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Chapter 1 

Introduction 

Much work in the design of multi-agent systems (MAS) [158] has focused on the de­
sign and engineering of individual agents; for example, the problems of designing and 
implementing effective trading strategies for agents participating in e-commerce mar­
ket places, or the design of effective learning algorithms for adaptive agents. However, 
increasingly attention is being turned to the design of the infrastructure, or the envi­
ronment, underlying the interactions between individual agents in a MAS; for example, 
the problem of designing rules governing the operation of an e-commerce market in­
stitution, or the design of interaction protocols governing agent argumentation. The 
justification for the latter approach is that often as MAS designers we are responsible 
for engineering open systems, in which we do not have control over the exact behavior 
of the agents connecting to our system; these agents are, after all, autonomous. Rather, 
we build a set of standards and protocols with which our agents are free to interact, 
and if we have designed our infrastructure robustly, the system as a whole will ex­
hibit our desired design properties despite the fact that it consists of possibly millions 
of autonomous agents interacting with each other in ways we have not prescribed in 
advance. 

Such systems are known as self-organising complex systems (socs) [64] I. Exam­
ples of such systems are market places, ecosystems, nervous systems, neural networks, 
co-evolving systems, and of course, multi-agent systems. They are complex, in the 
sense that they consist of many parts with many interactions between them and ex­
hibit non-linear, hard-to-predict behaviour, and they are self-organising in the sense 
that macro-level stabilities emerge despite the underlying complexity. As an example, 
consider a stock market consisting of hundreds of thousands of traders. Each trader 

I The precise definition of a self-organising complex system is highly contentious, and there are many 
to choose from [55]. There is a particular sub-elass of socs that exhibit a property called self-organised 
criticality [4], meaning that the attractors of the system lie on critical points (eg phase transitions) between 
order and chaos. It is suggested that the long-tail distribution of time intervals between events such as 
market crashes in the business cycle are due to criticality [81, 88]. However, for the purposes of this thesis 
the property of self-organised criticality is not considered the essential defining feature of a self-organising 
system or a market. Nevertheless the analysis and methods introduced in this thesis do not preclude chaotic 
dynamics or Critically-poised behaviour. We will return to this discussion in Chapter 8. 



2 CHAPTER 1. INTRODUCTION 

is an autonomous agent, free to trade using whatever strategy they want. Individual 
prices at any given time are determined by the trading behaviour of all of other agents 
trading in the market; thus the actions of each agent can potentially influence all other 
agents; there are many interactions between the components of the system. Many as­
pects of the market's behaviour are chaotic or hard to predict, for example the price of 
an individual stock, or the profits of an individual trader. Yet despite this complexity, 
the variables that the stock-market "designer" is interested in, for example the overall 
market efficiency, remain at consistently satisficing values. Additionally, such systems 
are robust to exogenous perturbation; for example, after the stock market has been sub­
jected to a shock, such as a market crash, the system eventually settles back into a state 
in which the design variables, for example market efficiency, are held at desirable val­
ues despite the fact that there is no explicit top-down control mechanism for achieving 
this. Such self-healing or homeostatic behaviour is typical of socs in general. These 
systems possess state-space dynamics with attractors and stable states (also known as 
equilibria) that lead the system to homeostatic states- that is, states in which our design 
variables are maximised or held within desirable ranges. 

As designers of a multi-agent system, we are therefore tasked with ensuring that 
the complex system embodied by our MAS possesses attractors or equilibria in which 
our design objectives are met. But how can we affect the dynamics of our system if we 
are not allowed to prescribe the behaviour of individual agents - what free variables 
are at our disposal? The answer, of course is outlined above; in MAS design prob­
lems we typically have some control over the environment or infrastructure in which 
third-party agents interact. This can take the form of, for example, rules governing an 
auction mechanism, or the protocols used by agents for argumentation. Small changes 
in these rules or standards can have dramatic effects on the behaviour of the agents 
using these rules, and can radically alter the underlying dynamics of the system in sur­
prising ways. By altering the underlying dynamics, we are sometimes able to adjust 
the system so that the stable states of the system exhibit the homeostatic properties we 
desire. For example, in a market-design context, by tweaking the rules of the market, 
we are sometimes able to design systems in which optimal allocative-efficiency is an 
emergent stable macro-property of the system. .. 

Economists have studied similar design problems in the context of auction theory 
[80] and mechanism design [122, p. 640] [142]. In a mechanism design problem, the 
task of the designer is to choose the rules of the auction in such a way that the de­
signer's objectives are met when agents play their optimal strategies. One of the main 
difficulties in solving this problem is computing the optimal strategies, as the best strat­
egy to play depends on what strategies are being played by other agents; the number 
of agents can vary significantly, and the strategy space can be very large. The standard 
technique is to view each possible set of auction rules as defining a particular game, 
and then to use game theory to "solve" this game by finding the set of strategies com­
prising a Nash equilibrium of the game - the set of strategies that are best responses 
to each other. For many scenarios, especially for single-sided auctions comprising a 
single seller and multiple buyers, auction theory and mechanism design yield clear-cut 
results. However, in the general case the problem is analytically intractable, especially 
when it comes to analysing double-sided auctions, also known as exchanges, in which 
we allow multiple sellers as well as multiple-buyers. In the next section I shall describe 
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our motivation for studying double-sided auctions. 

) 

1.1 Exchanges & their theoretical significance 

A double-auction mechanism is a generalization of an auction in which there are mul­
tiple sellers as well as multiple buyers, and both buyers and sellers are allowed to 
exchange offers simultaneously. Since double-auctions allow dynamic pricing on both 
the supply side and the demand side of the marketplace, their study is of great impor­
tance, both to theoretical economists [77], and those seeking to implement real-world 
market places. On the one hand, economists who are interested in theories of price 
formation in idealized models of general markets have often turned to exchange-like 
models such as Walrasian tatonnement, to describe and understand the price-formation 
process [17], and on the other hand, variants of the double-auction are used in large 
real-world exchanges to trade commodities in marketplaces where supply and demand 
fluctuate rapidly, such as markets for stocks, futures, and their derivatives. 

However, the models of exchanges traditionally used by economists in general 
equilibrium theory are often simplified for the purposes of analytical tractability to such 
an extent that they are of scant relevance to the designers of real-world exchanges, and 
even, it is sometimes argued, of scant relevance to the theoretical modelling of markets 
[48]. For example, one important simplification often made is that the number of agents 
participating in a market is very large; this simplification allows relative market power 
and consequent strategic effects to be ignored. However, in many real-world market­
places, such as deregulated wholesale electricity markets, there may be relatively few 
competitors on one or both sides of the market. With small numbers of participants, 
general equilibrium models break down [88, p. 10] because they fail to allow for mar­
ket power, and the potential gains of strategic behavior, of participants. 

1.2 Auction Theory & Mechanism Design 

Auction theory can be thought of as an alternative approach to general equilibrium 
theory, in which we build a more sophisticated micro-model of the marketplace, and 
We use game-thoeretic techniques to analyse the rational behavior of individual agents 
faced with different pricing institutions. Whereas neoclassical equilibrium theory of­
ten abstracts away from the details of individual agents, game-theoretic models allow 
economists to build sophisticated micro-models of individual agents' reasoning and 
preferences. In many scenarios, especially in analyzing single-sided monopoly mar­
kets, these models have been spectacularly successful to the extent where they have 
been directly applied to the design of real-world auctions for high-value government 
and corporate assets [76]. However, in other practical scenarios, especially when it 
comes to analyzing and designing double-sided markets, such as exchanges, there are 
still a number of problems with the theory, which we shall briefly review. 

Auction-theorists typically analyze a proposed market institution by defining a set 
of design objectives, and then proceed to show that these design objectives are brought 
about when rational agents follow their best strategies according to a game-theoretic 
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analysis. The task of choosing the rules of the market institution so that these objectives 
are brought about is called mechanism design. The typical design objectives considered 
by mechanism designers are2

: 

Allocative efficiency: The outcome of using the mechanism should be optimal in 
some defined sense, for example, the total surplus generated should equal the 
available surplus in competitive equilibrium. 

Budget balance: No outside subsidy inwards or transfers outwards are required for a 
deal to be reached. 

Individual rationality: The expected net benefit to each participant from using the 
mechanism should be no less than the net benefit of any alternative. 

Incentive compatibility: Participants should not be able to gain an advantage from 
non-truth-telling behavior. 

In many applications, auction-theory demonstrates the existence of market mechanisms 
that satisfy all of these properties when agents follow rationally prescribed bidding 
strategies. However, the impossibility result of [94] demonstrates that no double-sided 
auction mechanism can be simultaneously efficient, budget-balanced and individually­
rational. Moreover, many of the underpinnings of the theory assume that designers' 
interests are restricted to only the aforementioned properties. For example, the rev­
elation principle [80, p. 62] states that, without loss of generality, we may safely 
restrict attention to mechanisms in which agents reveal their types truthfully. How­
ever, this result does not take into account the potential cost or other practicalities of 
polling agents for their type information. Once minimizing the cost of revelation is 
introduced as a design objective, the revelation principle ceases to hold, because there 
may exist partial-revelation mechanisms with non-truthful equilibria which sacrifice 
incentive-compatibility for expedience of revelation. This is of more than academic 
interest, since in real-world electronic exchanges it is rarely possible to poll all agents 
for their valuations before clearing the market; hence the continuous double-auction, 
in which we execute the clearing operation as new offers arrive, thus increasing trans­
action throughput at the expense of incentive-compatibility. 

In designing market places, as with any other engineering problem, we often need 
to make such tradeoffs between different objectives depending on the exact require­
ments and scenario at hand. We can often satisfactorily solve such multi-objective 
optimisation problems, provided that we have some kind of quantitative assessment of 
each objective, yet classical auction-theory provides only a binary yes or no indica­
tion of whether each of its limited design objectives is achievable, making it extremely 
difficult to compare the different trade-offs. 

Further complications arise when we attempt to use auction-theory to analyze ex­
isting ("legacy") market institutions. Exchanges such as the London Stock Exchange3 

have been in existence far longer than game-theory and auction-theory, thus, unsurpris­
ingly, the original rules of the institution were not necessarily based on sound game­
theoretic or auction-theoretic principles. Moreover, it is unrealistic to expect that core 

2r will give more formal definitions of these desiderata in Chapter 3 
3http://www.londonstockexchange.com/ 
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financial institutions such as these radically alter their rules overnight in response to 
the latest fashionable developments in auction-theory or game-theory. Rather, it may 
be more salient to view financial institutions evolving gradually and incrementally in 
response to a changing environment. Similarly, agents participating in these institutions 
do not necessarily instantaneously and simultaneously adjust their trading behavior to 
the theoretical optimum strategy; for example, adoption of a new trading strategy may 
spread through a population of traders as word of its efficacy diffuses in a manner akin 
to mimetic evolution.4 Thus, we may think of the institutions we see today as the out­
come of a co-evolutionary adaptation between financial institutions on the one hand, 
and trading strategies on the other. 

The issue of legacy institutions has ramifications for mechanism design; in these 
contexts the choice of adjustments to the auction rules may be tightly constrained by 
existing infrastructure, both physical and social; thus it may be necessary to examine 
the attainability of equilibria under the new design given existing strategic behavior in 
the legacy design. Classical auction theory relies on classical game-theory which in 
turn says nothing about the dynamics of adjustment to equilibrium. 

For such applications, we need to turn to models of evolution and learning in strate­
gic environments; models that we collectively categorize under the banner of evolu­
tionary game theory. Models oflearning and evolution as applied to agents' strategies 
are not new. Where my approach differs, however, is in the application of models of 
learning and evolution to the market mechanism itself, a new field I call evolutionary 
mechanism design. 

1.3 Thesis outline 

In this thesis I introduce an iterative methodology for carrying out evolutionary mech­
anism design. The broad outline of the methodology is as follows. We start with an 
initial set of auction rules comprising a mechanism f.1" in which we observe a set oftrad­
ing strategies S. All of these are refined iteratively in response to direct observations of 
the real life marketplace (in vivo analysis), as well as forecasts based on simulation and 
game-theoretic analysis (in vitro analysis). The method is outlined by the pseudo-code 
on page 6: we start by performing an analysis of our initial strategies to see if there are 
hitherto un analysed strategies that might upset the status quo (step 2); we then publicise 
our analysis to participants and update our analysis based on observations of the real 
market (steps 3 to 5); and finally we choose new mechanism rules that maximise our 
design objectives based on our current analysis of the market (step 7) before iterating 
the design cycle. 

In the rest of this thesis I will define the various steps of this method in detail, and 
provide a empirical validation that it is both computable and effective. The outline is 
as follows. In Chapter 2, I survey the existing work that I draw upon. In Chapter 3, 
I define the space of mechanisms f.1, that will be analysed, and explore some of the 
difficulties that arise when using conventional analytical techniques to assess the prop­
erties of these mechanisms. In Chapter 4, I discuss the space of strategies S . Given 

4The adoption by derivatives traders of the Black-Scholes equation for option pricing provides an example 
[84]. 
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input : A set of initial heuristic strategies 8, and a legacy mechanism J.L 
1 repeat 
2 8 <- FiSH+ (8, J.L); 
3 publicise 8 to participants; 
4 X <- frequency of each strategy observed in vivo; 
5 8 <- 8 u {strategies observed in vivo } ; 
6 A <- space offeasible variants of J.L; 
7 J.L <- arg maxl1*EA EvaluateDesignObjectives{J.L*, 8, x); 
8 implement rules defined by J.L; 
9 until forever; 

Algorithm 1: Evolutionary mechanism design 

the difficulties of a purely analytical approach in assessing the properties of strategies 
and mechanisms, in Chapters 5 and 6 I introduce and validate a framework for simu­
lating the interaction between strategies and mechanisms in order to assess the likely 
outcome. In Chapter 7, I give a brief overview of an existing methodology called empir­
ical game-theory that can be used to combine the results of a simulation approach with 
a rigorous game-theoretic analysis. In Chapter 8, I introduce a semi-automated method 
for computing the function EvaluateDesignObjectivesO using empirical game-theory 
in conjunction with the simulation framework. In Chapter 9, I introduce the algorithm 
FiSH+, which can be used to discover a new set of strategies that are likely to be played 
given a mechanism and an existing set of strategies. In Chapter 10, I outline a method 
for computing the full optimisation function arg max

l1 
EvaluateDesignObjectivesO 

and empirically validate it with respect to a subset of the space of J.L and 8. Finally, in 
Chapter 11, I summarise my findings and discuss future work. 



Chapter 2 

Literature Review 

2.1 Economics and Artificial Intelligence 

It has long been understood that Artificial Intelligence (AI)1 has strong roots in eco­
nomics [122, p. 9]; whilst the latter is traditionally concerned with idealized models of 
agents2 interacting in realistically complex environments, the former has placed more 
emphasis on realistically complex agents interacting in idealized environments. Indeed, 
one of the pioneers of AI, Herbert Simon3 was originally motivated in much of his AI 

research by attempts to build more complex models of agents' behaviour in economic 

I For the purposes of this chapter, the definition of AI is taken from [122, p. vii]: "The main unifying 
theme is the idea of an intelligent agent. We define AI as the study of agents that receive percepts from the 
environment and perform actions". 

20fcourse, the precise definition of the phrase "intelligent agent" is itself highly contentious. The use of 
the word "agent" in an AI eontext did not enter into mainstream use until the mid 1990s. However, taking 
the perspeetive of Russell and Norvig [122], this was not because intelligent agents did not exist prior to 
the introduction of this phrase, but rather because they were known by different terminology, and because 
the emphasis prior to the intelligent-agent approach was to work on the individual components of agent 
deSign (Vision, planning, knowledge-representation, etc.) in isolation, without necessarily focusing on the 
inherent problems entailed in building a "whole-agent" architecture [122, p. 27]. However, researchers were 
still working on intelligent agents prior to 1995; whereas a planning system hooked up to a physical robot 
might have been called "an experiment in situated AI" during the 1980s, the same system might have been 
described as "an intelligent agent" in the late 1990s. Thus we will use the word agent to mean "an entity 
that receives percepts from the environment and performs actions. Each such agent implements a function 
that maps percept sequences to actions." [122, p. vii]. Since we will be sometimes be taking a decision­
theoretic perspective, we will sometimes refer to this function as the agent's decision/unction (which solves 
its decision problem). Note that humans are are compatibile with this definition of an intelligent agent (since 
we take actions in our environment in response to sequences of percepts in accordance with some yet-to­
be-formUlated function), and we shall intentionally use the phrase intelligent agent ambiguously to refer to 
both artificial and "natural" agents; the latter tying in nicely with the usual meaning of the word agent in the 
economics literature (which predates its use in computer science [91 D. However, I urge the reader not to 
take these definitions too rigidly; after all, to adapt a phrase from Shakespeare [128], an agent by any other 
name would act just as rationally. . 

3 Herbert Simon was co-winner of the 1975 Turing prize for "basic contributions to artificial intelligence, 
the psychology of human cognition, and list processing" [97], as well as winner of the Nobcl prize for 
economics in 1978, and was co-author of the first automated reasoning program [122, p. 17], the Logic 
Theorist, which was developed in 1955. 

7 
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environments (see, for example [23]). 
Whilst the broad relationships between the two disciplines were generally under­

stood from the inception of AI, it was not until the late twentieth century and the birth of 
the Multi-Agent Systems (MAS)4 [158] discipline that highly specialised theories and 
concepts were imported from economics into AI. Boutilier et al. [14] were amongst 
the first to clearly articulate the specific relationships between economics and AI. The 
particular significance of mechanism design in the context of multi-agent systems was 
first discussed in [117] and [142], as summarised by Wellman: 

"Within economics, the problem of synthesizing an interaction proto­
col via which rational agents achieve a socially desirable end is called 
mechanism design. This is exactly the problem we face in designing dis­
tributed software systems, which suggests an opportunity to exploit exist­
ing economic ideas. "[151] 

More recently the theme of incentive-engineering has been taken up in the wider 
computer-science community in contexts as diverse as information security [1], and 
computer networking: 

"If an artifact (a new congestion control protocol, a new caching scheme, 
a new routing algorithm, etc.) is demonstrated to have superior perfor­
mance, this does not necessarily mean that it will be successful. For the 
artifact to be 'fit', there must exist a path leadingfrom the present situation 
to its prevalence. This path must be paved with incentives that will moti­
vate all kinds of diverse agents to adopt it, implement it, use it, interface 
with it or just tolerate it. In the absence of such a path, the most clever, 
fast and reliable piece of software may stay just that. All design problems 
are now mechanism design problems." [104] 

2.2 The Double Auction 

This thesis focuses specifically on a particular class of economic mechanism - the 
double auction. As discussed in the previous chapter, the double auction has come 
to be recognized as an important benchmark problem, in both economics and multi­
agent systems. In particular, a landmark workshop held in Santa Fe [51] motivated 
much contemporary research in this area by highlighting the difficulty of agents' de­
cision problems in non-idealized variants of this type of marketplace, and the Santa 
Fe double-auction tournament was one of the first studies which used advanced agent­
based simulation in order to explore the properties of this mechanism [123]. To this day 
the double-auction still represents an important benchmark problem by simultaneously 
admitting of precise representations whilst stretching the bounds of both analytical 
tractability and computational brute-force. In the following I will review analytical 

4The field of MAS grew from distributed AI [37], and is principally concerned with the issues that arise 
when multiple intelligent agents interact with each other. This is in contrast to traditional AI which tended 
to focus on systems comprising a single agent. Multi-agent systems are generally harder to analyse because 
the outcome of one agent's action may depend on the action chosen by other agents. 
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and computational approaches to the agents' decision problem (traditionally the focus 
of AI), and the mechanism-design problem (traditionally the focus of economics) in 
turn. 

2.2.1 Analytical approaches 

The core of the analytic approach to agents' decision problems is based around the 
theory of n-player non-zero-sum games as formulated by John Nash [95], which I 
shall discuss in more detail in Chapter 7. Nash's insight was that in any interaction of 
preference-maximising agents whose outcome depends on the joint set of actions - that 
is, a game - any given agent has a theoretical best response to the actions chosen by the 
other agents. By applying this reasoning recursively we arrive at the concept of a Nash 
equilibrium; a situation in which every agent chooses actions that are best-responses 
to the best-responses of other agents. Nash proved that every n-player game possesses 
at least one equilibrium solution, thus providing a powerful theoretical framework not 
only for optimizing one's strategy in such an interaction (choosing a best-response), 
but also in predicting a likely combination of joint actions (Nash equilibrium). Many 
refinements have since been made to Nash's theory, some of the most important being 
Harsanyi's concept of a Bayesian-Nash equilibrium (BNE) [63], which deals with situa­
tions where payoffs are dependent on some private unobservable properties of an agent 
- the agent's type (for example, the particular cards that an agent holds in a game of 
poker), and Maynard Smith's theory of evolutionary games [86, 56] which overlays a 
dynamic model of gradual strategy-adjustment on top of the static equilibria of Nash's 
original formulation. 

Game-theory provides a very powerful general framework for solving agent inter­
actions in theory, but it was William Vickrey [143, 144] who first saw the fundamental 
economic significance of auctions and who first applied the theory of games in this 
area giving birth to modem auction theory, as summarised by Vijay Krishna in his 
comprehensive overview of the state of the art [80]. 

Auction theory provides a comprehensive theoretical framework for analysing sin­
gle sided auctions - that is, auctions with a single seller and multiple buyers. However, 
double-sided auctions - auctions with multiple sellers as well as multiple buyers - re­
main something of a theoretical oddity despite their increasing prevalence in economic 
reality. Vickrey [143] demonstrated that no double-sided mechanism could simultae­
nously achieve the incentive-compatibility, individual-rationality, budget-balance and 
efficiency desiderata. Subsequently d' Aspremont and Gerard-Varet [32] demonstrated 
the existence of a budget-balanced mechanism that was able to achieve incentive­
compatibility in Bayesian-Nash equilibrium5 at the expense of individual-rationality. 
McAfee [87] provided a formulation of a double-sided single-unit mechanism that 
admitted of a dominant-strategy game-theoretic solution at the expense of budget­
balance, and Huang et al. later refined this idea to the multi-unit case [67]. However 
Myerson and Satterthwaite [94, 127] were able to extend Vickrey's result and demon­
strated that for the case of a single buyer and seller there does not exist a mechanism 

SBayesian-Nash incentive-compatibility merely requires truth-telling as Bayesian-Nash equilibrium of 
the game, rather than the usual stricter requirement that truth-telling is a dominant-strategy. 
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that can simultaneously achieve incentive-compatibility, budget-balance, efficiency and 
individual-rationality even when the incentive-compatibility criteria is relaxed from 
dominant-strategy to BNE, and hence there is no double-sided mechanism for achiev­
ing all the usual desiderata required by auction theorists in the general case. 

Although there is no unequivocal and complete game-theoretic analysis of the 
double-auction in the general case, that is not to say, however, that double-sided mech­
anisms do not admit of game-theoretic solutions in specific instances. The first equi­
librium analysis for a double auction was that of Chatterjee and Samuelson [21], in 
the paper in which they introduced the idea of the k-double auction6, which we will 
discuss in the next chapter, albeit only for the two trader case. In this initial paper, Chat­
terjee and Samuelson show that there is an equilibrium solution, assuming independent 
private values. 

Considerable work has since been carried out extending this result. First, Williams 
showed the existence of equilibria in the buyer's bid double auction [155, 154] - this 
is an easier auction to analyse since the dominant strategy for sellers is to bid their 
true value, thus fixing one side of the..auction and, as [124] points out, ensuring that 
the market has a unique equilibrium 7• The same authors subsequently showed the exis­
tence of equilibria in the many-trader version of the k-double auction [127], at the same 
time suggesting that the modified BBDA has no equilibrium. This work was followed 
by lackson and Swinkels [70, 71], who showed the existence of equilibria, though not 
monotonic equilibria, under a wide range of conditions. Next, Reny and Perry [115] 
showed that monotonic equilibria exist if offers are restricted to discrete values, and 
Fudenberg et al. [53] showed that this result could be extended to continuous values 
(which [71] argues is "a very useful approximation ... allowing one ... to use calculus 
to characterise equilibria") provided that the auction was large. Finally, Kadan [73] 
showed that an increasing equilibrium exists for just two traders with affiliated values. 

2.2.2 Empirical approaches 

Whilst double-auction mechanisms stretch the bounds auction-theory by admitting of 
no unequivocal dominant strategy solution in the general case, the theory of games 
itself has come under scrutiny as a plausible general-purpose model of the strategic 
behavior of complex agents (human or otherwise); for example, Goeree and Holt [59] 
give an overview of ten simple games where the game-theoretic solution is easily ob­
tainable yet intuitively implausible. This has led to a re-examination of the use of em­
pirical methods in economics, whereby experiments are conducted with actual agents 
trading in a market-institution under laboratory conditions. The agents may be human, 
in which case the methodology is sometimes called experimental economics (see for 
example [75]), or more generally they may be implemented in the form of a computer­
program; Tesfatsion [139] coined the phrase agent-based computational economics 
(ACE), to describe this approach. 

6Though not under this name - they refer to the priee setting rule as a "bargaining rule". 
7Note that all results for the BBDA, the I-DA, are symmetric with those for the k-double auction in which 

the transaction price is determined by the price offered by the highest asking seller that trades, the O-DA 

[124]. 
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Experimental economics using human agents has the advantage that a large supply 
of agents are available "off the shelf' so to speak; hence not surprisingly experiments 
using human agents were among the first ACE investigations of the double-auction mar­
ket. Smith [131] was the first to study the double-auction under laboratory conditions 
using human-agents, and his results suggested that human subjects were able to extract 
close to theoretically optimal surplus from the market. 

One of the disadvantages of human-based experimental economics compared with 
agent-based computational economics is that it is not always straightforward to an­
alyze the necessary cognitive mechanisms required to achieve a particular economic 
outcome. In contrast, Gode and Sunder [58] performed one of the earliest agent-based 
experiments on the double-auction with the aim of investigating the lower-bounds on 
the amount of cognitive machinery required to achieve efficient outcomes. They were 
able to demonstrate that their minimal zero-intelligence strategies, implemented in the 
form of computer programs, were able to achieve highly efficient outcomes, suggesting 
that the double-auction mechanism was highly robust in the sense that it required min­
imal rationality on behalf of participants. Their results were not unequivocal, however; 
Cliff and Bruten [28] demonstrated that some aspects of Gode and Sunder's results 
were highly contingent on the particular distribution of agents' valuations that were 
used in the original experiments, and that a more sophisticated and robust strategy, 
zero-intelligence plus (ZIP) was required in order more accurately fit the behaviour of 
human subjects under less restrictive assumptions. 

This was not the end of the story, though, since when analysing a market mech­
anism ideally we want to demonstrate the existence of a dominant strategy, and that 
design objectives such as high-efficiency outcomes are the result of agents adopting 
this particular strategy. For example, in many single-sided auctions one of the desider­
ata usually considered is incentive-compatibility; the dominant bidding strategy should 
be to bid truthfully at one's valuation. Unless we can demonstrate that an economic 
outcome such as high efficiency is the result of agents adopting a dominant strategy, or 
at the very least an equilibrium strategy profile, we can never be sure that the strategy 
under which high efficiency is observed will not, at some point, be discarded in favour 
of an alternative strategy which yields higher payoff for its adopters at the expense of 
overall social welfare. By analogy, consider the prisoner's dilemma game [49, 9, 3]; al­
though the cooperative strategy yields the highest welfare outcome if all agents adopt it, 
this does not suffice to demonstrate that both agents will adopt the cooperative strategy 
since there will always be a temptation to choose the defection strategy. 

Thus there have been numerous attempts to craft agent-based trading-strategies 
for double-auctions that are able to out-compete other strategies: Preist and van Tol 
[112] devised a variant of Cliff's ZIP strategy that was able to trade in persistent-shout 
auctions; Gjerstad and Dickbaut (GD) introduced a trading strategy that estimates the 
probability of a bid being accepted as a function of bid price based on an analysis of 
historical market data, and then bids to maximise expected profit [57]; Todd Kaplan's 
[51] entry into the Santa Fe tournament was one of the first documented double-auction 
sniping strategies, which wait until the last minute before submitting a bid in order to 
prevent counter-bidding; Tesauro and Das [138] introduced variants of the GD and ZIP 

strategies that were able to trade in continuous-time environments; Nicolaisen et al. 
[98] used a trading strategy based on Roth and Erev's [43] reinforcement-learning [74] 
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model of human game playing to analyse a simulated electricity market; and Hsu and 
Soo [66] analysed the performance of a strategy based on the q-Iearning algorithm 
[147]. Variations on these and other strategies have been pitted against each other in 
several public tournaments designed to elicit new strategy designs from the ACE com­
munity [61, 153, 123]. Some of these strategies will be discussed in full detail in 
Chapter 4. Although some of them have advantages over others in certain situations, 
and there are pros and cons to each, there is evidence to suggest that none of them are 
dominant over the others [145], even putting aside the problem of demonstrating that 
any are dominant over the entire space of possible strategies. 

Evolutionary search 

Much of the work cited in the previous section focussed on showing that particular 
strategies yield high payoff if deployed in a market in which all agents adopt the same 
strategy homogenously. However, if we have reason to believe that none of the strate­
gies from the previous section are d01)1inant over the others when they iteract with 
each other in the same marketplace, we have no reason to believe that any single one 
of them will come to be used in a real market. Hence if we simply compute market 
outcomes by running experiments in which we equip agents homogeneously with the 
same non-dominant strategy, we are not necessarily nearer to understanding the eco­
nomic properties of the double-auction. 

Of course, it may be the case that a single dominant strategy simply does not exist 
for the double-auction game; instead, some mixture of these, or yet to be discovered 
strategies, might constitute a Nash equilibrium. That is, even though no single strategy 
is "optimal" in the sense that it is dominant over the others, some mix of these or 
other strategies might constitute best-responses to each other. If this were the case and 
our market were populated by such a mix of strategies, we might expect that such a 
state of affairs would persist in reality, since by definition if the agents were to change 
their strategy they would be worse off. Therefore the agents themselves would have an 
incentive to maintain the status quo; and thus the components ofthe system would tend 
to naturally drive the system back towards such an equilibrium. Thus if we evaluate 
the properties of the mechanism when it is in these equilibrium states, we might expect 
that our predictions for variables such as market-efficiency will be accurate for some 
reasonable duration, and if our design objectives are maximised in these equilibria we 
will have shown that our mechanism is homeostatic. 

In order to assess whether or not there are mixtures of strategies constituting equi­
libria, it is necessary to systematically evaluate the strategic interaction between the 
known strategies, as well as the space of yet to be considered strategies. Since this 
search-space is very large, exhaustive search is unfeasible. This has led researchers to 
turn to heuristic methods such as evolutionary search as a possible methods for studying 
the interaction between different double-auction strategies by systematically sampling 
the search space, e.g.: Cliff [25] used evolutionary search to explore the parameter 
space of his ZIP strategy, and Andrews and Prager used Koza's genetic programming 
technique [79] to search for a best-response to a uniform mixed-strategy of the Santa 
Fe tournament entries. Co-evolutionary algorithms [65, 2, 111] are highly promising 
in this respect. In a co-evolutionary search the fitness of individuals in the popula-
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tion is evaluated relative to one another in joint interactions (similarly to payoffs in a 
strategic game), and it is suggested that in certain circumstances the converged popula­
tion is an approximate Nash solution to the underlying game; that is, the stable states, 
or equilibria, of the co-evolutionary process are related to the game-theoretic equilib­
ria. Price [113] and Dawid [34] used co-evolutionary search to explore convergence to 
equilibrium states in the double-auction. 

However, there are many caveats to interpreting the equilibrium states of stan­
dard co-evolutionary algorithms as approximations of game-theoretic equilibria, as dis­
cussed in detail by Sevan Ficici [46, 45]. This has led to a number of refinements to 
standard co-evolutionary algorithms by incorporating game-theoretic concepts directly 
into the co-evolutionary algorithm itself[100, 47, 44]; the use of heuristic search (evo­
lutionary or otherwise) to find approximate best-response or equilibrium strategies is 
an open research topic that 1 shall return to in Chapter 9. 

2.2.3 A hybrid approach: empirical game-theory 

The various caveats discussed above with the game-theoretic, agent-based and evo­
lutionary approaches, as used in isolation, have inspired hybrid approaches whereby 
agent-based experimentation is used to build an approximate game-theoretic represen­
tation which is then solved using standard techniques from classical and evolutionary 
game-theory. This methodology is known as empirical game-theory, and it is the prin­
ciple methodology used in this thesis, as described in Chapter 7. Many studies prior to 
2000 had started to take a more principled and systematic approach to studying the in­
teraction between complex strategies in a simulation context, for example Rust, Miller 
and Palmer systematically studied convergence to equilibrium of the strategies in the 
original Santa Fe tournament using ideas very similar to evolutionary game-theory [51, 
p. 183-189]. These ideas matured within the MAS community, and a research group at 
Michigan set this kind of analysis in a rigorous game-theoretic terms: in 2002 Walsh 
et al. demonstrated the effectiveness of the technique for several bargaining games, 
including a double-auction [145]; Walsh, Parkes and Das introduced a refinement to 
the technique to concentrate the sampling of simulations on those experiments that 
were most critical to the equilibrium analysis [146]; Reeves et al. performed a game­
theoretic analysis of strategies in a market-based scheduling scenario [30] and Wellman 
et al. [152] used empirical game-theoretic analysis to help design their entrant on the 
2004 trading agent competition. 

2.3 Automated mechanism design 

Whilst the application of computational techniques to the agent decision problem has 
a comparatively long tradition, their application to the mechanism-design problem is 
more recent. The economist Alvin Roth was the first to pose mechanism-design as 
an engineering problem [118], thus paving the way for the application of engineering 
techniques to mechanism-design. Cliff [26] and myself [108, 107] were the first to 
apply ad-hoc evolutionary search to the double-auction design problem with a view to 
automating the mechanism-design process (I present my earlier work in this area in 
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Chapter 10). Meanwhile Connitzer and Sandholm [29, 126] were the first to pose the 
automated mechanism-design problem in rigorous theoretical terms and analyze the 
algorithmic complexity of the problem. Byde [19] used computational techniques to 
analyze a space of variants to the Vickrey nth-pricing rule in the context of single-sided 
auctions, and David et al. used Bayesian learning to optimize the rules of a single-sided 
auction mechanism in cases where agents are constrained to discrete bid prices [33]. 

2.4 Evolutionary mechanism design 

The central theme of this thesis is that just as choice of strategy is not a static problem, 
since agents may be constrained in their adjustment of strategy over time, neither is 
mechanism-design; mechanism designers may also be constrained in their choice of 
mechanism rules, for example there may be legacy infrastructure that prevents an insti­
tution such as a large stock exchange from radically altering its auction rules overnight. 
Just as constraints on strategy adjustment lead to evolutionary game theory, constraints 
on mechanism adjustment lead to evo7utionary mechanism-design. We might think 
of the market institutions that we observe today as the equilibrium outcome of a co­
evolutionary process not just between individual strategies, but a coevolution between 
strategy and mechanism. Peyton Young was the first economist to propose this idea 
[161], and it is a theme I shall revisit in Chapters 8 and 10. 

2.5 Summary and Contribution 

Economists have long used idealized models of agent behaviour in order to understand 
market behaviour. AI practitioners have had to adapt these models in order to build ac­
tual agents, and the resulting engineering approach to agents' behaviour requires more 
sophisticated and complex models. Similarly, it has recently been understood that the 
idealized notion of a "free" market is not always applicable, since actual markets entail 
many rules that govern their operation. Building real markets entails an engineering 
approach just as does the building of real agents. 

In this thesis I introduce several engineering methods for evolutionary mechanism 
design in the context of double-auction markets. In Chapter 8 I discuss an applica­
tion of empirical game-theory to analysing different pricing rules for a double-auction 
with particular emphasis on the applicability of this technique for legacy mechanism 
design. This work first appeared in [106]. In Chapter 9 I introduce a novel method for 
automated strategy acquisition that can be used as a method for intervening in an ex­
isting mechanism in order to perturb the equilibrium of the system back into a socially 
desirable state. This work was originally presented in [105]. Finally, in Chapter 10 I 
present one of the first attempts to use evolutionary algorithms to directly search the 
mechanism-design space, which was originally presented in [109]. 

The following is a list of my refereed publications that were published during the 
course of the research that I conducted for this thesis: 

• [105] S. Phelps, M. Marcinkiewicz, S. Parsons and P. McBurney. A novel 
method for automatic strategy acquisition in n-player non-zero-sum games. In 
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H. Nakashima, M. P. Wellman, G. Weiss and P. Stone, editors, Proceedings of 
the 5th International Joint Conference on Autonomous Agents and Multiagent 
Systems (AA.MAS 2006), pages 705-712, Hakodate, Japan, May 2006. ACM. 

• [106] S. Phelps, S. Parsons, and P. McBumey. An evolutionary game-theoretic 
comparison of two double-auction market designs. In P. Faratin and 1. A. Rodri­
guez-Aguilar, editors, Agent-Mediated Electronic Commerce VI, pages 101-114. 
Springer Verlag, 2006. 

• [107] S. Phelps, S. Parsons, P. McBumey, and E. Sk1ar. Co-evolution of auction 
mechanisms and trading strategies: Towards a novel approach to microeconomic 
design. In Proceedings of the Bird of a Feather Workshops, Genetic and Evolu­
tionary Computation Conference, pages 65-72, New York, July 2002. AAAI. 

• [108] S. Phelps, S. Parsons, P. McBumey and E. Sklar. Co-evolutionary mech­
anism design: A preliminary report. In 1. Padget, o. Shehory, D. Parkes, N. 
Sadeh, and W. E. Walsh, editors, Agent-Mediated Electronic Commerce IV: De­
signing Mechanisms and Systems, pages 123-143, Springer Verlag, July 2002. 

• [109] S. Phelps, S. Parsons, E. Sklar and P. McBurney. Using genetic program­
ming to optimise pricing rules for a double auction market. In Proceedings of the 
workshop on Agentsfor Electronic Commerce, Puitsburgh, PA, October 2003. 

• [110] S. Phelps, V. Tamma, M. Wooldridge and I. Dickinson. Toward Open 
Negotiation. IEEE Internet Computing, 8:(70-76), 2004. 



Chapter 3 

A Generic Model of the 
Double-Auction 

A double-auction is a generalisation of the more commonly-known single-sided auc­
tions in which a single seller sells goods to multiple competing buyers (or the reverse). 
In a double-auction, as well as multiple buyers competing against each other result­
ing in price rises, multiple sellers of the same commodity compete against each other 
reSUlting in price falls. Institutions of this type are also known as exchanges, and are 
typically used to trade commodities whose valuations are subject to much uncertainty 
and can vary rapidly over time; for example, equity shares traded on stock exchanges. 

In this chapter I shall describe in detail the operation of this type of marketplace. 
However, arriving at a comprehensive description that is rigorous enough for formal 
analysis is a difficult task. Many variants of this institution exist in the real-world, and 
hence similarly in the economics literature. The differences between these variants can 
be subtle and hard to describe since the trading rules governing real-world exchanges 
have evolved over many decades, in many different countries. Hence there are no 
definitive standards or terminology for formal modelling of these institutions. 

There have been several attempts at formally defining a general space of possible 
auction mechanisms, and modelling double-auction variants as points within this space 
[160]. I shall take a more constrained approach, however, since 

• These approaches attempt to provide a general framework for classifying all 
types of auction mechanism, not just double-auctions, and hence these models 
have a great many parameters. By adopting a less general model, we expect to 
be able to build a simpler framework with fewer parameters that will be more 
tractable for my purposes 

• Any model is necessarily an abstraction of some real-world phenomenon. Ab­
straction involves discarding details that are felt to be irrelevant for the purpose 
at hand, and the models thus obtained incorporate many assumptions about what 
is relevant and what is not. However, what is relevant can vary significantly from 
problem to problem. This is especially the case when we are analysing artifacts 

17 
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which do not share a single designer or design process, and when our purposes 
are practical in nature, such as when our problem is a design problem. Both of 
these hold in the analysis of auction mechanisms. For example, the standard the­
oretical model of an English ascending auction assumes that auctions are short 
in duration, and that there is no opportunity cost to bidders in placing bids or 
monitoring the auction. These assumptions hold in bricks-and-mortar auctions, 
but fail to hold in many internet auctions, and thus alternative models are re­
quired [82]. This is a reflection of the fact that many problems in economics 
are engineering problems [118], and thus as with other engineering disciplines, 
for example, software engineering, we should expect our models to be highly 
project-specific and somewhat disposable in nature. 

Bearing in mind these considerations, we review several different double-auction 
institutions that are commonly discussed in the literature. We compare and contrast 
their differences from a design perspective, and proceed to construct a model that en­
compasses each variation as a special case whilst capturing the design-relevant differ­
ences between each institution. This model will then be used throughout the thesis to 
illustrate different economic design methodologies. As befits an engineering approach, 
we will use a number of different modelling languages to illustrate our framework, in­
cluding the Universal Modeling Language (UML) [121], which is commonly used by 
software engineerings not only to model software systems, but also the wider extra­
computer environment in which software systems are embedded. 

Since our model does not attempt to be all-encompassing, this introduces some 
caveats. Firstly, we cannot make claims about all possible auction variants, such as 
claiming that a particular mechanism is the optimal one with respect to a given set of 
design objectives. Secondly, we cannot provide an apriori guarantee that our methods 
are applicable under alternative models. 

However, as we reasoned earlier, in most real-world problems these caveats are 
also applicable to so called general models, since we will always be able to find a 
scenario that violates certain of the assumptions of any given theory. Throughout this 
chapter, we will see that many real-world double-sided mechanisms violate some of 
the fundamental assumptions of auction theory, such as the revelation principle, and 
are thus outside the space of mechanisms traditionally considered by auction theorists. 

Rather than attempting to circumvent these caveats, we will instead adopt an engi­
neering approach; our discourse will not encompass the theoretically possible, rather 
it will be limited to relevant design characteristics of interest; when we introduce de­
sign methodologies, we will take a heuristic approach, and talk about good, rather than 
optimal designs. 

3.1 A model of a commodity-exchange market 

3.1.1 The resource allocation problem 

The market place is populated by a finite number of traders, represented by the set 
A = {al,a2, ... an }. 
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A single class of resource W is traded in the market place. The resource is divided 
up into units: W = {1/Jl, 1/J2, ... }. Each individual unit ofthe resource is indivisible. 

Each trader owns a certain subset of the resource W defined by the function 

0: A ---+ 2'11 

where 0 (ai) C W denotes the units of resource to which trader ai has exclusive access, 
and with which it is free to do with as it pleases. 

The resource is non-sharable; that is: 

O(ai) n O(aj) = 0 'Vih(ai, aj) E A2 

The function 0 defines the allocation of the resource W amongst the traders A. Traders 
cannot be coerced into relinquishing ownership of resources, but they may volunteer to 
transfer a certain number of units of resource to another trader which results in a new 
allocation. A transaction involving the resource is represented by a tuple r = (ri E 
A, rj E A, r1jJ E 2'11) E R representing a transfer ofr1jJ units from trader ri to trader rj. 
The function mapping from an original allocation 0 to the allocation resulting from a 
transaction r E R is: 

where: 

O'(aj) 

O'(ai) 

O'(ax ) 

0' = trans({r},O) 

= O(aj)UT 

= O(ai)-T 

O(ax)'Vx;ofihax E A 

For multiple transactions the trans function is defined recursively. Given a set of 
transactions RS C R = {rsl, rS2, .•. , rsd, and an initial allocation 0, the allocation 
resulting from the sequence of transactions in RS is given by 

IRSI > 1 ===} 0' = trans(RS, 0) 

where: 

Wo = 0 

0' Wk 

Wi = trans({rsd,wi-l) 'Vrsi E RS 

Traders participate in the market in order to exchange units of W for cash. The 
amount of cash owned by an trader is given by the function r : A ~ IR. Traders cannot 
be coerced into relinquishing cash, but they may volunteer to transfer a certain amount 
of cash to another trader, which again results in a new allocation. A transfer of cash is 
represented by a tuple C = (Ci E A, Cj E A, Cp E IR) meaning that trader Ci transfers 
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cp to trader Cj. The function pay maps from an original cash allocation f to the new 
allocation f' resulting from a cash transfer thus: 

where: 

f' = pay({c},f) 

f'(Cj) f(cj) + cp 

f'(Ci) = f(Ci) - cp 

For multiple transactions the pay function is defined recursively as per the trans func­
tion. 

Typically, traders enter in mutual transfers of cash and resource. If a trader ai 
transfers cash to trader aj, and in return trader aj transfers resource to trader ai, then 
we say that ai buys resource, and that tr~der aj sells resource. 

Each trader ai has different preferences over the possible allocations of cash f and 
resource O. Preferences are defined by the trader's utility function: 

(3.1) 

A trader i prefers an allocation (f',O') over an alternative allocation (f,O) if, and 
only if: 

ui(f',O') > ui(f,O) 

A trader i is indifferent over two allocations (f', 0') and (f, 0) if, and only if: 

ui(f',O') = ui(f,O) 

In the scenarios that we shall study, W is a commodity; that is, traders are indifferent 
over allocations in which they own the same number of items of w. More formally: 

We shall also assume that traders' preferences are solely determined by their own 
allocations of resource and cash and not by those of other agents; that traders always 
prefer to have the greater of two bundles of cash; and that each trader i has a valuation 
function Xi : 2w 

-+ IR for their current allocation of their resource meaning that: 

(O'(ai) = O(ai) -V;x) 1\ (f'(ai) = r(ai) + Xi(V;x)) 

=} ui(f',O') = ui(f,O) 

Accordingly, in our particular model, each trader's utility is given by a function of the 
form: 
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Our model of utility is further simplified by dividing traders into two distinct sets: 
buyers, represented by the set B c A; and sellers, represented by the set SeA, such 
that SuB = A and S n B = 0. Our valuation function is then: 

n(ai) = 0 ====} Xi(n(ai)) = 0 

In(ai)1 > 01\ ai E B ====} Xi(n(ai)) = Vi 

ai E S ====} Xi(n(ai)) = viln(ai)1 

where Vi E IR is the valuation of agent i for a single unit of resource. 
Buyers can cash in their allocation of resource. If buyer bi E B cashes in, then 

ntH (bi ) = 0 
ftH(b i ) = ft(bi) + Vi 

Sellers can produce additional resource. If seller Si E S produces a single unit of 
resource 'l/Jx E W then 

nt +1 (Si) = nt(Si)U'l/Jx 

f t+l(Si) ft(Si) - Vi 

Wt+l Wt U'l/Jx 

In general, traders will only perform actions that increase their own utility. We will 
refer to such actions as individually-rational actions. 

Note that since, in the general case 

(3b i )B(3s j )s Vi> Vj 

there may exist the possibility for traders to increase their utility by entering into mutual 
transfers of cash and resource. That is, in general, there are potential gains from trade. 

3.1.2 Optimal allocations and the equilibrium price 

A natural question then is how we can maximise the utility of all agents by selecting 
a set of transactions of cash and resource that are individually-rational for individual 
agents. More formally, given an initial allocation (f, n), we need to solve the following 
optimization problem: 

IAI 
argmax L ui(pay(C*, r), trans(R*, n)) 
(C*,R*) i=l 

We restrict attention to scenarios in which sellers produce resource which they then 
sell to buyers. Accordingly, for each tuple c E C* 
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VCEC*:JrER* ri = Cj 1\ rj = Ci 

VrER*:JcEC. Ci = rj 1\ Cj = ri 

(3.2) 

(3.3) 

Let Vb( c) denote the valuation of the buyer involved in the transaction, and let Vs (c) 
denote the valuation of the corresponding seller: 

q 

Vb(C) VC; 

vs(c) VCj 

Assuming Vs (c) < cp < Vb(C), the gain in utility to each trader involved in a transaction 
C is Vb (c) - cp for the buyer, and cp - Vs (c) for the seller. Therefore, the total gain from 
trade for a solution C* is: 

E(C*) = L Vb(C) - vs(c) (3.4) 
cEC. 

We can solve this maximisation problem by choosing the elements of C* so that 
buyers with higher valuations are paired with sellers with lower valuations. Let the 
function V : 2A --t 21R denote the multiset of valuations corresponding to a given set 
of traders: ' 

V(T) = {Vi: ai E T} 

Let VB = {vb!, vb2, ... } denote the multiset V(B), where vb! denotes the highest 
valuation of any buyer, and vbi denotes the ith highest valuation of any buyer. So that 
we have 

Vij i < j ===} vbi 2: vbj 

Similarly, let VS = {VS!,VS2, ... } denote the multiset V(S) where, where Vs! de­
notes the lowest valuation of any seller, and VSi denotes the ith lowest valuation of any 
seller. 

V S is called the supply schedule, and VB is the demand schedule. These have cor­
responding natural graphical representations which, in the continuous case (eg VB = 
[a, b] where a and b are arbitrarily constants E IR), can be represented as smooth curves 
known as the supply and demand curves. We retain this nomenclature for the discrete 
graphical representation of supply and demand. 
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Let M B and MS denote the subsets of VB and VS where buyer valuations match 
seller valuations; that is, where buyer valuations are greater than seller valuations: 

MB {mb1 ,mb2, ... } c VB 

MS = {msl,ms2, ... } c VS 

such that: 

mbi > mSi Vi 

mb1 > mb2 ~ mb3 ~ ... 

mSl < mS2 :$ mS3 :$ ... 

Claim 3.1 The maximum possible gain from trade is: 

IMBI 
T P = L mbi - mSi 

i=l 

Proof We will prove this claim using a Reductio ad Absurdum argument. 

(3.5) 

Let bi denote the buyer whose valuation is Vbi and let Si denote the seller whose 
valuation is VSi. 

Suppose that the optimal gain from trade can be obtained through a set of transac­
tions C* involving at least one transaction involving a pair of traders bi and Sj where 
i =I- j. Then equation 3.4 will contain a term 

However, if i < j, then we could obtain a larger value of E, since we could choose 
a set of transactions C' in which we pair (Ji with bi , instead of bi and Sj and 

i < j ==> mSi < ms j 

==> E(C') > E(C*) 

This contradicts our original assertion that C* is optimal, and thus the result holds 
by Reductio ad Absurdem. 

The ratio 

EA(C) = E(C) 
TP 

o 

(3.6) 

is known as the efficiency of the market. The market is efficient if, and only if, EA = 1. 
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The Equilibrium Price 

Of particular interest are solutions to the maximisation problem in which all transac­
tions share a common price p* so that we have ('Vc)c. p(c) = p*. Faced with any 
given price p, any given buyer bi E B will voluntarily buy from any seller Sj E 8 
at the specified price provided that p ~ Vi, otherwise they will refrain from entering 
into a transaction. Similarly, any given seller Si E 8 will voluntarily sell to any buyer 
bj E B at the specified price provided that p :::: Vi. Thus given any p our transaction 
set C consists of all transactions satisfying the following constraint: 

C = {(ai,aj,p): ai E 8 /\aj E B /\Vi:::; p:::; Vj} 

The total increase in utility across all traders is thus given by: 

8(p) = 

aiESAp>Vi • aiEBAp<vi 
(3.7) 

We refer to this metric as the social welfare of the market, and our maximisation prob­
lem is 

arg max 8 (p* ) 
p. 

We can solve 

(3.8) 

from equations 3.7 and 3.5: 

IMBI 

Vi - Vj = L mbi - mSi (3.9) 
i=l 

by noting that we must choose p* so that the induced transactions include only 
those agents with valuations in the match sets M B and M 8. 

In order to include all M B we must constrain p*: 

p*:::: min(MB) 

and in order to include all M 8 we must constrain p*: 

p* ~ max(M8) 

(3.10) 

(3.11) 

The above inequalities are necessary conditions for achieving T P, however we 
must also take care to exclude agents with valuations not in the match sets. Let M B' 
and M 8' denote the unmatched buyer valuations and unmatched seller valuations re­
spectively: 



3.1. A MODEL OF A COMMODITY-EXCHANGE MARKET 

MB' VB-,MB 

MS' VS-MS 

In order to exclude valuations from these sets we must also ensure that 

min(MS') < p* < max(MB') 

Inequalities 3.10, 3.11 and 3.12 can be solved by choosing 

where 

eqa = max( max( M S), max( M B')) 

eqb = min(min(MS'),min(MB)) 

Thus yielding S(p*) = T P. 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 

The solution p* is known as the equilibrium price. Although in the general case 
there are a range of possible solutions, by convention when we refer to the equilibrium 
price we arbitrarily take a value from the middle of this range; that is: 

eqb - eqa 
p*=----

2 

3.1.3 The role of the auctioneer 

(3.16) 

We have shown that we can induce individually-rational trades that result in efficient 
allocations provided that we know each trader's valuation Vi. However, in most prac­
tical scenarios this information is private and unobservable l . In a typical auction, this 
information is elicited through means of a bidding process, in which traders send sig­
nals2 about their valuation to a trusted third-party called an auctioneer. The job of the 
auctioneer is to compute the optimal transaction set given the reported valuations. The 
challenge facing the auctioneer is that these signals cannot necessarily be relied upon 
to be truthful and accurate. Indeed, since the auctioneer allocates resource to those 

I In game-theoretic terms valuations are part of each trader's type information. 
2The term "signal" in this context derives from the theory of signaling games [134]. Although strictly 

speaking an auction is not a signaling game, the two are very strongly related. As Dutta points out [39, p. 
395], in a signaling game the agents move first and then the institution responds, whereas in a mcchanism 
design sccnario the institution offers a set of moves to agents who then rcspond. Thus although auctions are 
not strictly signaling gamcs, it can still be intuitive to think in terms of signals; by forcing agents to back 
up their value claims with hard cash the mechanism designcr can encourage honest signaling. Intercstingly, 
signaling games have also been studied in evolutionary biology in the context of the handicap principle 
[162, 18]. In the scenario undcr discussion, bids - that is, signals of valuation backed up with hard cash­
can be thought of as "handicaps" which lead to honest signaling. 
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agents with higher perceived valuations, traders may have incentives to misreport their 
valuation. 

Consider a scenario in which we have a single seller s with a valuation vs which is 
known to the auctioneer, and several buyers. The seller offers a single unit of resource 
for sale. The auctioneer elicits reported valuations, or bids, from each buyer, VB = 
{ ;b1, ;b2, ••• }, ordered such that: 

;b1 2:: ;b2 2:: vb3 ••. 

which may differ from the corresponding actual valuations VB = {vb1 , Vb2, ... } of 
each buyer B = {b1, b2, • •• }, where b1 is the buyer with the highest bid ;bl, whose 
true valuation is vb1• The reported valuations VB are known only to the auctioneer, 
whereas each individual buyer bi knows only its own valuation Vbi, and bid ;bi. Such 
a scenario is known as a single-sided sealed-bid auction, and the value vs is known as 
the reservation price. 

The role of the auctioneer is to choose,a transaction C = {(s, bi,p)} that maximises 
social welfare as defined by equation 3.7. A naive solution to this problem is to assume 
that agent~ will report their valuations truthfully; that is, vbi = Vbi Vi. Accordingly, 
provided vb1 2:: vs: 

and 

MS {vs} 

MS' {} 

MB = {;bd 

MB' = { v'b2 , v'b3 , .. , } 

eqa = max(max(MS),max(MB')) = max(vs,;b2) 

eqb = min(min(MS'),min(MB)) = min(MB) = 

Thus according to equation 3.13, we should award the unit of resource to the buyer 
with the highest bid (the "winner"), and charge them a price p* E [;b1, ;b2] anywhere 
between the highest bid and the 2nd highest bid. But consider the winner's ex-post3 

incentives to misreport their valuation for different values of p* in this range. Let Ui (x) 
denote the utility gained by trader i if it reports valuation x. In our present scenario 
Ui(x) = Ix - p * I. 

Ifwe set p* = v'bh then since the utility of the winning agent is Vbi - p*, the winner 
gains vb1 - ;b1, and ex-post the winning buyer will regret having not bid a lower price 
w such that V'b2 < w < v'b1, since if it bids truthfully its utility will be Vbi - Vbi = 0, 

3Meaning "after the fact". In economics ex-post payoffs are those that are computed once any uncertain­
ties surrounding the payoff have been resolved, whereas ex-ante payoffs are computed under uncertainty. In 
the scenario under discussion the valuations of other agents are unobservable to the agent under consider­
ation, hence until we apply the concept of Bayesian-Nash equilibrium the payoff to our agent is unknown 
before they choose their bid price. 
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whereas if it had bid w it would have received vbi - w > O. If, on the other hand, we 
set p* = Vb2, then the buyer has no ex-post incentive to deviate from truthful bidding, 
since the utility of the winner is always vb! - V'b2; regardless of the winner's reported 
valuation ";b!. 

In fact, one can show that if we set p* = ";b2 , then there are no ex-ante incentives 
to deviate from truthful bidding [80]. That is: 

(3.17) 

This type of auction is known as 2nd-price auction, or Vickrey auction, and the 
above property is known as incentive compatibility. 4 

3.1.4 Mechanism design 

The art of designing the rules of an auction in order to bring about certain design 
objectives when agents act to maximise their own utility is called mechanism design 
[69], and the underlying theory is auction theory [80]. In a mechanism design problem, 
we can easily determine whether or not our design objectives are achieved provided that 
we know exactly how the individual traders in our mechanism will signal. However, 
since the behaviour of these traders is not prescribed in advance, and since they have 
many possible signals from which to choose, this is not a trivial problem to solve. In 
a mechanism design problem, we assume that individual traders will choose a signal 
that maximises their utility. However, this decision problem is highly complex, since, 
in the general case, the outcome from choosing a particular signal depends on the joint 
set of signals submitted by all agents. The theory of optimal decision-making when 
outcomes are the result of joint-actions is game theory [103]. By solving the game 
corresponding to our auction, we can, at least in theory, predict how utility-maximising 
traders will behave under our proposed mechanism and evaluate whether or not our 
design objectives are achieved. 

The principle design objectives considered in auction theory are: 

• Incentive compatibility; as defined by 3.17 

• Efficiency; as defined by 3.6 

• Budget balance; the mechanism can operate without external cash transfers. 
More formally, the full set of cash transactions C generated by the mechanism 
should satisfy the following constraint: 

(3.18) 

CEC:CiES CEC:CiEB 

For single-sided mechanisms involving a single seller, auction theory demonstrates 
that all three of these design objectives can be achieved under wide range of conditions. 

4Note that in order to maintain incentive compatibility, agents' bids must be binding; that is: when an 
agent sends a bid to an auctioneer it is committed to the possibility of paying a sum up to its bid amount­
agents cannot renege on their bids. 
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However, the impossibility result of [94] demonstrates that no double-sided auction 
mechanism can simultaneously and robustly achieve all three desiderata. Thus real­
world exchanges make various trade-offs between different design objectives. This is 
a theme we shall revisit throughout the thesis. 

In the following section, we review several different double-sided auction mecha­
nisms and briefly discuss their design properties. A fuller analysis of the design prop­
erties of these mechanisms will be conducted in Chapter 8. 

3.2 The auction model 

In this section I will give a formal description of different variants of the double­
auction. This model is adapted from [159], [50], [28], and [98], and is an attempt 
to describe these different market scenarios within a unified model. In this model, time 
is represented in discrete slices tErN. We will follow the convention of representing 
the value of any time-dependent variabkX at time t by sub scripting with t: X t . 

The purpose of this section is to give and clear and unambiguous specification for 
the different auction mechanisms that we will discuss throughout the thesis. However, 
since the emphasis of this thesis is on empirical rather than formal methods, for brevity 
and conciseness I omit frame axioms from the formalism. In the following sections, if 
a statement cannot be proven from the axioms we shall assume that it is false. 

As a final disclaimer, the model presented in this chapter does not cover multi-unit 
trading rules; that is, scenarios where buyers or sellers submit offers to purchase or sell 
more than one unit of resource at any given time. However, the formalism is easily 
extended to cover these scenarios as discussed in [159] 

3.2.1 Rounds 

Trading in the market proceeds in rounds. Each round may consist of variable number 
of time slices. During each round, every trader in the market-place is given the oppor­
tunity to submit a shout to the auctioneer. During any given time-slice only one trader 
may place a shout. 

3.2.2 Shouts 

A shout is a commitment to buy or sell a prespecified quantity of commodity at a 
particular price. Shouts are divided into two sub-classes. An offer to sell is called an 
ask, and an offer to buy is called a bid. Shouts are represented as tuples of the form: 

P = (Pc E {bid, ask, 0}, Pa E A, Pp E IR, Pq E rN, Pt E rN) E P 

where Pc is the class of offer, Pa is the trader making the offer, Pp is the price that the 
trader is willing to buy or sell at, Pq is the quantity of commodity that they are commit­
ted to trade, and Pt is the time at which the shout was submitted to the auctioneer. A 
buyer who submits a bid b E P is committed to buying at any price p ~ bp. Similarly, 
a seller who submits an ask a E P is committed to selling aq units at any price p 2:: ap • 
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A trader may submit a null shout by setting Pc = 0 meaning that the trader does not 
currently wish to trade and will not be held to buying or selling at any price. 

Alternatively, we also use the following functions to denote the subfields of a shout 
tuple 

price(p) Pp 

class(p) Pc 

agent(p) Pa 

time(p) Pt 

3.2.3 Active traders 

The finite set Kt = {ktl , kt2, ... ktn } denotes the traders who are eligible to place 
shouts in the auction at time t. We pick the next trader whose turn it is to shout, Tt, 

randomly from this set: 

Tt = kto, 

where Jt E fN is a discrete random variable distributed according to a uniform distribu­
tion on the interval [1, IKtll, and we then remove this trader from the active set: 

3.2.4 Events 

Some of our state variables change in response to events. The possible types of event 
in our market are represented by the set: 

10 = {eor, eod, sp, clr} 

These events denote "the end of a round", "the end of a day", "shout placed" and 
"market clearing" respectively, and are defined formally later. 

Events are time-stamped according to the time-slice at which they occurred. We 
denote this by sub scripting events thus: 

Et = {eort, eodt , ... } 

Thus, we have: 

El = {eor1,eod2, ... } 

102 = {eor2,eod2, ... } 

The set Et denotes the set of events that occurred at time t, as well as the set of events 
that were previously active in prior time slices. An event Xt occurred at time t if, and 
only ifx t E Et. 
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3.2.5 The end of round event 

The end of round event, eor, is defined thus: 

Kt = {} ===} 

eort+i E Et+i 
eort E Et ===} 

Kt+i A 
1\ roundt+! = roundt + 1 

That is, the end of round event occurs once all traders have submitted offers, and when 
this event occurs we reset K to allow all traders to submit shouts in the next round. 

3.2.6 Shout processing 

The auctioneer maintains four sets of shouts. The sets M St and M B t represent the set 
of matched asks and matched bids respectively. These are analogous to the sets MS 
and M B defined in Section 3.1.2. 

We denote the ith highest matched bid at time t by mb(t,i), where 

price(~b(t,l)) ;::: price(~b(t,2)) ;::: price(~b(t,3)) ;::: ... 

Similarly, for matched asks we have: 

price(mS(t,l)) ::; price(mS(t,2)) ::; price(ms(t,3)) ::; ... 

The match sets are maintained such that the following constraints hold: 

Vi price(~b(t,i)) ;::: price(mS(t,i)) 

IMStl = IMBtl 

(3.19) 

(3.20) 

Analogous to MS' and M B', the sets MS' t and MB't contain all unmatched shouts at 
time t. Intuitively, the sets M St and M B t can be thought of as the potential "winning" 
shouts at time t, and the sets MS' t and MB't as the "runner-up" or "outbid" shouts at 
time t. 

Let P denote the shout submitted to the auctioneer by Tt - the trader who is cur­
rently shouting. These sets are updated as follows: 

Pc = bid 1\ (::la E MS't : Pp ;::: ap) ===} 

MSt+! = MSt U {a} 

1\ MS'Hi = MS't - {a} 

1\ MBt+! = MBt U {p} 

(3.21) 
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3.2.7 Quotes 

Pc = bid 1\ (~a E MS't : pp);:: ap) ==> 

M'B't+l = M'B't U {p} 

Pc = ask 1\ (3b E M'B't : bp ;:: pp) ==> 

MBt+! = MBt U {b} 

1\ MB't+! = M'B't - {b} 

1\ MBt+! = MBt U {p} 

Pc = ask 1\ (~b E MB: : bp ;:: pp) ==> 

MS't+! = M'B't U {p} 

Pc =f. 0 ==> 
sp E Et+! 

Analogous to definitions 3.15 and 3.14, we have: 

e'qa (t) = min(min(MS't), min(MBt)) 

e'qb(t) = max(max(MSt),max(M'B't)) 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

The pair (eqa(t), e'%(t)) is called the market quote, and is public information to all 
traders participating in the market. If all traders bid truthfully, then we have e'qa = 
eqa and e'qb = eqb. Thus the market quote encapsulates the hypothesised range of 
equilibrium prices assuming truthful bidding. 

3.2.8 Trading days 

A trading day consists of a number of rounds of trading. Different events may take 
place at the end of a day depending on the scenario we are modelling. For example, in 
many scenarios we will allocate new randomly drawn valuations for traders at the end 
of each trading day. These conditions will be introduced later. For now, we introduce 
the variable daYt which denotes the current trading day: 

eodt E Et ==> 
daYt+l 

...,eodt E Et ==> 
daYt+! 
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3.2.9 The clearing operation 

The key role of the auctioneer is to compute a payment set Ct and a transaction set 
Rt as a function of the auction state (MSt , MBt. MS't, MB't). Different variants 
of the double-auction mechanism compute Ct differently in order to bring about dif­
ferent design objectives, and these are formalized below. For now, we simply define 
the clearing operation, in which the auctioneer takes the matched shouts producing a 
transaction set, enforces the corresponding trades, and resets the auction state. 

clrt E Et ==} 

r t +1 pay(Ct , r t ) 

/\ nt +1 trans(Rt , nt ) 

/\ MSt+1 {} 

/\ MBt+t = {} 
.... drt E Et ==} 

Ct {} 
/\ Rt {} 

3.3 The clearing-house double auction 

In a clearing-house (CH) double-auction, the clearing operation takes place at the end 
of each round: 

eort E Et ==} 

clrt+1 E Et+1 

The auction designer can choose from amongst several different pricing policies 
which determine exactly how the clearing operation occurs. These are formalized be­
low. 

3.3.1 Uniform pricing 

A uniform pricing policy specifies that all traders with matched reported valuations 
(that is, all the potentially efficient trades) should all trade with each other at the re­
ported equilibrium price (as determined by (qa and e'qb)' Thus, at any given time, all 
traders are transacting at the same global market price (which may change over time). 
This variant of the CH double-auction is discussed in [50]. 

where: 
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and: 

where k E [0, 1 J is a constant chosen by the market designer. The design implica­
tions of different values for this constant are discussed below. 

3.3.2 Discriminatory pricing 

A discriminatory pricing policy, on the other hand, specifies that each pair of matched 
traders pays a price that is solely a function of their respective bid and ask prices. 
Thus, at any given time, different traders are transacting at different prices for the same 
commodity. This variant of the CH double-auction is discussed in [98]. 

where: 

and: 

Pi = price(mb(t,i))k + price(ms(t,i))(l - k) 

where k E [0, 1 J is a constant chosen by the market designer. 

3.3.3 In-order discriminatory pricing 

(3.28) 

(3.29) 

This pricing policy specifies that trades occur at the price of the earliest submitted offer, 
regardless of whether it is a bid or an ask: 

where: 

v c = (agent ( mb(t,i))' agent ( mS(t,i))' price( mb(t,i))) i~IMBI:time(~b(t,i) )<time(mS(t,i)) i 

V c (agent(mb(t,i))' agent(ms(t,i)), price(mS(t,i))) i~IMBI:time(ms(t,;)~time(mS(t,i)) i 
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3.3.4 Properties 

It is easy to see that a CH with uniform pricing is efficient provided that traders' shouts 
are truthful, since we will have 

eAqa eqa 

eqb eqb 

and thus all transactions will occur at an equilibrium price for any k E [O,lJ. How­
ever, the CH is not incentive compatible, and thus, in the general case, we cannot rely 
on utility-maximising traders to place truthful shouts. However, as [159, 154] demon­
strate, there are interesting special-case exceptions when we consider extreme values 
of k in an auction for a single unit of commodity. When k = 1, we have incentive­
compatibility for sellers only, but not for buyers, and when k = 0 we have incentive­
compatibility for buyers, but not for sellers. 

3.4 The continuous double-auction 

In a continuous double-auction (CDA), the clearing operation is performed continu­
ously as new shouts arrive: 

clrt+! E Et+! 

Ct is computed as for a CH with either variant of discriminatory-pricing (Sections 3.3.2 
and 3.3.3). Cliff[28] discusses a trading strategy for a CDA with in-order discriminatory­
pricing. 

Properties 

The CDA is particularly unusual from the perspective of auction-theory, since not only 
is truth-telling not dominant in this institution, but allocations are likely to be inefficient 
if all agents shout truthfully. This is because the clearing operation is performed before 
the auctioneer has a full picture of the supply and demand in the market-place. Because 
clearing occurs as new shouts arrive, when the transaction set is computed from equa­
tion 3.28 there is no guarantee that the the match sets MS and M B will contain shouts 
corresponding to the potentially efficient trades defined by MS and M B. Indeed, there 
is every possibility that MS or M B will contain shouts corresponding to the poten­
tially inefficient valuations defined by M S' and M B' since the rules in Section 3.2.6 
rely on competing bid~ from all agents to arrive in order to relegate inefficient (outbid) 
shouts to M S' and M B'. 

Claim 3.2 The CDA is not always efficient when agents shout truthfully. 

Proof We will demonstrate this claim by constructing an example of a non-efficient 
outcome under a continuous clearing rule. 
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Consider a simple scenario in which we have three agents A = {aI, a2, a3} two of 
which are buyers B = {aI, a2} and one of which is a seller S = {a3} with valuations: 

v {Vl,V2,V3} = {3,2,1} 
VB {3,2} 

VS {I} 

In order to maximise social welfare we should pair the seller a3 together with the 
buyer with the highest valuation aI, since: 

MS {I} 

MB {3} 

MS' = {} 

MB' {2} 

thus we have a total possible gain from trade ofT P = V3 - VI = 3 - 1 = 2. 
If these agents participate in a CDA, we see that if agents shout truthfully there is a 

potential to match inefficiently. Suppose that the seller a3 is chosen to shout at t = 0 
so that TO = a3 and places a truthful shout Po = (ask, a3, V3, ... ) = (ask, a3, 1), so 
that: 

MSl = {} 

MBl = {} 

MS' 1 {(ask,a3, I)} 

MB'l = {} 

This results in a clearing operation at t = 1; however, since there are no matching 
shouts in M B 1 MS!. no transactions occur. 

At the next time slice, buyer a2 is randomly chosen to place a shout: Tl = a2, and 
shouts truthfully with PI = (bid, a2, V2) = (bid, a2, 2). Following the rules in Section 
3.2.6, the auction state now contains: 

MS2 {(ask,a3, I)} 

MB2 = {(bid,a2,2)} 

MS'2 {} 

M'B'2 {} 

and since we now perform the clearing operation immediately, we will match buyer a2 
with seller a3 yielding a total surplus of V2 - V3 = 1, and our efficiency will be only 

EA = ip =! < 1. 
D 
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If, on the other hand, we had run this scenario using a CH instead of a CDA, the 
auctioneer would have waited until all agents had had an opportunity to place shouts at 
t = 3 before clearing the market, giving agent al the opportunity to outbid a2 with a 
shout 

yielding the auction state: 

MS3 {(ask, a3, I)} 
MB3 {(bid, ab 3)} 

MS'3 {(bid, a2, 2)} 

MB'3 n 
which is equivalent to the optimal match sets M B and MS. 

Although the CDA is potentially very inefficient under homogeneous truthful bid­
ding, consider what happens if: (i) all agents with valuations in the match sets M Band 
M S place shouts at a true equilibrium price p* E [eqa, eqb], and (ii) all other agents 
(with valuations in M B' and MS') shout truthfully. 

Claim 3.3 In a CDA, if all agents with valuations in M B and MS place shouts 
at price p* and all other agents shout truthfully, we will always obtain an efficient 
outcome EA = 1. 

Proof All agents that place shouts at the same price p* will eventually have shouts in 
the match sets MS and M B since the condition for promoting bids into the match set 
(equation 3.21): 

Pc = bid 1\ 3a E MS' t : Pp 2: ap 

will always hold provided MS't =I- n as Pp = ap = p*. If, on the other hand, 
MS't = n, then by equation 3.22, MS't+l will still contain a bid with price p*. 
Similar reasoning applies to the ask promotion rules (equations 3.23 and 3.24). 

By definition, those agents with valuations in M B' who shout truthfully will place 
shouts at lower than the equilibrium price p* since 

thus from equation 3.15: 

p* 2: max(M B') 

Therefore their truthful bids Pp = Vi will fail the condition Pp 2: ap since ap = p* 
and we have just shown that for these buyers Pp < p*. A similar arguments applies to 

sellers. Therefore our match sets M'B' and MS' will contain only those shouts from 
traders with potentially efficient valuations in MS and M B, and since all trades will 
occur at the same price p* regardless of which particular auction pricing rule is used, 
we can be sure of achieving EA = 1 by the reasoning in Section 3.1.2. 

o 
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The problem with such a hypothetical trading strategy is of course that agents have 
no apriori knowledge of the true equilibrium price range. Nevertheless we have a 
glimpse of how high-efficiency outcomes might be achieved in a CDA in principle. 
In the following chapters, we will see that remarkably there are situations in which 
trading strategies can in practice discover the true equilibrium price range in a CDA 

without this knowledge of the true equilibrium price being explicitly provided by the 
auctioneer. 

3.5 Summary and Contribution 

In this chapter I have defined a space of mechanisms. I have drawn on previous work, 
and the formalism presented here to explore the design properties of various mech­
anisms within this space using analytical methods. However, the complexity of the 
mechanisms within this space is such that analytical methods on their own are unable 
to yield clear-cut results from the perspective of traditional auction theory; for exam­
ple, none of the mechanisms presented here are incentive-compatible in the general 
case. Therefore, in the remainder of this thesis we will use empirical methods (simula­
tion) in tandem with analytical methods in order to search the mechanism design space 
heuristically. In Chapter 5 we will return to the design space from a computational 
perspective, and see how auction mechanisms can be implemented and described in 
software, thus allowing them to be simulated. 
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Chapter 4 

Trading Strategies 

In the previous chapter we introduced a framework for specifying how the market al­
locates goods and sets prices - the rules of the market place, or the market institution. 
In this chapter, we turn our attention to the agents populating this environment. In 
particular, we discuss the different trading strategies that will be used in our models of 
traders'decision-making. 

Each agent ai has an associated trading strategy, which specifies a mapping Z 
between its valuation Vi and the shout pEP that it will place at time t. For simplicity, 
we shall assume that: buyers always submit bids, sellers always submit asks, each agent 
only submits shouts for a single unit, and only the active traders Kt place shouts (see 
3.2.3) . Thus: 

Z(i, t) = (bid, ai, ((i, t), 1, t) 

Z(i,t) = (ask,ai,((i,t), 1,t) 

Z(i,t) = (0,ai,O,O,t) 

{:::::::> ai E B 1\ ai E Kt 

{:::::::> ai E S 1\ ai E Kt 

{:::::::> ai tj. Kt 

(4.1) 

(4.2) 

(4.3) 

where ( is a function that sets the price of the shout according to the strategy being 
deployed. 

I will now review several classes of strategy that are commonly used in ACE re­
search. In the following section I will discuss non-adaptive strategies that do not adjust 
their behaviour in response to changing market conditions. In Section 4.2, I will review 
several strategies that adapt their behaviour based on market information. Finally, in 
Section 4.2.4 I will discuss strategies that adjust their behaviour based solely on local 
feedback. 

4.1 Non-Adaptive Strategies 

4.1.1 The Truth-Telling Strategy 

The truth-telling strategy (abbreviation TT) simply places shouts equal to the agent's 
valuation: 

39 
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((i, t) = Vi (4.4) 

Although it is extremely simple, the truth-telling strategy is of fundamental impor­
tance, since in an incentive-compatible mechanism this strategy is guaranteed to obtain 
the optimal payoff for agent ai no matter what strategies are adopted by the other 
agents. Of course, most double-auction mechanisms are not incentive-compatibile and 
hence TT is not dominant; but it is interesting to note that in a CH auction an ho­
mogeneous population of agents using TT will bring about high-efficiency outcomes 
(EA = 1) whereas in a CDA, TT will result in poor-efficiency outcomes. This is dis­
cussed further in Chapter 8. 

4.1.2 The Equilibrium-Price Strategy 

As we demonstrated in Section 3.4, if agents hypothetically know the true equilib­
rium price p* they can coordinate on high efficiency outcomes in a wide variety of 
mechanisms regardless of their incentive-compatibility properties. This motivates the 
introduction of a control strategy that is useful in comparing realistic trading strate­
gies. Agents using the Equilibrium-Price strategy (abbreviation EPS) bid at the true 
equilibrium price only if it is not unprofitable to do so: 

ai E B 1\ p* ::; Vi 

ai E S 1\ p* 2: Vi 

===} ((i, t) = p * 
===} ((i, t) = p* 

(4.5) 

(4.6) 

As we have demonstrated this strategy will result in maximal efficiency (EA = 1) 
when all agents adopt it in a CDA mechanism. 

4.1.3 The Pure Simple Strategy 

In non-incentive-compatible mechanisms it may sometimes pay to shout non-truthfully. 
Consider a discriminatory-price clearing-house with k = 1 for equation 3.29. An agent 
who is a buyer in this mechanism ai E B, who submits a bid P which is subsequently 
matched stands to pay an amount exactly equal to their bid price, thus their surplus 
will be given by Vi - Pp, suggesting that they can potentially increase their surplus by 
bidding under their valuation, provided that their Pp is sufficiently high to make it into 
the match set C. A similar argument applies to sellers faced with a k = 0 mechanism. 

This motivates the introduction of our first non-truthful strategy, the Pure Simple 
(abbreviation ps). The ps strategy bids a fixed amount abovelbelow the agent's valua­
tion for sellerslbuyers respectively: 

((i,t) = Vi - J-tit {::::::} ai E B 

((i,t)=Vi+J-tit {::::::} aiES 

(4.7) 

(4.8) 

where J-tit = PS Ei E IR is a configurable parameter. Of course, the major problem 
we face is how to choose PS Ei' On the one hand, smaller values of PS Ei increase 
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the probability of the shout being accepted, but on the other hand this in turn may 
decrease the agent's surplus. Optimizing the exp~cted surplus is non-trivial since in 
the general case the optimal value will depend on the mechanism that the agent is 
trading in (for example, if we are a seller in a k = 1 clearing-house we should choose 
PSEi = 0) and in non-incentive-compatible mechanisms the choice will depend on 
the strategies adopted by other agents, which may change over time, as well as the 
details of the mechanism. Thus we see that the PS strategy is very brittle. Nevertheless 
it is instructive to study, since the design of many other strategies in the double-auction 
market can be thought of as progressively more sophisticated techniques for tuning /Lit 

in response to changing market conditions. 

4.1.4 The Zero Intelligence Constrained Strategy 

We have seen that a very simple strategy - the TT strategy - is able to yield highly effi­
cient outcomes (EA = 1) in clearing-house mechanisms, but fares poorly in continuous­
clearing mechanisms. Indeed, from the perspective of the auctioneer, it is difficult to 
see how the market can be cleared with full efficiency in a continuous double-auction, 
since the auctioneer only has a partial view of the full set of potential signals repre­
senting the supply and demand in th~ market-p!ace when it comes to setting prices and 
enforcing trades. The match sets M St and M B t will contain shouts from relatively 
few traders, as compared with a clearing-house mechanism where the auctioneer waits 
until it has shouts from all traders before attempting to clear the market; using continu­
ous clearing, the auctioneer has only a partial picture of supply and demand and cannot 
compute the equilibrium-price accurately. 

The Zero Intelligence Constrained (abbreviation ZIC) is a slightly more sophisti­
cated version of PS that shouts randomly below/above the agent's valuation: 

((i, t) = Vi - /-Lit {=::::} ai E B 

((i, t) = Vi + /Lit {=::::} ai E S 

(4.9) 

(4.10) 

where /Lit E [0, ZJCEJ c fN is a discrete random variable distributed U(O, ZJCEJ. 

Gode and Sunder [58] demonstrated that this very simple strategy was able to 
achieve a fairly high allocative efficiency in a CDA marketplace. As Cliff comments: 

" ... the ZJ-C traders scored over 99% in three experiments, and over 
97% in the other two: the average efficiency for the humans Was 97.9%, 
while for the ZJ-C's it was 98.7%. .. thus, the main message of Go de and 
Sunder's paper is that allocative efficiency appears to be almost entirely a 
product of market structure." [28] Page 32 
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4.2 Adaptive Strategies 

4.2.1 The Zero-Intelligence Plus Strategy 

The Zero-Intelligence Plus strategy (abbreviation ZIP) was designed as the simplestl 

possible trading algorithm that was able to yield fairly high efficiency outcomes (EA ~ 
0.98), as well as being able to replicate the bidding behaviour of human traders in 
double-auctions with continuous clearing [28]. Cliff observed that Gode and Sunder's 
original results [58] were not precisely replicated when agents' valuations were ran­
domly drawn from probability distributions different to those of the original paper. Al­
though similar allocative efficiency was observed, the distribution of transaction prices 
was not always as closely clustered around the equilibrium price p*, suggesting that a 
different mechanism was required to more precisely fit the data recorded from human 
subjects. 

Each agent maintains an output-level Z I Po (i, t) which determines the margin over 
and above their valuation that they will bid at: 

The output level is adjusted incrementally over time towards a target margin 
ZIPo,(i, t): 

ZI Po(i, t + 1) = ZI Po(i, t) + ZI P.y(i, t) 

ZIP,/(i, t + 1) = ZIP"((i, t) x ZIP/Li + ZIPA(i, t) x [1- ZIP/Li] 

ZIPA(i, t + 1) = ZI P>..,[ZIPo,(i, t + 1) - ZI Po(i, t)] 

(4.11 ) 

(4.12) 

(4.13) 

(4.14) 

where Z I PAi , the learning-rate, is a constant which determines the speed of conver­
gence, and Z I P/Li' the momentum, is a constant for dampening oscillations. 

The target margin Z I Po' (i, t) is set by observing the most recent shout placed in 
the market: 

p : time(p) = t - 1 

For sellers, if this shout resulted in a transaction C E Ct. and the agent is currently 
trading below the observed transaction price «((i, t) :::; cp ), then the agent raises its 
target margin so that its shout price will be a small threshold, Z I Pr. above the observed 
transaction price. 

:lc : (c E Ct 1\ (C{3 = P V Co. = p)) ===} 

. cp + ZIP,. (cp , i) - Vi 
ZIPo,(t,t+1) = Vi:(aoESI\I"(it)<c) 

Vi '/. .." - P 

(4.15) 

1 In the sense of possessing minimal state information 
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where the threshold function is given by: 

ZIPr(p,i) 

O(l,t,i) 

O(O,t,i) 

O(l,t,i)P + O(O,t,i) 
U(O, ZIPu,) 

U(O, ZI Pa:,) 
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(4.16) 

(4.17) 

(4.18) 

If the agent is currently trading above the observed price, then provided that the agent 
is still actively trading, the agent adjusts its price towards a small threshold below the 
observed transaction price: 

:lc : (c E et 1\ (C{3 = P V Ca: = p)) ==> 
· cp - ZIPr(cp, i) - Vi (4.19) 

ZIPrdt,t+1) = Vi 'v'i:(aiESI\((i,t»cp ) 

If the last shout did not result in a transaction then active agents will adjust their prices 
towards a small threshold below the shout price regardless of their current price: 

~C : (c E et 1\ (C{3 = P V Ca: = p)) ==> 
. Pp - ZI Pr (pp, i) - Vi 

ZIP,dt, t + 1) = Vi 'v'i:(aiES) 
(4.20) 

Correspondingly, for buyers: 

:lc : (c E et 1\ (C{3 = P V Ca: = p)) ==> 
· cp-ZIPr(cp,i)-vi (4.21) 

ZI P,dt, t + 1) = 'v'i:(aiEBI\'"(i t»c ) Vi ~ , - p 

:lc : (C E et 1\ (C{3 = P V Ca: = p)) ==> 
· cp+ZIPr(cp,i)-vi (4.22) 

ZI P,dt, t + 1) = Vi 'v'i:(aiEBI\((i,t)<cp ) 

(4.23) 

4.2.2 Kaplan's Sniping Strategy 

Todd Kaplan's sniping strategy (abbreviation TK) waits until the last moment before 
attempting to "steal the bid"; sniping agents remain inactive in tlle background until 
the state of the auction is in their favour or time is running out, at which point they 
place truthful shouts [51]. 
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Parameter name Semantics Range 
ZIPai Scaling factor EIR 
ZIPOii Absolute perturbation EIR 
ZIP>'i Learning rate EIR 
ZIPI-'i Momentum E [0, 1J 

Table 4.1: Parameters for the ZIP strategy 

Variable Semantics 
ZIP-y(i,t) Cumulative discounted momentum 
ZI PO,(i, t) The current output-level for agent i at time t 
ZIP,;:,.,(i,t) The level of adjustment for agent i at time t 
ZIPO,,(i, t) The target margin for agent i at time t 

Table 4.2: State variables for the ZIP strategy 

Let Yt denote the set of transactions that occurred in the previous day's trading. 

u 
i:daYi =daYt-1 

The set is ordered on transaction price: 

a:::; b {::::=} price(va) :::; price(vb) 

Let T denote the number of ticks until the next clearing operation. Let 17t denote the 
market spread: 

Kaplan snipers shout truthfully: 

((i, t) = Vi 

but only when the market is in their favour: 

ai E B 1\ eqa(t) < min(Yt)p 

ai E S 1\ eqb(t) > max(Yt)p 
17t 

ai E B 1\ -;:--( ) < KAPa 
eqa t ' 

17t 
ai E S 1\ -:::--( ) < KAPa . 

eqb t ' 

or time is running out: 

===} 

===} 

===} 

===} 

Kt+! = Kt U {ail 

Kt+! = Kt U {aJ 

Kt+! = Kt U {aJ 

Kt+! = Kt U {ail 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
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Parameter name Semantics 
KAPTi The time factor 
KAP<7i The spread factor 

Table 4.3: Kaplan parameters 

4.2.3 The Gjerstad-Dickhaut strategy 

The Gjerstad-Dickhaut (abbreviation G D) strategy estimates the probability of a shout 
being accepted based on historical observations and then places its shout to maximise 
the agent's expected profit [57]. 

Agents using the GD strategy make use of a memory mechanism that records the 
shouts that gave rise to the last n transactions in the market, where n = G D N E N is 
the parameter that determines the size of the memory. The memory is divided into four 
sets: 

BSt C P 
BBt C P 
HASlt C P 

HBlt C P 

The history of accepted asks up until time t 

The history of accepted bids up until time t 
The history of unaccepted asks up until time t 
The history of un accepted bids up until time t 

The history is empty at the start of trading: 

(4.30) 

As shouts are placed (Section 3.2.6) they are recorded in the history of unaccepted 
shouts: 

HASlt+! = If S't Up {:::::::} pE !viSIt 

HB'HI = HBlt Up {:::::::} pE MABlt 

(4.31) 

(4.32) 

As shouts are matched (Section 3.2.6) they are recorded in the history of accepted 
shouts: 

BSH I = BSt Up {:::::::} pE MSt 

HBt+I = HBt Up {:::::::} pE MBt 

(4.33) 

(4.34) 

Note that the history is unaffected by the clearing operation (Section 3.2.9), hence once 
a shout is recorded as accepted it remains so, unless it is removed due to memory-size 
restrictions as defined below. . 

Let 

(4.35) 
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where hS(l,t) E N represents the total number of asks that were recorded before the 1st 

most recent transaction, hS(2,t) is the total number of asks before the 2nd most recent 
transaction etc. 
Similarly let 

(4.36) 

where hb(1,t) E N represents the total number of bids that were recorded before the 1st 

most recent transaction, hb(2,t) is the total number of bids before the 2nd most recent 
transaction et cetera. 
Let the scalar ht E [0, G D N) represent the current transaction number defined as 
follows 

:Jp : Pt = t 1\ Pc = ask ~ 

(4.37) 

(4.38) 

(4.39) 

Agents using the GD strategy use the history data to form an estimate, GDpa(p) of the 
probability of a shout with price P being accepted, based on: 

• the number of asks accepted at prices greater than or equal to P; 

GDTAG(p,t) = I{p: pE liSt 1\ Pp 2:: p}1 (4.40) 

• the total number of bids in the history at prices greater than or equal to P; 

, , I 

GDBG(p,t) = I{p: P E (HEt U HEt) 1\ Pp 2:: p}1 (4.41) 

• the number of rejected asks in the history at prices less than or equal P; 

, I 

GDRAL(p,t) = I{p: P E HSt 1\ Pp:::; p}1 (4.42) 

• the number of accepted bids at prices less than or equal to P; 

GDTBL(p,t) = I{p : P E HEt 1\ Pp:::; p}1 (4.43) 

• the total number of asks in the history at prices less than or equal to P; 

, , I 

GDAL(p,t) = I{p: P E (HSt U HSt ) 1\ Pp:::; p}1 (4.44) 

• and the number of rejected bids at prices greater than or equal to Pp 

GDRBG(p,t) = I{p: pE I{p E HB; 1\ Pp 2:: p}1 (4.45) 
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Parameter name Semantics 
CD N The memory size 

Table 4.4: GD parameters 

Where we have recorded an ask at price p in the history ( ::Jp: p E (liSt u lis:) !\ 
pp = p), the estimated probability of a new ask being accepted at the same price is 
given by the following equation: 

CD 
_ CDTAG(p,t) + CDBG(p,t) 

pa(p,t) - CD CD CD 
T AG(p,t) + BG(p,t) + RAL(p,t) 

(4.46) 

Similarly, where we have recorded a bid at price p in the history, the estimated 
probability of a new bid being accepted is: 

CD 
_ CDTBL(p,t) + CDAL(p,t) 

pa(p,t) - CD + CD CD 
TBL(p,t) AL(p,t) + RBG(p,t) 

(4.47) 

For prices not recorded in the history, the function 

CDpa(p,t) = (}(3,t)p3 + (}(2,t)p2 + (}(l,t)P + (}(O,t) 

is obtained using cubic-spline interpolation over the pairs defined by the function 
CDp'a(p,t). 

Now that we have an estimate of the probability of a shout being accepted at a 
particular price, we are in a position to estimate the expected surplus as a result of 
bidding at different prices. For buyer i: 

CDE(p,i,t) = (Vi - pp)CDpa(p) 

and for seller i: 

CDE(p,i,t) = (pp - vi)CDpa(p) 

Finally, the GD strategy chooses prices in order to maximise expected surplus: 

((i,t) = argmaxCDE(p*,i,t) 
p* 

4.2.4 Reinforcement-learning Strategies 

(4.48) 

(4.49) 

(4.50) 

The adaptive strategies in the previous sections are general-purpose in the sense that 
they do not rely on any of the underlying implementation details of the auction mech­
anism, such as the particular clearing rule that is used. They do, however, rely on 
certain market-data being made available; the ZIP and GD strategies rely on the shouts 
of other agents to be made public information, and the TK strategy relies on public 
market-quote data. The strategies in this section, in contrast, rely only on the immedi­
ate feedback from interacting with the mechanism; the surplus that each agent was able 
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to obtain in the most recent round of trading. Thus they are general-purpose enough to 
be used in any auction-mechanism, even where we do not have access to market-data, 
for example, in repeated sealed-bid auctions. 

These strategies choose their markup over their valuation price thus: 

((i, t) = Vi + RL>.Jt)RL/l-i {:=:} ai E S 

((i, t) = Vi - RLAi (t)RL/l-i {:=:} ai E B 

(4.51) 

(4.52) 

based on a reward signal RLpi (t) which represents the most recent profits of agent ai: 

(4.53) 

The function RLAi : IN ---> 8 i represents the output of learning algorithm A where 
8 i = [0, RLkJ c IN is the set of possible outputs from A. 

Parameter name Semantics 

RLAi(t) A function specifying the output from a 
reinforcement learning algorithm 

RL/l-i A scaling factor used to map learning outputs 
onto actual prices 

RLki The number of possible outputs from RLAi 

Table 4.5: Reinforcement-learning parameters 

The Dumb-Random learning algorithm 

The dumb-random learning algorithm (abbreviation DR) is a control algorithm that in 
fact performs no learning and chooses actions randomly:' 

(4.54) 

where c5it is a discrete random variable distributed uniformly in the range [0, RLk.)' 
This algorithm can be used in control experiments by substituting it for one of the 
other algorithms below; if an observation is preserved under this substitution we can 
conclude that our observation is not likely to be due to learning behaviour. Functionally 
it is equivalent to the ZIe strategy (Section 4.1.4). 

The Roth-Erev learning algorithm 

The Roth-Erev algorithm (abbreviation RE) is designed to mimic human game-playing 
behaviour in extensive form games [43]. Agents bid probabilistically according to: 

(4.55) 

where c5it E 8 i is a discrete random variable distributed: 
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P(Oit = x) = REp (x, i, t) (4.56) 

The propensities are initialised based on the scaling parameter REsi ; \fai E A and 
WJ E 8 i : 

E ({) ) REsi R q ,ai,to =--
RLki 

the REq are then updated based on the experience function REe: 

REq({}, ai, t) = (1 - REpJREq({), ai, t - 1) 

+ REe ({}, ai) 

(4.57) 

(4.58) 

where the experience function depends on the most recent reward signal RLp and 
the last action chosen by the agent REi (t - 1): 

REe(B,ai,t) = RLpi(t -1)[1- RE1jJ {::::::> B = REi(t -1) (4.59) 

{::::::> B ~ REi(t - 1) (4.60) 

and then normalized to produce a vector of probabilities; let Qi
t 

denote the sum of all 
the propensities for agent i: 

Qit = L REq({}, ai, t) 
9E8i 

Then WJ E 8 i and \fai E A: 

({) . ) _ REq(B, ai, t) 
REp , a" t - Q. 

~t 

Parameter name Semantics 

REki The number of possible outputs 

REpi The recency parameter 

RE1ji The experimentation parameter 'rJ 
REsi The scaling parameter 

Table 4.6: Parameters for the Roth-Erev learning algorithm 

Nicolaisen et al. 's modified Roth-Erev algorithm 

(4.61) 

(4.62) 

Nicolaisen, Petrov and Tesfatsion [98] (abbreviation NPT) used a modified version of 
the Roth-Erev algorithm RL>'i (t) = REHt) where REW) is computed identically to 
REi (t) but for a modification to the experience function: 
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State variable Semantics 
REi(t) The output of the learning algorithm at time t 

REp(B, ai, t) The probability distribution over each possible action 
BE Si 

REq(B, ai, t) The propensity for each possible action 
BE Si 

RE,(B, ai, t) The experience function 

Table 4.7: State variables for the Roth-Erev learning algorithm 

RE RE". 
qi~ 

{=} B = RLI(t - 1) (4.63) 

{=} B =I- REi(t - 1) (4.64) 

The use of this algorithm is discussed further in Section 6.3. 

The Stateless Q-Learning algorithm 

The Stateless Q-Iearning algorithm (abbreviation sQ) is a single-state version of a 
temporal-difference reinforcement-learning algorithm called Q-Learning [147]. The 
algorithm maintains a table SQQ(B, ai, t) which can be thought of as an estimate of 
the payoff to each possible action B E Si. The estimates are updated using the rule: 

SQQ(B,ai,t + 1) = SQQ(B,ai,t) 

+ SQni [RLpi + SQ"!i ~~xSQQ(B', ai, t) - SQQ(B, ai, t)] 

(4.65.) 

where SQ"!i E IR is a discount factor and SQni is a parameter controlling the rate of 
convergence. 

Actions are chosen to maximise estimated payoff using an €-greedy rule: 

RL).,i (t) = bit {=} €~t:::; SQ'i 

RL).,i(t) = argmaxSQQ(B*,ai,t) {=} €~t > SQ'i 
8* 

(4.66) 

(4.67) 

where €~t E IR is a random variable distributed U (0, 1) and bit E IN is a discrete random 
variable distributed U(O, RLki - 1). 
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Parameter name Semantics 

SQ!; The exploration parameter 
SQ,",(; The discount factor 
SQO/i The learning rate 

Table 4.8: Parameters for the stateless Q-Learning algorithm 

4.3 Summary and Contribution 

In this section I have presented several classes of trading strategy from the double­
auction literature. The main contribution of this chapter has been to formulate all of 
these strategies within the common framework defined in the previous chapter. In so 
doing, I have been able to formulate these strategies in such a way that they can be 
seen to be applicable in several different variants of the double-auction market. For 
example, although the ZIP and GD strategies were originally formulated in the context 
of a market with continuous-clearing, nothing in their formulation herein depends on 
the form of the clearing-rule that is used. Indeed, in Chapter 8, we shall use a common 
set of strategies from this chapter to explore the design implications of different double­
auction mechanisms. 



Chapter 5 

Simulation Framework 

As we saw in Chapter 3, many of the variants of the double-auction are extremely 
difficult to analyse using traditional analytical methods from classical game theory and 
auction theory. In such cases, simulations of double-auction markets have been used to 
shed light on some of the grey areas that are difficult to analyse using existing theories. 
This methodology has come be to known as Agent-based Computational Economics 
(ACE) [139]. In this chapter I give an overview of the simulation framework that was 
used to conduct the experiments that are reported on in later chapters. 

As with any software engineering problem, in choosing an appropriate software 
framework in which to implement an ACE simulation it is important to consider the 
requirements that the software needs to meet. In Section 5.1, I give an overview of the 
typical requirements addressed by simulation software in general, and I then proceed 
to give an overview of some commonly-used simulation frameworks categorised ac­
cording to the functionality that they provide. In Section 5.1.7 I give an overview of 
my specific requirements for simulating the double-auction market, and give an outline 
of the design of the system in terms of the formal model specified in Chapter 3. 

5.1 An overview of multi-agent simulation 

5.1.1 Simulating a MAS verses implementing a MAS 

Software for simulating multi-agent systems typically addresses different requirements 
from that designed to implement multi-agent systems. Although it is natural to view a 
MAS implementation as its own simulation, there are a number of problems with such 
an approach, which I shall address in turn. 

Firstly, ideally we would like the outcome of a simulation experiment to be exactly 
reproducible given the initial conditions of the experiment. This is not always possible 
in a MAS implementation since many environmental factors will be beyond the exper­
imenter's control. For example, the precise outcome of an experiment may depend on 
the exact timing with which an agent responds to a particular message, and this time 
interval will depend on factors beyond the experimenter's control, such as the memory 

53 
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and CPU currently available to the agent. 
Secondly, when we come to analyse the results of a simulation, we often need to 

generalise beyond a single run of an experiment with a single set of initial conditions. 
Typically, we generalise by taking many samples of free initial variables and running 
the experiment many times for each sample. Simulation frameworks are equipped to 
log data from the outcome of each experiment to a format suitable for analysis using 
statistical analysis software, such as MAT-LAB. 

Thirdly, the performance considerations of a simulation are qualitatively different 
to that of an implementation. The software architecture of a MAS implementation is 
driven by real-world requirements that do not always hold in a simulation context, 
and once these requirements are relaxed, alternative architectures can yield significant 
performance improvements. For example, trading agents in the real-world need to be 
able to run on different machines due to commercial and practical considerations. This 
distributed parallelism is detrimental to raw system-level performance however, since 
inter-host network communication overheads dominate other performance considera­
tions. By running all agents on the same host we can achieve several orders of magni­
tude performance increase since inter-agent communication can be achieved with the 
negligible cost of an intra-process method invocation. This would be an impractical 
solution for a real MAS trading implementation, and would not achieve a reduction in 
elapsed auction times anyhow, since much of the processing involved needs to be syn­
chronised with sporadic real-world events (such as waiting for a human to determine 
their valuation for an item). However, such considerations do not apply in a simu­
lation context, and by relaxing these constraints we can achieve a significant gain in 
performance. 

Similarly, much of the technical complexity of a real MAS implementation ad­
dresses requirements that are not present in a simulation context. MAS implementa­
tions need to be robust against system failures, and they need to respond quickly to 
real-time asynchronous events. This requires a highly-parallel software architecture, 
involving, for example, many threads of execution running simultaneously. This in 
turn necessitates advanced, and costly, programming techniques for dealing with the 
common defects, such as race conditions [22], that can arise in parallel applications. 
Such considerations do not apply in agent-based simulation, since real-time parallelism 
can be simulated using a sequential program, and this greatly reduces the complexity 
of the software (and hence the potential for bugs). Note that since we typically run the 
simulation very many times (with different samples of free variables), we can easily 
scale-up the performance of our experiments by running different samples on different 
hosts, despite the fact that we are using a sequential software architecture. 

Finally, any MAS interacts at some point with a set of non-agent components, viz the 
environment. In an ACE scenario, for example, the environment might constitute eco­
nomically relevant characteristics of the human owners of agents, such as their utility 
functions. Unlike the agents in a MAS implementation, the environment is not a soft­
ware entity, and cannot be directly ported to an agent-based simulation. Rather, the en­
vironment itself must simulated. Agent-based simulation toolkits provide Monte-Carlo 
functionality for the abstract statistical simulation of environmental factors, which are 
often mode led as stochastic processes. In an ACE scenario, for example, rather than 
explicitly modelling the socio-biological formation of human preferences, we may 



5.1. AN OVERVIEW OF MULTI-AGENT SIMULATION 55 

assume for convenience that preferences are drawn from some random distribution. 
Hence a key feature of any simulation toolkit is it library of pseudo-random number 
generators (PRNG). The PRNGs provided in simulation toolkits are more advanced than 
those provided in standard programmer's libraries, such as, for example, the randO 
function provided by Unix's libc library, which suffer from small periods and pre­
dictable correlations between numbers in the sequence which can skew the results of 
experiments [102]. A good simulation toolkit will provide high quality PRNGs, such as 
the Mersenne Twister PRNG [85], with extremely large periods, low statistical correla­
tion, and the ability to produce random numbers according to arbitrary (non-uniform) 
distributions. 

In summary, when developing a system to simulate a multi-agent system, it is im­
portant to choose a framework or toolkit that is specifically designed for agent-based 
simulation, as opposed to toolkits such as JADE [7] that are designed for implementing 
multi-agent systems. 

5.1.2 Different approaches to simulating time 

As discussed in the previous section, for practical purposes we prefer to simulate the 
parallelism of events using sequential computation, rather than execute the simulation 
of multiple simultaneous events in parallel in real-time. This necessitates a framework 
for computing the outcome of events that occur simultaneously. Since computations 
in the simulation corresponding to these events occur at different times from the times 
that the events would have occurred at in a real system, this results in two distinct 
notions of time, viz "simulation-time" as opposed to "real-time" (also known as "wall­
clock time"). Since time plays an important causal role in any model, it is important to 
be able to time-stamp events with the simulation-time that they occurred and provide 
the current simulation time to all entities in the model. Hence, we need to simulate 
the progression of simulation-time and its causal role. There are several approaches to 
simulating time in a model: 

5.1.3 Continuous time models 

Many physical processes are characterised by smooth and continuous changes in time­
dependent variables. For example, the velocity of a projectile is a continuous function 
of its acceleration and time, and may vary smoothly over an arbitrarily small interval 
of time. Processes such as these are typically modeled using systems of differential 
equations. Many simulation toolkits exist for approximately solving, and analysing the 
dynamics of models expressed as differential or difference equations. 

Differential equation models are common in analytical microeconomics. Such 
models are applicable approximations of real marketplaces when there are very large 
numbers of participants in the market since individual characteristics of the partici­
pants play a less significant role and the entities in the system can be treated as simple 
and homogeneous particles. However, these models break down when the number of 
participants becomes very small and the individual and strategic characteristics of the 
participants become more prominent. 
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Agent-based models address this issue by providing a richer structure with which 
to model market participants. In such models, macro-level variables describing the 
ensemble of agents no longer vary smoothly with time. This necessitates alternative 
approaches to temporal modelling. 

5.1.4 Discrete-event simulation 

Discrete-event simulation frameworks [5, 54] model time in discrete quanta called 
"ticks". Intuitively, a tick can be thought of as an "instant" of time. During the simula­
tion of a tick - the "tick cycle" - entities (agents) in the simulation signal which agents 
they interact with during that instant of time by sending events to each other. Individual 
events specify the exact nature of the interaction between agents. In an auction simula­
tion, for example, an auctioneer agent may send an end-of-auction event to all trading 
agents in the auction when it has closed. At the end of tick cycle, once events have 
been exchanged, each entity updates its internal state in response to any events it has 
received. Since an entity can have multiple events in its event queue, it can take into 
account the causal effect of multiple simultaneous events when it comes to computing 
its updated state. 

5.1.5 Agent decision functions 

In an ACE simulation agents often need to make intelligent decisions in their resource 
utilisation and acquisition behaviour. Modelling intelligent decision making behaviour 
is one of the central problems in Artificial Intelligence research, and there are as many 
approaches to modelling agent decision functions in agent-based simulations as there 
are schools of thought in AI. 

The intelligent-agents community has traditionally favoured symbolic approaches, 
such as the class of Belief-Desire-Intention (BDI) models [157]. In an ACE scenario, 
however, the most important aspect of an agent's goals is their ordering with respect 
to the agent's preferences; for example, agents may act to maximise their expected 
utility. In the field of agent-based electronic commerce, this has led to the adoption of 
numerical methods based on dynamic programming [8, 36], such as (multi-agent) rein­
forcement learning I , in which the symbolic concept of a goal is replaced by a numerical 
reward value. 

Many agent-based simulation frameworks have been developed by the Artificial­
Life (ALife) community. Agents in Alife models are imbued with very little intelli­
gent behaviour at the outset; rather, intelligent behaviour emerges collectively from 
the complex interactions between agents equipped with relatively crude decision mak­
ing machinery. Connectionist approaches such as neural-networks and evolutionary 
approaches such as genetic-algorithms, are popular in such models [78]. 

Since simulation is the main methodology used in ALife research, ALife software 
toolkits tend to be the most mature in terms of simulation functionality. Correspond­
ingly, since empirical methods are relatively rare in MAS research, there are few frame­
works for simulating BDI agents, as opposed to implementing BDI agents. Thus when 

1 See Chapter 4 of [137] for an explanation of the relationship between reinforcement-learning and dy­
namic programming. 
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conducting simulations of BD I agents, it is sometimes necessary to develop software to 
integrate functionality provided by BDI software toolkits with that provided by simula­
tion toolkits. 

5.1.6 Extensibility and integration 

When conducting research via simulation it is often necessary to extend the existing 
functionality of the system. Although all frameworks provide the ability to configure 
simulations, the desired behavior cannot always be implemented by configuring the 
existing components provided by the framework. In this case it is necessary for the 
researcher to implement the desired behaviour by writing their own code. Toolkits take 
two main approaches to allowing extensibility: 

• scripting in a custom language; and 

• introducing new classes and methods via inheritance 

The former is sometimes preferred when the researcher is not a skilled programmer, 
but in general the latter approach is much preferable. The disadvantages of a scripting 
approach are considerable; third-party libraries, for example: libraries providing BDI or 
reinforcement-learning functionality, cannot be used; the language may not necessarily 
well-supported or well-known by the community and if it is an interpreted language it 
may cause performance issues. 

In judging whether or not a toolkit is extensible via object-oriented programming, 
one needs to ask the following questions: 

• Is the source code for the original framework available? 

• Is it written in an object-oriented language? 

• Is it available under an open-source license? 

• Is there comprehensive API documentation? 

• Is the code well-structured and designed for extensibility? 

Extensible software is typically characterized by very many small classes each with 
a clear functional role, and each with many small methods. Software designed in a 
monolithic fashion with a few large classes, or with very long methods, is hard to 
extend. 

5.1. 7 Requirements 

As discussed, when selecting an appropriate foundation on whic.h to build a sim~lation 
system it is important to review the requirements that software IS t~ meet.. In thIS sec­
tion, I review the key requirements that drove the development of SImulation software 
used for my research. 
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• Large numbers of auctions with different sets of agents 

I am interested in applying techniques from evolutionary computation to nego­
tiation and market design problems. This involves running a particular trading 
scenario a large number of times with different sets of evolving agents, and/or 
evolving mechanisms. A typical experiment may, for example, require evaluat­
ing market outcomes over 104 generations of evolution and require of the order 
of 106 auctions to be run in total. 

• A variety of auction protocols 

My interest in auctions arises from their generality; ie their applicability to a 
wide range of scenarios in negotiation and market design problems. In order to 
be general enough, our simulation software needed to support a wide variety of 
configurable auction protocols, including double auctions in which both buyers 
and sellers submit offers, and multi-unit auctions in which multiple units of a 
commodity are traded. 

• The ability to change the rules of the auction 

Because I am interested in market design, I need to run experiments where I vary 
the rules of the auction. These variations in auction rules may not always be 
taken from the set of known analysed auction rules. 

• The ability to experiment with a wide variety of trading strategies 

I am interested in running simulations with a wide variety of behavioural strate­
gies. 

The key requirements can be summarised as performance and extensibility. During the 
course of my research, I could not find any existing auction simulation software that 
supported the above requirements, and so I started development on the Java Auction 
Simulator API (Abbreviation JASA) project2. JASA is a high-performance extensible 
auction simulator written in Java. JASA is built on top of the Repast multi-agent sim­
ulation framework [101, 125]. In the following section I review many of the common 
simulation frameworks available and explain why Repast was chosen. 

5.1.8 Software listing 

In this section, we give a brief overview of some commonly-used general-purpose sim­
ulation frameworks that might be suitable for analysing ACE problems. 

Swarm 

Swarm is one of the most famous ALife software toolkits and has been continually 
improved by an active community of users and developers since the early 1990s [89]. 
It provides an API for discrete-event simulation. 

2http://freshmeat.net/projects/jasa 
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Features 
high-quality PRNGs I 

discrete-event simulation 
spatial modelling 
real-time visualisation tools 
Advantages 
It is well-supported and well-known by researchers 
Open source 
Disadvantages 
it IS wntten m UbJechve-c WhIch IS an Obscure programmmg language 
which is not well supported, although recently a JAVA interface has been 
~rovided using 1Nl (Java Native Interface) 
Languages and Platforms 
Objective-C 
Windows 
Unix 

MAML - Multi-Agent Modelling Language 

MAML is an extension to Swarm that provides a higher-level scripting language that is 
simpler to use than Objective-C [62]. The goal is to allow researchers from the social 
sciences, who are not necessarily skilled programmers, to quickly develop simulations. 

Features 
high-quality PRNGs 
discrete-event simulation 
spatial modelling 
real-time visualisation tools 
Advantages 
It is well-supported and well-known by researchers 
Open source 
Disadvantages 
it IS wntten m ObJechve-c wmch IS an obscure programmmg language 
which is not well supported, although recently a JAVA interface has been 

J2fovided using 1Nl (Java Native Interface} 
Languages and Platforms 
Objective-C 
Windows 
Unix 

RePast 

The RePast toolkit is inspired by Swarm, but is written entirely in Java, and the ultimate 
design goals of this system are more MAS-oriented than ALife-oriented [101,125]. 
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Functionality 
high-quality pseudo-random number generation (Mersenne Twister) 
discrete-event simulation 
spatial modelling 
real-time visualisation tools 
Advantages 
Open source 
Extensible 
Core Slmulatlon hmctlonahty is relatlvely mature and robust; Uses the 
CERN colt library for high-performance scientific computing. 
Disadvantages 
MAS-onented teatures are relatlvely immature. There is currently no 
explicit reinforcement-learning or BDI support. 
Languages and Platforms 
Java 
Multi-platform " 

Desmo-J 

Desmo-J provides raw discrete-event simulation functionality3. It uses the standard 
Java PRNG, but the API should allow other PRNGs to be plugged in. 

Functionality 
discrete-event simulation 
Advantages 
Highly-flexible 
well-designed API 
Disadvantages 
Minimal functionality is provided beyond discrete-event modelling 
Languages and Platforms 
Java 
Multi-platform 

AScape 

AScape is a Java-based discrete-event simulation framework with an emphasis on spa­
tial modelling of agents4. 

3http://sourceforge.net/projects/demoj 
4http://www.brookings.edu/es/dynamics/models/ascape/ 
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Functionality 
discrete-event simulation I 

spatial modelling - including diffusion modelling 
visualisation 
Advantages 
Oriented towards social-science research 
Disadvantages 
No high-quality PRNG algorithms provided 
monte-carlo functionality somewhat ad-hoc. 

deX - Dynamic Experimentation Toolkit 

deX is a C++ framework for building multi-agent systems with an emphasis on three­
dimensional visualisation5 

Functionality 
high-quality pseudo-random number generation 
discrete-event simulation 
spatial modelling 
real-time visualisation tools, including 3D 
Advantages 
High-performance 
Disadvantages 
Licensing agreement unclear 
Source-code hard to obtain 
Languages and Platforms 
C++ 
Linux 

5.1.9 Choice of toolkit 

There are a great many agent simulation toolkits available in the software domain. I 
have reviewed several that were popular at the time of writing. I chose the RePast 
simulation framework [101,125] as the basis of my simulation software. 

5.1.10 Choice of language 

In order to be truly extensible, the system must give researchers the ability to pro­
gram their own trading strategies, and auction mechanisms. This necessitates the use 
of a general purpose programming language. Rather than creating customised pro­
gramming languages for writing trading strategies and auction rules, I decided to use 
the Java programming language. Java suits our design goals because it supports the 
following features: . 

• Extensibility via inheritance. 

5http://dextk.org/dex/index.html 
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Researchers can create auction mechanisms and trading strategies from a set of 
reusable software components, whose functionality they can extend and modify 
using inheritance. Base classes can be provided which serve as skeletons for fur­
ther development. For example, a base class for auction mechanisms is provided 
as part of the system; this class encapsulates common behaviour for all types of 
auction. A researcher can use this base class as a skeleton, or template, which 
they can extend, by for example, replacing the generic method for determining a 
clearing price, with custom code to implement a specific pricing policy . 

• Performance. 

In some circles, the Java programming language has gained a reputation for per­
formance problems. This reputation, however, derived from very early imple­
mentations of the Java Virtual Machine (JVM). Although for some benchmarks 
Java is not quite as fast as C++, modem JVMS (versions 1.4 and above) are 
several orders of magnitude faster than the version 1.1 JVM, and many bench­
marks demonstrate superior performimce for Java over C++ in some cases6 . It 
is now widely acknowledged that Java is mature enough to be used for for high­
performance numerical computing [11, 93]. Part of Java's previous poor rep­
utation in this area may be due the different style of performance optimization 
required, as summarised by Shirazi: 

"There is a general perception that Java programs are slow. Part 
of this perception is pure assumption: many people assume that if 
a program is not compiled, it must be slow. Part of this perception 
is based in reality: many early applets and applications were slow, 
because of nonoptimal coding, initially unoptimized Java Virtual Ma­
chines (VMs), and the overhead of the language. In earlier versions 
of Java, you had to struggle hard and compromise a lot to make a 
Java application run quickly. More recently, there have been fewer 
reasons why an application should be slow. The VM technology and 
Java development tools have progressed to the point where a Java 
application is not particularly handicapped." [129, p. 1] 

• Ease of use. 

Java is relatively easy to learn, compared with, for example, C++, and it is also 
well-established; many researchers already possess Java programming skills . 

• Proximity to agent-oriented programming. 

Although it is not itself an agent-oriented programming language, Java has many 
features in common with other Object-oriented languages that make develop­
ment of MAS simulations relatively straight-forward. For example, different 
types of agents can be represented as classes; individual agents can be instan­
tiated as objects and agents can communicate amongst one another by invoking 
methods on each other. 

6For example, sce http://www.kano.net/javabench/. 
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5.2 Engineering Methodology 

As Ropella et al. [116] point out, building a simulation of a system as opposed to 
implementing a system poses unique software engineering challenges, which I shall 
examine in the following sections. 

5.2.1 Unit testing 

Functional testing is very difficult when simulating complex-adaptive systems (CAS), 

such as the double-auction market place. When developing a traditional software sys­
tem, we typically have a set of well-defined system requirements that specify the exact 
macro-level behaviour of the system. These requirements are complete, in the sense 
that unanticipated behaviours which have not been specified in advance are consid­
ered undesirable7. However, when we are simulating a CAS, we are often interested 
in emergent behaviour that has not been specified in advance; in traditional software 
engineering, such behaviour is an obvious sign of a defect, whereas in CAS research, 
it is the entire point of the exercise. That is not to say, however, that software defects 
are unimportant when we come to simulate a MAS. On the contrary, we need to have 
as much confidence as possible that the effects we observe are a result of the actual 
assumptions that we state and not a result of an incorrect implementation of these un­
derlying assumptions. 

In traditional software engineering, we can laboriously, but methodologically, test 
the system to see that its behaviour matches a concrete specification. However this is 
problematic in CAS modelling since the "specification" corresponds to a set of stated 
assumptions about the domain, and does not take the form of statements about the 
macro-level behaviour of the system. Hence, so-called black-box testing methods can­
not be applied to CAS modelling software. 

Therefore, when developing CAS software, we need to place much more emphasis 
on glass-box testing methods, which attempt to verify the correctness of individual 
software components rather than system-level behaviour. The approach that I have 
adopted is that of automated unit-testing [68]; each class (component) in the system has 
a corresponding class which is responsible for testing the class under consideration by 
invoking each of its methods with different parameters. The testing class then verifies 
that each methods returns the expected result given the supplied parameters. 

This approach is especially beneficial in developing research software, since it re­
sults in an automated suite of tests that can be quickly used to regression test the system 
after we have made changes to the software. In traditional software engineering, once 
the software has been released, code changes are prohibitively expensive, partly be­
cause of the cost of testing to ensure that changes have not resulted in new defects to 
other parts of the system as Brooks comments: 

"Also as a consequence of the introduction of new bugs, program 
maintenance requires far more system testing per statement written than 

7For cxample, many security vulncrabilities in software typically fall into this catcgory of dcfcct; a vul­
ncrability arises whcn an attacker is able to exploit unanticipatcd bchaviour from a piece of a software to 

their own advantage. 
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any other programming. Theoretically, after each.fix one must run the en­
tire batch of test cases previously run against the system, to ensure that it 
has not been damaged in an obscure way. In practice, such regression test­
ing must indeed approximate this theoretical idea, and it is very costly." 
[15, p. 122] 

Therefore, traditional methodologies place an emphasis on freezing the code to 
further changes prior to release of the software- that is, once the software is "finished". 
However, research software is rarely finished in this sense of the word, hence it is 
necessary to use engineering methods that are robust to software changes, such as for 
example, frequent, automated regression-testing [68]. 

Increasingly, it has been realised that this also true of commercial software, and 
this has led to the development of software engineering methods that are able to cope 
with changing requirements - so called agile software engineering methodologies [6], 
in which regular automated unit-testing is.one of the principle techniques. During 
the development of JASA, I have incorporated various other techniques from agile en­
gineering methodologies, including the principle of making releases of the software 
available to other researchers as early and as frequently as possible ("release early, 
release often" [114]), as discussed below. 

5.2.2 Replication of existing experiments 

For some problems involving the use of simulation, we have a concrete physical system 
corresponding to the simulation; for example, when modelling meteorological phe­
nomena, we have a physical system - the atmosphere - which we can model using me­
teorological simulation software. In such scenarios, we can use the observed behaviour 
of the physical system as a specification for the corresponding software simulation. 

In much of the ALife and Multi-Agent Systems research into the double-auction 
market, however, the emphasis is not so much on fine-grained quantitative or predic­
tive models of actual real-world instances of this institution, but rather, on assessing the 
qualitative behaviour of such systems under different assumptions. This has resulted 
in a proliferation of terminology for abstracta: entities that exist solely in different 
researcher's models. Whereas meteorologists know exactly what they mean when they 
talk about, for example, a "cirrus cloud formation", since they can, in a sense, sim­
ply point out of the window at one, it is more problematic for ALife researchers to 
know exactly what is meant by, for example, a ZIP agent [28], since this is neither an 
entity that exists in the real-world, nor an abstraction that possesses a simple and ele­
gant mathematical description within a well-defined theoretical framework. Indeed, the 
most precise and concise definitions of a ZIP agent utilise some form of pseudo-code. 

This presents methodological hurdles, however, since code is rarely directly portable 
across different experimental frameworks. Thus researchers typically have to re-engineer 
such components from scratch when conducting experiments. 

If one is reporting on results that are hypothesised to be contingent on a partic­
ular trading strategy such as ZIP, one has to be careful that we have an agreed-upon 
definition of what ZIP actually is. Definitions in the form of code, however, present 
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a challenge, since it is rarely possible to prove whether two pieces of code exhibit 
identical behaviour, even for very simple prograrris. 

Therefore, when adopting abstracta with procedural definitions into one's experi­
mental framework, it is crucial to attempt to determine as far as possible whether the 
imported entity behaves as specified. One approach that I have adopted in this thesis is 
to rely on replication attempts, in which I attempt to replicate as precisely as possible 
the results reported in the original work. These are discussed further in Chapter 6. 

5.2.3 Open-source 

One of the key goals of the JASA project is to become a repository for reference imple­
mentations of various entities that are commonly-used in agent-based computational 
economics. For example, JASA contains implementations of many common trading 
strategies that are reported on elsewhere in double-auction simulation experiments. 
These implementations have undergone testing in the form of replication attempts, and 
have associated automated regression tests that check whether these components con­
tinue to replicate the original work after any changes to the software system are made. 
By making these implementations publicly and freely available, as early in their devel­
opment as possible, I have been able to gain invaluable feedback from other researchers 
as to the correctness of particular re-implementations of other researchers work. 

Since many of the components in ACE research are procedural in nature their more 
concise and accurate description is in some general-purpose programming language. It 
is my view that pseudo-code is not the best means of expressing these entities; rather, 
I prefer to use actual runnable code. By using strict coding standards, and object­
oriented design techniques, I have been able to develop runnable-code that is just as 
easy to read as pseudo-code. This has the significant advantage that other researchers 
can actually execute this code, rather than relying on reverse-engineering of the code 
in order to study the exact behaviour of the entities I describe. 

Visualisation 

Providing a visual representation of the state of the simulation can allow for a easier and 
more institutive analysis, as well as quickly identifying unusual or aberrant behaviour 
that may be the result of software defects8

• Figure 5.1 shows a screen-shot of the sim­
ulator running with th: aide ?fRe~ast vi~sualisation features. The simulator allows the 
auction state tuple (ME, M E', MS, MS') to be plotted graphically in real-time, as 
well as the true supply and demand schedules (M E, MS, M E' , M S'). Visualisation 
can be turned off when running batch experiments in order to gain maximum time 

performance. 

8rhat is not to say, however, that visualisation is a panacea, or that it is easy to design and implement 

well in the general case. 
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Figure 5.1: Real-time visualisation of auction simulation using RePast. 
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5.3 Design overview 

In this section I give an overview of some of the key components of the auction sim­
ulator. The UML diagrams that are referenced from this section can be found in Ap­
pendix A. 

5.3.1 The shout matching algorithm 

As discussed in Section 3.2 .6, a core part of simulating any auction mechanism is 
maintaining four sets of shouts: the matched asks (MS), the matched bids (M B), the 

A I ..... I 

unmatched asks (MS), and the unmatched bids (M B). 
I chose the 4-heap algorithm [159] as the basis of my design, since the 4-heap algo­

rithm specifically addresses both of my design goals. The key innovation of the 4-heap 
algorithm, as far as performance is concerned, is the use of binary-heaps to maintain 
the state of the auction; this allows the fundamental operations of an auction: shout 
insertion and removal, clearing and providing quotes to be carried out very efficiency. 
Specifically, for a single-unit auction with L active shouts, of which M are asks and N 
are bids: 

- shout insertion/removal can be carried out in O(ln(L)) time. 

- market quotes9 can be provided in 0(1) time 

- clearing 10 can be carried out in O(min(M, N)) time. 

The 4-heap algorithm is also general; i.e . it is capable of maintaining state for a wide 
variety of auction mechanisms. 

Figure A.I shows the UML class diagram for the class FourHeapShoutEngine. 
A A ' A 

The binary heap attributes bIn, Bout, sIn, sOut correspond to MB, MB, MS, 

M S' respectively, as defined in Section 3.2.6. 
The shout-matching service is accessed through the interface ShoutEngine, so 

that alternative matching algorithms can be plugged in if so desired. 

5.3.2 Auction mechanisms 

The different auction mechanisms are encapsulated through the Auctioneer inter­
face, which defines how the clearing operation and quote-generation are scheduled in 
response to different auction events. See Figure 5.2 for an illustrative example. 

Figure A.2 shows a sample of the different double-auction mechanisms that are 
implemented in JASA. Each auctioneer can be configured with a specific class of 
PricingPolicy, the class heirarchy for which is illustrated in Figure A.3. These 
classes implement the various aspects of our generic double-auction model specified in 
the Chapter 3. Table 5.3.2 lists the formal specification associated with each class. The 
experimenter may choose from the existing classes, or they may extend the existing 
functionality by writing their classes that implement the relevant interface 

9 SCC Section 3.2.7. 
IOScc Section 3.2.9. 
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Class . Formal specification 
ClearingHouseAuctioneer Section 3.3 
ContinuousDoubleAuctioneer Section 3.4 
DiscriminatoryPricingpolicy Section 3.3.2 
InOrderPricingPolicy Section 3.3.3 
UniformPricingPolicy Section 3.3.1 

Table 5.1: Auction rules reference 

Class Formal specification 
NPTRothErevLearner Section 4.2.4 
RothErevLearner Section 4.2.4 
StatelessQLearner Section 4.2.4 

Table 5.2: Learning algorithm reference 

5.3.3 Agents and trading strategies 

The strategic behaviour of each agent - the choice of price and quantity at any given 
time - is decoupled from other aspects of the agent's behaviour such as determin­
ing valuation, or replenishing stock levels at the end of a trading day. Thus we have 
two separate class hierarchies for agents and strategies. Figure A.6 illustrates the 
TradingAgent interface, which is implemented by AbstractTradingAgent, 
each instance of which can be configured with a particular class of trading strategy. 
The class heirarchy for trading strategies is illustrated in Figure A.5. Each subclass in 
this heirarchy corresponds to a strategy defined in Chapter 4, and the relevant mappings 
are shown in Table 5.3. 

The decoupling of strategic behaviour from agent house-keeping functionality al~ 
lows new strategies to be configured via composition. Of particular interest is the 
MarkupStrategyDecorator class, which can be configured to bid a fixed per­
centage markup on top of another strategy, and the MixedStrategyClass class 
which can be configured to play a number of different "pure" sub-strategies with dif­
ferent probability. 

The reinforcement-learning strategies described in section 4.2.4 are implemented 
by the StimuliResponseStrategy class. Strategies of this type can be config­
ured to use different learning algorithms, which are encapsulated in a separate class­
heirarchy; Figure A. 7 illustrates the relationship between trading strategies and learn­
ing algorithms. This design results in minimal dependencies thus allowing the various 
learning algorithms implemented by JASA to be reused in non-trading contexts. 

5.3.4 Events 

Figure A.4 illustrates JASA'S event architecture. Different types of event are encapsu­
lated in different subclasses of AuctionEvent and the various entities in the sim-
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public class ClearingHouseAuctioneer 
extends TransparentAuctioneer 
implements Serializable { 

protected ZeroFundsAccount account; 

public ClearingHouseAuctioneer() 
this (null) ; 

} 

public ClearingHouseAuctioneer( Auction auction) { 
super (auction) ; 
setPricingPolicy(new UniformPricingPolicy(O»; 
account = new ZeroFundsAccount(this); 

public void generateQuote() { 
currentQuote = 

new MarketQuote(askQuote(), bidQuote(»; 
} 

public void endOfRoundProcessing() { 
super.endOfRoundProcessing() ; 
generateQuote() ; 
clear () ; 

public void endOfAuctionProcessing() 
super.endOfAuctionProcessing() ; 

} 

public Account getAccount() 
return account; 

69 

Figure 5.2: The source-code for the ClearingHouseAuctioneer class. This code speci­
fies that the quote-generation and clearing operations happen at the end of every round. 
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Class Formal specification 
EquilibriumPriceStrategy Section 4.1.2 
GDStrategy Section 4.2.3 
KaplanStrategy Section 4.2.2 
RandomConstrainedStrategy Section 4.1.4 
StimuliResponseStrategy Section 4.2.4 
TruthTellingStrategy Section 4.1.1 
ZIPStrategy Section 4.2.1 

Table 5.3: Trading strategy reference 

ulator that respond to auction events do so through the AuctionEventListener 
interface. 

5.4 Summary and contrib'!tion 

As we saw in Chapter 3 many of the variants of the double-auction mechanism are 
difficult to analyse using conventional analytical tools. Therefore, the approach to 
mechanism design I take in this thesis is an empirical one, in which real-life observa­
tions and simulation play a key role. In this chapter I have given an overview of the 
simulation software - JASA - that I developed in order to conduct the experiments 
in this thesis. Since these experiments are a key part of my research, it is important 
that their implementation in sofware is as readable and transparent as possible, and is 
designed according to a sound methodology in an attempt to ensure its correctness. 

In this chapter I have described how JASA was developed using best-practice en­
gineering methodology for agent-based simulation: it is object-oriented, extensible, 
configurable, high-performance and open-source. I have used principles of agile soft­
ware engineering in keeping with the dynamic nature of software designed for re­
search purposes, specifically: automated unit-testing, early and frequent releases to 
other users, community bug-tracking and an emphasis on collaborative software de­
velopment. JASA has undergone many refinements and bug-fixes throughout its de­
velopment and is now of sufficient maturity that it is used by several different re­
search teams around the world for research into agent-based computational economics 
[140,60,99,16,96]. 

". 
" 



Chapter 6 

Replication Experiments 

6.1 Introduction 

In the previous chapter I discussed the fact that replication experiments are a key tech­
nique in validating software used for agent-based computational economics. In this 
chapter I report on the most important replication experiments that were used to vali­
date the software used throughout this thesis. 

6.2 Control Experiments 

In many of the experiments discussed in this thesis the main variable that is measured 
is the efficiency of the market EA (defined by equation 3.6). As discussed in Chap­
ter 4 there are two control strategies that should yield EA = 1 in a wide variety of 
circumstances: the TT strategy (Section 4.1.1) and the EPS strategy (Section 4.1.2). 
The former should robustly yield EA = 1 in a CH mechanism provided that every 
agent uses the TT strategy, the latter similarly in a CDA mechanism. This suggests that 
experiments with agents using these strategies can serve as important controls. 

The TT strategy is tested in a CH with a k = 0.5 discriminatory-pricing policy (Sec­
tion 3.3.2). Agents' valuations are drawn from a uniform distribution on the interval 
[50, 100J and the market is run for 102 rounds. This experiment is run 102 times, and 
if EA =F 1 for any iteration then an error is reported. 

The EPS strategy is tested in a CDA with a k = 0.5 discriminary-pricing policy. 
Agents' valuations are drawn from a uniform distribution on the interval [50, 300J and 
the market is run for 102 trading days, each of which lasts 20 rounds: 

eOrt-l E Et-l ==} NRt = NRt- 1 + 1 (6.1) 

NRt-l mod 20 = 0 ==} eodt E Et (6.2) 

This experiment is repeated 2 x 102 times, and if EA =F 1 for any iteration then an 

error is reported. 

71 
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Both of these experiments are part of the automated regression testing suite which 
is run whenever changes to the simulation code are made. Thus the results of these 
control experiments are implicit in any experimental results reported in this thesis. 

6.3 Nicolaisen's Electricity Market 

Nicolaisen, Petrov and Tesfatsion [98] (abbreviation NPT) describe several experiments 
using a multi-unit clearing-house auction I with discriminatory k = 0.5 pricing2• The 
domain they study is that of market design for deregulated electricity markets, in which 
small numbers of traders with relatively static valuations repeatedly interact with each 
other over a long time period. 

Nicolaisen et al. were concerned with market-power effects as the number of 
traders on the supply side or the demand side varied; that is, to what extent does the 
market favour buyers or sellers as each group becomes smaller, and thus in more of 
a monopoly-like situation. N s and NB denote the number of sellers and the number 
of buyers respectively. As in the original NJ>T paper, in the scenarios we consider we 
examine cases where N s = 3, N s = 6, NB = 3, NB = 6 and all corresponding 
combinations. Buyer valuations are taken from the multisets: 

VB = {37,37, 17, 17, 12, 12} {:::=} NB=6 

VB = {37,17,12} {:::=} NB=3 

Correspondingly for seller valuations: 

vs = {11, 11, 16, 16, 35, 35} {:::=} Ns = 6 

VS = {11, 16, 35} {:::=} Ns = 3 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Each group of agents has a fixed, finite generating capacity that determines the 
maximum amount of electricity resource that they are capable of trading at any given 
time. The variable CS denotes the generating capacity of sellers and the variable CB 
denotes the generating capacity of buyers. Agents place shouts at quantity equal to 
their generating capacity, thus we modify equations 4.1 and 4.2 to incorporate multi­
unit bidding according to generating capacity: 

Z(i,t) = (bid, ai, ((i,t),CB,t) {:::=} ai E B /\ai E Kt (6.7) 

Z(i, t) = (ask, ai, ((i, t), CS, t) {:::=} ai E S /\ ai E Kt (6.8) 

Agents use the modified version of the Roth-Erev trading strategy specified in Sec­
tion 4.2.4; thus ((i, t) is given by equations 4.51 and 4.52, and: 

I See section 3.3 
2See section 3.3.2 

RL>.i(t) = RE'(i,t) Vi (6.9) 
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where RE' (i, t) is defined as in Section 4.2.4. Each agent's strategy is configured 
with the following parameters which are taken from the "best-fit" parameter set used 
by NPT [98, p. 10]. ) 

RE!; = 0.2 Vi 

REp; = 0.1 Vi 

REs; = 9 Vi 

REki = 100 Vi 

Nicolaisen et al. tested a number of different scenarios by systematically varying the 
relative concentration of sellers to buyers, RCON, and the relative generating capacity 
of buyers to sellers, RCAP, where these are defined: 

RCON= Ns 
NB 

RCAP= NB x CB 
Ns x CS 

(6.10) 

(6.11) 

The outcomes of interest are the market-power available to the buyers and sellers re­
spectively, denoted by the variables MP B and MPS respectively, and defined by the 
equations: 

MPB= PBA-PBCE 
PBCE 

MPS = PBS-PSCE 
PSCE 

(6.12) 

(6.13) 

where P BA and PS A denote the profits of the buyers verses sellers once the auction 

has finished (t = t'): 

PBA = L rt,(ai) (6.14) 
'Va;EB 

(6.15) 
'VaiES 

and the variables P BC E and P SC E denote the profits of buyers and sellers respec­
tively in competitive equilibrium. This is calculated by running a control experiment in 
which all agents use the EPS strategy as defined in Section 4.1.2, and then calculating 
P BCE as per P BA (similarly PSCE is calculated as per PSA). 

The efficiency of the outcome is denoted EA' and defined: 

, = PBA+PSA x 100 
EA PBCE + PSCE 

(6.16) 

This is simply the efficiency EA defined by equation 3.6 expressed as a percentage; 

that is: 

EA' = EA x 100 (6.17) 
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Results 

RCAP 
RCON 1 1 2 "2 

EA' 99.76 (0.84) 99.95 (0.20) 99.60 (3.4) 
2 MPB -0.36 (0.17) 0.06 (0.30) 0.01 (0.45) 

MPS 1.53 (0.73) -0.05 (0.27) -0.02 (0.40) 
EA' 99.07 (2.87) 99.61 (0.40) 98.27 (6.16) 

1 MPB -0.27 (0.14) -0.37 (0.19) 0.12 (0.38) 
MPS 1.13 (0.58) 1.26 (0.66) -0.14 (0.36) 

EA' 96.66 (6.18) 99.64 (0.35) 99.98 (0.01) 
1 MPB -0.41 (0.15) -0.37 (0.20) -0.13 (0.28) "2 

MPS 1.58 (0.58) 1.28 (0.68) 0.11 (0.25) 

Table 6.1: Replicated results for 104 auction rounds 

RCAP 
RCON 1 1 2 "2 

EA' 100.00 (0.00) 99.49 (0.01) 100.00 (0.00) 
2 MPB -0.04 (0.07) -0.07 (0.26) -0.07 (0.24) 

MPS 0.19 (0.32) 0.21 (0.19) -0.06 (0.19) 
EA' 94.13 (0.09) 99.66 (0.01) 100.00 (0.00) 

1 MPB -0.16 (0.09) -0.08 (0.07) 0.06 (0.24) 
MPS 0.60 (0.38) 0.22 (0.28) -0.05 (0.19) 

EA' 95.22 (0.09) 99.56 (0.01) 100.00 (0.00) 
1 MPB -0.14 (0.07) -0.06 (0.05) 0.10 (0.20) "2 

MPS 0.59 (0.36) 0.20 (0.19) -0.08 (0.16) 

Table 6.2: Nicolaisen et aLs' results for 104 auction rounds 

Nicolaisen et al.'s original results are re-presented in Table 6.2. The results that I obtain 
using the current version of my simulation framework are shown in Table 6.1. Each 
value reported is the mean from n = 100 samples of the experiment with the standard 
deviation presented in brackets3

• These were obtained using the 64-bit version of the 
Mersenne Twister PRNG [85] using double-precision IEEE 754 floating point arithmetic 
[135]. 

Although the results are not numerically identical to those in the original exper­
iment, the qualitative outcomes of both the original and the replicated experiments 
are very similar. In particular, there are relatively few sign discrepancies between the 
market-power outcomes when comparing the replicated results with the original re­
sults, and where there is a sign discrepancy the absolute value of the market-power 
variable is closer to zero than when there is not. This is the same qualitative criteria 

3Note that the standard error of the mean is given by aM = .::n which is not what is directly reported 

in the results table 

" 
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that Nicolaisen et al. use to compare their experimental outcomes with the analytically 
predicted outcomes for market power. 

6.4 Cliff's Zero-Intelligence Plus Strategy 

As discussed in Section 4.2.1, Cliff [28] set out to explore an apparent anomaly in 
the work of Gode and Sunder [58]. Gode and Sunder demonstrated that their zero­
intelligence constrained strategy (Section 4.1.4) was able to yield high efficiency out­
comes in a CDA mechanism that were comparable to those of human agents. However, 
in analysing the micro-behaviour of the zero-intelligence agents compared with the 
human trading behaviour, Cliff observed that the statistical distribution of transaction 
prices around the equilibrium price would become significantly greater if agents' valua­
tions were randomly assigned from different distributions to those of Go de and Sunder, 
and thus he argued that the ZIC strategy was not an adequate model of human trading 
behaviour. This is because in these scenarios, although 

"As with the ZI-C traders, measures of allocative efficiency for ZIP 
traders are typically very high ... " [28, p. 47] 

when analysing the statistical deviation of transaction prices from the equilibrium price 
p* an alternative model, zero-intelligence plus is required in order to replicate this 
micro-behaviour in a wider range of circumstances: 

H ••• the data in these graphs serves to demonstrate that simple ZIP 
trading strategies can readily achieve results that are impossible when 
using ZI-C traders, and are closer to those expected from human sub­
jects . .. on these ground at least, the minimally adaptive ZIP traders rep­
resent a significant advance on the work of Gode and Sunder." [28, p. 
46] 

The metric of interest here is the root mean square (RMS) of the difference between 
observed transaction prices and the equilibrium price, denoted a, and defined formally 

as: 

where at is defined: 

100at 
at=-­

p* 

The final outcome is averaged over the duration of the entire experiment: 

t=t' 
a = Lt=o at 

t' 

(6.18) 

(6.19) 

(6.20) 
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In these experiments agents are endowed with a trade entitlement for a single unit of 
commodity which is replenished at the start of each trading day, and decremented each 
time they enter into a transaction. Let T(i,t) denote the trade entitlement for agent ai at 
time t. Agents place bids only if they are entitled to trade: 

Z(i, t) = (bid, ai, ((i, t), T(i,t) , t) ~ ai E B 1\ ai E Kt 1\ T(i,t) > 0 

Z(i, t) = (ask, ai, ((i, t), T(i,t) , t) ~ ai E S 1\ ai E Kt 1\ T(i,t) > 0 

The trade entitlement is reset at the start of each day: 

eodt - 1 E E t- 1 ===} T(i,t) = 1 Vi 

and decremented for each transaction: 

3c E Ct - 1 ===} T(agent(c),t) = 0 

Parameters 

The auction was run for 20 days, each consisting of 50 rounds. 

eort_l E E t- 1 ===} N R t = N Rt-l + 1 

N R t- 1 mod 50 = 0 ===} eodt E Et 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

All experiments were run with a CDA clearing-rule with in-order discriminatory pricing 
(Section 3.3.3). 

The following parameters were used for the ZIP strategy: 

ViZIPu; = 0.05 

Vi ZIPOt ; = 0.05 

Vi ZIP>'i = 0.1 

Vi ZIPJ.£; = 0.05 

This was compared with a population of agents equipped with the ZIC strategy (Section 
4.1.4), configured: 

Vi ZICEi = 50 (6.25) 

For each repetition ofthe experiment agents' valuations were drawn: 

Vi I'V U (50,200) (6.26) 

All floating point computations were performed using IEEE 754 double-precision arith­
metic [135] and the 64-bit Mersenne Twister PRNG [85] was used for all random vari­
ables. 
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Results 

Table 6.3 shows the mean and standard deviation for 0: and EA for 50 repetitions 
of the experiment with different valuations. As is clear, these results are statistically 
significant since: 

aM ~ vk ~0.7 
Thus we see that once we compare ZIP and ZIC under a wide variety of different 

supply and demand schedules, ZIP achieves higher EA and lower 0: as reported by 
Cliff and Bruten. 

Strategy 0: EA 
ZIC 17.68 (5.58) 96040 (2.00) 
ZIP 7.18 (2.81) 98.58 (1040) 

Table 6.3: Replication results comparing mean outcomes for ZIC verses ZIP over 50 
samples. The standard deviation is shown in brackets. 
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Chapter 7 

Empirical Game Theory 

The automatic discovery of game-playing strategies has long been considered a central 
problem in Artificial Intelligence. The most promising technique from evolutionary 
computing for discovering new strategies is co-evolution, in which the fitness of each 
individual in an evolving population 1 of strategies is assessed relative to other individ­
uals by computing the payoffs obtained when the selected individuals interact. Co­
evolution can sometimes result in arms-races, in which the complexity and robustness 
of strategies in the population increases as they counter-adapt to adaptations in their 
opponents. 

Often, however, co-evolutionary learning can fail to converge on robust strategies. 
In this chapter I explore some of the limitations of current co-evolutionary algorithms, 
and introduce a field known as empirical game theory which combines game-theoretic 
analysis together with simulation methods. 

7.1 Nash Equilibrium 

The failure of certain types of co-evolutionary algorithms to converge on robust strate­
gies in certain scenarios is well known [148, 45, 20], and has many possible causes; for 
example, the population may enter a limit cycle if strategies learnt in earlier generations 
are able to exploit current opponents and current opponents have "forgotten" how to 
beat the revived living fossil. Whilst many effective techniques have been developed to 
overcome these problems, there remains, however, a deeper problem which is only be­
ginning to be addressed successfully. In some games, such as Chess, we can safely bet 
that if player A consistently beats player B, and player B consistently beats player C, 
then player A is likely to beat player C. Since the dominance relationship is transitive, 
we can build meaningful rating systems [132] for objectively ranking players in terms 
of ability, and the use of such ranking systems can be used to assess the "external" 
fitness of strategies evolved using a co-evolutionary process and ensure that the popu­
lation is evolving toward better and better strategies. In many other games, however, 
the dominance graph is highly intransitive, making it impossible to rank strategies on a 

IOr sometimes several populations. 
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single scale. In such games, it makes little sense to talk about "best", or even "good", 
strategies since even if a given strategy beats a large number of opponent strategies 
there will always be many opponents that are able to beat it. The best strategy to play 
in such a game is always dependent on the strategies adopted by one's opponents. 

Game theory provides us with a powerful concept for reasoning about the best 
strategy to adopt in such circumstances: the notion of a Nash equilibrium. A set of 
strategies for a given game is a Nash equilibrium if, and only if, no player can improve 
their payoff by unilaterally switching to an alternative strategy. 

If there is no dominant strategy (a strategy which is always the best one to adopt 
no matter what any opponent does) for the game, then we should play the strategy that 
gives us the best payoff based on what we believe our opponents will play. If we as­
sume our opponents are payoff maximisers, then we know that they will play a Nash 
strategy set by reductio ad absurdum; if they did not play Nash then by definition at 
least one of them could do better by changing their strategy, and hence they would not 
be maximising their payoff. This is very powerful concept, since although not every 
game has a dominant strategy, every finite game possesses at least one equilibrium so­
lution [95]. Additionally, if we know the entire set of strategies and payoffs, we can 
deterministically compute the Nash strategies. If only a single equilibrium exists for a 
given game, this means that, in theory at least, we can always compute the "appropri­
ate" strategy for a given game. 

Note, however, that the Nash strategy is not always the best strategy to play in all 
circumstances. For 2-player zero-sum games, one can show that the Nash strategy is 
not exploitable. However, if our opponents do not play their Nash strategy, then there 
may be other non-Nash strategies that are better at exploiting off-equilibrium players. 
Additionally, many equilibria may exist and in n-player non-constant-sum games it 
may be necessary for agents to coordinate on the same equilibrium if their strategy 
is to remain secure against exploitation; if we were to play a Nash strategy from one 
equilibrium whilst our opponents play a strategy from an alternative equilibrium we 
may well find that our payoff is significantly lower than if we had coordinated on the 
same equilibrium as our opponents. 

7.2 Beyond Nash equilibrium 

Standard game theory does not tell us which of the many possible Nash strategies our 
opponents are likely to play. Evolutionary game theory [86] and its variants attack this 
problem by positing that, rather than computing the Nash strategies for a game using 
brute-force and then selecting one of these to play, our opponents are more likely to 
gradually adjust their strategy over time in response to to repeated observations of their 
own and others' payoffs. One approach to evolutionary game-theory uses the replicator 
dynamics equation to specify the frequency with which different pure strategies should 
be played depending on our opponent's strategy: 

(7.1) 

where rn is a mixed-strategy vector, u(rn, rn) is the mean payoff when all players play 
rn, and u( ej, rn) is the average payoff to pure strategy j when all players play rn, 
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and rhj is the first derivative of mj with respect to time. Strategies that gain above­
average payoff become more likely to be played, and this equation models a simple 
co-evolutionary process of mimicry learning, in which agents switch to strategies that 
appear to be more successful. 

For any initial mixed-strategy we can find the eventual outcome from this co­
evolutionary process by solving rhj = 0 for all j to find the final mixed-strategy of 
the converged population. This model has the attractive properties that: (i) all Nash 
equilibria of the game are stationary points under the replicator dynamics; and (ii) all 
Lyapunov stable states [83] and interior limit states are also Nash equilibria [149, pp. 
88-89f. 

Thus the Nash equilibrium solutions are embedded in the stationary points of the 
direction field of the dynamics specified by equation 7.1. Although not all stationary 
points are Nash equilibria, by overlaying a dynamic model oflearning on the equilibria 
we can see which solutions are more likely to be discovered by boundedly-rational 
agents. Those Nash equilibria that are stationary points at which a larger range of 
initial states will end up, are equilibria that are more likely to be reached (assuming an 
initial distribution that is uniform). 

This is all well and good in theory, but the model is of limited practical use since 
many interesting real-world games are multi-state3

• Such games can be transformed 
into normal-form games, but only by introducing an intractably large number of pure 
strategies, making the payoff matrix impossible to compute. 

7.3 Co-evolution 

But what if we were to approximate the replicator dynamics by using an evolutionary 
search over the strategy space? Rather than considering an infinite population con­
sisting of a mixture of all possible pure strategies, we use a small finite population of 
randomly sampled strategies to approximate the game. By introducing mutation and 
cross-over, we can search hitherto unexplored regions of the strategy space. Might 
such a process converge to some kind of approximation of a true Nash equilibrium? 
Indeed, this is one way of interpreting existing co-evolutionary algorithms; fitness­
proportionate selection plays a similar role to the replicator dynamics equation in en­
suring that successful strategies propagate, and genetic operators allow them to search 
over novel sets of strategies. There are a number of problems with such approaches 
from a game-theoretic perspective, however, which we shall discuss in turn. 

Firstly, the proportion of the population playing different strategies serves a dual 
role in a co-evolutionary algorithm [47]. On the one hand, the proportion of the popu­
lation playing a given strategy represents the probability of playing that pure strategy in 
a mixed-strategy Nash equilibrium. On the other hand, evolutionary search requires di­
versity in the population in order to be effective. This suggests that if we are searching 
for Nash equilibria involving mixed-strategies where one of the pure strategy compo­
nents has a high frequency, corresponding to a co-evolutionary search where a high 

2 It is important to note, nevertheless, that it is not the case that all statio~ary points are Nash equilibria 
3 The payoff for a given move at any stage of the game depends on the history of play. 
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percentage of the population is adopting the same strategy, then we may be in danger 
of over-constraining our search as we approach a solution. 

Secondly and relatedly, although the final set of strategies in the converged pop­
ulation may be best responses to each other, there is no guarantee that the final mix 
of strategies cannot be invaded by other yet-to-be-encountered strategies in the search 
space, or strategies that became extinct in earlier generations because they performed 
poorly against an earlier strategy mix that differed from the final converged strategy 
mix. Genetic operators such as mutation or cross-over will be poor at searching for 
novel strategies that could potentially invade the newly established equilibrium be­
cause of the dual role played by population frequencies. If these conditions hold, then 
the final mix of strategies is implausible as a true Nash equilibrium or ESS, since there 
will be unsearched strategies that could potentially break the equilibrium by obtaining 
better payoffs for certain players. We might, nevertheless, be satisfied with the final 
mix of strategies as an approximation to a true Nash equilibrium on the grounds that 
if our co-evolutionary algorithm is unable to find equilibrium-breaking strategies, then 
no other algorithm will be able to do so. However, as discussed above, we expect a 
priori that co-evolutionary algorithms will be particularly poor at searching for novel 
strategies once they have discovered a (partial) equilibrium. 

Finally, co-evolutionary algorithms employ a number of different selection meth­
ods, not all of which yield population dynamics that converge on game-theoretic equi­
libria [46]. 

These problems have led researchers in co-evolutionary computing to design new 
algorithms employing game-theoretic solution concepts [44]. In particular, Fieiei and 
Pollack [47] describe a game-theoretic search technique for acquiring approximations 
of Nash strategies in large symmetric 2-player constant-sum games with type inde­
pendent payoffs. In this thesis, I address n-player non-constant-sum multi-state games 
with type-dependent payoffs. In such games, playing the Nash strategy (or an approx­
imation thereof) does not guarantee a participant security against exploitation, thus if 
there are multiple equilibria, it may be more appropriate to play a best-response to the 
strategies that we infer are in play. 

7.4 Empirical Game-Theory 

Reeves et al. [30] and Walsh et al. [145] obviate many of the problems of standard 
co-evolutionary algorithms by restricting attention to small representative sample of 
"heuristic" strategies that are known to be commonly played in a given multi-state 
game. For many games, unsurprisingly none of the strategies commonly in use is 
dominant over the others. Given the lack of a dominant strategy, it is then natural 
to ask if there are mixtures of these "pure" strategies that constitute game-theoretic 
equilibria. 

For small numbers of players and heuristic strategies, we can construct a relatively 
small normal-form payoff matrix which is amenable to game-theoretic analysis. This 
heuristic payoff matrix is calibrated by running many iterations of the game; variations 
in payoffs due to different player-types (eg private valuations) or stochastic environ­
mental factors (e.g. PRNG seed) are averaged over many samples of type information 
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resulting in a single mean payoff to each player for each entry in the payoff matrix. 
Players' types are assumed to be drawn independently from the same distribution, and 
an agent's choice of strategy is assumed to be independent of its type, which allows the 
payoff matrix to be further compressed, since we simply need to specify the number of 
agents playing each strategy to determine the expected payoff to each agent. Thus for 
a game with j strategies, we represent entries in the heuristic payoff matrix as vectors 
of the form 

P= (Pl, ... ,Pj) 

where Pi specifies the number of agents who are playing the ith strategy. Each entry 
pEP is mapped onto an outcome vector q E Q of the form 

where qi specifies the expected payoff to the ith strategy. For a game with n agents, 
the number of entries in the payoff matrix is given by 

(n + j - I)! s = ~.,...,...;::---,-,::.... 

n!(j - I)! 
(7.2) 

For small n and small j this results in payoff matrices of manageable size; for j = 3 
and n = 6,8, and 10 we have s = 28,45, and 66 respectively. 

Once the payoff matrix has been computed we can subject it to a rigorous game­
theoretic analysis, search for Nash equilibria solutions, and apply different models of 
learning and evolution, such as the replicator dynamics model, in order to analyse the 
dynamics of adjustment to equilibrium. 

The equilibria solutions that are thus obtained are not rigorous Nash equilibria for 
the full multi-state game; there is always the possibility that an unconsidered strat­
egy could invade the equilibrium. Nevertheless, heuristic-strategy equilibria are more 
plausible as models of real-world game playing than those obtained using a standard 
co-evolutionary search precisely because they restrict attention to strategies that are 
commonly known and are in common use. We can therefore be confident that no com­
monly known strategy for the game at hand will break our equilibrium, and thus the 
equilibrium stands at least some chance of persisting in the short term future. I will 
return to this issue in chapter 9. Meanwhile, in the next chapter, we will use heuristic­
strategy approximation to analyze two different variants of the double-auction from a 

design perspective. 



Chapter 8 

Analysing Auction Mechanisms 

In this chapter I will analyze two variants of the double auction market-the clearing 
house auction and the continuous double auction. The complexity of these institutions 
is such that they are extremely hard to analyse using traditional game-theoretic tech­
niques, and so I shall use the heuristic-strategy approximation technique described in 
the previous chapter in order to provide an approximated game-theoretic analysis. As 
well as finding heuristic-strategy equilibria for these mechanisms, I shall subject them 
to an evolutionary game-theoretic analysis which will quantify which equilibria are 
more likely to occur. We can then weight the design objectives for each mechanism 
according to the probability distribution over equilibria, which will allow us to provide 
more realistic estimates for the efficiency of each mechanism. 

8.1 The CH versus the CDA 

In a typical exchange, the market institution attempts to match offers to buy with offers 
to sell in such a way that the overall surplus extracted from the market is maximized. 
If offers are considered as signals of agents' valuations for a resource, and assum­
ing agents signal truthfully, then an auctioneer can maximize allocative efficiency by 
matching the highest buy offers with the lowest sell offers. In this chapter I compare 

two types of exchange: 

• A k = 0.5 continuous double-auction (CDA) market in which trades are executed 
as new offers arrive and prices are set half-way between the bid and ask price, as 

described in Section 3.4; and 

• A discriminatory price k = 0.5 clearing-house (CH), as described in Sections 
3.3 and 3.3.2, in which the auctioneer waits for all traders to place offers before 

clearing the market. 

On casual inspection of the CDA, we might expect that it is designed according to 
auction-theory principles, and so should maximize allocative efficiency when agents 
signal truthfully (see 4.1.1). Surprisingly, however, it turns out that surplus extraction 

85 
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in a CDA is extremely poor under truth-telling -typical values are EA :::::: 0.80, which 
is extremely low compared with outcomes of almost EA :::::: 0.98 which are observed 
with the non-truthful strategies that are actually adopted by human traders [58]. 

As we saw in Section 3.4, the reason for this poor efficiency is easy to spot; the 
continuous clearing rule results in myopic matching. When the clearing operation is 
performed the auctioneer has only a partial view of the aggregate supply and demand 
in the market place. In order to maintain a high throughput of actual transactions, 
the auctioneer impatiently clears the market before every trader has the opportunity 
to place their bid. However, as we saw in Section 6.4, the extremely surprising thing 
about this institution is that rational agents acting locally to maximize their own profit 
are able to compensate for this efficiency loss by placing extra-marginal, non-truthful 
bids, which collectively result in high-efficiency outcomes. 

Much analysis of the CDA has focused on showing that although the CDA is not an 
incentive-compatible mechanism, it can be considered "almost incentive-compatible" 
by virtue of the fact that trading strategies with only a minimal amount of intelligence 
are able to extract high surpluses from the market [58, 28]. However, such approaches 
are insufficient for market-design purposes, because they fail to demonstrate that such 
minimalist strategies are dominant against more sophisticated strategies. For example, 
if we decide to use a population of homogeneous ZIP traders to ascertain how the CDA 
and the CH markets compare with each other, we are making an implicit assumption 
that the state of affairs whereby all agents adopt the ZIP strategy is an equilibrium state. 
However, in order to justify this assumption we should ensure that any hypothetical 
equilibrium ofZIC or ZIP traders is not susceptible to invasion by an alternative strategy 

Ideally, we would like to find the game-theoretic solution for the CDA, and show 
that although truth-telling or other minimalist strategies are not dominant, we can still 
find the theoretical mix of strategies that are best-responses to each other, and demon­
strate that the institution performs well in game-theoretic equilibria. However, even at 
this point, the CDA along with other variants of the double-auction market, confounds 
auction theorists by admitting of no unequivocal equilibrium solution 1.· 

Hence in the absence of robust analytical tools, much analysis ofthis institution has 
used an ad-hoc mixture of computer simulation and laboratory experiments [51]. These 
techniques are invaluable, since they are able to faithfully incorporate many of the 
complex details of the market institution which lead to intractability under conventional 
analysis. However, the results thus obtained are often critised for being difficult to 
generalize in the absence of compelling models that explain the observed outcomes. 

However, as discussed in chapter 7, techniques have been developed recently that 
combine simulation-based approaches with an approximated game-theoretic analysis. 
In the following sections, I describe in detail an empirical game-theoretic analysis of 
the CDA and the CH mechanisms. 

I That is, in which all equilibrium strategy profiles are clearly identified. The relavant literature is re­
viewed in Chapter 2. 
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8.2 Experimental setup 

In order to compare the CDA and CH, we must first generate a heuristic payoff matrix 
for each institution by sampling many simulations of the market game. As in [145], 
at the start of each game half the agents are randomly assigned to be buyers and the 
remainder are chosen as sellers. For each run of the game, valuations are drawn as in 
[145]: 

'Vi Vi U(a,a+b) 

a '" U(16l, 260) 

b '" U(60, 100) 

but valuations remain fixed across periods in order to allow agents to attempt to learn 
to exploit any market-power advantage in the supply and demand curves defined by the 
limit prices for that game. Additionally, although we discard limit-prices which do not 
yield an equilibrium price, we do not ensure that a minimum quantity exists in com­
petitive equilibrium as this introduces a floor effect which fails to expose the inferior 
efficiency of a CDA. The 64-bit version of the Mersenne Twister random number gen­
erator [85] was used to draw all random values used in the simulation and all floating 
point calculations were performed using IEEE 754 double-precision arithmetic [135]. 
Each entry in the heuristic payoff matrix was computed by averaging the payoff to each 
strategy across 104 simulations. 

8.2.1 Choice of heuristic strategies 

In choosing candidate heuristic-strategies for our analysis, we need to consider the 

following constraints: 

1. The strategies chosen should be able to trade in both types of mechanism. 

2. They should be representative of strategies that are commonly known for these 

types of mechanism. 

3. We should include the truth-telling strategy (TT), since we are interested in the 
incentive-compatibility properties of each mechanism. 

Accordingly, I chose the strategies TT, RE, TK and GD as described in table 8.1: 
the TT strategy was chosen in accordance with constraint 3 above; the TK strategy was 
chosen since it is a very simple strategy that was also the winner of the original Santa­
Fe trading strategy competition [51] and is prevalent in on-line single-sided auctions 
[120J; the GD strategy was chosen as a representative of the class of highly-principled 
and highly-engineered strategies that analyse historical market data, and finally the RE 

strategy was chosen to represent naive human-like behaviour, and thus was configured 
with parameters that best-fit human game-playing [119J: 
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Abbreviation Description 
TT The truth-telling strategy, (section 4.1.1). 
RE The reinforcement-learning strategy (section 4.2.4), 

configured with the Roth-Erev learning algorithm (section 4.2.4). 
TK Todd Kaplan's sniping strategy (section 4.2.2) 

which waits until the last minute before placing a shout. 
GD The Gerstad-Dickhaut strategy (section 4.2.3) 

which estimates the probability of shouts being accepted as a 
function of price and bids to maximise expected payoff. 

Table 8.1: The heuristic strategies chosen for the analysis 

Vi REki = 50 

Vi REpi 
.. 0.1 

ViRElJi = 0.2 

Vi REsi 9 

Vi RLI-'i 1 

8.2.2 Choice of market size 

Auction marketplaces with a small, fixed, number of traders who repeatedly interact are 
becoming more common place with the advent of business-to-business electronic com­
merce and the deregulation of wholesale markets such as electricity [98]. As discussed 
in sections 1.1 and 5.1.3, these are the most difficult scenarios to evaluate analytically 
using conventional techniques. With large numbers of agents the market starts to ap­
proximate the continuous case; as IAI - 00 the supply and demand schedules start to 
approximate smooth curves, as will the reported supply and demand M B and MS, and 
it is very likely that max(MS) r:::i max(MS) and min(M B) r:::i min(MB) regardless 
of which agent plays which strategy. Hence, in a CH for example: 

and so we would clear at close to an equilibrium price regardless of strategy choice2• 

In other words, we can use general equilibrium theory to predict the likely outcome. 
However, when we have small numbers of agents, the system becomes more discrete 
and unpredictable, and we have to pay much more attention to the behaviour of the 

2This argument is merely a sketch, however, see [53] for a more rigorous example of how tractable 
solutions emerge when the number of agents is very large 
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individual components (agents) in order to predict outcomes3• Given that analytic ap­
proaches are generally intractable for scenarios with small IAI, this is my justification 
for using an empirical game-theoretic analysis, and I will analyze mechanisms with 
IAI = 4, IAI = 6 and IAI = 12 traders. 

8.3 Dynamic Analysis 

Once the heuristic payoff matrix has been computed, we can subject it to a game­
theoretic analysis. In conventional mechanism design, we solve the game by finding 
either a dominant strategy or the Nash equilibria: the sets of strategies that are best­
responses to each other. However, because classical game-theory is a static analysis, 
it is not able to make any predictions about which equilibria are more likely to occur 
in practice. Such considerations are of vital importance in real-world design problems. 
Since our design objectives depend on outcomes, we should give more consideration to 
outcomes that are more likely than low probability outcomes. For example, if there is 
a Nash equilibrium for our mechanism which yields very low allocative efficiency, we 
should not worry too much if this equilibria is extremely unlikely to occur in practice. 
On the other hand, we should give more weight to equilibria with high probability. 

As in [145], we will use evolutionary game-theory [86] to model how agents might 
gradually adjust their strategies over time as they learn to improve their behavior in 
response to their payoffs. We use the replicator dynamics equation (equation 7.1), to 
recap: 

rhj = [u(ej, m) -u(m,m)Jmj 

where m is a mixed-strategy vector, u(m, m) is the mean payoff when all players 
play m, and u(ej, m) is the average payoff to pure strategy j when all players play m, 
and rhj is the first derivative of mj with respect to time. Strategies that gain above­
average payoff become more likely to be played, and this equation models a simple 
co-evolutionary process of mimicry learning, in which agents switch to strategies that 
appear to be more successful. Since mixed strategies represent probability distribu­
tions, the components of m sum to one. The geometric corollary of this is that the 
vectors m lie in the unit-simplex !::::. n = {x E IRn : E~= 1 Xi = I}. In the case of n = 3 
strategies the unit-simplex!::::. 3 is a two dimensional triangle embedded in the three di­
mensional plane which passes through the coordinates corresponding to pure strategy 
mixes: (1,0,0), (0,1,0), and (0,0,1). We shall use a two dimensional projection of 
this triangle to visualise the replicator dynamics in the next section4

. 

For any initial mixed-strategy we can find the eventual outcome from this co­
evolutionary process by solving Vj rhj = ° to find the final mixed-strategy of the 

3 As Gintis points out [56], this is analogous to the modelling of.physical.systems at. different scales. In 
large-scale systems we can model bodies as homogeneo~s c~llecho~s of ~Imple parhcles. whose ma~ro­
behaviour is the statistical ensemble of many simple mlcro-mterachons Yleldmg Newtoman mechamcs. 
However, when we analyse behaviour at the molecular and sub~tomic scales, the. characterist!cs of individ­
ual particles play a more prominent role and we get correspo?dmgly more co~ph~ated and dIscrete mod.els 
(chemistry and quantum mechanics). In this analogy, ACE IS to general equlhbnum theory as Newtoman 

mechanics is to quantum mechanics. . 
4See [149, pp. 3-7] for a more detailed exposition of the geometry of mIxed-strategy spaces. 
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converged population. As discussed in Section 7.2, this has a significant advantage 
over non-game-theoretic co-evolutionary search, such as [65], in that we can guaran­
tee [149, pp. 88-89]: 

• all Nash equilibria of the (approximated) game are stationary points under the 
replicator dynamics; and 

• all interior limit states are Nash equilibria; and 

• all Lyapunov stable states [83] are Nash equilibria. 

Thus the Nash equilibrium solutions are embedded in the stationary points of the direc­
tion field of the dynamics specified by equation 7.1. Although not all stationary points 
are Nash equilibria, by overlaying a dynamic model of learning on the equilibria we 
can see which solutions are more likely to be discovered by boundedly-rational agents. 
Those Nash equilibria that are stationary points at which a larger range of initial states 
will end up, are equilibria that are more likely to be reached (assuming an initial dis­
tribution of mj that is unifonn); in the tenninology of dynamic systems they have a 
larger basin of attraction. The basin of attraction for a stationary point is proportion 
of mixed strategies in 6, which have flows tenninating at that points. The larger the 
basin, the larger the region of strategy-space which leads to the attract or, and hence 
the stronger the attractor, and the more attainable the corresponding equilibrium [18]. 
This intuitive definition of basin size is fonnalized as follows. Let the function 

T : t::. n x 2~ n -+ rN 

represent the number of trajectories that tenninate at each coordinate in the n-dimensional 
unit-simplex t::. n c IRn, so that we have: 

T(x,M c 6,n) = Itv: if EM 1\ m(O) = if 1\ 3t m(t) = x 1\ rh(t) = O}I (8.1) 

where M is a set of starting points and x is a limit state. Let f3(x, M) denote the 
proportion of the elements of M that tenninate at x: 

f3( ~ M) = T(x, M) 
x, IMI (8.2) 

Ifwe choose a random sample M c 6, that is distributed unifonnly over the simplex, 
the function f3 will provide us with an estimate of the probability of arriving at any 
given stationary point, assuming that all starting points in the simplex are equally likely; 
that is, it will provide an estimate of the true basin size of the limit state x, denoted by 
f3(x), and: 

Hm f3(x, M) = f3(x) 
M-~ 

5 In many cases this will be the volume of the state space which terminates at the attractor, and this 
provides a useful intuition for thinking about attractor strength, However, in the general case this definition 
breaks down. For example, if we have chaotic dynamics then a strange attractor may capture many flows, 
but the volume of its basin will be zero, 

' .. 
" 
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8.4 Results 

Since the vector m in equation 7.1 represents a mixed-strategy, that is, a discrete proba­
bility distribution, we have E mi = 1; thus each m lies in the unit-simplex (p. 89). For 
n = 3 strategies we can project the unit-simplex t::,. 3 onto a two dimensional triangle 
whose vertices correspond to the pure strategies (1,0,0), (0,1,0), and (0,0,1). By 
plotting the time-evolution of equation 7.1 we can then identify the switching between 
strategies. Figure 8.1 shows the direction-field when we consider evolutionary switch­
ing between the three strategies TT, RE and GD, in a CH market populated by IAI = 12 
agents which are selected at random from a larger popUlation of traders on each play 
of the game. 

The direction field gives us a map which shows the trajectories of strategies of 
learning agents engaged in repeated interactions, from a random starting position. 
Thus, for Figure 8.1, each agent participant has a starting choice of 3 pure strategies 
(TT, RE and GD) and any mixed (probabilistic) combination of these three. The pure 
strategies are indicated by the 3 vertices of the simplex (triangle), while mixed strate­
gies are indicated by points on the boundaries or in the middle of the simplex. 

RE 

n GD 

Figure 8.1: 3-dimensional replicator dynamics direction field for a 12-agent clearing­
house auction with the three strategies RE, TT and GD. 

An agent in the population at large is assigned a pure strategy randomly chosen 
from the set {TT, RE, CD} to start, but switches to an alternative strategy with prob­
ability proportional to the relative payoffs observed from agents playing alternative 
strategies. Thus in a large population of agents, the proportion of agents playing each 
pure strategy will vary according to the learning process described by Equation 7.1. 
The paths shown in Figure 8.1 trace this sequence of adjustments. Since at the begin­
ning of each market game, each agent in the smaller population of IAI = 12 agents 
is chosen at random from the larger population of agents playing pure strategies, we 
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Figure 8.5: Replicator dynamics as time-series for CDA with 6 agents 
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can think of the proportion of the population mi playing each pure strategy i as the 
probability of playing that pure strategy. Thus the vector m can be thought of as a 
mixed-strategy. 

We can assess the relative likelihood of one strategy being adopted in long-term 
play relative to another by comparing the size of their respective basins of attraction. 
Figure 8.1 shows trajectories generated from IMI = 250 randomly sampled initial 
m vectors. For now, we assume that every initial mixed-strategy is equally likely to 
be adopted as a starting-point for the co-evolutionary process, and so we randomly 
sample the initial values of m from a uniform distribution and plot their trajectories as 
they evolve according to equation 7.1. 

For four strategies, the direction-field is slightly trickier to display. Figures 8.3 to 
8.7 show the convergence to equilibrium as a time series, when we consider all four 
strategies in both the CDA and the CH for IAI = 4, IAI = 6, and IAI = 12 agents. 

To automate the analysis of institutions, we need to be able to provide some metric 
that allows us to quantify their performance in this kind of analysis. Different equilibria 
will yield different outcomes and different values of our design objectives, such as 
market efficiency, and we would like to weight these according to their likely-hood. 
In other words, we would like to compute the size of the basin of attraction of each 
equilibrium, in order to arrive at a probability of the equilibria actually occurring, and 
use this to calculate the expected value of our design metrics. 

Table 8.2 shows the values of f3 (equation 8.2) for those x for which f3(x, M) > o. 
These were obtained by taking a random sample M of size IMI = 103, and solving 
the replicator dynamics equation numerically. Stationary points that occur with a prob­
ability less than 10-2 were eliminated from the analysis as an approximation method 
to test for Lyapunov stability. Thus I take the stationary points reported in table 8.2 as 
equilibrium solutions and the value of f3 as the probability of arriving at the reported 
equilibrium. So for example in the top-left cell of table 8.2 we see that in a CH with 
IAI = 4 agents there are two pure-strategy equilibria: (i) at coordinate (0,0,1,0) in 
the simplex representing pure GD; and (ii) at coordinate (0,0,0,1) representing pure 
TK. The first equilibrium has a probability 0.39 of being played whereas the latter has 
a probability 0.61. 

The value of U in each cell oftable 8.2 denotes the pure strategy payoffs obtained in 
each particular experiment; that is, the heuristic-strategy payoff obtained to each pure 
strategy when all agents adopt it. So for example in the bottom-right cell we see that 
in a CDA with IAI = 12 agents we obtain payoffs (0.85,0.89,0.99,0.90) to strategies 
TT, RE, GD and TK respectively under homogenous adoption. 

Similarly for the other cells in the table. 

8.5 Discussion 

With probabilities over outcomes, we are now in a position to assess the design of each 
mechanism. The value of EA in each cell of table 8.2 shows the expected efficiency of 
the mechanism. This is computed by weighting the pure-strategy payoffs U according 
to the probability of the pure strategy being played. For example, in the case of CDA 

with IAI = 6 agents, we see that there are two possible equilibria. The first equilibrium, 

" 
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CH 

IAI 4 IAI-6 IAI-12 
,8(0,0,1,0) 0.39 ,8(0,0,1,0) = 0.31 
,8(0,0,0,1) = 0.61 ,8(0,0,0,1) = 0.69 ,8(0,0,0,1) - 1 
U (1.00,0.90,1.00,1.00) U (1.00,0.92,1.00,1.00) U = (1.00,0.93,1.00,1.00) 
EA = 1.00 EA = 1.00 EA -1.00 

CDA 

IAI-4 IAI-6 IAI-12 
,8(0,0,0.84,0.16) - 0.97 ,8(0,0,0.8,0.2) = 1 

,8(0,0,0,1) = 1 ,8(0,0,0,1) = 0.03 
U - (0.89,0.86,0.98,0.89) U - (0.85,0.88,0.98,0.86) U = (0.85,0.89,0.99,0.90) 
EA = 0.89 EA = 0.96 EA = 0.97 

Table 8.2: Heuristic-strategy equilibria over (TT, RE, GD, TK) for CH versus CDA 

(0,0,0.84,0.16), has a probability of 0.97 of being adopted. In this equilibrium the 
strategy GD has a probability 0.84 whereas the strategy TK has a probability of 0.16. 
By examining the payoffs to each of these strategies we can compute the expected 
efficiency of the mechanism in this equilibrium: 0.84 x 0.98 + 0.16 x 0.86 = 0.96. In 
the second equilibrium we see that the strategy TK has a probability 1 of being played, 
hence the efficiency of this second equilibrium is 0.86. We then weight our overall 
efficiency according to the probability of each equilibrium: 0.96 x 0.97 +0.86 x 0.03 = 

0.96. 
First of all, since there non-truthful equilibria in all experiments we can conclude 

that TT is not dominant, and hence neither the CH or CDA mechanism is strategy-proof 
in these scenarios. 

As expected from our discussion in Section 3.4, we observe that payoffs under 
truthful bidding in a CDA are relatively low: EA = 0.85 for IAI = 6 and IAI = 12. 
This might suggest that the CDA itself has a rather low efficiency. However, in order 
to assess the efficiency of the CDA we must take into account the fact that in these 
scenarios truth-telling is dominated. In fact, we see that various mixtures of GD and TK 

are likely outcomes, yielding efficiencies of between 0.89 and 0.97. 
Thus although the CDA yields lower surplus, it is not as inefficient as we might 

expect had we assumed that it was designed according to incentive-compatibility cri­
teria. As [50] points out, the main reason for choosing a CDA rather than a CH is to 
handle larger volumes of trade, and our results here suggest that this is a reasonable 
trade-off. Switching to a CDA from a CH as the New York Stock Exchange did in the 
late 1860s [12, p. 29], does not seem likely to entail a large loss of efficiency when we 
have relatively few (IAI = 6 or IAI = 12) traders in the market. 

For the most part efficiency outcomes are deterministic - there is either a unique 
equilibrium that captures the entire simplex or all equilibria yield the same efficiency. 
The exception is the CDA with IAI = 6 agents. Here we have a mixed TK and GD equi­
librium with efficiency EA = 0.97 versus a pure TK equilibrium with a significantly 
lower efficiency of EA = 0.86. Since the TK equilibrium has a very small basin of 
attraction ,8 = 0.03 we conclude that the lower efficiency outcome is not very likely, 
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and hence if we have no prior knowledge of existing strategy frequencies in the trading 
population at large we assume a uniform distribution over starting points M c I::::, and 
conclude that our efficiency is still likely to be very high. However, in the case where 
we do have prior knowledge about the frequency of strategies, e.g. we are tasked with 
evaluating a proposed choice of a continuous-clearing rule for a six-agent marketplace 
in which we already observe high proportion of sniping, then we might conclude that 
the pure TK equilibrium is much more likely to be reached (since we will be starting 
within its attractor), and thus we might recommend that CH clearing is used instead in 
order to avoid the probable efficiency hit predicted by our analysis. This hypothetical 
design tweak would yield an efficiency gain of 0.97 - 0.86, or 11 percentage points, 
at the expense of transaction throughput. Thus by analysing the strategic dynamics of 
a proposed mechanism, we can perform evolutionary mechanism design whereby we 
make design decisions under legacy constraints (in this hypothetical scenario our legacy 
constraint is an existing marketplace populated by snipers). Evolutionary mechanism 
design is analogous to evolutionary game theory in that just as players may be con­
strained to gradually adjust their strategies, similarly mechanisms cannot always make 
instantaneous adjustments in their rules irrespective of what strategies are currently in 
play. We shall return to this discussion in Section 10.2. 

In Chapter I, I introduced the double-auction as an example of a self-organized 
complex system (socs). With the dynamic analysis in the previous sections, we be­
gin to see what this means. In a traditional mechanism design scenario we simply 
demonstrate that under our proposed mechanism truth-telling is dominant and that ef­
ficiency under truth-telling is maximised. We then assume that truthful behaviour will 
be instantly adopted and that our mechanism will remain forever efficient in stasis. 
In contrast, the picture I paint here is a dynamic and uncertain one. Real-life con­
siderations and multiple design objectives mean that we can rarely demonstrate that a 
simple, prescribed strategy such as truth-telling is dominant. Rather, we have multiple 
equilibria within a dynamic system comprised of discrete non-linear components, and 
we are not always certain how the ensemble will evolve. As with other complex sys­
tems, it is extremely difficult to discover the system's likely behaviour using analytical 
methods. Using computationally-intensive numerically methods such as the empiri­
cal game-theoretic analysis conducted in this chapter we can get an insight into the 
dynamics of the system and make some tentative forecasts. 

However, as with other complex systems, such as meteorological ones, we should 
take forecasts of them with a pinch ofa salt, especially in the long term. For example, 
one of the potential drawbacks of our analysis is that we have only considered a small 
subset of the space of possible strategies, and one of these, the RE strategy, has many 
internal parameters. Is it not conceivable that if a new strategy (for example, a variant 
of RE with tweaked parameters) were introduced into our market ecosystem that it 
would upset the equilibria that we have so carefully analyzed and cultivated? We shall 
address this question in detail in the next chapter, but the brief answer is: yes. As 
with other engineering design methodologies [10, 6], real-life mechanism design is an 
iterative process; we do the best that we can to analyze anticipated outcomes, but a 
complete and future-proof analysis is wholly intractible, and thus at some point reality 
will inevitably overtake our initial predictions and we will have to adjust our design in 
light of up-to-date empirical observations of the system in vivo. As discussed in the 

'. 
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previous paragraph, the methods introduced here will allow us to do just that. Thus 
rather than simply launching a theoretically optimal auction design onto the world, 
instead, as evolutionary mechanism designers' we design, analyse, observe, tweak and 
then repeat. 

One topic that has received considerable interest within economics over recent 
decades is that of viewing markets as a particular class of socs that exhibits a property 
called self-organized criticality (SOC) [4], meaning that the attractors of the system lie 
on critical points (eg. phase transitions) between order and chaos. These critical points 
exhibit sufficiently dynamical behavior that the system does not "freeze" into low com­
plexity configurations, but at the same time their dynamics is sufficiently ordered that 
the system does not "boil" into noise, and hence this regime is highly conducive to 
complexity. Since these systems naturally have attractors located at critical points, they 
tend to be continuously "poised" between order and chaos, and hence they naturally 
equilibrate towards complex states. The existence of very simple physical systems that 
possess critical-point attractors strongly suggests that self-organised criticality may be 
responsible for much of the complexity that we observe in natural systems. One of the 
characteristics of critically-poised systems is scale-invariance hence their macroscopic 
properties tend to follow power-law relationships. It is suggested that the long-tail dis­
tribution of time intervals between events such as market crashes in the business cycle 
are due to markets being critically-poised in this manner [81, 88]. 

In contrast, our analysis yields more well-ordered, non-chaotic dynamics. If we 
do indeed observe power laws and chaotic behaviour as a result of criticality in real 
markets6, this raises two questions: 

• Are these methods applicable under chaotic dynamics (and hence to real mar­

kets)? 

• Has the behaviour of the system been oversimplified? 

The answer to both questions is yes. As regards the former, if the replicator-dynamics 
had yielded chaotic dynamics for the underlying heuristic-game (as it can do for certain 
payoff structures [130]), we could have still computed basin sizes for the resulting 
strange attractors and computed expected values of our design objectives. As regards 
the latter, any analysis has to abstract and simplify in order to be useful; in this analysis 
we are taking a very high-level view of the system in order to assess its macroscopic 
design properties. If we were to look under the hood, and plot the evolution of the 
state variables comprising each agent's strategy (which are still being computed and 
accounted for by the underlying heuristic-strategy analysis), we would likely see more 
entropy in the underlying system. For example, the RE strategy chooses its actions 
probabilistically in contrast to the deterministic evolution of the replicator-dynamics 
equation, and it is not inconceivable that we would observe criticality if we were to 
examine actual bid prices as a time-series at this level. 

However, ultimately, at the macroscopic-level of the system our analysis is based 
on the replicator dynamics. Although as discussed the replicator-dynamics can exhibit 

6In fact, this is highly contentious, as is the question o~wh.ether critica!ity ~s ~ctuaIIy observed in real-life 
sand-piles [72, p. 14] as opposed to the simulated sand-plIes m Bak et al. s ongmal soc paper [4]. 
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chaos, it does not belong to the class of systems which typically exhibit criticality. The 
replicator dynamics was originally introduced by Maynard-Smith [86] to model biolog­
ical evolution in terms of gradual adjustment to equilibrium, as originally envisaged by 
Darwin [31]. However, Eldredge and Gould [40] argued that such "gradualist" mod­
els were oversimplistic, and put forward an alternative theory of evolution based on 
the concept of "punctuated equilibrium", which is closer to the view of self-organized 
criticality. 

The debate over gradualism versus punctuated equilibrium has never been settled 
and rages on [133]. However, in future work I will use alternative dynamic models 
of learning and evolution, such as those discussed by Jensen [72, p. 73], and conduct 
a sensitivity-analysis similar to that described in the next chapter in order to assess 
whether these forecasts are sensitive to alternative models of strategy adjustment. 

8.6 Summary and Contribution 

Recall from section 1.3 that our method for evolutionary mechanism design is outlined 
as follows: 

input : A set of initial heuristic strategies S, and a legacy mechanism J.L 
1 repeat 
2 S - FiSH+ (S,J.L); 
3 publicise S to participants; 
4 X -frequency of each strategy observed in vivo; 
5 S - S u {strategies observed in vivo} ; 
6 A - space of feasible variants of J.L; 
7 J.L - arg maxJ.L*EA EvaluateDesignObjectives(J.L*, S, x); 
8 implement roles defined by J.L; 
9 until forever; 

In this chapter I have described how to evaluate the function: 

EvaluateDesignObjectives(J.L, S, x) 

where J.L denotes a mechanism, S denotes a set of heuristic strategies and x E ~Isl 
denotes a weighting over strategies based on current observations of the frequency with 
which each strategy is in play in vivo. I have shown empirically that this yields useful 
results for S = {TT, RE, GD, TK} for each of the mechanisms J.L = CH and J.L = 
CDA. I also demonstrated that our design objectives can be sensitive to x: in the case 
of J.L = CDA and IAI = 6, if we observe x = (8,8,8,1 - 8) where 8 is small, that is a 
situation in which a high proportion of traders using the sniping strategy TK in the real­
life mechanism, then our assessment of our design objectives will be different to that 
when we assume a uniform weighting x = (~,~,~, ~), and thus I have demonstrated 
that this method can take into account legacy considerations. 

One of the potential criticisms of this kind of analysis is that it is highly sensitive to 
the set of heuristic strategies S, which can never be truly comprehensive for an initial 

'. 
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design. The next chapter will explicitly deal with this criticism by setting the mecha­
nism design problem in the iterative context implied by the above pseudo-code, and we 
shall discuss the FiSH algorithm for refining our initial heuristic-strategy analysis by 
searching for hitherto unanalysed strategies that might break our existing equilibria. 



Chapter 9 

Searching the Space of 
Strategies 

In the previous chapter, we used a heuristic-strategy analysis to analyse two variants of 
the double auction market mechanism popUlated with a mix of heuristic strategies, and 
were able to find approximate game-theoretic equilibrium solutions. In this chapter, 
we shall use the same basic framework, but focus on the CH mechanism with uniform 
pricing (Section 3.3.1). Our goal will be to use ideas from empirical game-theory in 
order to search the space of trading strategies, whilst restricting attention to a single 
mechanism. 

Initially we will start with a subset of three heuristic strategies from the original 
set of four discussed in the previous chapter: TT, RE and GO, which are summarised in 
Table 9.1. 

As in the previous chapter (Section 8.4), since all mixed-strategy vectors lie in 
the unit-simplex, for k = 3 strategies we can project the unit-simplex onto a two 
dimensional space and then plot the switching between strategies that occurs under 
the dynamics of equation 7.2. Figure 9.1 shows the direction-field of the replicator­
dynamics equation for these three heuristic strategies, showing that we have two equi­
librium solutions. Firstly, we see that GO is a best-response to itself, and hence is a 
pure-strategy equilibrium. We also see it has a very large basin of attraction; for any 
randomly-sampled initial configuration of the population most of the flows end up in 
the bottom-right-hand-corner. Additionally, there is a second mixed-strategy equilibria 
at the coordinates (0.88, 0.12, 0) in the simplex corresponding to an 88% mix of TT 

Abbreviation Description 
TT The truth-telling strategy, (section 4.1.1) 
RE The reinforcement-learning strategy (section 4.2.4), 

configured with the Roth-Erev learning algorithm (section 4.2.4) 
GO The Gerstad-Dickhaut strategy (section 4.2.3) 

Table 9.1: The initial heuristic strategies chosen for the analysis 

105 
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and a 12% mix of RE. However, the attractor for this equilibrium is much smaller than 
the pure-strategy OD equilibrium; only 6% of random starts terminate here vs 94% for 
pure OD. Hence, according to this analysis, we expect most ofthe population of traders 
to adopt the OD strategy. 

RE 

TT GD 

Figure 9.1: The original replicator dynamics direction field for a 12-agent clearing­
house auction with the original unoptimized Roth-Erev strategy (labeled RE). 

How much confidence can we give to this analysis given that the payoffs used to 
construct the direction-field plot were estimates based on simulation? One approach 
to answering this question is to conduct a sensitivity analysis; we perturb the mean 
payoffs for each strategy in the matrix by a small percentage to see if our equilibria 
analysis is robust to errors in the payoff estimates. Figure 9.2 shows the direction­
field plot after we perform a perturbation where we remove 2.5% of the payoffs from 
the TT and OD strategies and assign +5% payoffs to the RE strategy. This results in 
a qualitatively different set of equilibria; the RE strategy becomes a best-response to 
itself with a large basin of attraction (61 %), and thus we conclude that our equilibrium 
analysis is sensitive to small errors in payoff estimates, and that our original prediction 
of widespread adoption of OD may not occur if we have underestimated the payoffs to 
RE. 

If we observe a mixture of all three strategies in actual play, however, the pertur­
bation analysis also suggests that we could bring about widespread defection to RE 

if were able to tweak the strategy by improving its payoff slightly; the perturbation 
analysis points to RE as a candidate/or potential optimization. 
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RE' 

TT GO 

Figure 9.2: Replicator dynamics direction field for a 12-agent clearing-house auction 
perturbed with +5% payoffs to the Roth-Erev strategy (labeled RE') 

9.1 Strategy Acquisition 

In the previous section we saw how heuristic-strategy approximation could be used to 
identify a potential candidate strategy for optimization. We also introduced an intrigu­
ing metric for ranking strategies on a single fully-ordered scale: viz, the size of the 
strategy's basin of attraction under the replicator dynamics. In this section we shall 
use this metric to perform a heuristic search of a space of strategies closely related to 
the RE strategy. In the following we shall define the space of strategies that are to be 
searched, and the details of the search algorithm. 

9.1.1 Strategy space 

The RE strategy discussed in the previous section belongs to a more general class of 
strategies: those based on reinforcement-learning. This class of strategies is described 
in detail in section 4.2.4. To recap, these strategies adjust their markup in response to 
the most recent profits obtained in the market using one of the following reinforcement 
learning algorithms: the Roth-Erev algorithm (RE), NPT's modifications to RE (NPT), 
the stateless Q-learning algorithm (SQ), and the control algorithm (DR). The parameters 
governing these algorithms are detailed in Tables 4.5 to 4.8. 

Individuals in this search space were represented as a 50-bit string, where: 

• bits 1-8 coded for parameter RLJ1. in the range (1, 10); 

• bits 9-16 coded for the parameters SQe or RE'rj in the range (0, 1); 

• bits 17-24 coded for parameter RLk in the range (2,258); 
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• bits 25-32 coded for parameters SQ-y or REp in the range (0,1); 

• bits 33-40 coded for parameter REs in the range (1, 15000); 

• bits 41-42 coded for the choice ofleaming algorithm amongst RE, NPT, SQ or 
DR; and 

• Bits 43-50 coded for parameter SQOt in the range (0,1). 

9.1.2 Search algorithm 

A genetic-algorithm (OA) was used to search this space of strategies, where the fitness 
of each individual strategy in the search space was computed by estimating its basin 
size under the replicator dynamics under interaction with our existing three strategies: 
OD, TT and RE. Basin size was estimated using the same brute-force methods described 
in Section 8.4, but since I recompute all entries in the heuristic-payoff matrix in support 
of each candidate strategy, I used lower sample sizes in order to facilitate evaluation 
of many strategies; the sample size for the- number of games played for each entry 
in the heuristic payoff matrix was increased as a function of the generation number: 
10 + int(100In(g + 1)) allowing the search-algorithm to quickly find high-fitness 
regions of the search-space in earlier generations and reducing noise and allowing more 
refinement of solutions in later generations. I used a constant number of replicator­
dynamics trajectories /M/ = 50 in order to estimate the basin size from the payoff 
matrix once it had been recomputed for our candidate strategy. The fitness function is 
derived from equation 8.2: 

F( i, S, [H]) = L JJ[HJ (x, M)Xi (9.1) 
XEE[HJS 

where: i is the index of the candidate heuristic strategy being evaluated from 
amongst the set of heuristic strategies S with heuristic payoffs [H], JJ[H] denotes the 
basin size of an equilibrium in the game defined by payoffs [H] as specified by equa~ 
tion 8.2 (p. 90), and €[H]8 is the set of heuristic equilibria: 

€[H]8 = {x E ,6,181 : JJ[H] (x, M) > 2 x 1O-2} 

Since we are comparing with our three existing strategies, in this experiment: 

S = {s*, TT, GD, RE} 

i = 1 

where s* is our candidate strategy. Thus the fitness function estimates the expected 
frequency with which our candidate strategy will be played in equilibrium outcomes. 
The entire search process is summarised in pseudo-code on p. 109; I call this the FiSH 
algorithm, since we will use it to "fish" for a new heuristic strategy. 

A OA was chosen to search the space IT of potential variations on RE, principally 
because of its ability to cope with the additional noise that the lower sample size in­
troduced into the objective function. The OA was configured with a population size 

, " 
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input : A set of heuristic strategies B = {SI, S2, •.• Sn} 

output: A new heuristic strategy OS 

[H] f- GetHeuristicPayofiMatrix(B); 

F f- 0; 
for i f- 1 to n do 

end 

[HJ' f- perturb pay?ffs in [H] in favour of Si; 

if F( i, B, [H]') > F then 

I

F:. f- F(i, B, [H]'); 
OS f- Si; 

end 

IT f- create a search space based on generalisations of 6s; 
os f- arg maxs*EII F(1, s* U B, GetHeuristicPayofiMatrix(s* U B)); 

Algorithm 2: FiSH 

109 

of 100, with single-point cross-over, a cross-over rate of 1, a mutation-rate of 10-4 

and fitness-proportionate selection. The GA was run for 32 generations, which took 
approximately 1800 CPU hours on a dual-processor Xeon 3.60hz workstation. 

9.2 Results 

Figure 9.3 shows the mean fitness of the GA population for each generation. As can 
be seen, there is still a large amount of variance in fitness values in later generations. 
However, inspection of a random sample of strategies from each generation revealed 
a partial convergence of phenotype, but with significant fluctuations in fitness values 
due to small sample sizes (see above). Most notably, the fittest individual at generation 
32 had also appeared intermittently as the fittest individual five times in the previous 
10 generations, and thus this was taken as the output from the search. 

The optimised strategy that evolved used the stateless Q-Ieaming algorithm (sQ) 

with the following parameters: 

RLJ1. = 1.210937 

RLk = 6 

BQe = 0.18359375 

BQ,,! = 0.4140625 

BQo. = 0.1875 

The notable feature of this strategy is the small number of possible markups RLko 
and the narrow range of the markups [0, (RLk - 1)RLJ1.] as compared with the distri­
bution of valuation distribution widths. This feature was shared by all of the top five 
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Figure 9.3: Mean fitness of the GA population with one standard deviation 

strategies in the last ten generations, and is another factor that indicated convergence 
of the search. 

I proceeded to analyze our specimen strategy under a full heuristic-strategy analysis 
using 104 samples of the game for each of the 455 entries in the payoff matrix. With 
the current version of my simulatorl , I am able to complete this analysis in less than 
twenty four hours using a dual-processor 3.60hz Xeon workstation. 

Figure 9.4 shows twenty trajectories of the replicator-dynamics plotted as a time: 
series for each strategy, and shows the interaction between the new, optimised strategy, 
os, together with the existing strategies: GD, TT and RE. 

Taking Mc!:::,. 4 
: IMI = 103 randomly sampled initial mixed-strategies, I calcu­

late that there are two attractors: 

A = (0,0,1,0) 

B = (0.67,0.32,0,0) 

over (OS, TT, GD, RE). Attractor A captures only 

f3(A, M) = 0.03 

that is, three percent of trajectories, whereas attractor B captures virtually the entire 
four-dimensional simplex: 

Ihttp://freshmeat.net/projects/jasa 
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Figure 9.4: Replicator dynamics time series plot for a 12-agent clearing-house auction 
showing interaction between optimised strategy (os) versus GO, TT and the original 
Roth-Erev strategy (RE) 

(J(B, M) = 0.97 

Although this basin is very large, our optimized strategy shares this equilibrium with 
the truth-telling strategy (TT), giving us a final total market share 

F = 0.67 x 0.97 = 0.65 

This compares favourably with a market-share of 32% for truth-telling and 3% for GD. 
The original RE strategy is dominated by our optimised strategy. Figures 9.5 and 9.6 
show the direction field for two ofthe 3-strategy combinations involving our optimised 
strategy: (OS, TT, GD) and (OS, GD, RE) respectively. 

9.3 Discussion 

It is somewhat remarkable that our fairly simplistic optimised strategy is able to gain 
defectors from a highly sophisticated strategy like GO, whilst at the same time truth­
telling is able to retain a share of followers in a population predominated by OSers (TT 
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appears to be parasitic on OS). What accounts for the ability of small os mixes to in­
vade high-probability mixes of a sophisticated adaptive strategy (G D), whilst remaining 
vulnerable to invasion by a low-probability mix of a non-adaptive strategy TT? 

TT 

Figure 9.5: Replicator dynamics direction field for a 12-agent clearing-house auction 
showing interaction between optimised strategy (os) verses TT and GD 

As discussed earlier, we use the same method of assigning valuations as in [145]; 
that is, for each run of the game, the lower-bound, b, of the valuation distribution is se­
lected uniformly at random from the range [61, 160] and the upper-boundb' is similarly 
drawn from [b + 60, b + 209]. For that run of the game, each agent's valuation is then 
drawn uniformly from [b, b']. However, it is possible that this results in a statistical cor­
relation between the meta-bounds and the average slope of truthful supply and demand 
schedules- that is, given these distribution parameters there is insufficient variance in 
the difference between valuations of traders who are neighbors on the supply or de­
mand curve. Since we are using a uniform-price k = 0.5 clearing rule, the mechanism 
is vulnerable to price-manipulation from the least efficient trades; the buyer with the 
lowest matched bid, and the seller with the highest matched ask can potentially manip­
ulate the final clearing price - provided that they do not overstate their value claim to 
the extent that it impinges on the 2nd-lowest matched bid, or the 2nd-highest matched 
ask. For example, in the case of buyer ai E B who finds themselves with the low­
est matchable valuation, and if we assume that the other agents are truth-tellers then 
our competitors' bids will be given by a subset of M B = {mb1, mb2, ••• mbn}. The 
2nd-lowest matched bid will be mbn- 1 and our valuation will be given mbn. Let: 

Amb = mbn-l - mbn 
This is a random variable. However if we know the distribution of Amb, we can cal­
culate the probability of our bid being accepted as a function of its price: Paccept (Vi). 
Since our profit will be Vi - Vi, given knowledge of the distribution of Amb it would 
be straightforward to choose a bid price vi that maximises our expected profit: 
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Figure 9.6: Replicator dynamics direction field for a 12-agent clearing-house auction 
showing interaction between optimised strategy (os) verses GD and the original Roth­
Erev strategy (RE) 

arg!llaxE(Ui(Vi)) = (Vi - Vi)Paccept(Vi) 
Vi 

Given sufficient variance in the distribution of Llmb this feature of the market is not 
easily exploited. However, in a market with a small number of traders and a narrow 
distribution for Llmb there is an opportunity to trade at small margin above truth if you 
find yourself with a valuation close to the equilibrium price p*. This is precisely the 
behaviour of the strategies that we observe to be predominant in the later generations 
of our GA- they all use a small number of possible markups, each of them small in 
comparison to the possible valuation bounds. The reinforcement-learning component 
of the strategy is then able to fine-tune the markup depending on where the trader finds 
themselves on the supply or demand curve after valuations are drawn. If it is far away 
from the equilibrium-price it can adjust its margin close to zero, whilst if it is near 
the equilibrium-price it can find a small margin that does not impinge on its nearest­
neighbour. This hypothesis is also consistent with parasitic truth-telling; it is easy to 
see that truth-telling is a best-response for a 2nd-lowest matched bidder to a lowest 
matched bidder playing os. 

In future work I will examine this hypothesis in more detail and conduct a statisti­
cal analysis in which I determine the distribution of Llmb for different parameters of 
the valuation distribution range, and attempt to correlate it with the parameters of the 
evolved strategy. Meanwhile, I have demonstrated that the search technique presented 
here is capable of finding a new strategy that not only has a large attractor, but also has 
interesting properties worthy of further analysis. 



114 CHAPTER 9. SEARCHING THE SPACE OF STRATEGIES 

9.3.1 An iterative approach 

In this chapter, we started out by asking whether our original equilibrium analysis of 
TT, OD and RE was sensitive to small perturbations in payoff estimates. By doing so, we 
identified that hypothetical variations on the RE strategy might be able to easily invade 
our existing equilibria. We then identified a new entrant os that was able to penetrate 
the original mix of strategies and displace the ancestral incumbent RE, forming two 
new equilibria comprising mixes of os, TT and OD. Thus by performing this analysis 
we have refined our original equilibrium analysis, since our original equilibria did not 
take into account the existence of os. This process can be generalised to an arbitrary set 
of initial heuristic-strategies, and the algorithm, called FiSH, is illustrated on p. 109. 

We have validated FiSH empirically by applying it to a highly complex game, the 
double-auction, and demonstrated that it is capable2 of finding a new strategy with 
interesting properties, as demonstrated in the previous section. However, one might 
ask whether our new strategy os, or more accurately our new set of equilibria over 
OS u S, is not susceptible to the same process of systematically searching for an 
invader? Of course, the answer is that this is indeed a possibility. We could straightfor­
wardly test for this by applying exactly the same analysis to our new set of equilibria; 
that is, we could perform another sensitivity analysis to see whether our new equilibria 
are stable under payoff perturbation. If they were, then we might conclude that our 
equilibria are comparatively stable for the time being. If they are not stable, however, 
we could then perform another systematic search for variations in the current strate­
gies which are good candidates for potential invaders of the status quo; that is, new 
strategies which form equilibria with estimated large basin size in interaction with the 
incumbents. By performing this process repeatedly we will eventually end up with a 
refined set equilibrium strategies. The pseudo-code for FiSH+ (p. 115) illustrates this 
proposed algorithm. 

9.3.2 Strengths and Weaknesses 

The strength of this method for strategy acquisition is its ability to be applied in re­
alistically complex games (mechanisms). However, just as the domain to which I 
have applied it suffers from a lack of analytic tractability, one potential weakness of 
the method is the lack of an analytical proof demonstrating its efficacy in the general 
case. However, this is mitigated by the fact that the single-iteration algorithm FiSH 
combines two fields in a very simple way, each with a growing analytical literature, 
viz. empirical game-theory and optimisation. Additionally, I have demonstrated that 
the algorithm works effectively in at least one highly complex setting, thus we have 
an existence proof that the algorithm is effective in at least one realistically complex 
scenario. For the empirical study in this chapter I have used a general purpose optimi­
sation method, that is a genetic algorithm. However, future work will attempt to find 
a specialised optimisation algorithm for the purposes of maximising attractor size by 
interleaving the optimisation and heuristic-strategy analysis steps in a similar manner 
to that proposed by Walsh et al. (146]. 

2for at least one set of initial strategies S = {TT, GD, RE} 
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I have not attempted to validate the proposed iterative version of the algorithm, 
FiSH+, in this thesis. Again, this algorithm is a fairly simple elaboration on the non­
iterative version, so the lack of analytical validation should not detract from its poten­
tial. However, the fact that the approach is highly computationally intensive for a single 
iteration warrants an analaysis of how the algorithm might converge prior to investing 
in a full empirical case study. 

input : A set of heuristic strategies S = {S1, S2, • .• sn} for some 
mechanismJ.L 

output: A refined set of heuristic-strategies 

[H] - GetHeuristicPayofiMatrix(S, J.L); 
repeat 

P _ maXi=l...n F(i, S, [H]); 
for i-I to n do 

end 

[H]' - perturb pay?ffs in [H] infavour of Si; 

if F( i, S, [H]') > F then 
P _ F(i, S, [H]'); 

i* - i; 
6s - Si; 

end 

if P < F(i*, S, [H]) then return S; 

IT _ create a search space based on generalisations of 6s; 
os-
arg maxs*EIl F(l, s* US, GetHeuristicPayofiMatrix(s* US, J.L)); 

s_os US; 
[H] _ GetHeuristicPayofiMatrix(S, J.L); 
S _ eliminate dominated strategies from S based on [H]; 

until forever; , 

Algorithm 3: FiSH+ 

9.4 Summary and Contribution 

In the previous chapter we performed a quantitative analysis of the design properties of 
two different auction mechanisms using an initial set of four heuristic-strategies. We 
also asked the question as to how stable our analysis was given that we had only cho­
sen a small set of strategies, one of which had many free parameters. By applying the 
FiSH+ algorithm we can answer this question; we can see if there are additional, pre­
viously unconsidered strategies that break our initial equilibrium. In this Chapter we 
have refined an initial analysis of the CH based on the three strategies TT, RE and GO, 

and discovered a new incumbent strategy os with large attractors (basin size), which 
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are stable under payoff perturbations. To a mechanism designer, this latter state of af­
fairs is particularly attractive, since larger, more stable basin sizes correspond to more 
deterministic, and hence predictable behaviour. In a legacy mechanism design sce­
nario, if we are able to provide an equilibrium analysis over existing strategies which 
demonstrates similarly clear-cut equilibria, then we may be able to convince partic­
ipants that these are the best-response strategies that their competitors are likely to 
adopt, and therefore that they should adopt also. If we then make the algorithms cor­
responding to our new heuristic strategies freely available to participants, and if they 
believe our equilibrium analysis, then they are likely to play our prescribed strategies, 
thus bringing about our predictions, and hence maximising our design objectives. By 
finding new strategies with large stable attractors, we make our equilibrium analysis 
more believable to participants. This is analogous to incentive-compatibility in a con­
ventional mechanism design scenario, where it is clear to participants that TT is the 
traders' best-response to the mechanism: in an incentive-compatible mechanism TT 

is a "freely-available" strategy with a large attractor. In realistically complex mecha­
nisms such as the double-auction, TT is dominated. However by applying the FISH+ 

algorithm we can find analogs of TT for complex mechanisms. 
Of course, in our new equilibria, our existing mechanism rules may no longer max­

imise our design objectives. In the previous chapter, we described real-life mechanism 
design as an iterative process (section 8.5), and that is exactly how evolutionary mech­
anism design addresses this issue. Thus our algorithm for evolutionary mechanism 
design is as follows: 

input : A set of initial heuristic strategies 8, and a legacy mechanism J.L 
I repeat 
2 8 f- FisH+ (8, J.L) ; 
3 publicise 8 to participants; 
4 X f- frequency of each strategy observed in vivo; 
5 8 f- 8 u {strategies observed in vivo} ; 
6 A f- space of feasible variants of J.L; 

7 J.L f- arg maxJL*EA EvaluateDesignObjectives(J.L*, 8, x); 
8 implement rules defined by J.L; 

9 until forever; 

In this chapter I have demonstrated how could step 2 can be automated. In the 
previous chapter, we saw how to semi-automatically compute the function in step 7. In 
the next chapter I shall describe how step 7 can be fully automated. 



Chapter 10 

Searching the Space of 
Mechanisms 

Recall that our method for evolutionary mechanism design is as follows: 

input : A set of initial heuristic strategies S, and a legacy mechanism J.1, 
1 repeat 
2 S+-FiSH+(S,J.1,); 
3 publicise S to participants; 
4 if +- frequency of each strategy observed in vivo; 
5 S +- S U {strategies observed in vivo} ; 
6 A +- space of feasible variants of J.1,; 

7 J.1, +- arg maxJ.l*EA EvaluateDesignObjectives(J.1,*, S, if); 
8 implement rules defined by J.1,; 

9 until forever; 

In chapters 8 and 9 we examined methods for evaluating design objectives and itera­
tively searching for new heuristic strategies (FiSH+) respectively. In this chapter we 
shall turn attention to step 7, that is, the problem of searching the space of mechanism 
rules in order to solve the optimisation problem: 

arg max EvaluateDesignObjectives(J.1,*, S, if) 
J.I*EA 

Rather than consider the entire space of possible mechanisms, we shall take as A the 
space of possible transaction pricing rules for a CH mechanism, the different forms of 
which are discussed in sections 3.3.1 to 3.3.3. Recall that there are two main variants 
of pricing rules for this institution: uniform pricing in which we set the transaction 
price based on the market quote (eqa, eqb), and discriminatory pricing in which we 
set the transaction price based on the individual bid and ask prices. Each of these 
rules is parameterised by a constant k E [0, 1] which determines where we will set the 
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transaction price in either the interval between eqa or eqb, or the bid and ask prices 
depending on whether we are using uniform or discriminatory pricing respectively. In 
a k = ~ mechanism we set the price halfway between the two relevant values. In a 
k = 1 mechanism we set transaction prices at the bid price, or the bid component of 
the market quote. Similarly in a k = 0 mechanism we set prices at the ask price, or the 
ask component of the market quote. For extreme values values of k there are clear-cut 
analytic incentive-compatibility results for buyers (k = 0) or sellers (k = 1). However, 
there is no clear-cut analysis of how we should choose k in the general case. 

In the following section I briefly review earlier work in which I attempted to use 
a co-evolutionary algorithm to solve the optimisation problem. In section 10.2 I dis­
cuss the relationship between co-evolutionary algorithms and game-theory in order to 
demonstrate why this earlier approach is not suitable for the evolutionary mechanism 
design algorithm outlined at the beginning of this thesis. In section 10.3 I outline the 
non-coevolutionary optimisation approach that I adopted in order to circumvent these 
problems. In section 10.4 I describe an experiment to empirically validate this optimi­
sation approach, the results of which can be found in section 10.5.2. Finally I conclude 
with a discussion and summary. 

10.1 A review of earlier work 

As discussed in sections 3.3.1 to 3.3.3, the transaction pricing rule sets the price of any 
given transaction as a function of the bid and ask prices submitted by buyers and sellers 
respectively. In a private-values trading scenario, bids and asks can be thought of as 
signals [39, p. 395] from the traders expressing their valuation for the resource being 
traded. The difficulty the auctioneer faces in allocating the resource to those who value 
it most highly (Le. achieving an optimal allocation or maximum market efficiency) is 
that these signals cannot necessarily be relied upon to be truthful; agents might mis­
report their valuations in order to make profit at the expense of others. One technique 
to counter this problem is to design incentive-compatible mechanisms which have the 
property that the best strategy for every agent is to report their valuation truthfully. This 
is typically achieved by forcing agents to back up their value claims with hard cash, 
thus imposing a "handicap" on the signals of the traders, and encouraging honest sig­
nalling through the handicap principle [162]. Successful application of this principle 
involves careful reasoning about how to set the handicap, i.e. the transaction price, as 
a function of the signal, i.e. the bids and asks of the traders. 

As discussed in Section 3.3.4, the uniform-price CH can be shown to be incentive­
compatible for sellers for k = 1, and incentive-compatible for buyers for k = o. 
However, there is no value of k for which the mechanism is incentive-compatible for 
all traders. 

In earlier work [107, 108], two possible approaches were used to analyse the space 
of possible transaction pricing rules using computational techniques, with a view to 
finding rules which optimise various design objectives. 

In the first approach, co-evolutionary machine learning was used to simulate an 
evolutionary "arms-race" between populations of trading strategies and a separate pop­
ulation of pricing rules (the mechanism population) [107]. Individuals in each popula-
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tion were represented as lisp expressions and evolved using Koza genetic-programming 
[79]. The fitness function for the strategy populations was a function of the individual 
profits of traders playing those strategies, and the fitness function for the pricing rule 
population was a function of the overall market efficiency achieved by an auctioneer 
using that rule against the current strategy populations. 

In these early co-evolutionary experiments, it was hoped that, as the strategy popu­
lations evolved predatory non-truthful strategies, the pricing rule population would re­
spond by evolving defenses, and that over time incentive-compatible mechanism rules 
would evolve that were robust against a wide variety of trading strategies, in much the 
same way that prey populations adapt robust defenses against predator populations in 
co-evolutionary arms races in nature [35, 141]. Despite some promising preliminary 
results, it was found that this approach suffered from a number of drawbacks, mainly: 

1. The co-evolving system rapidly descended into suboptimal auction mechanisms 
if the mechanism population was not artificially seeded with individuals with 
a minimum-level of initial fitness. In cases where the mechanism population 
started from extremely low fitness individuals, such as pricing rules which set the 
transaction price at 0 regardless of the signals arriving from traders, the strategy 
populations would try and fit to these artificially low-fitness mechanisms and 
evolve to a state where their bids were meaningless. Meanwhile the mechanism 
population would be unable to discover more rational rules which worked with 
the existing "broken" trading strategies. Therefore the trading strategies could 
not evolve to work with more rational mechanisms and so on. 

2. Where more promising results were obtained by artificially seeding the mecha­
nism population with initial promising rules, the results were highly ambiguous. 
Often the mechanism population would oscillate between stable states represent­
ing rules corresponding to k = 0 and k = 1. Initially speculation was that this 
was a reflection of the fact that there were no incentive-compatible rules for both 
buyers and sellers. The theory was that the mechanism population was settling on 
incentive-compatible rules for sellers, the buyer population was then responding 
by evolving non-truthful strategies, the mechanism population was responding 
by evolving rules that were incentive-compatible for buyers, the sellers were re­
sponding by evolving non-truthful strategies, ad infinitum. However, this theory 
proved unfounded as the explanation turned out to be that rules of the form k = 0 
and k = 1 were more dense in the search space. 

In the next section I take a game-theoretic perspective and attempt to explain why 
the co-evolutionary algorithm failed to produce meaningful results in this context. 

10.2 Mechanism design as strategic-interaction 

It is often instructive to analyse co-evolutionary processes in ga~e-th~or~t~c terms, 
since in a co-evolutionary interaction the fitness assigned to .any. gl.ven Indl~ldual de­
pends on the joint actions of the other individuals with which It Interacts In a very 
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similar manner to an evolutionary game l . When we co-evolve auction mechanisms 
and trading strategies we are implicitly defining a game between two players2 : the 
mechanism player on the one hand, and the trader player on the other. Each player 
attempts to maximise their payoff (analogous to maximising fitness); in our present 
scenario the mechanism player attempts to maximise market efficiency EA, whereas 
the trader player attempts to maximise utility Ui. Note that if the selection function 
of our co-evolutionary algorithm picks individuals from each population based on a 
stochastic function of fitness rather than phenotype, then we are implicitly modelling 
a game of imperfect information; the individuals in the population do not "know in 
advance" the action that is being adopted by any other. This has important implications 
which will be discussed further in the next section. 

Ideally we would like to find the optimal strategy for the mechanism player. In 
game theory the concept of an optimal strategy is defined formally as a dominant strat­
egy. In this chapter we will be restricting attention to the clearing rule (Section 3.2.9), 
so a hypothetical dominant strategy for the mechanism player would be a clearing rule 
that obtained a better payoff, EA than any other clearing rule, no matter what strategy 
is adopted by the trader player. However, not every game possesses a dominant strat­
egy solution (and it is not apriori clear that we should expect the mechanism versus 
trader game to possess one). More commonly the concept of optimality in a game is 
relative; if a dominant-strategy does not exist then the best strategy to play depends on 
the strategy adopted by one's opponent(s). 

Although not every game possesses a dominant-strategy, we know that all games 
possess at least one Nash equilibrium in which the strategy adopted by every player is a 
best-response to every other player's strategy. Consider a hypothetical equilibrium for 
our game at hand in which the mechanism population chooses a clearing-rule which 
sets the transaction price at afixed constant value Vi price( Ci) = d which is indepen­
dent of the trader shout price, and in response the trader player adopts a strategy of 
always submitting shouts with zero prices: VNt «(i, t) = O. Depending on the distri­
bution of trader valuations, a rule which sets transaction prices close to the expected 
equilibrium price d ~ E(p*) would achieve a reasonable expected payoff E(EA) ~ 1· 
for the mechanism player. From an external mechanism designer's point of view this 
clearing rule is clearly brittle and undesirable, especially if the variance in valuations 
and hence in efficiency is large. However, this hypothetical situation would be very 
hard to leave once we arrive at it, since if the mechanism player attempts to switch to 
conventional clearing rules which set transaction prices as a function of shout prices, 
it will be faced with the issue that all shout prices are O. Similarly, the trader player 
cannot improve their payoff by unilaterally switching to any other strategy since their 
payoff is no longer a function of their shout price. This situation is a game-theoretic 

lNote that this applies regardless of whether we intuitively think of our original problem as a game. 
Game theory is simply a mathematical tool that allows us to study co-dependent optimization problems­
that is, what potential solution should we choose given that our choice will influence the solution of other 
optimizers and vice versa. This is precisc\y the scenario instantiated by a co-evolutionary algorithm, hence 
game-theory is an invaluable theoretical tool in understanding the properties of co-evolutionary systems. 

2For conciseness and simplicity, in this section only we shall assume that many trading agents are under 
control of the single notional trader player, and that all the agents adopt the same strategy that is specified by 
the trader player at any given time. Note, however, that we will be dropping this simplifying assumption in 
the remainder of the chapter. 
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equilibrium of the mechanism versus trader game. 
If equilibria such as these have large basins of attraction (p. 90) under the dynamics 

of our co-evolutionary process, then we should not be surprised if our co-evolutionary 
algorithm converges on them. Indeed, this was one of the major problems that was en­
countered in earlier work when I attempted to use co-evolution to evolve robust mech­
anisms: the co-evolutionary algorithm sometimes converged on what appeared to be 
game-theoretic equilibria, but it is not clear that the theoretical equilibrium solutions of 
the mechanism versus trader game are in any way desirable from a mechanism design 
perspective, as illustrated by the above example. 

In co-evolutionary terminology equilibrium states such as Nash equilibria are some­
times referred to as "local optima" ofthe co-evolutionary algorithm. Note however that 
although they are referred to as "local" this does not imply the existence of a global 
optimum that still remains to be found, since as discussed above there is not necessarily 
a dominant strategy for the mechanism player. Additionally, it is not always the case 
that payoffs are straightforwardly maximised in these states relative to the majority of 
other points in the phase space of the system. For example: there may exist many 
alternative clearing rules which give better payoff EA to the mechanism player if the 
trader player were to adopt a different, non-equilibrium, strategy; or there may exist 
alternative equilibria strategy profiles which yield higher payoff to both players. Thus 
there may be multiple equilibrium points in the phase space of our co-evolutionary 
process. These are local "optima" in the sense that moving a very small distance away 
from them in the phase-space will not yield an increase in payoff (fitness). However 
it is important to note that there could be very many other "high-payoff" states further 
away in the phase space which yield a higher payoff to a given player than any any 
of our "locally optimal" strategy profiles. However these "high-payoff" states are not 
necessarily Nash equilibrium states. 

Thus in general these "local optima" do not minimise (or maximise) any arith­
metical function of their payoffs compared with non-equilibrium strategy profiles, and 
neither is their basin size under the co-evolutionary dynamics necessarily proportional 
to any of the payoffs. Hence if our co-evolutionary search converges on a Nash equi­
librium, it is difficult to view this as a solution to a maximisation problem in which we 
are systematically searching for optimal, or even satisficing, mechanisms; indeed in 
our present scenario, in the absence of a dominant-strategy for the mechanism player it 
is not clear that the notion of an "optimal" mechanism has any meaning, since the opti­
mal strategy for the mechanism player will be very sensitive to the strategy adopted by 
the trader player, and in the most likely case where there are multiple Nash equilibria 
("local optima") for the game, there will be many possible "locally optimal" strategies 
that the trader player could adopt in the long term. 

However, the Nash equilibria of the mechanism versus trader game are useful so­
lutions to a different, but interesting, problem. If we are modelling a process in which 
multiple competing market institutions asynchron~us~y adjust their rules ove~ repeated 
interactions in response to observed trader strategies m the real world, and vice versa, 
(analogous to the scenario analysed by Roth and Ockenfels [120] in which. they com­
pare two competing online auction forma~s: eBay ~nd Amazon), then ,:"e might expect 
equilibrium solutions such as the fixed-pnce cleanng rule to be. the ratIOnal end result. 
It is not inconceivable, for example, that the reason that we contmue to see a prevalence 



122 CHAPTER 10. SEARCHING THE SPACE OF MECHANISMS 

of fixed-price institutions such as bricks-and-mortar shops for selling consumer goods 
in real market places, despite the possibility of dynamically-priced institutions such 
as eBay3, is due to fact that fixed-price institutions are an equilibrium solution of the 
real-life co-evolution between market mechanism and trader behavior. For example, 
consumers may be unable to switch from a fixed-price to an auction market for their 
required good since one may not exist yet, and correspondingly it may be very difficult 
for a startup to create an online auction market in the absence of existing traders on 
either side of the market. As well as accounting for historical and present observations 
of actual market behavior, this analysis could also be normative; we might recommend 
that retailers adopt a fixed-price mechanism based on the fact that it is a best-response 
to the likely status quo. In this case we might interpret our solution as "the optimal" 
one in some sense. 

10.3 Mechanism design as optimization 

In the previous section we saw that co-evolutionary algorithms are natural models of 
games of imperfect information, or simultaneous move games. The previous experi­
ments could be thought of as an analysis of evolutionary mechanism design in the case 
that the mechanism designer and the traders are simultaneously attempting to anticipate 
the choice of the other. 

However, our algorithm for evolutionary mechanism design is a sequential iterative 
process involving a single institution. In this case, the considerations from the previous 
section do not apply, since the mechanism designer is given the opportunity to move 
first by announcing their mechanism rules publicly to the trader population, who then 
respond by placing shouts in the mechanism. In this scenario we no longer have a 
repeated simultaneous-move game, instead we have a 2-move extensive-form game. 
In the first move the mechanism player announces their mechanism rules with perfect 
information, and in the second move the trader player responds by placing shouts. In 
contrast to the previous section, in this scenario the trader player does not have to. 
attempt to "anticipate" the move made by the mechanism player; rather it can form its 
strategy conditionally based on the mechanism rules chosen by the mechanism player. 
Thus, as a mechanism designer we should choose the optimal mechanism rules in the 
sense that the chosen rules optimise our design objectives when the trader player plays 
their best strategy under that particular chosen mechanism. 

This scenario is not straight-forwardly modelled by a standard co-evolutionary al­
gorithm; rather it is more natural to view it as a non-co-evolutionary optimisation prob­
lem in which we evaluate each potential mechanism by computing the values of our 
design objectives when traders play their best strategy for our candidate mechanism. 
However, this problem is complicated by the fact that although the traders are not at­
tempting to anticipate the mechanism rules (since these are already known), they are 
having to anticipate the moves of other traders (since there may be more than one 
trader, and they will be interacting under imperfect information). 

Rather than attempting to compute the full Bayesian-Nash equilibria (which would 
be intractable) for the trading strategies, I have adopted an empirical game-theoretic 

3http://www.ebay.com/ 

'. 



10.4. EXPERIMENTAL SETUP 123 

approach based on the RL strategy (Section 4.2.4) and the RE learning algorithm (Sec­
tion 4.2.4). My rationale for choosing this combination is that it forms the basis of a 
cognitive model of how people actually behave in strategic environments. In particular 
it models two important principles of learning psychology: 

• Thorndike's law of effect---choices that have led to good outcomes in the past are 
more likely to be repeated in the future; and 

• The power law of practice-learning curves tend to be steep initially, and then 
flatten out. 

The Roth-Erev algorithm belongs to a class of game-playing models known as 
"stimuli-response" models. These models have much in common with the replicator 
dynamics model of evolutionary game theory [86], and as in evolutionary game theory, 
the stable asymptotic behaviour of a multi-agent simulation using the Roth-Erev learn­
ing model can be interpreted similarly to the Nash-equilibrium of classical game theory 
or the evolutionary-stable-strategy of evolutionary game theory; stable states constitute 
strategy sets that are hard-to-Ieave and are likely to persist once they are reached, even 
when we consider agents who are not using the actual Roth-Erev learning algorithm to 
form their strategy. Hence, one way of viewing the analysis in this chapter is as an em­
pirical game-theoretic analysis similar to that presented in Chapter 8, but in which the 
choice of heuristic strategies corresponds to each markup selected by the RL Ai (t )RL I'i 

term of equations 4.51 and 4.52. The principle advantage of this approach over a full 
heuristic-strategy analysis is the reduced computational overhead. 

It is common to view mechanism design as the search for a mechanism that opti­
mises a single parameter-market efficiency, for example. In contrast, in this chapter 
we shall consider mechanism design to be a multi-objective optimization problem in 
which we simultaneously maximise several parameters- market efficiency and trader 
market power being two we consider in this chapter. The difficulty in doing this lies in 
simultaneously maximising as many dimensions as possible. 

In the remainder of this chapter, I describe how I have used these ideas to carry 
out some experiments in automated mechanism design in the setting of a deregulated 

electricity market. 

10.4 Experimental setup 

The experimental scenario stems from [98] (hereafter referred to as NPT), as described 
in detail in Section 6.3. To recap, a number of traders buy and sell electricity in a 
discriminatory-price4 continuous double auction. Every trader assigns a value for the 
electricity that they trade; for buyers this is the price that. they c~n obtain in. a secondary 
retail market and for sellers this reflects the costs associated with generatmg the elec­
tricity. Here this value is considered private; because traders are always trying to make 
a profit themselves, sellers are not willi~~ to reveal how little they migh~ accept for 
units of electricity and buyers are not wl1lmg to reveal how much they might pay for 

4In uniform price auctions, all trades in any given auction round happen at the same pric~. In discriminatory price 
auctions of the kind we have here, different trades In the same auctIOn round occur at different pnces. 
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units of electricity. Trade in electricity is also affected by capacity constraints; every 
trader has a finite maximum capacity of electricity that they can generate or purchase 
for resale. 

In these experiments, the number of sellers, N S, is the same as the number of 
buyers, NB. All traders have a capacity of 10 units. All traders are equipped with the 
(NPT) strategy as described in Section 4.2.4. 

10.4.1 Parameters 

The NPT strategy is configured with parameters: 

'Vi REs; = 1 

'Vi REp; = 0.1 

'Vi REIL; = 0.2 

Our design objective is to increase the efficiency of the market, whilst simultaneously 
keeping the market-power, the degree to which they can control the trade price, of both 
buyers and sellers to a minimum-we want to increase global profit but without giving 
unfair advantage to either buyers or sellers. To do this we need to measure efficiency 
and market power and I have adopted the three variables used in N PT, namely: market 
efficiency, seller market-power and buyer market-power, as defined in Section 6.3. To 
recap, market efficiency, EA, is defined as: 

EA = 100 (PBA + PSA) 
PBE+PSE 

(10.1) 

P B A and PS A are the profits that the buyers and sellers, respectively, actually make. 
P BE and P BE are the profits theoretically available to buyers and sellers, respec­
tively, in an market where all traders bid truthfully and an optimal allocation is made." 
(We can, of course, compute the result of agents bidding truthfully since we have access 
to their private values outside the simulation.) 

Buyer market-power, MP B, is defined as the difference between the actual profits 
of buyers, P BA, and the potential equilibrium profits P BE for buyers, expressed as a 
ratio of the equilibrium profits. 

MPB = PBA-PBE 
PBE 

Seller market-power is computed in the same way: 

MPS = PSA-PSE 
PSE 

(10.2) 

(10.3) 

Market efficiency, EA, tracks how good our mechanism is at generating global profit, 
whereas the market-power indices, MP B and MPS track to what extent each group 
is better or worse off compared to the ideal market. 

" 
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Strategic buyer market power S MP B measures the difference between the actual 
profits of the buyers and the profits they would get if they bid truthfully in the current 
market (as opposed to the ideal market assumed when calculating equilibrium profits), 
expressed as a fraction of equilibrium profits: 

SMPB = PBA - PBT 
PBE 

Strategic seller market-power is computed in the same way: 

SMPS = PSA - PST 
PSE 

(lOA) 

(10.5) 

Zero strategic market-power values strongly suggest that the mechanism is strategy 
proof- i.e., there is no way for a given trader to systematically generate profits at the 
expense of the other traders. 

We normalise each variable by mapping it onto the range [0, 1J, where 1 represents 
the optimal value of a variable and 0 represents the worst value. Variables are mapped 
using the following functions: 

EA EA 
= (10.6) 

100 -- 1 
MPB = (10.7) 

l+MPB -- 1 
MPS = (10.8) 

l+MPS -- 1 
SMPB 

l+SMPB 
(10.9) 

-- 1 
SMPS 

l+SMPS 
(10.10) 

Given these, our aim is to perform a multi-objective optimisation of efficiency and 
market power. For these initial experiments I combine our different objectives in a 
simple linear sum with fixed weightings and optimise the scalar fitness value for the 
particular case where we give equal weighting to efficiency and market-power5

• Since 
we have two measures of market power we have two values to optimise: 

F = 

v = 

For now we restrict our search of the mechanism design space to the transaction pric­
ing rule: which sets the price of any given transaction as a function of the bid and ask 
prices submitted by buyers and sellers respectively. N PT uses a discriminatory-price 

SThe ultimate goal, however, for future work is to use multi-objective evolutionary algorithms to explore 

the full Pareto frontier. 
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Mean fitness with standard deviation vs k for NS=30 NB=30 
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Figure 10.1: Fitness F (with standard deviation) plotted against kfor a market with 60 
traders. 

k-double-auction transaction pricing rule (Section 3.3.2), in which a different trans­
action price is awarded for each matched bid-ask pair in the current auction round. 
Recall that transaction prices are governed by a parameter k. In the original N PT 
experiments k is taken to be 0.5. 

Our aim is to investigate if there are alternatives to the k = 0.5 discriminatory 
pricing rule that perform well, not necessarily under equilibrium conditions, but when 
agents play Roth-Erev derived strategies; i.e., adaptive strategies derived from a cogni-, 
tive model of human game playing. 

In these experiments, I shall consider the space of all possible pricing rules that are 
functions of the individual ask price Pa and bid price Pb. Each function is represented 
as a Lisp s-expression, and Koza's genetic programming [79] is used to search this 
space. Individual mechanisms are compared according to the criteria represented by 
F in order to judge their fitness, thus we are using genetic programming to solve a 
multi-objective optimisation problem. I return to the full details of the GP experiment 
in Section 10.5.2. 

One might ask why we are using genetic programming to search such a vast space, 
when we could simply restrict attention to the k-double-auction pricing rule, and search 
for optimal values of k. The reason we use genetic programming is that I see this as 
a general method of representing arbitrary mechanism rules, not just those that can be 
neatly parameterised. In this particular case, we have chosen an aspect of the auction 
design that can be simply parameterised, so that I can compare the performance of the 
genetic programming search against a brute-force search of different values of k. In 
the following section I use a brute-force search of k to get an approximate view of the 

.' 
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Mean fitness with standard deviation vs k for NS=3 NB=3 
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Figure 10.2: Fitness F (with standard deviation) plotted against k for a market with 6 
traders. 

fitness landscape that our genetic programming search will encounter. 

10.5 Experimental results 

In this Chapter I report on two aspects of the experimental work I have been carrying 
out within the electricity market scenario. First I describe work to map out the fitness 
landscape in which the pricing rule is evolving. We do this by assuming a k-double 
auction and then calculating the efficiency of the market for different values of k. Sec­
ondly, I describe an experiment in which the pricing rule was free to evolve and show 
that it converged on the k-double auction rule with k = 0.5. 

10.5.1 Mapping the landscape 

Two mappings of the fitness landscape were carried out with 100 different values of 
k at increments of 0.01. In the first mapping, each auction was run for 100 rounds, 
and for each value of k we ran 1000 auctions each with a different supply and demand 
schedule. These schedules were constructed by assigning each agent a random private 
value from a uniform distribution in the range [30, 1000]. The market variables under 
observation are averaged over these 1000 different schedules. Figure 10.1 shows the 
mean fitness measure F for each value of k when the market consists of 60 traders 
(30 buyers and 30 sellers) and Figure 10.2 shows the mean fitness measure F for each 
value of k when the market consists of6 traders (3 buyers and 3 sellers) 
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Mean fitness with standard deviation vs k for Discriminatory Price NS=30 NB=30 
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Figure 10.3: Fitness V (with standard deviation) plotted against k for a market with 60 
traders. 

In the second mapping I looked at fitness measure V. This time, each auction 
was run for 1000 rounds and outcomes were averaged over 105 supply and demand 
schedules. The results of this mapping is given in Figures 10.3 and 10.4 for 60 traders 
(30 buyers and 30 sellers) and 12 traders (6 buyers and 6 sellers) respectively. For the 
second mapping we also looked at the measures of strategic buyer and seller market 
power. These are shown in Figures 10.5 and 10.6 and suggest that overall strategic 
market power (the sum of the buyer and seller figures) is approximately zero for k = _ 
0.5. 

These mappings at different values of k give us an idea of the fitness landscape 
for the electricity scenario when using our measures of fitness. A qualitative interpre­
tation of this data would suggest that values of k close to 0.5 should be selected by 
any technique that is applying the k-double auction rule and attempting to learn the 
best value of k while using our fitness measures. These results suggest that the CH is 
"heuristic ally incentive-compatible" for both buyers and sellers for values of k close 
to k = 0.5. 

10.5.2 Evolving pricing rules 

Having established the fitness landscape assuming the k-double auction rule, I then 
set out to search the entire space of possible pricing rules using genetic programming. 
Each rule was represented as a Lisp s-expression, and I used Koza's basic genetic pro­
gramming [79] with the parameters given in Table 10.1 to search this space. I made 
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Mean fitness with standard deviation vs k for Discriminatory Price NS=3 NB=3 
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Figure 10.4: Fitness V (with standard deviation) plotted against k for a market with 12 

traders. 

use of a Java-based evolutionary computation system called ECJ.6 ECJ implements a 
strongly-typed GP [92] version of Koza's [79] original system. For the GP experiments 
in this chapter, the standard Koza parameters were used in combination with the stan­
dard Koza GP operators, with the addition of a small amount of parsimony pressure 
(applied with probability 0.005) in order to counter the effects of GP code bloat. 

The function-set consisted of the terminals ASK P RI C E and BID P RI C E, rep­
resenting ask price and bid price respectively, together with the standard arithmetic 
functions, + - * t, and a terminal representing a double-precision floating point ephemeral 
random constant in the range [0,1]. Thus all we assumed about the pricing function is 
that it was an arithmetic function of the bid and ask. 

Individual mechanisms were compared according to the criteria represented by F 
in order to judge their fitness during the evolutionary process. As in Section 10.5.1, 
market outcomes for each pricing rule were computed by simulating agents equipped 
with the Roth-Erev learning algorithm. I used the same numbers of buyers, 30, and 
sellers, 30, and 100 auction rounds, but with only 100 different supply and demand 
schedules, constructed by assigning agents different private values, drawn randomly 
from a uniform distribution in the range [30,1000], to evaluate each generation of each 
population of pricing rules. I ran fewer rounds than in the landscape experiment be­
cause, as is usual for evolutionary methods, we had to use many generations and large 
populations-running each of these for 104 supply and demand schedules would have 

taken a prohibitive amount of time. 
Figure 10.7 shows part of the actual pricing rule that was evolved after 90 gener-

6http://Www.cs.urnd.edu/projects/plus/ec/ecj/ 
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Average strategic buyer market-power with standard deviation for Discriminatory Price NS=30 NB=30 
1 

Figure 10.5: Strategic buyer market power plotted against k for a market with 60 
traders. 

ations. This has been algebraically simplified, but as can be seen it is still far from 
straightforward, something that is not surprising given the way that standard genetic 
programming approaches handle the evolution of a program. Plotting the surface of 
the transaction price as a function of Pb and Pa, given in Figure 10.8, and comparing it 
with the surface for: 

0.5pa + 0.5pb 

(given in Figure 10.9) shows that these two functions are approximately equal apart .. 
from a slight variation when the ask price is very small or when the ask price is 
equal to the bid price. Thus the experiment effectively evolved a pricing rule for a 
discriminatory-price k double auction with k = 0.5 from the space of all arithmetic 
functions of ask and bid price. 

Although the fitness landscape for this benchmark problem is very simple, this 
is a means of validating our design technique before we move on to more complex 
scenarios. 

10.6 Discussion 

These results suggest that the approach I am adopting is a reasonable one- I have 
managed to evolve a rule which not only provides a high fitness, but also generates 
a rule that, in terms of the prices it sets, is close to a well established rule from the 
economics literature. The results also support the existing k-double auction rule since 
our GP search through the space of all functions of the bid and ask price has converged 
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1 Average strategic seller market-power with standard deviation for Discriminatory Price NS=30 NB=30 
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Figure 10.6: Strategic seller market power plotted against k for a market with 60 

traders. 

((0.6250385(0.93977016(ASK PRICE + 0.76238054)))+ 

(( (( (-0.19079465) / (ASK PRICE - (( (BI DP RICE 

+BIDPRICE)/(((((ASKPRICE -1) + 1.6088724)/ 

(((1- ASKPRICE) - (ASKPRICE/ASKPRICE))+ 

(2.5486426 + (BIDPRICE+ 

0.000012302072)))) + ((BIDPRICE/ASKPRICE) 

+ ((BIDPRICE + BIDPRICE) 

+(1.430315)/(BIDPRICE. ASKPRICE)))))ASKPRICE)) ... 

Figure 10.7: The first few terms of the derived pricing rule. 

on a version of the k-double auction rule. This is in contrast to the results obtained by 
Cliff [26, 27], which discovered a new form of auction between classical buy-side and 

sell-side auctions. 
Interestingly, this result also sheds some light on a problem that was encountered 

with the approach in [108] when I used genetic programming for both evolving auction 
rules and evolving trading strategies. In those experiments we noticed that k-double 
auction pricing rules were evolved early on, when the strategies used by the traders 
were poor, but did not thrive. It seems it is possible that k-double auction rules do well 
provided that they are used in auctions with fairly good traders-in auctions with poor 
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Evolved pricing rule at generation 100 

1000 
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Figure 10.8: The transaction price set by the evolved auction rule. 
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Figure 10.9: The transaction price set by the rule 0.5Pa + 0.5pb. 
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Figure 1O.l 0: The difference in transaction prices between the k = 0.5 rule and the 

evolved rule 

traders other rules, which are incompatible with good traders, do better. 
This is consistent with a recent view proposed by Philip Mirowski [90, pp. 536-

545] of economic marketplaces as complex ecologies. Some markets, such as garage 
sales, have relatively simple rules and procedures, while others, such as financial fu­
tures markets, are, by comparison, very complex. Yet all manage to co-exist, with 
each type of market, apparently, finding its own niche in which to survive and pros­
per. Indeed, the oldest markets have survived for hundreds of years without rules from 
the newer ones being adopted in them. The behaviours of the participants in the dif­
ferent markets are, as one would expect, different. One challenge for computational 

Parameter value 
Population size 4000 

Selection Parsimony Binary 
Tournament 

Cross-over probability 0.9 
Reproduction probability O.l 

Parsimony size probability 0.005 
Cross-over maximum tree depth 17 

Grow maximum tree depth 5 
Grow minimum tree depth 5 

Table 10.1: Koza GP parameters 
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economics, says Mirowski, is to explain this diversity, how it has arisen and how it is 
maintained. 

10.7 Summary and Contribution 

Evolutionary mechanism design, as introduced in this thesis, is an iterative methodol­
ogy for refining the design of a market mechanism in response to repeated observations 
of the real life market (in vivo analysis) and analysis based on game-theory and simu­
lation (in vitro analysis). The methodology is outlined by the following pseudo-code: 

input : A set of initial heuristic strategies S, and a legacy mechanism /-l 
1 repeat 
2 S +- FiSH+ (S,/-l); 
3 publicise S to participants; 
4 if +- frequency of each strategy observed in vivo; 
sS+- S U {strategies observed in vivo} ; 
6 A +- space offeasible variants of /-l; 
7 /-l +- arg maxJl*EA EvaluateDesignObjectives(/-l*, S, if); 
8 implement rules defined by /-l; 
9 until forever; 

In this chapter I have empirically validated that it is possible to compute step 7, 
and I have searched a subset of the space of mechanism rules A that determine the 
final clearing price as a function of individual bid and ask prices. In so doing, I have 
demonstrated that a design in which we set the transaction price halfway between bid 
and ask prices (a k = 0.5 discriminatory pricing policy) has desirable properties, de­
spite the fact that this is not an optimal mechanism according to the usual desiderata 
and assumptions of auction theory. 



Chapter 11 

Conclusion and Future Work 

In this thesis I have introduced an iterative methodology for the design of market mech­
anisms called evolutionary mechanism design. This differs from traditional mechanism 
design, which is a static analysis based on rigidly defined design objectives, in which 
a theoretically pristine mechanism is launched into the world and then remains forever 
in Nash equilibrium stasis. 

Evolutionary mechanism design, in contrast, attempts to take an engineering ap­
proach. It is not theoretically beautiful, but it is able to take into account real-life 
ugliness: arbitrary multiple design objectives, dynamic adjustment to equilibrium, and 
constant feedback from an in vivo mechanism. The process is described by the follow­
ing pseudo-code: 

input : A set of initial heuristic strategies S, and a legacy mechanism IL 
1 repeat 
2 Sf--FiSH+(S,IL); 
3 publicise S to participants; 
4 X f-- frequency of each strategy observed in vivo; 
5 S f-- S U {strategies observed in vivo} ; 
6 A f-- space offeasible variants of IL; 
7 IL f-- arg maxJl*EA EvaluateDesignObjectiveS(IL*, S, x); 
8 implement rules defined by IL; 

9 until forever; 

We start with an initial, or "legacy" mechanism IL that exists in vivo, that is, a real-life 
market. This is a reflection of economic reality, in that many market places initially 
emerge in an ad-hoc fashion and are not necessarily designed from the top-down ac­
cording to strict auction-theoretic principles [90]; in Chapter 3, I analysed a space of IL 
based on commonly-encountered variants of legacy double-auction mechanisms, and 
we saw that many variants of these mechanisms do not satisfY the usual desiderata of 

auction theory. 

135 
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We then analyse the set of heuristic I strategies S that are commonly observed to 
be in use. This set of strategies mayor may not yield clear-cut equilibria; therefore we 
conduct an in vitro analysis in which we use a combination of game-theoretic analysis 
and a simulation framework such as that discussed in Chapter 5. By combining these 
tools using an empirical game-theoretic analysis (Chapter 7) we can discover if there 
are hitherto unknown strategies that could yield more stable equilibria. This process 
is summarised by the FisH+ algorithm introduced in Chapter 9. If our initial equilib­
ria are not stable, the FiSH+ algorithm will give us a new set of strategies that yield 
equilibria with larger attractors, and hence more stable equilibria. As discussed in sec­
tion 9.4, this is analogous to the incentive-compatibility criterion from conventional 
static mechanism design in that we are attempting to find strategies that are a clear­
cut choice for our traders, just as TT is an obvious strategy in an incentive-compatible 
mechanism. However, this is of no use to a mechanism designer unless our new strate­
gies are actually adopted in vivo; hence in step 3 we publicise the resulting analysis to 
the market participants. 

Just as with engineering methods for othe~ complex real-world domains, such as 
software engineering, our analysis cannot be relied upon to be completely accurate 
and future-proof [10, 6]. Therefore we continually update our analysis in response to 
feedback from the in vivo mechanism: in steps 4 and 5 we compare our predictions 
with actuality, and update our set of heuristic strategies S and their observed frequency 
in the population x. In Chapter 8 I demonstrated how we can take into account x when 
evaluating whether we are likely to meet our design objectives. 

The resulting status quo may not be optimal for our purposes; for example, we may 
be able to improve the likelyhood of achieving certain design objectives, such as market 
efficiency or liquidity (transaction throughput) by making small adjustments in a subset 
of the space of mechanism rules, for example by adjusting parameters such as k in the 
market clearing rules (3.3.1 to 3.3.3). In Chapter 10, I demonstrated empirically that 
step 7 can be automated using genetic programming. 

Thus, in this thesis I have outlined an iterative methodology for mechanism design: 
evolutionary mechanism design, which incorporates both in vivo and in vitro analysis, -
and I have introduced methods for the latter which I have empirically validated as 
summarised above. 

11.1 Future work 

Full in vivo analysis 

In this thesis I have concentrated on the purely computational aspects of the method: 
that is, in vitro analysis. In so doing, I have glanced over some of the challenges 
presented by the in vivo analysis of real-life market places, which may be considerable. 
For example, in Chapter 8, we saw how our design objectives were affected when 
we considered different weightings over the frequency with which sniping strategies 
were observed in the existing mechanism. In the case of a strategy such as sniping, 
it is relatively straightforward to determine which traders are adopting this strategy, 

I As opposed to pure strategies in the strict game-theoretic sense. See Chapter 7. 
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provided that one has access to sufficient historical market data, since we can simply 
look at the timing of agents' shouts; Roth and Ockenfels [120] provide just such an 
analysis of the eBay marketplace, which validates that steps 4 and 5 can be performed 
in vivo in the case of a single class of strategy. 

However, inferring the existence of other classes of strategies in a real market 
presents a significant challenge, not least because the true valuation of each agent is 
not directly observable. Without any prior knowledge of an agent's valuation, it is very 
difficult to infer whether they are using a strategy even as simple as TT (section 4.1.1). 
That is not to say, however, that making inferences about valuations is impossible, 
especially from the privileged vantage point of the agent controlling the mechanism, 
who potentially has full access to the history of traders' interactions with the market. 
We may, for example, be able to infer bounds on an agent's valuation by analysing 
the order statistics of their trade prices over small time periods; or by analysing their 
trading behaviour in alternative markets for the same commodity; or, in the case of 
an ascending auction format such as eBay, by observing the price at which runner-up 
bidders drop out of the auction. With estimates ofvaluations in hand, it would possible 
in many cases to infer an agent's strategy. The reverse-engineering of valuations and 
strategies from market data is a promising area of research, both for those seeking to 
make profit, as well as for economists seeking to understand the dynamics of real-world 
marketplaces, and there is an emerging literature in this area [42, 41] to draw upon. 

Although it might be impractical in the context of an academic research programme 
to apply these in vivo methods in the context of a market such as a stock exchange, it 
may be possible to apply them to a markets such as the University of Iowa prediction 
markets [136]. Prediction markets are exchanges with unique design considerations 
[156], and an interesting possible research programme would be to conduct a full in 
vivo case study of the application of evolutionary mechanism design to a real-life pre­
diction market through several iterations of the design cycle. 

Competing mechanisms 

The focus I have taken in this thesis is evolutionary mechanism design as a sequen­
tial refinement of a single market institution. However, in many real-life scenarios, 
multiple competing mechanisms exist simultaneously and offer exchange services for 
the same commodity. For example, it is often possible to find the same commodities 
posted on both the eBay2 and amazon3 auction web sites. In this scenario, mechanism 
designers must take into account what rules their competitors are adopting in order to 
maximise their own design objectives, and mechanism design becomes a competitive 
interaction. The research conducted by Roth and Ockenfels [120] (discussed above) 
specifically discusses how amazon and eBay's choice of auction ending rules affects 
the other competitor. In this scenario, mechanism design is a form of strategic inter­
action between institutions, as discussed in section 10.2, and it is possible that earlier 
work in which I used evolutionary computing to co-evolve mechanisms and trading 
strategies [108, 107] would be useful for competitive mechanism design. 

2http://www. ebay.com/ 
3http://www.amazon.com/ 
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This kind of analysis may also be useful as an explanatory tool for economists seek­
ing to understand the variety of market institutions observed in nature, from fixed price 
retail markets to sophisticated electronic exchanges with a bewildering array of trading 
rules, some of which appear to be based more on historical precedent than rational de­
sign considerations. As discussed in the previous chapter, Mirowski [90] suggests that 
one of the challenges for computational economists is to explain this diversity; how 
it has arisen and how it is maintained. One possible approach to such an analysis is 
to think of mechanisms and strategies as co-evolving entities. Under this analysis, the 
varieties of market institution that we see today correspond to the resulting equilibria 
of the co-evolution between mechanism and strategy. As discussed in section 10.2, 
the reason that we observe that the majority of institutions for retail goods are fixed­
price (for example, high-street retail outlets) rather than dynamically-priced (for exam­
ple, eBay), might be the same reason that earlier co-evolutionary experiments arrived 
at fixed-price solutions (section 10.1); fixed-price mechanisms are a best-response to 
truly "zero-intelligence" strategies which do not bother to bid, and vice versa. Thus 
the Nash equilibria of the mechanism versus trader game, of which there may be many, 
may well correspond to the trading formats thatwe observe to persist in vivo. This is a 
topic that I have only touched upon in this thesis, but could form the basis of interesting 
future research. 

11.2 Applications to other domains 

Multi-agent Systems 

The focus of this thesis has been the double-auction domain. As discussed in Chap­
ter 2, the double-auction is an important benchmark problem for mechanism design 
and strategy acquisition. However, my main motivation in this research was to develop 
techniques that are applicable to the wider field of multi-agent systems technology. As 
we saw in Chapter 1 one of the principle problems in this field is the engineering of -
open systems. The internet is one of the most complex open systems in existence, and 
it is increasingly realised that incentive engineering is key in this domain. For example, 
Friedman and Shenker [52] describe contention over network bandwidth (congestion) 
by different self-interested parties (agents) in terms of a strategic game, and propose a 
non-monetary mechanism in which socially desirable outcomes can be achieved even 
when agents follow self-interested strategies by imposing a "handicap" in the form 
of a network latency that is proportional to an agent's stated bandwidth requirements 
(analogous to the "handicap" in form of payment that an auctioneer imposes on stated 
preferences for goods - see Section 3.1.3). It is this kind of ad-hoc scenario to which 
evolutionary mechanism design may be particularly suited, since, in principle, evolu­
tionary mechanism design methods can be used to craft new mechanisms on the fly, 
and in situations in which classical game-theoretic or auction-theoretic assumptions 
are violated; in the Friedman and Shenker scenario for example, the negative pay­
offs ("payments") inflicted by the "auctioneer" may be subject to environmental noise, 
which is not taken into account by existing mechanism designs. This is an ongoing 
area of research that is being taken up by several research groups: for example, by 

'. " 
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the EPSRC Market-based control of complex computational systems project4, and has 
applications to many other control problems in computer science and beyond, such as 
scheduling systems [30], memory allocation, and even air-conditioning [24]. 

From an economic perspective, market mechanisms are traditionally thought of 
as tools for achieving socially desirable outcomes between agents whose interests are 
not necessarily aligned, and who therefore attempt to maximise only their own utility. 
However, this does not prevent them from being useful in scenarios where agents' inter­
ests are in alignment with other. Many scenarios in MAS involve some form of cooper­
ative problem solving [38], which can involve complex coordination between different 
subsystems, for example the problem of coordinating movements between different 
joints or actuators in a robotics scenario [13]. In some scenarios it is possible to design 
a mechanism for these scenarios that brings about the globally-desired outcome when 
each agent, or subsystem, solves an entirely local decision problem (maximising their 
utility), thus enabling simpler agent implementations; this area of research is known as 
market-oriented programming [150], in which evolutionary mechanism design may be 
able to play an important role. 

Multi-agent learning & co-evolution 

Finally, it is my tentative hypothesis that one of the key principles in acquiring robust 
strategies in co-evolutionary scenarios may be in the appropriate design of the game 
underlying agent interactions, rather than focusing solely on the co-evolutionary algo­
rithm itself. For example, we may expect that co-evolutionary interactions in games 
such as paper-rock-scissors, which admits of a single clear-cut equilibrium solution, 
to result in lower diversity and robustness of phenotypes than in games such as the 
double-auction where we have a multitude of potential game-theoretic equilibria. It is 
possible that some of the methods proposed in this thesis may be useful for automat­
ically assessing and constructing environments (games) which encourage diverse and 
robust solutions in co-evolutionary interaction; for example, by quantitatively estimat­
ing the number of equilibria and their respective basin sizes. 

4http://www.marketbasedcontrol.com/ 
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Figure A. I : UML class diagram for the FourHeapShoutEngine class 

141 



142 

11 McAfe.cI •• rlngHou •• Aucllon •• r 

a IICcount: AccCMt I M<Ar..a._~w""~OI() 
McAf..a.wir9touseAuctionHf(m AlI:tion) 

a cl.-O I """'''''"'<), "',,""" 
,.setO 

APPENDIX A. UML DIAGRAMS 

.Int.rt.c •• 
UAuctlon •• r 

ISltlt.mor(): Iter.tor 

bldlt.rlltaO: lt •• or 

,.-0 
a ..-dOrAlI:tIonProc.'"«l 

..-dOtDlIYf'toc.ssin;O 

wdJlRoundProe.ssing() 

mAbllrlctAucllone.r 

a AbsnctAlI:tlon-o 

Dl AbstrllCtAlI:tIonMf{lnAuctIon) 

protoClon-o: ObjltCt 

s.tup<i1 Pwwn .... OIhlbas .. In P_.m.twl 

~Shout(i'IShoU) 

1.m~hout{1nShoul) 

print~··o 

'"010 
~Ouot-O : Martl:MOuot • 

• sIIlt .... or(): It.,.or 

bidl t.,.or(): h.,.or 

~wat.Ouot.O 

MdOtDayPIOCMSlnoO 

cl.-o a cl.W'{ln snout, In ShoIA, i1 d0ut8, ln double, i1ln1) 

11"'''''''''''c,--,.o(1o ShouI • • ShouI),""" _ntOccoo.ct(tn AuctlonEIIMI) 

endOfAl.donProc:MsinoO 

'KO'lNakh(1n Shout. i1 ShoU) 

~ TranaparentAuctlon •• r 

T,.,,,,.,..-.Auct1onHf() 

T,.."pa,..-.AuctIooeer{i1 Auction) 

Iho!AsVls!blliO: booI.M 

'KOf'doA.ch(InSholA,i1ShoIA) 

sholMc:c.pt.d(ln Shout): tJocN., 

iraMac:tionSOCCOO.d(): bool .. n 

IIndOlRoundProc:.sslng() 

,.s«O 

~tlutAsk:O: Shout 

~tl.s1B1d() : Shout 

a ~tLa$lShauO : ShoU 

{), 

11 CIMrlngHou .. Auctlon •• r IICont lnuouaOoubl. Auctlon .. r 

a 8::CCUII : ZwoFundsAccCUII 
ContinuousDcMbl.Auc:tloM·O 

CI..m~auseAuctionMr(iI Auction) ContInuousDcMblaAuctionHr(ln AuctIon) 

Ct .. rin!ittaus..-.uc:tionMr() gwlWat.auot·O 

endOfAu:llonPrOCMsIng() IIndOtRouncIProcMsi1g() 

.ndOlRoundP'OCIIsslng() IIndOfAuctionProcusing() 

_oOuoIoO shot.ts\llsblt(): booI." 
getAccount(): Account ,....,Shout(nShoIA) 

shoutsVlsbl·O: bool • ., checktmpl'ov.menI(ln Snout) 

~ 
~tAccoI.nlO : Account 

~ 
11 P.rlodlcCI •• rlngHou •• AuctlonHr IIIContlnuouIOoubl.Auctlon •• rNoQu,+ 

PeriocfcO • ..tnstIous~..,O 

PeriocIcO.a1ngHous.-.uctIon..,(In Auc1ion) 
la , ... ", I 

s.1up(In P .. melllrCM!:.bue, In Parwneter) 

"001() 

I'IIIWShoUI(InShocA) 

Figure A.2 : UML class inheritance diagram for Auctioneer classes 
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Figure A.4: UML class inheritance diagram for auction events 
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