recognized

that its performance filling orders will cause it to win or loose the battle". Capacity

tightness as well as safety stock levels determine the customer service level of the
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supply chain. A useful customer service metric is "fill rate" (Zipkin, 2000), is a

fraction of the demand that is satisfied from the available safety stock. Fill rate is a

popular metric in industry (Disey et al, 2006) and is applied in the analysis presented

here. In APIOBPCS, the service level (fill rate) of one tier is calculated by the

percentage of the previous tier's orders satisfied through the available inventory of

the former tier.

Three levels of capacity constraints (Low, Medium, and High) are applied in

the simulation experiment here, as before in Section 6.4. The safety stock level is a

constant times the average sales (Ng et al, 2002). Simulation is run for 500 periods

and each run is simulated ten times. Like Zhao et al (2002), the average till rate is

calculated by averaging the results of 10 runs of the simulation model. For each

experiment, the safety stock levels are increased gradually such that 100% service

level is achieved at both tiers. A normally distributed demand with mean ().l =

lOO/weeks) and standard deviation (cr = 20) is used. The 'good' set of system

parameters used before is used here, Le. Ti = Tw = Tp, Ta = 2Tp.

Mapes (1992) simulated the effect of capacity constraints on safety stock in a

single echelon of a periodic review inventory control system and the results indicated

that increasing the safety stock level increases the customer service level. Table 6.1

also shows that increasing the safety stock of both tiers increases the percentage of

the fill rate. The zero safety stock level will provide the lowest service level and the

maximum safety stock will result in the highest service level. It can be said that the

relationship between service level and safety stock is "monotonic", as found by

Korevaar (2007) also. However, there is a threshold beyond which increasing the

safety stock has very little impact on the service level as shown in Table 6.1. In
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capacity constrained supply chains the service level also depends on the capacity

tightness.

The use of buffer inventories to protect against varying market demand is

increasingly difficult due to greater product variety and shorter technological life

cycles (Helo, 2000). Table 6.1 shows that capacity is an effective alternative to safety

stock in achieving a higher customer service level. Increasing capacity can

substantially reduce the level of safety stock required. When a firm decides to

increase its service level, capacity and/or buffer stocks should be increased, with the

choice depending on the nature of the product. For example, increasing capacity is a

better solution for agile manufacturing. Increasing the safety stock in high-tech or

other industries where the product life cycle is short poses potential dangers of

obsolescence.

Sitompul and Aghezzaf (2006) showed that safety stock levels m capacity

constrained supply chains must be high to achieve the desired service level as

compared to non constrained supply chains. However, the amount of safety stock

required to achieve the desired service level depends on the capacity constraints.

Highly capacity-constrained systems require larger safety stocks and vice versa. In

the highly capacity constrained supply chain simulated here a 100 % fill rate can be

achieved by fixing the safety stock level at 4.25 and 5.75 times average sales at Tier

1 and Tier 2 respectively as shown in Table 6.1. With the low capacity-constrained

system, the optimal levels of the safety stock should be set at 3 and 4 times average

sales at Tier 1 and Tier 2 respectively.
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Safety Stock High Capacity Constraints Medium Capacity Constraints Low Capacity Constraints
(DINV) Tier I Tier2 Tier I Tier2 Tier I Tier!

I"Sales 33 18 45 32 56 44

125 * Sales 38 22 50 37 61 49

15 * Sales 42 27 56 41 66 55

175 * Sales 46 31 61 46 73 60

2 *Sales 51 36 66 51 78 64

2.25 * Sales 56 39 71 57 84 65

25" Sales 62 43 77 62 90 71

2.75 * Sales 67 46 83 66 96 77

3 *Sales 72 51 89 72 lOO 82

3.25 * Sales 78 56 95 77 100 88

3.5 * Sales 83 59 100 81 100 93
3.75 * Sales 87 64 100 85 100 97

4 *Sales 92 69 lOO 90 100 100

425 * Sales 97 73 lOO 94 lOO 100

45 * Sales 100 78 100 98 100 100

475 * Sales 100 84 100 100 100 100

5 *Sales lOO 89 100 lOO 100 lOO

525 * Sales 100 93 lOO 100 100 100

5 5 * Sales lOO 98 100 lOO 100 100

575 * Sales 100 100 100 100 100 100

6 *Sales 100 100 100 100 100 lOO

Table 6.1. Impact of Safety Stock and Capacity Constraints on Fill Rate (%)
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6.6 Backlog Bullwhip Effect in a Multi-Echelon Supply Chain

Capacity constraints the ability of an echelon to produce so that it is a

determinant of the service level. The backlog variance directly impacts the customer

service level and hence is costly, while inventory variances determine the safety

stock requirements and affect the inventory holding cost (Boute et ai, 2007). The

stability of each echelon can be ensured through the related echelon's shortfalls.

Shortfalls, also known as backlogs, are measured by the shortfall of actual inventory

of each echelon. Variance in the backlog is known as the "backlog bullwhip effect"

(Anderson et al, 2005).

In a simple production and inventory control system, the order backlog is

calculated when the production capacity reaches saturation. In APIOBPCS,

production is controlled by the feed-forward loop of smoothed sales and the feedback

loops of error in the inventory and error in the WIP. The backlog is recorded through

a reduction in actual inventory level. Recording unfilled orders due to production

saturation and maintaining a new feedback loop of the production order backlog,

when the factory is operating at capacity within the APIOBPCS, leads to the double

accounting phenomenon (Evans and Nairn, 1994). Only one level should be

recorded due to saturation either at the production or inventory control level, but not

both. Here, backlog is recorded through the shortfall of the inventory.

In the next set of experiments conducted here, different levels of design

parameters, capacity constraints, and safety stock levels are introduced across each

tier of the APIOBPCS model. The objective is to minimize the backlog bullwhip

effect across the multi-echelon supply chain by evolving appropriate values of design

parameters, safety stock and capacity levels at each tier. Analysis is limited to two
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tiers of APIOBPCS model. To deal with this level of complexity and nonlinearity,

Taguchi Design of Experiments is applied.

6.7 Taguchi Design of Experiments

Capacity and inventory planning can reduce the supply chain cost (Chao et el,

2008). Determining the safety stock placement at different echelons to achieve the

desired level is extremely complex when production and distribution have capacity

constraints (Sitompul and Aghezzaf, 2006). An important question in supply chain

management is how to co-ordinate inventories and capacities in multi-echelon supply

chains under stochastic demand processes, while providing a high level of customer

service. To answer this question, Taguchi Design of Experiments is applied to evolve

the optimum values of capacity, safety stock, and design parameters for two tiers of

APIOBPCS.

The objective of the supply chain is to provide high service levels coupled with

minimizing the backlog variances with minimum safety stock levels and capacity.

One possibility is that each echelon independently determines its own safety stock

and capacity levels. In reality, supply chains never exist in isolation, rather they act

(or should act) in unity and local optima cannot guarantee global optima. Supply

chains should be run as a single entity and policies should be derived to aim for

global optima. Hence, different sets of deign parameters, stock levels and capacity

levels are introduced across both tiers of the supply chain with the aim of minimizing

the total backlog bullwhip effect, where the total backlog bullwhip is the sum of the

backlogs at both tiers.
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6.7.1 Inner Arrays

As explained in Chapter 3, the first step in parameter design is the selection of

quality characteristics. The purpose of this research is to minimize total backlog

bullwhip effect in the two tier APIOBPCS model by exploring the best factor or

parameter levels, therefore the 'smaller-the-better' quality characteristic is applied

here. The next step is to select the factors and their levels.

The supply chain model produced has five interacting inner arrays per tier;

Time to adjust inventory (Ti), time to adjust work-in-progress (Tw), time to

averaging sales (Ta), safety stock (DINV), and capacity constraints (Cap). The best

value of design parameters (Ti, Tw, and Ta) for the stable response has been

demonstrated in Chapter 4. The condition Ti = Tw = found by Mason-Jones et al

(1997) and Riddalls and Bennett (2001) to be a condition for a good or best response

across the supply chain, was also borne out by the results presented in Chapter 4.

Hence, the condition Ti = Tw is applied in this analysis such that changing the value

ofTi will also apply the same value to Tw. The three levels ofTi and Ta, OINV, and

capacity considered at each tier are shown in Table 6.2. In the experiments, three

different levels of safety stock are examined for both tiers. The stock levels selected

are identified by analysis of the simulation results in Table 6.1. It is important to note

that the above stock levels for Tier 1 and Tier 2 were selected for certain sets of

design parameters. In this analysis these stock levels are rounded to the nearest

integer values.

After the factors and their relevant levels are selected, the next step is to choose

appropriate orthogonal arrays (OA). The choice of orthogonal array size used in the

design of experiments depends on the total degrees of freedom (OoF) required for the

parameters and their interactions. In this study, the OoF for 8 control factors (inner
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arrays), each with three levels is 8 x (3-1) +1= 17. The L27 orthogonal arrays, which

can be used for five to thirteen three-level factors, is the appropriate selection for the

inner arrays.

6.7.2 Outer Arrays

Outer arrays, also known as 'noise factors', involve those parameters that are

uncontrollable in real life but are controlled during the experiment. In this study, two

outer arrays are considered; sales and lead time. In APIOBPCS, the lead time is

normally assumed to be constant. Whilst lead time is not a control system design

variable (i.e. an inner arrays factor) it is possible that it may vary or a business may

invest in lead time reduction. Therefore, the effect of lead time should be

investigated so two lead time values are included in the outer arrays. A normally

distributed demand with a mean (u , 100) and standard deviation ( o ) is considered.

The following two levels of coefficient of variation (CV) of demand are considered

in the outer arrays; (0.2, 0.4). The outer arrays are given in Table 6.3.
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Factors Level1 Level2 Level3
Safety Stock (OINV1) Tier 1 3 * Sales 4 *Sales 5 * Sales

Safety Stock (OINV2)Tier 2 4 * Sales 5 * Sales 6 * Sales

Capacity Constraints (Cap1)Tier 1 High Medium Low

Capacity Constraints (Cap2) Tier 2 High Medium Low

Time to Adjust Inventory (Ti1) Tier 1 4 6 8

Time to Adjust Inventory (Ti2) Tier 2 4 6 8

Time to Average Sales (Ta1) Tier 1 6 9 12

Time to Average Sales (Ta2) Tier 2 6 9 12

Table 6.2. Inner Arrays

Factors Level1 Level2

Demand (Sales) 100 (CV=0.2) 100 (CV=0.4)

LeadTime (Tp) 4 6

Table 6.3. Outer Arrays
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Experimental Safety Stock 1 Safety Stock2 Capacity 1
Run

Capacity2 Tl1 Tl2 Ta 1 Ta2

4

1.

11

12

13

14

15

1.
t1

11

1.

21

21

22

23

24

21

21

21

Table 6.4. L27 (313) Orthogonal Arrays for Controllable Factors

Experimental Run Demand Lead Tine

1

2 2

3 2 1

4 2 2

Tabie6.5.L.(21)Orthogonai Arrays for Noise Factors
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6.7.3 Analysis of Results

A statistical measure called the 'Signal-to-Noise Ratio' (SNR) proposed by

Taguchi is applied for measuring the functional perforrnance of the system by

making it insensitive to the effect of noise (Lu and Antony, 2002). The details of

SNR were presented in Chapter 3. The end result is "robust design" that is less

sensitive to noise factors. It is measured in decibels by using the following formula

(Roy,2001);

SNR = -lOLog1o(MSD) (6.1 )

where MSD is the measure of mean squared deviation in the performance, Since in

every design less noise, relative to the size of the signal, is required, the larger the

SNR the greater the performance. For the quality characteristic of 'smaller-the-

better', the corresponding MSD formula is:

MSD = _!_ f yi
2

n i=1
(6.2)

where: n = number of test results

Y, = i th observed response value

6.7.4. Calculation of Main Effect

The effect of a design parameter on the measured response, when the

parameter's value is changed from one level to another, is known as a 'main effect'

and is calculated for a particular level of a factor by examining the orthogonal array,

the factor assignment, and the experimental results (Roy, 2001). Details of the

calculation of main effects are presented in Chapter 5. Simulation results are the

average of the 30 runs of the model, each of 500 weeks length.
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Figure 6.3 shows that the total backlog bullwhip effect measurement is most

sensitive to capacity tightness at Tier 2. When the order rate at Tier 2 saturates due to

capacity constraints, a backlog of unfilled orders thereupon develops at that Tier. In

this situation, the down stream tiers are prone to over ordering which further

magnifies the demand and backlog. This backlog is regenerative (more orders cause

a larger backlog and more delays and more ordering ahead) causing a larger backlog

of orders (Forrester, 1961). This phenomenon can be referred to the "Reverse

Bullwhip Effect" as shown by Rong et al (2008). The saturation at Tier 2, due to

capacity constraints, results in a reverse bullwhip effect which further amplifies the

backlogs at both tiers. Hence, it can be said that capacity constraints at the farthest

tier are very important for controlling the total backlog of the model.

Previous research has indicated that the bullwhip effect has detrimental

impacts on the upstream tiers, while Xu et al (2007) have shown that the bullwhip

effect impacts the performance of the whole supply chain. It has been suggested that

significant benefits can be achieved by 'strategic alliance' among supply chain

partners. When production and distribution have capacity constraints then the reverse

bullwhip effect deteriorates the performance of the whole supply chain.

The total backlog bullwhip effect is next most sensitive to capacity tightness at

Tier 1. Figure 6.3 shows that capacity constraints at Tier 1 have a highly non-linear

impact. This means that choosing an appropriate capacity level at Tier 1 is very

critical. Capacity tightness at the Tier I determines the magnitude of the order rate

and hence the safety stock level of Tier 2. Low and high capacity tightness at Tier I

produces highly erratic ordering patterns which significantly increase the total

variations of the backlog, while retailer working with medium capacity constraints
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produces smooth ordering pattern. This smoothing of the orders minimizes the

inventory variations at Tier 2 and hence reduces the variations of the total backlog.

Figure 6.3 shows sensitivity of the SN Ratio to safety stock at Tier 1 and Tier 2.

It can be seen that safety stock levels at both tiers have a substantial impact on the

total backlog of the model. It is normally assumed that increasing the safety stock at

a particular level will decrease its backlog. While, Anderson et al (2005) have shown

that policies for minimizing backlog variations at Tier I and Tier 2 will both, in

general, differ from that which will minimize the total variations of the backlog.

Figure 6.3 shows that when production and distribution have capacity constraints

then increasing the safety stock from the desired level increases the total variations of

backlog. This is quite logical since larger safety stock levels result in larger inventory

variations. When Tier 2 is working at saturation due to capacity tightness then

sometimes it may not be able to cope with the larger inventory variations (large

fluctuations in order rate) of the Tier 1. This situation again results in the reverse

bullwhip effect. Hence, the determination of optimal safety stock levels in capacity

constrained supply chains play s crucial role in mitigating the total backlog bullwhip

effect. .

It has been shown in Chapter 5 that Ti is the most significant factor for the

bullwhip effect in APVIOBPCS with batch ordering. However, in the capacity

constrained supply chain simulated here the impact of Ti to backlog bullwhip effect

is much smaller. Indeed, Table 6.6 shows the small contribution of Ti and Ta to the

variance of the backlog.
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Factors and Levels

Figure6.l. Plot of Main EIJect Response

SS x.y = Safety stock Tier x, factor level y (see Table 6.2)

Cap x.y = Capacity Tier x, factor level y (see Table 6.2)

Ti x.y = Time to adjust inventory Tier x, factor level y (see Table 6.2)

Ta x.y = Time to average sales Tier x, factor level y (see Table 6.2)

6.7.5. Analysis of Variance (ANOV A)

To discover which effects are statistically significant, analysis of variance

(ANOV A) is performed to quantify the contribution of each parameter to the total

variation in the experimental data. Details of the ANOV A calculation were given in

Chapter 3. The ANOVA tests are performed at the 97 % confidence level. The

ANOV A results in Table 6.6 show that all the factors involved in this study are

statistically significant. However, capacity constraints at Tier 2 makes the largest

contribution to the variation in the measurement of the backlog bullwhip effect, with
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a contribution of 40 % and next is capacity constraints at Tier 1 with 20%, so that

these two parameters account for 60 % of the total variance. This means that total

backlog bullwhip effect can be reduced greatly through adjusting the capacity levels.

The safety stocks levels accounts far less of the backlog bullwhip effect than does the

capacity constraints, but their contribution is still significant unlike the much lower

contribution of the design parameters Ti and Ta.

Fadors DOF Sum of Squares Varlauce F-Rado Pure Sum P~rc~n.
(I) (S) (V) (F) (S·) p(%)

1.Safety Sleck- Tier 1 2 384 192 40 374 14

2.Safety Sleek-Tier 2 2 205 103 21 195 8

3.Capacity Constraints-Tier 1 2 552 276 78 543 20

4.Capacity Constraints-Tier 2 2 1062 531 111 1052 40

5.Time le Adjust Inventory-Tier 1 2 179 89 19 169 6

6.Time le Adjust Inventory-Tier 2 2 106 53 11 97 4

7.Time le Average Sales-Tier 1 2 105 53 11 96 4

8.Time 110Average Sales-Tier 2 2 52 26 5 53 2

Enur 10 48 5 2

Total 26 2693 100 0.(,

Table 6.6. Results of ANOVA

6.7.6. Determining the Optimal Values

Little research has been carried out to identify 'optimal' values of the safety

stock and capacity constraints across multi-echelon supply chains. Determining the

optimal values of safety stock at different echelons to achieve the desired level is

extremely complex when production and distribution have capacity constraints (Van

Houtum et al,1996; Sitompul and Aghezzaf ,2006). Analysis in this section tills this

gap and offers insight to develop a trade-off between capacity and safety stock at
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different echelons, which will enable production managers to take better decisions

about their capacity and safety stocks.

The best parameter levels within the range of values considered here are given

in Table 6.7; this is in the context of minimizing the chosen measure of the backlog

bullwhip effect.

According to the measure chosen here medium capacity constraints at Tier I and

Low capacity constraints at Tier 2 should be preferred. Medium capacity constraints

at Tier 1 produces smooth ordering and low capacity constraints at the farthest tier

absorbs the magnitude of the backlog from previous tiers. This supports what Parker

et al (2004) have shown that Tier 1must have lower capacity than Tier 2.

Parker et al (2004) have demonstrated optimal policies for capacity constrained

order-up-to-Ievel production inventory control system. It has been shown that the

optimal safety stock level of Tier 1 is constrained by its capacity and the safety stock

level of Tier 2 while the optimal safety stock level of Tier 2 is constrained by the

capacity tightness of Tier 1. It is important to note that the safety stock level of Tier 2

should be higher than the safety stock level of Tier 1 otherwise the system will face

the 'induced penalty cost'; Tier 1 accrues induced cost for limiting the ability of Tier

2 to reach a desired safety stock level as a result of the capacity limitation of Tier 1,

while Tier 2 accrues induced cost for potentially not fulfilling the demand of Tier I.

Values of Ti and Ta not only ensure stability but also determine the capacity

requirements of the system. Increasing Ti can control excessively large fluctuations

in the order rate by damping the reaction to errors in the inventory. The results

presented in Table 6.7 show that the largest values of Ti and Ta can perform better

for the chosen measure of performance. The results in Table 6.7 show different
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parameters values at different tiers, this supports what Anderson et al (2005) found,

that pursuing the same policies at all tiers increases the backlog of the model.

Factors Level

Safety Stock-Tier 1 1

Safety Stock-Tier 2 1

Capacity Constraints-Tier 1 2

Capacity Constraints-Tier 2 3

Time to Adjust Inventory-Tier 1 3

Time to Adjust Inventory-Tier 2 3

Time to Average Sales-Tier 1 3

Time to Average Sales-Tier 2 3

Level Description

3"SaJes

4"SaJes

1.18

1.33

8

8

12

12

Table 6.7. Factors at Optimal Condition

6.8 Summary

1. Previous studies involving the APIOBPCS model are based on unconstrained

capacity. One of the most important methodologies to investigate various

aspects of APIOBPCS model is control theoretic techniques. As pointed out by

Riddalls et al (2002) and White et al (2006), control theorists are dealing with

the linearity of the model and there are no capacity constraints. This chapter has

addressed this gap by introducing capacity constraints at different echelons of

the APIOBPCS model.
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11. The stability boundaries of a multi-echelon supply chain with capacity

constraints have been explored. Inventory shortfall determines the stability

boundaries of the capacity constraint supply chain. The system may experience

immense backorders if capacity constraints are not dealt with effectively. It has

been seen that tight capacity constraints (e.g. capacity / mean demand = 1.05)

result in high inventory shortfalls at the upstream tiers. When capacity tightness

is not so tight (capacity / mean demand = 1.3) then the system behavior

approaches that ofthe APIOBPCS without capacity constraints.

in. It has been seen that safety stock and capacity constraints determine the service

level of the supply chain. When capacity constraints are very tight then larger

safety stocks are required to achieve the desired service level and vice versa.

iv. Increasing the safety increases the service level of a tier. However, there is, of

course, a threshold beyond which increasing the safety stock does not increase

the service level any more.

VI.

v. It has been shown that when the order rate of the farthest tier saturates due to

capacity constraints then over ordering by the previous tiers magnifies the total

backlog of the supply chain. This phenomenon has been termed the "reverse

bullwhip effect". Hence, a more cautious approach toward the ordering pattern

is required by downstream tiers when production and distribution have capacity

constraints.

The sensitivity of the backlog bullwhip effect to the capacity, the safety stock,

and the design parameters of APIOBPCS has been explored. The degree of

sensitivity to capacity constraints has been found to be very significant,

especially the capacity constraints at the farthest tier, which contribute 40% to
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the total backlog variance This shows the importance of the capacity

constraints of the farthest tier.

VB. An interesting finding is that the sensitivity of the backlog variances to the

design parameters in the capacity constrained supply chain is very low. While,

in the previous chapters it has been seen that bullwhip effect is most sensitive

to Ti when there are no capacity constraints.

viii. It has been found that smooth ordering by Tier 1 can be achieved when Tier 1

has medium capacity constraints and low safety stocks. This smooth ordering

reduces the total backlog variations of the supply chain. Increasing the value of

Ti and Ta stabilizes the system and less capacity is required to meet the desired

service level.

ix. Future work should investigate the impact of flexible capacity on stability, lead

time, and the service level of the model. Another important dimension for

further work is the total cost implications of capacity constraints and safety

stocks in multi-echelon supply chain.

164



Chapter 7: Impact of Forecasting Methods and Replenishment
Rules on Net Variance Ratio in Order-up-to Level Policy

7.1 Introduction

The literature review in Chapter 2 discussed that demand forecasting, lead

times (delays) and ordering policies are among the key causes of the bullwhip effect.

Hence, in this chapter the analysis of the bullwhip effect and inventory variances

induced by different forecasting techniques and replenishment rules is presented. A

basic order-up-to level replenishment rule is studied where the retailer reviews the

inventory position periodically and places a replenishment order to the manufacture.

The end customer demand faced by the retailer is a first order autoregressive process,

denoted AR (1). Like other authors, AR (1) process is used to obtain some basic

managerial insights rather than more complex AR (n) processes. The retailer's

ordering pattern and inventory policies have a direct impact on the production of the

upstream echelon. The upstream echelon prefers a smooth ordering pattern by the

retailer. However, smoothing of the orders comes at the price of increased inventory

variances at the retailer's level. Different forecasting techniques and replenishment

policies are analyzed to develop a trade-off between the order and inventory

variances of the retailer under a varying demand process.

The contribution of this chapter is three fold. First, the impact of exponential

smoothing (ES) and minimum mean squared error (MMSE) forecasting techniques

on the bullwhip effect is observed. Secondly, previous research into the order-up-to

level (OUT) model focused on determining the impact of forecasting methods on the

bullwhip effect by using statistical approaches, but Hosoda and Disney (2006, a)

point out that "the statistical approaches become unmanageable when net inventory

variances are considered as the expressions for the covariance between the states of
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the system are very complex". (Inventory variances represent the net stock variations

and are measured by the ratio of net stock variance over the variance of demand. The

higher the net stock variance the more safety stock required to meet the desired

service. Simulation is applied in this thesis to this analysis so that these intractable

expressions between order rate and inventory variances are avoided, and the impact

of ES and MMSE forecasting techniques on both order and inventory variations can

be investigated. The graphical results gained from simulation studies provide a

clearer picture of the situation than the corresponding statistical and mathematical

results.

Thirdly, it has been shown that the simple OUT replenishment policy always

results in the bullwhip effect (Dejonckheere et ai, 2003), (Hosoda and Disney, 2006

b). The simple OUT policy is modified here by adding a proportional controller into

the inventory feedback loop. The impact of the proportional controller, in a modified

OUT policy, on the demand amplification and inventory variances is analyzed. The

modified OUT replenishment rule dampens the variability in the orders to the

upstream echelon but this comes at the price of increased inventory variances at the

retailer's level. It has been found that by fine tuning of the proportional controller,

the order pattern can be smoothed to a considerable extent without affecting the

inventory variances.

7.2. Literature Review

The order-up-to level (OUT) policy is a basic periodic review system for

issuing orders on the basis of incoming demand and inventory position. OUT policy

is optimal when there is no fixed ordering cost and both holding and shortage costs

are proportional to the volume of the on-hand inventory or shortage (Dejonckheere et
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al, 2003). Impacts of forecasting methods on the bullwhip effect with the OUT policy

have been studied by several researchers. Chen et al (2000, b) evaluated the moving

average (MA) and exponential smoothing (ES) forecasting techniques with respect to

bullwhip inducement in a simple order-up-to level (OUT) policy. They found that

exponential smoothing forecasts are more likely to amplify demand variations than

moving average forecasts. Alwan et al (2003) and Luong (2007) studied the bullwhip

effect in an order-up-to-Ievel policy with mean squared error (MMSE) forecasting

for the AR (1) demand process. (Autoregressive is a stochastic demand process

which can be described by weighted sum of previous demand plus white noise error.

AR( 1) demand process means only previous immediate demand value has an impact

on the current demand process.) They found that using such a forecasting policy, the

bullwhip effect can be eliminated or mitigated depending on the demand

autocorrelation. Zhang (2004) also investigated the impact of forecasting methods in

an OUT policy with autoregressive AR (1) demand process. Zhang found that, in

comparison with MA and ES forecasting techniques, the use of MMSE forecasting

technique improves the inventory performance for the downstream echelons. Sun et

al (2005) made the comparison of the effects of MA, ES, and MMSE forecasting on

the bullwhip effect in an OUT model. Sun's findings indicate that for negatively

correlated demand process, MMSE forecasting method performs better while for

positively correlated demand ES and MA should be preferred.

The impact of lead time on the bullwhip effect has also been investigated by

Chen et al (2000,b), Zhang (2004), Chatfield et al (2004), and Kim et al. (2007).

Chatfield et al (2004) analyzed the bullwhip effect with stochastic lead time and

found that lead time variability exacerbates variance amplification in supply chains.

Kim et al (2006) measured the impact of stochastic lead time on bullwhip effects for
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a k-stage supply chain and found that the bullwhip effect was higher under the lead

time variability. Most studies on lead time have shown that longer lead times or

larger lead time variations have a negative effect on supply chain performance.

implying that lead time or lead time variability should be minimized.

Replenishment strategies have an impact on order and net stock variability.

Order variability contributes to the bullwhip effect and the upstream cost while

variations in net stock level affect the ability to meet a desired service level. In a

make-to-order supply chain, the upstream echelon pursuing the smooth production

prefers the minimal variability in the production orders from downstream.

Dejonckheere et al (2003) showed that in the OUT replenishment system, bullwhip is

unavoidable with exponential smoothing, moving average, and demand signal

forecasting and propose a general replenishment rule for order smoothing.

Balakrishnan et al (2004) emphasized opportunities to reduce supply chain costs by

reducing the variability of orders to upstream echelons. This has led to the creation of

new replenishment policies that are able to generate smooth order patterns and which

in tum can mitigate the demand amplification. In order to control the dynamics of the

supply chain, Hosoda and Disney (2006,b) added a proportional controller in the

simple OUT supply chain model with MMSE forecasting. They named the new

replenishment policy the generalized OUT policy and found that in a two echelon

supply chain it reduced the inventory related cost by 10 %. Boute et al (2007)

studied a two level supply chain with I.I.D customer demand. They found that

decreasing the order variability at the retailer's level comes at the cost of increased

variance of the retailer's inventory level.

Previous research focused on determining the impact of forecasting methods on

the bullwhip effect. However, as pointed out by Hosoda and Disney (2006, a),
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"Statistical approaches become unmanageable when net inventory variances are

considered as the expressions for the co-variances between the states of the system

are extremely complex". Therefore, it is argued that simulation is better suited to this

analysis to avoid these intractable expressions, and the graphical results gained from

simulation studies provide a clear picture of the situation.

It has been shown that simple OUT replenishment policy always results In

bullwhip effect (Dejonckheere et al, 2003; Hosoda and Disney, 2006, b). In this

study the simple OUT policy is modified by adding a proportional controller into the

inventory feed back system and the impact of this is analyzed. Taguchi Design of

Experiments is applied in analyzing the impact of different factors involved in this

study, to understand the effects of the factors and their interactions and to identify the

set of parameter values that minimizes the order and inventory variances.
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7.3. Model Description

This section studies the basic periodic review inventory and production control

system. The basic structure of the model is the same as the one studied by Lee et al

(1997). The block diagram of the model studied is presented in Figure 7.1. The

details of the model are explained below.

"D D = Demand

Com Rata

Inventory Position

Figure 7.1. Block Diagram of Order-up-to Lev" (OUT)Model

7.3.1. Demand process

The standard periodic review based stock OUT replenishment policy is used.

External demand for a single item occurs at the retailer, where the underlying

demand process faced by the retailer is an AR (1) process. The retailer's demand

from the customer is a mean centered demand pattern: i.e.

(7.1)

where D, represents the demand in period t, d is the average demand, p is the first

order autocorrelation coefficient, -1 < p < 1, and Cl is an independent and identically
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distributed normal process (1.1.0) with mean 0 and variance 0'2 • It is assumed thatc
E E

is significantly smaller than d, so that the probability of negative demand is

negligible, (Lee et al, 2000). The demand variance equals 0' ~ = aJ{_ p 2 • By

varying the value of p , a wide range of process behaviors can be observed. When

p = 0, we have an 1.1.0 process with mean 11 and variance a;. For-I < p < 0, the

demand process is negatively correlated and will exhibit period-to-period oscillatory

behavior. For 0 < p < 1, the demand process will be positively correlated which is

reflected by a wandering or deviating sequence of observations. As p approaches

one, the process approaches non-stationary behavior; and in particular, a pure

random walk model or equivalently, an ARIMA (0, I, 0) process (Box and Jenkins,

1970).

7.3.2. Inventory Policy

The standard periodic review base stock policy is the (R, S) policy. At the end

of every review period R, the inventory position is tracked and a replenishment order

is placed to raise the inventory position to an order-up-to or "base stock" level S,

which determines the order quantity in period t, as shown in Equ

(7.2)

Where, O, is the ordering decision made at the end of period t, S, is the order-up-to

level used in period t and IPt is the inventory position. The inventory position is the

sum of net stock plus (NS) pipeline inventory (WIP) as shown in Equation 7.3.
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IP 1 = NS 1 - WIP 1 (7.3)

Where (7.4)

and (7.5)

The order up to level is determined by Equation 7.6.

+ zd L
1 (7.6)

Where [) ~ is expected forecasted demand over L periods (I)~= LI)I ),a," is an

estimation of the standard deviation of the lead time forecast error, and z is a

constant chosen to meet the desired service level and is related to inventory holding

and backlog cost. As done by other authors, z is set equal to zero and lead time is

increased by I. For example, a retailer having an order lead time of four weeks may

decide to keep stock of five weeks of forecasted demand, with the extra week of

inventory representing the safety stock. Such a policy has the potential of 01 < 0

but under the assumption a. < d , the probability of having 01 < 0 is negligible (Lee

et al 1997). The standard deviation of the lead time demand forecast error is

&~ = ~Var(D; - 6~), where Var is the variance. Zhang (2004) showed that the

standard deviation of the lead time forecast error remains constant over time for the

moving average, exponential smoothing, and mean squared error forecasting

methods. Hence, &; = &~_I' and the replenishment order quantity can be written as

Equation 7.7.

(7.7)
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There is a fixed lead time (denoted by L or Tp) such that an order placed at the

end of period t is received at the start of period t + L. All unmet demands are

backlogged. In the simulation conducted here, an average demand of 100 per week

and standard deviation of 20 are used. Like Lee et al (1997), it is assumed that there

is an infinite number of demand data available and the underlying parameters of the

demand model are known. Simulation is run for 400 periods for each condition.

Replication is carried out for 30 time periods and averages of the results are taken.

Performance measures of the simulation analysis are observed on the bullwhip effect.

The bullwhip measure is defined by Equation 7.8.

B II h· Variance of order rate
u w ip =

Variance of demand
(7.8)

When Bullwhip = I, it implies that the variance of orders is equal to the

variance of demand or in other words there is no bullwhip effect. Bullwhip < I

shows the existence of the anti-bullwhip or de-whip effect. Bullwhip> 1 indicates

that the variance of orders are greater than the variance of demand and the presence

of the bullwhip effect.

7.4. Bullwhip Effect with Exponential Smoothing (ES) Forecasting

The exponential smoothing (ES) forecast is an adaptive algorithm in which

the one period ahead demand forecast is adjusted by a fraction of the forecast error.

Let a denote the fraction used in this process (also called the smoothing factor), then

the ES forecast of next period's demand can be written as:

(7.9)
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The smoothing constant (a), is the weight placed on the most recent observation of

demand in the exponential smoothing forecast and is subject to the condition

0< a < 1. A forecast of one period ahead is made which is then multiplied by the

lead time to obtain the value of lead time demand. i.e., 0:- = LOt' Now we test

Chen's et al (2000, b) findings, later confirmed by other analytical studies, about the

effects of the smoothing constant (a ), demand correlation coefficient (p ), and the

lead time (L) on the bullwhip effect. Three levels of each factor are simulated. The

degrees of freedom (DOF) for three control factors, each with three levels is 3 x (3-1)

+1= 6. L<)arrays which can be used for four factors at three levels are selected.

Table 7.2 defines, for each experiment, the level of each factor (parameter) to he

used. The factor levels used in the experiments reported here are given in Table 7.1.

Factors Level1 Level2 Level3 Experimental Run L p a
Lead Tune ( L ) 2 4 2 2

3 3

4 2

Demand ".8 0 u 5 2 2
CorreIDIn ( P)

6 2 3

7 3 3

8 3 2

SmcIoIUIg 0.2 0.5 u 9 3 3
Constat IaI

Table 7.1. Parameter and their Levels Table 7.2. Inner Arrays (L9)
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Factors and Levels

Figure 7.2. Bullwhip Effect with ES

The above results validate Chen's et al (2000, b) findings that the bullwhip

effect increases with a and decreases with demand autocorrelation (p ) and

converges to one whenp = I. When compared to an LLD demand process, negati ely

correlated demand results in an increased bullwhip effect while positively correlated

demand results in a decreased bullwhip effect. Figure 7.2 also show that increa ing

the lead time also increases the variability of orders.

7.5. Bullwhip Effect with Minimum Mean Squared Error (MM E)

Forecasting

Using MMSE forecasting means that the demand forecast is derived in uch a

way that the forecast error is minimized (Box and Jenkins,1970). It is the c nditional

expectation of future demand, given current and previous demand observations. The

MMSE forecast for the demand in periodDt+j, given current and previou d mand

observations D" Dt_l, Dt-2 '" .. (Box and Jenkins,1970). This forecasting technique
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assumes that the underlying parameters of the model are known or that an infinite

number of demand data is available to estimate these parameters. Let 1\ 'I •j = 1.2.....

be the j -period- a- head forecast of the demand 0 t+jmade in period t f j. then

D . = d + p' (0 - d)t+ J t
(7.10)

It may be noted that as the forecasting process contains no moving average

terms, the errors from previous periods play no part in the computation of the results.

Further, the forecast is the geometric decay from the last demand observation to the

mean of the process. In contrast to the exponential smoothing forecast method. the

one period ahead demand forecast is not multiplied by lead time. but instead the

forecast of the demand over the lead time horizon is calculated by plugging a single

period MMSE forecast into the lead time. The mean squared error forecast for the

lead time demand is given by, (Zhang (2004).

L+I

OL = Ld + P - P (0 - d)tIt -p
(7.1 1)

Like Lee et al (2000), it is assumed that infinite number of demand data is

available and underlying parameters of demand process are known. Figure 7.3 shows

the effects of demand correlation and lead time. in an order-up-to level pol icy. on the

bullwhip effect when demand forecasts are estimated using MMSE. A comparison is

made between negatively correlated, 1.1.0, and positively correlated demand

processes. When demand is negatively correlated (-1< P < 0). the bullwhip effect

does not exist or, the variance of the order quantity is smaller than the variance of

demand resulting in an anti-bullwhip or de-whip effect. From the managerial point of
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view, a de-whip effect means that the production planning phase at the manufacturer

level becomes easier and more stable. The manufacturer prefers to smooth

production, thus he prefers a smooth ordering pattern from the retailer. Bullwhip

effect increases the variances in orders and destabilizes the production planning

phase at the manufacturer level. When the variance of the order quantity is smaller

than the variance of the demand (de-whip effect) then the production manager can

stabilize the production schedule and minimize the production cost.

When the customer demand is given by an 1.1.0 process, i.e .. when r c= O. there

is no correlation in demand and the order-up-to level policy with MMSE forecast

generates orders equal to the observed customer demand and results in a "chase sales

policy "(Slack et al, 2004) that reduces to mean demand forecasting. In production

and inventory control systems, a chase sales policy implies that production can he

smoothed at a fixed rate without having to increase at inventory levels to provide the

same customer service level. A chase sales policy is usually adopted by operations

which cannot store their output, such as customer-processing operations or

manufacturer of perishable goods (Slack et ai, 2004). A chase sales policy avoids

wasteful provision of excess staff and capacity yet satisfies customer demand. When

demand is positively correlated (0 < p < I), with the increase of demand correlation

the bullwhip effect increases first, reaches the maximum value. and then starts

decreasing. The bullwhip effect is an increasing function of lead time over a certain

range of demand correlation. When there is a loose positive correlation: i.e. when p

S 0.3, smaller amplifications in the order rates are observed and an increase in lead

time does not cause much difference to demand amplification. When p 2::: 0.5. the

bullwhip effect is more significant and an increase in the lead time leads to an

increased bullwhip effect. Lead time has much impact on bullwhip effect when
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0.9> P >0.3. In Figure 7.3 it can be seen that the maximum value of the bullwhip

effect is observed when p = 0.8.

8

MMSE-L-&

6

2

o
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Rho
0.2 0.4 0.6 0.8 1.0

Figure 7.3. Impact of Rho on the Bullwhip Effect undet"MMSE Forecasting

7.6. Comparison of ES and MMSE

Figure 7.4 shows the impact of MMSE and ES (a = 0.2) as a function of lead

time on the bullwhip effect. The bullwhip effect observed using the ES techniqu 1 a

decreasing function of p and converges to one as p approaches one. An ob 1 u

difference between the results for MMSE forecasting and the results for E that

the bullwhip effect is no longer decreasing with autocorrelation. When demand i

negatively correlated (-1<p < 0), the bullwhip effect exists for the ES foreca ting

technique whilst it diminishes under MMSE. Lead time reduction can ignificantly

reduce the bullwhip effect when 1> p >0.3 with MMSE. In contrast, with the order up

to policy with ES technique, when -1< P < 0, shortening the lead time ha a

significant impact on bullwhip reduction. From the managerial point of view, the e

[mdings suggest that bullwhip effect does not automatically increase with the lead

time rather it depends on the forecasting technique and the parameter of the
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demand. The effort to reduce the bullwhip effect through shortening lead time will be

misleading, especially when managers have little knowledge of underlying demand

and forecasting techniques.

For negatively correlated demand processes, the bullwhip effect exists and

increases with the lead time when ES forecasting is used. On the other hand, when

forecasting is carried out using MMSE, a negatively correlated demand results in de-

whip effect, LLD demand process exhibits a chase sales policy, and perfect

positively correlated demand amplifies the bullwhip effect with the lead time. It can

be seen from figure 7.4 that ES performs better than MMSE in terms of bullwhip

reduction when 0.6< p < 0.9 whilst MMSE performs better when -1< P < 0.3 with a

transition occurring when 0.3 < P < 0.6. When a low weighting factor (a = 0.1 or

0.2) is used as the smoothing constant then the magnitude of the amplification is

lower for ES when compared with MMSE. Increasing the weighting factor of a to

0.4 increases the bullwhip effect as compared to MMSE. This reveals that the

bullwhip effect is more sensitive to a than to the demand correlation. Table 7.3

shows the selection of appropriate forecasting technique with respect to demand

correlation.

10

MMSE-L-B
8

Figure 7.4. eompartson of ES ( (1= 0.2) and MUSE on Bullwhip Effect
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RHO ES MMSE
-1.0 No Yea
-0.8 No Yes
-0.6 No Yea
-0.4 No Yes
-0.2 No Yea
0 No Yea
0.2 Yes Yea
0.4 Yes No
0.6 Yea No
0.8 Yea No
1.0 Yea Yea
Table 7.3. Selection of Forecasting Technique

7.7. Impact of ES and MMSE on Inventory Variance

Most of the previous research on demand amplification and forecasting in a

periodic review order-up-to level model has used statistical approaches. These are

useful for gaining an insight into the structure of the ordering process as it moves

into the upper levels of the supply chain. However, as pointed out by Hosoda and

Disney (2006,a), "the statistical approaches become unmanageable when net

inventory variances are considered as the expressions for the covariance between the

states of the system are very complex". Therefore, it is argued that simulation is

better suited to this analysis to avoid these intractable expressions. and the graphical

results gained from simulation studies provide a clear picture of the situation.

The variance of the net stock has a greater impact on the customer service

level; the higher the net stock variance the more safety stock required to meet the

desired service level. The variance of inventory measure is defined by Equation 7.12.

Varaince of net stock _ Var(NS.)
Varaince of inventory = V· f d daramce 0 eman Var( D. )

(7.12
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Figure 7.5 shows the quantification of the net inventory vanance at the

retailer's level by using ES and MMSE forecasting for different levels of lead time.

The net inventory variance is also affected by demand correlation. The net inventory

variance under MMSE and ES forecasting techniques, increases at first, then reaches

its maximum value, starts to decrease before it converges to one. The net inventory

variances for the ES are greater than the MMSE forecasting method and that gap

increases as lead time increases. Increasing the lead time for a particular level of the

supply chain increases the net inventory variances to a greater extent then the

bullwhip measure under both ES and MMSE forecasting methods. This shows that

inventory variances are more sensitive to lead time than the order variances. This

result is intuitive as the inventory fluctuates on the basis of demand and supply.

Higher variances in net inventory levels are observed for positively correlated

demand under both forecasting schemes. It can be concluded that net inventory

variances are greater for the higher lead times and for positively correlated demand.

It can be seen in Figure 7.5 that, for both forecasting methods, the maximum

inventory variations are observed when p is in the region ofO. 75.

o~~:::=~
-1.0 -(J.8 -(J.6 -(J.4 -(J.2 0.0

Rho

Figure 7.5. Comparison 01 ES ( (J= 0.2) and MMSE on Inventory Variances

0.2 0.4 0.6 0.8 1.0

181



7.S. Modified OUT Policy

It has been shown that the OUT replenishment policy always results in

bullwhip effect (Dejonckheere et aI., 2003), (Hosoda and Disney, 2006, b). So the

simple OUT replenishment policy needs to be modified to issue a smoothed ordering

pattern as this is a way to reduce variability. Dejonckheere et at. (2003).

Balakrishnan et al. (2004) and Hosoda and Disney (2006) proposed a number of

smoothing replenishment rules. In this study, a proportional controller is added in the

inventory feedback loop of the simple OUT replenishment policy. This new

replenishment policy is named the 'modified' OUT policy. First, taking Equation 7.7

and substituting D ~ = T p+1 D t ' equation 7.13 is obtained, which is then rearranged to

give Equation 7.14.

(7.7) (repeated here)

(7.13)

(7.14 )

T D can be treated as a desired inventory position (DIP). The difference between
p t

the desired inventory position and actual inventory position is called the error of

inventory position (EIP), where, EIP, = DIP, - (NS, +WIP') . Incorporating a

proportional controller, p , into Equation (7.14) yields the 'modified order-up-to

level policy'.

(7.15)

with 0 <B < 2. Forrester (1961) and control theorists refer to 1 /~ as the inventory

adjustment time (Ti) and propose not to recover the error of inventory position in one
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time period. Instead, recovery should be spread over time by ordering only fraction

P of the inventory deficit. In the simple order up to level policy, the error of the

inventory position is completely taken into account while in modified order up to

level policy, a fraction of the inventory discrepancy is ordered. Forrester (1961)

acknowledges that when p <1, the recovery time for the error of the inventory should

be spread over time and when p>1 recovery will be much quicker as overreaction to

the error of the inventory will be observed. It is important to note that when p = I,

both order up to level policies are identical. A block diagram of the modified OUT

policy is presented below.

A

D D =Demand

Inventory PoslUon

Figure 7.6. Block Diagram of Modified Order-up-Io Level (OUT) Model

7.S.1. Orthogonal Arrays

In this study, the degree of freedom (OOF) for three control factors with three

levels is 3(3-1) +1=7. This leads to choosing the L9 (34) arrays, which are the best

option for studying up to four factors at three levels. The selected orthogonal arrays
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are presented in Table 7.5 that defines, for each experiment. the level of each factor

to be used. The factor levels used in the experiments reported here are given in Table

7.4. The purpose of this research is to minimize the order and net stock variance

ratio by exploring the best parameter levels. therefore the smaller-the-better quality

characteristic is applied in this study. For the analysis of experimental results

obtained from the simulations, Taguchi standard analysis is carried out as before in

Chapter 5.

FactDrs Leva.1 a...-.2 '_'_'3 &a ............ L Ii P""" 1 1 1 1

LeadTime 2 4 6 2 1 2 2
( L)

3 1 3 3

4 2 1 2
Bcta(p) 0_5 1 1_5

5 2 2 3

6 2 3 1

Rho{P) 0_8
7 3 1 30_2 0_5
8 3 2 1

9 3 3 2

Table 7-4_ Factors and Levels Table 7_5_Inner Arrays (L9)

7.S.2. Analysis of Results

Figure 7.7.a shows the impact of p. lead time. and demand correlation on the

bullwhip effect when forecasting is carried out using the MMSE method. It should be

remembered that when p = 1. the modified order up to policy is the same as the

simple order up to level policy. When p < 1. a smoothed replenishment pattern is

created. Smoothing is a well known method to reduce variability and hence demand
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amplification. When B> 1 the variability of the order quantity is increased and the

bullwhip effect is increased and when 0 <P < 1, the bullwhip effect is dampened.

Figure 7.7.a also shows that the bullwhip effect is very sensitive to p. Demand

correlation is the second most significant factor, whilst the lead time has the least

effect on demand amplification.

Figure 7.7.b shows the impact of p , lead time, and p on the net stock variance.

In terms of P , it can be seen that the modified order up to level policy increases the

net stock variance ratio of the retailer. This means that the upstream echelon benefits

from the smoothing of the replenishment order. For the retailer, this smoothing

comes at the price of larger inventory variations; and variations in the inventory level

increase the inventory related cost. Larger inventory variations are observed when p

>1. Figure 7.7.b also shows that variances in stock level are highly sensitive to lead

time. It is important to note that the effect of demand correlation (p ) and lead time

on inventory variance is linear while the impact of p is non-linear. As p =1 gives the

lowest inventory variance ratio, the simple OUT policy is an optimal policy for the

retailer's inventory variances. This result shows that inventory control policies at the

retailer level often propagate customer demand variability in an amplified form to

upper levels of the supply chain as found by Boute et al. (2007). Damping variability

in orders may have negative impact on customer service by increasing inventory

variances. The bullwhip effect contributes to upstream costs, while the variance of

the net stock increases the cost of the retailer.
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The next step is to explore the interactions among the parameters. Two

important interactions are observed; interaction between ~ and demand correlation

and between ~ and lead time. These interactions have been discussed already in

Chapter 5. In general, ~ compensates for demand correlation and vice-versa. The last

step in the Taguchi approach is to find the optimum values for the factors

investigated. Disney and Towill (2003) ask, "To what extent can production rates be

smoothed in order to minimize the production adaption cost without adversely

increasing inventory costs". In order to calculate the optimal value offl , a trade off

needs to be developed between the order and inventory variances. From Figure 7.7.a

and 7.7.b, it can be seen that when ~ >1; both the bullwhip effect and inventory

variances are amplified. On the other hand, when ~ < 1 inventory variation increases

but the bullwhip effect is damped. Hence, in order to evolve the trade off between

bullwhip effect and inventory variances, the optimum value of ~ is between 0 and 1.

Again, Taguchi's orthogonal arrays are used to explore the best values of the

factors for both order and inventory variances. Four levels of each parameter are
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selected as shown in Table 7.6. The LI6 orthogonal arrays, which can be used to

study the fifteen factors at two levels, are modified. The modified LI6 arrays provide

the best opportunity to study two to five factors at four levels (Roy, 2001). The

selected orthogonal arrays are presented in Table 7.7 that defines, for each

experiment. the level of each factor to be used.

Figure 7.8 shows the main effect of the factors on the sum of net stock variance

and bullwhip effect, By adding net stock amplification and bullwhip, it is assumed

that the inventory variance is equally as important as the order variance. The

optimum value of P should set at 0.6, lead time and demand correlation should be

minimum.

F~ Le_n Leval2 Level3 Level4 Eapennenllli L P pRun
1 1 1 1
2 1 2 2

Lead lime 2 3 4 5 3 1 3 3
( L) 4 1 4 4

5 2 1 2
6 2 2 1
7 2 3 4
8 2 4 3

Heta{Jl) 0.2 0.4 0.6 0.8 9 3 1 3
10 3 2 4
11 3 3 1
12 3 4 2

Rbo(P) 0.2 0.4 0.6 0.8 13 4 1 4
14 4 2 3
15 4 3 2
16 4 4 1

Table 7.6. Factors and Levels Table 7.7. Inner Arrays (M16)
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7.9. Conclusion

In this chapter, the bullwhip effect and inventory variances induced by

different forecasting techniques in an order-up-to level supply chain where end

customer demand is an AR (1) process have been analyzed. Through simulation

experiments designed using orthogonal arrays and subsequent analysis of the results,

it has been found that:

1. For the ES forecasting method, negatively correlated demand can lead to larger

increases in order variability than positively correlated demand. For the MMSE

forecasting technique, there is no bullwhip effect for LLD and negatively

correlated demand.

11. For a negatively or loose positively correlated demand process, the MMSE

forecasting technique should be used so that the bullwhip effect is eliminated.

MMSE forecasting technique eliminates the bullwhip effect for a negatively

correlated demand process and greatly reduces demand amplification for a

loose positively correlated demand process. For a strong positively correlated
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demand process, the ES forecasting technique is preferred because it minimizes

the bullwhip effect.

111. The MMSE forecasting technique can significantly reduce the net stock

amplification for all types of demand process when compared with ES. For

both forecasting techniques, net inventory variances are more for the higher

lead times and for positively correlated demand. Net stock amplification is

more sensitive to lead time than order variance.

IV. It has been shown that order up to level policies always result in demand

amplification. A smoother order pattern can be generated by incorporating a

proportional feedback controller into the simple order up to level policy, but

this smoothing comes at the price of increased inventory variance at the

retailer's level. Through fine tuning of the proportional controller, the order

pattern of the retailer can be smoothed without adversely affecting the net stock

level.

v. The sum of variances of net stock plus order level is more sensitive to lead time

and less sensitive to the demand correlation.

This research can be extended in many directions. A more complicated

demand process such as an ARMA(p,q) process could be analyzed. The model

considered simple forecasting techniques. The use of more sophisticated forecasting

techniques should be considered. The impact of a proportional controller should be

analyzed on multi-echelon supply chain models.
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Chapter 8: Conclusion and Future Work

8.1. Conclusion

This chapter brings to a conclusion the results of the work undertaken,

providing a summary of the findings, highlighting the contribution to knowledge, and

proposes future research. This thesis consists of eight chapters. Chapter 1 of this

thesis outlines the research background, research needs, and the motivation for this

research. Current understanding of the causes of the bullwhip effect has been

reviewed through the literature review presented in Chapter 2. As a prelude to

further studying these causes and remedies through a supply chain simulation

modeling approach, a review of supply chain models and modeling techniques have

also been presented in Chapter 2. The research methods and tools employed in this

thesis, i.e. iThink, Taguchi Design of Experiments, and analysis of variance

(ANOV A), were introduced in Chapter 3.

Chapter 4 presents the iThink model of a multi-echelon supply chain. The

impact of this model's design parameters on the response of the actual inventory and

order rate at each echelon is simulated. Using Taguchi's orthogonal arrays technique,

the effects of the design parameters are analyzed and the best settings of the design

parameter values for the stable response are identified. The main outputs and

findings of Chapter 4 are given below.

I. A simulation model of the APVIOBPCS production and inventory control

system has been developed, using iThink, to understand the effects of its

parameters on its dynamic responses; this model combines the make to stock

and make to order control strategies. Four APVIOBPCS models have been

linked to create a four-tier supply chain model of the beer game.
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11. Implementing the model in iThink has demonstrated how a control theoretic

type model can be implemented in a way that makes it more amenable to

supply chain operations manager and similar 'business professionals' rather

than those who are highly mathematically trained.

111. It has been demonstrated that parameter values that give very poor dynamics

across the whole supply chain do not necessarily yield poor dynamics within a

single echelon, so it is essential to consider the whole supply chain when

setting parameter values. Mason-Jones et al. (1997) found that Ti = Tw = Tp

and Ta = 2Tp is a condition for a 'good' or 'near best' response across the

supply chain and this has been borne out by the results presented here,

although for the 'best' result the parameter values may be close to this

condition rather than absolutely satisfying it.

iv. Riddalls and Bennett (2001) reported that the condition Ti = Tw avoids

oscillatory behavior in the dynamic responses of the order rate and inventory

and this has been borne out here, except when Ti = Tw is very small, in such

case the over-lively inventory feedback, due to the small Ti, causes very large

oscillations and, indeed, the worst response; this means that it has been found

here that the Ti = Tw condition is subject to Ti not being very small.

v. As in human endeavour in general, in selecting parameter values for the

APVIOBPCS supply chain there is a choice between safe and stable without

over-reacting but with the danger of becoming too slow to react to real change,

i.e. too cautious, versus fast to react to real change (as opposed to noise) in a

stable manner but with the danger of over-reacting and moving towards

instability. This is seen in the dynamic responses here. Generally, a small Ti

leads to over-reaction tending towards instability. However, within the range of
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experiments with a small Ti, two produce the very best results; fast but without

load overshoots. Similarly, within the range of experiments with a larger Ti that

yield more stable responses, there are two experiments that produce very slow

responses that would typically be unacceptable in practice. So two groups of

'good' or 'stable' response have been seen. One of these groups is within

the area of fast responses and one is within the area of slow and very stable

responses. In this respect, with careful management parameter values

associated with the first group may be adopted to give good results, but if one

cannot safeguard against or afford to risk falling towards instability, then one

might take the safer option of using the other group of parameter values, but

then one must safeguard against the danger of slipping into too slow a response.

VI. Endorsed by the stochastic response results, in Chapter 4 it has been seen that

there are two group responses that define the regions of acceptable and

unacceptable parameter values, particularly in respect of their closeness to

instability. The value of the ITAE of the step response gives a rough-cut

between the two groups, although a few experiments had a very good ITAE but

poor stochastic demand response. So the use of ITAE needs to be tempered

by consideration of the stochastic response. Furthermore, the interpretation

of the ITAE must also be tempered by the detailed features of the dynamic

responses; with specific applications/situations determining which are the most

important features and their desired characteristics, e.g. will the situation

tolerate large overshoots to achieve rapid rise times?

Chapter 5 has explored the impact of order batching on the bullwhip effect in

the 4-tier APVIOBPCS supply chain, with and without information sharing. It is

generally advocated that batch size should be reduced as much as possible (Burbidge,
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1981), but there has been limited detailed investigation into the impact of batch size

on demand amplification, which raises the question, does this hold totally true in

respect of minimizing demand amplification? Chapter 5 has addressed this gap in the

research by introducing batching into the 4-tier supply chain model and then

conducting simulation experiments to understand: the impact of batch sizes on the

bullwhip effect under deterministic and stochastic demand processes; the impact of

information sharing across wide ranges of batch sizes; the impact of design

parameters on the bullwhip effect (which is measured quantitatively) and the severity

of the interaction among these parameters when there is batching; finally, the best

values of design parameters for mitigating the bullwhip effecr when there is batching.

The main findings of Chapter 5 are:

1. It has been seen that the relationship between batch size and demand

amplification is non-monotonic. Although Burbridge (1981) emphasised

reducing the batch size, the results presented here show that when the quotient

of the average demand and batch size is integer, demand amplification does not

grow with increases in batch size. Large batch sizes, that when combined in

integer multiples can produce order rates that are close to the actual demand,

produce little demand amplification, i.e. it is the size of the remainder of the

quotient that is the determinant. Unless the batch size is made very small,

demand amplification is not suppressed simply by reducing the batch size,

rather it can be controlled by a judicious mix of decreases in batch size and

adjusting the batch size so that the remainder of demand divided by batch size

is zero or close to zero. However, it has been noted that use of a large batch

size placed at one of the local minima amplification points has the danger that
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changes in average demand can lead to large increases in amplification, i.e.

there is high sensitivity.

II. If the batch size is increased beyond the average demand then the output

variance. i.e. the bullwhip effect, increases rapidly and linearly. A corollary to

this is that if the demand per order period starts to decrease below the batch

size then the bullwhip effect will grow rapidly. Again, operations managers

could monitor for this condition.

111. In percentage terms, the increase in demand amplification between tiers 1 and 4

is greatest with the smaller batch sizes, i.e. a large batch size may cause a large

output variance at Tier 1, but this output variance does not increase much in

percentage terms, as it passes up the supply chain. So the ubiquitous drive to

reduce batch sizes in manufacturing can lead to greater demand amplification

in percentage terms. It is further noted that the value of information sharing is

greatest for smaller batch sizes, for which there is a much greater improvement

in the ampli fication ratio when IEP (information enrichment percentage)

changes from 0% to 100%.

IV. Whilst the amplification ratio beyond Tier 1 is much less for large batch sizes,

making it a less significant problem, information sharing can almost eliminate

any significant demand amplification. There is a dilemma here because

information sharing will have a cost associated with its implementation, and

whilst it may deal with the problem of demand amplification very well, the

problem is primarily caused at Tier 1 with very large batch sizes. In contrast,

information sharing is clearly of great value when the batch size is smaller. So,

with the increasing drive to reduce batch sizes, there is an increasing

justification for adopting and investing in information sharing.
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v. The interactions between the design parameters of the APVIOBPCS in respect

of their effect on demand amplification has been analysed. The strongest

interaction is seen in the beneficial impact of information sharing on demand

amplification being dependent upon the batch size, with information sharing

being most beneficial with small batch sizes. The next strongest interaction is

seen in increased values of Ta reducing the sensitivity of demand amplification

to batch size. The third strongest interaction is observed between IEP and Ta,

i.e. the value of information sharing is affected significantly by the forecasting

error. Without information sharing, demand amplification Increases

considerably as Ta is reduced, and then the smaller Ta (with the much higher

amplification to start with) benefits most from information sharing, indeed it

benefits considerably. There is a strong interaction between IEP and Ti;

decreasing Ti causes over-reaction and oscillatory behavior, as seen in Chapter

4, so the benefit of 100% information sharing increases.

Chapter 6 identified that most of the previous studies involving the APIOBPCS

model are based on unconstrained capacity. So the model has been extended by

adding capacity constraints at each of the 4-tiers of APIOBPCS. Capacity constraints

determine the stability boundaries of the system. The stability of each echelon can be

ensured through the related echelon's 'shortfalls', also known as backlogs, which are

measured by the shortfall in the actual inventory. The model has been simulated for

different capacity constraint levels and the stability boundaries of the model have

been explored.

Determining the safety stock placement at different echelons to achieve the

desired level is extremely complex when production and distribution have capacity
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constraints (Sitompul and Aghezzaf, 2006). An important question in supply chain

management is how to co-ordinate inventories and capacities in multi-echelon supply

chains under stochastic demand processes, while providing a high level of customer

service. To answer this question, Taguchi Design of Experiments has been applied to

analyze the effects of capacity, safety stock, and design parameters for two tiers of

APIOBPCS on the total backlog bullwhip effect. The main findings of Chapter 6 are:

1. The stability boundaries of a multi-echelon supply chain with capacity

constraints have been explored. Inventory shortfall determines the stability

boundaries of the capacity constraint supply chain. The system may experience

immense backorders if capacity constraints are not dealt with effectively. It has

been seen that tight capacity constraints (e.g. capacity / mean demand = 1.05)

result in high inventory shortfalls at the upstream tiers. When capacity tightness

is not so tight (capacity / mean demand = 1.3) then the system behaviour

approaches that of the APIOBPCS without capacity constraints.

11. It has been seen that safety stock and capacity constraints determine the

service level of the supply chain. When capacity constraints are very tight then

larger safety stocks are required to achieve the desired service level and vice

versa.

iii. It has been shown that when the order rate of the farthest upstream tier saturates

due to capacity constraints then over-ordering by the previous tiers magnifies

the total backlog of the supply chain. This phenomenon has been termed the

"reverse bullwhip effect", Hence, a more cautious approach toward the

ordering pattern is required by downstream tiers when production and

distribution have capacity constraints.
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IV. The sensitivity of the backlog bullwhip effect to the capacity, the safety stock,

and the design parameters of APIOBPCS has been explored. The degree of

sensitivity to capacity constraints has been found to be very significant,

especially the capacity constraints at the farthest tier, which contribute 40% to

the total backlog variance This shows the importance of the capacity

constraints of the farthest tier.

v. It has been found that smooth ordering by Tier 1 can be achieved when Tier 1

has medium capacity constraints and low safety stocks. This smooth ordering

reduces the total backlog variations of the supply chain. Increasing the value of

Ti and Ta stabilizes the system and less capacity is required to meet the desired

service level.

In Chapter 7 the analysis of the bullwhip effect and inventory variances

induced by different forecasting techniques and replenishment rules has been

presented. Previous research focused on determining the impact of forecasting

methods on the bullwhip effect. However, as pointed out by Hosoda and Disney

(2006. a), "Statistical approaches become unmanageable when net inventory

variances are considered as the expressions for the co-variances between the states of

the system are extremely complex". The application of simulation to this analysis has

avoided these intractable expressions between order rate and inventory variances,

and it has been possible to investigate the impact of ES and MMSE forecasting

techniques on both order and inventory variations. It has been shown that the simple

OUT replenishment policy always results in bullwhip effect (Dejonckheere et al,

2003; Hosoda and Disney, 2006, b). So, in this study the simple OUT policy has
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been modified by adding a proportional controller into the inventory feedback system

and the impact of this has been analyzed.

In Chapter 7 through simulation experiments designed using orthogonal arrays

and subsequent analysis of the results, it has been found that:

1. For the ES forecasting method, negatively correlated demand can lead to larger

increases in order variability than positively correlated demand. For the MMSE

forecasting technique, there is no bullwhip effect for 1.1.0 (independently and

identically distributed) and negatively correlated demand.

11. For a negatively or loose positively correlated demand process, the MMSE

forecasting technique should be used so that the bullwhip effect is eliminated.

The MMSE forecasting technique eliminates the bullwhip effect for a

negatively correlated demand process and greatly reduces demand

amplification for a loose positively correlated demand process. For a strong

positively correlated demand process, the ES forecasting technique is preferred

because it minimizes the bullwhip effect

The MMSE forecasting technique can significantly reduce the net stock111.

IV.

amplification for all types of demand process when compared with ES. For

both forecasting techniques, net inventory variances are more for the higher

lead times and for positively correlated demand. Net stock amplification is

more sensitive to lead time than order variance.

It has been shown that order-up-to level inventory control policies result in

demand amplification. A smoother order pattern can be generated by

incorporating a proportional feedback controller into the simple order-up-to

level policy, but this smoothing comes at the price of increased inventory

variance at the retailer's level (Tier 1). Through tine tuning of the proportional
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controller, the order pattern of the retailer can be smoothed without adversely

affecting the net stock level.

8.2. Future Work

This work reveals many promising areas where further investigation could take

place. As explained earlier this dissertation consists of four main analytical chapters

(Chapters 4-7) and each chapter makes its own contribution. Hence, the future work

relating to each chapter can be extended in different directions as explained below.

Chapter 4 has presented the condition of design parameters for a 'good' or

'near best' response across the multi-echelon supply chain. The specific results

obtained in Chapter 4 are those for the specific values of lead time (Tp) and

inventory cover (n) used here. In APIOBPCS, lead time is normally assumed to be

constant. However, in reality lead times are never constant so future research should

evolve the set of design parameters for a 'stable' response under stochastic lead time

and different values of inventory cover.

Chapter 5 has explored the impact of batch sizes on the bullwhip effect and the

severity of interactions of interaction among design parameters. Future work for

Chapter 5 should investigate the cost implications of order batching in a multi-

echelon supply chains. The interaction graphs presented in Chapter 5 give a general

idea about the severity of interaction among design parameters. However, a few

authors, e.g. (Montgomery, 2001), have pointed out that Taguchi's Orthogonal

Arrays are not efficient for analyzing the interaction among parameters. Hence,

Response Surface Methodology should be applied to better explore these

interactions. Further, this research has focused on the periodic review inventory
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control system, the continuous review inventory control system should be considered

in future work.

The analysis of Chapter 6 has presented the stability boundaries and the

policies to minimize total backlog bullwhip effect In a multi-echelon capacity

constrained supply chain. The stability boundaries have been explored for the

deterministic demand process for fixed inventory levels. Future work should need to

investigate the stability boundaries for different stochastic demand processes in

flexible capacity constrained models. Another important dimension for further work

is the cost implications of capacity constraints and safety stocks in multi-echelon

supply chains.

Chapter 7 dealt with the impact of forecasting methods on the bullwhip effect

with the first-order auto-regressive CARl) demand process. This research can be

extended in many directions. A more complex demand process such as an ARMA

(p,q) process could be analyzed. The model considered simple forecasting

techniques. The use of more sophisticated forecasting techniques should be

considered. The impact of an inventory feedback proportional controller with a

modified order-up-to level replenishment policy should be analyzed in multi-echelon

supply chain models.
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ABSTRACT

This paper is concerned with understanding the effects of design parameters on
demand amplification in a model of a multi-echelon supply chain with information
sharing. The model uses the control theoretic concepts of variables, flows and
feedback processes. Previous, similar studies have used traditional operational
research techniques such as mathematical programming and stochastic process
modeling and, as pointed out by Riddalls et al. (2000), differential equations produce
smooth outputs that are not suitable when modeling supply chains. A combination of
simulation and Taguchi Design of Experiments is applied here to quantify the impact
of the supply chain's design parameters on its dynamic performance and the
interactions that occur between the parameters. This study presents an approach to
determining the relative contribution of the design parameters in controlling demand
amplification (the Bullwhip Effect). The overall aim is to give supply chain
operations managers and designers a way to understand supply chain dynamics and
the effects of design parameters and their interactions.

Keywords: Bullwhip, Simulation, Taguchi Design of Experiments, Information
Sharing.

INTRODUCTION

Supply chain dynamics has been studied for more than four decades. Since
Forrester (1961) discovered the fluctuation and amplification of demand moving
upstream in the supply chain, there has been a lot of research analyzing this
phenomenon. Forrester (1961) pointed out that demand amplification is due to the
"system dynamics phenomenon" and can be tackled by reducing delays, while
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Sterman (1989) through his "beer game" interprets the phenomenon as a
consequence of players' irrational behaviours or misperceptions of feedback. Towill
(1996) confirmed the findings of Forrester that reducing delays and collapsing all
cycle times improves the performance of the system. Lee et al. (1997) found that
demand amplification or the "Bullwhip Effect" was due to demand signal processing,
order batching, price variations and rationing and gaming and can be reduced
through information sharing. Slack and Lewis (2002) give a textbook introduction to
its causes and remedies. Its effects include inaccurate forecasting leading to periods
of low capacity utilization alternating with periods of having not enough capacity,
i.e. periods of excessive inventory caused by over production alternating with periods
of stock-out caused by under production, leading to inadequate customer service and
high inventory costs.

Several supply chain models have been analyzed to quantify the Bullwhip
Effect. For example, Lee et al. (2000), while studying a two-tier supply chain,
showed that manufacturer inventory levels can be reduced dramatically by sharing
point-of-sales data. Yu et al. (2001) used information sharing to reduce the
variability of demand placed on the supplier in a two-tier supply chain model.
Riddalls and Bennet (2002) investigated the use of pure delays in a single echelon of
Sterman's beer game model and showed that transient inability to supply all that is
demanded is an important cause of amplification.

The multi-echelon supply chain model was developed originally by Forrester
(1961). Towill (1982) introduced a greater level of detail using the Inventory and
Order Based Production Control System (IOBPCS) to model each echelon in more
detail, applying a basic periodic review algorithm for issuing orders into the supply
pipeline, based on current inventory deficit and incoming demand from customers.
Later, a work-in-progress feedback loop was added to the IOBPCS, "Let the
production targets be equal to the sum of an exponentially smoothed demand (over
Ta time units) plus a fraction (1/Tai) of the inventory error, plus a fraction (lITw) of
the WIP error.". This was then termed the "Automatic Pipeline Inventory and Order
Based Production Control System" (APIOBPCS) (John etal., 1994). This model and
the model used latterly by Riddalls and Bennett (2002) form the basis of the echelon
model (or building block) used here.

Finding the best operating conditions for a supply chain is complex due to the
interactions among the design parameters. Previous studies used traditional
operational research techniques such as mathematical programming, stochastic
process modeling, heuristic methods and as pointed out by Riddalls et al. (2000)
differential equations produce a smooth output that is not suitable for the modeling of
all supply chains. Mathematical and control theoretic approaches can require an
academically advanced understanding of mathematics that many (if not most) supply
chain operations managers do not have. In contrast, the use of simulation methods
involving simple equations can help practitioners to understand the basic phenomena
and to examine the effects of parameters, interactions that occur and to search for the
best combination of parameter values in conjunction with Taguchi Design of
Experiments.

This study differs from previous research in many ways. Previous studies
have identified several possible causes of the Bullwhip Effect but little attention has
been given to measuring quantitatively the impact of these causes on the Bullwhip
Effect (Paik et al., 2007). Some studies changed the value of one variable at a time
and measured its effect on demand amplification. This 'one-at-a time' methodology
reveals the effect of one factor with one particular set of values for the other factors
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but does not provide the information for calculating the effects of the factor with any
values for the other factors. A more appropriate methodology is Taguchi's
Orthogonal Arrays Technique in which levels of each factor are systematically varied
and all possible combinations of factor levels (parameter values) are considered.
Furthermore, it measures quantitatively the effects of the design parameters on
demand amplification, the interactions among the parameters are explored and the
best combination of parameter values for mitigating the impact of demand
amplification is considered.

The remainder of this paper is organized as follows. First the methodology is
introduced and then the supply chain simulation model is presented. After that, the
impact of the design parameters on the dynamics of the inventory levels and order
rates is studied and the orthogonal arrays technique is applied to explore the impact
of various levels of the design parameters on a measure of demand amplification or
the Bullwhip Effect.

Methodology.

The System Dynamics approach is used to analyze complex, dynamic and
non-linear interactions and to develop new structures and policies to obtain the
improved behaviour of a system. It allows one to visualize and solve a problem
holistically. A System Dynamics computer simulation model is developed here to
study the time varying or dynamic behaviour of a supply chain and thereby the
Bullwhip Effect, The model uses levels, flows (or rates) and feedback processes and
is implemented using the iThink software package (htlp://www.iseesysfems.com{).

A four-echelon supply chain is modeled and simulated, so it is the fourth
echelon that experiences the greatest demand amplification as it is farthest from the
end-customer. The dynamics of the inventory and order rate at the fourth echelon
present the 'worst-case' scenario so the Bullwhip Effect experienced at this echelon
is studied in the work presented here. Taguchi and analysis of variance (ANOV A)
techniques are used to analyse the dynamic performance of the fourth echelon with
respect to its design parameters. As the design parameter values are varied, the
values are applied at all echelons.

The Model

iThink uses the four basic building blocks in Figure 1: Stock, represents
something that accumulates; Flow, an activity that changes the magnitude of the
stock; Converter, modifies an activity; Connector, transmits inputs and information.
Figure 2 presents the discrete continuous simulation model of a 4-echelon supply
chain produced in iThink using these building blocks.

STOCK FLOW CONVERTER

o CONNECTO~O

Figure 1: Building blocks of iThink software.

218



At the material flow level, each echelon or tier constitutes one inventory and
one time delay (factory). Each echelon operates individually based on demand
information gained from downstream (towards the end-customer). This situation is
the same as that modeled in the beer game, where a brewery and a distribution centre
try to cope with changes in demand. The input to the factory is the order rate
(ORA TE). Production is controlled by feeding forward the exponentially smoothed
sales (SSALES) and feeding back the error in the inventory and the work-in-progress
to determine the ORATE with the aim of keeping the inventory at a desired level.
The error in the inventory (EINV) is the difference between the desired inventory
(DINV) and the actual inventory (AINV). DINV is adaptive. In this case it is simply
equal to the current (one week's) sales. The work in progress (WIP) is the
accumulation of orders that have been placed on the factory but not yet completed
and the desired WIP is DWIP. The error in the WIP (EWIP) is the difference
between the desired WIP (OWIP) and the actual WIP (WIP). Ti is a divisor applied
to the inventory deficit to control the rate of recovery and Tw is a divisor that
controls the WIP replenishment rate. In summary:

DINV = SSALES (1)

EINV = DINV-AINV (2)

OWIP = Tp x SSALES (3)

EWIP = OWIP-WIP (4)

ORATE = SSALES + EINV/Ti + EWIP/Tw (5)
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Figure 2: i'Ihlnk Model of Multi-Echelon Supply Chain.
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Initial Analysis of Effects of Parameters

In the model used here there are five control or design parameters at each
echelon:

1. information enrichment percentage (IEP);
11. time to adjust inventory (Ti);
Ill. time to adjust WIP (Tw);
IV. production (or pipeline) delay (Tp);
v. sales exponential smoothing (forecasting) constant a.

In the initial simulations, Tp is set equal to six weeks as in the work of
Riddalls et al. (2002) and levels around this value are chosen for the Taguchi Design
of Experiments. A constraint in exponential smoothing is that ex. must lie in the range
o to 1. Typically, values between 0.2 and 0.8 are used as beyond this range the
performance approaches that of no exponential smoothing (u= 1) or the smoothed
variable remaining constant (o=O). Figures 3 and 4 illustrate the effect of varying ex.
with Ti=Tw=8 and IEP=IOO%. Typical values used for Ti and Tw elsewhere in the
literature are between 4 and 12, so this range is used in the Taguchi experiments
presented below. Depending on the values of other parameters, small values of Ti
can lead to instability.

The retailer shares end-customer demand with the manufacturer that then
bases its production on the weighted sum of end-customer demand and incoming
orders from the distributor (the next echelon in the supply chain). With full
information enrichment (IEP=IOO%) the manufacturer bases production solely on
end-customer demand whilst with no information enrichment (IEP=O%) production
is based solely on the incoming orders from the distributor. Production can be based
on a combination using IEP% of end customer demand plus (100 - IEP)% of the
incoming orders from the distributor; in the iThink model these percentages are
referred to as IEPI and IEP2 respectively. The simulation results in Figures 5 and 6
show information sharing damps the peaks in the responses whilst effectively
matching settling times. The effect on the ORATE would be most beneficial to a
manufacturing business as the very large fluctuations in ORATE seen without
information sharing would be highly destructive and costly to achieve. The cost of
improving the ORATE is the damping of the inventory response. Whilst the large
reduction in the peak inventory deficit is a good thing, there is a much longer time to
replenish the inventory up to the desired level, causing a much greater period during
which there is a risk of stock-out if any other increases in demand or other supply
problems occur. Figures 5 and 6 suggest that a compromise may be the best solution.
In particular, when IEP=75%, the inventory response is much faster, whilst retaining
the benefit of a greatly reduced peak deficit and only a small overshoot of the desired
level. Finding IEP=75% may be better agrees with the results of Jones et al. (1997).
So in the Taguchi Design of Experiments presented below, the IEP levels are chosen
around 75%. As 100% information sharing should be investigated to test basing
production on end-customer sales alone, the third value chosen is 50% to keep a
constant difference between the levels, i.e. a linear increase.
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Measuring the Bullwhip Effect

Different approaches can be applied to measure the Bullwhip Effect. A
common approach is to divide the coefficient of variation of orders placed by the
coefficient of variation of orders received (Fransoo and Wouters, 2000):

Bullwhip = Caul I Cin

where COU!= c (DOUICt,t+T))/~l(Doul(t, t+T))

and Cin = o (Din(t, t+T))/~l(Din(t, t+T)).

Doul(t, t+ T) and Din(t, t+ T) are the factory orders and completions during the time
interval (t, t+T). Since demand is deterministic, Cn is constant and only COllIneeds to
be considered in the analysis.
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Taguchi Design of Experiments.

The arguably ubiquitous Taguchi approach is used to identify the effects of
different levels of the design parameters on the measure of the Bullwhip Effect, the
interactions that occur and ultimately the best values. The technique is used to obtain
the maximum information with the minimum number of experiments (Shang et aI,
2004). This is valuable in studying supply chain dynamics as there are a large
number of possible parameter value combinations. The choice of orthogonal array
size used in the design of experiment depends on the total degrees offreedom (OOF)
required for the parameters and their interactions. In this study, the OOF for five
control factors with three levels is 5 x (3-1) +1= 11. This leads to choosing the L 18
(35) array in Table 1 that defines, for each experiment, the level of each factor
(parameter) to be used. The factor levels used in the experiments reported here are
given in Table 2.

Experimental Run Tp IEP A Ti Tw
I I I I I I
2 I 2 2 2 2
3 I 3 3 3 3
4 2 I I 2 2
5 2 2 2 3 3
6 2 3 3 I I
7 3 I 2 I 3
8 3 2 3 2 I
9 3 3 I 3 2
10 I I 3 3 2
II I 2 I I 3
12 I 3 2 2 I
13 2 I 2 3 I
14 2 2 3 I 2
15 2 3 I 2 3
16 3 I 3 2 3
17 3 2 I 3 I
18 3 3 2 I 2

Table 1: Inner Arrays (L 18 )

Factor Levell Level2 Level3

Production (Pipeline) Delay (Tp) 4 6 8

Information Enrichment Percentage (IEP) 50% 75 % 100%

Alpha (u) 0.2 0.5 0.8

Time to adjust Inventory (Ti) 4 8 12

Time to adjust WIP (Tw) 4 8 12

Table 2: Factors and Levels
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Statistical Analysis of Results

The effect of a design parameter on the measured response when the
parameter's value is changed from one level to another is known as a 'main effect'
and is calculated for a particular level of a factor by examining the orthogonal array,
the factor assignment, and the experimental results (Roy, 2001). For example, to
calculate the average effect of information sharing (lEP) at Levell, all results of IEP
at Level 1 are averaged. Figure 7 shows that the Bullwhip Effect measurement is
most sensitive to Tp and Ti is the next most significant factor. The least sensitivity is
seen with IEP, although it must remembered that the experimental range is 50-100%
and not 0-100%. It is observed that reducing Tp minimizes the Bullwhip Effect and
this result verifies the time compression paradigm and the importance of
compressing Tp to reduce demand amplification. Increasing the value of Ti reduces
the Bullwhip Effect. Decreasing Cl increases the damping effect of the exponential
smoother, so it is not surprising that it also reduces the Bullwhip Effect, as does
reducing Tw. An interesting finding is that increasing the information enrichment
percentage to 100% reduces the Bullwhip measure used here; there is no optimum
around 75% as intimated earlier and in the work of Jones et aI. (1997).

The next step is to explore the interactions among the parameters. Interaction
here refers to factors behaving differently in the presence of other factors such that
the trend of influence changes when the levels of the other factors change. Simple
but powerful "interaction graphs" (Figures 8-11) are used to determine the severity
of the interactions between control parameters. If the lines in the graph are parallel
there is no interaction between the parameters, whilst non-parallel lines indicate
interaction with intersecting lines indicating strong interaction (Antony, 2001). Four
important interactions are observed in this analysis. Figure 8 shows the strong
interaction between IEP and a. The value of information sharing is affected
significantly by the forecasting error generated due to inaccurate forecasts. It is
important to note that information sharing decreases the sensitivity to a. The next
significant interaction occurs between Ti and a as shown in Figure 9. A third
important interaction is observed between Ti and Twas shown in Figure 10. Smaller
values of Ti yield quicker responses but poor filtering properties and smaller values
of Tw result in larger settling times. Figure 11 shows the small interaction between a
and Tw.
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Figure 7: The plot of main effect response
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In order to discover which of the effects are statistically significant, analysis
o/variance (ANOVA) is performed to quantify the contribution of each parameter to
the total variation in the experimental data. The ANOVA results (Table 3) show that
Tp makes the largest contribution to the variation in the measurement of the
Bullwhip Effect, with a contribution of 37 % and next is Ti, with the two parameters
accounting for 64% of the variation. The percentage contribution of the remaining
three parameters is much smaller. The F-ratios can also be used to see the relative
significance of the parameters.

Little research has been carried out to identify 'optimal' or 'good practice'
values and relationships among the different design parameters of supply chains. The
best parameter levels within the range of values considered here are given in Table 4;
this is in the context of minimizing the chosen measure of the Bullwhip Effect. It is
found that Tp should be made as small as possible, which verifies the value of the
time compression paradigm for reducing bullwhip. According to the measure chosen
here 100% information enrichment is preferred. This is contrary to the initial analysis
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and the results of Jones et al. (1997). This suggests that further study of how the
Bullwhip Effect should be measured is required. The result indicates the use of a
small a and Tw, which will give faster responses to change, whilst the largest Ti is
used to control excessively large fluctuations in the ORATE by damping the reaction
to errors in the inventory.

Factor DOF Sum of Variance F-Ratios Pure P
Squares Sum

Production Delay ( Tp ) 2 256454 28227 160 254850 37%
Information Enrichment 2 69063 34532 43 67460 9'Yo
Percentage (IEP)

Exponential smoothing constant 2 103297 51649 64 101694 14%
(u)

Time to adjust Inventory ( Ti ) 2 187016 93508 117 185412 27%
Timc to adjust WIP ( Tw) 2 83875 41937 52 82271 12%
Error 7 5612 802 1%
Total 17 705317 100%

Table 3: Results of ANOV A

Factor Level Level description
Production (pipeline) Delay (Tp)
Information Enrichment Percentage (IE!')
Exponential smoothing constant (a)

Time to adjust inventory (Ti)

Time to adjust WIP (Tw)

4
100% 3
0.2 I
12 3
4

Table 4:Factors at optimal condition

Conclusion

This paper has demonstrated the use of simulation and the Taguchi Design of
Experiments technique to quantify the effects of design parameters in controlling the
Bullwhip Effect in supply chains. An approach to gaining an understanding of the
relative contributions of design parameters and the interactions between them has
been presented as an aid to those concerned with designing and managing supply
chain operations. This initial study paves the way for a more detailed study into
controlling the Bullwhip Effect and to extending the supply chain model to
incorporate capacity constraints and order batching, as these are know to be further
sources of demand amplification.

References

Antony, J. (2001), Improving the manufacturing process quality using design of
experiment: A case study, International Journal of Production & Operations
Management, 21, pp. 812- 822.

226



Forrester, J.W. (1961), Industrial dynamics, MIT Press and John Wiley & Sons, Inc.,
New York.

Fransoo, 1. and Wouters, M.J.F. (2000), Measuring the bullwhip effect in the supply
chain, Supply Chain Management: An International Journal, 5, pp. 78-89

John, S., Nairn, M. M. and Towill, D. R. (1994), Dynamic analysis of a WIP
compensated decision support system, International Journal of Manufacturing
System Design, 1, pp. 283-97

Jones, S.M. and Towill, D.R. (1997), Information enrichment: Designing the supply
chain for competitive advantage, Supply Chain Management, 2, pp. 137-148.

Lee, H.L., Padmanabhan, V. and Whang, S. (1997), Information distortion in the
supply chain: The Bullwhip Effect, Management Science, 43, pp. 546-559.

Lee, H.L., So, K.C. and Tang, C.S. (2000), The Value of information sharing in a
two level supply chain, Management Science, 46, pp. 626-643.

Li, G., Yan, H., Wang, S. and Xia,Y. (2005), Comparative analysis on value of
information sharing in supply chains, Supply Chain Management, 10, pp. 34-46.

Paik, S.K. and Bagchi, P.K. (2007), Understanding the causes of the bullwhip effect
in a supply chain, International Journal of Retail & Distribution Management, 35, pp.
308-324.

Riddalls, C.E., Bennett, S. and Tipi, N.S. (2000), Modeling the dynamics of supply
chains, International Journal of System Science, 31, pp. 969- 976.

Riddalls, C.E. and Bennett, S. (2002), The stability of supply chains, International
Journal of Production Research, 40, pp. 459- 475.

Roy, R, K. (2001), Design of experiments using the Taguchi approach, Wiley-
Interscience, USA

Shang, J, S., Li, S., TadikamalIa, P. (2004), Operational design of supply chain
system using the Taguchi method, response surface methodology, simulation and
optimization, International Journal of Production Research, 42, pp. 3823-3849.

Sterman, J. (1989), Modeling managerial behaviour: misperception of feedback in a
dynamic decision making experiment, Management Science, 35, pp. 321-339.

Towill, D.R. (1996), Time compression and supply chain management- a guided
tour, Supply Chain Management, I, pp. 15-27.

Yu, Z., Yan, H. and Cheng, T.C.E. (2001), Benefits of information sharing with
supply chain partnerships, Industrial Management and Data Systems, 101, pp. 114-
119.

227



Appendix 2;

(International Conference of the Global Business Development
Institute (GBDI), Los Vegas, March 23-26,2008)

QUANTIFYING THE IMPACT OF FORECASTING AND LEAD TIME ON
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ABSTRACT

This paper considers a two level supply chain model in which an AR (I) process
describes the customer demand and order up to level characterises the inventory
replenishment policy. The impact of exponential smoothing and minimum mean
squared errorforecasting is quantitatively measuredfor both the hullwhip effect and
variance of the net stock level. A proportional controller is then added into simple
order up to level policy and through fine tuning it is found that the bullwhip effect
can be minimized without adversely affecting the retailer's inventory level.
Simulation and Taguchi Design of Experiment is sued as a methodology.

Key Words: Bullwhip, Forecasting, Taguchi Design of Experiments, Supply Chain.

INTRODUCTION

Supply chain dynamics has been studied for more than four decades. Since Forrester (I) discovered
the fluctuation and amplification of demand moving upstream in the supply chain, there has been a lot
of research analyzing this phenomenon. Forrester (I) pointed out that demand amplification is due to
the "system dynamics phenomenon" and can be tackled by reducing delays, while Sterman (2)
through his "beer game" interprets the phenomenon as a consequence of players' irrational behaviors
or misperceptions of feedback. Towill (3) confirmed the findings of Forrester that reducing delays and
collapsing all cycle times improves the performance of the system. Lee et al. (4) found that demand
amplification or the "Bullwhip Effect" is due to demand signal processing, order batching, price
variations and rationing and gaming and can be reduced through information sharing. Its effects
include inaccurate forecasting leading to periods of low capacity utilization alternating with periods of
having not enough capacity, i.e. periods of excessive inventory caused by over production alternating
with periods of stock-out caused by under production, leading to inadequate customer service and
high inventory costs.

It has been recognized that demand forecasting, ordering policies, and lead times are among the key
causes of the bullwhip effect. Impacts of forecasting methods on the bullwhip effect have been
studied by several researchers.. Chen et al (5) evaluate moving average and exponential smoothing
forecasting techniques with respect to bullwhip inducement. They found that exponential smoothing
forecasts are more apt to amplify variation than moving average forecast. Dejonckheere et al (6)
quantified the bullwhip effect for order-up-to policies using exponential smoothing, moving average,
and demand signaling process. Alwan et al (7) studied the bullwhip effect in an order-up-to-Ievel
policy with mean squared forecasting. They found that using such a forecasting policy, the bullwhip
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effect can be eliminated or mitigated depending on the correlative structure of the demand process.
Zhang (8) investigated the impact of forecasting methods on the bullwhip effect in a simple order up
to level policy with AR (I) demand process. Findings indicate that MA, ES. and MSE forecasting
techniques lead to bullwhip effect measures with distinct properties with respect to demand
autocorrelation and lead time. Luong (9) developed a bullwhip measure for the AR( I) demand process
in a simple order up to level supply chain under the MMSE forecasting technique. He found that the
bullwhip effect depends on the value of demand autocorrelation and a upper bound for the demand
amplification exists when lead time increases.

Replenishment strategies have an impact on order and net stock variability. Order variability
contributes to the bullwhip effect and the upstream cost while variations in net stock level affect the
ability to meet a desired service level. In a make-to-order supply chain, the upstream level pursuing
the smooth production prefers the minimal variability in the production orders from downstream
player. Balakrishnan et al (10) emphasised opportunities that reduce supply chain costs by dampening
upstream demand variability. This has led to the creation of new replenishment policies that are able
to generate smooth order patterns and which in turn can mitigate the demand amplification. In order to
control the dynamics of the supply chain, Hosoda and Disney (II) added a proportional controller in
simple order up to level supply chain model with MMSE forecasting. They named the new
replenishment policy as generalised OUT policy and found that two echelon supply chain with this
generalised OUT policy can reduce the inventory related cost by ten percent. Boute et al (12) studied a
two level supply chain with i.i.d customer demand. They found that decreasing the order variability at
the retailer's level comes at the cost of increased variance of the retailer's inventory level. Smoothing
the ordering pattern mitigates the bullwhip effect and results in shorter and less variable replenishment
lead time which in turn can benefit the retailer.

The impact of lead time on the bullwhip effect has also been investigated by Chen et al. (6), Zhang
(10), Chatfield et al (13), and Kim et af. (14). Chatfield et al (13) analysed the bullwhip effect with
stochastic lead time and found that lead time variability exacerbates variance amplification in supply
chain. Kim et al. (14) measured the impact of stochastic lead time on bullwhip effects for a k-stage
supply chain and found that the bullwhip effect was higher under the lead time variability. Most
studies on lead time have shown that longer lead times or larger lead time variations have a negative
effect on supply chain performance, implying that lead time or lead time variability should be
minimised

This research differs from previous studies in many ways. First, previous research focused on
determining the impact of forecasting methods on the bullwhip effect. However. as pointed out by
Hosoda and Disney (15), these statistical approaches become unmanageable when net inventory
variances are considered as the expressions for the co variances between the states of the system are
extremly complex. While simulation involving the simple equations is better suited with which these
intractable expressions are completely avoided. Hence, in this study the impact of ES and MMSE is
investigated on both order and inventory variations. Second, simple order up to level policy is
modified by adding a proportional controller into the inventory feed back system. The impact of a
proportional controller in a modified order up to level policy on the demand amplification and
inventory variance is analysed. Boute et al (12) suggest that bullwhip reduction comes at the cost of an
increased variance in the inventory levels. Calibration of the proportional controller is explored in
order to evolve a trade off between bullwhip and inventory variance is explored. Third, our graphical
results give a much better picture about the effect of demand correlation. lead time, forecasting
techniques, and proportional controller on both the bullwhip effect and net inventory variance than the
corresponding statistical and mathematical results. Finally, as pointed out by Luong (9) the problem of
quantifying the bullwhip effect still remains unresolved due to the complex nature of supply chains.
We apply the Taguchi Design of Experiment technique to quantitatively measure the impact of
different factors involved in this study on the both bullwhip and inventory variance, to explore the
interaction among these parameters, and to drive the best possible values of these factors in order to
minimise both order and inventory variance.

The structure of this research is as follows. Section 2 describes the methodology. Section 3 discusses
the order-to-Ievel model, and AR( I) demand process. Section 4 compares the bullwhip effect under
ES and MMSE forecasting techniques. Section 5 introduces a modified order-up-to policy to further
dampen down the demand amplification. Section 6 presents the Taguchi Orthogonal Arrays technique
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to quantitatively measure the impact of factors on both bullwhip and inventory variance. Section 7
offers some concluding remarks.

Methodology

In this work a System Dynamics computer simulation model is developed to study the time varying or
dynamic behaviour of a supply chain. The model uses levels, flows (or rates) and feedback processes
and is implemented using the iThink software package (hltp://www.iseesl.stems.coml). iThink software
package is one of the several computer applications created to implement concepts of System
Dynamics. iThink uses the four basic building blocks shown in Figure I: Stock, represents something
that accumulates; Flow, an activity that changes the magnitude of the stock; Converter, modifies an
activity; Connector, transmits inputs and information.

FIGURE I: BUILDING BLOCKS OF iTHINK SOFTWARE

STOCK
FLOW CONVERTER

CONNECTO,!O

Results from the simulation output are analysed by using the Taguchi Design of Experiment
Technique. The Taguchi method is based on the statistical design of an experiment and is applied to
establish the main effect, interaction effect, and optimum design parameters. Details of Taguchi
methods are discussed in section 6.

The Model.

Demand process

The standard periodic review base stock order up to level replenishment policy is observed. External
demand for a single item occurs at the retailer, where the underlying demand process faced by the
retailer is an auto correlated AR( I) process. The retailer's demand from the customer is a mean
centred demand pattern: i.e.

D / = d + p (D /_1 - d) + £ / . (I)

Where D, represents the demand in period t, d is the average demand, p is the first order

autocorrelation coefficient, - 1< P < 1, and e, is an independent and identically distributed normal

process (i. i.d) with mean 0 and variance a ~ . It is assumed that a is significantly smaller than d ,
so that the probability of negative demand is negligible, Lee et al (4). The demand variance equals.

er ;. = er : /1 - P 2. By varying the value of p , a wide range of process behaviours can be

observed. When p = 0, we have an i. i.d process with mean f.J and variance a;. For - 1< p < 0,
the demand process is negatively correlated and will exhibit period to period oscillatory behaviour.
For 0 < p < 1, the demand process will be positively correlated which is reflected by wandering
sequence of observations. As p approaches one, the process approaches non stationary behaviour;
and in particular, a pure random walk model or equivalently, an ARIMA (0, I, 0) process. In the
simulation conducted here, an average demand of 100 and standard deviation of 20 are used. We
assume that there is an infinite number of demand data available and the underlying parameters of the
demand model are known.

Inventory Policy.
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The standard periodic review base stock policy is the (R, S) policy. At the end of every review period
R, the inventory position is tracked and a replenishment order is placed to raise the inventory position
to an "order-up-to" or "base stock" level S, which determines the order quantity in period t;

o 1= S I - JP I (2)

Where Or is the ordering decision made at the end of period t. S, is the order-up-to level used in

period t, and JP, is the inventory position. The inventory position is the sum of net stock plus

pipeline inventory.

/Pr=NSI+W/PI' (3)

NSr= NSI-,+Or,- Dr' (4)

WIP1 =WIPr, + 0,-, - 01-' . (5)

Order up to level is determined by:

~ t. Z ~ t. 6)S,=D,+ a , (
Where iY is expected forecasted demand over L periods (b: = L bl')' a: is an estimation of the

standard deviation of the lead time forecast error, and z is chosen constant to meet the desired service
level and is related to inventory holding and backlog cost. Such a policy has the potential of 0, < 0

but the under the assumption of a < J.l" ' the probability of having 0, < 0 is negligible, Lee et al (4).

The standard deviation of the lead time demand forecast error iso-; = ~V(D; - D:). Zhang (10)

showed that the standard deviation of the lead time forecast error remains constant over time for the
moving average, exponential smoothing, and mean squared error forecasting methods. Hence,
~I =;/ ,and the replenishment order quantity can be written as.
u, \...11-1

(7)

In our simulation, first we receive the inventory and demand is either fulfilled or backlogged at
the beginning of the period. Next, the inventory position is observed and order is placed at the end of
every review period. Thus, even if the physical production lead time is zero, it does not appear in the
order decision

FIG. 2: iTHINK MODEL OF SINGLE LEVEL OF SUPPLY CHAIN WITH MMSE

Sales in Sales Conveyor Prey Sales

until the end of next planning period. So, the lead ( L ) includes a nominal sequence of events delay.
In short, the lead time not only includes the production delay ( Tp ) but also a single period of events
delays or review period. Hence, Lead time (L) = Tp+1 and we estimate the demand during Tp+1
period when we calculate the order up to level in our simulation. Simulation is run for 1000 periods
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for each condition and observations are made from 200-800 time periods. Replication is carried out
for 100 time periods and averages of the results are taken. Results are verified from spreadsheet and
previous research. Performance measures of the simulation analysis are observed on the bullwhip
effect. We define bullwhip measure as:

B II hi Var(O,)
1I W tp =

Var(D,)

When Bullwhip = I, it implies that the variance of orders is equal to the variance of demand or in
other words there is no bullwhip effect. In case where Bullwhip < I, it shows the existence of the
Anti-Bullwhip or De-Whip Effect, In scenario when Bullwhip> I, it indicates that the variance of
orders are greater than the variance of demand and the presence of the bullwhip effect.

Bullwhip Effect with Exponential Smoothing (ES) Forecasting.

The exponential smoothing (ES) forecast is an adaptive algorithm in which the one period ahead
demand forecast is adjusted by a fraction of the forecast error. Let a denote the fraction used in this
process ( also called the smoothing factor), we can write the ES forecast for next period's demand

D, = D,-, + a(D, - D,) (8)

The smoothing constant a is the weight placed on the most recent observation of demand in the
exponential smoothing forecast and is subject to the condition 0 < a > 1 . We assume that both
retailer and manufacturer use the exponential smoothing technique to forecast one period ahead
demand. This is then multiplied by the lead time to obtain the value of lead time demand. Now we
test Chen's findings, later confirmed by other analytical studies, about the effects of the smoothing

constant, a, demand correlation coefficient p , and the lead time L on the bullwhip effect. The L9
Taguchi Array is applied to study the impact of three different levels for each of smoothing constant
(0.2, 0.5, 0.8), lead time (2, 4, 8), and demand correlation coefficient (-0.8, 0, 0.8), giving nine
experiments in total. Details of Taguchi methods are discussed in the last section.

TABLE: INNER ARRA YS(L9) FIG.3: BULLWHIP EFFECT WITH ES

I~orExperiment L Phi Alph
81 Run 8

I 1

2 2 2 i ; 30.0

3 3 3 Il4 2 1 2
1
115.05 2 2 3

~

6 2 3
7 3 1 3
8 3 2 ...' ..... '. ~..:~' ~.. .'.

~~ ~;: .... ~I... ,Ii>
9 3 3 2 ~ lJ !~ ~.,

The Above results validate Chen's findings that the bullwhip is increasing in alpha and decreasing in
demand autocorrelation and converges to one when p = I. When compared to an i.i.d demand
process, negatively correlated demand increases the bullwhip effect while positively correlated
demand decreases the bullwhip effect. For all autocorrelation demand process, the bullwhip effect is
increasing in lead time. Lead times magnify the increase in variability due to demand forecasting. The
longer lead time triggers larger changes in the target inventory level resulting in higher volatility of
the orders placed. Retailers having longer lead times should prefer to use smaller values of the
smoothing constant in order to reduce the demand amplification. The high weighting factor used for
alpha is highly responsive to recent changes in underlying demand pattern and results in demand
amplification. While the low alpha value provides less sensitive response to current demand variation
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and hence reduces the demand amplification. Above result also shows that least effect is that of
demand correlation.

Bullwhip Effect with Minimum Mean Squared Error (MMSE) Forecasting.

Using MMSE forecast means that the demand forecast is derived in such a way that the forecast error is
minimized. It is the conditional expectation of future demand, given current and previous demand observations.
The MSE forecast tor the demand in period D ' given current and previous demand observations

l+r

0,.0,1.0,.1 This forecasting technique assumes that the underlying parameters of the model are known or

"
that an infinite number of demand data is available to estimate these parameters. Let D 1+ r

be the t: period a head forecast of the demand DtH made in period t, then

r = 1,2,... ,

(9)

It may be noted that as the forecasting process contains no moving average terms, the errors from
previous periods play no part in the computation of the results. Further, forecast is the geometric
decay from the last demand observation to the mean of the process. In contrast to the exponential
smoothing forecast method, the one period ahead demand forecast is not multiplied by lead time, but
instead the forecast of the demand over lead time horizon is calculated by plugging single period
MMSE forecast into the definition of lead time. The mean squared error forecast for the lead time
demand is given by;

. /_

D,
I. + 1

Ld + P - P ( D , - d ).
1- P

( 10)

Figure 3 shows the effects of demand correlation and lead time in an order-up-to level policy on the
bullwhip effect when demand forecasts are estimated using MMSE. A comparison is made between
negatively correlated, i.i.d, and the positively correlated demand process. When demand is negatively
correlated (-1<P < 0), the bullwhip effect does not exist or, the variance of the order quantity is
smaller than the variance of demand resulting in Anti-Bullwhip or De-whip effect. From the
managerial point of view, the De-whip effect means that the production planning phase at
manufacturer level becomes easier and more stable. When the customer demand is given by an i. i.d
process, i.e., when p = 0, there is no correlation in demand and the order-up-to level policy with
MMSE forecast generates orders equal to the observed customer demand and results in chase sales
policy. A chase sales strategy reduces to mean demand forecasting. When demand is positively
correlated (0 < p < 1), with the increase of demand correlation the bullwhip effect increases first,
reaches the maximum value, and then starts decreasing. The bullwhip effect is an increasing function
of lead time over a certain ranges of demand correlation. When there is a loose positive correlation;
i.e. when p ~ 0.3, the bullwhip effect is nominal and the increase in lead time does not cause a
much difference to demand amplification. This scenario is in contrast to the results of Chen et al (5),
that increasing the lead time magnifies the bullwhip effect .When p ~ 0.5, the bullwhip effect is
more significant and an increase in the lead time leads to bullwhip effect. Lead time has much impact
on bullwhip effect when 0.9 <P >0.3. The maximum value of bullwhip effect is observed when p =

0.8.

Comparison of ES and MMSE.

Figure 5 shows the impact of MMSE and ES (a = 0.2) as a function of lead time on the bullwhip
effect. The bullwhip effect observed using the ES technique is a decreasing function of p and
converges to one as p approaches one. An obvious difference of MMSE forecasting with the results
for ES, however, is that the bullwhip effect is no longer decreasing in autocorrelation. When demand
is negatively correlated (-I <P < 0), the bullwhip effect exists and amplifies with the lead time for the
ES forecasting technique whilst it diminishes under MMSE. Lead time reduction can significantly
reduce the bullwhip effect when 1< P >0.3 with MMSE. In contrast, in order up to policy with ES
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technique, when -1<P < 0, shortening the lead time has a significant impact on bullwhip reduction.
For all demand processes, the bullwhip effect exists and amplifies with the lead time when ES
forecasting technique is used. On the other hand, when forecasting is carried out using the MMSE
technique, a negatively correlated demand results in De-Whip effect, i.i.d demand process exhibits a
chase sale policy, and perfect positively correlated demand amplifies the bullwhip effect with the lead
time. Further, the MMSE forecasting technique minimizes the variance of the forecast error and
therefore leads to lower inventory variations and hence cost. ES performs better then MMSE in terms
of bullwhip reduction when p is between 0.6 to 0.9 whilst MMSE performs better when -I <P < 0.3.
When a low weighting factor (a = 0.1 or 0.2) is used as the smoothing constant then the magnitude

of the amplification is lower for ES when compared with MMSE. Increasing the weighting factor of
alpha to 0.4 and further exhibits greater magnitude of bullwhip effect as compared to MMSE. This
reveals that the bullwhip effect is more sensitive to the smoothing constant than to the demand
correlation.

FIG.4:BULLWHIP EFFECT WITH MMSE
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Impact of ES and MMSE on Inventory Variance.

Much of the previous research on demand amplification and forecasting in a periodic review order-
up-to level model has used statistical approaches. The statistical approach is useful for gaining an
insight into the structure of the ordering process as it moves into the upper levels of the supply chain.
However, as pointed out by Hosoda and Disney (2006), the statistical approaches become
unmanageable when net inventory variances are considered as the expressions for the covariance
between the states of the system are very complex. While simulation is better suited with which these
intractable expressions are completely avoided and the graphical results gained from simulation
studies provide the clear and the better picture of the situation.

The order-up-to level periodic review replenishment system is optimal when there is no fixed
ordering cost and both holding and shortage costs are proportional to the volume of the on hand
inventory or shortage. In such systems the inventory for the retailer is determined on the basis of the
end customer demand and the inventory expression for the manufacturer is calculated by retailer's
order quantity. Variance of the net stock has a greater impact on the customer service level; the higher
the net stock variance the more safety stock required to meet the desired service level.

Var (NS )
VR inv = Var (D ,;

Figure 6 shows the quantification of the net inventory variance at the retailer's level by using ES and
MMSE forecasting for different levels of lead time. The net inventory variance is also effected by
demand correlation. The net inventory variance under MMSE and ES forecasting techniques,
increases at first, then reaches its maximum value, starts to decrease before it converges to one. The
net inventory variances for the ES are greater than the MMSE forecasting method and that gap
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increases as lead time increases. Increasing the lead time for a particular level of the supply chain
increases the net inventory variances to a greater extent then the bullwhip measure under both ES and
MMSE forecasting methods. This shows that inventory variances are more sensitive to lead time than
the order variances. This result is intuitive as the inventory fluctuates on the basis of demand and
supply. Higher variances in net inventory levels are observed for positively correlated demand under
both forecasting schemes. It can be concluded that net inventory variances are more for the higher
lead times and for positively correlated demand. For both forecasting methods, the maximum
inventory variations are observed when demand autocorrelation lies between 0.3 and 0.8 (.2> P <0.9).

FIG. 6: IMPACT OF ES& MMSE ON INVENTORY VARAINCE
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Modified OUT Policy.

A proportional controller is added in simple order up to level policy presented in equation 7. This
new replenishment policy is named as modified order up to level policy.

A, = b:' - (NS, + WIP,)
=(T,.)D,-<NS ,+WIP')
=D,+(T,.D,-(NS,+WIP,» (II)

T • can be treated as a Desired Inventory Position(DIP). Note that DIP = 0 if L = I. The differenceII'D
the desired inventory position and actual inventory position is called the Error of Inventory Position
(EIP). where, EIP, = DIP, - (NS, +WIP ,) .Incorporating a proportional controller, f3 ' into

equation (11) yields the Modified Order-Up-to Level policy.

O,=D, + P(DIP,- (NS, + WIP,» (12)

With 0 <P < 2. Forrester (I) and control theorists refer to I / P as the "Recovery Time" and
propose not to recover the Error of Inventory Position in one time period. Instead, recovery should be
spread over time by ordering only fraction P of the inventory deficit .In the simple order up to level
policy. the error of the inventory position is completely taken into account while in modified order up
to level policy. a fraction of the inventory discrepancy is ordered. Forrester (I) acknowledges that
when f3 <I, the recovery time for the error of the inventory should be spread over time and when

f3 > 1 recovery will be much quicker as overreaction to the error of the inventory will be observed. It

is important to note that when f3 = I. both order up to level policies are identical.
Now we use the Taguchi Orthogonal Arrays technique to quantitatively measure the impact of beta,
demand correlation, and lead time on the bullwhip and the inventory variance ratio and to determine
the optimum value of beta in order to minimize the variations.
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Taguchi Design of Experiments

Orthogonal Arrays

The arguably ubiquitous Taguchi approach is used to identify the effects of different levels of the
design parameters on the measure of the bullwhip effect, the interactions that occur and ultimately the
best values for them. The technique is used to obtain the maximum information with the minimum
number of experiments . This is valuable in studying supply chain dynamics as there are a large
number of possible parameter value combinations. Orthogonal Arrays (OA) comprises of inner arrays
and outer arrays. Inner arrays are those variables which are controllable in real life while outer arrays
or noise factors are controlled in experiments but are uncontrollable in real world.

The first step in parameter design technique is the selection of quality characteristics. There are three
types of quality characteristics in Taguchi methods, such as smaller-the-better, larger-the-better, and
nominal-the-best. The purpose of this research is to minimize the order and net stock variance ratio by
exploring the best parameter levels, therefore a smaller-the-better quality characteristics is applied in
this study. The next step is the selection of parameters and their suitable levels. Once the parameters
and their levels are selected, the third step is to choose the Orthogonal Arrays (OA). The choice of
orthogonal array size used in the design of experiment depends on the total degrees of freedom (DOF)
required for the parameters. In this study, the DOF for seven control factors with three levels is 3 x (3-

I) + I= 6, Roy (16). This leads to choosing the L Q (34
) array in Table I that defines, for each

experiment, the level of each factor to be used. The factor levels used in the experiments reported
here are given in Table 2.

For the analysis of experimental results obtained from the simulations, Taguchi standard analysis is
carried out and quality characteristics of "Smaller is Better" is applied. The effect of a factor on the
measured response when the factor's value is changed from one level to another is known as the 'main
effect' and is calculated for a particular level of a factor by examining the orthogonal array, the factor
assignment, and the experimental results, Roy (16). For example, to calculate the average effect of
lead time at Level I, all results of lead time at Level I are averaged.

Statistical Analysis of Results

Figure 7 shows the impact of beta, lead time, and demand correlation on the bullwhip effect when
forecasting is carried out using the MMSE method. It should be remembered that when f3 = I, then

modified order up to policy is the same as the simple order up to level policy. When f3 < I, a smooth
replenishment pattern is created. Smoothing is a well known method to reduce variability and hence
demand amplification. When P> I the variability of the order quantity is increased and the bullwhip

effect is amplified. The bullwhip effect is an increasing function of the f3 . When 1< P < 2, the

bullwhip effect is amplified and when 0 <P < I, the bullwhip effect is dampened. Figure 7 also
shows that bullwhip effect measurement is very sensitive to beta. The larger beta results in quicker
restoration of the discrepancy between desired and actual inventory levels but poor filtering properties
and thus creates demand amplification. Demand correlation is the second most significant factor,
whilst the lead time is the least significant factor in demand amplification.

It is well known phenomenon that inventory control policies at the retailer level often propagate
customer demand variability in an amplified form to upper levels of the supply chain. Dampening
variability in orders may have negative impact on customer service by increasing inventory variances.
Bullwhip effect contributes to the upstream cost while the variance of the net stock increases the cost
of the concerned level of the supply chain. Figure 8 shows the impact of beta, lead time, and demand
correlation on the net stock variance. In terms of beta, it can be seen that
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TABLE 2: INNER ARRA YS (L9) TABLE 3: FACTORS AND LEVELS

Experimental L Beta Phi Factors Level I Level2 Level3
Run

I
2 2 2

Beta (f3) 0.5 1.5
3 3 3
4 2 I 2
5 2 2 3 Phi (p) 0.2 0.5 0.8

6 2 3 I
7 3 I 3
8 3 2 I Lead Time ( 2 3 4

9 3 3 2
L)

FIG.7: IMPACT ON BULLWHIP EFFECT FIG.S: IMPACT ON NETSTOCK VAR.
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L 1 L2 L3 Ali1 Al12 Ali3

the modified order up to level policy increases the net stock variance ratio of the retailer. This means
that the manufacturer benefits from the smoothing of the replenishment order. For the retailer, this
smoothing comes at the price of larger inventory variations; and variations in the inventory level
increase the inventory related cost. Larger inventory variations are observed when f3 <I. Figure 8
also shows that variances in stock level are highly sensitive to lead time. Among the factor studied,
the contribution of the lead time in inventory variances is almost 50 percent. The second significant
factor is demand correlation and the beta is least significant factor involved in this study. Further, the
impact of beta is nonlinear.

The next step is to explore the interactions among the parameters. Interaction here refers to factors
behaving differently in the presence of other factors such that the trend of influence changes when the
levels of the other factors change. Simple but powerful "Interaction Graphs" (Figures 9 & 10) are
used to determine the severity of the interactions between control parameters. Ifthe lines in the graph
are parallel there is no interaction between the parameters, whilst non-parallel lines indicate
interaction and intersecting lines indicating strong interaction, Roy (16). Two important interactions
are observed in this analysis. Figure 9 shows a strong interaction between beta and demand
correlation. The value of beta is affected significantly by the forecasting error generated from
inaccurate forecasts. The next significant interaction occurs between beta and lead time as shown in
Figure 10.The interaction between beta and lead time shows that when beta increases, the variability
of orders increases which in turn increases the lead time. The longer the lead the smaller the impact of
beta on net stock variations. Small interaction occurs between lead time and demand correlation.
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The Last step in Taguchi methods is to find the optimum values for the factors investigated. Now the
question arises to what extent can production rates be smoothed in order to minimize the production
adaption cost without adversely increasing inventory costs". So, a trade off needs to be developed
between the order and inventory variances. From figure 7 and 8, we can see that when f3 > I; both the

bullwhip effect and inventory variance are amplified. On the other hand, f3 < I increases the
inventory variation but dampens the bullwhip effect. Hence, in order to evolve the trade off between
the bullwhip effect and inventory variance, the optimum value of beta should be set between 0 and I.
Again, Taguchi ]V116 array is used to explore the best values of the factors for both order and

inventory variance. M 16 Array is used to study 2-5 factors at four levels. The selected four levels for
beta are (0.2, 0.4, 0.6, 0.8), for the lead time (2, 3,4, 5), and for the demand correlation (0.2, 0.4, 0.6,
0.8). Due to limited space, the table of MI6 arrays is not included. Figure II shows the main effect of
the factors on the sum of net stock variance and bullwhip effect. By adding net stock amplification
and bullwhip, we assume that the inventory variance is equally as important as the order variance.
The optimum value of beta should set at 0.6, lead time should be minimum, and demand correlation
should set at 0.2.

FIG. 11: IMPACT OF /3, p, & L ON VARAINCE RATIO
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Conclusion

In this paper, we have analyzed the bullwhip effect and net inventory variances induced by different
forecasting techniques in an order up to level supply chain where end customer demand is an AR (I)
process. Through comprehensive simulation experiments and subsequent analysis of simulation
outputs by Taguchi orthogonal arrays, we found:
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(I) For the ES forecasting method, negatively correlated demand can lead to larger increases in order
variability than positively correlated demand. The high weighting factor used for alpha is highly
responsive to recent changes in the underlying demand pattern and results in demand amplification.
For the MMSE forecasting technique, there is no bullwhip effect for i.i.d and negatively correlated
demand process.

(2) For a negatively or loose positively correlated demand process, we should use the MMSE
forecasting technique so that we can eliminate bullwhip effect. For a strong positively correlated
demand process, the ES forecasting technique is preferred.
(3) The MMSE forecasting technique can significantly reduce the net stock amplification for all type
of demand process when compared with ES. For both forecasting techniques, net inventory variances
are more for the higher lead times and for positively correlated demand. Net stock amplification is
more sensitive to lead time than order variance.

(4) We have shown that order up to level policies always result in demand amplification. A smooth
order pattern can be generated by incorporating a proportional feedback controller into simple order
up to level policy. But this smoothing comes at the price of increased inventory variance at the
retailer's level. Through fine tuning the proportional controller, we can smooth the order pattern of
the retailer without adversely affecting her net stock level.

(5) The sum of variances of net stock plus order level is more sensitive to lead time and less sensitive
to the proportional controller.

This research can be extended in many directions. A more complicated demand process such as an
ARMA(p,q) process could be analyzed. The model considered simple forecasting techniques. The use
of more sophisticated forecasting techniques such as Box and Jenkins should be considered. Impact of
proportional controller should be analyzed on multi echelon supply chain models
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