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Abstract 

Generally speaking, a standard pattern recognition system consists of two com

ponents, feature extraction and pattern classification. During the feature ex

traction process, information relevant to the pattern classification is expected to 

be extracted from the data and prepared as features to the inputs of the classi

fier. Mathematically, this process is viewed as a transformation of the original 

parameter vector into a smaller feature vector with useful information for the 

classification task ahead. Usually the original parameter vector has fairly large 

number of dimensions, in the order of hundreds (in some cases, even thousands), 

for the coverage all the possible mathematical relations to the problem. However, 

this poses a significant computation demand to the classifier. The feature space 

associated with the original vector expands with the increase of dimensions. As a 

result of that, the complexity of the classifier might increase exponentially. This 

is famously called the curse of dimensionality. Feature extraction is introduced 

and designed to tackle this problem, by reducing the dimensionality in the data. 

In addition, it could possibly improve the classification efficiency. In modern pat

tern recognition systems, the functionality of feature extraction has become very 

important for its ability to extract discrimination information from the data and 

filter out unwanted interference. The ::mccess of classification is often linked to 

the quality of the extracted features. 
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In this research work, endeavours have been made to address the feature ex

traction issue utilising the strength of evolutionary computation. A genetic pro

gramming based feature extraction framework is proposed for the problem. The 

idea is inspired by the biological evolution process, in which the stronger features 

survive and weaker ones are washed out. It is believed that for features under

going such evolution, the discrimination ability will have been optimised under a 

certain criterion. Therefore, the classification benefits from such optimisation of 

features. 

Compared to conventional feature extraction methods, such as Principal Com

ponents Analysis (PCA), Fisher Linear Discriminant Analysis (FLDA), Kernel 

Principal Components Analysis (KPCA) and Generalised Discriminant Analy

sis (GDA), this approach undertakes a genetic search in the feature space. The 

objective of the search is to get closer to the core of the problem. Rather than 

over-fitting, the genuine characteristic of each pattern is more likely to be iden

tified. Practically, certain termination criterion arc set as the job-done points, 

such as a threshold OIl the fitness value, the maximum number of generations, 

etc. They are empirical values set to achieve satisfactory results for specific ap

plications. 

In order to cover different scenarios and thoroughly examine the capability 

of the proposed method, three systems are designed, including a multi-feature 

extraction system for multi-class problems, a single-feature extraction system for 

dual-class problems, and a single feature extraction system for multi-class prob

lems. Real data are utilised for the evaluation of the performance of the systems 

developed. A series of experiments are conducted to evaluate and compare the 

results obtaincd using thc combination of different feature extraction methods 

and classification methods. The classifiers involved range from a simple Mini

mal Distance classifier (MDe) to a sophisticated Multi-Layer Percept ron (MLP) 
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neural network. 

The results demonstrate that the proposed approach is superior to conven

tional methods for feature extraction for selected applications. The genetic pro

gramming system outperforms other systems in terms of classification success. 

The experimental results are promising. It is believed that this design can be im

plemented and applied in practical pattern recognition problems as a remarkably 

cost-effective solution. 
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Chapter 1 

Introduction 

1.1 Motivation 

The aim of general pattern recognition algorithms is to classify data or patterns 

into different groups, based upon information from either a priori knowledge or 

statistical distribution of the data. It has a vast spectrum of applications, with 

examples such as automatic human voice recognition [2-5J, hand-written text 

classification [6--9 J, the automatic recognition of human faces from images [10-13 J , 

etc. 

A typical pattern recognition system consists of three parts. First, one or 

several sensors/probes are employed to take measurements. Second, a numeric or 

symbolic calculation is carried out to pick up any information from the raw data. 

This process is also called feature extraction. In many applications, because of 

the large number of available features, this process is also called dimensionality 

reduction, in the sense that the problem can be described in a space with much 

smaller dimensions compared with the original required number of dimensions. 

Finally a classifier will do the job to categorise data samples into different groups 

based on the discrimination information given in the features. Usually this can 

be visualised as setting boundaries between data points in the feature space with 
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CHAPTER 1. INTRODUCTION 

reduced dimensions. 

From the above basic description, it is clear to see that the function of feature 

extraction in the pattern recognition problems is of vital importance because, as 

a bridge, it supports the information flow between the raw data collected by the 

sensors and the classifier. Idealiy, useful information or discrimination features 

can be transferred to the classifier without any distortion. Unrelated redundant 

information and interference need to be filtered out, so that the classification is 

purely based on the characteristic of each class without confusion by the noise. In 

order to get closer to that optimal goal, a large number of feature extraction tech

niques have been researched and developed in various problem domains, such as 

Principal Component Analysis (PCA) [14], Semi-Definite Embedding (SDE) [15], 

etc. Mathematically, they are based mainly on the statistical analysis/mapping 

of the data. 

Genetic Programming (GP), as a machine learning technique has gained a 

lot of attention in recent years in the domain of pattern recognition, for its non

parametric search capability. It does not require any priori knowledge of sta

tistical distribution of the data. It has certain advantages over classical feature 

extraction methods in many complex industry problems. 

GP is a subset of evolutionary computation, inspired by the biological evolu

tion process. It builds up programs to solve a problem and evolves the programs 

in the same way as the biology evolves (superior-win-inferior-wash-out). Com

pared with the traditional trial-and-error manual selection by expert knowledge, 

GP tries to build up intelligence through the learning process among a large 

number of data set. 

In fact, the motivation of using GP for the feature extraction task is driven 

by the fact that modern computers become so powerful that even a home PC is 

capable of carrying out a large amount of computation in a relatively short period 
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CHAPTER 1. INTRODUCTION 

of time. Laboratory computers or workstations, which are specially designed for 

computing, can be utilised for more sophisticated mathematical calculations and 

intelligent search for optimal solutions. For a relatively well-defined problem, 

optimisation among large number of solutions is possible within a reasonably 

short period of time. 

This research has been conducted with the objective to examine, evaluate 

and possibly evolve the existing GP techniques towards the application of solving 

complex industrial problems. Such an attempt is believed to be beneficial to both 

the theoretical and practical analysis. 

1.2 Original Contributions 

Upon reaching the final stage of the research, it is believed that the following 

contributions have been made during the research work: 

• Construction and evaluation of a GP-based approach for multi-feature gen

eration for multi-class classification problems. The results demonstrate a re

markable improvement in the classification performance using GP-extracted 

features compared with conventional features. 

• Evaluation and comparison of the performance of conventional feature ex

traction methods, a Genetic Algorithm (GA)-based feature selection method 

and a GP-based feature extraction method using experimental data sets. 

• Evaluation of the performance of a Modified-Fisher Linear Discriminant 

Analysis (FLDA) method using experimental data for two industry prob

lems. 

• Comparison of FLDA, Alternative-FLDA and the proposed Modified-FLDA 

methods in terms of performance; Comparison of the features generated by 

20 



CHAPTER 1. INTRODUCTION 

GP comhined with FLDA, Alternative-FLDA and Modificd-FLDA, in terms 

of the classification performance. 

• Construction of a highly efficient learning tool by combining GP with dif

ferent nonlinear functions to transform useful information into a one dimen

sional feature space. 

• Construction and evaluation of GP-based single feature generation approach 

for multi-class pattern recognition problems. Investigation/analysis of the 

performance of different nonlinear feature extraction methods on different 

data sets. 

• Novel design of fitness function for determining the goodness of features, 

with relatively fast speed and reduced computation complexity. 

1.3 Organisation 

The major tasks concerned in this research are feature generation and dimen

sionality reduction hased on GP for pattern recognition problems. In order to 

elaborate the idea and organise the findings in a readable way, this thesis is broken 

down into six separate chapters, which are listed as follows: 

Chapter 1 presents the introduction, motivation and organisation of the thesis. 

Chapter 2 provides a hrief overview of the definitions and fundamentals of pat

tern recognition problems. It also provides the basic concept of different 

feature extraction/selection and classification techniques used in areas that 

the research is concerned with. In the later chapters, they will be referred 

numerous times. 
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CHAPTER 1. INTRODUCTION 

Chapter 3 provides a basic description of genetic algorithm and genetic pro

gramming paradigm, including the essential elements and the implementa

tion issues related to the design of the program for the task of feature ex

traction. The concept of evolutionary computation is reviewed with regard 

to genetic search algorithms, natural selection schemes, genetic operations, 

and the fUllctionality of fitness lllea.'iUn~s. 

Chapter 4 introduces a GP-based approach for multi-class feature generation 

from raw vibration data recorded from a rotating machine with six different 

conditions. The generated features are then used as the inputs to a neural 

classifier for the identification of six bearing conditions. 

Chapter 5 proposes a new linear feature extraction measure, namely Morlifierl 

Fisher Linear Discriminant Analysis. A Modified Fisher criterion is devel

oped to help GP optimise features. An experimental data set for breast 

cancer detection and an industrial data set for bearing fault detection are 

used. 

Chapter 6 proposes GP structure for multi-class nonlinear feature extraction 

based on the Fisher criterion. This produces a nonlinear feature for multi

class recognition by identifying the discrimination information between classes. 

The comparison demonstrates that only one single feature obtained by a 

single run of the GP system provides satisfactory results for the problems 

in test. 

Chapter 7 concludes the thesis and summarises the conclusions obtained in each 

chapter. 
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Chapter 2 

Preliminaries 

2.1 Pattern Recognition Systems 

Pattern recognition is the study of mathematical methods to analyse the observ

able information from raw data collected by sensors or processors and seek to 

discover objects of difference from their background and make a classification 

decision for each pattern. Generally speaking, the goal of pattern recognition 

is to group the objects into a number of categories. The grouping or classifica

tion of objects are important tasks, which cover the studies of statistics, artificial 

intelligence, computer science and many others. It is popular in many applica

tions, such as machine vision, character recognition, computer-aided diagnosis 

and speech recognition. As the need for pattern recognition systems increases 

in industrial applications, advanced technologies have been demanded and re

searched for such problems. 

Typical structures of pattern recognition systems are illustrated in Figure 2.1. 

There are three major building blocks: preprocessing, feature measurement and 

classification. Traditionally, these blocks are enough for the pattern recognition 

task as the number of features is not large and expert knowledge is sufficient for 
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Preprocessing 
Feature 

Measurement 

(a) A traditional pattern recognition system. 

Preprocessing 

Classification 

Classification 

(b) A pattern recognition system with machine learning intelligence. 

Figure 2.1: Typical structures of modern pattern recognition systems. 
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CHAPTER 2. PRELIMINARIES 

the manual selection of features. For sophisticatedly pattern analysis problem 

with large number of features, a more efficient way to do the feature measure

ment is to incorporate machine learning intelligence. The learning algorithm 

block acts as a feedback channel to allow automated evaluation and selection of 

features based on the classification results. In addition, the learning algorithm 

might be able to evaluate the features by different criteria without knowing the 

classification results. We will address this in later chapters. 

These blocks are not independent. They are interrelated and dependent upon 

each other's performance. To improve the overall performance, redesigning may 

be required in various stages. Usually combined blocks (feature extraction and 

classification) can be very useful in optimising the system performance. 

In recent years, machine learning approaches have been used extensively for 

the task, such as Genetic Algorithm (GA) for feature selection [16-19) and Ar

tificial Neural Network (ANN)/Support Vector Machines (SVM) [20-24] for pat

tern cla."sification. The critical tasks of pattern recognition consist of feature 

extraction and classification. They can be carried out by either supervised or 

unsupervised learning algorithms. In supervised learning, the training patterns 

have been assigned to a predefined class. Unsupervised methods discover the re

lationships between patterns without any priori information of classes. This will 

be addressed in details in the later sections. 

2.2 Dimension Reduction 

Dimension reduction is a concept originated from the domain of statistics, where 

the collection of large amount of data or observations results in information over

load. The dimension is the number of variables measured on each observation. 
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CHAPTER 2. PRELIMINARIES 

High-dimensional data sets pose many difficulties to data analysis. For exam

ple, not all the measured variables are important for understanding the underlying 

problem. Each individual variable may contain useful information as well as noise 

or interference. Some variables might be correlated to each other, hence resulting 

in redundancy. This happens quite often, particularly in data sets with very high 

dimensionality, in the order of hundreds or even thousands. 

In addition, high-dimensional data sets are computationally expensive. The 

infamous curse of dimensionality [25,26] is the best explanation of such problem. 

Simply put, within a one dimensional space, randomly-sampling 100 points within 

a unit interval is sufficient to achieve a resolution of at least 0.01. With ten 

dimensions, the same level of resolution requires a sampling number of 1020. 

Apparently, the required computation increases exponentially by the increase of 

dimensions. Without the dimension reduction, the demand for computer power 

is enormous even for a relatively simple problem. 

There are a number of modern techniques for the reduction of dimensions. 

Generally speaking, there are two main categories, dimension reduction by feature 

selection and by feature extraction. 

2.2.1 Feature Selection 

Also known as variable selection, feature reduction, attribute selection or variable 

subset selection, feature selection approaches intend to find a subset of the original 

variables. The functionality of feature selection is to help understand the data by 

identifying important/non-important features and their suitability to the problem 

in hand. The basic logic is not complicated. Candidate subsets are evaluated and 

modified iteratively until desired output is achieved or termination criteria are 

met. A ranking system is used to provide a score value for each candidate. A 
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search strategy is used to alter the subsets after each evaluation and explore the 

feature space. 

The scoring methods can be broken into two groups, wrappers and filters. 

Both wrapper type and filter type search through the possible feature space by 

varying the combination of features. Wrapper-type approaches evaluate the fea

tun~s by running a model, (such a,.<; a classifier) and using the model results (such 

as the classification error) as the score. Filter-type approaches rank each subset 

based on the output of the filter, such as correlation or mutation values. Other 

popular metrics include, 

• Class separability 

- Error probability 

- Inter-class distance 

- Probabilistic distance 

- Entropy 

• Consistency-based feature selection 

• Correlation-based feature selection 

Apparently, the filter-type approach demands less computation in terms of eval

uating the subset. Search algorithm determines the way to alter the subset after 

each evaluation and the way to explore the feature space. It varies by applications 

and data size. Typical methods include, 

Exhaustive: Complete search of the feature space but computationally expen

sive hence impractical for large data set. 

Best first: Once a satisfactory candidate is identified, the score will never drop 

below. 

29 



CHAPTER 2. PRELIMINARIES 

Simulated annealing: Provide better diversity over the area jsubspace with 

high-performance features. 

Genetic algorithm: Inspired by the biological evolution process, it is a simula

tion of the real-world surviving scheme by running generations. 

Greedy forward selection: One type of the greedy algorithms 

Greedy backward elimination: One type of the greedy algorithms 

Sequence feature selection: Feature selection according to the sequence in

formation. 

2.2.2 Feature Extraction 

In the domains of pattern recognition and image processing, feature extraction is 

such a powerful word that it can actually includes the concept of feature selection 

and other related techniques. A good definition of feature extraction in the 

pattern recognition problems is quoted from Wikipedia (2008), 

When the input data to an algorithm is too large to be processed 

and it is suspected to be notoriously redundant (much data, but 

not much information) then the input data will be transformed into 

a reduced representation set of features (also named feature 

vector). Transforming the input data into the set of features is 

called features extraction. 

Evidently, a subset of the original features can also be a form of reduced repre

sentation. In this thesis, there is neither intention nor necessity to differentiate 

between these two terms as they are just different usage in different domains. In 

the domain of statistics, the focus is on how the number of dimensions is reduced, 
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by a selection or a mapping of the original features. In the domains of pattern 

recognition and image processing, the term "feature extraction" is used to de

scribe the extraction of information from the original feature space. During the 

feature extraction process, the extracted features are expected to contain relevant 

information to the problem in order to perform the desired task using a reduced 

representation instead of the full size input. 

The objective of feature extraction is the same in all domains. That is to sim

plify the amount of resources required to accurately describe the problem. This 

is particularly useful when analysing complex data sets, where a large number 

of variables are involved. Traditionally, it requires a large amount of memory 

and computation power. The required resources expand exponentially with the 

increase of number of variables/dimensions. This has been previously described 

as the curse of dimensionality. Even with the significant improvement of com

puter power and cheaper memory chips in recent years, super computer power 

and large memory should not be the basis of solving relatively simple problems. 

From the point of view of improving efficiency, the benefits of feature extraction 

are invaluable. 

Another benefit of feature extraction, in particular for classification problems, 

is the ability to generalise the problem. With a large number of variables, a 

classifier algorithm is prone to overfit, which picks up the noise in the data during 

the training process. The issue of generalisation will be addressed separately later. 

For a specific well-defined pattern recognition problem, it is usually the case 

that the best results are achieved by an expert analysing the data and construct

ing a set of application-dependent features. However, if no such expert knowledge 

is aVailable, or a certain level of automatic extraction of features is required to re

duce the original large number of variables, general feature extraction techniques 

is designed to help. 
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There is a wide spectrum of feature extraction methods available for the 

task of dimension reduction. Based on different criteria, they can be categorised 

into different groups, such as linear/nonlinear methods, supervised/unsupervised, 

parametric/non-parametric, etc. The aim of following sections is to provide a 

comprehensive literature review to address the wide spectrum of feature extrac

tion methods. 

Data modelling or analysis always starts from a simple linear model as lin

ear equations are not difficult to solve and yield analytic solutions, which are 

desired for most of problems. If linear solution exists, it is always preferred 

over nonlinear solutions. In fact, more complicated nonlinear models are usually 

based on localised linear models. Without a good understanding of linear fea

ture extraction methods, one would not be able to fully utilise the functionality 

of nonlinear methods. To this regard, a large proportion of the discussion will 

focus on linear methods, including the well-known Principal Component Anal

ysis (PCA), Fisher's Linear Discriminant Analysis (FLDA) and the generalised 

version of FLDA, namely General Discriminant Analysis (GDA). After that, ma

jor nonlinear methods will be addressed, such as the popular kernel trick, which 

can be applied to the linear methods. The study of general nonlinear methods 

for feature extraction extends into the domain of manifold learning, which will 

be addressed briefly. The basic idea of Maximum Variance Unfolding (MVU) 

and Isometric feature mapping (ISO-MAP) will be described. There is no inten

sions to address all the techniques in every detail, as they can be found in the 

relevant literature. The expected outcome of reading this section is to have a 

general understanding of the mathematical basis of linear/nonlinear feature ex

traction methods, the strength and limitation of each technique and relation to 

each other, as well as to other domains of studies. 
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For the annotation of equations and mathematics, a bold text system is used 

throughout this thesis. Typically, a bold text small letter indicates vectors and a 

bold text capital letter indicates matrices. Scalars are marked by normal small or 

capital letters. For simplicity, the subscripts indicate the index of dimension and 

the index of observation. The superscript wrapped by curved brackets indicates 

the class label. For example, x~;) is the jth observation of feature i from class 

k. It is one of the elements of feature vector xJk
), which is one of the elements of 

feature matrix X(k) for class k. By default, x is a column vector. 

2.3 Linear Feature Extraction Methods 

One of the most basic and common mathematical relations is the linear relation, 

in which one variable is the sum of a constant and the products of the first power 

of the other variables with a set of constants, as indicated in Equation 2.1, 

n 

y = Eaixi + ao 
i=l 

(2.1) 

where n is the number of controlling variables Xi. In a two-dimensional Euclidean 

space (n = 1), linear relation appears as a straight line between X axis and y axis. 

In a three-dimensional Euclidean space (n = 2), if the first axis is Xl and the 

second axis is X2, the value of y constructs a plane. In a multi-dimensional 

Euclidean space (n > 2), the corresponding plane is called a hyperplane. The 

well-known term "linearly separable" is used to describe a type distribution, in 

which any two distributions of data points can be separated by a line, a plane or 

a hyperplane, depending on the number of dimensions involved. 

A set of linear equations can be used to solve the unknown variable Xi with 
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known values of Yi, 

n 

Yl = Lalixli 
i=l 

n 

Y2 = L a2ix 2i 

i=l 

n 

Ym = ~amiXmi 
i=l 

Note that the constant ao in Equation 2.1 can be ignored here because they can 

be combined into the known variable set y1, y2, ... Ym. Equivalent matrix form 

simplifies the notation by, 

y=A·x (2.2) 

where A is a m by n matrix. Depending on the relation between m and n, there 

could be three types of systems, 

• Under-determined system (m < n) 

• Square system (m = n) 

• Over-determined system (m > n) 

The process of calculating vector y from vector x is called a linear transformation. 

Linear feature extraction is basically the linear transformation of original feature 

vector into a new feature vector. 

2.3.1 Principal Components Analysis 

Probably the most popular and well-known linear feature extraction method, 

Principal Components Analysis (PCA) plays a very important role in the foun

dation of the feature extraction theory. Many of the modern nonlinear feature 
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extraction methods find their roots in peA. 

The idea is simple: to present the data in a way that the most significant 

variation can be observed. This is achieved by projecting the original variables 

into a series of dimensions, where the projected variables are not correlated with 

each other. The new projected variables are called principal components. If a 

feature vector set is visualised as a set of sample points in a high-dimensional 

space, PCA provides a lower-dimensional picture for one to view from the most 

informative viewpoint. 

Since this research is not a theoretical study of statistics, only the methods 

for computing PCA will be addressed. In-depth study of PCA and further dis

cussions can be found in [14,27]. PCA is commonly calculated by the eigenvalue 

decomposition of the covariance matrix or singular value decomposition of the 

data matrix. Given n number of data samples or observations, each of which is a 

m dimensional feature vector, a m by n matrix X can be constructed to represent 

the whole data set. The general steps for conducting PCA using the eigenvalue 

approach is listed as follows, 

1. Before the actual PCA calculation, each data row has to be zero-meaned in 

order for the PCA to work properly. 

2. After that, the corresponding covariance matrix can be calculated as a m 

by m symmetric matrix. The covariance matrix is commonly computed by 

the following formula, 

n-l 

Cmxm = 2:(Xi - P.)(Xi - p.f 
i=O 

where Xi is the -ith feature vector in the data matrix X and Il. is the mean 

vector of the data samples. 
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3. Then the covariance matrix is solved for m eigenvalues and corresponding 

linearly independent m eigenvectors. 

4. Sort the m eigenvectors based the order of the eigenvalues (highest to low

est). 

5. Derive the "new" feature vector by multiplying the original data matrix 

with a or a set of selected eigenvectors. The product from the eigenvector 

with the highest eigenvalue will exhibit the largest variation in the resultant 

feature space. 

Theoretically PCA is the linear feature extraction scheme, which transforms 

the data into a new coordinate such that maximum variation can be observed. 

It does not require priori knowledge of the probability distribution of data hence 

it is non-parametric. The answer is also independent of the data probability 

distribution. However, the non-parametric property is deemed as strength as 

well as weakness since no distribution knowledge can be incorporated into the 

feature extraction process hence when the number of data points is limited, it 

might experience over-fitting problem. 

Moreover, PCA has to take two important assumptions for the feature extrac

tion tasks, 

Assumption on linearity: Theoretically, it is only suitable for linearly-separable 

problems. This is improved in its nonlinear version, namely Kernel-PCA. 

Assumption on the importance of large variance: It only works for large 

Signal-to-Noise Ratio (SNR). When the SNR is low, the dynamics from the 

noise is also viewed as useful variance. In addition, when PCA is used for 

clustering, there is no way to take into account the class separability. There 
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is no guarantee that the directions of maximum variance will contain good 

features for discrimination. 

Essentially, peA performs rotation of coordinates and aligns the transformed 

axes to the direction of maximum variance. It is a fast and effective method 

when certain conditions are met. As a general feature extraction method, it has 

weakness and limitations. 

2.3.2 Linear Discriminant Analysis 

As discussed, peA is a popular technique in pattern recognition. However it is not 

optimised for class separability, which is taken into account by another popular 

feature extraction method, namely, Linear Discriminant Analysis (LDA). 

General purpose discriminant analysis is a concept originated from the domain 

of statistics. The objective is to determine the discriminant variables between 

groups or classes. Usually, a grOl~p of variables are recorded on a classification 

problem with known class labels. Based on the recorded data, the task is to find 

out those variables that discriminate between classes. The analysis is conducted 

based on the statistics rather than expert knowledge, under the assumption of 

normal distribution of data. 

For example, in order to differentiate between football players and basketball 

players, a series of measurements can be made, including body height, body 

weight, age, maximum speed of running, maximum height of jumping, etc. From 

common knowledge, we can tell that the body height and maximum height of 

jumping should be the features for differentiation. Discriminant analysis does 

not use this knowledge. Instead, it conducts statistical tests against each variable 

and analyse the results based on the statistical test results. As a bad example, 

age might be picked up as a discriminating feature because a young football team 
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and an old basketball team are picked up for the analysis (not enough sampling). 

However, statistically, age is in fact a discriminating variable within these two 

groups of players. 

Linear discriminant analysis (LDA), or Fisher's linear discriminant, is de

signed to find the linear combinations of data which best separate two or more 

classes. The resultant combinations are used for the later dassifieation task. It 

can be viewed as a supervised version of peA. Instead of evaluating the dynam

ics/variance in the data, LDA tests the class separability and searches for the 

best view angle, from which the classes are most separated. 

This view angle, or more precisely, transformation vector w, detennines the 

level of class separability from that particular direction. The well-known statis

tician Ronald Aylmer Fisher [28] defines the class separability as the scalar ratio 

of between-class scatter over the within-class scatter after the transformation, 

(2.3) 

where the within-class scatter Sw is calculated by the sum of the covariance ma

trices C(k) of all classes, each of which is multiplied with a class prior probability 

p(k), 

Sw = L p(k)C(k) 

k 

The between-class scatter is the covariance matrix of the mean vectors. Therefore, 

both Sw and Sb are m by m matrices. Within-class scatter Sw sums the variation 

measured within each class. Between-class scatter Sb indicates how far apart the 

classes are by measuring the variation of class means. 

Solving Equation 2.3 yields the solution for w. That is, when w is an eigen

vector of SbS~l , the class separability J equals to the corresponding eigenvalue. 

38 



CHAPTER 2. PRELIMINARIES 

Apparently, the eigenvector corresponding to the largest eigenvalue defines the 

view angle from which the most significant class separation can be observed. 

There are practical limitations in using LDA for real-world problems, where 

most of time the class means and covariances are not known and can only be 

estimated. Usually, this is done through the training data sets. Consequently, 

the optimality of the estimation depends on the size, sampling interval and other 

related factors of the training data. Also, the estimate of the covariance matrix 

needs to have full rank to be inverted. In another word, the number of samples 

must be larger than the number of observation variables. In order to handle 

the situation where the number of collected samples is less than the number of 

observations, re-sampling or pseudo inverse techniques are required. Somehow 

the most serious weakness of LDA probably is the linearity. It is not capable of 

dealing with nonlinear problems. This obstacle has to be addressed by the kernel 

tricks, which will be addressed in the later section. 

Overall, LDA is an effective and fast method for linear feature extraction for 

linearly-separable classification problems by promoting the class separability in 

the reduced subspace. However, it has limitations in practical usage. 

2.3.3 General Discriminant Analysis 

Linear discriminant analysis can be "generalised" by incorporating "General Lin

ear Models" (GLM). The concept of GLM originated from the use of multiple 

regression in the analysis of dependent variables. The purpose of multiple regres

sion is to quantify the linear relationship between several independent variables 

and a dependent variable, 
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where x denotes the variables independent to each other and y denotes the vari

able correlated to Xl, X2, ..• ,Xm . For example, a property market price 11 could 

be a linear function of number of bedrooms Xl, total area size X2, property age X3, 

and location factor X4, etc. An estate agent will be interested in finding out how 

the actual market price y is associated with those variables, by going through 

a multiple regression procedure. General linear model analysis, as an extension 

multiple regression, involves more than one dependent variables. In another word, 

the dependent variable y becomes a vector and a set of linear equations are set 

up for the problem. 

General Discriminant Analysis (GDA) is called a "general" discriminant anal

ysis because general linear models are applied to the discriminant function anal

ysis problem. Hence it is possible to apply complex models to the set of predictor 

variables, such as categorical predictor variable and continuous predictor vari

ables. Details of explanation and implementation of GDA can be found in [29,30]. 

2.4 Nonlinear Feature Extraction Methods 

All of the above-mentioned method fall into the categories of linear feature extrac

tion. New features are constructed by linearly combining original data/features. 

In the feature subspace with reduced dimensions, it is expected to conduct the 

classification under the assumption that class distributions are lincarly-scparable. 

For many practical problems, this is usually not the case. The boundary between 

clusters are not straight lines, planes, or hyper-planes. Rather, they are curves, 

surfaces, or hyper-surfaces. The patterns from a particular class are distributed 

along a manifold, which can't be described by a linear function. Using any of the 

linear methods, such PCA or LDA, one will not be able to find an optimal view 

angle from which the class separation is sufficient for classification. Certainly, 
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one will argue that this optimal view angle is subjective. It is rare to find an an

gle with 100% separation. However, the reason of introducing nonlinear feature 

extraction methods is to handle those problems with the nature of nonlinearity. 

A good example of the nonlinear distribution of patterns is the well-known 

"Swiss roll", illustrated by Figure 2.2, where different colours indicate different 

class labels. Visual examination reveals that no planes can be placed to separate 

the classes. If the distribution can be unrolled and plotted on a flat surface, the 

classification will become a much easier job. It simply can be solved by setting 

boundary lines between colours. Therefore, the major issue is to map the original 

distribution onto a subspace, where linear methods are capable of handling the 

variability. The process of such mapping is crucial in the success of nonlinear 

features. The original surface or hyper-surface, along which data is distributed, 

is called a manifold. The process of finding a such manifold from the data is called 

manifold learning. In fact, the term manifold learning is used interchangeably 

with nonlinear feature extmction in literature. 

2.4.1 Kernel Principal Component Analysis 

In order to handle the nonlinearity, kernel methods have been developed with 

capability to identify features in a high dimensional space. 

The basic idea of KPCA is to map the data from the original feature space 

RM (M is the number of dimensions) onto a high dimensional space ]RM', where 

standard PCA is applied to find the best angles to view the dynamics of data 

variation. This mapping is done through a nonlinear operator C), 

X' = CJl(x), x E ]RM, x' E ]RM', (M' » M) 

The resultant feature vector x' is the nonlinear combination of elements of x. 
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Figure 2.2: The illustration of nonlinear distribution of patterns along a "Swiss 
Roll". 
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The number of combinations, in another word the vector size M' is a fairly large 

number, (could be infinite) in order to cover as many combinations as possible. 

The purpose of this nonlinear mapping is to transform the data into a new space 

where standard PCA can conveniently identify the dynamics of variance. 

Surely, one would question the computational complexity of such transform, 

and subsequent PCA analysis of the M' by M' covariance matrix. Fortunately, 

a clever kernel function based on dot product has been designed to get around 

of the problem. It allows us to only evaluate the dot product between any two 

feature vectors. Hence it is not required to explicitly calculate the mapping from 

x to x'. Instead, it is only required to know the dot product values between any 

two original feature vectors x and y, 

k(x, y) = ~(x) . ~(y) (2.4) 

This kernel representation allows us to compute the value of the dot product 

in JRM' without having to actually carry out the mapping~. Because JRM' is 

high dimensional, a closed-form expression of k(x, y) significantly improves the 

computational efficiency. Given N number of original feature vectors, the kernel 

function gives us N 2 values, which construct a N by N matrix K. This matrix 

is also called kernel matrix. Popular kernel functions in use include, 

Polynomial kernel 

k(x,y) = (x· y + l)d 

Gaussian kernel 

(
!Ix - Y112) 

k(x, y) = exp - 2a2 
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Neural Network type kernel 

k(x, y) = tanh([x· y] + b) 

Besides the above stated kernels there are other varieties of kernel functions, 

even combinations of kernel functions. Choosing a suitable kernel function for 

problem at hand is a process to tailor the type of nonlinearity in the data. Details 

of solving the kernel function and derivation of the principal components can be 

found in [31]. A general procedure for conducting a kernel-PCA is listed in 

following steps. 

1. Centre the observations in the original feature space by calculating and 

subtracting the mean of each variable. 

2. Compute the N by N kernel matrix K (N is the number of samples). 

3. Obtain the N eigenvectors vi(i = 1,2"" ,N) and corresponding eigenval

ues .Ai for matrix K. 

4. Rearrange the eigenvectors according to the eigenvalues, so that, 

5. Normalise the eigenvectors by requiring 

The normalised version of eigenvector Vi is the ith principal component. 

6. The projection of an original feature vector x onto the ith dimension in the 
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new feature space is obtained by, 

N 

X~ = ~(x) . Vi = 2: Vij [~(Xj) . «I>(X)] 
j=1 

where Vij is the jth component of vector Vi. 

Important properties in using kernel-PCA are 

• Compared to linear PCA, kernel PCA extracts features which are more 

useful for later classification purposes in many real-world problems, where 

patterns are not linearly separable. 

• Kernel peA can extract up to N features (N is the total number of samples) 

while linear peA extracts up to M features (M is the size of the feature 

vector). Feature extraction is not limited to the original dimension size. As 

the number of samples increases, the number of extracted features increases. 

• To achieve the similar classification results, fewer features arc required from 

kernel-PCA than the linear peA, resulting in more economic solutions. 

• Compared to other nonlinear feature extraction methods, the most signifi-

cant advantage of kernel PCA is that it does not require nonlinear optimi

sation, but just the solution of an eigenvalue problem. 

• The main drawback of kernel PCA compared to linear PCA is that up to 

now, there is not a simple method for reconstructing the patterns from the 

principal components. 
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2.4.2 Kernel Discriminant Analysis 

Analogue to the kernel-PCA, Kernel Discriminant Analysis (KDA) utilises the 

kernel trick to overcome the computational complexity in applying a nonlinear 

transformation for the optimal class separability. A general procedure for con

ducting KDA is described in following steps, 

1. Calculate each component of the mean vector of each class in the mapped 

feature space by, 
N(k) 

u~k) = I: k(Xi, X~k)) 
j=l 

Note that the size of the mean vector is the same as the number of samples 

N. 

2. Calculate the covariance of the mean vectors as the between-class scatter 

Sb, which is a N by N matrix. 

3. Calculate the covariance of each class by, 

where L(k) is the kernel matrix of each class, with each element given by, 

and I is the identity matrix. Note that C(k) is a N by N matrix. 

4. Calculate the within-class scatter by adding up the covariance matrices, 

each multiplied with a class prior probability Pk, 

c 

Sw = Pk I: C(k) 

k=l 
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KDA enjoys the same benefit provided by the kemP! trick 

2.4.3 Isometric Feature Mapping (ISOMAP) 

Another main stream nonlinear dimensionality reduction method is the collection 

of techniques under the theory of multidimensional scaling (MDS). The basic idea 

of MDS is to map the original data from the high dimensional space onto a low 

dimensional space, while preserving the pairwise distances between every two 

patterns. This is achieved by analysing the similarity /disimilarity of each pair of 

patterns in the original feature space. 

ISOMAP is a nonlinear generalisation of classical MDS. Instead of perform

ing MDS in the original space, ISOMAP conducts the scaling in the geodesic 

space of the nonlinear data manifold. The geodesic distance is defined as the 

shortest path between two points along the curved surface of the manifold. The 

distance is measured as if the surface is flat and approximated by a sequence of 

short steps between neighbouring sample points. ISOMAP applies MDS to the 

geodesic rather than straight line distances to find a low-dimensional mapping 

that preserves the pairwise distances. 

General ISOMAP follows three steps, 

1. Locate the neighbouring points of each data point in the high-dimensional 

data space. This is achieved by either identifying the k nearest neighbours 

or choosing all points within a certain radius. 

2. Compute the geodesic pairwise distances between all points by approxima

tion. There are different algorithms [32,33] available for this. 

3. Embed the data via MDS so as to preserve these distances. 
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ISO MAP is a highly efficient nonlinear dimensionality reduction technique. 

Generally, it can be applied to a broad range of data and applications. 

2.4.4 Autoencoder 

Another branch of techniques for nonlinear dimensionality reduction is called 

autoencoder, which is in fact an Artificial Neural Network (ANN) as a learning 

machine to obtain a compressed representative of the data. The basic theory of 

an artificial neural network will be addressed in the classifier section later as it is 

only llsed a.<; a da.'>sifier in this res(~arch. In this part, the ha.'>k idea of auto encoder 

will be briefly described without requiring the understanding of ANN. 

A typical autoencoder contains three layers. The first layer or input layer 

contains the same number of neurons as the number of variables in the data. The 

second layer, or the hidden layer, contains less number of neurons than the first 

layer as a reduced representative of the input data. The third layer, or the output 

layer contains the same number of neurons as the number of variables, with the 

task of reproduce the input. The idea of the whole network is to replicate the 

input data in the output layer so that the middle layer, which has smaller number 

of neurons, hence smaller dimensions, acts as a concise representative of the data, 

because it contains all the information required to reproduce the original data. 

The results obtained from the middle layer are the features extracted. 

As a general neuron network, there are three phases in the feature extraction 

process, training, validation and testing. The purpose of these three will be 

addressed in details in the ANN section later. Basically, it requires a dedicated 

data set just to train the network to make it work, and another data set to 

generalise the network. After that, the tuned network is ready to work on new 

data set to produce "features". 
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ThiH method iH often effective for Himplc or linear data Htructures. However, 

when dealing with nonlinear data relationship, usually more than on hidden layers 

are required for finding solutions. Often, when the errors are back-propagated 

through the first few layers, they become less significant and hence less effective 

for the weight adjusting algorithm to tune the neurons. This usually results in 

slow learning process and poor solutions. 

2.5 Inferential Statistics 

Statistics is a mathematical science pertaining to the collection, analysis, inter

pretation or explanation, and presentation of data [34]. As part of the foundation 

for pattern recognition, the importance of the study of statistics can't be overes

timated. General study of statistics can be divided into three categories, 

Descriptive statisti~s: This is the study of methods to describe or summarise 

a collection of data. 

Inferential statistics: In this study, the distribution of patterns in the data 

is assumed to follow certain mathematical rules. Models are derived to 

account for randomness and uncertainty in the observation. Inference is 

drawn upon by analysing the model. 

Mathematical statistics: This is the study of theoretical basis of statistics, 

based on exact probability statements. 

Among these studies, inferential statistics is of great interest to our research of 

pattern recognition problems. The basic concepts related to our research will be 

addressed in the following context. 
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2.5.1 Hypothesis Tests 

A statistical hypothesis test is a method of making statistical decisions using 

experimental data [35]. A statistical hypothesis test requires a pair of hypotheses, 

namely, 

A null hypothesis Ho: a hypothesis made to be rejected, in the sense that, in 

order to prove the otherwise hypothesis, or the so-called alternative hypoth

esis, is right, one only needs to prove the null hypothesis does not stand. 

Of course, if the null hypothesis can't be rejected, the test fails to support 

the alternative hypothesis. 

An alternative hypothesis Ha: This is the hypothesis to be proved. 

Clearly, the two hypotheses need to be mutually exclusive, which means, if one 

of them is true, the other must be false, and vice versa. A general procedure for 

conducting a hypothesis test is explained in following steps, 

• The first task is to state the hypotheses, in another word, to define the 

null hypothesis and the alternative hypothesis in such a way that they are 

mutually exclusive. 

• Decide on the test method to use and the significance level. This part 

describes how to analyse the data samples and set the conditions for ac

ceptance and rejection. Typically, the test method involves a formula of 

the test statistic, such as mean, difference between means and chi-square 

and a sampling distribution of the test statistic, such as normal distribution 

and T-distribution. Given the test statistic and its sampling distribution, 

one can derive the probability associated with the test statistic, specifically, 

the probability of observing a sample statistic at least as extreme as the 

test statistic by assuming the null hypothesis is true. In inferential statistic 
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studies, this probability is called a P-value. (The details about the P-value 

and methods to calculate the P-value will be explained in the next section.) 

If the P-value is less than the significance level, the null hypothesis is re

jected. A significance level is a threshold used for such purpose. The null 

hypothesis is accepted only if a certain level of significance is reached in the 

statistical score. Typical values of significance levels are 0.01, 0.05 and 0.1. 

• Conduct the test using the method defined in step 2 and derive the test 

score. 

• Decide on acceptance or rejection based on the test score and the signifi

cance level. 

2.5.2 Student's t-test 

Student's t-test is a statistical hypothesis test method developed by William Sealy 

Gosset, a statistician with a pen name of "student". Basically, t-test is generally 

applied for deriving the confidence level associated with judgements made from 

small samples. Popular t-tests include, 

• One-sample t-test. 

• Slope of a regression line. 

• Two-sample t-test with equal sample size and equal variance. 

• Two-sample t-test with unequal sample size and equal variance. 

• Two sample t-test with unequal sample size and unequal variance. 

Here only the last test will be addressed in details. Interested readers are referred 

to [36,37] for further reading. 
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Basically, two sample t-test tests the hypothesis about the difference between 

two means in order to make judgements, for example, whether the two samples 

belong to the same characteristic group or they have the same criteria. The test 

is based on following assumptions, 

• Random sampling is the sampling method and the samples are independent 

to each other. 

• The population from which the sample is taken, is at least 10 times larger 

than the sample size. 

• Each sample is drawn from a normal or near-normal population. 

A typical procedure for conducting a t-test between two means JLI and JL2 is 

as follows, 

1. State the hypotheses . 

• The null hypothesis Ho: J.Ll = J.L2· 

• The alternative hypothesis Ha: J.Ll =I- J.L2 

2. Choose the formula of the test statistic. For this test, a two-sample t-test 

formula is chosen, 

where /-,' R is the standard error given by, 

8R= 

The standard deviation a is calculated for each sample. 

3. After obtaining the t-test value, the P-value needs to be calculated from 

the t-distribution, which is actually a probability distribution function of 
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the test value by random sampling. It is given by, 

where r is the Gamma function given by, 

Symbol v represents the number degrees of freedom in the two sample mean 

test, which is calculated by, 

If the result of v is not an integer, it needs to be rounded off to the nearest 

integer. As mentioned above, the P-value is the probability of observing a 

sample statistic at least as extreme as the test statistic, assuming the null 

hypothesis is true. In this case, let us assume the two means are identical. 

Then the probability of the difference of the two sample means being as 

large as t is the cumulative of the t-distribution function over two tails, 

p = I: f(t, v)dt + 100 

f(t, v)dt 

Normally, the P-value is obtained from a pre-calculated t-distribution table, 

which is widely available from Internet. 
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2.6 Classification Methods 

Classification is the final and mandatory step for pattern recognition problems. 

The process of classification is to assign the patterns, which have the similar prop

erties to the same class. The simplest and most intuitive classification methods 

are based on the similarity of well established patterns, which can be da.'lsified 

by using a few prototypes. 

General purpose classifiers can be divided into three categories, in terms of 

the design methodology [30], 

• Based on the concept of similarity. 

• Based on the probabilistic approach, such as Bayes decision rule, K Nearest 

Neighbour. 

• Based on constructing decision boundaries directly by optimising certain 

error criterion. 

As addressed before, the task of pattern classification has some degree of over

lap with the feature extraction process. The aim of a classifier is to discriminate 

between different patterns by searching for the similarity as well as differences 

during the training process. The parameters of a classifier are adjusted so that 

patterns belonging to different groups are discriminated against each other. The 

information required for such adjustment is something related to the characteris

tic of each group, specifically, how the patterns distributed within the group and 

how close the neighbouring groups are. For well-separated two classes, one might 

just require a simple decision boundary to do the classification job. By either 

employing more powerful classifier or conducting complicated feature extraction 

process does not improve the performance significantly. For complex distribution 
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of data patterns, like commonly encountered in image processing or signal pro-

cessing tasks, the search for discrimination information is the key to the success of 

classifications. Either the feature extraction process improves the pattern distri-

bution by presenting the data to the classifier in a way that the class separation is 

maximised, or the classifier takes on the original data and searches for the subtle 

boundary between classes. Certainly, this is subjective to the capability of the 

classifier. No classifier can guarantee a 100% classification success. Generally 

speaking, if the level of discrimination can be measured, the more discrimination 

information extracted from the data, the less power is required from the classifier 

and vice versa. 

As a general discussion of classifiers in this section, it is intended not to re'-

late the classifier to the feature extraction functionality. As stand alone systems, 

different classification methods are described, including Minimum Distance Clas-

sifier (MDC), k nearest neighbour (kNN) classifier, Artificial Neural Networks 

(ANN), and Support Vector Machine (SVM). The aim is to provide a general 

overview of different systems, the strength and weakncss of cach method and the 

applicability. 

2.6.1 Minimum Distance Classifier 

Minimum distance is probably the simplest classification criterion. Basically, the 

method finds the centres of the clusters during the training process and measures 

the distances between these centres to each test sample. The centres are usually 

calculated by the class means, 
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where Nk is the number of training samples for class k and x~k) denotes the ith 

pattern vector belonging to class k. The classification is determined purely by 

distance. The distance is defined as a measure of similarity so that the minimum 

distance indicates the maximum similarity. For example, a test pattern vector Xt 

can be classified to group k by satisfying following condition, 

(i=1,2, ... ,c) 

Common functions for measuring distance between two vectors include: 

The Euclidean distance Probably the most common and straightforward dis

tance measure defined as, 

(~(X,y) = (x - yf(x - y) 

When the Euclidean distance is used for the minimum distance classifica

tion, the boundary between any two classes can be described as a straight 

line perpendicular to the line connecting the two classes mean vector. Evi

dently, this equal treatment of distance to all classes causes problem when 

the sample variances are significantly different between classes. 

The Mahalanobis distance The Mahalanobis distance takes into account the 

scale of the scattering of samples and hence is a "normalised" version of the 

Euclidean distance, 

d~(x, y) = (x - yfC- 1(x - y) (2.5) 

where C is the covariance matrix calculated from the training samples from 

the class to be tested with. 
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Vector angle The angle between the two vectors can also be used as a measure 

of distance. 

Other distance functions include, the Manhattan distance, which measures dis

tance in a grid geometry, and the Hamming distance, which measures the number 

of steps required to switch from one class to the other. The latter is mainly used 

in the study of information theory. 

Using the big 0 notation, the computational complexity is O( N} in the train

ing process, and O(c) in the testing process for each test sample. Symbol N 

denotes the total number of samples and c denotes the total number of classes. 

Evidently, minimum distance classifier is a fast and easy-to-implement algorithm. 

2.6.2 k Nearest Neighbours 

Of all the classification methods, the k-nearest neighbour algorithm is probably 

among the simplest. It was first introduced by Fix and Hodges in [38]. 

It classifies a pattern based on the majority vote from its k nearest neighbours 

with known class labels. If the majority of its k neighbours are from class 1, the 

pattern will be classified as the same. For example, if among 7 closest neighbours, 

there are 4 samples belonging to class one and 3 examples belonging to class two, 

the data point being analysed will be labelled as class one. The nearest neighbours 

are typically determined by Euclidean distance between the test sample and all 

the training samples with known class labels. The value of k is always a positive 

integer, usually a small number. 

There is no computation involved in the training process, apart from storing 

the data and class labels. For each sample test, the Euclidean distance between 

the test sample and all the training samples need to be calculated. Hence the 

computational complexity is mainly in the test phase with the order of O(N). 
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The selection of the value k is another important factor in the design of the 

classifier. Larger values of k helps reduce the noise effect OIl the classification. 

However, it makes boundaries between classes less distinct. A good value of k can 

be determined by various heuristic techniques, such as cross-validation. When 

k = 1, the pattern is simply assigned to the class of its nearest neighbour [22]. 

In binary (two class) classification problems, k is chosen to be an odd number to 

avoids tied votes. 

A major disadvantage of using the nearest neighbours as the basis for clas

sification is the possible bias towards the class with larger number of samples. 

Statistically, a new sample will "meet" these samples more frequently, compared 

to classes with less number of samples. Hence the new sample is more likely to be 

labelled as the class with larger number of samples. This tendency is a statistical 

bias. If the samples are well separated between classes and the distribution are far 

apart, this will not be an issue any more. However, in real-world problems, class 

distributions usually have overlaps because of noise and contamination. Obtain

ing a statistically sound solution is critical to achieving satisfactory performance. 

Another problem related to using the algorithm is the sensitivity to noise, 

irrelevant features, and the distribution scale of patterns. Computing the mutual 

information between the training data and the training classes can help reduce the 

effect. In recent years, feature selection and scaling using evolutionary algorithms 

have been used to overcome such problem with success. 

2.6.3 Artificial Neural Networks 

Artificial neural network is a mathematical model derived based on the structure 

of biological neural networks. As explained in the name, it consists of a network of 

artificial neural interconnected to each other with a task of processing information 
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from the input nodes and providing decision information to the output nodes. 

It is an adaptive system that changes structures based on external or internal 

information flowing through the network during the learning phase. 

The application of ANN covers a wide spectrum, including pattern classi

fication [20], data mining (knowledge discovery) [39], signal processing (neural 

filtering) [40], system modelling [41], and many others. In this thesis, (I." a pat

tern classification tool, the basic idea and structure of ANN will be addressed. 

PopUlar types of networks for the pattern classification task will be described. 

The mathematical model of the ANN can be formulated by the following 

descriptions. Basically, each node of the network can be described as a weighted 

sum function of the inputs Xi, 

(2.6) 

where Wi denotes the weighting coefficient for input Xi and 'l)JO is a predefined de

cision function, which sends a message to all the connected nodes. Concurrently, 

the inputs are the outputs of other nodes and the output is one of the inputs of 

subsequently connected nodes. The interconnection of all the nodes constructs a 

network. 

The ANN model has been studied and researched extensively in both theory 

and applications. There are a spectrum of well-developed ANN models and learn

ing algorithms. Based on different criteria, ANNs can be divided into different 

categories. In terms of learning methodology, there are, 

Supervised learning: In supervised learning, the target of learning is prede

fined. The learning algorithm knows exactly what to achieve. For example, 

for a pattern classification problem, the pattern class labels of the training 

samples are known. During the training process, the learning algorithm 
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adjusts the weighting values so that the mismatch between the output and 

the target decreases. This is done through a cost function, which measures 

the error between the output and the target. Mathematically, the goal of 

the learning algorithm is to minimise the cost function. 

Unsupervised learning: In an unsupervised learning process, the cost function 

can be any function of the input data and the network output. For example, 

if a cost function, 

K = [x - f(X)J2 

is defined to be minimised, the result is, after the learning process, that the 

network output f(x) equals the mean of the samples x. Of course, the cost 

function in reality is much more complicated. For the task of clustering, 

the cost function can be a measure of the class separability. In statistical 

modelling, it could be the probability of the model given the data. 

In terms of information flow, ANNs can be divided into 

Feed-forward networks: In this type network, the information flows in only 

one direction, specifically, from input nodes to the hidden nodes and the 

output nodes. There is no reverse or loop of information in the network. 

Recurrent networks Contrary to feed-forward networks, recurrent networks 

allows bi-directional flow of information. 

There are many variations of ANNs, such Radial Basis Function (RBF) net

works [42J, Kohonen self-organising networks [43J, stochastic neural networks [44J, 

modular neural networks [45J, etc. They will not be addressed here for details. 

In this thesis, a very popular and powerful model of ANNs is described and pro

posed as the major tool for pattern classification, namely, Multi-Layer Percept ron 

(MLP). 
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Input layer Hidden layer Output layer 

Figure 2.3: A typical structure of multi-layer percept ron network. 

The concept of percept ron was originally developed by Frank Rosenblatt [46]. 

Considering the function 'IjJ in Equation 2.6 to be a simple threshold function 

defined as 

{

I if L WiXi + b > 0, 
'IjJ= 

o else 

where 'Wi is the weighting coefficient for input Xi and b is a. constant hia. .. to offset 

the data. The output y has a binary value depending on whether the sum is 

larger than zero. This simple mathematical model is called a perceptron, which 

is capable of separating classes by a hyperplane. In another words, it is a linear 

classifier, which has the ability to handle linearly separable distributions. 

A feed-forward network of perceptrons, which utilise a nonlinear activation 

function, is called Multi-Layer Percept ron (MLP). MLP is a such popular re

alisation of ANN for its simplicity in implementation and ability of handling 

nonlinearity in data. A typical structure of MLP can be illustrated by Figure 

2.3. 

Instead of using a simple threshold, MLP uses a nonlinear function to convert 
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Figure 2.4: Sigmoids activation functions widely used in multi-layer percept ron 
networks. 

the sum into a "decision". In the structure of MLP, this nonlinear function is 

called "activation function". In most of applications, they are sigmoids, or in 

another word, "S" shaped, as illustrated in Figure 2.6.3, where t is given by 

Thanks to the multi-layer structure, the advantage of MLP over a linear per-

ceptron for the pattern classification task, is the ability to handle nonlinearity in 

the data. As illustrated in Figure 2.3, it usually has three or more than three 

layers: 

Input layer: This layer has the same number of neurons as the input features. 

Each neuron "reads" the information from each input feature and possibly 
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applies a weighting as well as a bias. Usually, the neurons in the input layer 

do not require an activation function, which means the information goes 

through the first layer as a linear transformation. 

Hidden layers: There could be one or more than one hidden layers between the 

input layer and output layer, depending on the complexity of the problem 

and nonlinearity in the data. The ability of handling nonlinearity in the 

data are attributed to these layers. Generally speaking, large number of 

neurons in the hidden layer or large number of hidden layers will contribute 

to better nonlinearity handling capability. 

Output layer: This layer outputs classification decisions. The number of neu

rons should be the same as the number of classes. For each class, it is 

expected that one of the neurons will produce a "high" output while all the 

rest produce "low". 

For a supervised task, back propagation learning algorithm is widely used for 

training the MLP networks. The basic idea of back propagation technique can 

be explained in following steps. 

1. Given a training sample to the network, compare the network output with 

the desired output and calculate the error for each neuron. 

2. Adjust the weights of each neuron to lower the error. 

3. "Back-propagate" the the local error to the previous layer of neurons, by 

"blaming" them as the cause of the error. The neurons with stronger 

weights will have greater responsibility for the error. 

4. Repeat the previous step until the error has reached the first layer. 
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5. Repeat step 1 to step 4 until all the training samples are exhausted or the 

error has been sufficiently small. 

Usually, data samples are divided into three groups, no necessarily in same 

size, but each one should fulfill the requirement in term of number of samples. 

Training samples A data set for the learning purpose, which is to adjust the 

weighting coefficients to minimise the classification error. 

Validation samples A data set used to tune the parameters of a classifier, for 

example, the number of neurons in the hidden layer. 

Testing samples A data set used only to assess the performance. 

2.6.4 Support Vector Machines 

The basic idea of Support Vector Machines (SVM) is pretty straightforward. That 

is to separate two classes in a n-dimensional space by creating a hyperplane, which 

has the largest distance to the nearing points in both classes. These points are 

called support vectors because the hyperplane is only determined by these points 

rather than the whole data set. By finding this hyperplane, the samples of the 

two classes are completely separated on the two sides of the hyperplane, and of 

course, the larger the distance, the better generalisation of the classifier. 

Clearly, this idea only works if the two classes are linearly separable, which 

means a hyperplane does exist between the two classes. The hyperplane is ac

tually an optimised boundary between two classes. For nonlinear problems, the 

margin has to "softened" to allow some data points to cross the boundary. The 

"soft" margin tries to split the samples as cleanly as possible, while still max

imising the distance to the nearest cleanly-split samples. 
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Kernel trick can be added to the logic to convert it into a "true" nonlinear 

machine. The maximum margin is achieved in the transformed space. Because 

of the nonlinear transformation, this is equivalent to finding an optimal surface 

separating the two class distribution with the maximum margin to each class 

samples. 

Multi-class SVM can be achieved by converting the single multi-class problem 

into multiple binary problems, each of which can be solved by a binary classifier. 

When each binary classifier outputs a high/low value to indicates the preference 

towards class one or two, a overall decision need to be made based on the outputs 

of all binary classifiers. There could be two strategies in doing this, 

One against all In this logic, the classifier with the maximum separation as

signs the class. 

Between every two The class label is assigned by counting votes from the clas

sification between every two classes. The class with the maximum number 

of votes wins out. 

2.7 Summary 

This chapter has provided an overview of the structure of general pattern recog

nition systems, by addressing basic concepts, approaches to design feature ex

tractors and classifiers. An overview of feature extraction/selection techniques 

are provided together with different statistical measures used in the thesis. An 

introduction to the general principals of linear, nonlinear independent feature 

extraction methods (PCA, FLDA, kernel-PCA and GDA) are presented. Fur

thermore the basic principals of four different classifiers: MDC, kNN, ANN and 

SVM are described. In the following chapters, they will be used as references to 
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evaluate the proposed feature generation systems. 
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Chapter 3 

Evolutionary-based Algorithms 

3.1 Introduction 

All of the work contained in this thesis has been developed based on the Genetic 

Programming CGP) paradigm for the tasks of feature extraction and generation. 

The major purpose of GP is to optimise feature sets for the later pattern recog

nition tasks. As already addressed in the previous chapter, the process of feature 

selection/generation is to derive new features from the original feature set to 

reduce the computational complexity, and possibly to improve the classification 

efficiency and accuracy. 

Evolutionary computation, as a subfield of artificial intelligence, has received 

considerable attention in the pattern recognition field, for the power of non

parametric searching and optimisation [47-50]. As a subset of evolutionary com

putation, evolutionary algorithms have a mechanism inspired by the biological 

evolution process, such as reproduction, mutation, recombination, natural selec

tion and survival of the elitists [51,52]. Within a population, each candidate is a 

solution to the optimisation problem and the fitness is measured by a fair mea

sure in order for the most competitive candidate to survive the natural selection. 
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This process is repeated in each generation until the satisfactory overcome or the 

maximum number of generations has been reached. 

Genetic Programming (GP) is an evolutionary algorithm based methodology 

that finds computer programs to perform a user-defined task [53-55]. It is also a 

machine learning technique for the optimisation of computer programs according 

to a fitness measure, which determines the program's ahility to perform [56,57]. 

Due to the fact that GP is computationally intensive, it was mainly used to solve 

relatively simple problems in the 1990s. Nowadays, thanks to the exponential 

growth of CPU power, GP plays more and more important roles in quantum 

computing, electronic design, game playing, sorting, searching and many other 

areas. It has produced many novel and encouraging results. Although theoreti

cally development of GP has been very difficult due to the non-parametric model, 

after a series of breakthroughs in the early 2000s, it has been possible to build 

exact probabilistic models of GP [5S---{i0). 

In recent years, applications of evolutionary learning algorithms for pattern 

recognition problems have become increasingly common. Evolutionary strategies 

[61], Evolutionary Programming [62], Genetic Algorithms (GAs) [16,63]' and 

GP [56,64] have been used to solve complex problems. The evolutionary learning 

algorithms have been used for feature selection/generation tasks to reduce the 

computational complexity and improve classificatoin accuracy. However, in most 

of the applications, GP was solely employed as a classifier based on manually 

developed features [65---{iSj. 

In this research work, we are trying to explore the capability of GP in feature 

extraction. Instead of the search for optimal classifiers, it is believed that GP is 

also capable of finding discrimination information in the data. The discrimination 

information can be extracted in a form of feature vectors. These feature vectors 

are further used for the classification task by a dedicated classifier. It is not 
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the first attempt for such task. Efforts have been made to use GP as a feature 

extractor [64,69-71]. However, in most applications, a wrapper-type approach 

is adopted, which has considerable computational complexity. In order for a 

satisfactory solution to emerge in the evolution process, computer power and 

running time are still important factors. This compromises the optimisation 

capability of the evolutionary algorithm. 

We try to address the same problem using a GP-based approach, but with 

a different design of fitness measure. Instead of using classification success as 

the fitness score, a discriminant-analysis based fitness measure is conducted for 

the solution evaluation. Exhaustive training, validating and testing of a clas

sifier is not required in such a design. Due to the reduced computation time 

for the fitness value, GP is able to evolve faster and more efficiently for bet

ter solutions to emerge. Surely the ultimate goal of the feature extraction is to 

assist the classification. Hence the optimal criterion for measuring is the classi

fication success. However, from a practical point of view, we would arp;ue that, 

computation-intensive algorithms, such as GP, will bcnefit greatly by reducing 

the computation time and at same time maintaining reasonable accuracy. It is 

believed to be more efficient than searching for the perfect solution during a usu

ally slow process. Following this idea, three systems are designed and tested for 

different pattern recognition problcms in later chapters. This chapter will focus 

on the theory explanation and the design of the common part, which all systems 

share. 

This chapter is organised as follows. Section 3.2 briefly explains the basic 

concepts and terms used in the study of biological evolution, for the purpose of 

gaining a basic understanding of the theory behind the evolutionary computation. 

Section 3.3 starts to talk about the principle of genetic search and general steps 

for conducting a genetic search. The basic structure of genetic algorithms will be 
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explained in Section 3.4, as a preparation for the later design and implementation 

of the proposed GP feature extractor in Section 3.5. Section 3.6 addresses some 

issues related to the implementation and testing of GP. This chapter is then 

summarised in Section 3.7. 

3.2 Basic Concepts 

The idea of simulating the evolution process for the benefit of computing is in

spired by the biological natural selection process. It is observed that all species 

in the natural world have evolved over time and improved their certain ability 

in dealing with particular problems. Before the discussion of genetic based com

putation, it will be useful to briefly go through the basic concepts in the study 

of biological evolution. They are elementary to the understanding of the evolu

tion process. Without the understanding of these concepts, one will not be able 

to simulate the natural selection process for real-world problems. In addition, 

gaining a good understanding of these concepts and finding out the underlying 

theory would be beneficial to the design of evolution-based computer systems. 

Certainly, only the content related to the analysis of evolutionary computation 

will be addressed. 

Gene: gene is the basic unit of heredity. It specifies a trait. Many genes can 

coexist in a chromosome and pass on to the next offspring. One gene 

determines one particular attribute of an individual, such as appearance, 

ability to do something or a disease. A gene can be passed on unaltered for 

many generations. 

Gene pool: A gene pool is the set of all genes in a population. 

Chromosome: In biology, a chromosome is an organised structure of DNA and 
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protein in cells. It contains a lot of genes. It is the unique identification of 

an individual within a population. 

Mutation: In biology, mutations are changes to the gene sequence. Mutations 

can be caused by copying errors, by exposure to radiation, chemical agent, 

or virus, etc. 

Population: Population consists of a number of individuals, each of which has 

a unique chromosome hence has different characteristics in terms of com

petence. 

Generation: Generation is a term used to describe the ongoing evolution pro

cess. In fact, it is a result of the evolution, as only part of the generation 

will survive to the next generation. The next generation is created based 

on the survivors from the previous generation. 

Evolution: Evolution is a change in the gene pool of a population over time. 

These concepts will be further explored in the following discussions about genetic 

search and evolutionary computation. 

3.3 Genetic Search 

Before discussing the power of genetic search, it is advisable to briefly explain 

what is a general search algorithm and what strategies involved in a search. In 

the domain of computer science, a search algorithm is a technique to locate a 

solution for a predefined problem, hy evaluating a numher of possible solutions. 

The set of all possible solutions to a problem is called the search space. In term 

of search strategy, there could be two approaches, namely uninformed search and 

informed search. Uninformed search or naive search, uses the simplest method by 
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going through the entire search space. Informed search algorithms use heuristic 

functions to apply knowledge about the structure of the search space to try to 

reduce the amount of time spent in the search. 

In terms of scope of the search, there could be local or global search methods. 

The former only conducts the search within a local optima region. The search is 

stopped once a local optima is reached. Usually, this approach converges quickly 

after a few iterations. However, the solution is highly dependent upon the start

ing point. Different starting points may lead to different answers. Hence a global 

solution is better for most real-world problems. Compared to local search meth

ods, global search is relatively slow and demands more computation power to 

evaluate the topology of the search space. 

In most applications, genetic algorithms can be categorised as global search 

heuristics. The search is conducted through a simulation of biological evolution 

processes. New generation is created based on the survivors of the previous 

generation. Hence, as long as the evolution keeps going, the solution will get 

close to the optima. 

The genetic search is an iterative process within populations of possible solu

tions. The search is carried out iteratively in the sense that the operation will be 

repeated by many cycles with the desired output results being improved steadily. 

Candidate solutions are presented in an encoded form, which is defincd by sizc 

and shape in terms of the specification of the problem in hand. Estimation of 

encoded solutions is an issue involving rating the performance of each individual 

within the population. The steps for conducting a genetic search are, 

1. An initial population with a set of randomly generated individuals is cre

ated. Each individual represents a possible solution to the problem. 

2. Each individual in the population is ranked in terms of its performance to 
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the problem. It is evaluated by a component of GAs/GP, namely Fitness 

Function. The fitness function assigns a fitness value to each individual. 

3. Selection is the process of producing an intermediate population by apply

ing pressure for surviving. This pressure is in a form of fitness landscape. 

In order to explain how this landscape works, it might be a good idea to 

take some examples from the natural evolution process. One of the exam

ples will be: deer with longer necks have a better chance to survive in an 

environment where leaves are usually above a certain height. The pressure 

is applied by setting a high standard for surviving. Of course, there are 

advantages and disadvantages. A too high standard results few survivors, 

hence reduces the diversity of the population. Low diversity limits the abil

ity of the population for creating new genes and narrow the search angle. 

The search may ends up at a local optima. A low standard maintains good 

diversity. However, it allows too many weak genes to survive through the 

generation. Statistically, the elite candidates are not given enough oppor

tunity to marry and produce offsprings, which carry parts of the good genes 

inherited from both parents. The evolution progress may be very slow and 

time consuming. Therefore, it can be said that a properly set standard is 

critical to the success of the genetic search. 

Another result of the natural selection is adaptation. Populations starting 

farming rather than hunting develop enzymes that can digest grains. This 

natural phenomenon cannot be explained by the survival-of-fittest theory 

as there is not surviving pressure. Gene adapts itself to suit the living or 

working conditions. As the biological theory and reasoning behind this is 

still under research, it will be really difficult to simulate such phenomenon 

without understanding how it happens. 
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Figure 3.1: The basic structure of genetic search. 

4. In the new generation, the survivors choose mates and produce offspring. 

The offspring share similarities but are not direct copies of the parents. 

Children inherit traits from parents but they may vary in their physical 

properties and behaviours. Based on the survivors, a new population is 

generated under common genetic operations, such as mutation or crossover. 

5. Now the new population will go through the natural selection process again 

and produce offspring for the next generation, until the stopping criteria 

are met. The criteria could be a "good-enough" fitness value, a certain 

number of generations having been evolved or no significant improvcmcnt 

being made. 

Flowchart in Figure 3.1 illustrates the genetic evolution search process. 
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3.4 Genetic Algorithms 

Genetic algorithms (GAs) started to gain popularity after the developments by 

Holland [72] and his Ph.D student DeJong [73] in 1975. Most of the current 

evolutionary algorithms are derived from their work. GAs are now commonly 

sp-p-n a."i a gmcric stocha."itic search algorithm a."i they arc able to find optimal 

solutions in high dimensional space. In recent years, many different types of 

genetic algorithms have been developed with the ability to control the selection 

operations. Genetic algorithms have been used to construct feature selection 

systems in [1,16,19,63,74]. 

In this thesis, GAs are used for the construction of a feature selection system. 

As mentioned in the previous chapter, feature selection is a process to reduce 

the dimensionality in the data by selecting only part of the features as a "good

enough" representation of the original data. In this research, a wrapper-type 

feature selector is constructed under the GA structure. Comprehensive explana

tion of GA can be found in [75,76]. A brief description of Genetic Algorithm is 

given below. 

As a method of evolutionary computation, GA simulates the evolution process 

using a binary string chromosome. 

3.4.1 Chromosome 

In GAs, a chromosome is defined as a set of parameters of a proposed solution 

to the problem in hand. The task of the GA is find the optimal solution for the 

problem by altering the chromosome during the evolution process. The chromo

some is often represented as a simple string, although a wide variety of other 

data structures are also available. The encoding of the chromosome varies by the 

requirement of applications. Possibilities are, real or floating point numbers in 
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a binary string chromosome, string chromosome or tree chromosome, the vari

able length or fixed length chromosome, etc. However the chromosome encoding 

should have the capability of including full representation of all the possibilities 

and allowing the creation of new chromosomes that can be evaluated during the 

process. 

Binary encoding is the most extensively used chromosome in evolutionary 

computation. A string with D binary digits can be used. Each binary digit 

denotes a feature with 1 representing the presence and 0 representing absence. 

For instance, chromosome 01001001 indicates that the second, fifth and eighth 

features are selected. 

3.4.2 Fitness Function 

A fitness function is an objective function used in the evolution process to quantify 

the optimality of each chromosome. By doing that, one particular chromosome 

may be ranked higher than others. Hence it is allowed to survive to the next 

generation for breeding. The employment of fitness function is critical in the 

design and implementation of a genetic algorithm. The selection is conducted 

mainly ba."lcd on the fitness mca."lure. An ideal fitness function correlates closely 

with the algorithm's goal, and yet may be calculated with a reasonably fast speed. 

Speed of execution is a very important factor in the evolutionary computation, as 

typically a reasonable solution only emerge after the evolution of a large number 

of generations. 

In some designs, computation speed and size of the feature are considered 

to be combined in the score to evaluate a chromosome. This indicates that the 

desired quality in the solution is the overall performance rather than the fitness 

itself. 
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3.4.3 Selection Algorithm 

In conventional GA search, the entire populations are replaced at one time. This 

is different to the natural world, since the birth and death of individual are a 

continuous process. A steady state GA [77] is applied in the research to determine 

the selection of individual in each population, rather than replacing the entire 

population. 

Various selection functions, such as uniform, tournament, ranking, propor

tional, truncation selections, can be used in genetic algorithms to determine which 

individual in current population can be chosen to the next generation for con

ducting the operations of crossover and mutation [78]. For standard selection 

functions, parameters need to be carefully set to control the performance of se

lection on the individuals. In some cases, it can be only done through a process of 

experimentation. Many selection functions of GA systems have been developed 

by maintaining a certain degree of diversity. 

Fitness-proportionate selection: Fitness-proportionate selection is also well

known as Roulette Wheel selection. The probability of an individual being 

selected is proportional to its fitness value. This simple method often leads 

to premature convergence. 

Rank-based selection: A fitness threshold is calculated by a ranking equation. 

Then fitness-proportionate selection is conducted based on the threshold. 

The ranking formula can be linear scaling, exponential scaling or any other 

scaling. Rank-based selection preserves diversity and has relatively low 

selection pressure. 

Tournament selection: The fittest individuals in a tournament group go into 

intermediate population or the new population. It is less computationally 
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intensive as not all the individuals are evaluated. 

Uniform selection: For the measurement of fitness on each candidate, a ran

dom number f is uniformly generated within the interval [Jmin, fmax], where 

fmin and fmax are the maximum and minimum fitness values in the current 

population. The individual with the fitness closest to the number f is se

lected for the next generation. Because the probability of selecting the 

random fitness number is equal, the minorities will have better chance to 

survive through to the next generation. This design preserves a great deal 

of diversity with a cost of slow convergence. 

Elitism: A certain number of fittest individuals are copied into intermediate 

or next-generation population. The advantage of using elitism selection 

scheme is that once a good solution is found, it will not be lost until better 

solutions are found. 

3.4.4 Genetic Operators 

Crossover and mutation are two main genetic operators used in GAs. They are 

fundamental to the operation of GA. These operations alter one or more gene val

ues in the chromosome to produce offspring. Genetic operation is one of the most 

important research topics in the study of genetic algorithms. Different methods 

can alter the performance of the GA dramatically. Crossover and mutation are 

two most common operations. 

Crossover 

The crossover operation is to create new members based on the combination of 

the elements of two parent chromosomes. The newly created offspring will inherit 

certain characteristics of both parents. 
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Parents Children 

Dad Mom Child A Child B 

- - Crossover Operation --

Figure 3.2: The crossover process of genetic algorithm 

The operation of crossover can be illustrated by Figure 3.2. For a fixed length, 

the crossover is performed by randomly selecting a same cutting point in each 

of two parent chromosomes, and swapping the portions. In addition, a cutting 

point may be broken in different places and recombined to perform the crossover 

operation on variable length parents. The probability of crossover Pc is used to 

control the occurrence of crossover operation in given chromosomes. 

Mutation 

Mutation alters one or more gene values in a chromosome from its initial state. 

This can result in entirely new gene values being added to the gene pool. With 

these new gene values, the genetic algorithm may be able to arrive at better 

solution than was previously possible. Figure 3.3 illustrates the operation of 

mutation. 

Mutation occurs during the evolution process based on a pre-defined mutation 

probability Pm, which is usually a fairly low value (Pm = 0.01) in GA problems. 

Otherwise, the search will turn into a primitive random search [79J. 
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Parent Child 

Mutation Operation 

Mutation" 

Figure 3.3: The mutation process of genetic algorithm 

3.5 Genetic Programming 

Analogue to the GAs, GP is an evolutionary algorithm-based methodology in

spired by biological evolution to find computer programs that perform a user

defined task. It differs from GAs by that it uses a tree representation to emulate 

computer programs. Each individual in the GP generation is actually a computer 

program that can be used for a computation task. GP, as a machine learning 

method, is used to optimise a population of computer programs under a fitness 

landscape, which determines the program's ability to perform. 

In the tree structure, each node is a mathematical operator/function, which 

obtains the input values from the sub-branches, calculates the result, and provides 

an output to the upper-level node. This tree structure is a typical computer 

routine/subroutine structure. Thus any programming language that uses tree 

structures can be evolved by GP. 

Originally developed by Koza [56] in 1990s, GP was considered to be computa

tionally expensive and mainly used to solve simple problems. More recently, with 

the exponential growth of CPU power, GP has attracted a lot of attention for its 
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fiexility and powerful search competence, compared to other artificial intelligence 

systems. Many novel results have been achieved with outstanding performance 

in many areas, such as stock market modelling [80], circuit design [81]' game 

playing [82], etc. In fact, in Koza's original report [56], it has been demonstrated 

that GP has the potential for solving complex optimisation problems, by either 

evolving deeision trees for input cla.'1sification or evolving a play strategy. 

A good example of the application of GP is data classification/partitioning 

problem [66,83-89]. Unlike the divide and conquer approach of standard machine 

learning algorithms, GP algorithm concentrates on finding the right combination 

of attributes and decision tree shape. As a comparison, greedy algorithms like 

C4.5 [90,91] are aimed at locally optimising a decision tree during construction. 

Generally speaking, GP performs a more global search through the space of pos

sible solutions. 

GP, as a form of evolutionary computation and an extension of genetic al

gorithms, is proposed as the paradigm for the construction of a feature extrac

tion/ generation system in this research. 

In the GP paradigm, individual is implemented in a tree form, which consists 

of internal nodes and leaf nodes. The leaf is defined as a Primitive Termina

tor and the internal node is known as a Primitive Operator. The tree-based 

structure determines that GP has the ability to create new solutions rather than 

the pure selection of features using GA. As the representation changes, the struc

ture of GP is changed by the selection methods, the genetic operators, the fitness 

function and the primitive sets. Although the selection methods used in GP are 

the same as those used in GA, the genetic operators need to be redefined for 

conducting the operations on the tree-based chromosome. 

If treated as a black box, this GP-based system extracts features from the 

original feature set with a goal to improve the classification success rate. It has 
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the following advantages compared to classical feature extraction methods and 

GAs, 

• Features of each generation are created automatically, thus avoiding human 

influence or bias. 

• GP has the ability to extract features from the original feature set without 

prior knowledge of the probabilistic distribution of the data. 

• GP exhibits a certain level of artificial intelligence by deciding whether 

to perform feature extraction or feature selection during the evolutionary 

process. Whereas in GAs, the optimal solution is only "chosen" from a 

large number of candidates. 

Since both GA and GP are utilised in this research, it will be useful to compare 

these two methods. The major difference between GP and GA approaches is the 

representation of chromosome. GA optimises the solution by "selecting" features 

while GP tries to "generate" features by "integrating" original feature set. The 

results of this integration is the extraction of discrimination information from the 

data for the classification task. 

Generally, the length of string presentation is fixcd in GA. Thc lcnbrth of 

chromosome in GP can vary based on the problems. With a GA based solution, 

the basic form of the solution is predefined. The task of GA is to optimise 

parameters of the solution, but not the actual structure of the solution. GP by 

comparison has control over both the structure and the parameters of the solution 

to the problem. 

The following sections will provide a description of the GP-based feature ex

traction system designed in this research. 
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Figure 3.4: Tree representation 

3.5.1 The Representation of Chromosome 

Although non-tree representations were suggested in some literature and had 

successful stories [66], in our design, the conventional tree structure is used to 

construct the chromosome as it can be easily evaluated in a recursive manner. 

Every tree node has an operator function and every terminal node has an operand, 

making mathematical expressions easy to evolve and evaluate. In addition, it has 

stronger ability to handle the nonlinearity in the data by carefully choosing the 

mathematical operators. 

In fact, the mathematical operation carried out within the chromosome can 

be formulated as a polynomial expression consisting of the functions listed in 

the operator pool. For instance, a formula T Root = tanh(J eature1) + f eature2 

corresponds to the tree shown in Figure 3.4. 

3.5.2 Primitive Operators and Terminators 

The operator set and terminator set are the mathematical basis of the GP op

erations. The terminal set consists of variables and a number of constant values 

used by the program. For the case of feature extraction, each terminator connects 

83 



CHAPTER 3. GENETIC-BASED ALGORITHMS 

Symbol I No. of Inputs I Description 
+, - 2 Addition, Subtraction 
*, / 2 Multiplication, Division 

square, sqrt 1 Square, Square Root 
sin, cos 1 Trigonometric functions 

asin, acos 1 Trigonometric functions 
tan, tanh 1 Trigonometric functions 
reciprocal 1 Reciprocal 

log 1 Natural Logarithm 
abs, negator 1 Absolute, Change Sign 

Table 3.1: The operator sets for GP 

to one element of the feature vector. Hence the number of required terminators 

will be the same as the number of dimensions in the original feature space. The 

constant values are randomly generated at the construction cycle of new indi-

viduals. These numerical values can be either integer or floating point numbers, 

both ranging from 1 to 100. 

The functions stored in the operator pool are mathematical, logical or proba

bilistic operators that perform operations on one or more inputs. Table 3.1 lists 

the mathematical functions used as operators in the design. Note that any in

valid input to an operator will result in a false flag being assigned to the fitness 

value in order to filter out individuals who canllot complete the mathematical 

transforms. This will effectively exclude them from further consideration during 

the evolution process. 

3.5.3 Primitive Operations 

Primitive operations are such important functions of GP as they determine how 

a brand new generation is established based on the survivors from the previous 

generation. The word "primitive" here refers to the simulation of elementary 

functions of creating offspring in the natural world. Mathematically, it does not 
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mean "simple". On the contrary, the underlying mathematical model of the prim

itive operations are fairly complicated to derive because these operations change 

the mathematical structure of the operation function by "selecting" and "combin

ing". The resultant chromogen cannot be written as an analytic function of the 

input chromosomes. However, since the purpose of this research is more focused 

on the application of GP rather than theoretical analysis, we are not going to in

vestigate further into the mathematical derivations. We are more concerned with 

applying the methodology with suitable configurations and observingj analysing 

the performance. 

In our design, three "primitive operations" are conducted in the early phase 

of a generation, 

Crossover 

In the GP paradigm, one of the most important operations is the crossover op

eration. In the crossover operation, two solutions are sexually combined to form 

two new solutions or offspring. The parents arc chosen from the population hy 

evaluating the fitness function. Two new individuals are generated by selecting 

compatible nodes randomly from each parent and swapping them. GP carries out 

a crossover operation to create new individuals. The crossover operations with 

one cut point and two cut points are introduced here. 

As illustrated in Figure 3.5, a random subtree is selected from each parent, 

which then exchanges the subtrees at the corresponding node location. 

GP can also perform a crossover operation with two cut points. To create new 

individuals, two compatible cut nodes are randomly selected and are labelled from 

each parent. The subtrees are swapped based on the label from two, as illustrated 

in Figure 3.6. 
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Dad Mom 

Child One Child Two 

Figure 3.5: An example of crossover operation with one cut point 
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Dad Mom 

second cut point 

Child One Child Two 

Figure 3.6: An example of crossover operation with two cut points 
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Parent 

Mutation .. 

Child 

Figure 3.7: An example of mutation operation with one cut point 

Mutation 

The mutation operation is performed by the creation of a subtree at a randomly 

selected nodes. For one cut point mutation, there is an index assigned to each 

node for the identification to a given parent. A random index number is generated 

to indicate the place where the mutation occurs. Once the node is located, the 

tree downstream from this node is deleted and a new subtree is generated from the 

node (see Figure 3.7), exactly in the same way as growing the initial population. 

For two cut points mutation operation, two random mutation points are se

lected among the stored links (mutation point selection), with a uniform proba

bility. The two subtrees below the common mutation points are deleted and new 

subtrees are created as growing new trees (see Figure 3.8). 

Reproduction 

The reproduction operation is performed by copying individuals to the next pop

ulation. 

88 



CHAPTER 3. GENETIC-BASED ALGORITHMS 

Parent 

Fint cut point 

Mutation .. 

Child 

Figure 3.8: An example of mutation operation with two cut point 

All three operations take place in the early phase of a generation on a random 

basis. The probability of occurrence follows, 

Pel + P c2 + Pm! + P m2 + P r = 1 (3.1) 

where Pel is the probability of one-point-cut crossover, Pc2 is the probability of 

two-point-cut crossover, Pm! is the probability of one-point-cut mutation, Pm2 the 

probability of two-point-cut mutation, and Pr is the probability of reproduction. 

3.5.4 Fitness Function 

Same as the genetic algorithm, the most difficult and the most important concept 

of genetic programming is the fitness function. The degree it correlates with the 

common evolution goal determines how successful the solution can be. At the 

same time, speed is an issue as in evolutionary computation, optimality of the 

solution also depends on the time consumed in the computation of generations. 
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Generally speaking, evolutionary-algorithms based methods require relatively ex

pensive computation power and resources. Hence, a not "so-good" fitness function 

with relative low computation demand may end up better solution than a "per

fect" fitness function which demands a lot of computation, because many more 

generations have been evolved in the former case. In this regard, fitness function 

can be incorporated with other factors, such as speed of learning, depth of trees. 

In this research, GP is proposed as the paradigm for designing feature gen

eration systems for different tasks. The fitness functions are designed based on 

requirements. In all cases, fitness function consumes most of the computation 

power in the evolution process. It calculates classification errors, sum squared er

ror or other factors to determine the performance of each individual. However the 

performance achieved using these measures sometimes do not necessarily match 

the computation cost. For example, with a less computationally demanding, but 

effective measure, GP is able to evolve more generations or larger populations and 

hence explore a larger feature space, within the same period of time. Therefore, 

from a cost-effective point of view, a good design of fitness measure is a trade-off 

between the speed and efficiency. 

For the problem of pattern classification, intuitive choice of fitness measure 

will be classification success. There are examples of that in the literature [64,69]. 

However, classifier is a computationally-demanding method. 1raining a ANN 

or SVM to obtain a fitness value of an individual can be very time-consuming, 

considering that the training, validation and testing of the classifier has to be 

conducted for each individual in the population and repeated many times through 

the evolution. 

In order to reduce the computation complexity, in our desib'll, the cla.',sifier is 

not used in the network. The score of the fitness function is not the classification 

accuracy. The details of the fitness measure will be addressed accordingly in each 
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chapter. 

3.6 Implementation & Testing Issues 

3.6.1 Code Bloat 

Code bloat is defined in GP context as the production of unnecessarily long, slow, 

or resource-wasting codes during evolution [92,93]. In particular, it refers to the 

nodes that have no effect on the individual's output. The unnecessary growth of 

programs produced by genetic programming is a well documented phenomenon 

[94,95]. Quite often, it occurs in fitness-based search techniques which allow 

variable length solutions. 

Apart from the redundancy introduced by code bloat, the harm it might cause 

is to decrease the likelihood of finding improved solutions. So far no benefit has 

been identified in code bloat for real-world applications. Hence it is necessary 

to limit the occurrence of code bloat during evolution. Typical solutions to code 

bloat in GP include, 

1. Setting a fixed limit on the size or depth of the programs. The technique is 

effective but needs prior domain knowledge to determine a reasonable limit 

on the depth or size. 

2. Dynamic limit on the size or depth of the programs. The evolution starts 

with an initial limit on the program size. A child may only exceed this limit 

if its fitness is better than the best fitness obtained so far. In this situation, 

the child is moved into the next generation, within which the program size 

limit will be increased to the size of the child. 

3. Parsimony pressure. Parsimony pressure is adopted as a penalty to complex 
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solutions. As a result of that, least complex solutions will be favoured. A 

b1USic realisation of parsimony pressure is the complexity factor in the fitness 

function. In case of tree structure of programs, typically, the complexity 

factor is calculated by counting the total number of nodes. 

In this research, a fixed limit of tree depth is used and empirically proved to 

be effective in avoiding code bloat for each specific application. 

3.6.2 Robustness and Generality 

A common generalisation issue of machine learning methods is over-fitting or 

over-training. For example, a typical problem of generality occurs when we try 

to use a certain algorithm to train a classifier for the separation of two classes. 

The algorithm is able to separate the two classes correctly after a considerably 

long process of training. However, when the test data is in use, the algorithm 

seems to classify the patterns into wrong groups. This problem often happens in 

the evolutionary computation. We consider the evolved programs are not robust 

enough. 

The concept of robustness of the evolved programs is the ability to work cor

rectly on general data sets rather than a particular one it was generated on. The 

desired performance of robustness solution should be obtained in an environment 

similar to the one within which it was evolved. In conventional learning methods 

(such as ANNs, SVM), the generalisation problem is well understood. Extensive 

research have been conducted in this area [96-98]. However, research dedicated to 

the generalisation issue in GP is limited to a few papers [99-101] in the published 

literature. 

In recent years, the ability of generality and robustness of GP has obtained an 

increasing amount of attention from researchers. The system with the ability to 
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generalisation has been recognised in the study of GP. Many researchers report 

that solution to learning problems may result in non-robust programs [48, 102-

105]. 

In [105], a series of methods used for improving the ability of robustness 

are discussed. Three major approaches are introduced to deal with non-robust 

solutions: modifying fitness function, improving the selection of fitIwss cas(~s, us

ing co-evolution, and two or more populations being evolved at the same time. 

Hooper and Flann [106] show that the size of programm in a GP search tends 

to increase the redundancy. The large sub-expressions are replaced by a much 

simpler, smaller expression which could produce similar results. An expression 

simplifier is applied to identify and eliminate the redundant expressions and to 

rewrite the bloated expression into a simpler, but equivalent expression. They 

further state that when training and testing phases are adapted, improving the 

fitness function to prefer simpler expressions may help avoid over-fitting and ob

tain better predictive accuracy during the test phases. In [107], the test set is 

used to calculate the fitness of individuals. The method of measuring generali

sation performance of the system reveals that the measure is actually based on 

the testing data. At the end of each generation, the performance of individual 

on the test set is recorded. After each GP run, the individual with the highest 

recorded performance is chosen as the solution to the problem at hand. However, 

the test set used in his paper is also used in the learning process. As mentioned 

by the authors, the testing data is no longer a test set, it has become part of the 

training data. 

In this research, generality is not the major focus as no classification results 

are used during the evolution process. Instead, statistical tests playa major role 

in the fitness measure. Hence discussion about generality will be addressed in 

the final stage of feature extraction process-the validation and testing of relevant 
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classifiers llsing GP-evolved features. 

3.6.3 Choosing test data sets 

In order to test the robustness and generality of the proposed GP methods, two 

industry problems, one medical problem, one telecommunication problem, and a 

series of machine learning data sets available from the public domains, are chosen 

for the testing purposes. Specifically they are, 

1. Bearing fault detection (dual class problem) 

2. Machine condition monitoring (six class problem) 

3. Breast cancer detection (dual class problem) 

4. Automatic digital modulation recognition (ten class problem) 

5. Type of Iris plant (three class problem) 

6. Balance of the scale (three class problem) 

7. Contact lenses for different patients (three class problem) 

8. Zoo animal classification (seven class problem) 

9. Lung cancer (three class problem) 

Problems 5, 6, 7, and 8 are relatively simple problems. The idea to test on 

these date sets is to demonstrate the functionality and the strategy of search

ing. Problem 1 and problem 2 are from industry applications, where competitive 

performance is desirable, as well as the implementation cost. Problem 3 and pro~ 

lem 9 are from medical domain, where reliability is an important issue. Problem 

4 requires the recognition of different signal patterns from noise-contaminated 

environment. Hence accuracy is the main focus. 
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3.7 Summary 

This chapter provides an introductory description to the GA/GP paradigm and 

the implementation issues related to the design of the program for the feature 

extract tasks. The concept of evolutionary computation has been reviewed, in 

terms of genetic search algorithms, natural selection schemes, genetic operations, 

and the functionality of fitness measures. Furthermore, issues related to the 

implementation and testing of GA/GP have been discussed, including the code 

bloat issue, generality issue and choice of data sets. 
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Chapter 4 

Multi-Feature Generation for 

Multi-Class Problems 

4.1 Introduction 

Multi-class pattern recognition is the study of classification methods for the sep

aration of more than two classes in the class distribution. It has a many of 

applications, such as hand-written digit recognition, text categorisation, voice 

recognition [4,5], etc. 

However, many powerful classifiers are originally developed for binary class 

problems, such as SVM and Perceptron. A classification function works in a way 

that an optimised threshold determines the boundary between the two class dis

tributions. In order for a binary classifier to separate mUltiple classes, the most 

popular approach is to decompose the problem into multiple t.wo-cla.'ls da.'lsifi

cation problems. The results from all the binary classifier are then combined 

together to provide an overall estimation of the class assignment. 

There are a number of ways to decompose a c-class pattern classification 

problem into binary-class problems [12,16,19,22]. In terms of decision making, 
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there could be two approaches, 

Decision making by voting This is to apply a voting mechanism, where each 

classifier votes for (or against) a certain class. The pattern is assigned to 

the class with the highest number of votes. By doing this, the classifier is 

required to output a binary answer. 

Decision making by winning The other way is to assign the class with the 

most confident result. Each classifier outputs a confidence value, rather 

than a binary answer. The highest confidence level indicates the maximal 

likelihood of the answer. Clearly this requires a classifier to produce a 

continuous confidence value. 

Decision making by error-correction In addition, error-correcting can be in

troduced to change the class assignment by learning. 

In terms of decomposition, there could be two possibilities, 

One against all For a c( c > 2) class problem, a total of c classifiers are designed 

for the separation of each class against all other classes. c number of results 

will be obtained and the class assignment is based either on "voting" or 

"winning" . 

Between every two For a c( c > 2) class problem, one classifier is required 

to separate between every two classes. Therefore, there will be altogether 

(C':i)!2 classifiers. In this scenario, a voting mechanism can be implemented 

for the assignment of class labels. 

In our design, the idea of the second approach has been adopted, but not using 

any classifier and not in the classification stage. Rather, in the feature extraction 

stage, the fitness measure is mainly based on this idea. The detailed design will 

be addressed in the later section. 
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For multi-class pattern recognition problems, machine learning techniques 

have been extensively used for the automatic generation of features. For in

stance, Raymer et al. present an approach to feature selection using a genetic 

algorithm, which optimises a weighting vector used to scale the individual fea

tures [19]. A masking vector is also employed to perform simultaneous selection 

of a subset of the features. This technique is employed in combination with the 

k-NN classifier. It is further compared with the results from classical feature se

lection and extraction techniques. The results show that the combination of GA 

and k-NN is more effective than most of other approaches in comparison, and 

require less number of features for the same level of classification success. G P is 

applied to a dual-class pattern classification problem in [56]. A single expression 

is evolved in one run of GP. In [108] the feasibility of applying GP to multi-class 

pattern classification problem is studied. It is the first time that GP is applied 

to a multi-class problem. A genetic programming classifier expression (GPCE) is 

evolved as a discriminant function for each class. They also discuss the various 

issues that arise in the implementation of GP-based classifier, such as the creation 

of training sets, the role of incremental learning, and the choice of function set in 

the evolution of GPCEs, as well as the conflict resolution for uniquely assigning 

a class. 

In [67], GP technique is used to develop a decision support system for vehicle 

dispatching. It is conducted by evolving a population of utility functions that 

evaluate candidate vehicles for servicing requests. GP is tested in a medical 

diagnosis problems of six classes [109]. The results are compared with those 

obtained by neural networks. It is worth noting that, however, in all of the above 

applications [67,108,109]' GP is employed solely as a classifier based OIl manually 

developed features. 

In [64], as a data preprocessor, GP-based feature extraction is conducted for 
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a medical problem. It performs intelligently by deciding whether to conduct 

feature extraction or feature selection. Unfortunately, the system is unable to 

sample adequately the search space for high-dimensional problems. The main 

disadvantage of the method is the computational complexity. Kotani et al. [110] 

conduct feature extraction using GP with a k-NN classifier on one artificial task 

and one acoustic diagnosis problem. It concludes that the genetic programming 

is an effective tool for the feature extraction task. 

In this chapter, genetic programming is applied for the purpose of multi

feature generation for multi-class pattern recognition problems. In order to test 

the performance of proposed GP-based feature extraction system, a data set is 

carefully chosen for the task. A well-known industry problem is used as a bench

mark. Using a novel fast method to evaluate the difference among classes, this 

method alters the distribution of each class based on the well-known Fisher cri

terion, instead of using classification results to determine the fitness of a feature, 

resulting in a more economic and fast solution. Different comhinations of features 

and different configurations of classifiers arc t.est.ed t.o fully examine t.he capabil

ity and robustness of the proposed method. The strength and advantages are 

evaluated against other popular methods. 

This chapter is organised as follows: The data preparation using vibration 

signals for condition monitoring is addressed in Section 4.2. Parameters and 

developed fitness function for GP Multi-feature generation model are described 

in Section 4.3. Based on the model, a series of feature-extraction experiments for 

the classification of vibration signals are conducted in Section 4.4. Section 4.5 

provides discussions based on experimental results. Advantages and limitation of 

the GP-based feature-extraction method are addressed in the conclusion part. 
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Figure 4.1: A typical roller bearing, showing different component parts [1] 

4.2 MCM problem 

Machine Condition Monitoring (MCM) is of vital importance in the manufac

turing industry. Maintenance costs can be reduced significantly by monitoring 

health of machinery. Potentially disastrous faults can be detected in early stages, 

whilst enabling the implementation of condition based maintenance rather than 

periodic or responsive maintenance. 

Rolling element bearings (see Figure 4.1) are probably among the most widely 

used rotating machine components. It is of vital importance to be able to detect 

accurately the existence and severity of faults in machinery in certain areas of 

industry, as in many cases the machine may be safety or emergency related. 

In literature, a number of conventional methods are used to analyse the bear

ing vibration signals in order to extract effective features for bearing fault de

tection. These include probabilistic analysis [111,112], frequency domain anal

ysis [113], time-domain [114] and finite-element analysis [111,112]. In recent 
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years, evolutionary learning algorithms for machine condition monitoring appli

cations are studied. Genetic algorithm based feature selection is carried out in [1] 

for the classification of bearing faults using vibration signals. In [115], Chen et 

al. presents a GA-based method to automatically generate symptom parame

ter functions from rolling bearing data for the diagnosis of machinery operating 

conditions. Zhang et al. [68] applies GP for fault detection in the fidd of MCM. 

The six bearing conditions are, 

1. Normal Bearing (NO) 

2. Worn Normal Bearing (NW) 

3. Inner Race Fault (IR) 

4. Outer Race Fault (OR) 

5. Rolling Element Fault (HE) 

6. Cage Fault (CA) 

Each of them has own characteristics in terms of mechanical status. The normal 

bearing (NO) condition is to indicate a brand new bearing, which has been run 

in, but is in otherwise perfect condition. The worn normal bearing (NW) is in 

good condition, however has been running for some period of time and serves as 

an example of a bearing that has seen some usage. The inner race (IR) fault 

was created by removing first the cage, moving the elements to one side of the 

bearing, and removing the inner race. A groove was then cut in the raceway of 

the inner race, using a small grinding stone, and the bearing was reassembled. 

The outer race (OR) fault was created by removing the cage, pushing all the balls 

to one side, and then inserting a small grinding stone. The rolling element (RE) 

fault was induced by using an electrical etcher to mark the surface of one of the 
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Figure 4.2: Machine test rig used in xperiments 

balls, simulating corrosion. The cage (CA) fault was simply creat d by r moving 

the plastic cage from one of the bearings, and cutting away a s ction of the ag , 

so that two of the balls were free to move, and not held at a regular sp ing, as 

would normally be the case. 

The normal conditions are easily sampled as data an be acquired from work

ing machinery with known bearing conditions. Howev r, the faulty conditions are 

I 55 easy to resemble, as in the r al situation th rna hine stru tur differs and 

the design of bearing differs . Hence the sour e of faults could be many. Here, 

attempt is made to divide the faults into four groups. This is done from an me-

chanical engineer's point of view. The major sourc s of bearing faults have been 

covered. It is a realistic categorisation of roller bearing conditions. The major 

goal here is not to conduct a full analysis of machine vibration characteristics, but 

to test the proposed m thod for feature extra tion and classification. Inter sted 

readers are referred to [111,112] for further detail d discussion on roll r bearing 
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machine conditions. 

4.2.1 Data Acquisition 

In order to simulate commonly occurring faults in rotating machinery, experi

mental data were collected from a test rig (Figure 4.2), which consists of a DC 

motor driving the shaft through a flexible coupling, with the shaft supported by 

two plummer bearing blocks. The damaged bearings were inserted into one of 

the plummer blocks, and the resultant vibrations in the horizontal and vertical 

planes were measured using two accelerometers. The output from the accelerom

eters were sampled at a rate of 24kHz, giving a slight over-sampling of the data. 

The experimental data for bearing condition monitoring used in this chapter is 

collected by the machine set, which is a small vibration test rig loaned to the 

University of Strathclyde by Weir Pumps Ltd. of Cathcart, Glasgow. 

4.2.2 Time Domain Characteristics 

By examining the actual vibration plots on a time series basis (Figure 4.3), some 

characteristics can be found. First, signals from four conditions, including NO, 

NW, CA and OR, look similar with amplitude not exceeding ±100, while the 

other two conditions have periodic strong pulsations. Apparently, these two 

groups can be differentiated easily by examining the amplitude. The two normal 

conditions look similar, though the signal from worn condition is a bit noisier 

than that from a brand new bearing. The outer race fault, and cage fault display 

little difference to the normal condition in terms of magnitude and noise level. 

Therefore, it will be difficult to identify these conditions solely by time series 

inspections. 
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Figure 4.3: Typical vibration signals for six bearing conditions [1] 
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4.2.3 The Raw Data Set 

Experimental data sets were formed by running the machine (see Figure 4.2) over 

a series of sixteen different speeds and taking ten examples of data at each speed. 

Each example consists of 2000 data samples. This gives a total of 160 examples of 

each condition, and a total of 960 raw data examples over six conditions to work 

with. The full input data set creates a 960 x 2000 matrix as the training data 

set. The other two 960 x 2000 matrices are the validation data set and the test 

data set respectively. For each given vector in the input raw vibration data sets, 

a corresponding vector was created in a matrix containing the target information 

used during the experiment. 

4.3 GP-based feature extractor 

A GP-based system has been designed and implemented for the task of feature 

extraction from the above-mentioned roller bearing vibration data. The extracted 

features are furthered used in various classifiers to evaluate the quality in terms 

of discrimination information. 

The benefit of doing this is twofold. From a researcher's point of view, the 

general feature extraction capability of GP can be examined by designing such 

system and conducting relevant experiments. It will be interesting to evaluate 

the performance against other conventional methods. From an engineer's point 

of view, manually developing features is a such a tedious and time-consuming 

work. In many industry problems, generated features should have the ability to 

identify subtle or complex relationships within large data sets where the mapping 

from data to class labels is often obscure or difficult for human to identify. Most 

of time, the result quality heavily relies on expert knowledge and experience. 

The overall structure of GP-based system has been established in Chapter 
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3. The following section will address the design variations related to terminator 

pool, operator pool, and the fitness function. 

4.3.1 Preparation of Terminator Set 

The design of the terminator pool is the most application-specific job. It is closely 

related to the characteristic of the problem. The terminator pool contains all the 

elementary processing functions on the raw data. The purpose of doing this is 

to provide a large collection of possibly useful features in the pool, by which GP 

is able to select, combine and produce features. The terminator can be directed 

connected to the raw data to avoid such preparation phase. However, it is found 

that it is much less efficient than simply using the features that already proved to 

be relevant and useful in the field. This step does not require expert knowledge 

as there is no filtering or ranking on the choosing of features. As long as it is 

relevant, it can be thrown into the pool. The job of selection and extraction is 

left to GP to accomplish. 

Nevertheless, knowledge about the problem in hand is still mandatory as basic 

features are required to be listed and prepared to construct the terminator pool. 

Specific to our chosen application, MCM, machine vibration signals contains vital 

information about the condition of the machine. Traditionally they are recorded 

by one or more than one sensors. By analysing the vibration signal, it is found 

that the signal energy, or the magnitude of a particular frequency due to a fault 

are indication of the condition changes. In the following discussion, conventional 

features useful for MCM are listed. All of them will be packaged and put into 

the terminator pool. 
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Conventional Measures 

There exist a number of statistically-based performance indicators, which provide 

single figure assessmcnts of the condition of rolling clcment bearings. These give 

an indication of whether a bearing is in a state of distress, or within normal 

operating parameters, and show the degree of distress that a bearing is under. 

Conventionally, the three most common measurements used are shock pulse, crest 

factor, and kurtosis [1]. 

Shock Pulse (SP) method is a signal processing technique used to measure 

impact and noise caused by metal to metal contact in the bearing. It is much 

more refined than other high frequency measurements. Shock pulse analysis relies 

on a specialised transducer, which has a resonant frequency of 32 - 36KHz. The 

amplitude of the shock pulse is relative to the velocity of the impact. For bearing 

conditions, Carpet Value and Max Value are two readings of the shock pulse, 

thus can be used as two components of four conventional features. 

Carpet Value Metal impact on metal always occurs in rolling element bearings, 

even a brand new bearing under normal operating conditions. When there 

is no damage to the bearing, the metal-to-metal contact creates a back

ground noise of shock pulses. This is referred to as the Carpet Value [116]. 

Carpet Value decreases in the state of high lubrication of the bearing. When 

damage occurs on the bearing there will be more metal to metal contact, 

which is reflected by an increasing Carpet Value. By examining the Carpet 

Values in the signal, information can be gleaned about the likelihood of the 

existence of a defect. 

Max Value Max Value is another conventional parameter used to identify the 

damage in the rolling element bearings. However, it is not capable of distin

guishing different fault conditions of bearings. When a fault occurs within a 
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bearing element, it is periodically hit by the rolling elements in the bearing. 

These create a high amplitude burst of shock pulse. The Max Value in

creases as the bearing damage develops further. This peak from the carpet 

of background shock signal can be used. to detect the damage in applications 

of bearing condition monitoring. 

Crest Factor The Crest Factor (CF) is a commonly used. measure for the detec

tion of bearing faults. CF is equal to the peak amplitude of the waveform 

divided by the root mean square (RMS) value. The analysis of the CF can 

give an idea of how much impact occurs in time domain. The impacting is 

associated with the rolling bearings. The CF is relatively high due to the 

amount of the impact occurring within the bearing and it works well while 

the fault develops. However, as the degree of damage goes up, the high 

frequency component of a vibration signal increases. Hence the RMS value 

increases with the result that the CF value decreases. 

Kurtosis 

Kurtosis method is one of the vibration signal analysis methods in the category 

of time-domain analysis techniques. It is a commonly used measure of damage. 

The definition of kurtosis is given by: 

1 N ( _)4 "'"' x·-x kurt = - ~ ) (1 

N . 1 
)= 

(4.1) 

where Xj represents a vibration sample, N is the number of samples, x is the 

average of N vibration samples and (1 is the standard deviation. The kurtosis 

value emphasises the length of the "ails" of a distribution. Signals show a lot of 

sharp impacts when the rolling elements of a bearing strike a defect. Consequently 

the value of kurtosis will be high. The kurtosis value will be low while signals 

108 



CHAPTER 4. MULTI-FEAT. GENERATION FOR MULTI-CLASS PROBLEMS 

have little or no spike content. 

Plain Statistics 

It is well known that vibration signals mainly depend on the resonant frequencies 

of different parts of the machine. If the machine condition varies due to wear 

or damage, the resonant frequencies, and hence the vibrations, will change. In 

addition, it is generally not possible to classify the condition based upon an 

individual sample of the vibration, thus some transformation of the recorded 

vibration time-series is required to extract time-invariant features. These are 

statistical moments and cumulants. For example, as the machine's condition 

deteriorates, the energy (mean square value) in the vibration signal is expected to 

increase. A number of different statistical features were generated using moments 

and cumulants of the vibration data. The nth-order moment is denoted by a pair 

of straight brackets in the subscript as in Equation 4.2. The four plain statistical 

features used here are the four (first to fourth order) moments. These are stored 

in a matrix of size 4 x 960. 

Signal Difference and Sums 

1 N 
m[n] = - '" x'!-

x N L- ' 
i=l 

(4.2) 

Differences highlight the high-frequency components in the signal, and the sums 

of the signal emphasise the low-frequency portions. The numerical derivative of 

each vibration signal was calculated by Equation (4.3). The four plain statistical 

features were calculated from the derivatives. The results were saved in another 

4 x 960 matrix. The numerical integral of vibration signal were given by Equation 

4.4. Using the same process, this creates another 4 x 960 matrix. 

d{n) = x{n) - x{n - 1) (4.3) 
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i{n) = {x{n) - m~l} + i{n - 1) (4.4) 

High- and Low- Pass Filtering 

The four plain statistical features were calculated on data filtered using an eighth

order Butterworth I1R high pass filter with a cut-off frequency at 129 Hz; this 

gave another 4 x 960 matrix. A low-pass filter with the same cut-off frequency 

were used on the same data sets, and gave a 4 x 960 matrix. 

Normalisation 

The importance of normalisation to both the efficiency and accuracy has been 

demonstrated [20j. The normalisation in experiments is based on Equation 4.5, 

(4.5) 

where mf is the vector mean and boldsymboluf is the vector standard deviation. 

4.3.2 Operator Pool 

The operator pool is the same as designed in Chapter 3. 

4.3.3 Fitness Function 

As mentioned in the previous chapter, the classification results are traditionally 

used as the fitness value for multi-category classification prohlem. However, the 

computational demands are relatively high in training and validating a classifier 

for each individual. To avoid such complexity, Fisher criterion is adopted for the 

solution of the feature extraction problem based on the advantage of the max

imisation of inter-class scatter over the intrar-class scatter. GP as an evolutionary 
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method is proposed to maximise the degree of difference between two da."ses, 

analogous to the Fisher criterion, but in an iterative process. The following ex

pression is obtained based on the Fisher criterion as a class separation measure 

between class p and class q, 

(4.6) 

where m and u are the class mean and standard deviation respectively. They are 

given by, 

and 

1 N 
U = N _ 1 LUi - m) 

i=l 

where f represents the feature output of each individual (note that the output of 

the tree-structured chromosome is always a scalar). 

Based on this, the c-class (c > 2) Fisher criterion can be decomposed into 

k (k = (C~h!2) two-class Fisher criteria. In order to solve the worst case in k 

two-class problems, the fitness value is defined to be determined predominantly 

by the minimum one of k two-class Fisher criteria, each of which measures the 

distribution of inter-class scatter over the intra-class scatter for any two classes. 

Considering the overall distribution of c classes, the weighted mean of k two-class 

Fisher criteria will contribute to the fitness function by selecting the best feature 

for c da."ses. The fitness measure can defined as, 

(4.7) 

where parameter>' is an empirical factor that accepts the contribution from mean 
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value and at the same time diminishes the effect of too large mean values. The 

purpose of taking the average is to take into account the distribution of conditions 

rather than the worst-separated two classes. Consequently, the feature with a 

few large criteria values but small minimum value cannot compete with the one 

with average criteria values but relatively large minimum value. On the other 

hand, if the minimum values for two features are similar, the one with the largest 

average of values will survive. Specifically, >. is chosen equal to 0.001. Overall, 

the individual having high fitness value means that difference between any two 

conditions, even the closest classes, is large. 

In this design, only the elitist will survive the natural selection. This mech

anism allows the feature to evolve in a direction towards the best classification 

performance, thus achieving the automatic generation of features. 

4.4 Results 

4.4.1 Feature Extraction Results 

For illustration purposes, two examples of GP-extracted features with diffcrcnt. 

stopping criteria are described in this section. 

GP-Generated Feature One 

Feature 1 was extracted by GP after evolving 1000 generations using the raw 

vibration data as the input. The maximum tree depth WHo" chosen Ho" five. In 

the evolution process, there is always a possibility that two chromosomes in one 

population are identical and the probability generally increases with the size of 

the population. Consequently the population size does not need to be large for 

only four terminators and in this experiment is chosen as 10 to avoid unnecessary 
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omputations. Th total time for omputation is about flv minut H f r running 

1000 generations. The extracted feature is formulat d as 

[1 ) 
- [( [2))4] [ ( (4)) _ (11 m x ] 11 - log mx - log mx mx + (4) (3) 

m x - mx 
(4. ) 

Figure 4.4 show the feature-proc ss cl data for ix clift r 'nt olldilions. Ther 

are altogether 960 examples from the six conditions, with 160 xampl s for ach 

class. Evidently, class IR, OR and RE are well s parated from ach other and 

from classes 0, NW and CA as well, meaning that thr e faulty conditions - inner 
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race fault, outer race fault and rolling element fault - are easily distinguishable 

with this feature. 

On the other hand, conditions NO and OR overlap, while both of them are 

almost separated from NW. This implies that these three conditions are not easy 

to separate and may be confused with each other to a large extent in the one-

dimensional feature space. During the status change from normal condition to 

slightly worn condition in machine life, there is no significant defect occurring in 

the components. The physical nature of the bearing varies in a unnoticeable way 

on visual inspection. 

In addition, it can be seen that the cage fault is confused with normal condi

tions. This may be improved by incorporating more features to solve the problem 

in multi-dimensional space and/or new terminators, operators, which have dis

criminating ability especially for the cage fault. 

Figure 4.5 shows the histogram of the samples. Clearly, six major distribu

tions can be identified, each of which belongs to a specifiC' da.<;s. Most of thr 

samples from different classes are well separated from each other. Most of the 

misclassification happens between condition NO and OR, which is also evident 

in Figure 4.4. 

GP-Generated Feature Two 

Feature 2 is generated by GP after 10, 000 generations with the population size 

of 14 and the maximum depth of 10. It took about one hour for computation. 

The formula of the feature is given by: 

(2) 

/2 = cos(log( m~)) - tan l(mr))1) - tanh(mrJ) 
mx 
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dition monitoring problem 
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( 
[2]) [1] 

[1] log mx (rnX ) + cos(mx ) + [2] [4] + ab [4] [1] 
mx /mx mx -mx 

CA 

900 

n monitoring 
as h actual 

(4.9) 

Figure 4.6 demonstrates that, condition IR, R and RE ar w 11 s parat d, 

although condition RE does not have as good eparation as that by feature 1. This 

is mainly due to t he fitness algorithm, which u s th mall st Fi 'h r riL rion 

value as the fitness thus gives the featur with b tt r discriminating ability for 

closest classes, pecifically condition 0 , W and C , mor han to urvive. 

This can also be seen as a compensation among all lasses in order to give the best 
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overall performance. CI arly, classes NO ( xample 1 - 160) and W ( xample 

161 - 320) are better separated than featur l. 

Figure 4.7 illustrates the histogram of the samples from plotting th featur 

2 in the one dimensional space. It can be seen that this £ tur is not as good as 

feature one in terms of separation of classes. ondition N ,NW and A have 

considerable overlaps in the feature space, which makes it diffi ulL 0 ify 

between the three. Moreover, class RE and OR have overlapping sample values. 

Overall, the GP-based feature extractor p rforms w 11 by separating diff r nt 

classes without explicit knowledge of the statistical distribution of th data. 
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4.4.2 Classification Results 

A number of experiments were carried out to evaluate the discrimination ability 

of features generated by GP and other classical feature extraction methods in 

term of classification performance, using ANN and SVM classifiers respectively. 

The first set of results (Table 4.1) are obtained from the combination of the two 

previously generated features and an MLP with one hidden layer. The second 

set of results (Table 4.2) is obtained from combinations of each of 2, 3, 4 and 5 

GP-generated features and an MLP with one hidden layer of 3 to 14 neurons. 

Table 4.4 presents the comparison results of classification success rate using GP 

generated features and original features. Finally, the classification performance 

using ANN and SVM are presented in Table 4.5. 

Classification results using two GP extracted features 

Table 4.1 shows the confusion matrix of the classification performance for six con

ditions, using only two features extracted by GP. Each row of this table shows the 

associated classification results made by the MLP for a given condition. Each en

try in the row shows what the perceived classification is expressed a...., It percent.age 

of the total number of cases for the condition. From Table 4.1, it can be observed 

that conditions IR, OR and RE manage to achieve 100% accuracy, conditions 

NW and CA achieve 95.6% success. 10% of samples from Normal condition are 

misclassified with condition CA. It is also clear from the Figures 4.4 and 4.6 that 

most of the misclassifications occur between classes NO and CA. 
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I NO I NW IR OR RE CA 
NO (160 in total) 85 5 0 0 0 10 
NW (160 in total) 0.6 95.6 0 0 0 3.8 
IR (160 in total) 0 0 100 0 0 0 
OR (160 in total) 0 0 0 100 0 0 
RE (160 in total) 0 0 0 0 100 0 
CA (160 in total) 3.1 1.3 0 0 0 95.6 

Table 4.1: Classification performance (%) for GP/ANN, using two features ex
tracted by GP. 

Classification result using different number of GP extracted features 

and neurons 

Table 4.2 shows the percentage of classification success for six bearing conditions 

using 2 to 5 GP extracted features and MLP, which consists of one hidden layer 

with 3 to 14 neurons. It is clear that the GP / ANN classification success rate is 

always more than 95%, with the lowest being 95% (for 8 neurons with 2 features 

or 8 neurons with 3 features) and the highest being 96.7% (for 14 neurons and 5 

features). It can be seen that using the GP generated features the classification 

results are fairly independent of the number of neurons. The improvement of 

classification success by increasing the number of neurons is fairly small, ranging 

from 0.9% to 1.3% for each feature set. 

The correlation coefficients of five GP extracted features are given in Table 

4.3. It can be seen that all absolute values of coefficients by feature 1 are 0.4 

or less. Feature 2 to 5 are fairly correlated, sometimes positively and sometimes 

negatively. Two high negative correlations occur between feature 2 and 4, feature 

3 and 5. These features are highly correlated. In addition, the lowest coefficient 

among feature 2 to 5 is 0.7729, which demonstrates the similarity between these 

features. It can be seen that the information content within feature 1 is inde

pendent from the other four features, which are positively correlated to varying 
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2 features 3 features 4 features 5 features 
test perf.(%) test perf.(%) test perf.(%) test perf.(%) 

3 neurons 95.3 95.9 96.0 95.9 
4 neurons 95.2 95.7 95.8 96.1 
5 neurons 95.5 95.6 95.9 96.3 
6 neurons 95.3 95.9 96.1 96.3 
7 neurons 95.1 95.9 96.1 96.1 
8 neurons 95.0 95.0 95.2 95.7 
9 neurons 95.5 96.1 96.3 96.4 
10 neurons 95.8 95.9 96.3 96.4 
11 neurons 95.4 96.0 96.3 96.3 
12 neurons 96.0 96.0 96.3 96.1 
13 neurons 95.9 96.1 96.5 96.3 
14 neurons 95.8 96.1 96.4 96.7 

Table 4.2: classification success (%) with 3 to 14 neurons in one hidden layer of 
ANN, using 2 to 5 different features extracted by G P. 

I feature 1 I feature2 I feature3 I feature4 I feature5 I 
feature 1 1.0000 -0.4084 0.4018 0.3576 -0.2709 
feature2 -0.4084 1.0000 -0.8754 -0.9388 0.8182 
feature3 0.4018 -0.8754 1.0000 0.8099 -0.9206 
feature4 0.3576 -0.9388 0.8099 1.0000 -0.7729 
feature5 -0.2709 0.8182 -0.9206 -0.7729 1.0000 

Table 4.3: correlation coefficients of five features extracted by GP 

degrees. The classification results obtained using two to five G P extracted fea

tures are stable and independent of the number of neurons in the MLP (see Table 

4.2). 

Classification results using ANN with the GP generated features and 

four plain statistical features 

The percentages of correct classification are listed in Table 4.4 for the compar

ison of performance between four normalised plain statistical features and GP

extracted features with the variation of number of neurons used in the MLP 

hidden layer. Each classification success rate (%) of GP / ANN is obtained by 
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averaging over experiments using 2, 3, 4 and 5 GP-generated features. The clas

sification success rate using GP-extractcd features are higher than those using 

four plain statistical features, with improvements ranging from 1.9% in the case 

using 13 neurons to 17.4% in the case using 3 neurons. It is interesting to see 

that the increase in the number of neurons does not seem to help the classi

fication much in cases using GP-extraded features while the original feat\lf(~s 

require more neurons to achieve better performance, with only a 78.4% success 

for 1 neurons and a maximum 94.3% success when using 13 neurons. However, 

only 79.4% classification success is obtained when 14 neurons are used. This can 

be explained by the fact that the GP-based evolutionary process has extracted 

the most useful information from the data and has expressed these in a suitable 

way for classification, while the four plain statistical features have to rely on the 

classifier to reduce the effect of unwanted interference. In addition, the range of 

variance of test success obtained by using GP generated features is from 0.1% to 

0.5%. 

Among the total 960 number of test data values, the mbclassificatioll varies 

from 1 to 5 samples on an average basis. It can be concluded that, in terms 

of classification success, the GP-evolved features are more robust than the plain 

statistical features. 

4.4.3 Comparison to Classical Methods 

The classification performance results displayed in Table 4.5 were obtained using 

features generated by GP and classical methods. Both ANN and SVM classifiers 

are utilised in order to examine the capability of different feature sets over differ

ent classification algorithms. In this experiment, features are directly used as the 
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GP-Generated Features/ANN Four Plain Stat. Features/ANN 
No. of Neurons Test success(%) Test success(%) 

average stdev best 
3 neurons 95.8 0.3 78.4 
4 neurons 95.7 0.4 81.1 
5 neurons 95.8 0.4 81.9 
6 neurons 95.9 0.4 89.5 
7 neurons 95.8 0.5 92.3 
8 neurons 95.2 0.3 94.2 
9 neurons 96.1 0.4 94.1 
10 neurons 96.1 0.3 88.5 
11 neurons 96.0 0.4 93.4 
12 neurons 96.1 0.1 92.2 
13 neurons 96.2 0.3 94.3 
14 neurons 96.3 0.4 79.4 

Table 4.4: classification success (%) with 3 to 14 neurons in one hidden layer of 
ANN, using 2 to 5 different features extracted by GP. 

inputs to classifiers without normalisation. As listed in Table 4.5, among c1assi-

cal methods, conventional features achieve the best classification performance for 

both ANN classifier with success rate at 91.5% and SVM classifier with success 

rate at 92%. The four low-pass-filter features perform the worst with around 

16.7% success in SVM classifier. The failure is mainly due to large variation 

in values in the un-normalised data. It is interesting to see that the difference 

of performance between ANN and SVM classifiers is significant when using filter 

features and difference features. The performance disparity is fairly small in other 

features, because the SVM classifier is sensitive to large values within the input 

data. When GP-extracted features are used, there is improvement in both ANN 

and SVM classifiers. 

4.4.4 Comparison to Genetic Algorithms 

The classification performance results displayed in Table 4.6 for six bearing con

ditions were obtained by ANN using 18 plain statistics feature sets [lJ, GA with 
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ANN SVM 
Features Type Best Perf.(%) Best Perf.{%) 
4 Plain stat. 90.8 91.2 

4 High pass Filter 85.4 85.0 
4 Low pass Filter 87.1 16.7 

4 Difference 45.4 35.6 
4 Sum 65.1 90.5 

4 Conventional 91.5 92 

4 GP features 96.5 97.1 

Table 4.5: classification success using the ANN and SVM classifiers with the 
different features. 

I Pattern Recognition Systems I Original Featurel ANN I GAl ANN I GP I ANN I 

I NO.p~~:'(~)es I 8~~4 I 9~~4 I 9:.7 I 
Table 4.6: Classification success (%) for Original feature set with ANN, Feature 
set selected by GA with ANN, Feature set generated by GP with ANN. 

best ANN using 12 statistics feature sets [1], and GP with best ANN using 5 

feature sets, respectively. The 18 plain statistics feature sets were taken based 

on the higher order statistics, which have been found to be useful in the iden

tification of different problems in condition monitoring. The comparison results 

demonstrate that GP with ANN has the best classification performance of 96.7%, 

which is slightly more than that by GA with ANN, and about 12% more than 

that by the straight ANN. In addition, GP reduces the number of required inputs 

for the classifiers. The superiority of GP-based feature extractor against other 

methods is clearly demonstrated through the overall classification successes 

Summarising the results from above experiments, it can be said that, when 

classical feature extraction methods are employed, the classification performance 

changes by a large extend with the variation of classification method and data. 

while GP-extracted features maintain a constantly high level of success. The su

perior performance of GP against other methods is clearly demonstrated through 

the overall classification successes. 
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4.5 Discussion 

Based upon the experimental results, it can be said that using features generated 

by GP, both the ANN and SVM classifiers see improvement in classification ac

curacy and robustness, compared with those using classically developed features. 

GP derives feature selection from GA and also extends the abilities to implement 

feature extraction and generation, which combine different nonlinear functions to 

achieve the discrimination capability. The available feature space in GP is much 

larger than that in GA, where the one-dimensional feature space is pre-defined 

before the evolutionary process and the possible combination is constructed by 

randomly selecting candidates from the feature set. Rather than pure selection, 

GP produces new features by combining terminators and operators. 

Generally speaking, a useful feature must have some discrimination charac

teristic, but at the same time, inevitably contains some noise and interference. 

Features may have some overlapping information, which introduces redundance 

in the feature space. During the natural selection process of GA, classification

useful information is retrieved in the form of a minimum feature set, but without 

changing the property of individual features. GP substantially alters the process 

by reconstructing features. During the evolutionary process, the features with 

maximum discrimination ability but minimum interference will eventually turn 

out to be the survivors. The maximisation of discrimination information in each 

feature results in the further reduction of dimensionality. In addition, in scenar

ios where the original features are not well prepared for the problem, GP has the 

advantage of generating useful features directly from the raw data, rather than 

the selection of pre-defined features in the GA. 

In terms of classification success, there is a 12.3% increase from original feature 

set with ANN to GP I ANN and a slight increase from GAl ANN to GP I ANN. 
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This is due to two reasons. First, interfering features are filtered out. during 

the evolution by the fitness measure. Only features with discrimination ability 

are remained for the classification thus reducing the pressure of the classifier 

to handle interference. From Table 4.6, it can be observed that the number of 

features required for the problem sees a reduction to 5 in GP from 18 in straight 

ANN and 12 in GAl ANN respectively. FUrthermore, the powerful searching 

capability of GP is demonstrated by the smaller number of features required for 

achieving similar or even better classification success rate (see Tables 4.2 and 

4.4). The reduction in dimensionality required to describe the problem indicates 

an improvement in multi-category classification performance. 

In terms of computational complexity, the time consumed in computing is 

reduced by using a fast fitness measure based on the Fisher criterion, compared 

with those using classification results as the fitness. 

4.6 Conclusion 

In this chapter, a GP-based feature generator is proposed for the generation and 

extraction of multiple features from the raw vibration data for the problem of 

bearing condition classification. Based upon these results, it can be said that 

the discrimination capability of GP-generated features assists the ANN classifier 

to enhance the classification performancc in the problcm of bearing condition 

monitoring. More importantly, major faulty conditions are well separated in 

the feature-processed data, and provides an improvement from original feature 

set with ANN to GP extracted features with ANN. In most of experiments the 

classification success in GP I ANN is higher than that in GAl ANN using similar 

number of features. 

GP is a powerful and efficient tool for the automatic feature generation. Using 
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features extracted by GP, the ANN and SVM classifiers sec an improvement in 

classification results, compared with those using features extracted by classical 

methods. It is also shown from the extraction results that GP is not only capable 

of enhancing the classification performance, but also reducing the dimensionality 

required to describe the problem. Thus it can be a more economical implementa

tion to the problem, compared to GA. The reduction is significant, compared with 

the number of original features and GA selected features. Furthermore classifi

cation performance obtained from GP-extracted features are reasonably robust. 

GP produces results in a direct tree representation, which allows an understand

ing of how it works. Generally speaking, longer evolved and more complex (larger 

terminator pool, operator pool and bigger tree depth) features have better overall 

discrimination capability. 

Due to the fact that ANN is a required component in the implementation of 

GA-based feature selection, it needs to be conducted every time when individual 

is being evaluated. It requires a large amount of computation for calculating 

the classification success. Comparing the computation demands in the experi

ments for GAl ANN and GP I ANN respectively, it can be said that GP with this 

configuration for bearing condition monitoring problems is less time-consuming 

than that using GA with the same configuration. Together with the reduction in 

dimensionality, it makes GP a more practical realisation for the problem. 

Although GP can successfully generate features for improving the accuracy of 

bearing condition monitoring, the method proposed in this chapter still requires 

several runs of GP to obtain multiple features for the multi-class problem. The 

computational demand is larger than that by a system needing only one run for 

multi-class classification, which will be addressed in the later chapter. 
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4.7 Summary 

This chapter proposes a GP-based framework for the generation of multiple fea

tures for an industrial pattern recognition problem-bearing condition monitoring. 

The method for data acquisition and characteristics of the signal due to differ

ent mechanical conditions are described. Experiments are conducted, in order to 

evaluate the performance of the feature generation and classification algorithm. 

The performance of the conventional feature set, GA selected feature set and 

GP generated feature set are evaluated using two classifiers, namely MLP and 

SVM. The GP generated features demonstrate superior performance over other 

methods. Furthermore this chapter has addressed the advantages and capability 

of proposed GP algorithm for the application. 
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Chapter 5 

Feature Generation for 

Dual-Class Problems 

5.1 Introduction 

The chapter is aimed at designing a GP-based feature extractor for dual-class 

pattern recognition problems. Before jumping into the main framework proposed 

for the problem, it will be useful to address the issues related to traditional feature 

extraction techniques, such as Fisher Linear Discriminant Analysis (FLDA) [28J. 

For many years, FLDA and its variants are among the most popular methods 

for linear discriminant analysis, initially designed in the domain of statistic anal

ysis and later adapted for pattern recognition problems [29,117,118]. It is a 

powerful and efficient tool in linear feature space, where parametric functions 

are sufficient to distinguish between dusters. The algorithm only requires the 

calculation of mean and variance hence it can be very efficient during long evolu

tionary processes. This could be beneficial to the feature extraction because the 

computation time consumed in each generation can be an important factor for 

satisfactory results. 
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In this chapter, a modified version of FLDA is designed to improve certain 

aspects of Fisher criterion. The FLDA-based methods will play an important role 

in the GP based feature extraction system, which will be addressed in the fol

lowing context. GP as an evolutionary computation method, provides a learning 

paradigm for feature generation/extraction. In this design, a GP-based system is 

constructed to generate a single feature for breast cancer diagnosis and bearing 

fault detection. A modified Fisher criterion is developed to optimise the class 

distribution during the evolution process. 

This chapter is organised as follows. Two data sets used in the experi

ments are described in Section 5.2. A classical linear feature extraction mea

sure (Alternative-FLDA) is addressed at the beginning of Section 5.3. Inspired 

by the Alternative-FLDA, a novel feature extraction measure, namely Modified

FLDA, is designed in the same section. Furthermore, a feature generation system 

based on GP and various Fisher criteria is described. In Section 5.4, a number of 

experiments llsing the two data sets are conducted. The comparison of cla.-.sifica

tion performance using features extracted by linear feature extraction measures 

(PCA, FLDA A-FLDA and Modified FLDA), nonlinear feature extraction mea

sures (KPCA and GDA) and GP-generated features based on different Fisher 

criteria (FLDA, A-FLDA and Modified FLDA) are given. Finally, the discus

sions and conclusions based on the experimental results are presented in Section 

5.5. 

5.2 Experimental Data Sets 

Two data sets, Wisconsin Diagnostic Breast Cancer (WDBC) data set from the 

DCI Machine Learning repository [119] and the Bearing Fault vibration data set, 

are used in all experiments. 

129 



CHAPTER 5. FEAT. GENERATION FOR DUAL-CLASS PROBLEMS 

5.2.1 Breast Cancer Diagnosis 

Image Preparation 

The Wisconsin diagnostic breast cancer (WDBC) data set is created by Wol

berg et al., at University of Wisconsin [120). The diagnosis procedure begins 

by obtaining a small drop of fluid from a breast tumour using a fine needle. 

The image for digital analysis is generated by JVC TK-1070 colour video camera 

mounted atop an Olympus microscope and the image is projected into the camera 

with a 63x objective and a x2.5 ocular. The image is captured by a Comput

erEyes/RT colour frame grabber board (Digital Vision, Inc., Dedham MA 02026) 

as a 512 x 480, 8-bit-per-pixel Targa file. 

Data Preparation 

An active model located in the actual boundary of cell nucleus is defined as a 

snake. Ten different features from the snake-generated cell nuclei boundaries are 

extracted by following techniques: 

• Radius: The radius of an individual nucleus is measured by averaging the 

length of the radial line segments defined by the centroid of the snake and 

the individual snake points. 

• Perimeter: The nuclear perimeter is defined by calculating the total dis

tance between the snake points . 

• Area: The nuclear area is defined by counting the number of pixels on the 

interior of the snake and adding one-half of the pixels in the perimeter. 

• Compactness: The perimeter2 / area is used as the compactness of the 

cell nuclei. 
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• Smoothness: The smoothness of a nuclear contour is quantified by mea

suring the difference between the length of a radial line and the mean length 

of the lines surrounding it. 

• Concavity: Concavity is defined as the severity of indentations in a cell 

nucleus. For a line connecting any two non-adjacent snake points, if the ac

tual boundary drops inside the line, an indentation occurs and the distance 

to the line is a measure of the severity. 

• Concave Points: This feature is similar to Concavity but measures only 

the number, rather than the magnitude of contour concavities. 

• Symmetry: The length difference between lines perpendicular to the ma

jor axis to the cell boundary in both directions is defined as symmetry. 

• Fractal Dimension: The fractural dimension is an indication of the reg

ularity of the nucleus. Higher values of the downward slops of the coastlines 

correspond to less regular contour and vice-versa. 

• Texture: The texture of the cell nucleus is defined by fiuding the variance 

of the gray scale intensities in the component pixels. 

The mean value, the maximum value and the standard deviation of each feature 

are computed for each image. A set of 569 images has been processed, yielding 

a database of 3D-dimensional points. Here, we randomly select, without replace

ment, 100 samples for the benign case, and 100 samples for the malignant case 

respectively. Two 30 x 200 matrices are obtained for training and testing pur

poses. A third matrix is created based on the target information. A corresponding 

2 x 200 target matrix records the actual conditions, benign or malignant. Each 

column has two rows corresponding to the class labels. For example, sample 1 
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is collected from a benign case. The corresponding column in the target matrix 

will be [1,0]T. Otherwise, the target column should be [0, 1f. 

5.2.2 Bearing Fault Detection 

The bearing condition monitoring data set is the same as the one mentioned in the 

previous chapter. The data set includes a total of 160 examples of each condition, 

and a total of 960 raw data examples over six conditions, which include four faulty 

conditions: Inner Race (IR) fault, Outer Race (OR) fault, Rolling Element (RE) 

fault and Cage (CA) fault; and two normal conditions: Brand new (NO) and 

slight worm but normal (NW) bearing. In this chapter, we only deal with dual

class problem. Hence the aim of the classification is to distinguish between normal 

conditions and faulty conditions. 

In terms of the pre-processing of the raw data, in addition to the basic sta

tistical methods used in the previous chapter, spectral data are calculated as an 

indicator of rotation-related faults. This is based on the observation that many 

of the machines being monitored are rotational and a large number of faults are 

frequency related. The spectral data has been one of the most effective indicators 

used in bearing fault monitoring. 

The experimental data are processed by taking a simple 32 point Fast Fourier 

Transform (FFT) of the raw vibration data for each of the two channels sampled. 

A total of 33 values are obtained for each channel. These are then stored as a 

column vector of 66 values, which are used as the input data set. Two 66 x 960 

matrices are obtained for training and testing, with 640 examples in faulty condi

tions and 320 in normal conditions. A corresponding 2 x 960 target matrix records 

the actual condition of the machine. Each column has two rows corresponding to 

the class labels. For example, sample 1 is collected from a normal condition. The 
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corresponding column in the target matrix will be [l,OJT. Otherwise the target 

column should be [O,lJT . 

5.3 Feature Extraction Methods 

In the preliminary chapter, the basic principle of FLDA has been addressed in 

the domain of feature extraction. As a classical feature extraction method, FLDA 

has evolved extensively into many varieties, among which Alternative-FLDA (A

FLDA) [118J has been considered to exhibit more power than conventional FLDA. 

To this regard, A-FLDA will be described first in this chapter and a modified 

version of FLDA is further developed. 

5.3.1 Alternative-FLDA 

A-FLDA is an improved version of FLDA for binary-class problems by replacing 

the original between-scatter with a new scatter measure [118J. This new scatter 

is described in the following text. 

For c classes, the ith observation vector from class k is defined by X~k), where 

1 ::; k ::; c, 1 ::; i ::; Nk , and Nk is the number of observations from class k. The 

within-class covariance matrix is defined by 

c 

Sw = LS(k), {5.1} 
k=l 

where 
N" 

S(k) = L [x~k) _ ,.,,(k)] [~k) _ ,.,,(k)] T 

i=l 

(5.2) 
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The between-class covariance matrix is defined by 

c 

SB = L Nk [1L(k) - IL] [1L(k) -IL( (5.3) 
k=l 

where lL(k) is the vector mean of class k, and IL is the global mean. 

For a dual-class problem, the new between-class covariance matrix of A-FLDA 

is defined by, 

(5.4) 

where Xi, Xj denotes the ith, jth observation of class 1 and class 2, and Nl 

and N2 are the numbers of observations of class 1 and class 2 respectively. The 

projections w for the dual-class problem using new between-class scatter measure 

can be obtained by maximising 

{5.5} 

where Sw is defined by Equation (5.3). The details of the algorithm and the 

theory behind the design can be found in [118]. 

5.3.2 Modified-FLDA 

The limitation of FLDA lies in the within-class scatter which is not able to mea-

sure the distribution of observations accurately when the data clusters have sig

nificant overlaps. Although the computational demand of FLDA is relatively low. 

its drawback becomes obvious when it is used as a measure of class separation. 

A large ratio of between-class scatter over the within-class scatter may be due 

to that the two classes do not overlap each other, which is desirable. However, it 

can also be a result of overlapping classes with a large separation of cluster centres. 
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Generally speaking, overlap is the major reason for misdassifications. The higher 

ratio of between-class scatter over the within-class scatter is not always helping 

the classification. In some cases, the classification performance may even drop, 

as observed in many experiments. 

To overcome the limitation of FLDA and measure the genuine distribution 

of each pattern, we develop a new within-class scatter that uses the distance 

between any two patterns belonging to the same class instead of the variance. 

For two-class problems, the new within-class scatter is defined by Equation 

5.6, 

Nl Nl N2 N2 

S~ = L L(Xi - Xj)(Xi - Xj)T + L L(Xi - Xj)(Xi - Xj)T (5.6) 
i=1 j=1 i=1 j=1 

where NI and N2 denote the numbers of samples in class 1 and class 2. Vector 

Xi denotes the ith observation. With Equation (5.6) employed as the within

class scatter, the sum of all the distances will act as an indication of degree of 

separation within one class. 

By using this measure, a feature with all the observations concentrated within 

an area will be more competitive than those with a distribution of most of samples 

concentrated within a smaller area but a few scattered away from the centre. The 

desired goal of this scheme is to force the algorithm to search for more robust 

solutions rather than those having only good performance in part of the data. 

The modified-FLDA is defined to maximise the objective function 

(5.7) 
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5.3.3 A GP-based System 

In order to reduce the computational complexity in classifiers, the design of fit-

ness measure in this chapter, again, intends to look for answers in statistical 

analysis. Under such perspective, three measures, Fisher criterion, Alternative 

Fisher criterion and a Modified Fisher criterion, are utilised and designed for 

the evaluation of statistical distribution by testing the between-class scatter over 

the within-class scatter. The discriminant analysis is incorporated into the GP 

paradigm for the task of fitness measure. During the evolutionary process, the 

between-class scatter is maximised and the within-class scatter is minimised. For 

simplicity, the fitness function used for each system has been reformulated for 

dual-class problems. They are all Fisher criterion based. Because of the single 

feature evolving structure of GP, these functions only need to work in a one di

mensional feature space. Hence all the variable involved are scalars. This design 

simplifies the calculation and improves the computation speed. 

Original Fisher criterion Jor G P (F -G P): Based on the discussion of LDA 

in Chapter 2 and Equation 2.3, the Fisher criterion for dual classes can be 

simplified as, 

{5.8} 

where J-l is the mean of each class, (J is the variance of each class. The 

result j(p,q) is a scalar, which is the ratio of the between-class separation 

and within-class concentration. 

Alternative Fisher criterion(AF-GP}: The alternative Fisher criteria for 

two-class is denoted by 

j(p,q) = 1?jJ(P) - ?jJ(q) I 
..; (J(P) + (J(q) , 
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where the new between-class scatter '!jJ is defined by 

Modified Fisher criterion(MF-GP): The modified Fisher criterion is de

fined by 

{5.1O} 

Apart from the fitness function, the overall design of the GP-based feature extrac

tion system follows the same idea presented in Chapter 3, including the design 

of terminator/operator pools and the genetic operations. The terminator pool 

is application-specific hence requires the knowledge to the problem. The related 

parameters for each problem have been selected and formulated in the previous 

dicussions. 

5.4 Experiments and Comparisons 

In this section, experiments are conducted for the feature extraction task of two 

dual-class problems. In these experiments, MLP, k-NN and MDC classifiers are 

utilised to examine the ability of different features. First, tlw Modifi(~d-FLDA 

is experimentally compared with some linear feature extraction methods (PCA, 

FLDA, A-FLDA). The first set of results present the comparison of classifica

tion success rates using one to five linear feature sets extracted by PCA, FLDA, 

A-FLDA and Modified-FLDA. Second, the feature generated by the GP-based 

system using Modified Fisher criterion (MF-GP) is compared with the original 
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features and extracted features using conventional methods, namely KGDA and 

KPCA in terms of classification success. In addition, the proposed system is com

pared with the same GP-based system, but using conventional Fisher criterion 

and A-FLDA as the fitness measures. 

In order to compare the performance, as well as to examine the reliability, 

two data sets are chosen, the Wisconsin diagnostic breast cancer (WDBC) data 

set [119] and the bearing fault data set. A series of experiments are conducted 

based on these two data sets. 

5.4.1 Feature Extraction Results 

Results for Breast Cancer Diagnosis 

The information in Figure 5.1 is obtained after running the GP-based system with 

population size 100, maximum tree depth 10 and terminating after the number of 

generations reaches 5000. Figure 5.1 shows the output of a single feature, gener

ated from the original feature set with 30 dimensions, for the training data set and 

test data set respectively. There are 200 examples in total from two conditions, 

with 100 examples in the benign case and 100 examples in the malignant case. It 

can be seen from Figure 5.1 that the two conditions are very well separated from 

each other in training data set, and three examples misclassified in test data set. 

Results for Bearing Fault Detection 

Figure 5.2 is obtained for bearing fault detection problem by the GP-based feature 

generator with population size 100, maximum tree depth 5 and max number of 

generations equal to 2000. Figure 5.2 shows the output of the feature values after 

processing the original 66 feature sets. There are a total of 960 examples from two 
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the improvement by using the GP-bascd system is not significant. Only if it is 

not the case, the benefic of using the proposed system can be justified. In order 

to fully evaluate the performance of the proposed system, the best way is to pro

vide a "fair" comparison. To this regard, a series of experiments are conducted 

using different combinations of features and classifiers. The features are derived 

using various feature extraction methods, ranging from basic linear method to 

complicated nonlinear method. The classifiers in use are MDC, k-NN and MLP. 

Simple rules are set for the comparison. Using the same classifier and features 

extracted by different systems, the classification success is used as a measure of 

how well each feature extraction system performs on the data. In addition, a good 

feature extraction system should be independent of the classifier in use. In the 

ideal scenario, the classification success remains constantly high when different 

classifiers are in use. 

Using features derived from linear systems 

Four linear feature extraction systems have been developed, namely PCA, FLDA, 

A-FLDA and Modified-FLDA. The performance achieved by each classifier is 

listed in details in Table 5.1. The first column lists the pattern recognition systems 

in use. The second column reads the number of features in use to achieve the 

classification accuracy for the breast cancer detection problem. The third column 

shows the number of features and classification accuracy for t.he Learing fault 

detection problem. For the breast cancer detection problem, the results show 

that, using the four features extracted by Modified-FLDA as the inputs to MDC, 

the performance can be achieved at 89.5%. The classification accuracy of using 

three features extracted by FLDA is 89.0%, which is the same as that of using 

two A-FLDA features. The classification accuracy achieved by PCA is the lowest 

among those nonlinear feature extraction measures for both the breast cancer 

141 



...... 
~ 
tI,j 

Pattern Recognition System Breast Cancer Detection Bearing Fault Detection 
Feature Extraction by Classifier No. of Feature Perf.(%) No. of Features Perf. (%) 

PCA 2 88.5 1 66.6 
FLDA 

MDC 
3 89.0 1 67.0 

A-FLDA 2 89.0 1 78.8 
Modified-FLDA 4 89.5 1 81.5 

PCA 3 89.0 4 98.9 
FLDA 

kNN 
4 88.5 6 97.5 

A-FLDA 3 89.5 4 98.0 
Modified-FLDA 3 89.5 3 98.0 

peA 5 90.0 4 96.7 
FLDA 

MLP 
5 89.5 6 88.8 

A-FLDA 3 90.0 4 93.7 
Modified-FLDA 4 90.5 5 97.3 

Table 5.1: The classification success rate (%) using V"cUious linear feature extraction systems and classification methods, for 
two pattern recognition problems, namely breast cancer diagnose and bearing fault detection. 
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diagnosis problem and the bearing fault detection problem. Using one feature 

extracted by Modified-FLDA with MDC as the classifier achieves the highest 

classification success of 81.5% in the data. 

When kNN classifier is in use, it can be seen that the classification accuracy 

from A-FLDA feature set is the same as that using the feature set extracted by 

Modified-FLDA. The cla..'lsifieation success is achieved at 89.5% for the breast 

cancer data and 98% for the bearing data. The classification success using FLDA 

with kNN is the lowest among all the pattern recognition systems in use. It is 

88.5% for the breast cancer detection problem in a four dimensional feature space 

and 97.5% for the bearing fault detection problem in a six dimensional space. 

It can be observed that using features extracted by Modified-FLOA with MLP 

leads to higher classification accuracy, with the highest performance achieved at 

90.5% by the four features extracted from the breast cancer data and 97.3% by 

the five features extracted from the bearing data. 

Using features derived from nonlinear systems 

A range of nonlinear feature extraction systems have been put into place for com

parison, including KPCA, GDA, FLDA combined with GP, A-FLDA combined 

with GP and Modified FLDA combined with GP. A number of experiments an' 

carried out to evaluate the performance of different systems. The same line-up 

of classifiers are used for the classification task. Specifically, they are MOe, kNN 

and MLP. For a complete comparison, classifiers using the original feature sets 

are also registered in terms of classification performance. Table 5.2 lists all the 

classification results in details. 

All the experiments involving the GP-ba.. .. cd feature extractor or MLP cla..'i.'iifier 

are repeated 50 times to account for the randomness in the systems, for example, 

the initial weighting coefficients of the neurons. The best, average and standard 
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Pattern Recognition System Breast Cancer Detection (%) Bearing Fault Detection (%) 
Feature extraction by Classifier No. of Feat. Best Avg. Std. No. of Feat. Best Avg. Std. 

Original Features 30 84.0 - - 66 66.6 - -
KPCA 1 94.5 - - 1 71.2 - -
GDA 

MDC 
1 93.5 - - 1 100 - -

F-GP 1 98.5 97.4 1.6 1 100 97.8 2.6 
AF-GP 1 98.5 97.3 1.4 1 100 98.2 1.3 
MF-GP 1 99.0 97.5 1.6 1 100 98.5 1.6 

Original Features 30 87.5 - - 66 99.2 - -
KPCA 1 85.5 - - 1 69.2 - -
GDA 

kNN 
1 93.0 - - 1 100 - -

F-GP 1 97.5 96.6 1.1 1 100 98.5 2.3 
AF-GP 1 97.0 96.4 1.5 1 100 98.8 1.5 
MF-GP 1 97.5 96.8 1.2 1 100 98.6 1.7 

Original Features 30 97 96.2 1.7 66 97 96.7 2.4 
KPCA 1 90.0 88.6 4.3 1 84.4 82.8 1.1 
GDA 

MLP 
1 93.5 93.0 2.5 1 100 99.6 3.8 

F-GP 1 98.5 93.6 6.4 1 100 98.7 3.3 
AF-GP 1 98.5 94.3 7.2 1 100 98.4 2.5 
MF-GP 1 99.0 94.6 5.6 1 100 98.1 2.2 

Table 5.2: The classification success (%) using various nonlinear feature extraction systems and classifiers for the breast 
cancer detection problem and the bearing fault detection problem. 
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deviation of the cla..'lsification success rates are calculated to represent the oVC'rall 

performance of each system. 

When MLP is used as the classifier, the best classification success by using 

the feature extracted by the hybrid system of GP and A-FLDA is achieved at 

99.0%, which is the highest for breast cancer diagnosis problem. The average 

performance is also relatively high among all systems. For the sallie dassinpr. tlw 

best classification accuracy by using the feature generated by the hybrid system 

of GP and FLDA is achieved at 98.5%, which is the same as that of using one 

feature generated by the hybrid system of A-FLDA and GP. The classification 

accuracy of using one feature extracted by KPCA is the lowest with only 90% 

success. The average performance follows the same trend. It is interesting to 

see that the original feature set achieves the highest average performance and 

exhibits the smallest variation in repeating experiments. 

For the bearing fault detection problem, using one feature generated by FLDA 

+ GP, A-FLDA + GP, Modified FLDA + GP and one KGDA-<'xtract,eo f('atm(' 

all achieve very high classification success, in both average ~uul tll(' hest results. 

Directly using 66 original features achieves 97% classification success. TIll' clu .. o.;si

fication result using one GDA-extracted feature is the lowest among all wit.h ouly 

84.4% success. 

When kNN classifier is in use, compared with the dassifkat.iull result. It.'liug 

original features and nonlinear features for breast cancer diagnosis, the cl8.·~.·~i

fication accuracy of using features generated by the GP-based systems (FLDA 

+ GP, A-FLDA + GP and Modified-FLDA + GP) are remarkably higher, with 

the highest being 97.5% obtained by using a single feature generated by the hy

brid systems of GP + FLDA and GP + Modified-FLDA. The best at'mf(u:y that 

A-FLDA + GP system achieves is 97.0% which is the lowest among all three 

GP-based systems. However, it is still higher than that using 30 original features 
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when MLP classifier is in usc. The average performance is fairly close to the best 

performance, meaning that the GP-based systems perform consistently. 

The classification accuracy of using KPCA with kNN is the lowest, 85.5%, 

among all pattern recognition systems. For the bearing fault detection problem, 

the classification successes achieved by one GDA extracted feature, one F-GP 

extracted feature, one AF-GP extracted feature and one MF-GP extracted feature 

are the same at 100%. Using 66 original features achieves 99.2% classification 

success. The classification result of using one KPCA-extracted feature is only 

69.23% success, which is the lowest among all the pattern recognition systems in 

use. 

With no doubt, the MLP and kNN are more powerful classification tools than 

the simple MDC classifier. However the simplicity of MDC can be an indirect 

measure of the quality of the features in terms of class separation. For the breast 

cancer diagnosis task, using one feature generated by the Modified-FLDA + GP 

system achieves the best cla..'lsification result of 99% success. The classification 

accuracy of using FLDA + GP system is 98.5%, which is the same as that of 

using A-FLDA + GP system. KPCA achieves 94.5% as the best classification 

result, which is 1% higher than that of using one feature extracted by KGDA. 

The original 30 features produce the lowest classification success of 84% among 

all the pattern recognition systems in use. Using 66 original features for the 

bearing fault detection problem achieves only 66.6% classification success. One 

KPCA-extracted feature also performs not very well with only 71.15% classifica

tion success. In contrast, the classification results by GP-based systems provide 

very satisfactory results of 100% success, which is same as that using one GDA

extracted feature. 
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5.5 Conclusion 

In this chapter, MLP, kNN and MDC are applied to examine the performance of 

feature sets extracted/generated by various feature extraction algorithms. As an 

improved version of FLDA and A-FLDA, Modified-FLDA overcomes the limita

tion of FLDA and has better generalisation ability than both of them for breast 

cancer diagnosis and bearing fault detection problems. In addition, linear feature 

extractors with MLP perform better than those using kNN and MDC. Nonlinear 

feature extractors: KGDA, FLDA + GP, A-FLDA + GP and Modified-FLDA + 

GP achieve 100% accuracy for the bearing fault detection problem in all three 

classifiers. For the feature set generated for breast ca.ucer diagnosis, GP pro

vides more than 97% classification success on all three algorithms (FLDA + GP, 

A-FLDA + GP and Modified-FLDA + GP). Overall, Modified-FLDA + GP sys

tem performs the best among all GP-based systems. Nonlinear feature extraction 

methods perform better than linear feature extraction methods. 

Generally speaking, in pattern recognition problems, there is a reliance on the 

classifier to identify the discrimination information from a large feature set. In 

this work, GP as a machine learning method is proposed for nonlinear feature 

generation. A modified Fisher criterion (Modified-FLDA) is developed to over

come the limitation of original Fisher criterion, and applied to help GP select the 

best members among a large number of candidates. During the natural selection 

process, the feature is optimised to maximise the between-class scatter and min

imise the within-class scatter of pattern vectors. Hence, this approach is able to 

learn directly from the data just like classical feature extraction methods (such as 

PCA, FLDA, A-FLDA), but in an evolutionary process. Under this framework, 

an effective feature can be formed for pattern recognition problems without the 

knowledge of probabilistic distribution of data. From the experimental results it 
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can be seen that the Modified-FLDA outperforms other linear classical featuf(' 

extraction methods. With the support of a simple classifier MDC, GP combined 

with Modified FLDA outperforms the other two GP-based feature extractors 

(FLDA + GP and A-FLDA + GP), as well 88 the thirty original features with 

MLP. This indicates an advantage of the Modified-FLDA + GP system over das

sical methods for these data sets. Apart from the improvement ill da.-;sifkatioll 

success and robustness, one important aspect of this approach is the reduction of 

dimensionality required to describe the problem compared with classical feature 

extraction/ selection methods 

5.6 Summary 

This chapter first introduces two recently developed linear feature extraction 

methods based on FLDA, namely A-FLDA and Modified-FLDA. Based upon 

these two techniques, a GP-based feature extractor is constructed for generat

ing single feature to solve general dual-class pattern recognition problems. Two 

experimental data sets are utilised for evaluating the performance of different fea

ture sets. GP-generated features based on the proposed algorithm are obtained 

for breast cancer detection and bearing fault detection problems respectively. 

A series of experiments are conducted to evaluate the system performance. The 

Modified-FLDA is demonstrated to be performing well among other lillear feature 

extraction methods, namely FLDA, A-FLDA and peA for dual-class problems. 

Apart from the classification success, it exhibits superior robustness and good 

performance independent of classifiers. 
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Chapter 6 

Single Feature Generator for 

Multi-Class Problems 

6.1 Introduction 

As mentioned in the previous chapter, traditional treatment of multi category 

pattern classification problems is to split it into multiple dual-class problems 

and derive a decision based on the integration of all dual-class results. Figure 

6.1 shows the breakdown of a typical multi-category classification systf'llI. Thf' 

role of the feature extraction block is to provide useful features, which contain 

discrimination information, to the function block. Each function in the function 

block consists of the feature inputs of each dual-class problem and a cla."isifier 

for the associated problem. The output of each function can be either binary or 

continuous output depending on the design of the decision making block, which 

makes final decision on the class label based on the outputs of all the dual-class 

results. There exist different ways of splitting a multi-category classification 

pr.>blem, such as the one-against-all scheme and the between-every-two scheme. 

The decision can be made based on voting and/or winning depending on the 
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•• •• 
Function 1 f----."...---i 

Function 2 1----+--1 
Decision 

Making 

Class 1 
Class 2 

Class 3 

Class 4 

Figure 6.1: Breakdown of a general multi-category pattern classification problem. 

output of the dual-class results. In case of one-against-all scheme, ideally, only one 

of the outputs from the dual-class classifiers should be positive while all the otht'rs 

remain zero or negative. However there are scenarios where Illultiple da&>ifiers 

signal positive, which results in a conflict in the class assignment. In case of 

between-every-two scheme, ideally, the candidate with the maximum number of 

votes wins. However, the binary output of classifiers can not help when two 

candidates hold the same number of votes. These are inevitable when combining 

multiple outputs to provide a single class assignment. 

These conflicts are usually resolved under a resolution, which requires an addi

tional output from the classifiers. This output should be a nomlalised continuous 

value indicating the level of association to the class or a level of confidence. When 

the class assignment can not be solved by voting, conflict resolution is a.ctiV'd.tt-'<i. 

There are schemes that only rely on the continuous output of each classifier for 

decision making. However they require that all the classes are well-balanced so 

that each classifier output floats within the same range and the same value from 
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different classifiers should indicate the same level of a. .... .;ociation. 

Genuine multi-category classifiers are not uncommon. such as kNN and MDC, 

which require the assumption of statistical distributions. Taking the MOC for 

instance, the class centres are statistically estimated by averaging the training 

data set. The class assignment is conducted by a simple class associate level, 

specifically the distance to the class cpntf(~. Tlw shortest. distcuu'(' wins. III 

fact, it can be considered as a classifier which only outputs distance and abovf'

mentioned one-against-all voting scheme. 

kNN is an typical example of classification by voting. The class assignment 

is conducted within a group of voters, which are believed to be closely related 

to the candidate based on the measurement of distance. The maximum number 

of votes determine the class label of the candidate. Again, it has to be assumed 

that the pattern from one class are distributed close to each other. Large overlap 

of distribution will result significant errors in the classification, 

Both methods rely on distance as a kind of measure of the class assodation. 

Broadly speaking, all methods for multi-category d& ..... -;itkatioll probh'llls llst' a 

kind of measure of class association to test likelihood of heing eadl dass and 

a decision-making scheme for the final cla.') .... assignIlH'nt. Ho\\,('wr. it should 1)(' 

borne in mind that distance measure is not always th(' true r('fi('c:-tioll of dn • .;s 

association. Feature extraction of dual-class distribution usually provides lI10rr 

powerful and robust solutions. However, a decision making mechanism is required 

to integrate all the dual-class results. This may illtroduc(' discr('pallcy ill the final 

output because all the classifiers should be well-balanced in tenns of output. It 

is very difficult to maintain such balance because all the da.-.sifiers arc st'paratt'ly 

designed and work independently for each dual-class problem. Also they work on 

different features. The output of each classifier by no means follows a universal 

standard that the decision making body can trust. 
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•• •• 
Function 1 f------\-----I 

Feature Extraction 
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Class 2 
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Figure 6.2: Breakdown of the proposed multi-category pattern classification sys
tem. 

What we are trying to do here, is to get around of the decision making problem 

by searching for a "genuine" measure of cl88S 88SOciatioll. Ideally, it outputs a 

continuous output to indicate the likelihood of being each cl88S. CI88S 88Signment 

is purely based on one particular measure. The idea is similar to MOC, simply 

the shortest wins. But the likelihood is not measured based on distance. Rather, 

the optimal measure is searched through a very large feature space by the genetic 

search algorithm. The solution can be illustrated by Figure 6.2. 

The benefit is obvious. There is no need for dedsioll Ilu\.king. The cia ...... " 

association is measured in a one dimensional space. The likelihood of being one 

particular cl88S can be told directly by looking at the distributiolls. This will 

be demonstrated in the later section. The challenging job of fiuding such good 

features has been conveniently allocated to the evolutionary process. Certainly 

this requires a dedicated fitness measure to evaluate the goodness of each feature 

and allow those discrimination genes to emerge early. It is believed that such 

design will be particularly interesting to industry problems, where usually fast 

and effective solutions are desirable. When problem occurs, it is easy to diagnose 

and solve. Complicated classifiers might be able to perform slightly better. From 
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a cost-effective point of view, this solution has the ability to provide a direct pro\w 

to the problem and the associated classifier is far more easier to implement. 

GP is not the first time applied to multi-category pattern recognition prob

lems. Kishore et al. first use GP for c-class (c > 2) pattern classification by 

modelling c number of dual-class problems [108]. A Genetic Programming Clas

sifier Expression (GPCE) is evolved as a discriminant function for (~adl da ..... <;. A 

conflict resolution is set to resolve issue arising from multiple assigllment of da.<;s 

labels from the dual-class classifiers. A decision-making logic is implemented to 

deal with conflicts. Analogy to Kishore's method, Chien et al. employ GP to 

generate dual-class discriminant functions using arithmetic operations with fuzzy 

attributes [121] and apply Z-value measure as the objective function of GP for 

multi-category classification problems [122]. An effective discerning mechanism 

is required to integrate the results. 

The investigation of these GP-based methods reveals another benefit of OUl" 

design. Generally, for c-class pattern recognition problems, a total of (" features, 

in case of one-against-all scheme, or (~) features, in case of between-evcry-two 

scheme, are required for all the dual-class classification tasks. Then'fort,. tllt' 

running time for a c-class problem is c times or even (~) times the single run. 

As an evolutionary algorithm, GP is very computationally intensive. Usually, it 

requires many thousands of runs for a good solution to emerge. A method of 

step-wise learning to design a multi-tree classifier, which consist:; of c trees for 

c-class pattern classification using only a single run of G p, has b('{'n proposed 

in [123,124]. Under our design, only one run is required for any multi-category 

classification problem. 

This chapter is organised as follows: Section 6.2 presents the proposed fea

ture extractor using genetic programming based on Fisher Criterion. In Section 

6.3, a number of experiments for multi-class pattern classification problems are 
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conducted. The comparison of cla."Isification performance using GP-extracted fea

tures against those by KGDA, peA, and GA is presented. Finally, based on the 

experimental results, the advantage and limitation of GP-based feature extraction 

method is concluded in Section 6.4. 

6.2 System Design 

In this chapter, a new fitness measure based on Fisher criterion is developed 

within the GP paradigm to reduce the dimensionality required to describe the 

problem and to achieve the improvement of classification efficiency. As a result 

of the design of the fitness measure, the number of required features is reduced 

to one, allowing the simple and fast implementation of classifiers. It is believed 

that this is particularly beneficial to industrial applications, where cost-effective 

solutions are desired. 

GP as a form of evolutionary algorithm is proposed as the primary method 

to extract nonlinear features based on Fisher criterion. The GP-based feature 

generator extracts the information from the real-valued parameter vector to cre

ate features based on the evolutionary algorithm. The survived features from 

the feature generator is used to provide the solution to the multi-class pattern 

recognition problems. At each stage of the evolutionary process, GP generates 

a popUlation of features. Fisher criterion based fitness function evaluates Ull' 

effectiveness of each feature in helping GP select the best solution. This ap

proach provides a solution to obtain a single tree/feature by only a single run of 

GP. In other words, the method has the capa.bility of transforming the feature 

vector with high dimensions into a single feature to reduce the computational 

complexity. 
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6.2.1 Fitness Function 

The fitness function plays a key role in the system performance. It must have 

the ability to rate the performance of each population member effectively and 

accurately. At the same time it offers the stronger candidates higher chance of 

surviving. Ideally it does not require a large amount of computation as the in

crease of population size and the number of generations slows down the evolution 

significantly. Within a fixed period of time, a slow fitness measure may provide 

excellent assessment, however only a limited number of generations have been 

reached hence the feature space may not have been fully explored. The features 

derived may be far from optimisation. To this regard, the design of the fitness 

function is realised in this work as a tradeoff between accuracy and efficiency. 

There have been some success [64, 110] in using the misc1assificatioll error I:U) 

the fitness measure for multi-class problems. As these belong to a wrapper type 

approach, the computational cost depends on the structure of the classifier in use 

and the time consumed in training and testing the data. Indeed. classification 

error is one of the best measures in terms of accuracy since the ultimate goal 

of feature extraction is to improve the classification success. However. once ef

ficiency is considered as a criterion in the evolution process, we should always 

explore broader literature for those measures providing descent accuracy as well 

as efficiency. 

In this work, a Fisher-criterion ba.<;ed fitn('.8s rnca.<;ure is d('~"igned for the ta."k. 

It tests the rate of between-class scatter over the within-class scatter for two 

adjacent classes in the histogram. Theoretically, the smaller rate, the better sep

arability of classes within the feature space. The design is detailed in the following 

text. Please note that all the calculation is conducted in a one-dimensional space, 

hence all variables are scalars because the required number of features has been 
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reduced to "one" by the feature extractor. 

For any two classes (p and q), the Fisher criterion can be defined by 

(6.1) 

where Jt and (J are the class mean and class variance respectively. 

It is well known that the Fisher criterion measures the distribution of between-

cla.ss scatter over the within-class scatter. During the evolutionary process in 

search for candidates with larger fitness values, the between-class scatter is max

imised and at the same time the within-class scatter is minimised. The treatment 

for the multi-class (c > 2) problem is more complicated by incorporating an 

individual-saturation mechanism. The evolutionary algorithm does not have the 

intelligence to take care of the simultaneous improvement of all classes. When an 

individual has a relatively high fitness value, it indicates that difference between 

any two classes is large since the magnitude of Fisher criterion value determines 

the degree of separation of two classes. 

The proposed fitness function for c-class (c > 2) can be defined in following 

steps. Given a set of individuals or trees of GP {II, 12 , ... • Ir, .... In }, when' 

n is the total number of individuals/trees in each generation and Ir is the ,·th 

individual/tree, a corresponding fitness value Fr is assigned to rth individual/tree. 

1. Loopr=1,2, ... ,n 

(a) For individual Jr , calculate the mean of samples from each class. 11.1. Jl.2 . ... ,tic 

are obtained. 

(b) Sort mean values in descending/ascending order to obtain sorted index 

i = 1,2 ... , c. 

(c) Calculate j(i,i+1) (1 ~ i ~ (c - 1» for each adjacent pair of classes 
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based on Equation (6.1). 

(d) Set Fk = 0; 

( e) Loop i = 1, 2, ... , (c - 1); 

1. If j(i,i+l) > T, Fk = Fk + 1; 

Else Fk = Fk + j(i,i+l) IT; 

End Loop i 

End Loop k 

2. Fmax = max.{Fr, k = 1, ... , n} 

3. If Fmax < (c - 1), Ir is put into the next generation. 

Else if Fmax == (c - 1), GP is terminated. 

The fitness function follows the procedure to evaluate each individual and to 

search for the best individual during the learning process of GP. The advantage 

of the fitness function is that only (c - 1) dual-class Fisher criteria values k(i+l) 

need to be calculated. The fitness function is a measure of separation, desigtwd 

in such a way that the contribution of the Fisher criterion value k(Hl) is the 

same once it is larger than a certain threshold T. 

The computational cost of this design is reduced significantly compared t.o 

the standard classifier approaches (such as MDe and kNN). The Fisher-criterion 

based fitness measure merely requires 2N sums and N multiplications. 

6.3 Experiments and Results 

In order to provide a fair and comprehensive comparison to the nonlinear fea

ture extraction method, a series of experiments are conducted using different 
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experimental data sets. This section starts with the description of the feature 

generation and experimental data collection. The GP-based feature extraction 

results using different data sets are presented. These features are later employed 

by three different classifiers, specifically MDC, kNN and MLP, to examine the 

performance under different conditions. 

6.3.1 Experimental Data sets 

In order to demonstrate the performance and robustness of above-mentioned GP

based feature generation approach, eight data sets are chosen. They are listed in 

Table 6.1, which includes the details of the number of classes for each problem, 

original feature dimensions, the number of training examples and the number of 

test examples. 

The Machine Condition Monitoring (MCM) data set is the same 88 the one 

used in Chapter 4. It is obtained by running a roller bearing machine over a 

series of sixteen different speeds and taking ten examples of data at each speed. 

This gives a total of 160 examples of each condition, and a total of 960 raw data 

examples over six conditions (IR, OR, RE, CA, NW NO) to work with. The 

experimental data are further processed by taking a simple 32 point FFT of the 

raw vibration data for each of the two channels sampled. A 66 x 960 matrix forms 

the terminator set to the GP. For each given matrix in the experimental data set, 

a corresponding target matrix is to record the actual condition of the machine. 

The Bearing Fault Detection (BFD) data set is a dual-class version of the MCM 

data set. It is only required to distinguish between normal conditions (NO, NW) 

and faulty conditions (IR, OR, RE, CA). 

The AD MR (automatic digital modulation recognition) data set is chosen from 

the domain of telecommunications. Ten data patterns are simulated, including 
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Dataset 
Number of Number of Number of examples 

Domain 
classes features training test 

Balance 3 4 313 312 Balance Scale Weight& Distance Database 
Iris 3 4 75 75 Iris Plants Database 

Lenses 3 4 11 13 Database for fitting contact lenses 
BFD 2 66 960 960 Bearing vibration data for fault detection 
MCM 6 66 960 960 Bearing conditions classification 

Lung cancer 3 56 15 17 Lung Cancer Data 
Zoo 7 16 49 52 Animal classification 

ADMR 10 17 10,000 10,000 Telecommunication 
-_._- ------- --

Table 6.1: The experimental data sets used for the evaluation of the performance of pattern recognition systems. 
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ASK2, ASK4, BPSK, QPSK, FSK2, FSK4, QAM16, V29, V32 and QAM64. 

The details of the data generation is addressed in [74]. For this experiment, 

each modulation scheme provides 1000 examples. The modulated signals are 

then added with white Gaussian noise, giving SNR at -5 dB. Combining the 

5 spectral features and 12 statistical features, three 17 x 10000 sets of data are 

obtained for training, validation and testing purposes. Because this ADMR is 

synthesised, it will be only used for feature extraction experiment to demonstrate 

the idea. It will be not used for any further classification task. 

The other six data sets listed. in Table 6.1 are openly available from the public 

domain. They cover a spectrum of different problems. Five data sets are chosen 

from the UCI (University of California Irvine) repository of machine learning 

database [119]. 

Table 6.2 lists the parameter (J and T value used in the fitness function in ead} 

experiment. Two conventional nonlinear feature extraction methods, KPCA and 

KGDA, are utilised for the purpose of comparison. 

Three classifiers, MDC, k-NN and MLP are used for the further dassificatioll 

task. Results of classification success of each experiment will be compared. 

6.3.2 Feature Generation Results 

Figure 6.3 is presented here as examples for demonstrating the feature generatoo 

by GP for the MCM data. Figure 6.3 illustrates the feature-processed data. There 

are altogether 960 examples from six conditions with 160 examples for each cl888. 

It is extracted by the GP-based. feature extractor with a population size of 100, a 

maximum tree depth of 15 and the threshold t = 4.5. It can be seen from Figure 

6.3 that six conditions are well separated from each other by a single GP feature 

derived. from the original set. Figure 6.4 illustrates the histogram of the sample 
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Dataset 
KPCA KGDA GP 

No. of features Value of (j No. of features Value of (j No. of features Value of t 
Balance 2 15 2 15 1 15 

Iris 2 5 2 100 1 4 
Lenses 3 4.5 2 5 1 15 
BFD 1 8000 1 5000 1 50 
MCM 5 230000 5 20000 1 4.5 

Lung cancer 2 7 2 4 1 5 
Zoo 6 3.5 6 5 1 50 

Table 6.2: The (c-l) features extracted by KPCA, KGDA and the single feature generated by GP, and the value of parameter 
(j of KPCA and KGDA, t value of GP in all the experimental data sets 
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Training data 
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o 100 200 300 400 500 600 700 800 900 

Validation data 
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30 ·· ···· . 

20 ... . .. . ...... . . 

10 ............ ,. 
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Test data 
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30 

20 

C""! . ...... ....... J.J. . . """""~':-' .... . ................... . 
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Figure 6.3: Example of GP generated feature using MCM data s t . (for simplicity, 
the value of the feature output is unit-less as the actual unit will vary for a h 
feature due to the tree structure.) 

data. 

For ten digital modulation schemes, one non-linear £ atur is gen rated at 

each SNR. Those features are extracted by GP with a population size of 100, a 

maximum tree depth of 15 and the threshold T = 4.5. There ar altogeth r 10, 000 

examples with each modulation providing 1, 000 examples. Figur 6.5 illustrates 

the distribution of values of the feature extracted by GP for ten modulation types 

at SNR = - 5 dB. It can be seen from Figure 6.5(b) that class 1 to 6 are well 

separated even though this is not clearly visible from Figure 6.5(a). Figure 6.6 

illustrates the histogram of the feature output. This experiment is repeated by 
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Figure 6.4: The histogram of GP gen rat d feature for M M data set. 
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generating a new feature by GP and similar level of distribution in the results are 

obtained. 

6.3.3 Classification Results 

A number of experiments are carried out to evaluate the discrimination ability of 

features generated by GP. In these experiments, MLP, I-NN and MDC classifiers 

are utilised to examine the ability of different features generated by GP and 

other nonlinear feature extraction methods (KPCA and KGDA). A Gaussian 

kernel k(x, y) = exp( -llx - Yll2 /2(12) is employed in KPCA and KGDA to extract 

(c -1) features based on each set of original features. Tables 6.3, 6.4 and 6.5 show 

comparisons of the best classification results of MLP, I-NN and MDC respectively 

using different feature sets including original features, (c - 1) KPCA extracted 

features, (c - 1) KGDA-extracted features and one GP generated feature. 

All the experiments involving the GP-based feature extractor or MLP classifier 

are repeated 50 times to account for the randomness in the systems. The best, 

average and standard deviation of the classification success rates are calculated 

to represent the overall performance of each system. 

Table 6.3 demonstrates the comparison of the best cla.,",sification results using 

KPCA and KGDA extracted feature sets and one GP generated feature as the 

input of an MLP on seven data sets. The results show that the feature generated 

from the GP algorithm offers the highest classification success, both in averaged 

and the best results, compared with other nonlinear feature extraction algorithms 

for all data sets. For the fault detection problem in BFD data set, the average 

classification accuracy of using the feature extracted by KGDA is 99.6%. 

The classification accuracy, when using original feature sets as the input to 

an MLP, is comparable to that using the feature set extracted by KPCA. 
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SNR=-5dB Training data 
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(b) The distribution of the first six modulation s h mes with a lose-up 
range on y axis. 

Figure 6.5: The output value of the GP evolved feature for the automatic re ogni
tion of ten digital modulation schemes, specifically, A 1<2 ASK4, BPSK QPSK, 
FSK2, FSK4, QAM16, V29, V32 and QAM64, with SNR=-5dB (for simplicity, 
the value of the feature output is unit-less as the actual unit will vary for each 
feature due to the tree structure.) 165 
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Figure 6.6: The histogram of GP generated feature for the automatic recognition 
of 10 digital modulation schemes. 
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It can be seen from Table 6.3 that KGDA/MLP performs better than the 

original features with MLP on BFD and lung cancer data sets. For the ani

mal classification problem and fitting contact lens problem, original features and 

KGDA-extracted features achieve similar success. Remarkably GP-generated fea

ture with MLP performs best on these data sets with the largest improvement of 

over 17% cla.'isification success compared to the original fcaturcs. 

In Table 6.4, kNN is used to evaluate the performance of features generated by 

different algorithms (KPCA, GDA and GP). Table 6.4 presents the classification 

accuracy obtained by different feature sets generated by GP and other kernel 

feature extraction methods using the kNN classifier employed to examine the 

performance and robustness of GP-based feature extraction approach. Note that 

only the GP-based system has randomness in terms classification success, hence, 

average, the best and standard deviation of the results in repeating experiments 

are presented in the table for the GP-based system. 

It can be seen from Table 6.4 that the classification accuracy is the lowest 

among all pattern recognition systems when original features are used as the 

input to the kNN classifier for both the Balance and Lenses data sets. For the 

animal classification and bearing condition classification (dual and six) problems, 

the KPCA + kNN system does not achieve any improvement compared to that 

using the original feature sets with kNN. Moreover, single GP feature as the input 

to the kNN achieves the best classification success compared to other pattern 

recognition methods, with the largest improvement of over 21. 7% compared to 

that achieved by original features in Lenses data set. 

To further examine the dimensionality reduction capability of the proposed 

method, MDC as a simple classifier is employed for seven different classification 

problems. In these experiments, the same group of feature sets prepared by 

different feature extraction algorithms (KPCA, KGDA and GP) are used as the 
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Dataset 
Orig. feat./MLP (%) KPCAjMLP (%) KGDAjMLP (%) GPjMLP (%) 

Diff. * Best Avg. Std. Best A vg. Std. Best Avg. Std. Best Avg. Std. 
Balance 84.9 72.4 4.28 84.3 79.7 3.2 79.8 73 3.3 98.4 90.7 4.3 13.5% 

Iris 96.0 90.6 10.1 97.3 92.3 7.3 94.7 91.0 6.9 100 95.9 8.3 2.7% 
Lenses 84.6 54.9 19.1 61.5 45.9 8.7 84.6 58.8 17.9 100 81.9 10.6 15.4% 
BFD 97.0 96.7 2.4 84.4 82.8 1.1 100 99.6 3.8 100 99.8 0.3 0 
MCM 97.0 87.2 8.7 86.9 72.8 15.1 94.6 80.8 18.7 99.9 96.4 1.2 2.9% 

Lung cancer 66.7 43.0 11.1 64.7 50.8 5.7 82.4 42.3 11.1 100 54.6 20.5 17.6% 
Zoo 98.1 87.8 10.3 96.2 86.0 9.3 98.1 89 10.2 98.1 85.5 10.8 0 

- I...-~ 

Table 6.3: The best classification accuracy (%) using original features, (c - 1) KPCA-extracted features, (c - 1) KGDA
extracted features and one GP-generated features respectively, with a MLP classifier on all the experimental data sets. 
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Dataset 
Orig. feat./kNN KPCA/kNN KGDA/kNN GP/kNN Difference * 

Best classification accuracy (%) Best ('Yo) Average (%) Std. (%) 

Balance 65.7 71.5 77.9 97.4 89.4 5.7 19.5% 
Iris 94.7 96.0 94.7 97.3 97.3 96.1 1.3% ! 

Lenses 38.5 46.2 69.2 90.9 73.9 11.4 21.7% 
BFD 99.2 79.7 100 100 98.7 0.4 0 
MCM 98.4 85.7 92.8 99.9 96.2 1.5 % 

Lung cancer 52.9 58.8 47.1 60.0 51.3 10 1.2% 
Zoo 94.2 88.5 94.2 98.1 93.1 3.4 3.9% 

------ -

Table 6.4: The best classification accuracy (%) using original features, (c - 1) KPCA-extracted features, (c - 1) KGDA
extracted features and GP-generated features respectively, with a kNN classifier on all the experimental data sets. 
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inputs to the MDC. 

Table 6.5 illustrates the classification results of MDC using original features, 

KPCA extracted features, KGDA extracted features and a single GP-generated 

feature. From Table 6.5 it can be seen that the classification accuracy using the 

features extracted by KPCA and KGDA with MDC classifier is lower than that 

using original feature sets with MDC in almost all data sets, except BFD and zoo 

data sets. For the BFD data and zoo data sets, KGDA features outperform the 

original features. The overall conclusion is that GP generated feature with MDC 

performs the best on these data sets, with the largest improvement of over 11% 

compared to original feature in BFD data set. 

In order to provide a fair comparison, Table 6.6 lists the results from the other 

researchers using the same data sets, but different pattern recognition systems. 

The first column is the data set in use. Column two and column three list the 

different pattern recognition systems used by different researchers and their best 

results. The last three columns present the classification success achieved by the 

GP-based systems. 

The classification result of using "Balance" data set was obtained by using a 

REFNE (Rule Extraction From Neural network Ensemble) approach proposed by 

Zhou et. al [125]. A neural network ensemble is a set of neural network models 

taking a decision by averaging the results of individual models. REFNE utilises 

the trained ensembles to generate instances and then extracts symbolic rules 

from those instances, thus breaks the ties made by individual neural networks in 

prediction. The highest success is achieved at 93.6%, which is 0.3% higher than 

that using GP /MDC, 4.8% lower than that using GP /MLP and 3.8% lower than 

that using GP /kNN. 

When a simple quantum neural network (QNN) [126] is in use, the classifica

tion result for "Iris" data set is 98.2%. This simple QNN operates pretty much 
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Dataset 
Orig. feat.jMDC KPCAjMDC KGDAjMDC GPjMDC Difference * 

Best classification accuracy (%) Best (%) Average (%) Std. (%) 

Balance 84.3 72.1 67.6 93.3 88.2 5.4 9% 
Iris 97.3 89.3 94.7 97.3 96.6 0.7 0 

Lenses 72.7 46.2 69.2 84.6 72.6 6.9 11.9% 
BFD 66.6 71.2 100 100 98.2 0.4 0 
MCM 97.1 70.9 93.2 99.7 95.7 4.3 2.6% 

Lung cancer 47.1 58.8 47.1 66.7 58.7 5.3 7.9% 
Zoo 84.6 80.8 94.2 98.1 93.4 3.1 3.9% 

Table 6.5: The best classification accuracy (%) using original features, (c - 1) KPCA-extracted features, (c - 1) KGDA
extracted features and one GP-generated features respectively, with a MDC classifier on all the experimental data sets. 

~ 
~ 
'i::J 

~ 
~ 

?> 

~ 

~ 
~ 
~ 
~ 
C) 

~ 
~ 
~ 

~ 
~ 
is:: 
~ 
!:j , 

~ 
~ 

~ 
~ 
o 
~ 
~ 
tIi 



CHAPTER 6. SINGLE FEAT. GENERATOR FOR MULTI-CLASS PROBLEMS 

like a classical ANN composed of several layers of perceptrons, except that the 

output of each percepton is binary. If the sum of the input nodes is above a 

threshold, the node goes high, otherwise it stays low. The network as a whole 

computes a function by checking which output bit is high. There are no checks to 

make sure exactly one output is high. This allows the network to learn data sets 

which have one output high or binary-encoded outputs. Using this simple QNN 

classifier, the classification result for "Lenses" data set is 98.5%. Both of them 

are lower than that using GP /MLP, and higher than that using GP /MDC and 

GP/kNN. The classification accuracy obtained by using GA/MLP [1] for bearing 

fault detection and condition monitoring is the same as that using GP methods. 

For the classification of lung cancer data, a MDC on the optimal discriminant 

plane [127] is constructed with the ability to handle small number of data sam

ples. The idea of optimal discriminant plane is to use the generalised eigenvectors 

solved by means of SVD perturbation as the optimal discriminant directions. By 

doing this, high performance classifier can be const.ructed on the discriminant 

plane in the case of a small sample size. The classification success for the lung 

cancer data is achieved at 100%. For the Zoo data set, a SVM classifier is con

structed and achieves 97% classification success. 

6.4 Conclusion 

It is now clear from Figures 6.3 and 6.5 that the single feature obtained from our 

proposed method scatter the class distribution into non-overlapping groups in the 

chosen data sets. The clusters belonging to different conditions are well separated 

within a one dimensional feature space. This achievement is interesting as it pro

vides the direct knowledge about the problem at hand and effectively reveals the 

distributions due to different classes. By setting thresholds at those local minima , 
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Dataset 
Best classification accuracy (%) 

Pattern recognition systems for comparison GP + MDC GP + k-NN GP + MLP 
Balance REFNE [125] 93.6 [125] 93.3 97.4 98.4 

Iris Quantum Neural Networks [126] 98.3 [126] 97.3 97.3 100 

t--
Lenses Quantum Neural Networks [126] 98.35 [126J 84.6 90.9 100 

~ BFD GA/MLP [79] 100 [79J 100 100 100 
MCM GA/MLP [128J 100 [128] 99.7 99.9 99.9 

Lung cancer Optimal Discriminant Plane/MDC [127] 100 [127] 66.7 60.0 100 
Zoo SVM 97 [129] 98.1 98.1 98.1 

---

Table 6.6: The classification success achieved by other pattern recognition systems using the seven data sets. 
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it does not require a sophisticated classifier to tell the cla.·.;s labels. Thanks to 

the fitness scheme designed in Section 6.2.1, the patterns of classes arc evenly 

distributed. We do not see extremely condensed distributions or sparse distri

butions, which may require the construction of complicated classifier for class 

separation. Thus under such feature extraction scheme no computationally com

plex classifier is required for suceessful elassifieation. Instead, simple thresholds 

will be sufficient for the task. 

Summarising all the results obtained from different approaches for the pat

tern recognition problem based on seven different data sets, GP-based approach 

exhibits accurate and reliable performance throughout all experiments with the 

chosen data sets. It is observed that GP is not only capable of reducing the 

dimensionality, but also achieving an improvement in the classification accuracy. 

Using the single feature generated by GP leads to the improvement of classifica

tion accuracy and robustness, compared with other sets of features extracted by 

KPCA and KGOA. 

There have been some earlier attempts [64,110] to use GP to generate features, 

using classification success rate as the fitness values for multi-category classifica

tion problems. As these belong to a wrapper type approach, the computation for 

training a classifier for each individual is expensive. 

In the earlier chapter, GP has been used to generate new features in a stand

alone manner, where multiple features were generated as opposed to a single 

feature and their fitness function is different from the fitness function in this ap

proach. One of the major advantages of the approach in this chapter is that only 

one feature is required to solve the multi-class problems. What has been observed 

is that, during the evolutionary process, different classes appear to distribute very 

well in almost a non-overlapping manner. Consequently there is no need for a 

complicated classifier. Instead one can use a MOe or simply set thresholds. 
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For multidimensional pattern recognition problems, generally there is a re

liance on the classifier to find the discrimination information from a large feature 

set in case of stand-alone MLP, or a well-chosen feature set in case of GA/MLP. In 

this chapter, a GP structure is proposed for multi-class nonlinear feature extrac

tion problem based on Fisher criterion. The framework presented here enables the 

transformation of information contained in the data during an iterative process. 

Hence, the learning machine is able to learn directly from the data in the same 

way as conventional methods (such as FLDA and PCA), but under an evolution

ary process. Under this framework, effective feature extraction can be achieved 

without the explicit knowledge of probabilistic distribution of data. 

Although KPCA and GDA achieve similar classification success as GP /MDC 

in vibration data, the combination of GP and MDC is more cost-effective as it 

only requires one feature and a simple classifier. Furthermore, GP is less computa

tionally demanding compared with GA for feature selection. While GA/MLP [1] 

takes a couple of days to work out a solution, GP achieves a similar level of 

success in only a few hours. The proposed method requires comparatively less 

computation, since it does not contain wrapper type classifier-based fitness mea-

sure. 

From the different experiments presented in this chapter, it is demonstrated 

that the proposed GP framework performs reasonably well (either the best or 

equally the best). The classification success in these data sets are among the 

highest. It is an efficient learning tool by combining different nonlinear functions 

to transform useful information into a one dimensional feature space, in which 

the characteristic of each class is given a prominence. Compared with other GP

based methods which need c GP-trees [108,109,123,130] to solve a c-class (c > 2) 

pattern recognition problem, the approach proposed here needs only a single 

GP run to produce a single tree representative. This proves to be an extremely 
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promising start. 

6.5 Summary 

This chapter first provides an overview of feature selection/generation systems 

for multi-class pattern recognition task. A novel method based on GP for ob

taining a single feature by single run for multi-class problem is introduced. The 

GP-generated features based on the proposed algorithm exhibit discrimination 

capability. Seven experimental data set are utilised for examining the capabil

ity and efficiency of the proposed method. Furthermore, the parameters used in 

experiments are provided for seven data sets. The classification results of using 

GP-generated features, KPCA-extracted features and GDA-extracted features 

with MLP, kNN and MDC are compared over seven data sets. The advantages of 

the proposed method for multi-class pattern recognition problems are concluded 

at the end. 
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Conclusions 

In this thesis, as an important task in pattern recognition problems, feature ex

traction is addressed under an integrated framework of evolutionary computation. 

This design benefits from the learning ability of the evolutionary algorithms, as 

well as the low computational demand of statistical analysis to the problem. It 

is believed that this realisation has the advantage of going through a relatively 

large number of generations within a reasonably short period of time. Hence good 

quality features can be obtained quickly under such configuration. 

In Chapter 2, a literature review is conducted to cover the available feature 

extraction methods and classifiers. Their strength and limitations have been 

addressed and analysed, in order for a fair comparison with the mainly pro

posed method in this research. Inspired by the biological evolution process, the 

feature extraction task in this research work has been addressed under an in

tegrated framework of genetic programming and statistical analysis. In order 

to cover different scenarios in practical applications, three genetic-programming 

based feature extraction systems are designed and developed for the dual-class 

and multi-class pattern recognition problems. First, a multi-feature system for 

multi-class problem is designed and tested using different data sets. Second, a 
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multi-feature system for dual-class problem is developed and tested. Finally, a 

single-feature system is constructed for the multi-class problem and tested using 

various data sets. 

7.1 Discussion & Remarks 

In the following text, issues concerning the construction and testing of the genetic

programming based approach will be addressed and conclusions will be drawn 

upon important system parameter settings and choice of design for different prac

tical applications. 

Principal component analysis, as one of the most straightforward feature ex

traction/ dimensionlity reduction methods, is still a popular approach for unsu

pervised problems. For supervised problems, Fisher linear discriminant analysis 

provides an essential analysis to the statistical data distribution. Variations of 

linear discriminant analysis, such as the alternative Fisher linear discriminant 

analysis and the eigenvector-based heteroscedastic linear discriminant analysis, 

are equipped with improved separability. 

The advantage of the linear algorithms is the fast analytic solution to the 

problem. However, the limitation of these methods becomes obvious in the data 

with nonlinearity. Kernel functions are introduced to handle the nonlinearity. 

After the transformation of the kernel matrix, the data are mapped into a new 

space, in which the linear features are capable of separating data patterns. The 

kernel versions of above-mentioned feature extraction methods are called KPCA 

and KGDA respectively. 

The involvement of evolutionary computation in the feature extraction tasks 

starts from the use of genetic algorithm as a feature selection tool under the pro

cess of evolution. The algorithm benefits from the statistical behaviour of the 
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feature selection process and the searching power in a relatively large searching 

space. However, this is the first time the features are selected rather than analyt

ically combined. Unwanted information could be ignored and only the features 

with discrimination information can contribute to the classification. However, 

this GA-based design requires the classification results as the fitness measure, 

hence slows down the computation speed. 

The benefit of using genetic programming as a tool for feature extraction 

is the learning ability of the evolutionary computation. As a machine learning 

technique, genetic programming learns directly from the data and builds up the 

intelligence during the evolution process. The mathematical paradigm of genetic 

programming determines that it does not require the knowledge of statistical 

distribution of data. Hence it can be applied to many practical problems, where 

it is often difficult to obtain such information. The design of a fitness measure 

guarantees that once a certain level is reached, the quality of the feature will 

never drop below that level. Another motivation for using genetic programming 

is the significant advance of the computing power of modern computers. It is very 

possible to undertake a complicated computing job in a home personal computer, 

which can only completed by a main frame computer 10 years ago. 

Theoretically, classification result is the best measure for the fitness as the 

ultimate goal is to conduct classification. Within a fixed period of time, a slow 

fitness measure provides excellent assessment, however only a limited number 

of generations have been reached hence the feature space may not have been 

fully explored and the feature may be far from optimised. It has been concluded 

from this research that the fitness function is best designed as a tradeoff between 

accuracy and efficiency. 

In this regard, a Fisher-criterion based fitness measure is designed for the task 

of ranking the candidates during the evolution process. By testing the rate of 
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between-class scatter over the within-class scatter, the separation ability of each 

feature is quantified through primitive mathematical calculations. Compared to 

the standard classifier approaches, which usually require the order of N2 or N3 

mathematical operations (N is the number of samples), the Fisher-criterion based 

fitness measure merely requires 2N sums and N multiplications. 

In this research, there is a notable achievement in terms of elassification of 

multi-pattern problems. The single feature obtained in Chapter 6 reduces the 

dimensionality into the minimal value without losing the discrimination informa

tion in the data. Within a one dimensional feature space, the clusters belonging 

to different conditions are well separated. By setting thresholds at certain levels, 

it does not require a sophisticated elassifier to tell the class labels. Thanks to 

the fitness measure designed, the distribution of all classes are well presented to 

the classifier. Neither extremely condensed distributions nor sparse distributions 

are present in the data. Thus under such feature extraction scheme no computa

tionally complex classifier is required for successful classifications. Instead simple 

thresholds will be sufficient for the task. It is believed that this model will be 

attractive for industrial applications, where the most cost-effective solutions are 

desired. 

A series of experiments have been conducted using various data sets to eval

uate the performance of the three GP-based feature extraction systems. Ex

perimental results demonstrate the superior capability of the GP-based feature 

extractor for independently identifying features from the raw data. Compared to 

classical feature extraction methods, this approach provides better accuracy in 

the classification results as well as the robustness over different classifiers. Overall 

results covering three systems prove an extremely promising design for solving 

practical feature extraction problems. 
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7.2 Future Work 

In this thesis, a series of linear feature extraction algorithms have been investi

gated, such as FLDA, PCA, A-FLDA and nonlinear feature extraction algorithms, 

such as KPCA, GDA. A linear feature extraction algorithm: Modified FLDA and 

three GP generation algorithms are proposed to overcome the limitation of ex

isting algorithms. This research first utilises genetic programming together with 

Fisher criterion analysis for the feature extraction tasks. The feature generation 

algorithms are developed based on the GP structure for dual-class and multi

class classification problems. All the algorithms demonstrate the capability of 

feature generation and dimensionality reduction in various pattern recognition 

experiments. The experimental results show that the classification performance 

is improved using features generated by GP. 

There are quite a few interesting topics raised during the research work, that 

might be worth further examination. One example is to utilise other statistical 

analysis for the design of fitness function. In addition, the tree structure of the 

genetic programming paradigm can have more variations. In this research, the 

chromosome has only one output. Designing a multi-input multi-output tree 

structure to represent the chromosome will be an interesting task in order to 

improve the feature efficiency. 

In this research, we only focus on the feature generation rather than GP 

structure or operations themselves for improving the efficiency. It is a valuable 

research issue to improve the performance and reduce the computa.tion cost by 

developing new genetic operations. 

Another interesting area. is the application to image processing. As it is well 

known that machine learning methods demand significant computations, in par

ticular for image processing problems, where usually a huge number of features are 
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calculated for the optimisation. It will be very useful to simplify the genetic pro

gramming computation structure and improve the capability for handling large 

quantify of data for computation. 
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