
UNIVERSITY OF

LIVERPOOL

An SOPC Based Image Processing

System

A THESIS SUBMITTED TO THE UNIVERSITY OF LIVERPOOL FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF
ENGINEERING

By

FanWu

Department of Electrical Engineering and Electronics

September 2007

An sope Based Image Processing System Abstract

Abstract
Recent advances in semiconductor technology have made it possible to integrate an

entire system including processors, memory and other system units into a single

programmable chip - FPGA, these configurations are called "System-on-a-

Programmable-Chip" (SOPC). SOPCs have the advantage that they can be designed

quicker than existing technologies and are cheap to produce for low volume «10,000)

applications. Also, SOPCs are of great benefit as they offer compact and flexible

system designs due to their reconfigurable nature and high integration of features. One

processor intensive application, which is ideal for SOPC technology, is that of image

processing where there is a repeated application of operations on the 20 data. This

research investigated the use of sope technology for image processing by developing

a modular system capable of real-time video acquisition, processing and display.

This system is comprised of a CameraLink CMOS camera with a custom designed

camera interface card for video acquisition, a VGA mode CRT monitor with a Lancelot

VGA card for video display, an industrial SORAM device for video data buffering, and

an Altera Apex 20K FPGA for evaluating the SOPC design. Four custom designed IP

components have been developed and integrated with other Altera provided standard JP

components to drive all off-chip peripherals and perform the required video functions

such as processing the images. These custom designed IPs are the video capture

controller, video display controller, video memory controller and Cache. A Nios

processor was chosen to perform the actual image processing, and the whole system

was developed on the Altera Nios development board. In order to solve the complex

on-chip data communication, while not degrading the transferring speed of large-

amounts of video data, an effective solution called Simultaneously Multi-Mastering

Avalon Streaming Transfer with Peripheral-Controlled Waitrequest was raised. Rather

than using the software approach to initialise OMA-like transfers, this solution takes

advantage of the FPGA hardware resource to perform bus arbitration and hence

increases the system efficiency.

The system produced is an alternative to conventional desktop-based, Le. a vision-

based closed loop process control system for welding, or microprocessor-based vision

systems.

September 2007 FanWu

An sope Based Image Processing System Acknowledgement

Acknowledgement

I would like to express my gratitude to my supervisor Professor Jeremy S. Smith for his

guidance and help for my research work. I would like to thank my parents for their

support. I would like to thank my university colleagues James Buckle, Mr. Gordon

Cook and Andrew Tickle for their help especially in improving my English. I would

like to thank Kenjin Wong, Yanwei Shou and Lihua Yang for lending me some

experimental equipment. I would like to thank all of my friends both in Liverpool and

China for their encouragement. Finally I would like to thank my wife Liang Wen for

her understanding and support during my PhD studies.

Sincerely yours,

Fan Wu, 2007

September 2007 FanWu ii

An SOPC Based Image Processing System Declaration

Declaration
No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institution of learning.

September 2007 FanWu iii

September 2007 FanWu iv

An SOPC Based Image Processing System Contents

Contents

ABSTRACT 1

ACKNOWLEDGEMENT II

DECLARATION III

CONTENTS IV

LIST OF FIGURES X

LIST OF TABLES XIV

CHAPTER 1. INTRODUCTION 1

1.1 Motivation and objectives 1

1.2 Overview .3

CHAPTER 2. INTRODUCTION TO IMAGE PROCESSING, COMPUTER VISION &

OVERVIEW OF AN PC BASED VISION SYSTEM FOR WELDING 5

2.1 Computer vision & image processing 5

2.2 Vision-based closed loop process control system for welding 7

2.2.1 General description 7

2.2.2 Image capture and processing 8

2.2.3 Weld image-processing software development 9

2.2.3.1.

2.2.3.2.

2.2.3.3.

Feature correlation design 9

Front view image processing program (FVIPP) 12

Side view image processing program (SVIPP) 15

CHAPTER 3. AN INTRODUCTION TO SYSTEM-ON-A-PROGRAMMABLE-CHIP (SOPC)

TECHNOLOGY16

3.1 SOPC history 16

3.1.1 SOC design 16

3.1.2 ASIC/SOC versus FPGAISOPC 17

3.1.2.1. Integration 17

An SOPC Based Image Processing System Contents

3.1.2.2.

3.1.2.3.

3.1.2.4.

3.1.2.5.

3.1.2.6.

3.1.2.7.

3.1.2.8.

Flexibility 18

Performance 18

Power dissipation 19

Design flow 19

Time-to-market 19

Costs 19

Conclusion 20

3.2 SOPC architecture 21

3.3 SOPC design flow 22

3.3.1 Design specification 23

3.3.2 Hardware (HW) / Software (SW) partition 23

3.3.3 Design entry 24

3.3.4 Simulations 25

3.3.5 Synthesis 25

3.3.6 Place & route 25

3.3.7 Download & verify in circuit 25

3.3.8 Software development 26

3.3.9 Software compilation 26

3.4 Real time image processing system based on SOPC 26

3.4.1 On-chip vs. off-chip 27

3.4.2 Hard logic fabric vs soft logic fabric 28

3.4.3 Hardware vs software 29

3.5 Common SOPC Processor overview 30

3.5.1 Soft processor 30

3.5.1.1. Nios 30

3.5.1.2.

3.5.1.3.

3.5.1.4.

Microblaze 31

OpenRISC 31

Leon 31

3.5.2 Hard processor 32

3.5.2.1. Excalibur 32

3.5.2.2. Virtex™-II Pro 32

3.5.2.3. PSoC 33

3.5.2.4. FPSLIC 33

3.6 Introduction to the Nios processor system and development tools 34

3.6.1 Nios system architecture 34

3.6.2 Avalon bus module 35

3.6.2.1.

September 2007

Avalon master/slave peripherals 35

Fan Wu v

An SOPC Based Image Processing System Contents

3.6.2.2. Avalon master/slave ports 36

3.6.3 Avalon bus transfers 38

3.6.3.1. Avalon slave transfers 39

3.6.3.2. Avalon master transfers 42

3.6.4 Development tools overview 43

3.6.4.1. Quartus II software 43

3.6.4.2. SOPC Builder 44

3.6.4.3. ModelSim 46

3.6.4.4.

3.6.4.5.
Programming tool 46

Software download tool 46

3.6.5 Proposed image processing system with the Nios processor system architecture .47

CHAPTER 4. THE NIOS INTEGRATED REAL-TIME IMAGE PROCESSING SYSTEM -

HARDWARE 48

4.1 Overview of the system hardware architecture 48

4.2 Video display device & interface 50

4.2.1 CRT monitor 50

4.2.2 Lancelot VGA board 50

4.2.3 VGA connector 51

4.3 Video memory device & interface 51

4.4 Video capture device& interface 52

4.4.1 CameraLink camera 52

4.4.2 Camera interface card (custom designed) 53

4.5 Altera's Apex device 56

4.6 Nios development board 57

4.7 Summary 58

CHAPTER 5. THE NIOS INTEGRATED REAL-TIME IMAGE PROCESSING SYSTEM _

SOFT SYSTEM CORE 61

5.1 Overview of the system core architecture 61

5.2 Video memory controller 64

5.2.1 Main features 64

5.2.2 Description of the video memory controller 64

5.2.2.1. Avalon interface 68

September 2007 Fan Wu vi

An SOPC Based Image Processing System Contents

5.2.2.2.

5.2.2.3.

SDRAMcontroller 71

SDRAMdata path 79

5.2.3 Summary 80

5.3 Video display controller 81

5.3.1 Main features 82

5.3.2 Video graphic arrays (VGA) 82

5.3.3 Description of the video display controller 82

5.3.3.1. Avalon interface 85

5.3.3.2. VGA driver 87

5.3.4 Summary 93

5.4 Video capture controller 94

5.4.1 Main features 94

5.4.2 CameraLink 94

5.4.3 Description of the video capture controller 96

5.4.3.1. Avalon interface 98

5.4.3.2. Video receiver l 01

5.4.4 Camera serial controller (UART) 103

5.4.5 Summary 104

5.5 Cache 105

5.5.1 Main features 105

5.5.2 Overview of the Cache 105

5.5.3 Description of the Cache 107

5.5.4 Summary 111

5.6 System clock generator 114

5.6.1 Dataclock 115

5.6.2 System clock 116

5.6.3 Video display cJock 116

5.6.4 Video capture clock 117

5.6.5 Discussions 117

5.7 Explanation of some design issues 118

5.7.1 Multiple-bank operation 118

5.7.1.1. Triple-bank operation 118

5.7.1.2. Quad-bank operation 119

5.7.2 Double line buffer in the video display& capture controlIer 120

5.7.3 Synchronisation of multiple clock domains 121

5.7.4 Other issues 122

September 2007 FanWu vii

An SOPC Based Image Processing System Contents

CHAPTER 6. SIMULTANEOUS MULTI-MASTERING AVALON STREAMING TRANSFER

WITH PERIPHERAL-CONTROLLED WAITREQUEST 123

6.1 Synchronisation of DMA controllers solution 123

6.2 Avalon bus arbitration 126

6.3 Implementation of simultaneous multi-mastering streaming Avalon transfer with peripheral-

controlled waitrequest 130

6.4 Another solution 135

CHAPTER 7. SYSTEM CORE GENERATION, SYNTHESIS & IMPLEMENTATION 136

7.1 System core generation 136

7.1.1 PTFfiles 136

7.1.2 System generation 137

7.2 System core synthesis 140

7.2.1 System core synthesis 141

7.2.2 Synthesis results & discussions 143

CHAPTER 8. SYSTEM TESTS, IMAGE PROCESSING ALGORITHM IMPLEMENTATION

& PERFORMANCE ANALYSIS 146

8.1 System tests 146

8.1.1 Simulations 146

8.1.1.1. Video memory controller simulation results & discussions 147

8.1.1.2.

8.1.1.3.

Video display controller simulation results and discussions 153

Cache simulation results and discussions 153

8.1.1.4. Video capture controller simulation results and discussions 154

8.1.1.5. Full system simulations results and discussions 162

8.1.2 Hardware verifications 164

8.1.2.1.

8.1.2.2.

8.1.2.3.

8.1.2.4.

8.1.2.5.

8.1.2.6.

Video memory test 164

Video display test 167

Cache test 170

SMMAST -PCW test •.. 173

Video capture test 174

Full system test 176

8.2 Implementation of various image processing algorithms and real-time performance analysis 179

8.2.1 General software development 179

8.2.1.1. Setting up video display & capture 179

September 2007 FanWu viii

An SOPC Based Image Processing System Contents

8.2.1.2.

8.2.1.3.

8.2.1.4.

Implementing multiple bank operation & interrupt services 179

Memory read/write operations 181

Timer function 181

8.2.2 Discussion of software coding style - optimisation issue 181

8.2.3 System performance analysis 184

8.2.4 Implementation of five image processing algorithms and performance anaIysis 184

8.2.4.1.

8.2.4.2.

8.2.4.3.

8.2.4.4.

8.2.4.5.

Inversion 184

Sobel edge detector 186

Gaussian blur filter (a low pass filter) 190

Sharpness filter - (a high pass filter) 193

Feature correlation 195

8.3 Summary 197

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 198

9.1 Conclusions 198

9.2 Future work 200

9.2.1 Optimisation/improvements 200

9.2.1.1. Later generation FPGA 201

9.2.1.2. FPGA Hardware processing 201

9.2.2 Application 201

REFERENCES 203

APPENDIXES 212

Appendix A Schematics 212

Appendix B Camera interface card PCB details 215

Appendix C Pin assignments for video components 216

Appendix D Truth table for the operation commands of SDRAM 219

Appendix E Register maps 220

Appendix F PTF Files - An example ofCache 224

September 2007 Fan Wu ix

An sope Based Image Processing System List of Figures

List of Figures
Figure 2-1 Common steps in real-time image processing system 6

Figure 2-2 Closed loop weld process control (From [3]) 7

Figure 2-3 Real time image capture and analysis (From [3]) 8

Figure 2-4 Image edge feature correlation (From [3]) 10

Figure 2-5 Front view measured Items 12

Figure 2-6 Front view image processing program ' 13

Figure 2-7 Configuration mode 14

Figure 2-8 Calibration mode 14

Figure 2-9 Side view image processing program 15

Figure 3-1 Apex 20K device block diagram (From [27]) 18

Figure 3-2 NRE cost of developing ASICs 20

Figure 3-3 Overall SOPC design flow 23

Figure 3-4 System module integrated with user logic into an Altera PLD (From [35])34

Figure 3-5 Avalon bus module block diagram - an example system (From [35]) 35

Figure 3-6 Fundamental slave read transfer (From [35]) 39

Figure 3-7 Fundamental slave write transfer (From [35]) .40

Figure 3-8 Slave read transfer with peripheral-controlled waitrequest (From [35]) .40

Figure 3-9 Slave write transfer with peripheral-controlled waitrequest (From [35]) .41

Figure 3-10 Streaming slave read transfer (From [35]) 42

Figure 3-11 Streaming slave write transfer (From [35]) 42

Figure 3-12 Fundamental master read transfer (From [35]) .43

Figure 3-13 Fundamental master write transfer (From [35]) .43

Figure 3-14 Streaming master RIW transfer (From [35]) .43

Figure 3-15 SOPC Builder system contents page (From [55]) .45

Figure 3-16 SOPC Builder (From [42]) 46

Figure 4-1 Block diagram of the hardware architecture of SIPS .48

Figure 4-2 The Nios integrated real-time image processing system 49

Figure 4-3 Lancelot VGA board 50

Figure 4-4 VGA connector 51

Figure 4-5 Toshiba SDRAM SODIMM THLY 6480HIFG-80 51

Figure 4-6 COHU 7800 series 1280xl024 CMOS progressive scan camera 53

Figure 4-7 Camera interface card 53

September 2007 Fan Wu x

An sope Based Image Processing System List of Figures

Figure 4-8 Block diagram of the camera interface card 54

Figure 4-9 MDR connector (from [63]) 55

Figure 4-10 Nios development board (From: [58]) 58

Figure 5-1 Top level block diagram of SIPS core 63

Figure 5-2 Block diagram of the video memory controller 65

Figure 5-3 ASM chart of the Avalon streaming slave transfer 70

Figure 5-4 Block diagram of the SDRAM controller 71

Figure 5-5 Mode Register Set cycle (From [62]) 73

Figure 5-6 Page Mode Read/Write (Burst Length = 8, CAS Latency = 3) (From [62])76

Figure 5-7 Timing chart for Burst Stop cycle (From [62]) 77

Figure 5-8 Auto Refresh cycle (From [62]) 78

Figure 5-9 Block diagram of the video display controller. 83

Figure 5-10 ASM chart of the Avalon streaming master read transfer 88

Figure 5-11 Block diagram of the VGA driver 89

Figure 5-12 640x480 VGA horizontal timing (From [73]) 90

Figure 5-13 640x480 VGA vertical timing (From [73]) 91

Figure 5-14 Channel Link operation (From [60]) 95

Figure 5-15 Block diagram of the video capture controller 96

Figure 5-16 ASM chart of the Avalon streaming master write transfer 100

Figure 5-17 Block diagram of the video receiver 102

Figure 5-18 Camera timing (From [63]) 103

Figure 5-19 Cache mapping to the main memory 106

Figure 5-20 Cache structure (From [83]) 107

Figure 5-21 Block diagram of the Cache l08

Figure 5-22 Schematic drawing of the Cache structure I13

Figure 5-23 Cache read handle ASM chart 114

Figure 5-24 Dedicated global clock pin connections to PLL & dedicated clock lines for

EP20K30E, EP20K60E, EP20KI00E, EP20K160E & EP20K200E devices (from [84])

.. 115

Figure 5-25 Clock circuitry (From [58]) 117

Figure 5-26 Triple-bank operation 119

Figure 5-27 Quad-bank operation 119

Figure 5-28 Metastable output propagating invalid data throughout the design (from

[86]) 121

September 2007 FanWu xi

An sope Based Image Processing System List of Figures

Figure 5-29 Two flip-flop synchroniser (from [86]) 122

Figure 6-1 Triple-ported video memory slave 123

Figure 6-2 Nios DMA peripheral with master & slave ports (From [88]) 124

Figure 6-3 lIO to memory DMA controller - Excalibur (From [73]) 124

Figure 6-4 Interface synchronisation (From [74]) 125

Figure 6-5 Centralised, parallel arbitration bus architecture 127

Figure 6-6 Simultaneous multi-mastering Avalon bus arbitration 128

Figure 6-7 Successive fundamental read transfers to a common slave (From [90]) 128

Figure 6-8 An arbitration view during conflict between two streaming masters 130

Figure 6-9 Master peripheral and slave peripheral with streaming control feature 131

Figure 6-10 Block diagram of simultaneous multi-mastering image processing system

.. 132

Figure 6-11 ASM chart of streaming control master 132

Figure 6-12 An example timing diagram of simultaneous multi-mastering Avalon

streaming transfer with peripheral-controlled waitrequest 133

Figure 6-13 Multi-ported memory slave solution 135

Figure 7-1 Custom defined library components 138

Figure 7-2 Top-level system view in SOPC Builder 139

Figure 7-3 System generation results 140

Figure 7-4 Top system module view 141

Figure 7-5 Block diagram of the SIPS core 142

Figure 8-1 SIPS simulation scheme 147

Figure 8-2 Video memory controller simulation result - burst write (BL = 1) 149

Figure 8-3 Video memory controller simulation result - burst write (BL = 80) 150

Figure 8-4 Video memory controller simulation result - burst read (BL =1) 151

Figure 8-5 Video memory controller simulation result - burst read (BL = 80) 152

Figure 8-6 Video display controller simulation result 1 155

Figure 8-7 Video display controller simulation result 2 156

Figure 8-8 Cache simulation result - Cache write 157

Figure 8-9 Cache simulation result - Cache miss (BL= 1) 158

Figure 8-10 Cache simulation result - Cache hit. 159

Figure 8-11 video capture controller simulation result 1 160

Figure 8-12 video capture controller simulation result 2 161

Figure 8-13 Full system simulation result 163

September 2007 FanWu xii

An sope Based Image Processing System List of Figures

Figure 8-14 Video memory test scheme 165

Figure 8-15 Video display test scheme 167

Figure 8-16 Cache test scheme 171

Figure 8-17 Cache hit/miss operation waveform in SignalTap 11 172

Figure 8-18 SMMAST -PCW test scheme 173

Figure 8-19 simultaneously multi-mastering operation waveform in SignalTap II 174

Figure 8-20 Video capture test scheme 174

Figure 8-21 system view of the video capture test without a camera 175

Figure 8-22 video capture test result 176

Figure 8-23 Test image - camera interface card (original) 177

Figure 8-24 Test image - mugs and jug (original) 177

Figure 8-25 An example of the testing background 178

Figure 8-26 Inversion image - camera interface card 185

Figure 8-27 Inversion image - mugs and jug 185

Figure 8-28 Sobel edge detector image - camera interface card (threshold=60) 187

Figure 8-29 Sobel edge detector image - mugs and jug (threshold=60) 187

Figure 8-30 Sobel convolution kernels 187

Figure 8-31 Gaussian blur filter image - camera interface card (mask size 7x7) 190

Figure 8-32 Gaussian blur filter image - mugs and jug (mask size 7x7) 190

Figure 8-33 Gaussian filters coefficients (from [104]) 191

Figure 8-34 Sharpness filter image -camera interface card 193

Figure 8-35 Sharpness filter image -camera interface card 193

Figure 8-36 Feature correlation image (measured on pool edges & wire edges) 195

September 2007 Fan Wu xiii

An sope Based Image Processing System List of Tables

List of Tables
Table 2-1 Measurements of the front view image processing program 12

Table 3-1 World SOC Market, 2003, 2004, 2009 and AAGR ('04-'09) 17

Table 3-2 Avalon slave port signals 37

Table 3-3 Avalon master port signals 38

Table 4-1 Device table 49

Table 4-2 VOA connector pin assignment 51

Table 4-3 COHU 7800 series camera specifications 52

Table 4-4 COHU 7800 CameraLink cable pin assignments 55

Table 4-5 Apex 20K200E device features (From [27]) 57

Table 5-1 Video memory controller top level signals 66

Table 5-2 Internal signals of the video memory controller 68

Table 5-3 SDRAM address mapping 69

Table 5-4 Mode register set command 72

Table 5-5 Streaming read command 74

Table 5-6 Streaming write command 75

Table 5-7 Auto refresh command 77

Table 5-8 Description of the word mask 80

Table 5-9 Video display controller top level signals 83

Table 5-10 Internal signals of the video display controller 85

Table 5-11 Pixel assignment in 8-bit monochrome mode for video display 86

Table 5-12 Pixel assignment in 24-bit ROB mode for video display 86

Table 5-13 640x480 VGA horizontal timing 90

Table 5-14 640x480 VGA vertical timing 91

Table 5-15 Alternating operations of the double line buffer 92

Table 5-16 CameraL ink signals 95

Table 5-17 Video capture controller top level signals 96

Table 5-18 Internal signals of the video capture controller 98

Table 5-19 Pixel assignment in 8-bit monochrome mode for video capture 99

Table 5-20 Pixel assignment in 24-bit ROB mode for video capture 99

Table 5-21 Cache top level signals 108

Table 7-1 Synthesis result in 8-bit mode 143

Table 7-2 Estimated performance on various FPGAs 145

September 2007 Fan Wu xiv

An sope Based Image Processing System List of Tables

Table 8-1 Full simulation data input sets 162

Table 8-2 Estimated full simulation data output sets 164

Table 8-3 Video memory test scheme 165

Table 8-4 Walking 1's test 166

Table 8-5 Increment test 167

Table 8-6 Video display test scheme 168

Table 8-7 Video display margin test in 24-bit mode 169

Table 8-8 Video display margin test in 8-bit mode 169

Table 8-9 Cache test scheme 171

Table 8-10 Video capture test scheme 175

Table 8-11 Inversion processing power analysis - without optimisation 186

Table 8-12 Inversion processing power analysis - with optimisation 186

Table 8-13 Pixel alignments in 8-bit grey level mode 188

Table 8-14 Sobel edge detector processing power analysis 189

Table 8-15 Gaussian blur filter processing power analysis 192

Table 8-16 Sharpness filter convolution kemel 194

Table 8-17 Sharpness filter processing power analysis 194

Table 8-18 Feature correlation processing power analysis 197

Table 9-1 SIPS performance summary 199

September 2007 FanWu xv

An SOPC Based Image Processing System Chapter I Introduction

Chapter 1. Introduction

1.1 Motivation and objectives

Real time vision systems have been widely used in security, quality control and

automatic handling etc. Conventional vision systems can be classified into two

different types of architecture [1].

One is a board type device for a host computer (i.e. personal computer PC). Every

function module can be implemented as a separate board with a computer expansion

interface, for example a video acquisition card and graphic card. J.Kang and R.

Doraiswami developed such a system with an add-on universal serial bus (USB)

interface board to allow the PC to capture video from an external web-cam for

endoscopic applications [2]. C. Balford, J. S. Smith and S. Amin-Nejad present a

vision-based closed loop control system for weld application where a PC associated

with a video capture card and a graphic card was used to perform real-time video

acquisition, image analysis and display [3]. Although some systems use hardware

accelerated approaches, for example, by incorporating an array of processing elements

(or computing elements) built from Application Specific Integrated Circuits (ASICs) or

Field Programmable Gate Arrays (FPGAs) into a video acceleration board with the

ability of providing parallel processing to handle some or all of the complex image

processing tasks, such as systems using a Splash 2 board [4], other applications for

discrete-time cellular neural network (DTCNN) use a highly parallel integrated circuits

(HiPIC) add-on board [5]. Generally most computer based vision systems use the

software approach - by using the generic Central Processing Unit (CPU) to perform all

image processing tasks for cost reasons. With the rapid increase of the speed and

functionality of the generic processors, like Intel processors, the software approach

now offers more processing power to handle more complex image processing tasks in

real-time. These PC based vision systems can offer distinct performance and

expandable functionality, however, they are not ideal for compact vision systems

because a host computer is required to connect and control all peripherals.

Another type of vision systems are embedded systems which consist of one or more

microprocessors to control the whole system and perform image processing tasks.

September 2007 Fan Wu

An SOPC Based Image Processing System Chapter I Introduction

These microprocessors could be general purpose microprocessors (e.g. Motorola 68030)

or digital signal processing (DSP) microprocessors (e.g. TI 320 series) [6]. This type of

architecture allows the whole system to be built into a single standalone device. For

example, a vision-based target tracking system was developed for an embedded

application of surveillance with a drone by using two-processor including a

microprocessor for camera control and a DSP processor for implementing the block

matching algorithm [7]. Another example is a mobile mini robot with embedded

CMOS vision system designed for an indoor soccer game scenario, image processing

algorithms including feature extraction and object classification are performed by a PIC

microcontroller [8]. However, the significant increase of hardware complexity results

in a much less significant speed-up for microprocessors. Therefore in the future, further

development of the complex superscalar processors is unlikely [9]. Besides the

performance issue, the lack of flexibility and optimisation, and complexities of

firmware coding on some particular microprocessors [10] are other issues that system

developers may encounter. In fact the obsolescence of microprocessors has been a

major concern for many companies with regards of the difficulties of further

development and upgrades [11].

Recent advances in semiconductor technology have made it possible to integrate the

entire embedded/computer system including processors, memory and other system

units into a single programmable chip - FPGA, and this technology is called "System-

on-a-Programmable-Chip" (SOpe) [12]. This solution therefore offers an alternative

architecture to implement the standalone vision system. In fact, as the rapid increase of

FPGA density (about 10 times in two years [9]) has already made it expand quicker

than microprocessors, taking into account the silicon area and throughput, the FPGAs

significantly outperform microprocessor [13], and in the future the performance gap

will further increase.

Due to the reconfigurable ability and compact nature, SOPC offers high performance

and flexibility with low risks. sope designs can be very easy migrated into different

kinds of FPGAs to provide various performances without worrying problems such as

the changes of the system architecture, because all components can be implemented as

a separate non-device specific soft Intellectual Properties (lP) core including the

processors. This is a feature that conventional microprocessor systems can't easily

September 2007 Fan Wu 2

An SOPC Based Image Processing System Chapter I Introduction

fulfill. By using the soft processor core such as Nios processor from Altera and

Microblaze from Xilinx [14], the system architecture is configurable allowing a trade-

off between performance and area by changing the architecture [15]. Designs can be

customised and further optimised to suit different system platforms by changing Cache

size and type, optimising processor instructions and so on. Furthermore, the SOPCs

have other advantages like low cost and short development time [16].

One processor intensive application which is ideal for SOPC technology is that of

image processing where there is a repeated application of operations on the two-

dimensional (20) data. Therefore, the objectives of this research were to investigate the

use of SOPC technology in building a real time image processing system with the

capability of performing video acquisition, display and processing. To achieve this

requires solutions to problems that would occur under this new system architecture like

the multi-mastering burst transfers. This system is named "an SOPC based image

processing system" (SIPS) as it aims at implementing general image processing, whilst

further development into a complete computer vision system, for various applications,

can be achieved by integrating more system controllers.

This research was motivated from an existing PC based vision system for welding

application [3]. One of the improvements for this system was to provide a complete

computer vision-based sensor capable of delivering the required measurements on

demand without the use of a host computer, so that it allows easier integration of the

vision sensing system with commercial welding process controllers.

1.2 Overview

This thesis is organised as nine chapters and a brief introduction for each chapter is

now given as follows:

Chapter Two firstly gives some explanations of fundamental concepts regarding image

processing and computer vision. Then an overview of the conventional PC based vision

system used for welding applications is presented. The software implementation detail

of the specific image processing algorithm called 'feature correlation' is presented.

September 2007 FanWu 3

An SOPC Based Image Processing System Chapter I Introduction

Chapter Three gives a general introduction to the SOPC technology in terms of its

development history, architecture and design flow. Concerns are given specifically for

applying SOPC technology in constructing an image processing system. Following

that, a brief overview of commonly used processors in SOPC design is given. Finally

this chapter gives the background information of the system architecture, bus protocol

and development tools that SIPS used.

Chapter Four starts to describe SIPS from the hardware side. All hardware components

including the custom fabricated units are introduced, and the reasons for their choices

are also presented.

Chapter Five continues to describe SIPS but mainly focus on explaining the SOPC

design. All video IP architectures are described in detail; some typical design issues

regarding the implementation details are also discussed.

Chapter Six explains a novel solution to a multi-mastering problem. A classic approach

is given before explaining the solution used in SIPS. Finally an alternative method is

also introduced.

Chapter Seven describes how the whole system is generated, synthesised and

implemented on the actual hardware. Generation and synthesis results are given as well

as discussions.

Chapter Eight describes system test details and discusses the results. The system tests

include system level simulation and hardware verification. This chapter also presents

the software implementation details. Several image processing algorithms are given as

examples and a performance analysis is presented for each of them to help better

understanding the performance of SIPS.

Chapter Nine presents a conclusion to this system and indicates the potential areas for

future work.

September 2007 Fan Wu 4

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

Chapter 2. Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

This chapter consists of two sections. The first section explains some fundamental

disciplines involved in developing the SIPS. The second section presents a PC based

vision system for a welding application. The feature correlation algorithm applied in

processing the weld images is described.

2.1 Computer vision & image processing

Vision allows humans to perceive and understand the world surrounding them. With

the development of modem electronics, the effect of human vision can be imitated by

electronically perceiving images and understanding their contents with modem

computers and this, as a science, is called computer vision. It is concerned with

extracting information about a scene by analysing images of that scene [17]. This scene

could be two-dimensional or three-dimensional (3D) depending on the practical

applications. As a technological discipline, computer vision seeks to apply the theories

and models of computer vision to the construction of computer vision systems.

Examples of applications of computer vision systems include systems for controlling

processes (e.g. an industrial robot or an autonomous vehicle), detecting events (e.g. for

visual surveillance), organising information (e.g. for indexing databases of images and

image sequences), modeling objects or environments (e.g. industrial inspection,

medical image analysis or topographical modeling) and interaction (e.g. as the input to

a device for computer-human interaction) etc.

Computer vision is now recognised as an interdisciplinary research field that is chiefly

dependant on image processing but also spans processor design, graphical and

communication techniques, control, information handling and computer aided design

processes. The typical tasks of computer vision systems are recognition, motion

detection, scene reconstruction and image restoration etc. It is very often the case that

the general goal of a computer vision system is to recognise objects of various types

that may be presented in the scene.

Machine vision (MV) is the application of computer visron to industry and

September 2007 fan Wu 5

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview ofan PC Based Vision System for Welding

manufacturing. Whereas computer vision is mainly focused on machine-based image

processing, machine vision often requires digital input/output devices and computer

networks to control other manufacturing equipment such as robotic arms. Machine

vision is a subfield of engineering that encompasses computer science, optics,

mechanical engineering, and industrial automation.

Image processing is the collation of spatially arranged intensity data, forming an image,

which is processed to extract information about the scene [18]. The input of image

processing is an image such as a frame of video, while the output could be an image or

a set of features of the image. Image processing is rather independent of an application

domain. However, it plays an essential role in computer vision systems such as a vision

based robot control system because a robust image processing algorithm is required.

Because of this, a real-time image processing system is often required to be set up to

verify specific image processing algorithms and estimate its performance in a real-time

manner before being applied into a complete (computer) vision system to perform

particular vision task. The real time goal is to process all the required data in a given

time interval before the next image is ready for processing. To estimate the

performance of a real-time image processing system it is required to analyse how much

data it can handle in real time. Such a system generally provides three main functions

which are video acquisition, processing and output (see Figure 2-1), and the video data

transfer in this system is one way. The video data can be acquired by an

analogue/digital camera or a video recording device. As described in Chapter 1, the

image processing can be performed by using general processors such as CPU, general

purpose microprocessor, DSP processor, synthesised processor running on a FPGA, or

processing elements built into FPGAs or ASICs. The video output generally refers to

video display on monitors which gives a visual indication of the image processing

results. Furthermore, a data storage function is normally required to buffer the data

output from each level before being sent to the next due to the existence of speed

differences between each function module.

Figure 2-1 Common steps in real-time image processing system

September 2007 Fan Wu 6

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

The next section gives an example of how image processing is integrated into a vision-

based system for automated welding.

2.2 Vision-based closed loop process control system for welding

The vision-based closed loop process control system was designed to improve the weld

quality. In this system, image analysis and processing are applied to the images

captured by the camera for supplying real-time measurements on the weld, in order to

provide additional information to the process operator [3]. The description of this

system, in the next several sections, focuses on the image acquisition and processing

parts as the author has been involved in developing the image processing software, and

more importantly its application to the research described in this thesis. More details

regarding the post processing and how the whole system functions can be obtained in

[3].

2.2.1 General description

Figure 2-2 illustrates a simplified diagram of the closed loop weld process control

system.

Target Pool
Width

Width

Welding 1-.---------..Hardware

Camera

Figure 2-2 Closed loop weld process control (From [3])

The real-time molten pool width is one of the measurements extracted by this vision

based system. As seen from the figure, this system aims to extract the real-time

measured pool width from analysing the live welding images captured from the camera

and compares the measured result with the target pool width supplied into the image

processing software. If a difference exists then an error is generated, the process control

algorithm generates adjustments based on this error to modify the behaviour of the

welding process such as changing the current via the welding hardware interface. This

September 2007 Fan Wu 7

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing. Computer Vision &

Overview of an PC Based Vision System for Welding

process is then repeated when the next measurement is available from the Image-

processing software thereby controlling or regulating the welding characteristics.

In this vision ..based system, the image processing has been specified for welding

applications and integrated with the welding control software. Apart from the process

control, one of the key features of this system is to process the weld images captured

from the camera in real time. This process is undertaken by running image processing

software programs in a standard PC.

2.2.2 Image capture and processing

The basic layout of the weld image capture and analysis system is shown in Figure 2-3.
Computerr---------------------------.

•• Visual c++ Software
Camera I r-----------,

• Digitised.
VideO Signal' Image Capture Image I Analyse Captured

Hardware I Frame

I
I

•I
I
I
I
I
I

•~ .J

L ~

Figure 2-3 Real time image capture and analysis (From [3])

The analogue composite video signal is captured from two commercial CCD cameras

and then fed into a Pentium class PC running Microsoft Windows 2000 for analysing

and processing the weld images via the image capture hardware interfaces. These

interfaces include a Picolo [19] capture board for the front view image processing

program (FVIPP) [20] and a 'WinTV' [21] card for the side view image processing

program (SVIPP). The FVIPP and SVIPP were written in Microsoft Visual C++. They

supply separate measurements and are used together to provide a comprehensive

analysis on the weld images from different views. The FVIPP used the Picolo device

driver to access the digitised images or video from the Picolo board while the SVIPP

used the standard 'Video for Windows' (VFW) interface [22]. In order to provide a

visual indication of the operation of the image processing software, the modified video

with the key features highlighted are displayed on a standard PC monitor along with

September 2007 Fan Wu 8

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

the relevant measured results. Following this, the final phase of the image analysis

process is to provide the relevant image measurements to the welding control system

software VEE, which has been designed to run concurrently with the image processing

programs in the same computer. They run as different threads and communicate with

each other through pipes [23]. Such a measurement will allow a controller, as and when

required, to modify the welding process parameters in order to regulate or maintain a

desired set of weld characteristics.

The image processing system is capable of working in real-time at the frame rate of the

video capture device, provided that the associated processing algorithm can be

executed during the time between the capture of successive pictures or 'frames'. This

time is typically 40ms for the standard 25Hz interlaced CCD camera system that has

been used.

A Control Area Network (CAN) [24] interface has been developed and integrated into

the VEE software. This allows alteration of the welding process parameters at speeds

of up to 25Hz via a distributed network of embedded controllers.

2.2.3 Weld image-processing software development

The general requirement of the image processing algorithm is to identify target edges

such as the left and right edges of the molten weld pool or the weld wire, so that a

corresponding width measurement can be achieved and made use in real-time with the

feedback control system. A feature correlation algorithm was developed to implement

these edge detections.

2.2.3.1. Feature correlation design

The basic idea of this algorithm is firstly to extract some sample image features such as

the weld pool edge features (Lra and R« in Figure 2-4) in the calibration stage.

September 2007 Fan Wu 9

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

Horizontal Image Imensityl.ine. 'lin.: C
·Ii""

[I I I I I I I I I I I I I I t <J I I I I I I I I I I I i
Intensity

Comparison
1 LsL.LI_.[] ~n &Jgc Fcalllr.: Array Lf:,

fMU1Ch
Error

Move edge array
by 110 next
Position

.; Intensity
. Comparison

c
.:2 5:: I Rs
]:~L..LI ..LJ
C e:: . IMateh.1 Error

C''mlr

Move edge army
hy I to next
Po~ilitln

Right Edge Feature ArrJY R1-l

I I I I I I
Match Error Array. Ea

Figure 2-4 Image edge feature correlation (From [3])

Then copy a horizontal (liine) or vertical line at the specified calibration position from a

live captured frame, use these typical edge feature intensities to compare with specific

positions at that line along the array of weld image pixel intensities, and then use the

comparison results to generate a match error array (Ea). The equation of calculating the

match error array for the left edge feature is given in Equation 2-1.
L..

Ea[i]= LIL/Ax]-I,ine[x+(i-l)]1 for l~i~(C'ine -Ls) (Equation 2-1)
x=l

Where Eo is the error array at position or index i, CII,. is the captured line calibration

position and L, is the left feature array size. The right feature error array can be

calculated by a similar manner.

Once the error array is calculated, by searching where the minimum error is in the error

array the position of highest association with the edge features can be obtained as

shown in Equation 2-2.

LmaJch_min +--min{Ea[i]II s i s (Cerror- La)} (Equation 2-2)

Where LlflQlch mill is the minimum left feature correlation error.

The position of the minimum left feature match error i_"_1 is then recorded as shown in

Equation 2-3.

(Equation 2-3)

The location of the best match for the centre of the left edge feature match LlftQ/ch_ce"". is

given in Equation 2-4

(Equation 2-4)

September 2007 FanWu 10

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing. Computer Vision &

Overview of an PC Based Vision System for Welding

Following the same method the best match for the centre of the right edge feature

RmalChcentreCan be located by using Equation 2-5.

(Equation 2-5)

Finally the weld pool width PWpix in pixels can be achieved by using Equation 2-6.

PW pix = imin_ r - imin_' (Equation 2-6)

This value will then be translated into a measurement in mm for use with the weld

software by taking into account the resolution of the image capture system and the field

of view of the weld imaging optics.

This algorithm was originally developed by C. Balfour, J. S. Smith and S. Amin-Nejad.

The calculations listed above are taken from [3]. By applying this algorithm into

different welding situations, a sequence of measurements and the welding status can be

obtained. The next two sections describe the two programs with the feature correlation

algorithm applied to achieve the measurements.

September 2007 Fan Wu 11

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview ofan PC Based Vision System for Welding

2.2.3.2. Front view image processing program (FVIPP)

The main objectives of the front view image processing algorithm is to drive the Picolo

board to capture live video into PC memory, and use the feature correlation algorithm

to identify the left and right molten weld pool edge, weld wire edges and wire end

edges, so that a measurement of the weld pool width, wire width and wire end width

can be made in real-time for use with the feedback control system (see Figure 2-5).

Furthermore, determination of the welding status such as blobbing or stubbing is also

one of the requirements. The final task this program required to perform is to create a

pipe so that all of these measurements can be transmitted to the weld control software

and commands from the control software can be sent to the FVIPP like starting and

stopping the image processing program.

Figure 2-5 Front view measured Items

Table 2-1 lists the measurements that the FVIPP calculates.

Table 2-1 Measurements of the front view image processing program

Measured item Description

Pool Width Irhe measured width of the welding pool (in pixels)

Wire Width Irhe measured width of the wire (in pixels)

Wire End Width The measured width of the end of the wire (in pixels)

Blobbing Flag Blobbing flag, indicates whether the end of the wire is blobbing

Stubbing Flag Stubbing flag, indicates whether the wire is stubbing

September 2007 Fan Wu 12

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

Figure 2-6 shows two running views of the FVIPP with the measured results displayed.

Blobbing and stubbing are recorded in these two figures.

..::.lIlJ~~~ defeult.fxt - Image Processing For front ...:.. templdte1.txt - Image ProcessIng For fr

50

o
Pool Edge Width = 161. (Pixels)
Wire Width = 25. (Pixels)
Wire End Width = 32. (Pixels)
Processed time = 23. (ms)
Distance of PoolCenter to WlreEnflCenter - J5. [Pbce ls]
Blobbing = 10. II

FE [vj Wire FE [vj IWire End FE [V)

Pool Edge Width = 114. (Pixels)
Wire Width = 228. (Pixels)
Wire End Width = 229. (Pixels)
Processed time = 18. (ms)
Otstance of PoolCenler 10Wire[ndCenler - 102. (Pixels)
Blobbing = 10. I

FE [V) Wire FE [vi Wire End FE [V)

Figure 2-6 Front view image processing program

The rules used to define blobbing and stubbing are explained as follows.

Blobbing rule: within a specified time period (m readings), if there are more than n

samples (n readings) whilst the difference between the wire end width and wire width

is greater than the pre-defined threshold, then it is a blobbing. The left picture of Figure

2-6 shows an occurrence of blobbing.

Stubbing rule: within a specified time period (m readings), if there are more than n

samples (n readings) whilst the amplitude of the wire center is greater than the pre-

defined threshold, then it is a stubbing. The right picture of Figure 2-6 shows an

occurrence of stubbing.

September 2007 Fan Wu 13

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

All settings for determining the blobbing and stubbing as well as the other parameters

for use with this program can be specified in the configuration stage (see Figure 2-7),
Weld Pool Parameters ¢i

w Detect stubbing

General Conlrol-

P' Detect pool wiclh

P' Detect wife position

P' Deleel blobling

~ Deled wife end position

Def.ull~OII File

~~-------------------
Directory: ldefault.t:'!!

Use Current I Use Defaul I
~=----'

Pool Parameters

No. of Tracking Lines (1-20)

r-Pi,els,')

~
,- Line, I')r- Pixels")

Pool Edge Feehse Holf Arr." Size(5-6O)

Line Spacing (3"'8)

\Vie Parameters

W"e Edge Feenae HoIl Array Size (1"'30) rs--- Pi,.1s (')

MaXirrum Wire Detect Rang. (70-120) r- Pixels (,)

BlobblOQ Pa'Mleters

BlobbingThreshold(l-lO) r-- Pi,.ls

Blobbing,amples(1-20) r- Pasl,am~es(1O-6O) r-
Stubbing Parameters

Slubbng Thre,hoId (1-10) r- Pixel, I
Blobbing semoles (1"'20) r- Pasl ,ample'110-6O) r-

~ Calibraton required

OK Cancel I Defauls

Figure 2-7 Configuration mode

In calibration mode, the user can move the pointer on the screen to where the centre of

the feature array is (see Figure 2-8), Information is prompted at different stages while

calibrating, If multiple tracking lines are enabled in the configuration setting, then once

a feature array is positioned, the other arrays for the same feature can be automatically

located on the other lines in parallel by using the Sobel operator.
~:...defeult.txt - Image Processing

Figure 2-8 Calibration mode

September 2007 Fan Wu 14

An SOPC Based Image Processing System Chapter 2 Introduction to Image Processing, Computer Vision &

Overview of an PC Based Vision System for Welding

2.2.3.3. Side view image processing program (SVIPP)

The main requirement for the side view image processing program is to identify the

pool edge by applying the feature correlation algorithm so that a pool height

measurement can be obtained. VFW and pipe operations are used in this program. This

program is simpler than the FVIPP because it is only required to identify one pool edge

(see Figure 2-9).

,.:* 5,avash - tf!mplatf!l.txt
File Cabation JPStopl View Help

150

Global Pool Height = 145.

200

100

50
Processing lime = 10. [ms]

Figure 2-9 Side view image processing program

The weld pool height is defined as the distance between the measured pool edge and

the bottom of the screen. As seen from the figure, there are ten measured pool heights

(ten crosses), the final pool height is the average of these pool heights except the two

maximum and minimum ones. This side view image processing program runs together

with the front view image processing program to generate relative results from

different views for the welding system to further improve its performance.

September 2007 Fan Wu 15

An sope Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Cbip

(SOPC) Technology

Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

This chapter consists of six sections. The first section introduces the predecessor of

sope - System-on-Chip (SOC), a comparison is given between sope and SOC design

in various aspects including performance, cost and time-to-market. The second section

discusses the SOPC architecture. The third section introduces the common design flow

of SOpe-based systems. Following that, considerations are given for implementing an

image processing system based on a SOPC solution. The fifth section introduces

several commercial/open source processor cores which are commonly used in SOPC

designs. Finally, some background information of the Nios processor system, which the

SIPS was based on, is given including system architecture, bus module, bus transfers

and development tools. This is followed by a brief introduction to SIPS which is further

expanded in a later chapter.

3.1 sosc history

sope is derived from SOC; they are both targeted for single chip applications but

aimed at different markets, mainly because of the time-to-market and cost factors. This

section firstly gives some background information of SOC, and then a comparison

between soe and sope is given regarding system integration, flexibility, performance,

power consumption, design flow, cost, and time-to-market.

3.1.1 SOC design

With rapid development in semiconductor processing technologies, the density of gates

on the die increased in line with what Moore's law predicted [25]. This helped in the

realisation of more complicated designs on the same Ie. Over the last few years, with

the advent of leading edge technology applications like high-definition television

(HDTV) and 3rd generation mobile devices, an increasingly evident need has been that

of incorporating the traditional microprocessor, memories and peripherals - or in other

words the whole system - on a single silicon. This is what has marked the beginning of

the SOC era.

According to a news report, "System-on-a-Cbip: Technology, Markets", the worldwide

September 2007 FanWu 16

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

SOC market was currently estimated at nearly $14.4 billion in 2004. It is expected to

grow at an AAGR (average annual growth rate) of 24.6%, this market will reach $43.2

billion by 2009. Unit growth will average 18.4% on average, per year, to reach 2.2

billion in 2009, and average unit prices will increase from a current level of $15.2 to

$19.6 by the end of the forecast period [26]. Table 3-1 summaries the information

about the growth in the SOC industry from 2003 to 2009 (data source from [26]).

Table 3-1 World SOC Market, 2003, 2004, 2009 and AAGR ('04-'09)

AAGR%
Category 2003 2004 2009

2004-2009

SOC Revenues ($ Millions) 10,363 14,395 43,200 24.6

SOC Units (Units in Millions) 709 945 2,200 18.4

SOC Average Selling Price ($) 14.6 15.2 19.6 5.2

Generally, SOC-based systems are implemented on ASICs which refer to non field

programmable devices (e.g. standard cell or sea of gates) to make a distinction from

SOPC-based systems.

3.1.2 ASIC/SOC versus FPGAISOPC

SOPCIFPGA shares many of the characters of SOC/ASIC; however, due to the nature

of the silicon chip, they have a few differences in various aspects which generally

affect the decision of selecting which one is to be used to implement the actual

applications. This section therefore gives a comparison overview between

SOPClFpGA and SOC!ASIC, and explains why SOPC was chosen to implement the

image processing system.

3.1.2.1. Integration

Both SOC and SOPC designs are targeted for a single chip application. However

because an ASIC is designed for a specific application so that its density and pin-outs

can be custom specified to allow higher integration, the size and shape of the chip can

be fabricated into the specified requirement to allow it to be easier fit into the end

product than with on FPGA. Furthermore, based on the chip capacity, an ASIC can be

mixed with specific analogue components which hence makes the chip more powerful

and the end product more compact. For example more and more multimedia devices

September 2007 FanWu 17

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

require slim and light designs such as cell phones and other hand held devices.

3.1.2.2. Flexibility

Due to the reconfigurability of FPGA, SOPC based systems offer high flexibility. The

hardware can be reconfigured to implement different tasks for different systems, for

example they can be easily upgraded for further development. The system architecture

can be optimised and changed, the functions of hardware and software can be easily

migrated with each other to meet different system requirements. This makes SOPC

designs competitive and allows them to be evolved into the next generation products.

An ASIC offers no flexibility as it is designed for a specific application. Any tiny

change or improvement made on the SOC design would result in a huge effort to re-

design and re-layout the chip. So it is very unlikely to be able to re-use the technology

in next generation products [16].

3.1.2.3. Performance

ASIC generally offers higher performance than FPGA because routings and layout can

be optimised before fabrication and each block can be optimised for the desired

function. On an FPGA the interconnect structure is fixed (see Figure 3-1). Also,

FPGAs often require pipelining (pipelining here means inserting registers to re-clock

the data between logic layers) or synchronous interface when designing for speed,

which eventually leads to increasing latencies and slows down the overall speed,

especially when the data is bi-directional with lots of handshaking. For example at

200MHz clock 3-4 layers of logic is expected to get through in FPGA, while in an

ASIC 25 layers can be easily achieved. Furthermore ASIC offers better electrical

performance as the hardware can be 'fine-tuned'.

Clock Manag&menrCircuitry FaslTrack

j n n rl 1-'1 fj---fniercol1tJe(('3*'ffi._!.'_-·.j__[.j_Hi.:_~ I
'ouJ.inpurLUT .-~===--t::::iiMMji --M!iijiii'-- M"M --WWiiii- ---.l

~~:~~~;7~~na_l.j_J_.IProj~:lierml ~T~ l~~~!!~~~~~_I!!J M:.I_-tOEsSlJptJlVf
_.----/ I Mamory I I Memory I I Memory I I tAemory I PCI. GTL •.

Prrxiuct{.rm -- C SSTL-3. LVDS.
inregrariontor C-"---r- andotMr
11Igh·speea .II,M H ..,_ .ili. +Ii,_ sr.lr'1dJu;s

conuo; logIC and _1.1. ipl'Oo~Uo::1Term I [ProdUo;tforml !ProdKt Term I :Prodoot fermi +1.,.
statemxhmes. ~~=]~~~~~I "''-nory \ I Menu)IY I I "'!,;mory _J [~A~rnory_] Fle4Ne int&!lrabtV1

Qf.mMdJid
memav mcfuding
CAt\{ RM{
ROM, fiFO. and
or/"~Jm.mor:l
functions-

I I

Figure 3-1 Apex 20K device block diagram (From [27])

September 2007 Fan Wu 18

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.1.2.4. Power dissipation

FPGAs generally consume more power than ASICs. Typically because firstly, the

FPGAs contain longer routing tracks with significant parasitic capacitance, and the

switching activity on these routing tracks causes significant power dissipation.

Secondly FPGAs have fixed clock routing structures; all registers within a clock

domain are connected to a clock network even if they are not used. When the clock is

toggling, power is wasted in clock segments which connect unused registers. Finally

the fixed structure of FPGAs means that not all the transistors in Look-Up Tables

(LUTs) are actually used, but the unused ones still draw leakage current [28].

3.1.2.5. Design flow

FPGAISOPC design flow is simpler than that of ASIC/SOC because the SOPC design

flow eliminates the complex and time-consuming floorplanning, place and route,

timing analysis, and mask/re-spin (due to verification errors) stages of the project since

the design logic is already synthesised to be placed onto an already verified,

characterised FPGA device.

3.1.2.6. Time-to-market

The SOC design cycle is significantly longer than SOPC. Tasks like formal verification,

test development, layout and other manufacturing like fabrication would significantly

increase the ASIC time-to-market period, while designing SOPCs in FPGAs much of

the routing, placement and timing etc are handled by software. Because FPGA devices

are purchased free from manufacturing defects, formal verification is not required

which could save weeks of time. Furthermore, design re-spin and modifications would

cause ASICs in delayed time-to-market, whilst it would probably just take a few

minutes to reconfigure the FPGA with a modified SOPC design.

3.1.2.7. Costs

The non-recurring engineering (NRE) costs for ASIC development are very high and

tend to be escalating. Figure 3-2 illustrates how NRE cost increases with more

advanced process technology on ASIC development. NRE costs typically include

design, mask-sets, wafers, layout and verification cost. As seen from the figure at 90nm

September 2007 FanWu 19

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

it needs $30 million dollars to develop an ASIC, and that's only if it can be done

correctly at the first attempt. So developing an ASIC is both risky and expensive. New

business models say that only the highest volume consumer products can justify SOC

[16]. SOPC development doesn't have a fixed NRE cost and generally it's much lower

than that of ASICs because no verification and fabrication is required. Furthermore, no

NRE cost is associated with design re-spins and modification for SOPC design, but this

could lead to a significant NRE increase for ASICs. For instance it would cost

approximately $850,000 for a mask manufactured using 130 nm technology [29].

S4SM I

Design/
Verification
& Layout

$40M

S35M I
S30MI

S25M I
S20MI

S15MI ..
O.lS",m O.lS~m O.13J.1m 90nm 6Snm 4Snm

Figure 3-2 NRE cost of developing ASICs

(Source: International Business Strategies, Inc)

However, although the NRE costs for ASIC are high, the unit cost is much lower than

FPGAs, as ASICs are targeted for very high volume market. Therefore the total cost for

ASIC is only more effective than FPGAs for the very high consumer market, while for

smaller designs and/or lower production volumes, the FPGA is a more ideal choice

than ASIC.

3.1.2.8. Conclusion

Although SOC based systems offer high performance, better integration and lower

power consumption than SOPC based systems, it is risky and the NRE is the major

threshold to prevent the vendors going for SOC solution, only if they understand the

risk and can predict, long in advance, how many devices their market will require [15].

If they choose too many, they pays the steep cost of inventory. If they choose too few

then they may miss important market opportunities or lose the ability to acquire market

share. When an FPGA is used, the FPGA vendor shoulders the inventory risk, which is

September 2007 Fan Wu 20

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

shared across a much larger number of customers.

Moreover, SOPC-based systems offer excellent development platform for research and

teaching activities like [30], [31] and [32] as they can be re-used for various student

projects and re-configured as many times as required to verify a theory or prove some

concepts etc. Also, because of the high risk of ASIC design, more and more vendors

tend to use FPGA based emulation platforms to verify the SOC design before going for

fabrication. In industry the SOPC has been a good alternative to SOC. That is why

SOPC has been widely accepted in many real applications in image and signal

processing, multimedia, robotics, telecommunications, cryptography, networking and

computation in general. Therefore for this research project, the SOPC design was

adapted for the initial development.

3.2 sore architecture

Common SOPC architectures are bus oriented architectures and all on-chip or off-chip

peripherals are connected to different hierarchical levels of the buses [33] in the system

depending on their bandwidth and speed requirements. In modem system level design

[34], the use with configurable and re-usable IPs becomes more and more important in

tenus of cost and time-to-market. Therefore PLO vendors usually develop their own

bus systems or offer licenses to the bus systems developed by third-party

semiconductor manufacturers to allow all bus compatible IPs including their standard

IPs, third-party IPs and other custom IPs to be optimised and easily integrated into their

own PLO devices. Therefore SOPC architectures depend on the PLD devices and

processors which are chosen. Four kinds of standard on-chip buses are commonly

available in SOPC design, which are the Avalon bus [35], Advanced Microcontroller

Bus Architecture (AMBA) bus [36], CoreConnect bus [37] and Wishbone bus [38].

The Avalon bus was developed by Altera to allow all peripherals to interface with its

own softcore processors. The AMBA bus developed by ARM is adopted in Altera's

Excalibur PLO because an ARM embedded microprocessor system is pre-fabricated in

this PLD. AMBA has four levels of hierarchy: Advanced high-performance bus (AHB),

advanced system bus (ASB), advanced peripheral bus (APB) and the most recent ones

advanced extensible interface (AXI). CoreConnect was originally developed by IBM to

be used in systems embedded with the PowerPC processors. It is also licensed to

September 2007 FanWu 21

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Xilinx's high-end PLD devices. It has three levels of hierarchy: Processor Local Bus

(PLB), On-chip Peripheral Bus (OPB), and Device Control Register (DCR) to allow

the processors to efficiently communicate with different speed peripherals. Wishbone is

known for its flexible interconnection capability and free open source. Therefore it is

widely adopted into open source IPs. In order to allow communication between

different hierarchical levels on the same bus system or even different bus systems

special IPs are developed to cope with this problem which are often called bridges, for

instance, AHB-APB, AHB-Avalon, PLB-AHB.

Once the bus system is adopted, designers can pay more attention to the inner

architecture, which is concerned with the hardware/software partitioning, processor

optimisation, data and control paths, definition of on-chip and off-chip components etc.

Section 3.4 describes some necessary considerations should be given to design an

SOPC based system by presenting an example of image processing system.

3.3 SOPC design flow

Common SOPC design flow was developed based on traditional FPGA design flow

which includes register transfer level (RTL) coding, simulation and synthesis, with the

addition of software development flow and hardware (HW)/software (SW) partitioning.

Figure 3-3 illustrates the block diagram of a typical SOPC design flow. In practical,

commercial programmable logic device (PLD) suppliers like Altera and Xilinx provide

sophisticated computer-aided design (CAD) tools dedicated to their PLDs to help

design and analyse SOPC designs with increasing complexity, and these sometimes

save a lot of work in a specific design step. So the actual implementation of the design

flow might be slightly different depending on which PLD vendor is chosen.

September 2007 FanWu 22

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

,
1 1

Figure 3-3 Overall SOPC design flow

3.3.1 Design specification

The design specification normally includes system requirements, selection of the FPGA

family and device to be evaluated on, number of input/output (I/O) pins and the

required standards, clocks and their frequency requirements, memory requirements, test

methodology etc.

3.3.2 Hardware (HW) / Software (SW) partition

Hardware/software partitioning is concerned with deciding which functions should be

implemented in hardware and which ones in software. Generally the hardware

approach provides better performance but costs more, while software is cheaper, and

more flexible, but the speed performance is not as good as hardware. When hardware

and software trade-off becomes an important consideration in terms of costs, time-to-

market and performance, a hardware/software Codesign [39] approach is generally

used to achieve the optimal balance. Traditional hardware/software partitioning in

September 2007 Fan Wu 23

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

embedded applications concerns partition between microprocessors and other external

hardware which normally requires the modifications of the system architecture.

However, with the development of highly configurable softcore processors which

allows software to be optimised by implementing custom instructionslIP within the

processors, hardware/software partitioning becomes much more flexible. [40] presents

a new approach to discover this new hardware/software partitioning issue by

developing a custom tool COMET to allow a performance estimation for software

processing and hardware processing within the Nios processor.

3.3.3 Design entry

The design entry generally refers to the description of the hardware in register transfer

level (RTL). The most commonly used hardware description languages are Very high

speed integrated circuit Hardware Description Language (VHDL) and Veri log. They

are used to describe the behavior of the circuitry on the chip. However, with the rapid

growth of SOPC design complexity, the typical RTL description languages become a

low level language which can't compete with the growing speed of design complexity.

Other high level languages have been developed such as System Veri log, SystemC,

HardwareC, SpecC, JVHDL and SuperVerilog [41]. They aim at automating the

creation of a HDL language description from a program written in a higher level

software-like language. Then the designer can concentrate more on the system

modeling design. Also, some PLD suppliers often offer the electronic design

automation (EDA) software tools normally with a friendly Graphical User Interface

(GUI) to ease the system level integration. Altera's SOPC Builder [42] is one of the

examples.

This design entry step also includes specification of the methodology, hierarchical

design partitioning etc. Following the trend of system level design, it is very important

to use a hierarchical design methodology and design/select modular components for the

SOPC system. A good hierarchical design can also simplify the overall verification and

reduce the design time because individual IP blocks can be separately designed and

verified.

September 2007 FanWu 24

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.3.4 Simulations

Simulations are usually to verify the function of the RTL design. Normally it includes

behaviour simulation, functional simulation and timing simulation. Behaviour

simulation is used to verify the logic function of a module in behaviour level while the

other two are gate-level simulation that actually simulate the module at gate level with

the option of adding the standard delay format (SDF) after synthesis and place & route.

The simulation process often requires the designer to modify the design if there is a

problem with the simulation results. Most PLD vendors provide gate level simulation

tools which are integrated into their development software.

3.3.5 Synthesis

Synthesising is the process of converting a design representation from RTL code to the

gate level [29]. This process is generally automated by EDA tools. A netlist file is

produced after synthesis. This netlist is normally in Electronic Design Interchange

Format (EDIF).

3.3.6 Place& route

Place and route actually lays out the design on the FPGA device based on the netlist

file. It requires the assignments of the system 1I0s to the actual pin outs of the device.

Obviously this is a manufacturer-dependent process because different FPGA vendors

use different structures. This is also performed by EDA tools. A static timing analysis

is generally performed after place & route.

3.3.7 Download& verify in circuit

This final step is to download and test the system design in the real device. The most

popular download scheme is via Joint test action group (JTAG) interface. Most PLD

vendors provide on chip debugging tools to verify the system in circuit both in

hardware and software aspects such as Altera's SignalTap [43] and Xilinx's ChipS cope

Pro. The overall design flow can be restarted from HW/SW partitioning process if there

is a need for optimisation or from the design entry process if another IP is required to

be developed and integrated into the end application.

September 2007 Fan Wu 25

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.3.8 Software development

The software is developed for the soft core processor. C, C++ and assembly are the

common embedded languages used for software development in SOPC designs.

3.3.9 Software compilation

Normally the processor supplier provides a full development kit including software

compilation tool to support SOPC development. This also includes the compilation for

simulation. The compilation result is normally a binary file containing the program data

and instruction information which can be written into the on-chip memories directly or

off-chip memories like SRAM or FLASH via a serial communication interface.

3.4 Real time image processing system based on SOPC

Based on the functionality of a real time image processing system described in Chapter

2, the image processing system based on SOPC can be roughly broken down into four

parts which are video acquisition block, video processing block, video buffer and video

output block in the behaviour level. In practice, these function blocks can be

implemented as separate IPs wrapped with a dedicated bus interface and integrated into

a standard on-chip bus system. However, the flexibility of an SOPC design would

result in more considerations given in designing the details of the system architecture.

Firstly, although SOPC defines an entire system that can be integrated into a single

silicon chip, how much portion of this system should be integrated into this chip and

how much should or must be left off-chip? Secondly, since dedicated circuit structures

which built in hard fabric can be implemented on FPGAs and they offer higher

performance but less flexibility than the equivalent structures built in soft fabric,

concerns about whether to use hard fabric or soft fabric to implement specific functions

must be taken to the design in order to achieve the best optimal balance between

performance, cost and system flexibility. Finally it's the traditional hardware/software

partitioning issue, which concerns how much processing and control should be

implemented by the software and how much should be done by the hardware. All of

these considerations must be well balanced on cost, performance and the types of

FPGA chosen etc.

September 2007 FanWu 26

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Prograrnmable-Chip

(SOPC) Technology

3.4.1 On-chip vs. off-chip

Ideally the more of the system which is integrated into the programmable chip, the

more flexibility, lower power consumption, higher integration and mostly better

performance the system can offer. However, this is often restricted by the time-to-

market period, cost, and the available feature/resource of the selected programmable

device. Several examples are given to explain what the designer should be concerned

about when making on-chip / off-chip decisions for an image processing system.

For example if a USB camera is chosen as the video source, then a USB host controller

is needed to control this camera and receive data stream via the USB bus. So should

this host controller be integrated with the system core on-chip or just simply use an

external USB host controller chip to do the job? Certainly if there is an available

developed IP for USB host controller (i.e. from public source) then the on-chip solution

is the best option in terms of performance and the simplification of the off-chip board

design. Otherwise, considerations must be given whether to spend years to develop

such a complex IP core or pay a few thousand pounds to buy one in the market, or to

implement this function just simply by using an external chip although it is still costly.

By using the off-chip solution, the overall performance degrades and the extra software

development for controlling this USB chip and exacting the image data from the serial

data streams must also be taken into account as USB is not solely designed for vision

tasks.

The second example is for the video memory buffer. On-chip memory is fast compared

to off-chip memory. However in reality a real-time image processing system generally

requires buffering a large amount of data compared to the available on-chip memory

resource from most of the FPGAs, especially when the video frame has a high

resolution and deep pixel depth. Certainly to buy a very good FPGA with sufficient

memory to buffer all required video frames is the best option. But when the selected

device doesn't have the required resource then off-chip memory has to be used instead.

However, if a small buffer is required in the design then on-chip memory is the best

solution. Also if off-chip memory is used, then a memory controller must be developed

to drive this off-chip memory.

September 2007 FanWu 27

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Cbip

(SOPC) Technology

Some special FPGAs have integrated analog circuits such as digital-analog converter

(DAC) and analog-digital converter (ADC). If the selected FPGA has this feature and

DAC or ADC function is required, for example, a DAC is commonly used to convert

the digital video output to analog signals for display on analog monitors, then use of

the DAC function on chip can simplify the off-chip board design and hence reduce the

overall cost. Otherwise, this function has to be implemented in off-chip.

For the actual image processing, on-chip processing is generally the best way to

provide high efficient processing power because it can maintain a short delay, low

latency and wide throughput. However, off-chip co-processors might be an option to

share the processing load with the on-chip processing engine if the selected device

doesn't support multiprocessors mode.

There is no golden rule for making on-chip/off-chip decision for SOPC design; a good

solution must be made by considering all aspects including cost, time-to-market,

performance, selection of the programmable device and the actual system requirements.

3.4.2 Hard logi~fabrie vs 80ft logi~fabri~

The soft logic fabric of an FPGA consists of an array of combinational logic elements

while hard logic fabric is a circuit structure that allows the implementation of a logic

function that could also be implemented in the soft logic fabric [15]. Obviously this

hard logic fabric on FPGA is similar to the cell or gate on ASIC. Like ASIC, the

benefit of using hard logic fabric is the structure is smaller, faster and consumes less

power than the equivalent structure built out of the programmable soft fabric. The most

commonly used functions built in hard logic fabric are dedicated flip-flops, embedded

memory blocks, multipliers and even processors (see section 3.5 for information of

most commonly used hard processors). Furthermore, recent advanced FPGAs such as

Stratix [44] from Altera provide dedicated DSP blocks to perform matrix operations,

floating point operation etc. Therefore for image processing, if a nsp function is

required, then the design should use the nsp blocks if they are available on the

selected device. Also if memory is used, for example for the small video buffers, then

the design should use the embedded memory blocks instead ofLUTs.

September 2007 FanWu 28

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Certainly all of the function of an image processing system can be turned into hard

logic fabric, but this obviously just makes an ASIC instead of FPGA. This is not

realistic. The only way to determine if a hard structure is truly useful in the FPGA

context for specific function part of the image processing system is to empirically

measure the net benefit of the structure across a set of benchmark applications that are

representative of the target market [15].

3.4.3 Hardware vs software

The range of the hardware here includes the soft fabric and hard fabric on the FPGA

while the software means the operation performed by the processor. This is actually a

typical hardware/software partitioning problem. The advantage of using hardware

control and processing is that it delivers fast speed; however, it takes more overall

hardware resource, offers less flexibility and possibly degrades the fmax. In contrast,

software control and processing provides high flexibility and more resource saving but

at lower speed.

Two distinct cases can be considered when designing an image processing system. The

first one is, high data thought-put and complex data paths are the challenges in

performing real-time image processing, in order to increase the data transfer efficiency,

burst transfer (called direct memory access) should be employed throughout the system

wherever there is a requirement for high bandwidth transfer instead of using the

software approach to move data from one target to another by the processor. The

second consideration is the actual image processing. If specific processing algorithms

are required, then hardware processing can be a better option like adapting the DSP

blocks, optimising the CPU instructions and even implementing custom instructions.

Generally to develop an image processing like SIPS, in the earliest stage, single

processor is implemented in order to ensure the video data consistency throughout the

system and provide the flexibility to perform various processing, and then more

optimisation can be done specifically within the processor or by implementing low-

level processing tasks on the on-chip hardware for specific applications. Certainly if

hardware resource is available, implementation of multiple processors on the same chip

is also a good choice to increase the processing rate.

September 2007 FanWu 29

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.5 Common SOPC Processor overview

There are several commercial/open source processors which are designed for use in

PLD devices. PLD vendors generally provide two types of processors either built in

hard fabric or soft fabric. As described in section 3.4.2, hard processor offers better

performance and higher density. However, the highly configurable feature of soft

processor can make up this difference by using a specialised instruction set. Also, a

programmable quantity of processors can be instantiated as needed, each tuned to

required area and performance specifications [15]. This section gives an overview of

some commonly used processors in SOPC designs.

3.5.1 Soft processor

There are several soft processors available. They are Nios [45] and Nios II developed

by Altera, Microblaze [46] and Picoblaze developed by Xilinx, Mic08 and Mic032

developed by Lattice, OpenRISC [47] developed by OpenCores, Leon [48] developed

by Gaisler Research, OpenSP ARC developed by Sun Microsystems. The latter three

are open source and under the GNU general public license. This section gives an

overview of some of these soft processors.

3.5.1.1. Nios

The Nios CPU is a configurable, 16- or 32-bit general-purpose RISC processor with a

single issued, 5-stage pipelined Harvard architecture and a compiler-friendly

instruction set. The Nios CPU implementation includes up to 512 internal general-

purpose registers. The compiler uses the internal registers to accelerate subroutine calls

and local variable access. The Nios instruction set includes Load and Store instructions

that the compiler uses to accelerate data access and local-variable (stack) access. Users

can incorporate custom logic directly into the Nios arithmetic logic unit (ALU) to

modify or extend the Nios instruction set. For example accelerate software algorithms

by reducing the number of operations for "inner loop" tasks to a single cycle,

implement instructions in a single-cycle or multi-cycle. The automatically-generated

software development kit (SDK) includes macros for accessing custom instruction

hardware for C and assembly-language programs. The Nios processor outputs the

instructions and data via the Avalon bus master ports (see section 3.6).

September 2007 FanWu 30

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.5.1.2. Microblaze

MicroBlaze 7.0 features a configurable 3-stage or 5-stage pipeline (trading off size for

clock rate) Harvard architecture, a general purpose register window with thirty-two 32-

bit registers, 32-bit instruction word with three operands and two addressing modes,

with an instruction completing in each cycle. Cache structure and size, peripherals, and

interfaces can be customised to the application. In addition, hardware support for

certain operations, such as multiplication, division, and floating-point arithmetic, can

be added or removed. For performance critical portions of software programs, custom

coprocessors can be added to MicroBlaze and connected via a dedicated FIFO-style

coprocessor interface called Fast Simplex Link (FSL). Also different combinations of

buses such as OPB, local memory bus (LMB) and Fast Simplex Link (FSL) can be

implemented to allow flexible system design.

3.5.1.3. OpenRISC

The OpenRISC 1200 is a 32-bit scalar RISC with Harvard architecture, 5 stage integer

pipeline, virtual memory support (MMU) and basic DSP capabilities. It features single-

cycle instruction execution on most instructions and a thirty-two register general-

purpose register window. Additional units such as a floating-point unit can be added as

standard units. Eight custom units can be added and controlled through special-purpose

registers or customer instructions. Default caches include a one-way direct-mapped

8kB data cache and a one-way direct-mapped 8kB instruction cache, each with 16-byte

line size. Both caches are physically tagged. OpenRISC has interfaces including power

management interface, development interface, interrupt interface, and instruction and

data WISHBONE host interfaces.

3.5.1.4. Leon

The LEON3 is a 32-bit processor based on the SPARC V8 architecture. It implements a

7-stage pipelined, separate instruction and data cache Harvard architecture. It supports

2x32 register window size. A unique debug interface allows non-intrusive hardware

debugging and provides access to all registers and memory. Other floating-point

units/custom units can be connected to the processor via a general interface to allow

parallel or sequential execution with the integer unit (10). Built in AHB masters allow

the instruction and data cache to interface to the AMBA-AHB bus.

September 2007 Fan Wu 31

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.5.2 Hard processor

Hard processors are usually developed by specialised semiconductor companies. PLD

vendors just simply purchase licenses to them and fabricate and optimise the processors

into their specific FPGA family. Examples are Altera's Excalibur devices [49] and

Xilinx's Virtex II Pro FPGAs [50]. Some PLD vendors produce their own processors

and fabricate them with the FPGA to offer a variation of SOPC design. They are like a

configurable microcontroller. Typical examples are Programmable-System-on-a-Chip

(PSoC) [51] from Cypress and FPSLIC (Field Programmable System Level Integrated

Circuits) [52] from Atmel.

3.5.2.1. Excalibur

The Excalibur devices integrate an industry-standard ARM922'fTM 32-bit RISC

processor core operating at up to 200MHz. This processor has a Harvard architecture

with separate instruction and data memory. It features an ARM v4T instruction set with

32 bit load and store. The instruction set supports 16- and 8-bit memories,S stage

pipeline, and task identifier register for real time operating system (RTOS) support. It

has 32x8 bit hardware multiplier but no hardware divider and floating point unit (FPU).

The microprocessor system has a built-in SRAM and SDRAM controller. Also it has

embedded programmable on-chip peripherals such as universal asynchronous

receiver/transmitter (UART), flexible interrupt controller and general-purpose timer

etc. The ARM microprocessor subsystem is implemented as an "embedded stripe" next

to the "FPGA stripe" in the whole device and AHB-A valon bridge is used to link the

communication.

3.5.2.2. Virtex™-II Pro

The Virtex™-II Pro platform FPGAs provide up to two PowerPCTM 405 developed by

IBM. This PowerPC processor features PowerPC User Instruction Set Architecture

(UISA), 5-stage data path pipeline with single-cycle execution of most instructions

including loads and stores, 32 x 32-bit general purpose register window, 32 bit Harvard

architecture, hardware multiplier and divider but no FPU. Integration of the PowerPC

core into the Virtex™-II Pro device is accomplished by taking advantage of the

IPImmersion architecture, which allows hard IP cores to be diffused at any coordinate

within the Platform FPGA fabric, while maintaining unprecedented connectivity with

September 2007 FanWu 32

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

the surrounding Configurable Logic Block (CLB) array. IBM CoreConnect bus

architecture is used in both the processor system and the FPGA system.

3.5.2.3. PSoC

The PSoC is a family of mixed-signal arrays featuring a microprocessor developed by

Cypress. This microprocessor is called M8C which features an 8-bit Harvard

architecture. PSoC has configurable logic blocks which are designed to implement the

analog-digital integrated peripheral interfaces, which include analog-to-digital

converters, digital-to-analog converters, timers, counters, and universal asynchronous

receivers-transmitters (UARTs) etc.

3.5.2.4. FPSLIC

The FPSLIC family of devices combines an 8-bit Harvard architecture AVR

microcontroller with a 32kB SRAM, a 40k gate equivalent FPGA device and fixed

peripherals including DART and timer/counter on a single chip. FPGA custom

peripherals are supported by using the AVR peripheral control.

September 2007 FanWu 33

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

3.6 Introduction to the Nios processor system and development tools

Altera is an industry pioneer for providing sope solutions. Not only does it supply

FPGA devices with various performance levels, but provides IP blocks including the

soft processor and a serious of extensive EDA tools to support the development of

sope designs. In the University of Liverpool, Altera's PLDs have been already

adapted into teaching and researching activities for many years. SIPS was therefore

originally developed based on the Nios processor architecture which is targeted to the

FPGAs provided by Altera.

3.6.1 Nios system architecture

As a commercial processor supplier, Altera provides a specific system architecture for

sope designers to connect all function blocks and the other user logic with the Nios

processor, via the dedicated system bus protocol - Avalon bus module. Figure 3-4

illustrates a block diagram of the Nios processor system architecture, where system

module refers to the portion of the design where involves with interconnections with

the Avalon bus module. The reason for emphasising the system module here is because

this portion can be automatically integrated and generated by the Altera's integration

tool- sope Builder, which is described in section 3.6.4.

! PC! ctrl!-< PCLaddr
1 PC!.dat.-,
!
!

User
logic
area

Signals
to

\~off-chip
devices

'I ----,

i Off-chip
! memory
E __ --'

Altera PLD I
_,/

Figure 3-4 System module integrated with user logic into an Altera PLD (From [35))

In this system architecture, all modules connected to the Avalon bus are treated as a

separate function entity and named peripherals (see section 3.6.2.1). They could be

vendor provided IP blocks such as the Nios processor, parallel input/output (PlO) [53]

or custom defined modules. These custom defined modules could be parameterised and

September 2007 Fan Wu 34

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

documented as an IP block for further usage. For integration purpose, all modules need

to interface to the Avalon bus module have an Altera pre-defined bus interface, which

could be either a set of master ports or slave ports (see section 3.6.2.2). The next

section describes this bus interface in details.

3.6.2 Avalon bus module

The Avalon bus module is the backbone of the Nios processor system. It is the

abstraction of the communication paths for all the sub modules contained in the system

module. Not only does it manage the interconnection, but also provides data path

multiplexing, address decoding, wait-state generation, arbitration and streaming

read/write capacities for all component peripherals connected to it. Figure 3-5 shows an

example system block diagram.

......... wr~~Deta

Control Signals

Bus Signal Legend

......... Read Data

......... Intsrtace to
ctf·chip device

Figure 3-5 Avalon bus module block diagram - an example system (From [35])

3.6.2.1. Avalon master/slave peripherals

An Avalon peripheral is a modular component which could be either on-chip or off-

chip that performs some system-level task, and communicates with the other

peripherals in the processor system through the Avalon bus. Based on the control

function Avalon peripherals can be classified into either a master peripheral or a slave

peripheral. The main characteristic of master peripherals differ from slave peripherals

is that the master peripheral has the ability to initialise Avalon bus transfers to the slave

September 2007 FanWu 35

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

peripheral. A master peripheral contains at least one Avalon master port. However, it

can have Avalon slave ports to accept requests from the other master peripherals

generally for configuration purposes. Avalon slave peripherals only respond to the bus

transfer requests from the master peripherals.

Avalon bus peripherals can be understood as specialised IP blocks designed for use in

the Nios processor system, as long as they perform sufficient system level tasks, and

are fully synthesisable, verified and predicted to be reusable. Any user logic with an

interface to the Avalon bus module can also be treated as a peripheral. In this thesis an

Avalon master peripheral is sometimes abbreviated as 'master' and Avalon slave

peripheral is abbreviated as 'slave'.

In the master/slave peripherals, all custom 1I0s which are not classified as standard

Avalon master port or slave types are promoted to the top level 1I0s of the system

module to be used to drive off-chip devices or other user logic.

3.6.2.2. Avalon master/slave ports

Avalon master and slave ports are used as two ends of a communication channel. The

Avalon bus module is the medium between the master ports and slave ports. A master

port is used to initialise Avalon bus transfers on the Avalon bus, while a slave port

responds to the Avalon master request and either produces data for the master port or

accept data from the master port. Master ports only exist in the Avalon master

peripherals, while slave ports can appear in either master peripherals or slave

peripherals. The Avalon bus module has specified a number of standard signals to

define this master/slave port. Table 3-2 and Table 3-3 list the most commonly used

Avalon bus signals defined for the master/slave port interface. Not all signals are

required for all master/slave ports, the selection of these signals are based on the types

of transfer that the master/slave ports require. For example, dataavailable,

readyfordata and endofpacket are only used for streaming slave. The design of the

Avalon interface in master/slave peripherals should conform to the Avalon bus

interface specification [35] to ensure the Avalon bus module functions correctly.

September 2007 FanWu 36

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Table 3-2 Avalon slave port signals

Signal type Width Dir Req Description

All bus transactions are synchronous to this

clk 1 In no clock. Only asynchronous slave ports can omit

clk.

Global reset signal. Implementation IS
reset 1 in no

peripheral specific.

chipselectl
Chip select signal to the slave. The slave port

1 In yes should ignore all other Avalon signal inputs
chipselect n

unless chipselect is asserted.

address 1-32 In no Address lines from the Avalon bus module.

read! read n 1 out no Read request signal to slave.-
Data lines to the Avalon bus module for read

readdata 1-32 In no
transfers.

write/write n 1 In no Write request signal to slave.-

Data lines from the Avalon bus module for
writedata 1-32 In no

write transfers.

Used to stall the Avalon bus module when the
waitrequest 1 out no

slave port is not able to respond immediately.

readyfordata 1
Signal for streaming transfers. Indicates that the

out no
streaming slave can receive data.

dataavailable 1
Signal for streaming transfers. Indicates that the

out no
streaming slave has data available.

Signal for streaming transfers. May be used to

endofpacket 1
indicate an "end of packet" condition to the

out no
master port. Implementation IS peripheral-

specific

Interrupt request. Slave asserts Irq when it
irq 1 out no

needs to be serviced by a master.

September 2007 FanWu 37

An sope Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Table 3-3 Avalon master port signals

Signal type ~idth Dir Req Description

elk 1 in yes All bus transactions are synchronous to elk.

Global reset signal. Implementation IS
reset 1 In no

peripheral specific.

Address lines from the Avalon bus module. AU

address 1-32 out yes Avalon masters are required to drive a byte

address on their address output port.

read/ read n 1 out no Read request signal from the master port.

8, 16, Data lines from the Avalon bus module for read
readdata In no

32 transfers.
·_·___·___.·k_...........____....__.-._ .._ __ .H___ .._ ..._ . .._.--.--- ...---- ___ ••••• H _._ ••• _._ __ .._-_ __ .___._.__ __ ..__ ._....... _._ ..._ _-___ ._--_ ...

write/write n 1 out no Write request signal from the master port.-
8, 16, Data lines to the Avalon bus module for write

writedata out no
32 transfers.

Forces the master port to wait until the Avalon

waitrequest 1 In yes bus module IS ready to proceed with the

transfer.
i

Signal for streaming transfers. May be used to ;

endofpacket
indicate an end of packet condition from the

1 In no
slave to the master port. Implementation is

peripheral specific.

3.6.3 Avalon bus transfers

The Avalon bus module provides various types of bus transfers to satisfy different

master/slave port requirements. For example, the streaming transfer accommodates

high bandwidth peripherals that a block of data is often required to send/receive, while

fundamental transfer only transfers a single unit of data within one clock cycle, and

because of its simplicity it generally requires less control and hence saves more bus

resource. The Avalon master port is not directly connected to the slave port due to the

existence of the Avalon bus module, signals output from a master port on the Avalon

bus might be different from the corresponding signals that are input to the slave port on

the target peripheral. Therefore, a separate discussion for the Avalon bus transfers on

the slave port interface and on the master port interface is presented in this section.

September 2007 FanWu 38

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Only descriptions of the bus transfers involved in the development of SIPS are given.

Information of the other types of bus transfers such as read transfers with latency,

transfers with fixed wait-states, transfers with setup and hold time, and tri-state

transfers can be obtained from the Avalon bus interface specification.

3.6.3.1. Avalon slave transfers

This section describes the transfers between the Avalon bus module and the slave

peripherals which respond to the transfer request. Description and timing of

fundamental slave transfer, slave transfer with peripheral-controlled waitrequest and

slave streaming transfer are presented.

Fundamental slave transfer

The fundamental slave read transfer is the basis for all Avalon slave read transfers. All

other slave read transfer modes use a sub set of the fundamental signals, and implement

a variation of the fundamental slave transfer. The fundamental slave transfer is initiated

by the Avalon bus module, and transfers one unit of data, the full width of the

peripheral's data port, to the Avalon bus module in a write transfer or from the Avalon

bus module in a read transfer. All of the data are sampled at rising edge ofthe clock.

Fundamental Avalon slave read transfer:

Figure 3-6 illustrates a timing diagram of the fundamental Avalon slave read transfer.

All control signals including address, byteenable_n, read_n and chipselect are asserted

from the Avalon bus module before time C. The Avalon slave peripheral starts

decoding the address. At time D, readdata becomes valid. At the rising edge of the

next clock cycles time E, readdata is read by the Avalon bus model, the read transfer

terminates. The next clock cycle could be the start of another slave transfer.

elk
'-------!

oad",,,:>. bylo<:1'Ql:>lc_niEEEE!EE~(=~=~Od~drfi"~""~b~)'I.o~o~n"~bl~o~n!~~:iEEEEEE!'!read_"
chipselect

readdata re~ddata !

B ;C o

Figure 3-6 Fundamental slave read transfer (From [35])

September 2007 Fan Wu 39

An SOPC Based Image Processing System Chapter 3, An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Fundamental Avalon slave write transfer:

Figure 3-7 illustrates a timing diagram of the fundamental Avalon slave write transfer.

All control signals along with the writedata are asserted to the slave port before time C.

At the rising edge of the next clock cycle time D, the Avalon slave peripheral captures

the write data and the write transfer terminates.

elk

add", .. , byt ... nabi8_" iEE55555~K!j~~~~Od~dr!''''~''!~b~yto~.~n''~bI~O~"~:~§~55E5555iwriledata W1ilOOa1a

wrltB_n

chlpsolect

:B :C

Figure 3-7 Fundamental slave write transfer (From [35])

Avalon slave transfer with peripheral-controlled waitrequest

Slave transfers with peripheral-controlled waitrequest are used for slave peripherals

which need a number of clock cycles to respond the requests, and this number is not

fixed and depends on the current state of the slave peripherals. For example, auto-

refresh is needed to be performed on a Synchronous Dynamic Random Access

Memory (SDRAM) device within a limited time scale, so any master peripheral which

sends requests to the SDRAM device while the auto-refresh is in progress must be held

until the device is free. And this hold period is dependent on the state of the peripheral.

In such a case slave transfers with peripheral-controlled waitrequest are required.

Avalon slave read transfer with peripheral-controlled waitrequest:

Figure 3-8 illustrates a timing diagram of the slave read transfer with peripheral-

controlled waitrequest. Waitrequest asserted at time D by the slave peripheral after the

read request inilialised. So in the next clock cycle the read request is held up. At time H

the slave produces valid readdata so waitrequest is deasserted at time I. At the rising

edge of the next clock cycle the Avalon bus module captures readdata and cancels the

wait states, slave read transfer terminates.
ABC 0 E I-j J ,J

elk I i I i r-~'---1! t-I ---, I

address, b)rt.eQnabl,,_n Ii' §§§i:!~ireiss!':1byle~en1alt:!le~-~n~1~~~I~:Bd;dre;S~$;'b~)1ee;na;t:I;e_:n!~)J!!§§·i"'02d_nI" • : •
CIIlpselecl

w~tr"<1U981

roaddata , readdata

Figure 3-8 Slave read transfer with peripheral-controlled waitrequest (From [35])

September 2007 Fan Wu 40

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Avalon slave write transfer with peripheral-controlled waitrequest:

Figure 3-9 illustrates a timing diagram of the slave write transfer with peripheral-

controlled waitrequest. Similar to the read transfer, the slave peripheral is not ready to

accept the writedata until time J, so waitrequest is asserted at time D after the write

transfer inilialised, until time 1.

A BC 0 E F G H J
dk I • I ,-W-L_jU,.----;---.1 ! i

addreSll,byteenablB_n;i§i~~~~;l~;~3~§§wrllodato

write_n

chlp591ec1 • :

waflrequeSl

Figure 3-9 Slave write transfer with peripheral-controlled waitrequest (From [35])

Streaming slave transfer

Streaming transfers between a streaming master port and a streaming slave port enable

a large block of data to be successively transferred, Simple flow control signals are

used in the streaming slave, such that whenever the slave has new data or can accept

new data, the Avalon bus module just transfers the data, Unlike the typical DMA

controllers, the Avalon bus module eliminates the need for the master to continuously

check the status registers in the slave peripheral to determine whether the slave can

send or receive data, and hence the data transfer efficiency is increased, Furthermore,

the address bus doesn't need to be incremental like in typical DMA transfers; the

implementation of this address bus is dependent on how the slave decodes it. For

example, the SDRAM page read/write only requires the first column address so in

Avalon streaming transfer the address can stay constant during the whole period of the

streaming transfer. In this thesis, streaming transfer is sometimes called a DMA

transfer or burst transfer.

Streaming slave read transfer:

Figure 3-10 illustrates a timing diagram of the streaming slave read transfer. This

streaming read transfer can be treated as three continuous fundamental slave read

transfers from time A up to time G. As seen from the figure address keeps constant

during the request. At time F endofpacket is asserted by the slave to indicate the current

packet is ending. In the same cycle at time G, dataavailable is deactivated, the slave

peripheral cannot present valid data and the Avalon bus module suspends the read

September 2007 Fan Wu 41

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

request. At time I the slave asserts valid dataavailable again; the steaming read request

is retrieved immediately at time J. New data is presented in the next clock cycle and the

Avalon bus module starts capturing the remaining data until time N, when the

streaming slave read transfer terminates.

elK

I

readdata

dalaavailable

•t (data1 Xi dala2 ~1·iiiiiiiiii!·~·~~~(~d~a~,a~4~~;da~t8~.5g..~~
..

endofpad<el _-'--'-'---'- __ --'- __ -'

Figure 3-10 Streaming slave read transfer (From [35])

Streaming slave write transfer:

Figure 3-11 illustrates a timing diagram of the streaming slave write transfer. It is very

similar to the streaming read transfer, except that readyfordata is used to control the

data flow.
tit i r I

1/1. 131(: IDE F
i '

f I

'liM

I j I l I

II~
enootpacket _......:..._',-,-' _I'; , . ~--

, r ,

I I .Iiml!mn!mmm!m______ ...!'_.L..' .l.. ~

.._ ./, ,
I I

Figure 3-11 Streaming slave write transfer (From [35])

3.6.3.2. Avalon master transfers

Avalon master transfers generally refer to the transfers between the master peripherals

and the Avalon bus module which initialises the transfers. The timing of the Avalon

master transfers is similar to that of the Avalon slave transfers. Figure 3-12 and Figure

3-13 illustrate a timing diagram of fundamental Avalon master read transfer and write

transfer. A timing diagram of Avalon streaming R/W transfer is shown in Figure 3-14.

The major difference between the master and slave transfer is the data flows are in the

reversed direction on each of them. Furthermore, although there are several flow

control signals generated either by the Avalon slave peripheral including dataavailable,

September 2007 Fan Wu 42

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

readyfordata and the peripheral-controlled waitrequest or by the Avalon arbitrator (see

Chapter 6), the Avalon bus module simply interprets them all as wait state request and

only presents waitrequest to the Avalon master peripherals. So a golden rule for

designing master peripherals to handle master transfers is: Assert all signals to initiate

the bus transfer and then wait until the Avalon bus module deasserts waitrequest.

Clk5~~~Eaddress. byteenable_" (: address. byteenabJe n •

read_"

wctucqueet

"addala
... ~~:" '~ '. ~ • _~ • > ' ". - I; • _' ,,.

Figure 3-12 Fundamental master read transfer (From [35])

elk

eddron. byte_ble_" iiiiiiiE5:!· ~~~add~CJt~.~'~b~yt~IHI~M~b~I'~d!.~~~;E5iiiii!_ilodata wriledala

wrlte_"

woiltoqUOiII

,8 ,c

Figure 3-13 Fundamental master write transfer (From [35])

Figure 3-14 Streaming master RJW transfer (From [35])

3.6.4 Development tools overview

Four software design tools are provided by Altera to support the development of SOPC

designs; they are Quartus II [54], sope Builder, programmer and software compiler.

Along with using the simulation tool - ModelSirn, the complete design flow described

in section 3.3 can be undertaken.

3.6.4.1. Quartus II software

Quartus II provides a complete, multiplatform design environment that easily adapts to

September 2007 Fan Wu 43

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

specific design needs. It is a comprehensive environment for sope design. The

Quartus II software includes solutions for all phases of FPGA and ePLD design

including design coding, system synthesis, timing analysis, and gate-level simulations.

It also provides several tools to help debugging the system design such as RTL viewer,

Technology map viewer and Signal Tap etc.

3.6.4.2. SOPC Builder

sope Builder is provided by Altera specifically for sope designs on its

programmable logic devices. It is an integration tool for composing bus-based systems

out of library components such as Cl'U s, memory interfaces, and custom-defined

peripherals. It automatically generates interconnect (bus) logic including the slave-side

arbitrators between Avalon master and slave ports on all system components without

manually doing the tedious bus multiplexing.

The sope Builder has a GUI where the user can see all available IP components

including the user-defined ones and a list of arranged components of the current system

module. The user can also specify the clock frequency, configure the processor by

specifying the register file size, hardware multiply and divide and custom instructions

etc., assign basic address for each Avalon slave, manage connectivity of each

master/slave pair, and assign the fairness setting for all masters. These can all be done

in the system contents page of the sope Builder (see Figure 3-15). Whenever the user

makes changes on the system module in the GUI it updates the system description file

(PTF file) which stores the actual contents in the current system module at the same

time. For example it stores the information of all IP components the top-level system

module contains, and descriptions of the 10 ports on each IP and the global

connectivity. The description of the slave-side arbitrators is also contained in this file if

there are connections from multiple masters to the same slave. This system PTF file is

not a VHDL file but a record file of the current system that 'guides' the system

generator program to generate the actual top-level VHDL file of the sope design.

September 2007 FanWu 44

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

Module ;ramo & di?SCr;ption
Memory mnp sodress
& IRO mformMion

.... ·I'!)jI,es..~t:u:....v~v;t
-::'~1i!"trho;1<f<~"rw:-~ II
'..::'.oI'Itijjl.o!ru-~:rI"I"".i>.:

Moduie pool

"1IVl>!,o&"~I!II"~'

• rt+l'~"tI1oUW'~ Pi8:==:j~E::.==:::r=::::=~~==:=D~r.::~:=m~...........~
* Me.~ .q".""~'"

if.a"'__
~,1!~~iN'
~til1r;;IU ~tII)
;: er'h.",- hPI~......~
iI (PH,", HivIII)on~rltl!tI kt

~ LYiltIUIGtlli!rftlJ;n;Ci!.CJIjlolflf
... ttlwr1lOP'

compo{mnl's)
IIJ," __ .."

T!ti!I>wI

JT! scr
q'I)~"

(available

,(I1't1""i,"
,pP(:1
e» 1'.",--

Add Inmon

Figure 3-15 SOPC Builder system contents page (From [55])

Once the user finishes editing the system module either though the OUI or by directly

modifying the system PTF file, the system generator program of the sope Builder will

generate a top-level VHDL file describing the top module of the sope design

associated with a software development kit (SDK) if the Nios processor is in the

design. Figure 3-16 illustrates how the sope Builder works and what the output is in

each step.

September 2007 Fan Wu 45

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

SOPC Generation

Figure 3-16 SOPC Builder (From [42])

3.6.4.3. ModelSim

As Quartus II doesn't support behaviour simulation, generally a third party simulation

tool is used instead, a typical one is ModelSim. The ModelSim software is a dual-

language simulator which supports designs containing Verilog HDL, VHDL, or both.

3.6.4.4. Programming tool

Once the system synthesis completes, the Quartus IIgenerates several programming

files with various formats. They can be used to configure the device by different means

via the programmer. The most common ways are via Joint Test Action Group (JTAG)

or active serial mode [55]. A USB-Blaster download cable [56] is normally used to

download the system design to the device for configuration.

3.6.4.5. Software download tool

The user can compile the software code in the Nios SDK Shell [57], which is a UNIX-

like command shell that allows the user to build software, download software to the

Nios development board [58], and run utilities and various test programs on the board.

Once the software is compiled, the resultant binary code is stored in S-record format so

that this complied code can be downloaded into Flash memory via the serial

communication interface. Nios-build is the command to compile a source software file,

September 2007 Fan Wu 46

An SOPC Based Image Processing System Chapter 3. An Introduction to System-On-a-Programmable-Chip

(SOPC) Technology

and Nios-run is the command to download and run the application on the development

board [59].

3.6.5 Proposed image processing system with the Nios processor system

architecture

The proposed image processing system was developed based on the Nios processor

system where the Nios processor was initially employed to perform all system control

and processing tasks, and which is identical to what the conventional embedded

processors do. Once this system is proved to work properly, it can be applied into a

specific application to run specific algorithms whilst the image processing performance

can be improved by using dedicated hard fabric, DSP blocks or even more processors if

resource is available. For the benefits of future development, this image processing

system is able to work both in 8-bit grey level mode and 24-bit RGB mode, as these

two modes are widely used in industrial vision based systems.

The performance goal of SIPS is to maximise the data bandwidth and transfer rate, and

optimise the system architecture to allow the Nios processor to fetch data more

efficiently. For the reasons of cost and better integration for further development, the

main video function IPs were all developed from the bottom.

In the next chapters, detailed descriptions are given for SIPS in terms of the hardware

and the soft system core design.

September 2007 FanWu 47

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

Chapter 4. The Nios Integrated Real-time Image Processing

System - Hardware

Based on SOPC technology, a Nios integrated real-time image processing system was

developed and evaluated on the Nios development kit. In the next two chapters, a

detailed description of this system is presented with emphasis on the hardware & soft

system core.

This chapter focuses on describing the hardware of this system. Section 4.1 gives an

overview of the system hardware architecture; a description of each hardware

component is presented in section 4.2, 4.3, 4.4, and 4.5 respectively. Section 4.6

introduces the hardware platform, where the whole system was developed. In the last

section a summary of this chapter with an explanation for the reason for choosing the

dedicated hardware, is presented.

4.1 Overview of the system hardware architecture

Following the guidelines described in Chapter 3 for implementing a real-time image

processing system based on SOPC, the hardware architecture of SIPS was designed as

shown in Figure 4-1 .

Video capture Altera's programmable
device device

-~~
~ 8/24 bits

Video memory
device

Figure 4-1 Block diagram of the hardware architecture of SIPS

Table 4-1 lists the device chosen for each function module and the reasons for its

choice.

September 2007 Fan Wu 48

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System-

Hardware

Table 4-1 Device table

Module Device Addition hardware Reasons to choose

High data rate, digitised

Video CameraLink [60] CMOS
A custom designed interface, easy to

camera interface implement, able to modify
capture camera, 8/24-bits

the camera operations andcard

support windowing

640x480 Cathode ray

Video tube (CRT) analog A VGA board Cheap, easy to find and

display monitor (Video graphic contains a DAC implement

arrays VGA format)

Video
Synchronous dynamic

A simple SDRAM Cheap, high data rate &
random access memory

memory socket wide data width
(SDRAM), 144 pin

Off-chip static
Cheap, support SOPC

System random access

control &
Altera's Apex 20K

memories
integration, meet the

video
programmable device

(SRAMs), flash
initial design requirements

[27] of SIPS, had immediate
processing etc. for memory

access
support

Figure 4-2 shows the actual hardware of SIPS.

Figure 4-2 The Nios integrated real-time image processing system

September 2007 Fan Wu 49

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

4.2 Video display device & interface

The video display device is a typical CRT monitor with a resolution of 640x480. It

supports the VGA mode. Video data & timing signals are sent to the display from the

programmable device via a dedicated hardware interface - Lancelot VGA board [61].

Descriptions of this Lancelot VGA board with a VGA connector are presented in this

section.

4.2.1 CRT monitor

The principle of how a CRT works is when the electrons emitted from an electron gun

(a source of electrons) strikes the phosphorescent screen, light is emitted. A common

CRT is colour (typically using three electron guns to produce red, green, and blue

(RGB) images that, when combined, render a multicolour image). They come in a

variety of display modes, including Colour Graphics Adapter (CGA), Video Graphics

Array (VGA), Extended Graphics Array (XGA), and the high-definition Super Video

Graphics Array (SVGA). For this system VGA mode was used as most CRTs support

this mode.

4.2.2 Lancelot VGA board

The hardware interface which interfaces the programmable device is a dedicated video

board called the Lancelot VGA board (Figure 4-3). The Lancelot VGA board is an add-

on daughter board which fits on the expansion interface of Altera development boards.

This board consists of a video DAC which converts 24-bit digital data to analogue

signal so that the CRT monitor can display images which contain either 24-bit RGB or

8-bit monochrome data, per pixel. See Appendix A for the schematics of this board.

Figure 4-3 Lancelot VGA board

September 2007 Fan Wu 50

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

4.2.3 VGAconnector

A VGA connector, as it is commonly known, is a three-row 15 pin connector. VGA

connectors and their associated cabling are used solely to carry analog component

RGBHV (red - green - blue - horizontal sync - vertical sync) video signals. Figure 4-4

& Table 4-2 illustrates the pin assignments on this VGA connector.

CD®@0®
@ ®0®®@ @

@@@@@

Figure 4-4 VGA connector

Table 4-2 VGA connector pin assignment

Pin number Description Pin number Description Pin number Description

1 Video-Red 2 Video-Green 3 Video-Blue

4 No connect 5 GND 6 GND

7 GND 8 GND 9 No connect

10 GND 11 No connect 12 DDC data

13 H-sync]4 V-sync 15 DDC clock

Note: only the highlighted pins are driven by valid signals 10 this system.

4.3 Video memory device & interface

The main video data storage in this system is an industry standard single data rate

synchronous dynamic random access memory (SDR SDRAM) model TOSHIBA

THLY 6480HIFG-80 [62] (Figure 4-5). It is an 8,388,60S-word by 64-bit SDRAM

consisting of four TC59SM716FTIFTL DRAMs on a printed circuit board. This

memory device is command driven, which includes single read/write, page read/write,

mode register set, auto refresh, self-refresh and power-down mode.

Figure 4-5 Toshiba SDRAM SODIMM THL Y 6480HIFG-80

To connect this memory device to the FPGA, a 144-pin small outline dual in-line

September 2007 Fan Wu 51

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

memory module (SODIMM) socket, compatible with standard SDRAM modules, was

used on board. It is a 144-pin module so it supports 64-bit data transfer. See Appendix

C for detailed pin assignments.

4.4 Videocapture device& interface

CameraLink was chosen as the communication interface between the video camera and

the image processing system mainly because of its digitalised interface and parallel

video data transfer. In this section an introduction of the CameraLink camera and the

interface card is presented.

4.4.1 CameraLink camera

The camera used for testing this system was a COHU 7800 series 1280xl024 CMOS

progressive scan camera [63] (Figure 4-6). It supports an 8-bit monochrome video

format. However, because this system was designed and can be configured to work

with both 8-bit monochrome and 24-bit RGB video, the color version camera is also

supported without changing any hardware. Table 4-3 lists the main features of this

camera provide.

Table 4-3 COHU 7800 series camera specifications

Pixels Up to 1280 x 1024
1----..---...............-.-.- _._----._--_._--_ .._ ..__ .__ ._-_._._--_._._. __ ._--_._--_ __ ...__ .-..-.._-_._---_ _ .. .,.....................................

Pixel clock 5MHz, 10MHz, 20MHz, 40MHz
._-_._._ .._.__._._ .._-_ .. -.-----.- ...--.~...-.-.---.-- ..-....

Frame rate
30 fps at full frame resolution; >30 fps with smaller regions of

interest

Video output
8-bit (CameraLink format) data; horizontal (line) drive, vertical

(frame) drive & pixel clock

Via video connector. All adjustments are software controlled
Microprocessor

through non-volatile registers; programmable logic, firmware can
control

be upgraded via internal port, preset configurations supported.

Gain and offset Gain: 9 values in video amplifier

control Offset: 47 values for video black level reference setting
..

This camera has a built in microprocessor which not only provides digitised video data

& enables output, but also supports a serial communication protocol to allow the

camera to be modified externally, i.e. reducing the capture window size for higher

frame rate.

September 2007 FanWu 52

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

Figure 4-6 COHU 7800 series 1280xl024 CMOS progressive scan camera

4.4.2 Camera interface card (custom designed)

Signals from the CameraLink camera are a number of pairs of Low-voltage differential

signalling (LVDS) data which contain the video data and timing signals. The Camera

interface card, which was designed with Cadstar by the author and manufactured by

PCB Train [64], mainly consists of the LVDS receivers and transmitters to convert the

LVDS data streams into parallel MultiVolt I/O data which the FPGA can accept. It also

converts the control and configuration data driven from the FPGA into pairs of LVDS

signals to either trigger the camera or configure the working mode of the camera.

Figure 4-7 shows the component side of this interface card.

Figure 4-7 Camera interface card

The main components on this interface card are a 3MTM Mini D Ribbon (MDR)

connector [65], a 28-bit LVDS receiver modelled DS90CR286 .[66], an LVDS quad

CMOS differential line receiver modeled DS90C032 [67], an LVDS quad CMOS

differential line driver modeled DS90C031 [68] and some decoupling capacitors and

resistors. Appendix A shows the schematics of this interface card. Two PCB diagrams

of it are shown in Appendix B and the pin assignments shown in Appendix C. There

are 3 headers on the board to allow this interface card to plug in the Nios development

board. Figure 4-8 illustrates a block diagram of the schematic of this interface card.

September 2007 Fan Wu 53

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

Data (LVDS) Q

Data CL VDS) 9, r 40-pin, """N-l
0<00-l, MDR26 Data (LVDS) Q DS90CR286 ?~C Header, ru;(j, ,<N s: (5v,

Data (LVDS) Q " ...0 Tolerant):Q 'er'"e"" Cl
Ql '" !!<'3 c §l"'",,,~

,r
15· Data (LVDS) 9,7'C, =.,,

20-pin,, Header,, (3.3v),, TTUCMOS, Data, Data (LVDS) 9 DS90C032 1bit (SerTFG),, 16-pin
I wJ- HeaderI

(5v
Data (L VDS) Q Tolerant)DS90C031 TTUCMOS

, Uata
Data (L VDS) 9 2 bit (SerTC.

Trig)

Figure 4-8 Block diagram of the camera interface card

DS90CR286

This 28 bit LVDS receiver converts four pairs of LVDS signals into 28 bit 3.3 volt

input data to the FPGA which includes 24-bit ROB, horizontal line drive signal LVAL

and vertical frame drive signal FVAL. It has an onchip PLL to multiply the LVDS

clock by 7 times to clock in the video data.

DS90C031

This LVDS quad differential line driver converts two 5-volt output signals from the

FPGA, which are external camera trigger signal Trig and camera serial control signal

Ser'I'C from the FPOA, to 2 pairs of LVDS signals and transmits them to the camera.

DS90C032

This LVDS quad differential line receiver receives and converts one pair of LVDS

signals from the camera, which is the camera status information, to a 5-volt input signal

SerTFG to the FPOA.

MDR connector

This MDR Connector, which exists on both ends of the CameraL ink cable, meets the

stringent demands of reliable high-speed differential signaling applications [63]. Figure

4-9 and Table 4-4 describes the camera signals and how the interface card connector

should match that.

September 2007 Fan Wu 54

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

1

o]~:: : : : : : : = : : : : W[o
25
Figure 4-9 MDR connector (from [63])

Table 4-4 COHU 7800 CameraLink cable pin assignments

Signal

descriptions

COHU Camera Interface card CameraLink

camera signal connector connector signal
.••.•..•..... _ _ _ - •.................•....•..•.. -....... . -_ _ , .

1 Inner shiedDGNND 1

DGNND 14 14 Inner shied

TXOUTO- 2 25 XO-

TXOUTO+ 15 12 XO+ DS90CR286

TXOUTl- 3 24 Xl- 24 bits video data

TXOUT1+ 16 11 Xl+ and 4 video

TXOUT2- 4 23 X2- enables include

TXOUT2+ 17 10 X2+ FVAL, LVAL

TXOUT3- 6 21 X3-

TXOUT3+ 19 8 X3+

TXCLK- 5 22 Xclk- DS90CR286
...................... _ .. - _

TXCLK+ 18 9 Xclk+ V ideo pixel clock
..................... _._ .._._ ..•.•.•..••.. _._ _._ ...__._.__.__.____._ ..__ ._...._ _ .._ _ ...-........ _ _ _ ..._

RX+ 7 20 SerTC+ DS90C031

RX- 20 7 SerTC- SerTC

TX- 8 19 SerTFG- DS90C032

TX+ 21 6 SerTFG+ SerTFG

9 18 CCl-

22 5 CC1+

10 17 CC2-

23 4 CC2+

TRIG- 11 16 CC3- DS90C031

TRIG+ 24 3 CC3+ Trig

NC 12 15 CC4-

NC 25 2 CC4+
.. _ _ _ ____-

GDNDD 13 13 Inner shied

GDNDD 26 26 Inner shied

September 2007 Fan Wu 55

An sope Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

When designing the printed circuit board (PCB) of this interface card, there are a few

things needed to take extra concern such as termination at the RX LVDS, inputs traces

and power supply [69][70].

4.5 Alters '8Apex device

The Apex 20K programmable logic device family is industry's first PLD incorporating

SOPC integration. Reference [27] identifies the main features of the Apex 20K

programmable logic device family as,

~ MultiCore™ architecture integrating look-up table (LUT) logic, product-term

logic, and embedded memory

~ LUT logic used for register-intensive functions

~ Embedded system block (ESB) used to implement memory functions, including

first-in first-out (FIFO) buffers, dual-port RAM, and content-addressable memory

(CAM)

» ESB implementation of product-term logic used for combinatorial-intensive

functions

» High density: 30,000 to 1.5 million typical gates, up to 51,840 logic elements (LEs)

Up to 442,368 RAM bits that can be used without reducing available logic, and up

to 3,456 product-term-based macrocells

» Flexible clock management circuitry with up to four phase-locked loops (PLLs)

By integrating the SOPC design on this programmable device, this device can control

all off-chip peripherals and fulfill various image processing algorithms.

The one chosen to evaluate the sope design was Apex EP20K200E484-2x with the

typical contents shown in Table 4-5.

September 2007 FanWu 56

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

Table 4-S Apex 20KlOOE device features (From [27])

I Maximum system gates 526,000
!

I Typical gates 211,000

! LEs 8,320

I ESBs 52
I

Maximum RAM bits 106,496

Maximum macrocells 832

Maximum user 110 pins 382

PLLs 2

4.6 Nios development board

The Nios development board provides a hardware platform to immediately start

developing systems based on AlteraApex devices (see Figure 4-10). Reference [58]

lists the main features of the Nios development board as following,

» I Mbyte (512 K x lti-bit) of flash memory pre-configured with the 32-bit Nios

reference design and software

» 256 Kbytes ofSRAM (in two 64 K x 16-bit chips)

~ On-board logic for configuring Apex device from flash memory

~ 3.3-V expansion/prototype headers (access to 40 user VOs)

» 5-V-tolerant expansion/prototype headers (the Lancelot VGA board and the

CameraLink interface card are fit in here)

~ Small outline DIMM (SODIMM) socket, compatible with standard SDRAM

modules (it's where the video memory device located)

» Two IEEE-1386 Peripheral Component Interconnect (pC I) [71] mezzanine

connectors

~ One RS-232 serial connector

~ One user-definable 8-bit dual in-line package (DIP) switch block

» Four user-definable push-button switches

~ Dual 7-segment light-emitting diode (LED) display

» Two user-controllable LEOs

» JTAG connector for ByteBlaster™ II and MasterBlaster™ download cables

» Oscillator and zero-skew clock distribution circuitry

September 2007 Fan Wu 57

An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

~ Power-on reset circuitry

~ Power-supply circuitry (Input: 9-V unregulated, center-negative)

(8W6)
AF'EXdevIce
JTACchain
SW1Ich

(SWO) \
ConIIQl.JI'lIIliOll \
eontrOl.,., \
JTAGchllln

ISWIG) SWItch ' ..,
PMc J't'AG ",\
ctl~n ~ik;h "\."

(JP11)
40-p1n haiKl8r for 5.0 vOl1
P'IlIOtypl'll'!Ollr\AdOI

\,

~~~hWdel \.
for ronIigura.tIon \
c:ontrollor

(U3) \
Flaah

~

/{U15)
/ $RAM
/

(J2)
SORAM SOOlMM
Soo::k&l

Figure 4-10 Nios development board (From: [58])

4.7 Summary

This chapter has given an overview of the major hardware components used in SIPS

including the programmable device and other off-chip peripherals. The video data

storage device is an off-chip 144-pin SDRAM. The video display device is a 640x480

VGA mode CRT monitor whilst an additional VGA display interface card (Lance lot

board) was used to convert the digital video data into analogue signals so that they can

be displayed on the analog CRT monitor. The video capture device is a CMOS camera

with CameraLink interface; an off-chip on-board camera interface card was custom

designed and fabricated to convert the LVDS video data streams into parallel MultiVolt

l/O data which the FPGA accepts. An Altera's Apex EP20K200E484-2x FPGA was

chosen to implement the main SOPC core design. The whole system was developed

September 2007 FanWu 58



An SOPC Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

based on the Nios development platform which contains the dedicated programmable

device, expansion connectors to allow the video interface boards easily plugged in, and

some other hardware components such as flash memory, SRAMs, oscillator and reset

circuitry, which were useful to set up the system and verify the design conveniently.

When making decisions for choosing the video components, the main considerations

were the cost, the difficulty of how they can be implemented, and most importantly

whether they satisfy the system requirements such as speed, capacity etc. A good

example of cost and popularity is the VGA mode CRT monitors. They are cheap and

easy to find. Although the display device was a CRT monitor, Liquid crystal display

(LCD) is also supported as long as it has the VGA mode, but certainly the price of

LCD is higher than CRT. The video memory storage device - SDRAM, although it

needs longer access time than SRAM or onchip memory, it is cheaper and has more

capacities than the other choices. SRAM is fast and there are two available on the

development board, but the total memory of them is 256 Kbytes, which is not enough

for the SIPS which requires at least 640x480x8x3 ~ 0.879 Mbytes for 8-bit

monochrome mode and 640x480x24x3 ~ 2.636 Mbytes for 24-bit RGB mode (see

section 5.7.1). Furthermore they have partly been used for the CPU program and data

memory. The on-chip memory is even less (13 Kbytes). Flash memory device could be

an option but due to its complexity of erasing and programming operations it's not

ideal for real time processing.

The VGA interface card - Lancelot board, although it wasn't made for commercial

usage, it has been widely adapted in many imaging system developments such as [72],

[73] and [74]. The main reasons of choosing it for evaluation were it supports VGA

mode and is compatible with the hardware development platform.

The hardest part to decide was the camera interface. There are many VISIon

communication interface standard which can be chosen such as CameraLink, USB,

Institute of Electrical and Electronics Engineers (IEEE) 1394 (Firewire) [75] etc. USB

is an ideal choice because of its broad usage in commercial market and low price, and

actually there is a USB 1.1 host slave IP core [76] which is available from

OpenCore.Org. However, the maximum bandwidth of USB 1.1 [77] is insufficient to

support smooth video transfer in this system. Supposed it needs to capture ten frames

September 2007 FanWu 59



An SOPe Based Image Processing System Chapter 4. The Nios Integrated Real-time Image Processing System -

Hardware

per second, and the pixel format is in 8-bit monochrome. Theoretically it requires

10x8x64Ox480= 23.437 Mb/s which is twice over the capacity of the USB1.1 transfer

rate which is 12 Mb/s. Although USB 2.0 [78] and Firewire are fast and provide high

bandwidth, there is no exiting IP components which can be used for them while it

would be time-consuming to develop. However, Cameral-ink, which provides digitised

interface, high transfer rate (can be up to 2.38 Obitsls [60]), and most importantly it's

specialised for vision systems, so it is easy to be built into this image processing system.

Furthermore, the serial control interface allows the camera to be configured and

controlled, Le. by reducing the capture window size to obtain a higher frame rate,

which is not the function that general USB and Firewire cameras can offer. The only

thing needed to do was to construct a camera interface card to allow the camera to

convert the LVDS streams to MultiVolt 1I0s so that the FPOA accepts and vice versa.

This camera interface card fits on the expansion interface of the Nios development

board.

There are various FPOAs which could be chosen to evaluate the SIPS core. The reason

for choosing the Apex 20K was it had immediate availability to use as well as the Nios

development platform when this research commenced. As shown in the experimental

results the number of 1I0s and gates requirements are all met although the on-chip

memory is not enough to support the system in 24-bit ROB mode. However, the

flexibility of this system can always make it easy to be implemented in a better FPOA.

Chapter 7 will be giving some performance analysis on several FPGAs which could

probably be used in the future for implementation of the system in 24-bit ROB mode

and optimisation.

Although the SIPS core is able to be generated into an 8·bit monochrome or 24-bit

RGB system (see Chapter 5), neither of these configurations require changes on the

hardware because it has been designed to accommodate the maximum capacity.

September2007 FanWu 60



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Chapter 5. The Nios Integrated Real-time Image Processing

System - Soft System Core

5.1 Overview of the system core architecture

In Chapter 4, a detailed hardware description of this image processing system was

presented. As described, the system core of this image processing system was

synthesised and evaluated on the Altera's programmable device Apex 20K200E. This

chapter therefore focuses on describing this soft system core in details. Based on the

system level design methodology and the Nios processor system architecture described

in Chapter 3, all off-chip peripheral controllers were implemented as separate IP

modules and wrapped with the Avalon bus interface so that they can be integrated

together automatically with the Avalon bus module by the SOPC Builder. All of the

main IPs used in SIPS are listed and described below .

.... Nios processor

4 Flash controller

4- SRAM controller

'" Timer [79]

"'- UART controller [80]... Video memory controller

... Video capture controller

... Video display controller.. Cache

The Nios processor, Flash controller, SRAM controller, Timer and UART controller

are provided by Altera as standard IP components, while the other IP components

including the video memory controller, video capture controller, video display

controller and Cache are designed by the author.

The Nios processor, as described in Chapter 3, is the main computing engine for image

processing. It also provides the overall controls for the other system peripherals.

The video memory controller provides interface controls for the memory device

September 2007 FanWu 61



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

SDRAM to buffer all incoming video streams and also stores the processed video data

ready to be displayed.

The video capture controller decodes the video enable signals driven from the

CameraLink camera via the interface card and uploads the raw video streams to the

memory device.

The video display controller drives the Lancelot VGA board with relevant VGA

timing signals and the video data to get the video displayed on the CRT monitor.

The Cache acts like a 'bridge' between the Nios processor and the main memory for

more efficient data transaction.

The Flash controller drives the off-chip flash device which can be used as general-

purpose readable memory and non-volatile storage, or to hold the Apex device

configuration file which is used by the configuration controller to load the Apex device

at power-up.

The SRAM controller provides control to the dual off-chip SRAM chips, which can

be used by the Nios processor for storing the program data and instruction in zero-wait-

state.

The Timer module is a 32-bit interval timer which is useful to measure the specific

software timing for testing purpose.

The UART is used to provide controls for on-board serial connectors typically used for

host communication with a desktop workstation. This IP module is also used to control

the CameraL ink serial communication.

The video display and capture controller can be configured individually to allow the

system to work in either 8-bit monochrome mode or 24-bit RGB mode. All of these

custom IPs can be programmed individually to meet different system requirements

such as changing the resolution, modifying the burst transfer length etc. They are

completely reusable and can be fitted in other types of programmable devices.

September 2007 FanWu 62



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

Figure 5-1 illustrates the architecture of this system core and the communication flows

with the external hardware.
r------------------------------------,

I
I

SRAM
.. _in..!e~a~e_

I
I

."........................... NIOS processor I
r-'-'-'-'-
I

jB~._._ .. -~.-.-.+
Video memory l.-,.....__..

controller................................. :.... ::::..
.,....

.".'
..' .....' ...",,'

• Video capture ."..' ."
controller

Video display I.-controller
Avalon
nus

Modul
e Flash

·1 r• controller UART..

.. SRAM controller

·1 1.. Timer

<: NIOS SOPC system

I
I
I
I
I
I

SDRAM
interface- .... ---~

I
I
I
I
I

VGA Display
interface--1---
I
I

SDRAM

Camera-link
camera-~. ~~,~:;;,~~

~:
I
I
I

Flash interfac
• - - -1"-

SRAM

..~.~~..~!~~~.~~~~.~?~ ..
!~o:.e~s~~'2d.e~~a~,n~..

Altera's Programmable device, Apex 20K

Figure 5-1 Top level block diagram of SIPS core

In the next few sections, detailed descriptions are given to the video memory controller,

display controller, capture controller and Cache. Following that descriptions of all

clocks used in this system are given. Finally it presents some typical design issues

including the multiple bank operations, the use of double line buffer mode in both the

video display and capture controller, and the synchronisation of multiple clock

domains.

September 2007 Fan Wu 63



An sope Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System-

Soft System Core

5.2 Video memory controller

This video memory controller is used to drive the SDRAM device to buffer both raw

video data which came from the video camera and the processed video data to be

displayed. In order to ensure a lossless transfer, multiple bank operation is

implemented (see section 5.7.1).

This section, firstly introduces the main features of this memory controller, and then it

describes the details of this memory controller. Finally a brief summary is given.

5.2.1 Main features

The main features of this memory controller are,

) Support standard Avalon bus interface
)

)

Support Avalon streaming read/write transfers (streaming length from 1-512)

Shared by multiple masters (This is discussed in the Chapter 6)

) Simplified SDRAM command interface

) Internal state machine performs power-on SDRAM initialisation

) Full page operation mode only, burst read burst write

) 8 bytes (64 bits) data width, contain two pixels in 24-bit RGB mode or eight

pixels in 8-bit monochrome mode

) One video line mapped into one SDRAM row

) Programmable CAS latency of 2 or 3 clock cycles

) Perform auto refresh internally, 4096 Refresh cycles / 64ms

) Support over 100MHz working frequency

5.2.2 Description of the video memory controller

This video memory controller was designed to program the memory device to perform

page read, page write, mode register set and internal auto-refresh operations. The

SDRAM is controlled by bus commands [81]. There are several command functions

such as Bank Activate command, Bank Precharge command, Precharge All command,

Write/Read command, Burst Stop command, Mode Register Set command [62].

However, it would slow down the system operations if all of these commands were

inilialised by a separate Avalon transfer. Therefore this video memory controller has

simplified this and only supports Avalon streaming read, Avalon streaming write &

September 2007 FanWu 64



An so PC Based Image Processing System Chapter 5. The Nios integrated Real-time Image Processing System-

Soft System Core

Avalon mode register set operations. These operations are fulfilled on the SDRAM

device by implementing a sequence of SDRAM commands. For example, when an

Avalon streaming read request is initialised, the memory controller firstly sends out a

Bank Activate command to open a specified row in a specified bank, and then a Page

Read command is issued to continuously read data from the specific row, finally this

Full Page Read is terminated by a Precharge command and the whole operation

completes.

Figure 5-2 shows the top-level block diagram of this video memory controller. There

are three sub-modules of this soft core which are the Avalon interface, SDRAM

controller and SDRAM data path module. The Avalon interface module handles the

data transfers with the Avalon bus and decodes the address, to drive the SDRAM

controller to generate proper control signals and data to the SDRAM device for reading

and writing. The SDRAM controller generates the actual SDRAM commands to the

memory device. The SDRAM data path block handles the video data multiplexing.

oe------,
I

data_elk Video
memory
controller

I-------------------------~
I
IL _

wordmask

Figure 5-2 Block diagram of the video memory controller

September 2007 Fan Wu 65



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Table 5-1lists the top level 1I0s of the memory controller.

Table 5-1 Video memory controller top level signals
r- Signal Width Direc~9AIDescription
,:I',i'. ,"':,,: "s; {: \,' >,,:,·:,,~·)·7~.;''''..J ~)- ,''::,<,:,,·'i .. /·,
reset n 1 Global Global reset, active low
data elk --.----.-..--- ..-.--- ...1"-'-'-'-- _ .._,,---_ .._._ ....._ ....._.-_ .._ .._ .._._._._ ......_ .._---_._-_ .._.__ ..._._ ........__._-_ ...

1 From Video data transfer clock

clock System clock, drives Avalon transfers
system_elk 1

generator inilialised by the Nios processor

data slave cs u 1 Avalon slave chip enable, active high- -
data slave rd u 1 From Avalon master read enable, active high- -
data slave wr u 1 video Avalon master write enable, active high- -
data slave addr u 25 data Avalon slave address- -

masters 32-bit Avalon slave write data, the
data_slave writedata u 32- upper half of the video word

data slave
32-bit Avalon slave read data, the upper

_readdata _u 32
half of the video word

_ ••• __ •• __ ·····_····_· .. __ ·_· .. ··_··· .. • ....... _ •••• M ••• __ •• ·_ ..··_·_.M._ .._._ .._ .._ 1'--'''''''-''''--- ...--..-....~,-"---...-.-,-- ..-............. -.- ..-- ...---,._._ .._ ......... _ •••••••• _,· ••••• M ................................... ,,, .... " .......... _

Avalon waitrequest. It indicates the

address is finished being decoded and
data slave_waitrequest_u 1

the valid data is available to be read or
To video the slave is ready to accept new data

datadata slave dataavailable u I Always '1'
masters

data slave_readyfordata _u 1 Always'I'

Avalon endofpacket. It indicates the last

data IS being returned m a streaming
data_master _endofpacket u 1

read transfer or the slave is accepting

the last data in a streaming write transfer

data slave cs I 1 Same as data slave cs u- -
f- ........-.--- __ .._._........_........._..____...___.___..___...._....._,--_.__ . .._-----_._-_ ...._-----_ ..._-_.__ ...._._ ..__ ._--_._ .._.--_._-_ .._-._.__ ..._._ ......__ ..._----
data slave rd I 1 From Same as data slave rd u- - - --
data_ shl~e_~~T--'--'--t--:--- 1--._---------------_ .._"'_._-_..._-,.,-,"',"'-_......."'-_._-_."'-.

1 video Same as data slave wr u
data slave addr I 1 data Avalon slave address (not actually used)_ -

masters 32-bit Avalon slave write data, the
data slave writedata I 32- - lower half of the video word

September 2007 FanWu 66



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

data_slave _readdata_l 32

To videodata_slave_waitrequest_l 1

data_slave _dataavailable_l

32-bit Avalon slave read data, the

lower half of the video word

Same as dataslave waitrequestu

1 data masters Always' 1'

Always 'I'1data_slave _readyfordata_l

1data_master _endofpacket_l

cpu_slave_cs

Same as data_master _endofpacket_u

Avalon slave chip select, active high

Avalon slave read enable, active high

From Nios Avalon slave write enable, active high

processor Avalon slave address

1

cpu_slave _rd

1cpu slave_wr

1cpu_save _addr
-. __ .._--_ .._-_ ..._ ...._ ...__._.._ .. - ..._ ..-

cpu slave writedata- - 32

To Nios
32

processor

1

1

1

1

12

2

SDRAM
1

1I0s

cpu slave readdata- -

Avalon slave write data, contains the

SDRAM mode register data

Avalon slave read data, contains the

SDRAM mode register data

cs n

cas n

ras n

we n

add

bs

cke

dq

-- ...._--_._._. __ ._._.._-_ ....._._-_ .._-- _ .._--.

64

dqmb 8

Chip select, active low

Column address strobe, active low

Row address strobe, active low

Write enable, active low

SDRAM address input

SDRAM bank select

Clock enable, controls the clock

activation and deactivation, active

high
_._.__ ._ _ __ ._-_.- __ ._-_ .._._._ _.__ _- __ _ _ .._._._ _._ _ .

Multiplexed pins for data output and

input

Output Disable/Write Mask, In write

cycle, sampling dqmb high will block

the write operation with zero latency,

active high

Table 5-2 lists the interconnection signals between those three sub modules.

September 2007 FanWu 67



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

Signal

Table 5-2 Internal signals of the video memory controller

twidth i Description

addbank 2 SDRAM bank address decoded from data slave addr u-

12 SDRAM row address decoded from data slave addr uaddrow

9 SDRAM column address decoded from data_slave _addr_uaddcol

9 SDRAM end column addressaddcol last

Iadd decode done
Address decoding stage done, data cycle starts from the

next clock cycle

writecmd I I Avalon streaming write request

readcmd I Avalon streaming read request

moderegsetcmd I Mode register set request

moderegdata 14 i Mode register data to be set
!

done 1
written into the SDRAM, Avalon requests complete

Indicates the last valid data is returning or last data is being

wordmask 2 I Video word mask

oe 1 1 Output enable, high during SDRAM write, low during read

5.2.2.1. Avalon interface

The Avalon interface module provides I/O controls over the Avalon bus interface

signals of the video memory controller to transmit and receive video data to/from the

Avalon streaming masters (video capture masters, video display masters, Cache

masters), and also to receive mode register data from the Nios processor.

The Avalon interface module contains three Avalon slave ports. Two of them are

Avalon streaming slaves and the third is a simple Avalon slave.

CPU slave port - simple Avalon slave port

When there is an Avalon write request initialised from the Nios processor (a

fundamental Avalon write) to this slave signal moderegsetcmd is asserted to indicate

the mode register needed to be reset. The mode register data is contained in the signal

cpu_slave_writedata. The actual Mode register command is implemented in the

SDRAM controller module.

September 2007 Fan Wu 68



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Video data slave ports - streaming Avalon slave ports

These two Avalon slave ports are streaming Avalon slave ports which are mastered by

multiple Avalon streaming master ports to transfer video data through the SDRAM

device to the rest of this system. The streaming transfer length can be from 1 to the

maximum column size of the SDRAM device which is 512.

The data width of the SDRAM device is 64; however the maximum data width of the

Avalon bus port is 32. Therefore two Avalon master-slave pairs are ideally required to

transfer a 64-bit word in a single data clock cycle to maximise the system efficiency.

Each of them handles 32 bits.

In order to save system memory space, the SDRAM address is only carried in one

master-slave pair. In this system the one which handles the upper video word was

chosen to do this. So only bus data_slave _addr _u needs to be decoded in the memory

controller. This address contains not only the SDRAM bank (addbank), row (addrow)

and the start column address (addeo!) where the burst transfer starts, but the end

column address (addeol_last) where the streaming transfer should terminate. So by

comparing the start column address and the end column address the burst length can be

obtained. Table 5-3 shows details of the address bus dataslave_addr_u.
Table 5-3 SDRAM address mapping

Address

it 24 23 22 21...12 11 10 9 ...... 3 2 I 0
pperation
----_ .._ ...__ ..._-_ .._ ....__ ._._.._ -.- ...-.--.-.~ ............... - ._-_._ .._._ ......__ ._-_._ ......._- ....... _-_._- f-....._-- .........._.._.__._......._.._._.........-......_._.-._ .._ ......_ ..._ ...._ .....__ .._-_ ...

Write addbank addrow addeolladdeol last wordmask

Read addbank addrow addeolladdeol last pon't care

Note: addeol and addeol last are decoded in two separate states in the address

decoding stage

Whenever there is an Avalon RIW request initialised by an Avalon streaming master,

the memory controller immediately decodes the bank, row and start column addresses,

and presents streaming read command reademd or streaming write command writeemd

to the SDRAM controller. It also asserts the waitrequest data_slave _waitrequest_x

(x=u and 1) signal to stall the master until the address is decoded. Once the address is

September 2007 FanWu 69



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System _

Soft System Core

decoded by checking if the signal add decode done IS asserted, it deasserts the

waitrequest signal and waits for the end of the transfer by checking the signal done.

Figure 5-3 shows an ASM chart of how the Avalon interface module handles Avalon

streaming transfers involved with the two video data slaves.

Initialisation, all signals<='O'

addbank<= data_slave_addr_u(24 ..23)
r-------~ ~----------------------~addrow<= data_slave_addr_u(22 .. II)

addcol<= data_slave_addr_u(IO ..2)

readcmd<=' 1' writecmd<=' I'

slave _address _decode
data_slave_waitrequest_x<='l'

Keep holding readcmd or writecmd

addbank<= data_slave_addr_u(24 ..23)

addrow<= data_slave_addr_u(22 .. II)

addcol last<= data slave addr u( 10 ..2)

slave _data _cycle
addbank<= data _ slave _addr _ u(24 ..23)

addrow<= data _ slave _addr _u(22 .. 11)
addcol_last<= data _slave _addr _ u(1 0..2)

data_master_endofpacket_x =' I'

Figure 5-3 ASM chart of the Avalon streaming slave transfer

September 2007 FanWu

False

alse

70



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

5.2.2.2. SDRAM controller

The SDRAM controller responds to the three Avalon requests which are the mode

register set, Avalon streaming read and Avalon streaming write request from the

Avalon interface module and implements a sequence of SDRAM operations to

complete these requests. It also implements a power-up sequence to initialise the

SDRAM device. Figure 5-4 shows the interconnection of the main components in this

module.

reset n

refresh request ~

_______________________ I!.d!je2<?.ds-~o!!e_ ..
_______________________ ~o~e •.

-----------------------~-------- ..
DoActivate

: :D26'e2'iarie.::: :
_ _DE'2e2'lar.s~A!I_

DoRead
- -DoWrlte - - - -

= =D~~ei}4~<Ie~e:S=
DoRefresh----------

_ ~r!.!e2~d _
_ ~~~mj _

_ '!!<?.dqe.£,~t.£llJ.d _

_aj<tcq)J~t18·_'_°l _

I

I
I_~d~b~n!(!:.9l ~ _

- ~d~r'2.wllJ.jJL J _
_ ~d!!.cQI18'.:.°L ~ _
_ '!!o_dqe_g<!agtU 3-"QJ _

Figure 5-4 Block diagram of the SDRAM controller

There are three main blocks in the SDRAM controller and they are the SDRAM

command generator, SDRAM interface and auto-refresh generator. The SDRAM

command generator basically generates several SDRAM command signals to fulfil the

three Avalon requests as well as the power-up initialisation and the internal auto-

refresh function. These SDRAM command signals are DoActivate, DoPrecharge,

DoPrechargeAll, DoRead, DoWrite, DoSetModeReg and DoRefresh. This command

generator also calculates the burst length by comparing addcol and addcol_last and

generates the signal add_decode _done and done to the Avalon interface module.

The SDRAM interface block interprets the command signals from the command

generator and drives the SDRAM control interface signals cs_n, ras_n, cas_nand we_n

with different combinations of values to implement these command requests. For

example, when DoAcivate is asserted, control signal cs_n, ras_n are driven low and the

September 2007 Fan Wu 71



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

others are held high to activate an SDRAM row addressed at add[J 1..0} in bank

bs[1..0}. Appendix D shows a truth table for all SDRAM operation commands.

The auto-refresh generator is a counter which basically generates 4096 auto-refresh

requests in every 64ms. The actual Auto-Refresh command is asserted by the SDRAM

command generator.

The next few paragraphs mainly focus on explaining how the three Avalon requests as

well as the power-up initialisation and the internal auto-refresh request are

implemented with a sequence of SDRAM operation commands.

Mode register set command - 'moderegsetcmd'

The mode register stores the operation information of the SDRAM such as the CAS

latency, burst length, burst type, and write burst mode (see Figure 5-5). In this system it

supports full page burst length, sequential addressing mode and burst read burst write.

Whenever the mode register set request moderegsetcmd is asserted, the SDRAM

command generator firstly asserts DoPrechargeAlI to switch all SDRAM banks into

idle state. Then a Mode Register Set command DoSetModeReg is issued to actually set

up the mode register. Between the Precharge and Mode Register Set command a

minimum time gap tRP (Precharge to Active command period) must be met. Also after

the Mode Register Set command issued a minimum time period of tRSC must be elapsed

before performing the next command. These timing are implemented in the state

machine as wait states. Figure 5-5 illustrates the Mode Register Set timing cycle.

Table 5-4 summarises the SDRAM operations which must be performed to complete

this Mode Register Set cycle with the corresponding SDRAM control signal status.

Table 5-4 Mode register set command

Command SDRAM bsO A10
AO-A9

Descriptionscs n ras n ras n we n
command 1 All

DoPrecharge X H X L L H L
Precharge

Mode all banks
register set

V V V L L L L
Set modeDoSetModeReg
register

Note: V = valid, H = high level, L = low level, X = don't care

September 2007 Fan Wu 72



An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System-

Soft System Core

tRSC

AO-A11
880,881

CLK

Burst Langth
~~~=-..:.:.:.:.1......;A;';;OO~...;SequtdIaI;;.:;.;:.;;.,;;.;.;;;;;;;..+.;;.Inl8rteaved~1~~

o 0 2 2
A2

A3 Addmasing Mod9

A6

A7 0 (Test Mod&)

AS 0 Rasarvad

A9 Write Mode

A10 0

A11 0

BSO 0

881 0

Burst Length

o o ..
o 1 8

1 0 o
Reservedo

o
Ful Page

A3 Adc:lra8sq Mode

o

A6 AS A4

o 0 0

o 0
o 2o

o 1 3
o o

Figure 5-S Mode Register Set cycle (From (62])

September 2007 FanWu

4
8

73

An sope Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

Streaming read command

To implement a streaming read transfer the SDRAM must be firstly performed a Bank

Activate command DoAetivate to put the idle bank into the active state, like opening a

bank and row. Following that an SDRAM Read command DoRead is issued after tRCD

(Active to ReadlWrite command delay time) from the Bank Activate command, the

data is read out sequentially, synchronised to the positive edges of the data clock

data_elk. The initial read data becomes available after CAS latency from the issuing of

the Read command. As the SDRAM is operating at full page mode, Precharge

command is used to terminate the burst read operation at CAS latency before the last

data returned. The column address of the last data is specified at address bus

addeol last.

Upon returning of the last data the signal done is asserted to inform the Avalon

interface that the streaming read request is completed. Figure 5-6 shows an example

timing diagram of the burst read operation and Figure 5-7 illustrates the Burst Stop

cycle by a timing chart.

Table 5-5 summarises the SDRAM operations which are performed to complete this

streaming read command.

Table S-S Streaming read command

SDRAM bsO AO-A9
Command IAIO cs_n ros n ros n we n Descriptions

command I All

Activate the
DoAetivate V V V L L H H

selected bank
Streaming

DoRead V L V L H L H Burst read
read

Dol'recharge L H L
Burst read stop

X H X L
operation

----.--~-...,..--- •••-.-.-.-. __ ••_. ___ ••••••__ •__ •.••__._ •_____ •____ ._. ___ . __ •___ ..._.________ ._ •____ • L.... _____

Streaming write command

To implement a streaming write transfer the SDRAM must be firstly performed a Bank

Activate command DoAetivate to put the idle bank into the active state. An SDRAM

Write command DoWrite is then issued after tRCD from the Bank Activate command,

the input data is latched sequentially, synchronised with the positive edges of the data

clock data elk. The first write data should become valid on the dq bus when the

September 2007 FanWu 74

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

SDRAM write command actually occurs on the SDRAM interface. A Bank Precharge

command is issued to terminate the burst write operation at one clock cycle after the

last data is written.

Upon the completion of writing the last data signal done is asserted to inform the

Avalon interface that the streaming write request is completed. Figure 5-6 shows an

example timing diagram of the burst write operation and Figure 5-7 illustrate the Burst

Stop cycle by a timing chart.

Table 5-5 summarises the SDRAM operations which are performed to complete this

streaming write command.

Table S-6 Streamingwrite command

~omm:~- ·-SDRAM---- t:~~O- AO-~-9-~:-~--~-s:- ;:;--:- ~~-~-
command 1 All - In - - -

I
L I L H H Activate the

I selected bank
Streaming I------+--+--+---+---tl---t----t---=--t--=---~__j

Do Write V L V L H L L Burst write
Write

DoActivate V V V

Descriptions

DoPrecharge X H x L
Burst write

L H L
stop operation

Auto-refresh command (internally generated)

The internal auto refresh command refreshrequest driven by the auto-refresh generator

instructs the SDRAM controller to issue the Auto Refresh command to the SDRAM

device. If other SDRAM commands are in progress, the auto-refresh request will be

suspended until the other commands finish. However, if the refresh request and the

other commands are issued at the same time, then auto-refresh has the higher priority

and the other commands must wait until the auto-refresh command completes. By

repeating the Auto Refresh cycle, each row is refreshed automatically provided by an

internal refresh counter. The maximum refresh period of that device tREF is 64ms and

there are 4096 rows in each bank, so a burst of 4096 auto refresh cycles must be

completed within 64ms. The memory device must have an Auto Refresh command

issued at least every 64m14'096 = 15.625J.1s, In this system, as the video data was

September 2007 FanWu 75

An SOPe Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

designed to be clocked by a 100MHz clock, the SDRAM controller should generate an

Auto Refresh command no more than every 15 .625 ~ / =1562 data clock cycles.
/0.01 ~

.......
'IIIICI } lell•......
Figure 5-6 Page Mode ReadIWrlte (Burst Length = 8, CAS Latency = 3) (From (62))

September 2007 FanWu 76

An SOPC Based Image Processing System Cbapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

In the case 01 Burst lMlgtl. 8 o 2 3 4 5 6 7 8 9 10 11 12

8
(1) Read Cycle

(a) ~ Latency. 2
Command e

DO --~-~-1

(b) ~ Latency. 3

Command 8 :8' :· ., ,· .· .· .· .
DO --~-~-+-1

(2)Write Cyde

(a) Cl! Latency. 2
Command s :8

: twA:

___~_~_~~_~i~·~~~~__~_~~_~__~__DQM

DO

l~

--~-~-~~--;~:.~~._---------------------
s

DO

Note) • (PRCG) repNMnls the Precharge oomrnand.

Figure 5-7 Timing cbart for Bunt Stop cycle (From [6%»

The Auto Refresh command must be performed when all banks are in idle state

therefore a Precharge All command must be implemented IRP before issuing the Auto

Refresh command. After the Auto Refresh command issued a minimum period of IRC

(Ref!Active to Ref!Active Command Period) must be elapsed before activating the next

command. Figure 5-8 illustrates an Auto-Refresh cycle. Table 5-7 summarises the

SDRAM operations which are performed to complete the auto-refresh operation.

Table 5-7 Auto refresb command

~ommand SDRAM ~sO,l ~10 A0-9 ~s n ras n jwe_n Descriptionscommand All ras n

Auto DoPrechargeAlI X H X L L H L Precharge all
banks

refresh DoRefresh X X X L L L H Auto Refresh

September 2007 FanWu 77

An sope Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

o 1 2 3 " 5 6 7 8 9 10 11 12 13 ,.. 15 16 17 18 10 20 21 22 23

1 1 t j

Figure 5-8 Auto Refresh cycle (From [62])

Power-up Sequence

According to the SDRAM specification, power-up must be performed in the following

sequence.

1) Power must be applied to vee and veeQ (simultaneously) while all input signals

are held in the "NOP" state; this is the default state in the SDRAM interface

module. The clock signal must be started at the same time. This has already been

satisfied by the board design.

2) After power-up a delay of at least 200J.1sis required. It is required that dqmb and

eke signals must be held "High" (Vee levels) to ensure that the dq output is in a

September 2007 FanWu 78

An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

High-impedance state.

3) All banks must be precharged.

4) The Mode Register Set command must be asserted to initialise the mode register.

5) A minimum of eight Auto-Refresh dummy cycles is required to stabilise the

internal circuitry of the device.

To implement this sequence, the SDRAM command generator simply generates a

DoPrechargeAll command after 200~s when reset_n activates. Then it issues a

DoSetModeReg command to initialise the mode register with the default value (burst

write burst read, CAS latency of 2, sequential addressing mode, full page burst length).

Finally eight DoRefresh will be issued before entering the normal state.

5.2.2.3. SDRAM data path

The SDRAM data path module controls the multiplexing of the Avalon data and the

SDRAM data dq. During an Avalon streaming read cycle, data_slave_readdata_u =
dq[63 ..32}, while data_slave_readdata_1 = dq[31..0j. During an Avalon streaming

write cycle, dq[63 ..32} = data_slave_writedata_u, while dq[31..0} =
data_slave _writedata _I.

As the SDRAM data pins are bidirectional, in the memory controller they are treated as

a tri-state bus. During the Avalon streaming read transfers bus dq is placed in a high

impedance 'Z'.

The data path module also generates the SDRAM word mask bus dqmb, which is

driven from the two lowest significant bits (LSBs) of the Avalon address bus, to mask

the specific video half-word (32 bits) within the 64-bit data (see Table 5-8) in write

cycles.

September 2007 FanWu 79

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

Table 5-8 Description of the word mask

Wordmask dqmb[7 ..0} Description <

Full wordl64 bit mode (data_slave write data u and"00" "00000000" -

data_slave _writedata _I are both written into SDRAM)
..-.._ _._ _ _ _• -_ ..._ "' ••......... - _ _ _.__ __ .. _ ..__---_ ..._ ...__ ._- _ ..._ ..__ .-.__ .._---_.__ _._._-_._--_._ ...__ ..._ ..

Half word mode (only data slave writedata u IS
"01" "00001111" - - -

written into SDRAM)

Half word mode (only data_slave writedata I is written"10" "11110000" - -

into SDRAM)

"II" "11111111" No data is written into SDRAM

5.2.3 Summary

The video memory controller was designed to drive the SDRAM device to buffer all

video data used in this system. It has three sub-modules which are the Avalon interface,

SDRAM controller and SDRAM data path module. The memory controller provides a

standard Avalon bus interface to allow video masters to write to or read from the

memory. The Avalon interface module is the one which controls this bus interface. It

decodes the address information, and drives the SDRAM controller to perform Page

Read or Page Write on the SDRAM device. The SDRAM controller, which actually

drives the control signals to the SDRAM device, also generates the Auto-Refresh

command and performs power-up initialisation on the device. The SDRAM data path

module handles data transaction between the Avalon data ports and the SDRAM data

pins. This memory controller also provides an Avalon slave port interface to allow the

processor to modify the mode register content by writing to the CPU slave port in the

Avalon interface module. The actual Mode Register Set command is implemented by

the SDRAM controller.

Although the use of the pipelining can deliver the highest performance of using the

SDRAM device [82], for example if two requests addressed on the same row in the

same bank are issued, the memory controller could pipeline these two requests without

issuing another Bank Activation command for the second request and a Precharge

command is not necessary to be issued for the first request or even the second one if the

third request is still addressed on the same bank and row. However, due to the

existence of multiple masters in this system and the arbitration scheme used by the

September 2007 Fan Wu 80

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Avalon bus module (see Chapter 6), this pipelining feature is difficult to implement in

this system. Moreover, because the memory is operated in multiple bank mode (see

section 5.7.1) which means all video masters always operate on different banks and

rows, implementing the pipelining wouldn't really increase the performance. Therefore,

in SIPS, a Bank Activation command is always asserted before performing a Page

Read or Write on the SDRAM device.

In order to maximise the system performance, some special design methods were

applied in the memory controller. Firstly, as the data bus width of the SDRAM device

is 64 which is twice the full width of an Avalon bus port, it would be inefficient for a

master to access the same SDRAM address twice to request a 64-bit word data.

However, by implementing two Avalon master/slave pairs between the memory

controller and the video masters, a 64-bit data word can be transferred in a single clock

cycle.

In this system, a large block of video data is frequently required to be transferred, for

example, the video display controller always requests a video line's data with a length

of 80 words in 8-bit monochrome mode or 320 words in 24-bit ROB mode with video

horizontal resolution of 640 (see section 5.3), the video capture controller always

writes a video line's data into the memory (see section 5.4). By implementing Avalon

streaming transfers between the memory controller and video masters the data transfer

efficiency in this system can therefore be maximised. In order to accommodate these

streaming transfers the SDRAM device is configured to work in page mode only.

However various burst length from 1 to 512 can be achieved by terminating the burst at

an appropriate time.

5.3 Video display controller

The video display controller provides the function of requesting and receiving video

data from the memory device, and driving the Lancelot VGA board with these data as

well as the relevant VOA timing signals to get the video displayed on the CRT monitor.

Furthermore it provides an 110 channel to allow the Nios processor to configure and

control this video display controller.

September 2007 FanWu 81

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

In this section, it firstly introduces the main features of this display controller. Secondly

a brief overview of the VGA display mode is presented. Following that it describes this

display controller core in details. Finally a brief summary is given.

5.3.1 Main features

The typical features of this display controller are:

~ Always output 24-bit video data

~ Support 2 types of pixel format - 8-bit monochrome or 24-bit RGB

~ 1 video word = 64 bits = 2 pixels in RGB or 8 pixels in monochrome mode

~ Double line buffer mode to guarantee sufficient bandwidth

~ Display images with variable size of up to 640x480

~ Frame rate = 60 fls

~ Direct access to the memory device to request video data

~ Support standard Avalon bus interface

~ Variable Avalon streaming transfer length based on the horizontal resolution

~ 25MHz pixel clock

~ Interrupt supported

5.3.2 Video graphic arrays (VGA)

VGA is a display standard for the PC. VGA uses an analogue monitor such as CRT. It

was first marketed by IBM in 1987. VGA generally refers to a resolution with

640x480. It may also refer to the 15-pin VGA socket on a PC in general. The original

VGA only displays 256 colours by using a colour palette, however, in this system it can

display up to 16 million colours in 24-bit RGB mode or 256 grey levels in

monochrome mode, depends on how this display controller generated (set in the

generic map).

5.3.3 Description of the video display controller

In implementation, this video display controller consists of two sub-modules. They are

the Avalon interface module and VGA driver module. Figure 5-9 shows the connection

diagram of this display controller core. The Avalon interface module controls all the

Avalon bus interface signals for requesting and receiving video data from the memory

device. The VGA driver mainly generates the VGA timing signals to drive the VGA

September 2007 FanWu 82

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

display along with the video data read from the system memory.

video_elk

Video
Display

Controller

Figure 5-9 Block diagram of the video display controller

Table 5-9 lists the top level IIOs of the display controller.

Table 5-9 Video display controller top level signals
••••••••••••• H M ·"··,·

............~........... ..

Signal Width Direction Description
.. H ... _ ••• H ••• _ ••••••

reset n 1 Global Global reset, active low_
data clk 1 video data transfer clock_

From
System clock, drives Avalon transfer

system_ clk 1 clock
inilialised by the Nios processor

generator
video clk I 1 VGA pixel clock_

i ---
To video Avalon master read enable, active

data master rd u 1_ _
highmemory

data master addr u ! 32 controller Avalon master address_
i

From 32-bit Avalon master data, the upper
data master readdata u 32_ _

video half of the video word

memory Avalon waitrequest. It indicates the
data master _waitrequest_ u 1

controller address is finished being decoded and
..... H. -._ _ _ •••••• ••••••••••••••• H ... _

September 2007 Fan Wu 83

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

i
data_master _endofpacket_ u I

I
1

the valid data is available to be read

Avalon endofpacket. It indicates the

last data IS being returned In the

current streaming transfer

data_master _rd_l I
data_master _addr_l

1

1

To video Same as data_master _rd_u

memory Avalon master address (not actually

controller used)

data_master _readdata _l

data_master _waitrequest_l

data_master _endofpacket _l

cpu slave cs- _
cpu_slave_rd I I
cpu slave_wr I 1
cpu_slave _addr I 3

cpu_slave _writedata I 32
I

1

1

1

From 32-bit Avalon master data, the lower

video half of the video word

memory Same as data_master _waitrequest _u

controller Same as data_master _endofpacket _u

From

Nios

processor

Avalon slave chip select, active high

Avalon slave read enable, active high,

Avalon slave write enable, active high,

Avalon slave address

Avalon slave write data, contains the

configuration data

cpu slave readdata- _

cpu_slave _irq

32

1

To Nios

processor

Avalon slave read data, contains the

status registers

Avalon interrupt, active high,

indicates a video frame has displayed

out, cleared by a CPU write

hs

vs

1

1
ToVGA

Horizontal synchronisation signal

Vertical synchronisation signal

r

g

b I
i

blank n I
sync_n

sync_t

ml

m2
L--- ..•_._ .•.. ...•__ . __ _ _ _._._ _l __.___l_ __ ._._ .. ._ .._. _ _._._._ _ __._._ _

September 2007

8

8

8

1

1

1

1

1

To video

DACon

the

Lancelot

VGA

board

FanWu

Video blue

Video red

Video green

Control signals

Mode select signals

84

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

Table 5-10 lists the interconnection signals between the Avalon interface and the VGA

driver module.

Table 5-10 Internal signals of the video display controller

Signal Width Description

DMA start address. It is where a new video frame starts

dma address 32 for display III the memory device. Specified by the

software

DMA transfer length of a video line. For example it is 80

dma_Iength 9 in 8-bit monochrome and 320 in 24-bit RGB mode with

line resolution of 640

dma data 64
One video word = 2 pixels in 24-bit RGB or 8 pixels in 8-

bit monochrome

dma write I Write enable to the line buffers

dma_request I DMA transfer request

dma first 1 Indicates the first line DMA transfer request-

local cs I cpu_slave cs-
local addr 3 cpu_save_ addr-

local rddata 32 cpu_slave readdata
.......... _ .._---_ - __ ..-_...__._ _ _._. ••••••••• __ • __ •••• _. __ •••• _H ••• _. ___ ·_··_···_ ... __ • __ •• _ •• ___ ._._ ______ _._ -.--_._. __ ..-...._ _ •••••••••••••• _m __ ... _ ••• __ ••••••• _ ••• _ _ •••• _ _ ••••• __ •

local wrdata 32 cpu_slave writedata-

local rd I cpu_slave rd- -

local wr I cpu_slave wr- -

local_Irq 1 cpu_slave _irq

5.3.3.1. Avalon interface

The Avalon interface module provides I/O controls to the Avalon bus for the video

display controller to request and receive video data from the memory device through

the memory controller, and also to communicate with the Nios processor for receiving

configuration data and sending status information.

There are three Avalon bus ports in the Avalon interface module including one simple

Avalon slave port and two Avalon streaming read master ports.

CPU slave port - simple Avalon slave port

September 2007 Fan Wu 85

An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

The simple Avalon slave port is mastered by the Nios processor for configuration

purpose such as enabling display, configuring image resolution, setting up DAC mode,

specifying the DMA start address (the address in the SDRAM where the image starts)

and burst length. Furthermore, current system status and configuration information also

can be sent out so that the user can keep track of them. These Avalon signals are passed

to the VOA driver sub-module for decoding.

Video data master ports _ streaming Avalon master ports

The two Avalon masters are video data streaming read masters which master the two

streaming slave ports in the memory controller. Each of them handles 32 bit data. They

are used for requesting and receiving video streams from the main memory. Therefore

in every master read unit cycle the video display controller can receive 64-bit data

which contains 2 video pixels in 24-bit ROB or 8 pixels in 8-bit monochrome mode.

Table 5-11 and Table 5-12 show the pixel assignments in the 64-bit dmadata in 8-bit

monochrome mode and 24-bit ROB mode respectively.

Table 5-11 Pixel assignment in 8-bit monochrome mode for video display

dma_data(63 ..32) dma data(31.. 0)

(data master _read data_u) (data master _readdata _I)

63 ..56 55..48 47 ..40 39 ..32 31 ..24 23 ..16 15..8 7..0

Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel

8n+8 8n+7 8n+6 8n+5 8n+4 8n+3 8n+2 8n+l
._--_ ...__ ._ .._---_._-_ .._.__ .._._---_. --------- --_._--_._-.___-__._._ ...-..., ...• ____ .___ ___ ·' •..H.·._·...... _ ,..•..............

Note: n=O~video line width /8

Table 5-12 Pixel assignment in 24-bit RGB mode for video display

dma_data(63 ..32) dma_data(31.. 0)

(data master _readdata _u) (data_master _read data_I)

63 ..56 55.. 32 31 ..24 23 ..0

X Pixel2n+2 X Pixel2n+l

Note: n=Oi-video line width / 2 X=don't care

Each streaming request returns a video line data, the length of this video line is

specified in dma_length derived from the video horizontal resolution. For example, if

the horizontal resolution is 640, then the DMA length is 80 in 8-bit monochrome mode

or 320 in 24-bit ROB mode.

September 2007 FanWu 86

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Whenever there is a dmarequest from the VGA driver, the Avalon interface module

sends out a read request to the Avalon bus along with the relevant address information.

Once this request is accepted and decoded by the memory controller (by monitoring

signal datamaster _waitrequest_u or data master _waitrequest_l) then a block of valid

video data will be returned and stored in one of the two line buffers, the signal

dma_write is held high during the period of valid data returning. This data will be sent

out to display in the next active video line scan period (during hs is high). Signal

data_master _endofpacket_u or data_master _endofpacket_l is used to tell the master

port that the last data is returning.

The start address of a requested video frame is specified in signal dma_address which

is decoded from the CPU configuration data. When requesting the first video line the

Avalon master address data master _addr _u is dma_address, then it will be increased

by one memory row space in every read request until the whole frame has been

transferred. Upon this point the Avalon master address is reset to dma_address which

can be the same as the previous one or different depends on how the software handles

it. Signal dma_first indicates whether the new request is for the first frame line.

Figure 5-10 shows an ASM chart of the video data master read transfers.

5.3.3.2. VGA driver

The main function of this VGA driver is to generate the necessary timing signals along

with the video data to drive the video for display. Figure 5-11 shows the composition

of this VGA driver.

As discussed in Chapter 4, to display an image, CRT monitors typically require 5

signals: R, G, B, hsync, and vsync. The R, G, and B signals represent the intensity of

the red, green and blue signal elements that compose a pixel. The hs signal provides the

monitor with a horizontal synchronisation signal; the vs signal provides a vertical

synchronisation signal to the monitor [73]. The VGA driver in this design also

generates an additional synchronisation signals which indicates when the pixels are

active. This signal is blank _n signal. If the blank _n is asserted the output of the video

DAC is forced to zero.

September 2007 FanWu 87

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System _

Soft System Core

False

False

dma_address_reg <= dma_address
data _master _addr _u <=dma _address _reg

data master rd x<=' 1'

dma_address_reg <= dma_address_reg +1 memory row space

data _master _addr _ u <=dma _address _reg

data_master_rd_x<='l'

September 2007

dma_address_reg <= dma_address_reg + dma_length
data _master _addr _u <=dma _address_reg ~--

dma_address_reg <= dma_address_reg + dma_length

data _master _addr _u <=dma _address _reg

data_master_rd_x<='I'

dma_write <= 'I'

False

alse

Figure 5-10 ASM chart of the Avalon streaming master read transfer

FanWu 88

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

, I

: I DMA control
I I

: 1-.. ASM
: I

I I (Seq & Com)
I I
I

I I

1...------,
I
I
I
I
I
I
I
I

I I I

~- - - - - - - - - - - - - - - -! ---------~ - - - - - - - ...
I I
I I

local cs- - - Tocal8dar~::-°I - - -
:. -: TO§a1_£d§:t!atJ I ..~ - : _
___ ~o~alr_~~1_3"!:~J:._ Local slave interface

ioca re
- - - Toear-w.-- - - - - - -
- - - Toea(iiq- - - - - - -.-------------

... Vsync

ASM

(Seq & Com)
d,!!a_ ':!:q_UCJt _ ..
d'!!l!..flr~ ..

Hsync

ASM

(Seq & Com)

Line
.- - - - - - -It buffer 1 -:,

I
I

___ d'!!'L'!a!!'L6~··.Ql _

--j'!!I!..~~------------- -

Line buffer

control

I
I
I

:Lioebuffcr _sci
I

I I

~-------------------- I

vsVGA interface !-;b:;':llII1:=;kc:-n-

control sen
set,.

I
I
I

Line :
1- - - - - - -It! burrer 1 _,

-- Ellernal II.nab - - - - - lalomalsicaab

Figure 5-11 Block diagram of the VGA driver

Local slave interface

The Nios processor provides several registers to configure and control this video

display controller. These registers include a resolution register, DMA address register,

video control register and status register. Refer to Appendix E for the register map.

This local slave interface generates these registers by decoding the local address.

Interrupt signal local_irq is asserted when the bottom line of an image has been sent

out to the display. This interrupt is useful because the Nios processor knows when a

video frame has finished being display and it can set the next display bank address (see

multiple bank operation in section 5.7.1) during the video blanking period. This

interrupt must be cleared by writing to the DMA address register before carrying on

displaying the next image to prevent stalling the system.

September 2007 FanWu 89

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Hsync & Vsync ASM

In the VGA driver, those horizontal and vertical timing signals are driven by two state

machines respectively. The two state machines are triggered when the start bit in the

control register is set. The typical resolution and frame rate used in this system is

640x480 at 60 fps. Figure 5-12 and Figure 5-13 show the vertical and horizontal timing

diagram at these typical settings, while Table 5-13 and Table 5-14 list the timing details

for each of them.

J () C0
Active PIKeI8 0

ROB

Ihblank

hayne

E

B

A

Figure 5-12 640x480 VGA horizontal timing (From [73])

Table 5-13 640x480 VGA horizontal timing

I 640x480 VGA Horizontal Timing
I
I Description Time (us)

A Line scan period 31.77

'B Active video period 25.60

C Sync period 3.77

L?_ Back porch 1.89
---_._------_.- -----------IE Front porch 0.51

Since the active video period at 640x480 is 25.60Jls, it is not difficult to obtain the

frequency of the pixel clock which is 640 = 25MHz .
25.60~

September 2007 FanWu 90

An SOPC Based Image Processing System Chapter 50 The Nios Integrated Real-time Image Processing System-

Soft System Core

ROB

I¥tlIInk I
'IIIIJI1C

c

~

B

A

Figure 5-13 640x480 VGA vertical timing (From [73])

Table 5-14 640x480 VGA vertical timing

640x480VGA vertical timing

Description Time (ms)

A Frame period 16.68

B Active video period 15.25

C Sync period 0.064
---- -_._._._--_._-----__._---- • _____ •• _ ___ .N

~~-

Back porch 1.02
_________ .__ ._o__ ._o __ ._._· _-_ .._-___ _._._._._

Front porch 0.343

DMA control ASM

This state machine generates the signals dma_request & dmaJirst based on the vertical

& horizontal timing. Whenever a video line has finished displaying during the active

video period it should immediately initialise dma_request to request a new video line.

Signal dmaJirst indicates the current image has reached the bottom so the next

dma_requst should start from the initial dma_address.

Line buffers 1 & 2

These two line buffers are actually two identical FIFOs mapped on the same memory

address space. The size of this line buffer can be conditionally generated as 128x64 or

512x64 based on the pixel format. If the pixel format is 24-bit RGB, then the size of the

line buffer is 512x64, 2 pixels per line. If the pixel format is 8-bit grey-level, then the

size of the line buffer is 128x64, 8 pixels per row. This configuration satisfies the

maximum horizontal width which is 640 in this system. The write port of these buffers

September 2007 FanWu 91

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

is driven by data clock while the read port is driven by the video clock. Whenever

signal dma_write is enabled, one of these line buffers begins to be written with the new

video data (dma_data) until it's filled up. While the other one sends out the stored

image data to the VGA driver for display during the active pixel period. These two

buffers perform read and write alternatively. By using this two-buffer mode, a

sufficient bandwidth can be guaranteed. In order to increase the system performance,

the 110 interfaces of these two buffers are all synchronous.

Line buffer control

This line buffer control block provides the mechanism to switch the operation mode of

these two line buffers in terms of the video timing & Avalon bus status. The switch

happens when the one being filled up with new video data finishes filling and all stored

data are sent out from the one being read. Table 5-15 gives a view of how these two

line buffers alternate the operations based on the video line number.

Table 5-15 Alternating operations of the double line buffer

Measured Item Line Number

Line buffer 1 2 r 1
6 148(

W
Line buffer 2 1

1
3 5

Line buffer 1 21 4J 478 , 48°1
R

Line buffer 2 1 I 3 I 47~

Linebuffer Sel 0 1 I 0 l 1 I 0 I 1 1 0

For example, when the video display is enabled, the 1st video line is written into line

buffer 2. Just before the 1st active line period the 2nd video line is written into line

buffer 1 while VGA driver starts displaying the 1sI video line from line buffer 2. When

the 1SI video line finishes displaying, operations swap, the 3rd video line is written into

line buffer 2 again and during the active video period VGA driver displays the 2nd

video line from line buffer 1.

VGA interface control

This block synchronises the video data read from the line buffers with the timing

signals hs, vs and blank_n from the timing state machines and drives them to the output.

September 2007 Fan Wu 92

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

In 24-bit ROB mode, the 24-bit pixel contained in video-data is mapped into VOA

data outputs r, g and b directly. While in 8-bit monochrome mode, each 8-bit pixel

contained in video_data is fed into r, g and b respectively so that a black/white image

can be displayed.

5.3.4 Summary

The video display controller provides an 110 interface to the Avalon bus module and

the display interface board. It consists of two sub-modules which are the Avalon

interface module and the VOA driver module. The Avalon interface module controls

the Avalon streaming transfers for reading video data from the memory device. Two

Avalon streaming read master ports are used to master the two streaming slave ports in

the memory controller. Video data read from the memory device with the length of one

video line is fed into the line buffers in the VOA driver module. During the active

video period this video data is sent out to the display. The VOA driver generates the

relevant timing signals.

The display controller provides a configuration slave port for the Nios processor to

control the display such as changing resolution, enabling display and changing DMA

address. When a frame is displayed an interrupt is asserted.

This display controller can be conditionally generated into either 8-bit monochrome

mode or 24-bit ROB mode. In 8-bit monochrome mode, the size of the line buffers is

128x64, and each buffer location stores 8 video pixels. The burst length of a streaming

read is eight times less than the total number of pixels in one video line. While in 24-bit

ROB mode, the size of the line buffers is 512x64, each buffer location stores 2 video

pixels. The burst length is two times less than the total number of pixels in one video

line. This configuration makes the system more flexible, economic and efficient. In 8-

bit monochrome mode, in order to display black/white images the 8-bit data is mapped

into the output r, g and b respectively.

September 2007 FanWu 93

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

5.4 Videocapture controller

The video capture controller provides the function of buffering video data from the

external camera via the camera interface card and transferring those data into the

memory device via the Avalon bus. Also, it provides an 1/0 channel to allow the Nios

processor to configure and control this video controller.

In this section, it firstly presents the main features of this video capture controller, and

then a brief introduction of the CameraLink. standard is given. Thirdly a detailed

description of the controller core is given followed by a brief introduction to the serial

control interface to the camera. Finally a brief summary of this capture controller core

is presented.

5.4.1 Main features

The main features of the video capture controller are as follows:

~ Support both 8-bit monochrome and 24-bit ROB video input

~ Provide a serial control interface to configure the camera

~ Support input video line resolution with size of up to 1024

~ Double line buffer mode to guarantee sufficient bandwidth

~ Direct access to the memory device to transmit video data

~ Variable Avalon streaming transfer length based on the horizontal resolution

~ I video word = 64 bits = 2 pixels in 24-bit ROB or 8 pixels in 8-bit

monochrome mode

~ Pixel clock supplied by the camera with various programmable frequencies

~ Interrupt supported

5.4.2 CameraLink

CameraLink is a communication interface for vision applications. The interface extends

the base technology of Channel Link to provide a specification more useful for vision

applications [60]. It is designed by National Semiconductor which is based on LVDS

for the physical layer. Channel Link consists of a driver and receiver pair. The driver

accepts 28 single-ended data signals and a single-ended clock. The data is serialized

7: 1, and the four data streams and a dedicated clock are driven over five LVDS pairs.

The receiver accepts the four LVDS data streams and LVDS clock, and then drives the

September 2007 FanWu 94

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

28 bits and a clock to the board. Figure 5-14 illustrates the Channel Link operation.

>1.6Gbps

Da1a (lCNS)

~! Da1a(lDIS) i:t
~c;

Da1a(lDIS) -g
1--

~<n1-0

DaIa(lDIS)

CloCk(lDIS)

Figure 5-14 Channel link operation (From (60»

According to the CameraLink specification, the typical signals transferred through a

CameraLink cable are camera control signals, serial communication signals, a video

clock and 28-bit data which includes 24-bit video data and four enables. Table 5-16

lists all the CameraLink signals.

Table 5-16 CameraLink signals

Signal Descriptions

CLOCK Pixel clock

DATA 24-bit video data

FVAL Frame Valid (FVAL) is defined high for valid lines

LVAL Video data Line Valid (LVAL) is defined high for valid pixels

OVAL Data Valid (DVAL) is defined high when data is valid

Spare A spare has been defined for future use

CCI Camera control 1

CC2 Camera control Camera control 2

CC3 signals Camera control 3

CC4 Camera control 4

Differential pair with serial communications to the
SerTFG

Serial interface card

communication Differential parr with serial communications to the
SerTC

camera

September 2007 FanWu 95

An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

5.4.3 Description of the video capture controller

The video capture controller was implemented with two sub-modules. They are the

Avalon interface module and the video receiver module. Figure 5-15 shows the block

diagram of this capture controller.

Video
Capture

Controller

Figure 5-15 Block diagram of the video capture controller

Table 5-17 lists the top level IIOs of the video capture controller.

Table 5-17 Video capture controller top level signals

Signal Width Direct Description

reset n

1

32-bit Avalon master write data, the

upper half of the video word

1 Global Global reset, active low

data elk

system_elk

video data transfer clock1 From

clock System clock, drives the Avalon transfer

inilialised by the Nios processor

data master wr u

generator

1
t---;----------,------+--___l To video
data_master _addr_u 32

Avalon master write enable, active high

Avalon master address

data_master _wri tedata _u

r-----------------------~--___l nlemory

controller32

September 2007 Fan Wu 96

An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System-

Soft System Core

data_master _waitrequest _u 1

signals

data_master _endofpacket_

u

r---------------------~--~memory

controller

From

video

1

Avalon waitrequest. It indicates the

address is finished being decoded and the

memory device is ready to receive new

data

Avalon endofpacket. It indicates the last

data is being written into the memory in

the current streaming transfer

data_master_rd_l 1

data_master _addr_l
To video

1
memory

r--------------------+----~ controller
data master _writedata_l 32

Same as data master rd u

Avalon master address (not actually

used)

32-bit Avalon master write data, the

lower half of the video word

data_master _waitrequest_l Same as data_master _waitrequest _u1
From

video

data_master _endofpacket_l 1
memory

controller
Same as data_master _endofpacket_u

cpu_slave_cs

cpu_slave _rd 1 Avalon slave read enable, active high,

1 From Nios Avalon slave write enable, active high,

2 processor Avalon slave address

Avalon slave write data, contains the
32

configuration data

1 Avalon slave chip select, active high

cpu_slave _wr

cpu_slave _addr

cpu_slave _writedata

cpu_slave _readdata 32

r----------------------I-----l To Nios

cpu_slave_irq
processor

1

Avalon slave read data, contains the

status registers

Avalon interrupt, active high, indicates a

full video frame has been captured to the

memory, cleared by a CPU write

capture_elk 1

video data 8/24
~~~--------------~I-----l Camera
FVal 1

Link
LVal 1

OVal 1

Trig 1 CC3, external camera trigger, active high

September 2007 FanWu

Xclk, Pixel clock

Video data

FVAL, frame valid, active high

LVAL, line valid, active high

DVAL, data valid, active high

97



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time [mage Processing System -

Soft System Core

Table 5-18 lists the interconnection signals between the Avalon interface and the video

receiver.

Table 5-18 Internal signals of the video capture controller

Signal Width Description
,.

DMA start address. It is where a new video frame starts to

dma address 32 be captured into III the memory device. Specified by the

software

DMA transfer length of a video line. For example it is 80
dma_Iength 9

in monochrome or 320 in RGB with line resolution of 640

dma data 64
One video word = 2 pixels in 24-RGB or 8 pixels in 8-bit

monochrome
-..........~.-....- ............................. _ .................. .... __ ......... __ . ..... _._ .. __ ....__ ..__ ......... _ .._ ...._ ...._._._._ ..__ .._ ......_-_._ ..._ ..... _._._ ............... _ ..._ ..... _ ............... _._ ........... _._._._-_._ .._ .._ ....._-- ...._ ..._ ...._-_ ...._ .._ ...... _ ...... _ ..._ ..._-_._._ ..

dma read 1 Read enable to the line buffers
................. _ ......................... _ ................................... _ ..- ................... _ ....._ ....................... _ •................•.......•.....•...••...••... ~.......... _ .......... - .............~..-....... ........_._- ........ _ ......... _._._- .......~.......---....•.-..- ..-......... -...--..-.-.- ..._.__ ._.._ ....__ ..._ ..
dma_request 1 DMA transfer request

dma first I Indicates first DMA transfer request

local cs 1 cpu_slave cs- -

local addr 2 cpu_save_ addr-

local_rddata 32 cpu_slave readdata-

local_wrdata 32 cpu_slave writedata-

local rd 1 cpu_slave rd- -

local wr I cpu_slave wr- -

local_Irq 1 cpu_slave _irq

5.4.3.1. Avalon interface

The Avalon interface module provides controls over the Avalon bus interface signals

for the video capture controller to transmit video data to the memory device via the

memory controller, and also to communicate with the Nios processor for receiving

configuration data and sending status information.

There are three Avalon bus ports in the Avalon interface module including one simple

Avalon slave port and two Avalon streaming write master ports.

CPU slave port - simple Avalon slave port

This simple Avalon slave port is mastered by the Nios processor for configuration

September 2007 Fan Wu 98



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

purpose such as starting video capture, specifying the DMA start address and clearing

the interrupt. Furthermore, current camera status such as the resolution and video

timing can be sent back so that the user can keep track of them. These Avalon signals

are passed to the video receiver module for decoding.

Video data master ports _ streaming Avalon master ports

The two Avalon masters are video data streaming masters which master the two

streaming slaves in the memory controller. They are used for sending the captured

video data to the main memory. Each of them handles 32 bit data. Therefore in every

master write unit cycle the video capture controller can transmit 64 bit data which

contains 2 video pixels in 24-bit RGB or S in S-bit monochrome mode. Table 5-19 and

Table 5-20 show the pixel assignments in this 64-bit dma_data in S-bit monochrome

mode and 24-bit RGB mode respectively.

Table 5-19 Pixel assignment in 8-bit monochrome mode for video capture

dma_data(63 ..32) dma_data(31.. 0)

I(data_master _writedata _u) (data_master _writedata _I)

63 ..56 55..4S 47 ..40 39..32 31 ..24 23 ..16 I5 ..S 7..0

Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel

Sn+S Sn+7 Sn+6 Sn+5 Sn+4 Sn+3 Sn+2 Sn+I
'--._-_.- _ .._.___ .._._-- _._._--_ .. -_._--_.- ._._--_._._ ...- _.---_._-_._. __ ._-_ ..._- ............... _ ........ _ •••........- ............ _ .............

Note: n=Oe-video line width / S

Table 5-20 Pixel assignment in 24-bit RGB mode for video capture

dma_data(63 ..32) dma_data(31 ..0)

I(data_master writedata u) (data master _writedata _I)- -

63..56 55.. 32 31 ..24 23 ..0

X Pixel2n+2 X Pixel2n+I

Note: n=Oe-video line width / 2 X=don't care

Whenever there is a dma_request asserted by the video receiver, the Avalon interface

block sends out an Avalon streaming write request to the memory controller slave ports

along with the relevant address information. Once this request is accepted and decoded

by the memory controller (by monitoring signal datamaster _waitrequest _x) then a

block of video data dma data read from the video receiver will be transferred out to the

Avalon bus and stored in the main memory. Signal dma_read is held high during the

period of active data transferring. This signal is used to enable the video receiver to

September 2007 Fan Wu 99



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

read from the temporary line buffers. The whole streaming write transfer completes

upon assertion of the signal data_master _endofpacket _X, which means the memory

slave is receiving the last write data and will be closed in the next clock cycle. Figure

5-16 shows an ASM chart of an Avalon streaming write transfer.

September 2007

dma_address_reg <= dma_address

data_master _addr _u <=dma _address_reg

data master wr x<=' I'

dma_address_reg <= dma_address_reg +1 memory row space

data_master _addr _u <=dma _address_reg

data_master _wr_x<=' 1'

dma_address_reg <= dma_address_reg + dma_Iength

data_master _addr _u <=dma _address_reg

data master wr x<='I'

dma_read <= ' I '

master _writedata

dma_address_reg <= dma_address_reg + dma_length

data_master _addr_ u <=dma _address_reg

data_master_wr_x<=' I'

dma _read <= 'I '

False

alse

Figure 5-16 ASM chart of the Avalon streaming master write transfer

FanWu 100



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

This streaming write transfer always sends out data of a complete video line. The

length of it is determined by how long the input timing signal LVal is asserted. For

example, if the pixel clock is 20MHz while LVal is asserted for 32 us, then a horizontal

resolution can be calculated as 640. The streaming transfer length is therefore 80 in 8-

bit monochrome mode or 320 in 24-bit RGB mode.

The start address where a video frame starts being written into in the memory is

specified in dma_address. When sending the first video line out the Avalon interface

block passes the dma _address to data_master _addr _u, and then it increases this data

master address by one memory row space in every write transfer until the bottom line is

sent. Signal dma_first indicates whether a new write request is for the first frame line

or not.

5.4.3.2. Video receiver

The video receiver mainly buffers the incoming video data into two temporary line

buffers when timing control signal frame valid FVal, line valid DVal and data valid

DVal are in active state, and sends out the buffered data to the Avalon interface module.

Figure 5-17 shows a block diagram of this video receiver.

As seen in the figure two state machines are used to decode these timing signals.

Besides buffering the video data, the video receiver also decodes the CPU address and

uses the decoded registers to control and configure this video receiver. The next few

paragraphs focus on describing each function block of the video receiver in details.

Local slave interface

Two registers have been provided to control and configure the video capture controller.

They are the control register and DMA address register. The control register, which

includes a start bit , a trigger bit and an interrupt enable bit. The start bit is used to

trigger the two state machines to start checking the input timing signals and buffering

the video data. The trigger bit is used to drive the output signal Trig (Camera control 3,

CC3) to trigger the camera when it is in software trigger mode.

September 2007 FanWu 101



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Tri Frame capture ___ d~!li~t ..

local cs ... ASM: : : io£ar~drO::-0I- : : -... 1....t--...JEYUlIIal _

• _ lTo5aiTQd!&!~~31I..~r__ Local slave interface (Seq & Com)
oca wrdate] ..v

- - - ToC'arra- - - - - - -
- - - TocafWr- - - - - - - ..
- - - Tocar-ii'q- - - - - - - 1.-----:..--------

Line capture
i, ASM

___ d_m.!..!~~s.! ..

LVaI

(Seq & Com) DVai~~~~-------
1------------------------

1- - - - - - - - - - - - ~ buffer 1 .. - 1
1 :- ' :

I 1
I 1
: 1__ ~ 1

writcdata[63..0)' -
1dma read--------------- control

Line buffer

Line

1
1

Line 1

buffer2 f-I- ~
I

I -~-----~

I

• _d!!'~a!a16}JlL 1

.video data(23.0]

-- E.'onuolliluls - - - - -I.tomalsltuls

Figure 5-17 Block diagram of the video receiver

When a video frame has been captured and stored in the main memory an interrupt is

generated. If an interrupt is enabled then it must be cleared before carrying on

capturing the next frame to prevent stalling the whole system. This interrupt is cleared

upon writing to the DMA address register. By writing different bank start address into

this DMA address register during the video blanking period a real-time processing can

be achieved.

Frame capture & Line capture ASM

These two ASMs are driven by input FVal, LVal and DVal respectively. Figure 5-18

shows a timing diagram of both FVal (frame enable) and LVal (line enable). DVal is

not actually used in the current system as the camera only provides two control signals.

When they are both valid the line capture ASM sends a write enable signal to the line

September 2007 FanWu 102



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

buffer control block to enable one of the line buffers to start recording the incoming

video data. When L Val deactivates the line capture ASM sends a buffer swap request to

the line buffer control block as well as a DMA request to the Avalon interface module.

Line
Enable

Frame
Enable \ " , ,

• ~ ~ •• " • ~ " •• < •• ~ •• , , \ •. , • 1. . .. ... " ~ .
" .

1 ""~:'''''':'''''~'''~;'H'
: : : : -,\I fot-8.88 ,IJS •

• • ~ • ~ , ••• ~t ••• !•» •• ~ t •• I! t •• lit! t • t • !I ... * !•I • I !II• I II. .... _.......,......
Slope
III

Mode-
Figure 5-18 Camera timing (From (63])

Line buffer 1& 2

These two line buffers are identical dual-port ram with a size of 512x64 or 128x64

depending on the video mode. Each memory location stores either 8 pixels in 8-bit

monochrome mode or 2 pixels in 24-bit RGB mode. The maximum number of pixels

each of them can store is 1024. They perform a read and a write in an alternating order.

The line buffer control block controls this sequence. The write port of these two buffers

is driven by capture_clock while the read port is driven by the data_clock. The write

and read address are counted in the line buffer control block. In order to increase the

system performance, the VD interfaces of these two buffers are all synchronous.

Line buffer control

This line buffer control block provides a mechanism to switch the operating mode of

the two line buffers in terms of the video timing. This switch happens during the

inactive period of LVal. The Avalon interface block always operates on the buffer

which is not being written with new video data. By doing this, it can ensure the video

data sent to the memory is always the video line just captured.

5.4.4 Camera serial controller (UART)

In a standard CameraLink communication protocol, the camera is able to be controlled

September 2007 FanWu 103



An SOPC Based [mage Processing System Chapter 5. The Nios Integrated Real-time [mage Processing System -

Soft System Core

and configured though a serial communication protocol. The serial protocol used in

SIPS is full duplex, asynchronous, 8 data bits, I start bit, 1 stop bit and no parity. Baud

rate is fixed at 9600. Signal Set'I'C is used to carry the serialised command message

generated by the processor to modify the operation of the camera [63]. When the

camera receives a status request message it returns the appropriate values in a response

message in a serial format via signal SetTFG. A UART, which is a type of

"asynchronous receiver/transmitter", was used in this system to handle communication

between the processor and the serial protocol. It is an Altera's provided IP component

so it can be integrated into the SOPC design. More information of how to use and

configure this UART controller can be obtained in [80].

5.4.5 Summary

The video capture controller designed in this system is based on the CameraLink

specification. It has two main modules which are the Avalon interface module and

video receiver module. CameraLink signals frame valid FVal, line valid Ll/al, data

valid DVal, 8/24-bit video_data and 1 bit capture_clock are all fed into the video

receiver module for processing. By decoding the 3-bit enable signals the video capture

controller is able to capture all valid video data losslessly and save them all to the

memory device. Captured video data are firstly stored in one of the two temporary line

buffers, when this buffer is filled up by one video line, all data stored in it will be sent

to the main memory by Avalon streaming write transfers. The Avalon interface module

controls these kinds of transfers. These two line buffers are performed read and write

alternatively.

In order to allow the processor to control the capture controller, an additional Avalon

bus slave is provided. The processor can start video capturing, specify DMA start

address and enable interrupt by writing to the capture controller. It can also be

informed of an interrupt when a whole frame is captured and saved into the memory.

This capture controller can be conditionally generated into either 8-bit monochrome

mode or 24-bit RGB mode. In 8-bit monochrome mode, the size of the line buffers is

128x64, and each buffer location stores 8 video pixels. The burst length of a streaming

write is eight times less than the total number of pixels in one video line. While in 24-

September 2007 FanWu 104



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

bit ROB mode, the size of the line buffers is 512x64, each buffer location stores 2

video pixels. The burst length is two times less than the total number of pixels in one

video line.

In order to control and configure the CameraLink camera via a serial control protocol,

an Altera's IP component - UART, was used. By using this UART the processor is

able to transmit configuration messages to the camera and receive the status

information from the camera.

5.5 Cache

In SIPS, the Cache is a communication medium to allow the Nios processor to

communicate with the main memory indirectly. It also stores frequently used data for

the processor to rapidly access. In this section, it firstly introduces the main features of

this custom IP component, and then it gives an overview of how the Cache works.

Thirdly it describes the implementation details of the Cache. Finally a summary is

given.

5.5.1 Main features

The typical features of the Cache are:

~ A direct mapped Cache

~ Write-though scheme implemented

~ Cache depth is the column size of the SDRAM device which is 512

~ Each Cache memory location stores 64-bit valid video data

~ Support 32-bit Nios processor

~ Support standard Avalon bus interface

~ Configurable Avalon streaming read transfer length of up to the maximum

Cache depth

5.5.2 Overview of the Cache

The main video data storage device used in this system is a dynamic RAM which

requires a longer access time (for example, it is required to activate a bank and row

before doing RIW on a specific column) than other types of memory devices such as

SRAM. If there is some data that the processor uses frequently then it would be

September 2007 Fan Wu 105



An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

inefficient for the CPU to access the main memory for the same data each time.

Moreover, as the video memory is shared by multiple masters, frequently accessing the

memory slave for the same data would result in creating more stalls for the other

masters, and consequently the whole system speed would be degraded. However, by

placing a Cache between the processor and the main memory device, this problem can

be solved because the Cache is a temporary storage area where frequently accessed

data can be stored for rapid access [83].

Figure 5-19 shows how the Cache is mapped into the main memory. It is a Direct

Mapped Cache which is also referred to as I-Way set associative cache. The size of the

Cache designed in this system is equal to the number of columns in one row of the

main memory. Therefore a block of data in the main memory is always loaded into the

same cache line in the cache. For example, column 0 of any row in any bank in

memory must be stored in row 0 of the Cache memory. If column 0 of row 0 is stored

within the cache and column 0 of row 1 is requested, then column 0 of row 0 will be

replaced with column 0 of row 1. Direct Mapped cache only requires that the current

requested address be compared with only one cache address.

MaiII memory Cadle

,
CoIumnO

,, ,.
COIumnI· ,· ,· .·, ~'~,, , 0

; ': ~l CohanO
Col_I

CoIumnO 1--

UlIU111111 'i-,,
: ~f-

.,
; ,,

;~ ,.
f- ···

Cotumn 510 I-

Cotllllll511

Column I
ColumnO

CoIIDDD SIO
CoIIDDDSlt

Figure 5-19 Cache mapping to the main memory

Data stored in the Cache contains three fields (see Figure 5-20). The first field is a

single bit which is a flag indicates if the data field has actual data or not. It would be

useful when the Cache is just started up and nothing stored in it. The second field,

which is called Tag, stores the SDRAM row and bank address information. So by

addressing the entry of the Cache and reading the tag the corresponding main memory

address can be identified. If the tag is equal to the bank and row address specified in

September 2007 FanWu 106



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

the CPU address then it is a Cache hit, the information stored in the last field, which is

the actual data will be returned to the CPU without accessing the main memory during

a CPU read. Otherwise, it is a Cache miss; the Cache master(s) will send a read request

to the main memory to request the data. The returned data will also be saved in the

Cache memory associated with the address information.

A Cache write is much simpler than Cache read. If a CPU write occurs, it updates the

corresponding field in the Cache with the write data and also writes that data to the

main memory directly.

Tag I Index I
I Ca

/~v .-vk
V Tag Data block

'--

, t

=
b

~

,

Data word
Hit

chc

2"b
lines

Figure 5-20 Cache structure (From [83])

5.5.3 Description of the Cache

The Cache communicates with the processor and the memory controller, so it has three

Avalon ports which include two Avalon streaming master ports and one simple Avalon

slave port (see Figure 5-21). The Avalon slave port is mastered by the Nios processor,

which allows the processor to read data either from the Cache memory (if it is a Cache

hit) or from the main memory (a Cache miss), and write data to the main memory. The

other two Avalon streaming master ports have the same usage as the ones in the video

display controller and the capture controller. The only difference is the streaming

master ports in the video display controller are read-only masters; the ones in the

capture controller are write-only masters while the Cache's are read & write masters.

September 2007 Fan Wu 107



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

Figure 5-21 Block diagram of the Cache

Table 5-21 lists the top level 1I0s of the Cache.

Signal

Table 5-21 Cache top level signals

DescriptionI Width ! Direction
i I

1 Global

video data transfer clock

reset n Global reset, active low

ir------- +-__~iFromclock r-----------------------------~
i System elock, drives Avalon transfer
[ generator
I inilialised by the Nios processor

data elk

system_elk 1

cpu_slave_cs 1 Avalon slave chip select, active high

cpu_slave rd 1 I
r------:- -+__ ----jiFrom Nios
cpu_slave_wr 1 I
r------:----------+------j! processor
cpu_slave addr 24 I

Avalon slave read enable, active high,

Avalon slave write enable, active high,

Avalon slave address

cpu_slave _writedata 32 Avalon slave write data (video data)

32cpu_slave_readdata To Nios Avalon slave read data (video data)

1
......... _ - _ ........•.........•....•.•.•..•... _ - _ _ _ - .

processor Avalon slave controlled waitrequestcpu_slave_waitrequest

data_master _rd_u 1 Avalon master read enable, active high

To video Avalon master write enable, active highdata_master _wr_u

32 memory Avalon master address

controller 32-bit Avalon master write data, the

upper half of the video word

data_master _addr_u

32data_master _wri tedata _u

September 2007 Fan Wu 108



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

32-bit Avalon master read data, the
data_master _readdata _u 32

upper half of the video word

Avalon waitrequest. It indicates the

I

master address IS finished being

data_master _waitrequest u From video
decoding and valid data starts returning

1
in a read transfer or the memory slave

memory
is ready to accept new data in a write

controller
transfer

.._-_ .._._ .._---_._.__ 1---:._-_. __ .._--_._-_._----_ .....-

Avalon endofpacket. It indicates the

data_master _endofpacket_ u
last data is returning in a read transfer

1
or the slave is accepting the last write

data in a write transfer

data_master _rd_l 1 Same as data_master _rd_u

data_master_wr_l 1 ~ To video Same as data_master _wr_u,
--::--_ ...._ ...-•.._._ ..._ .................. -._ ......_.- -_._-_ ...._. ··Av-;fon··masie·r·address(not-~sed)-······-···-•• •• M ••

data_master _addr_1 1 memory--_._--_._ ..._-_ ...._ ..._ ........ __ ._....._ .._- ._.__ ._._---- -.-- ...-.-..-.--- ..---- ...---.- ..-..~-.-.-..-.......... -..-.--- .............. __ ....._---_ ....... _ . .......................... __ ..

controller 32-bit Avalon master write data, the
data master writedata 1

I
32- - - lower half of the video word

32-bit Avalon master read data, the
data master readdata 1 32 From video- - - lower half of the video word

memory
data_master _waitrequest_l

I 1
1

Same as data_master _waitrequest_u
controller

data_master _endofpacket _1 I 1 I
Same as data_master _endofpacket_u

!

The width of the CPU address bus cpu_slave _addr is 24, which is one bit wider than

the SDRAM address. It is because the data width of the Nios processor is 32. So the

lowest significant bit (LSB) of the CPU address is used to select the upper 32-bit or the

lower 32 bit word. For example, CPU address of Ox0000002 means it is operating on

the lower 32-bit word at SDRAM address Ox0000002 while CPU address of

Ox0000003 indicates it is accessing the upper 32-bit word at the same SDRAM address.

Figure 5-22 shows the internal structure of the Cache.

The core of the Cache is two identical dual-port rams with size of512x48. They are the

actual Cache memory which stores the information of the V flag, Tag and data. They

September 2007 FanWu 109



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

share the same Cache entry. Each of them handles 32-bit video data so that the CPU

can access the lower or upper 32-bit data separately in one 64-bit Cache location. The

LSB of the CPU address is used to select which ram to be operated. Both of these rams

have synchronous port interface to increase the system performance. The write port of

these two rams is driven by the data clock while the read port is driven by the system

clock. Both the CPU write data and data master read data can be written into the Cache

rams via the write port. The read port always responds to the CPU read command.

There are four function blocks to handle all Cache operations as seen in Figure 5-22.

The next few paragraphs describe how Cache operations including Cache write, Cache

miss and Cache hit are handled by these four function blocks.

Cache write

When CPU initialises a write request, the CPU slave write-control block immediately

holds up the processor by asserting cpu_write_waitrequest. It also triggers the data

master write-control process to start writing into the main memory and the Cache

memory by asserting writerequest as well as the other control signals. This data master

write-control process is similar as the one described in the video capture controller.

However, the Cache can only do single write with 32-bit data each time. The CPU

doesn't need to wait until the Avalon write transfer to the memory finishes. Once the

data masters are granted access to the memory it acknowledges the CPU slave write-

control block by asserting writegranted, then CPU is released and Cache write

completes. The reason of waiting for access granting is if an ongoing write to the

memory slave is being held for long enough due to conflicts in accessing the memory

by multiple masters (see Chapter 6) so that CPU can initialise another write request,

then the second CPU write would be likely ignored because the data master write-

control process is still processing the first request.

Cache read

When CPU initialises a read request, the CPU slave read-control block immediately

holds up the processor by asserting cpu_read _waitrequest. It then waits for the read

data from one of the two Cache rams become valid. When valid data returned it checks

the V flag and compares the Tag field with the corresponding bits in the CPU address

line. If it's a Cache hit, then the CPU slave read-control releases the processor in the

September2007 FanWu 110



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

next system clock cycle, the Cache read with hits then completes. Otherwise, it asserts

read request to trigger the data master read-control process to start reading data from

the main memory. The data master read-control process is similar to the one described

in the video display controller. Once the Avalon streaming read request is fulfilled and

all requested data are written into the Cache rams, the CPU slave read-control block

releases the CPU and the Cache read with miss completes. Figure 5-23 illustrates how

the Cache read is handled in terms of hit and miss by using an ASM chart.

5.5.4 Summary

The Cache designed in this system is a direct mapped Cache. Each Cache line can be

mapped into specific column in any row of any bank in the main memory. The entry of

a Cache line corresponds to the column address to the main memory. When the CPU

initialises a Cache read, it always checks the specific Cache line whether it contains the

valid data that CPU requires by checking the Tag and V flag. If it is a Cache hit then

the data is returned to the CPU immediately and the CPU read request terminates,

otherwise it is a Cache miss then an Avalon streaming read request is sent to the main

memory, the CPU is stalled until the required data is returned from the main memory.

This data is also saved into the Cache. Cache write uses 'write-through' scheme. When

CPU writes to the Cache it also writes to the main memory. However, the CPU doesn't

wait for the completion of the write transfer to the main memory unless the Cache write

transfer is suspended due to conflicts in accessing the memory device (see Chapter 6).

By doing this it can save approximately half of time required for a CPU write.

The Cache communicates with the data master of the Nios processor, however, because

the CPU data master is not a latency-aware master [45], the Cache CPU slave couldn't

implement Avalon transfer with latencies [35] which can possibly increase the CPU

efficiency of reading data from the memory and give the CPU more time to do other

operations while waiting for valid data returned.

In order to maximise data usage efficiency for some specific image processing

algorithms which requires continually reading a block of data from a single video line,

the length of a Cache read with misses is configurable, which means the Cache can be

filled up by up to a memory row's data in a single streaming read transfer. Therefore if

September 2007 FanWu III



An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

CPU needs to read data from the same row continually and without switching to the

other rows before finishing the current one, then every Cache read would be a hit

except from the first one. This feature is useful for algorithms such as image inversion

and correlation which requires continuously processing data from the same image line

before going for the next one. The last memory address is reserved for the CPU to

configure the burst length. This address is OxFFFFFF

September 2007 FanWu 112



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time [mage Processing System-

Soft System Core

<> <>
'0 '0 o'" '"I I", '0 <>
'" I~

'0
;;;- ~ '"I< " ~ '"
Ii I~ I" ~

<> ~ ~ I~ o~. '0 ~. Q. '0

I~
~ <>

I~
Q. ~
~

.J:> N Q.
'" Q.
Cl> ~ ~ ~W I~' '" S ~

I;W

S
el.
=<
Cl>

.J:>

'"I ~____ J L _____
------- -------------

~-------
~
ria·
=.,~
UtI
N
N
rJJ
t')=-~a I..,
~ I:;- I.., I~:Ir;. I:; I""
Q. I~' '"~,
~ ~ ID: I

~. I§ .,..'1<> I~ := Q.
1::+"

IJQ 1[:
Q IQ.'.... lri I- t~ :e-~ I~ Io 1-.'
~ In'Q.'
t') I~=- 10;~
'"-.,=t')-=..,~

:~
::+' t~

I :2. I~
I ~ ,~I I~

..... _ ~ I-<-!. ~ _ _ _ _ - - _~.1 ~
I I I 18 I I:
I I I L9I I ---- L L 1 ,____ I

, , I~ ------------- ..
... - - - - - - - -,- " I
: : I I' I
, " " ,
, - - - - - - - - - - - T - - - - - -' L - - - - - - - - -1- - - - - - - - - - - - -+-- - - ,
t---------:-----------~ :~I
'~ ,0,1L _ _ ... I~'I

" , ,

'@ a '@,Q. IQ.Q. Q. Q.,~ Q. ,~
<IIR, '" I~

~ '"
1;--' ~

[
Q.
o
:I
Cl>

,I I-----------+-------_l J, ,
I ,, 1 _

September 2007 Fan Wu 113



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Initialisation
cpu_read_waitrequest<='O', readrequest <='0'

False

cpu_read_waitrequest<='1 '

~--- Wait for one clock cycle for valid data return
from one of the Cache rams.
cpu_read _waitrequest<=' 1'

cpu_read _waitrequest<=' 1'

Wait for one system
clock cycle for the
CPU to catch the

Cache data

Truerddata[46] = 'I ' &
rddata[45 ..32] =cpu_slave_addr[23 ..10]?

False

Wait for one clock cycle for valid data returned from
one of the Cache rams

cpu_read_waitrequest<=' 1'

Figure 5-23 Cache read handle ASM chart

5.6 System clock generator

There are four different clocks used In this system. They are the system clock

system_elk, data clock data_elk, video display pixel clock video_elk and the video

capture pixel clock capture _elk. Apart from the video capture clock which is supplied

Scptember2007 FanWu 114



An SOPC Based Image Processing System Chapter~. The Nios Integrated Real-time Image Processing System-

Soft System Core

externally, the other three clocks are generated from phase-locked loops (PLLs) [84].

Figure 5-24 shows a connection diagram of the PLLs with global clock pins in the

given FPGA device.
--_ ..__ ..._- _. ..,--_. -- .._-_. -.-- .._-. _.-_- __ ....•-_ ..- __ .----- ---_ ...--.

i
!

i CJ CU<3p

f < I a.Ktp

Q2 G3

ClJ(lJ(_OUT2p < .. I-+--,._-_ ..-. __- ... -_.- ... -_.- ... _---.-_ ..-. __-' .. __ .. __ .. __ . __ ._.

Figure 5-14 Dedicated global eloek pin eonnectiollS to PLL " dedicated eloek lines for

EPlOKJOE, EPlOK60E, EPlOKlOOE, EPl0K160E " EPlOKlOOE devices (from (84»

5.6.1 Data clock

All data transfers involved with accessing the main memory are driven by this clock.

For example all Avalon streaming RIW transfers in this system, the whole memory

controller, the write port of the line buffers in the display controller and the read port of

the line buffers in the capture controller. This clock is twice faster than the system

clock in order to increase the data transfer speed. In an Avalon master or slave it is

possible to use two different clocks as long as the corresponding master and slave ports

are both clocked by the same speed and no pre-defined Avalon fixed wait-state

involved. This data clock is also output to drive the SDRAM device. This clock has a

frequency of l00MHz. The reason for choosing this frequency is because most of the

SDRAM devices support this high frequency and this is the frequency the PLL can

generate and the memory controller can run at.

The data clock is generated from a PLL driven by an on-board oscillator with a

frequency of 33.333MHz. Because the Nios development board already ties the clock

pin on the SODIMM socket to pin CLKLK_OUT2p on the FPGA device which is the

clock output from this PLL, this data clock must be assigned to that dedicated pin

CLKLK_OUT2p. To generate a lOOMHz it just needs to multiply the input clock by a

factor of three.

September 2007 FanWu liS



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

5.6.2 System clock

This clock is used to drive the Nios processor, the Avalon CPU slave ports in all video

IP components and all Altera provided peripherals. The read port of the Cache memory

is also driven by this clock. This system clock has a frequency of 50MHz which is twice

slower than the data clock. The reason of choosing this frequency is because this is

closed to the marginal frequency that the Nios processor can run safely at according to

the reference design.

As there are a lot of logic paths involved with the data clock and the system clock, the

system clock must be phase aligned with the data clock to avoid potential timing

failures and increase the system performance. For example, in the Cache the CPU RfW

requests can drive the streaming Avalon transfers which operated at 100MHz. In order

to make this happen the system clock must be generated from the same PLL because all

PLL output clocks have the same phase delay against the input clock and most

importantly, the system clock and the data clock have an integer multiple relation. To

generate a 50MHz clock it just needs to multiply the input clock with a factor of three

and then divide the result by two.

5.6.3 Video display clock

This is the pixel clock to drive the video display. The read port of the line buffers in the

video display controller is also driven by this clock. According to the VGA timing

information given in Table 5-13, the frequency of the pixel clock should be

640.;- 25.l7us ~ 25MHz if the image is horizontally sized at 640.

Ideally this clock should be generated from the same PLL with the data clock and

system clock. However, as seen from Figure 5-24 there are only two clock outputs

available from each PLL in the given device. Furthermore the same clock source can

not drive more than one PLL on this particular device. It has no other ways to get the

video display clock phase aligned with the other two. Since so, the video display clock

can be generated by a counter which divides either the system clock or the data clock

down to 25MHz. However this could result in long clock skew and high fan-outs for

the clock that the counter divides, consequently this would affect the system speed.

Another option is to use the second PLL (there are two available on this device) to

September 2007 Fan Wu 116



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

generate the video display clock. The source clock is in fact the output data clock, as on

the development board the source clock of that PLL has been hard wired to the

CLKLK_OUT2p pin as shown in Figure 5-25. So the display clock can be simply

achieved by dividing the input clock by four.

APEX(U1)

JP10 PI" 11
JP1S pi" 11
P~JN1 pln13
J2 pe, et

.. ~J2 pln74

Figure 5-25 Clock circuitry (From [58])

5.6.4 Videocapture clock

This clock is supplied by the CameraL ink camera and fed into the video capture

controller. This clock can be programmed to be 40MHz, 20MHz, 10MHz and 5MHz

with default value of 40MHz based on the required exposure time. Which one therefore

should be chosen? Ideally the video capture should be synchronised with the display and

have the same frame rate to ensure there is no frame missing for display and the same

frame isn't displayed multiple times. The clock which results in the closest frame rate of

the video display should be chosen. As shown in Figure 5-18 the capture line blanking is

2.07 us and the vertical blanking is 8.88 us. When the pixel clock is 40MHz the frame

rate is 1 /( 480 x (640 • 25 ns + 2.07 us ) + 8 .88 us ) ~ 115 . 17 I / s . By using the same

calculation, it can get the frame rate is 61.11 fls at 20MHz, 31.52 at 10MHz, 16.01 at

5MHz. 61.11 is the closest number to the video display. Therefore 20MHz was chosen

as the capture pixel clock and will be used for analysing the system efficiency in

Chapter 8.

5.6.5 Discussions

The data and system clock frequencies given In this section are just design

requirements. The actual clock speed could be different depending on the whole system

performance after synthesis. Synthesis results are presented in Chapter 7.

September 2007 FanWu 117



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System-

Soft System Core

The video display clock is generated from the second PLL, but can the system clock be

generated by that PLL instead while using the first PLL to generate the display clock,

or generating both the system clock and display clock from the same PLL. The answer

is not ideal because there are more paths involved with the system clock and the data

clock especially in the Cache than the data clock and display clock. Moreover, the

system clock tends to have more chances to be in metastability [85] state than the video

display clock because it has a higher frequency. If the system clock and the data clock

were not phase aligned, it had more chances to cause synchronisation fails.

5.7 Explanation of some design issues

This section explains some typical design issues for overall system implementation and

optimisation which mayor may not have appeared in the previous sections.

5.7.1 Multiple-bank operation

Because the video capture, video display and the Nios processor are operated at

different clock frequency, it must ensure the display controller doesn't display

unprocessed data, or the video capture controller doesn't capture raw video data into

where are being processed or displayed. One of the solutions is to use multiple-bank

operation. The idea of this is to split the memory device into multiple banks (or

multiple different locations in a particular area in the memory) and the size of each

bank is one video frame. Each bank performs one task at a time. For example, it can

have a capture bank for storing the raw data, and a display bank for storing the

processed data. Operations on each bank changed only if specific condition satisfied,

i.e., the capture bank is full so this bank will be used for display next. For the benefit of

real-time processing, only triple-bank and quad-bank operation [18] are presented here.

5.7.1.1. Triple-bank operation

If the processing is to be superimposed on captured image, for example the feature

correlation, (see section 8.2) then the triple-bank operation is needed. In this mode, the

memory is split into three banks, one bank stores the captured image data, one bank is

used to process the captured data, and one bank is used to display the processed data.

These three video banks are placed in rotation therefore.

September 2007 FanWu 118



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

Figure 5-26 demonstrates how this triple bank mode works. This bank sequence moves

forward only when the captured bank is filled up, and the CPU finishes processing on

the process bank. So for example, when the display bank is done however the capture

bank is still in process then the next display frame would be still the old one. The video

capture and display controller generate separate interrupt to the processor when they

finish operating on the specific bank.

Bank No.

c. capture
D: display
P: process

c P

D

D c

P

D

c

P

Figure 5-26 Triple-bank operation

Under this mode, the total memory bits taken up In

640 x 480 x 8 x 3 ::::::7.03Mbits in 8-bit monochrome

640 x 480 x 24 x 3 ::::::21Mbits in 24-bit RGB mode.

the SDRAM is

mode or

5.7.1.2. Quad-bank operation

If the displayed image contains little or no raw image, for example displaying real-time

control graphics, then the quad bank mode of operation is utilised. Figure 5-27

illustrates how quad-bank operation is implemented.

Bank No.

C: capture
D: display
PG: processing
Pf): processed

C D
~

PG C

PG PD r--Y PD D

1l j.L
D PD Vt- PD PG

C PG 1"(- D c

Figure 5-27 Quad-bank operation

Under this mode, the memory is split into four banks. They are the capture bank,

display bank, processing bank and processed bank. The processed bank stores the

destination image generated from the source image in the processing bank. This

September 2007 FanWu 119



An SOPC Based Image Processing System Chapter 5. The Nios Integrated Real-time Image Processing System -

Soft System Core

operation can be exploited for a pure graphical display removing the previous data and

updating for each image such as digital filter implementation (see section 8.2). This

mode would take up the memory 640 x 480 x 8 x 4 == 9.375Mbits in 8-bit monochrome

mode or 640 x 480 x 24 x 4 ~ 28.125Mbits in 24-bit ROB mode.

5.7.2 Double line buffer in the video display & capture controUer

The purpose of using line buffers is to synchronies the data paths between the memory

and the video display or capture interface and increase the data transfer efficiency

because the video pixel clock frequency is slower than the data transfer frequency. For

the video display, it must ensure the line buffer is filled up with new data before being

sent to display. While for video capture, a video line must be finished capturing into the

memory before the next one is ready.

InVGA mode, the gap between every active video line period is 31.77-25.17=6.6J.1s.

With one line buffer, a video line must be transferred fully into the line buffer during

this gap. Ignoring the overhead time, an Avalon streaming read transfer takes 3.2J.ls in

24-bit ROB mode and 0.8J.ls in 8-bit grey-level mode, if the data clock is 100MHz. It

looks it is OK as it doesn't exceed the video gap. However, this memory is shared by

multiple masters which include the Cache and the video capture controller. Obviously

the worse case for the video display is in 24-bt mode, those masters try to access the

memory at the same time and the display controller gains the least priority and the

Cache requests a transaction of a whole video line. Then plus the pending time, the

total time that the display controller needs to wait until it receives the whole requested

video line would be 3.2 x 3=9.6J.ls. It has greatly exceeded the time gap 6.6 us.

Furthermore, the data clock might not be able to be satisfied at 100MHz, if that

happens, the transferring time would become even longer. It's therefore concluded one

line-buffer mode is unsafe. What about double line buffer? Even when the worse case

occurs, there is still 31.77J.ls sufficient time for it to complete the whole transaction.

As for video capture, Figure 5-18 has already indicated the time gap between every

active video line is 2.07J.ls, and this even couldn't satisfy the timing requirement of

transferring one video line in 24-bit mode. So double line buffer for the video capture

is required.

September 2007 FanWu 120



An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

5.7.3 Synchronisation of multiple clock domains

Section 5.6 has described that the video display clock is not phase aligned with the

other two clocks due to the lack of clock outputs from one PLL. Also, because the

capture clock is supplied from the external camera, it is not phase aligned with the

system and data clock either. In this multiple clock domain system, synchronisation

failure can occur when a control signal generated in one clock domain is sampled too

close to the rising edge from another clock domain. This sampled output would be in

metability state which can cause illegal signal values to be prorogated throughout the

rest of the system as shown in Figure 5-28.

aclk

Invalid data propagated
, throughout the design

:~__I_~__ a_da_t...J~_1

...._---Sampling
clock

adat

adat
.-------------- changing

bclk -fi"_l ~
bdatl .----- .. ----r

Clocked algnal I.
Initially meta.table
and I•• tlll meta-
.table on the next
active clock edge

Other logic output valu ..
are Indeterminate

Figure S-18Metastable output propagadng invaHd data throughout the design (from (86»

The most common solution is to use two-flip-flop synchroniser as shown in Figure

5-29.As seen from the figure the output from the first flip-flop is in metastability state,

however, after a full clock cycle to permit any metastability on the metastable output

signal to decay, when it comes to the second flip-flop it becomes stable and valid signal

is synchronised into the new clock domain. It is theoretically possible for the first flip-

flop output to still be sufficiently metastable by the time the signal is clocked into the

second stage to cause the second flip-flop output to also go metastable. However, for

September 2007 FanWu 121



An SOPC Based Image Processing System Chapter S. The Nios Integrated Real-time Image Processing System -

Soft System Core

most synchronisation applications, the two flip-flop synchroniser is sufficient to

remove all likely metastability [86].

adk

bclk _\

bdatl ... ___;---

Clocked algnalla
Initially metaatable

~ but goes "high"
before the next

active clock edge

bdac +-_' bdat2 I. synchronized
and valid

Figure 5-29 Two mp-Oop synebroniser (from (86»

5.7.4 Other issues

In the current design of SIPS, it utilises many pipelining (as mentioned in section 3.1.2

pipelining means inserting registers to re-clock the data between logic layers) on the

data paths including the SRAM interface and Avalon interfaces to optimise the system

performance (fmax). Also, all embedded memory blocks have synchronous readlwrite
ports. However, all of these operations increase the latencies and hence decreases the

processing efficiency. This could be subjected to be optimised after synthesis if the

specific FPGA device can meet the timing requirements.

September 2007 FanWu 122



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering treaming Tran fer with

Peripheral-controlled Waitrequest

Chapter 6. Simultaneous Multi-mastering Avalon Streaming

Transfer with Peripheral-Controlled Waitrequest

In the Nios embedded image processing system described in Chapter 4 and Chapter 5,

the capture device, display device and Cache can directly access the memory slave a a

streaming transfer via a dedicated I/O bus. In this bus protocol the video memory is

always acting as a slave peripheral and shared by these three masters, appearing like a

"triple-ported" slave (Figure 6-1). These configurations maximise the efficiency of the

data transfer compared to polling and 110 interrupts [83] [87] commonly used for lower

bandwidth devices. Consequently the system performance is increased by giving more

time to the processor for processing the video data.

Figure 6-1 Triple-ported video memory slave

However, a problem is raised if more than one rna ter on the bu (known a multi-

mastering) requests streaming transfer from/to the memory lave at the ame time,

which one should be granted access to the memory fir t and how to force the other to

wait? This could be understood as a bus arbitration problem which i deciding which

bus master gets to use the bus next [83]. But before explaining thi bu arbitration

issue, this chapter will review another solution of using conventional DMA controller.

6.1 Synchronisation of DMA controllers solution

A typical DMA controller contains not only data master(s) to direct the reads or writes

between itself and memory [83], but a configuration port to allow the processor to

setup the DMA controller such as specifying the memory address that is the source or

destination of the data to be transferred, the number of bytes to transfer and enabling

the DMA controller etc.

September 2007 Fan Wu 123



An SOPC Based Image Processing System

Peripheral-controlled Waitrequest

Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Figure 6-2 shows an example of typical DMA controllers. It is the Nios DMA module,

which is an Altera sope Builder library component included in the Nios development

kit [88]. This DMA controller has two Avalon master ports-a master read port and a

master write port-and one Avalon slave port for controlling the DMA.

DMA

FIFO

Transaction Length

Write
master

Figure 6-2 Nios DMA peripheral with master & slave ports (From [881)

Figure 6-3 shows another example of typical DMA controllers with an AHB interface.

Em bQdded StipQ

• A~BMastor

o AHBSolill

1"0ChMneI DMA Ca1Iroier

AHBSIIM
lnIerfIocQ

DPRAMPLD
Int.me.

Figure 6-3 110 to memory DMA controller - Excalibur (From [73])

September 2007 Fan Wu 124



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

This DMA controller also contains an AHB slave for configuration purposes and an

AHB master to receive/transmit DMA data.

Obviously if these typical DMA controllers are applied into each peripheral that

requires direct memory access, and synchronised by a dedicated master such as a

processor by writing an enable to these DMA controllers through the configuration

port, in a given order from highest priority to lowest, this multi-mastering problem can

be solved. In this case, the processor is serving like a global arbitrator. Reference [74]

gives us an example of doing this (see Figure 6-4).

No

No

I Yes
I•

Figure 6-4 Interface synchronisation (From [74])

In this particular system there are two DMA modules and a CPU initialises all DMA

transfers. The DMA-VGA transfer has a higher priority than the DMA-Camera

transfer. An interface can start the data transfer only if the other ends.

This solution is simple and solves the multi-mastering problem as the simultaneous

memory accessed by multiple masters is never going to happen. However, it is not

difficult to see a problem which is to begin every DMA transfer the processor is

required to write to enable the transfer and before initialising the next DMA transfer

September 2007 FanWu 125



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

the processor needs some mechanism to check if the current one is completed, this kind

of mechanism can be done by polling the status register or handling interrupts

generated by the DMA controller [83][88]. Although all this work wouldn't affect the

actual DMA transfer by introducing overhead time, it burdens the processor. For

example, if it takes 3 system clock cycles to write to enable the DMA transfer, and 10

cycles for interrupt handling, then in total it would take the processor 13 system clock

cycles in every DMA transfer. This would become even worse by using the polling

approach.

Moreover, in a more general case, to determine the priority for each DMA controller of

I/O device, the software needs to understand specific timing issues which tend to be

more hardware. For example, if DMA controller 1 is given a higher priority than DMA

controller 2, but actually requests from DMA controller 2 happen more frequent than

DMA controller 1 while DMA controller 1 takes longer transferring time than DMA

controller 2, then this would always result in DMA controller 2 being held up for too

long and missing data.

So is there any other way to increase the system performance by reliving the processor

burden and also be able to solve the simultaneous multi-mastering problem? Yes, let

the Avalon bus module do the arbitration.

6.2 Avalon bus arbitration

As mentioned before this multi-mastering can be understood as a bus arbitration

problem. In the traditional centralised/parallel arbitration scheme [83] a centralised

arbitrator is required between bus masters and slaves to determine which master can

access the slave(s) (Figure 6-5). Each bus master can independently request control of

the bus from the arbitrator but only one master can gain access to the slave(s) at a time.

Ifmultiple masters attempt to access the bus, the arbitrator allocates bus resources to a

single master based on a fixed set of arbitration rules. For example, in the priority

arbitration scheme the master with the highest priority receives control of the bus first.

This centralised arbitration scheme is commonly used in pes and traditional processor

system bus architecture such as the PCI bus, AMBA - ARB and the shared-bus type of

the Wishbone bus interconnection [89].

September 2007 FanWu 126



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

Figure 6-5 Centralised, parallel arbitration bus architecture

Although the arbitrator may become the bandwidth bottleneck as only one master can

access the system bus at a time, this centralized bus arbitration scheme works well for a

traditional microprocessor system and PC because the masters and slaves are physically

separate devices located on a printed circuit board or across backplanes. As the board

resources and the number of available I/O pins are limited so that designers must use a

common set of bus lines.

However, when a system is able to be integrated into a single chip by using the

SOPC/SOC technology, the available resource becomes much more and the

interconnection of all on-chip peripherals can be placed and routed in this single chip, it

becomes possible to eliminate this bandwidth bottleneck by using new bus

architectures with more bus usage to increase the overall bandwidth. The simultaneous

multi-master Avalon bus architecture [90] is one of them.

Unlike the traditional bus architecture, the simultaneous multi-master Avalon bus

doesn't have a shared bus and is a point-to-point implementation [91], [92] classifies it

as circuit-switched star topology. Each master and slave pair has a dedicated

connection between them. Because master and slave peripherals are connected with

dedicated paths, multiple masters can be active at the same time and can

simultaneously transfer data to their slaves as long as they are not sharing the same

slave. If more than one master requires access to a single slave, then an arbitrator wi II

be placed on the path between the masters and the slave (see Figure 6-6). This

September 2007 Fan Wu 127



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

arbitration is called slave-side arbitration, because it is implemented at the point where

two (or more) masters connect to a single slave. Every slave peripheral that can be

accessed by multiple masters has an arbitrator. As this arbitration is implemented in the

Avalon bus module and hidden from system designers, the slave doesn't know which

master is currently accessing it.

•••••••

Figure 6-6 Simultaneous multi-mastering Avalon bus arbitration

The arbitration scheme of the Avalon bus is fairness-based arbitration scheme,

sometimes referred to as a round-robin or weighted round-robin scheme. For any given

connection between a master and slave, designers can select how much access each

master has to a given slave. By setting the correct number the master has the highest

fairness setting is more likely to gain access to the slave. The fairness setting is

configurable though the sope builder. Figure 6-7 shows the basic operation of how

two masters access a slave at the same time.

MI R d M2W't M2 Reads from SI N t B s Transfer

elk

ea 5, als ex u

\ \

X Valid Address for Sl X
_\ Read Request /

\ ~
Read Data from S'l

Valid Address for S 1 ,~
Read Request I

/ Wait for M1 L
Read Data from S

Address from M1 10 X Address from M2 "-
-- .-

\-
Read ala for M'I Read ata for Ml

M1_address

M1_readn

M1_waitrequest

M1_readdata

M2_address

M2_readn

M2_wai'request

M2_data

Sl_address

Sl_readn

S 1_chipselect

S1_readdata

Figure 6-7 Successive fundamental read transfers to a common slave (From (90))

September 2007 Fan Wu 128



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controIled Waitrequest

Master M1 and M2 tried to access the slave Slat the same time, and M 1 won the

arbitration and M2 was forced to wait for one clock cycle. As seen the signal

'waitrequest' is the wait control signal which keeps the other masters, not granted

access to the slave, in the wait state.

This arbitration works well for fundamental Avalon R/W transfers, as long as the slave

can decode the address and return valid data in the next clock cycle during a read

transfer or decode the address and accept write data in the same clock cycle during a

write transfer.

However, according to the Avalon bus specification, signal waitrequest can also be

asserted by the slave for other purposes like stalling the master which has already

gained access to the slave to wait for valid data to be returned or sending data to the

slave. In this system this becomes essential due to the activity of the SDRAM device. If

this is used in a multi-mastering system then obviously this would 'confuse' all masters

because in the multi-mastering arbitration scheme, signal waitrequest is generated by

the arbitrator logic and active only for the masters which are not granted access to the

slave instead of the granted one. This problem exists in this image processing system as

the specific SDRAM device does need a few clock cycles to activate the bank, row and

columns plus the CAS latency and the insertion of the auto-refresh operation, the

memory controller need to assert waitrequest to tell the master port to wait for start of

the actual data transfer. Furthermore, as the SDRAM is operating at full page mode,

multiple streaming transfers requested on this SDRAM slave could result in the first

granted master not receiving a full page data in one streaming transfer. Figure 6-8

illustrates how the data flows into the streaming masters when they both attempt to

access the slave. Assuming they both have equal fairness setting. As seen streaming

master! can only receive half of the full page data.

September 2007 FanWu 129



An SOPC Based [mage Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

•
datatl9~ 0a

Data pattern
.0.0.0.0

Figure 6-8 An arbitration view during conflict between two streaming masters

Therefore a solution must be developed to allow the streaming transfer with peripheral-

controlled waitrequest to work properly in this multi-mastering system, and ensure a

single streaming transfer can always transfer a full memory page losslessly. The next

section will discuss a solution to this simultaneous multi-mastering Avalon streaming

transfer with peripheral-controlled waitrequest (SMMAST-PCW) problem.

6.3 Implementation of simultaneous multi-mastering streaming

Avalon transfer with peripheral-controlled waitrequest

Experimental work has been undertaken to investigate the possibility of implementing

the SMMAST-PCW between multiple streaming Avalon master ports and a single

streaming Avalon slave port. However, it can be concluded that operations would fail if

implementing this kind of transfer in such a multi-mastering system due to the design

of the Avalon bus architecture. The main bottleneck is that the peripheral-controlled

waitrequest interferes with the Avalon arbitrator generated waitrequest.

A feasible solution would become available if the Avalon arbitrator never generates a

waitrequest to the streaming master though it is still there, and uses something else to

respond to the waitrequest generated by the arbitrator. In the actual implementation, a

simple Avalon master port (non-streaming) is placed in every master peripheral, and a

September 2007 Fan Wu 130



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

simple Avalon slave port (non-streaming, no peripheral-controlled waitrequest) is

placed in the common slave peripheral. The one in the master peripheral is called the

"streaming control master port" and the one in the slave peripheral is called the

"streaming control slave port" (see Figure 6-9).

Master peripheral Sian peripheral

------------ ,------------
, Streaming data ',tri!.!!.!l:r,Streaming Control', ~~ ,
, master port(s) : 'master port I

------------ ,------------: Streaming data :bus) i Streaming control:
slave port(s)' ' slave port '

Figure 6-9 Master peripheral and slave peripheral with streaming control feature

The streaming data master ports work exactly the same as the normal streaming Avalon

master such as the master ports in the video capture controller and video display

controller. However, the streaming master wouldn't initialise any streaming transfer

until the streaming control master wins the arbitration and the returned data from the

streaming control slave indicates that the streaming slave is not busy. So conflicts

between the streaming data masters and slaves will never happen and the master will

never be confused by the waitrequest which could be generated from the Avalon

arbitrator or peripherals. Second, when the granted streaming data master sends request

to the streaming data slave, the slave immediately sets the busy bit and the streaming

control slave sends out this bit as master read data so the steaming control master

knows the status of the slave and can continue holding the other pending masters until

the current streaming transfer finishes. So a non-abortion streaming transfer can be

guaranteed. By using this solution, sufficient bandwidth and lossless streaming transfer

can be achieved. Figure 6-10 is the interconnection diagram of all video masters, the

memory slave and Avalon arbitrators in this SOPC image processing system with the

streaming control master/slave applied.

September 2007 Fan Wu 131



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

Figure 6-10 Block diagram of sim ultaneous multi-mastering image processing system

Figure 6-11 illustrates how a streaming control master should respond to the Avalon

arbitration and the streaming control slave.

Streaming control master ASM (non-streaming Avalon master)

Figure 6-11 ASM chart of streaming control master

Figure 6-12 shows an example timing diagram of simultaneous multi-mastering Avalon

streaming transfer with peripheral-controlled waitrequest.

September 2007 Fan Wu 132



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

abc d e 9 h k m n 0 p q
elk £:N~~f"i'-i
MI _streamingcrtl_addr addrcs

M I_streamingcrtl_rd l~

MI_streamingcrtl_ waitrequ
MI _streamingcrtl_readdata '"(l"

MI _stream ing_ addr !~
address

T
MI _streaming_rd
MI _streaming_ waitrequest ~
MI _stream ing_endo fpacket ;--1\ I~
MI _stream ing_readdata datnO data l dataN

M2_streamingcrtl_addr
M2_streamingcrtl_rd y
M2_streamingcrtl_waitrequ~
M2_streamingcrtl_readdata "1" -o:

M2_streaming_addr
~

address

M2_streaming_rd I\._,
M2_streaming_waitrequest 1,,---'
M2_stream ing_ endo fpacket _J._ H I\._,
M2_streaming_readdata ooUlO datal dlllnN

I I I I
1" I I I I

SI _streamingcrtl_addr address from Nil

SI _stream ingcrtl_rd L..,
SI _stream ingcrtl_ CS

~SI _streamingcrtl_readdata "0" "I". Read data for M2 "0"

SI _ stream ing_addr
lrg:'~"
T

address from M 1 address from Ml

SI _streaming_cs \._,
T

SI _streaming_rd \._,

SI _streaming_ waitrequest
T r='
ISI _stream ing_endo fpacket ;--1\ \...____,

SI _ stream ing_writedata 00..,0 00",1 ooUl ooUlO du", uta

Rend taforMl Read dnla for M2

Figure 6-12 An example timing diagram of simultaneous multi-mastering Avalon

streaming transfer with peripheral-controlled waitrequest

a, Master MI and M2 present request on slave SI through the streaming control

master/slave at the same time

b, Ml streaming control master won the arbitration (Ml_streamingcrtl_waitrequest is

low), and initialises the streaming data master to present a streaming read request to

the streaming data slave in SI. SI streaming data slave responds to this request

immediately and the streaming control slave returns ' l' on

Sl_streamingctrl _readdata to indicate the slave is busy

c, M2 is being held and M 1 streaming data master is waiting for SI to decode the

address. Sl_streaming_ waitrequest is asserted by SI streaming slave and passed to

Ml_streaming_ waitreuest

d, SI streaming data slave indicates the completion of address decoding by deasserting

the S1_streaming_ waitrequest

September 2007 Fan Wu 133



An sope Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

e, Valid data presented on the Ml_streaming_readdata line

h, SI streaming data slave indicates the last data returning by asserting

Sl_streaming_ endofpacket

I, Ml streaming data master deasserts control and address signals and MI streaming

read transfer terminates. SI streaming control slave immediately responds to this by

returning '0' data. M2 gains access to the SI streaming control slave

j, M2 streaming data master initialises a read streaming request and SI streaming data

slave immediately asserts waitrequest and enters the address decoding cycle

I, SI streaming data slave finishes address decoding by deasserting

Sl_streaming_ waitrequest

m, Valid read data presented to M2 streaming data master

p, SI streaming data slave asserts Sl_streaming_ endofpaclcet to indicate the last data is

returning

q, M2 streaming read transfer terminates

In this example, MI and M2 are both master peripherals and each of them contains a

streaming data read master and a streaming control master. SI is the shared slave

peripheral and has a streaming control slave and a streaming data slave. If this example

is applied into the Nios image processing system, Ml could be the display controller

while M2 could be the Cache. Ml is getting data from video bank 1 while M2 is

reading data from video bank 2.

As seen from the timing diagram, although this solution would introduce one extra data

clock cycle overhead time to every streaming transfer, the processor isn't involved in

doing any arbitration, and it doesn't need to check the status of every streaming transfer.

All arbitration is done by the hardware. The processor will be told a bank has been

finished displaying or capturing a frame by interrupts. By using this simultaneous

multi-mastering streaming Avalon transfer with peripheral-controlled waitrequest data

transferring efficiency can be further increased.

Furthermore, this solution maintains the slave module generic. Whenever a new master

requires streaming access to the shared slave, what it needs to do is to implement the

streaming master ports by following the SMMAST -PCW solution described above.

Additional changes on the slave are not required.

September 2007 Fan Wu 134



An SOPC Based Image Processing System Chapter 6. Simultaneous Multi-mastering Streaming Transfer with

Peripheral-controlled Waitrequest

6.4 Another solution

Section 6.2 has described the main bottleneck of implementing the SMMAST-PCW is

that the peripheral-controlled waitrequest interferes with the Avalon arbitrator

generated waitrequest. So if the Avalon arbitrator doesn't exist, can this problem be

solved? Yes, it can.

The Avalon multi-mastering bus architecture allows point-to-point interconnection.

Therefore by creating more steaming slave ports in the memory controller and each one

responds to a streaming master port as shown in Figure 6-13, the multi-mastering

problem can be solved. In this solution, the memory controller DOES appear as a

triple-ported slave.

\ ideo capture cuntruller

:-siieanl-i~g-
:data master

\ ideo dh"la~ cnnt ru ller
I ,-Siical;;i~g-:

: mastcr_ ;

Figure 6-13 Multi-ported memory slave solution

This solution solves the problem because it removes the Avalon arbitrator, and the

memory slave can generate separate waitrequest to hold up its corresponding master

without worrying about interfering with the others. Obviously the main difficulty of

this solution is to design the custom arbitrator.

The advantage of this solution is the arbitrator is custom defined, so non-overhead time

can be achieved to maximise the data transfer rate. Also, pipe lining (see section 5.2.3)

could be possibly implemented. However, whenever there is a new master needs to

connect to the slave, the memory controller is needed to be modified or re-generated,

which makes the slave module none general. Furthermore, this custom-defined

arbitrator could be as complicated as the Avalon arbitrator, for example if the same

arbitration scheme is used, then this would be time consuming to implement. Therefore,

this solution is not fulfilled in the current SIPS design.

September 2007 Fan Wu 135



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

Chapter 7. System Core Generation, Synthesis & Implementation

The SIPS system core was written in a high-level hardware description language -

VHDL. Following describing all main JP modules of the system core, this chapter

mainly discusses how this VHDL core was generated and synthesised. Section 7.1

presents how to generate the system core by using SOPC builder and PTF files [93].

Section 7.2 presents a detailed discussion of the synthesis results.

7.1 System core generation

As described in Chapter 3, SOPC Builder automatically generates a synthesisable Nios

processor system by integrating all standard/custom IPs out of the component library,

with the Avalon bus module together. This section therefore firstly describes how to

document the custom video IPs into SOPC Builder's component library so that they

can be added into the system being generated. Following that the generation process

and result are given.

7.1.1 PTF files

Chapter 3 describes that the system description file (PTF) file stores the design

information for systems being edited and generated within the SOPC Builder. Apart

from the System PTF file, there is another type of PTF files which is the Class.ptf files.

It describes the SOPC Builder library components such as VO signals, how they match

the Avalon bus interface, and simulation settings. Each library component displayed on

the left panel in Figure 3-15 has a unique c1ass.ptffile. When SOPC Builder starts up it

searches for components by "looking" in all directories on a configurable search path

for files named class. ptf. When it discovers a file named class. ptf, it will read the file to

see if it contains a valid and correct PTF file description of a library component. There

is a one-to-one correspondence between components displayed in the GUI's library-list

and discovered class.ptf files. Practically a system PTF file is the collection of class.ptf

files of all IP components that the system contains (see Figure 3-16) with extra

description of the global connectivity of all sub-modules.

A typical c1ass.ptf PTF file contains 7 fields. "CLASS SECTION NAME" field

contains the formal name of the library component. "ASSOCIATED FILES" field

September 2007 FanWu 136



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

describes the add_program, edit_program and generator _program files. These files are

used to direct the SOPC Builder on how to add the information of the class.ptffile into

the system PTF file, and how a library component is edited and generated into the

system top-level file. If the default generator is chosen as the generator-program, then

there will be an extra field called "DEF AULT GENERA TOR" which contains

information on the files to run, top-module name etc. The "MODULE DEFAULTS"

field describes all information of the IP component such as all Avalon masters/slaves it

contains, the Avalon module type, properties and port wiring. The "USER

INTERFACE" field contains the information that describes terms for use by the SOPC

Builder GUI (e.g., tips, module pool organisation, etc.). More information of the PTF

syntax can be obtained in [93].

In the Nios embedded image processmg system, it contains not only the library

components that Altera provides such as the flash controller and the SRAM controller,

but four user-defined modules. In order to integrate them into the whole system module

a separate class.ptf PTF file must be produced for each of them. Figure 7-1 illustrates

the custom-defined library IP components displayed on the system content page of the

SOPC Builder.

An example of the class.ptfPTF file written for the Cache is included in Appendix F.

7.1.2 System generation

When all IP components including the custom-defined ones are ready to be used, the

top-level system module can be built up by adding the required IPs and connecting all

of them in the SOPC Builder. Figure 7-2 illustrates the top-level view of the image

processing system core which includes information of all IP components and

interconnections, fairness settings for each master, basic address assignments for all

Avalon slaves, unique interrupt number for each master which has an interrupt output,

and the clock frequency.

As mentioned in Chapter 6 the fairness setting of the arbitration scheme is

configurable. User can assign a number from 1 to 99 for each master/slave pair. In this

system, all video master peripheral has the same share on the memory slave which is 1

September 2007 FanWu 137



An sope Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

(Figure 7-2). That means every master will be granted access to the slave on average

33.33% of the time. Zero means no connection between the specified master and slave

path.

File Module System View Help

Q:! A~era SOPC Builder
Create New Component ...

a Allalon Components
• Nios Processor - A~era Corporation

i±I Bridges
:±J Communication
±J DSP
1±1 EP1C20 Nios Dellelopment Board Cyclone Edition
±J EP1S10 Nios Dellelopment Board strati. Edition
.±l EP1S48 Nios Dellelopment Board strati. Pro Edition
B EP20K200ENios Dellelopment Board
ttl EICamino

±l Ethernet

Cl Image Processing System

• Cache
• Video capture controller

• Video display controller
• Video memory controller

l±I Interfaces and Peripherals
.:tI legacy Components
.:tI Math Coprocessors

t±I Memory

All AHilable Comoonenls

'1 ~ I «>~. 0

I Add... Check

Figure 7-1 Custom defined library components

Ivl
I

Once the system module has finished assembly, the system generation procedure starts

when the user clicks Generate as the final sope Builder GUI action. During the Top-

Module Generation phase, sope Builder writes the definition of the system's top-

module into the system HDL file. The top module definition includes proper

declaration of all the system's I/O ports, instances of every module in the system,

instances of all the arbitration modules that contain the bus logic, and interconnections

between all the modules. It also generates the software-support (SDK) directories and

some simulation files. Figure 7-3 shows part of the generation results in sope Builder.

September 2007 Fan Wu 138



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

~
IJQ=.,
~
-...l,
N

~
0

~

"0,-~<~-ell~
ell....e
9

~

<...~
~...=
rJJ
0
"'do
CC
==:
Q.,
!!>.,

m m
~ CD CD

~!1 ~!1
~ '., '=.. II ..

3 "::r

"4~--4~---4~---4--~~I I . "-:-r4
~71------~1------~----~'
I I
I I
1 I
1 I

:r
<~.
."

i.,.;

~

~
T.
"~
r,

"t
OJ

('>

R",...

~

J

;/.. ~, .,
" I> ".1> /:., ., .. <

" .. .. ...;~~ .. a.~ < < < < < /' < < < < >g < i~ -< ...... ~ ., '" I> .. {Q) ~ ~ ~ " ~i3" " 0 " 0 ';:"g ":"'0 ,'- 0 13' ~,.., :0 :0 :0 :0 :0 , :0 '" :0 '" , ? :0 :0

~ .. .. ..... III

" " " " .. ..~ • .. • .. ".. .. co .. "!ii1 .. .. .. .. .. ·.··/0 .'

~
.. g .. .. .... .. .. .. /'" is ; II ~..

Q .. ... ..
-=< Cl Cl Cl Cl Cl m
? )( §.~)( )( ~Cl 88 ,.,-
5 8

g~ Cl Cl
~':'8 8 8~ .... ." <» ....

Sil~ Cl w
" ........
~

September 2007 Fan Wu 139



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

I Sy~em co~e~~~_!'A~~~2Pu" Settings 1 syst~ ~~~~a:~ ""

I
Options --

o SDK Generate header rues, library fdes, end memory contents for CPU(s) and peripherals in your system.

I
0 HOL. Generate system module logic in VHDL

o Stmul8l:ion. creete simulator project files. Rr,a Sen .t(,~

t· 2007. DB.20 15.10:01 (.. ) Starling genQralion for s:ys:hm: ref_32_50yslem.

it 2007. 08. 20 15 10:03
~ 2007. 08. 20 15: 10:0<\
.. 2007.08.20 15: 10:04
., 2007. 08. 20 15: 10:04
.. 2007. 08. 20 15: 10:07
.. 2007.08.20 15: 10:09
it 2007.08 20 15: 10: 11
.. 2001. OB. 20 15: 10: 12
it 2007 08.20 15' 10: 13
.. 2007 08.20 15: 10: 16
it 2007.08.20 15: 10: 18
112007.08.20 15' 10: 19
., 2007.08.20 15 . 10:20
it 2007.08.20 15: 10:21
., 20Q1.08.2O 15' 10:22
:.. 2007.08.20 15: 10:24
11 2007.08.20 15 : 10:26
·it 2007.08.20 15: 10:27

i., 2007.08.20 15: 10:28
:II 2007.08 20 15' 11 '00

·it 2007.08.20 15: 11 00
it 2007.08.20 15: 11 :00
:,. 2007. 08. 20 15: 11 :01

(*) Running Gener-et cr ProgrMl for cpu.
(*) Component' c;pu' ha.~ :not. chanc.d. - hOt. rer;eneralinc

(*) To force r-egener-a t icn, turn off "Smart Recompile'" in the Nios Wizard .
(*) Runninc: Generator Program for uartl

(*) R\U\l\in, Genarator Program for uvt2_debug

(*) Running Generator Prop-am for boot_monitor_rom

(*) Running Gener e t cr Progant for ext_ram

(*) Runninc: Gener e t cr ProcYMI for timerl

(*) Running Gener e t cr ProUIlllJlo for uSeT_logic_C.ch@_O

(*) RunninC Guuar.tor Program for uur _logi c_vi deo_di 5:play_controllilr _O
(*) Default Generator Pror;ram for: uur_logic_video_display_controllu_O.

(*) RunninC Generator Program for user_logic_video_captur._controller_O

(*) Default Generator Prov~ for: user _loci c_vi deo_capture_controller _0.
(*) RunninC Generator ProCTua for user _loCi c_vi deo_memory_controller_O

(*) Default Generator ProcY8111 for: user _loci c_vi deo_",emory_controllf!r _0.

C*) R\U'lning Genar e t or Progrem for cUl.ra._uart

(*) Running Generator Program for seven_sflL.,Pio

(*) Runnlng Generator Procram for bultonJlio

(*) MakinC ubi tr e t icn and system (top) modules.
(*) Generating Quart.us symbol for top Leve.L: rE!f_32_system

(*) Symbol C:/IPSyshm/alliliralraf_32_system. bsf alru.dy exists, no need to rec.nuate

(*) Crea.ting command-line :;ystem-genere.ti on script: C: !IPSystem/ al tere/ref_32_system_C4!nera.ti on_script

(*) Running setup for HDL simulator: modelsim

;j: 2001.082015:11'01 (*) Seltin, up Quartus with ref_32_syst.em_utup_quarlus.lcl

c: / e.l. tera/ quartus50/bin/ quartus_sh -t ref_32_system_utup_quartus. tcl

2007.08.20 15; 11:02 (*) COlJlpl.t.d can.ration for system: ref_32_system.

2007.08. 20 15: 11 :02 (*) TKE POUDWING SYSTEM ITEMS HAVE BEEN GENERATED'

cpu include files such as memory maps C:/IPSystem/a1terelcpu_sdk/inc/

cpu library filts C:/IPSYKttrn!alt.ra./cpu_sdk!lib/

cpu eX$lIlple pror;rams C:/IPSystem/alter./cpu_sdk/src/

sope Builder databue C:/IPSyst@m/a1tera!yef_32_system ptf

Syst.ftI HIlL Mod.l C:!IPSys-t.",/a1tera.!r.f_32_s;ys;lt",. vhd

Systeltl Generati on Script C: /IPSystem/ al tere./ref_32_system_cenerat 1 on_ser ipt

to exit. ~III!---------- -- __ ---

2001.08.20 15: 11 : 02 (*) SUCCESS: SYSTEM GENERATION COMPUTED.

< Pre'" J J Ne'! ~

Figure 7-3 System generation results

Figure 7-4 shows the block diagram of the sope builder generated system top module.

7.2 System core synthesis

Quartus II was the tool used for system synthesis, place & route and timing analysis.

This section mainly discusses the synthesis results given by the Quartus compilation

report.

September 2007 Fan Wu 140

mailto:uSeT_logic_C.ch@_O


An sope Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

7.2.1 Systemcore synthesis

Having generated the system core, it needs to assign actual pins to all system IIOs. As

the system clocks are not generated through the SOPC builder, the PLL modules must

be included into the top level synthesis file as well. Figure 7-5 shows the block diagram

of the SIPS system core with all pin assignments and PLLs on. Detailed pin

assignments of the video components can be found in Appendix C.

reset_n

in_port_to_the_bulton_pio[11 ..0)

rxd _to _the _camera _uart tXd_ from_the _camera _uart

ext_ram_bus _address[19 ..0)
ext_ram_bus_byteenablen[3 ..0J

ext_ram_bus_dala[31 ..0)
ext _ram_bus _readn

selectO _n _to _the _ext_ram
select1_n_to _the _ext_ram
select_n_to_the_ext_flash
wr~e_n_to_the_ext_flash

wrfte_n_to_the_ext_ram

out_port_from_the_seven_seg_pio[1S ..0J

rXd_to_the_uart1 txd_from_the_uart1

rxd_to_the_usrt2_debug txd_from_the_uart2_debug

dats_clk_to_the_user _logic_Cache_O

OVal_to _the _user _logic _video _capture _controller _0
FVal_to _the _user _logic _video _capture _controUer _0

LVal_to _the _user _logic _video _capture _controDer _0
capture _clk _to _the _user _logic _video _capture _controtter _0
dala_clk_to _the _user_logic _video_capture_controller_O

video _data_to_the_user _logic_video _capture _controDer _0[7 ..OJ

Trig_ from _the _user _logiC _video _capture _controller _0

data_clk_to_the_user _logic_videa_display _controller_O
video _clk_to _the_user _logic_videa_display _controller _0

b_from_the_user _logic _video_display _controller _0[7 ..OJ
blank_n_from_the_user _logic_videa_display _controller_O
g_from_the_user _logic _video_display _controller _0[7 ..OJ

hs_from_the_user _logic_video_dlsplay _controller_O
m1_from_the_user _Iogic_video_display _controller_O
m2_from_the_user _logic_video_diSpiay _controller_O

r_from_the_user _logic_videa_display _controller _O[7..0J
sync_n_from_the_user _Iogic_video_displey _controller_O
sync_t_from_the_user _logic_video_dlsplay _controller_O

vs_from_the_user _Iogic_video_display _controtter_O

data_clk_to_the_user _logic_video_memory _controDer_O add_from _the_user _Iogic_video_memory _controller _0[11 ..0)
bs_from_the_user _logic_video_memory _controller _0[1 ..OJ
cas_n_from_the_user _logic_video_memory _controller_O

cke_from_the_user _logic_video _memory _controller _0
cs_n_from_the_user _togic_ video _memory_contrOller _0

dq_to_and_from_the_user _Iogic_video_memory _controller _O[63 ..0J
dqmb_from_the_user _logic_video_memory _controDer _0[7 ..OJ

ras_n_from_the_user _Iogic_video_memory _controller_O
we_n_from_the_user _Iogic_video_memory _contrODer_O

Figure 7-4 Top system module view

September 2007 FanWu 141



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

. . . . . . . . . . .
, .

September 2007 Fan Wu 142



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

7.2.2 Synthesis results & discussions

The synthesis result of the Nios (version 3.2) integrated image processing system core

in 8-bit mode on the Apex device EP20K200EFC484-2X is shown in Table 7-1.

Table 7-1 Synthesis result in 8-bit mode

LEs 5776/8320 (69%)

Memory bitslESBs 105472/106496 (99%)

Embedded System Blocks (ESBs) 51/52 (98%)

Total pins 238/376 (63%)

PLLs 2/2 (100%)

Data clock fmax 88.28MHz

System clock fmax 41.35MHz

Note: The synthesis results might be different when usmg different version of Quartus II software and

Nios CPU.

This synthesis result was given by the Quartus II 5.0 compilation report. This result

shows the image processing system core has used most of the resource of this FPGA

device, especially the memory blocks, and this is good. However, the required clock

frequencies could not be satisfied which are 100MHz data clock and 50MHz system

clock. As seen from the table the system speed is degraded. A few methods have been

tried out to optimise the speed such as using LogicLock [54] design methodology and

configuring the Quartus synthesis tool to compile the system with optimised speed. But

it still couldn't meet the design requirements. One of the reasons is the existence of

multiple masters sharing the same slave that requires the Avalon arbitrator to decode

more address and other control information, and all these paths are combinational

logic. Also, more CPU peripherals require more resource to decode the CPU address

and control signals and hence result in more cell delays. Furthermore, the use of

waitrequest in all video components could significantly increase the delay. Finally as

the design gets larger, the area it covers on the device also gets broader, and this would

result in the interconnection delay in certain paths gets longer and eventually affect the

system performance. Certainly the performance of the chosen device should also be

considered as one of the main constraints.

Reference [94] and [95] give some examples of speed performance on similar devices

September 2007 FanWu 143



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

by implementing the Nios embedded system with some other peripherals on. [94]

indicates the maximum frequency of the reference design with 32-bit Nios processor

Lion device EP20K200EFC484-1X is 43.26MHz (-IX has a higher speed

performance than -2X). [95] gives a comparison between two different systems (they

both have the same Nios processor with version 3.0) on device Apex20KEIOOO-2X.

The fmax is 58MHz when 3804 logic elements (LEs) are used however the speed is

degraded to 40MHz when the total LEs are 4663. From these two examples it can see

that the speed performance of SIPS on the selected device is reasonable because it has a

larger number of gates than the second example and used a device with lower speed

performance than the first example. By implementing SIPS on different device various

performance results can be achieved.

Table 7-2 lists some synthesis results of SIPS on several devices to give a view of how

system performance varies on different FPOAs. This.performance estimation was only

performed after synthesis and based on the same SIPS design without any optimisation

given for the specific device, the actual place & route wasn't taken into account as pin

assignments were unknown. All synthesis was performed by Quartus II 5.0 with Nios

3.2 utilised.

In order to run SIPS in 24-bit ROB mode a minimum of 22.8kB embedded memory is

required, however the Apex 20K series device only offers 15kB memory. Therefore

SIPS in 24-bit mode wasn't evaluated.

Since the synthesis result couldn't meet the requirements, it had to redefine the data

and system clock frequency. In order to maintain the integer multiple relation between

the system clock and the data clock, and not exceed the allowed fmax, 40MHz for the

system clock and 80MHz for the data clock were chosen. These frequencies will be

used to calculate the image processing performance in Chapter 8.

Due to the degrading of the data clock speed, the auto-refresh counter has to be

changed as well. To perform 4096 times of auto-refresh within 64ms the SDRAM

controller must generate an auto refresh command no more than every

15.625I1S/ = 1250 data clock cycles.
/0.012511.

September 2007 FanWu 144



An SOPC Based Image Processing System Chapter 7. System Core Generation, Synthesis & Implementation

September 2007

n ::t>-n ifJ :::> '"'0'-< ~ er: C1l0 '-< q- '"'0 :xa 0 a C1l
:::s a x' a :x tv [-. ClC1l :::s :x ......

C1l ....... ......
~- .......- .,_

'<

tr:l
'"C

tr:l tr:l tr:l tr:l tr:l
tv

'"C Cl'"C '"C '"C '"C
~tv tv o: tvn n ifJ ........ ::t>- o t:::1U.) tv ........

0 ........ 0 C1l(.Jl 0 (.Jl
(.Jl tT1 $.>-rj >-rj >-rj >-rj >-rj ""l1..j::.. ..j::.. ..j::.. -.J 0

00 0 00 00 0'\ n C1l
..j::.. 0 ..j::.. 0 -.J ..j::..IVn n n n n 00

..j::..-.J -.J (.Jl
l..Il -.J ,,_.

><
--3~r:::r
;;-
-...I,
N

t'I'l
VI
0".
Ea~-It>
Q.
"'0
It>
'"I

0'
'"Ie~=n
It>

0=~
~
'"Io·=VI
~...,
o
>
'"

Fan Wu 145



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

In order to ensure the system is working properly, simulations and hardware tests for

individual IP component associated with the hardware interface and the whole system

are essential. This chapter therefore firstly focuses on discussing the test scheme that

has been undertaken for the main IP components and the whole system. It then

describes the software development which includes the general issues and the

implementation of various image processing algorithms. A performance analysis is

given for each of these image processing tests. Finally a summary is given for this

chapter.

8.1 System tests

Various tests have been undertaken for each video IP component with its dedicated

hardware interface. The units under test include the video memory, Cache, video

display, video capture and the whole system. In this section, it describes how all these

tests were undertaken in both simulation and hardware verification and the test results

will be discussed. Furthermore, a special test given for the SMMAST -pew will also be

presented.

8.1.1 Simulations

The simulation scheme and results presented in this section are for the SOPC top

module, which includes all video IP components and the Nios processor, Avalon bus

module and other Altera provided IPs such as the SRAM, Flash, and Timer. The SOPC

Builder generates all simulation instances for simulations. The actual simulations were

done by using the simulation tool - ModelSim. Details of setting up simulation for Nios

processor design can be obtained in [96].

Figure 8-1 shows the block diagram of the simulation scheme of this SOPC top module.

As seen in the figure, the whole SIPS core is the unit under test. There are three extra

blocks for driving the whole simulation. They are the external SRAM test interface,

video memory interface test controller and the video capture interface test controller.

September 2007 FanWu 146



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

1---------------------------------------1
: SIPS core
I
I
I

Cache

memory
Nios 1+- ..... controller

processor

Video Video
memory
interface

test
controll

Video
display . : ~~~p.~...•

controller I
I
I

Video
capture
controller

I----------------------------------------Unit under test

Figure 8-1 SIPS simulation scheme

In SOPC Builder, the user can specify which CPU program is used for simulation. This

program could be a C program which the SOPC Builder can build and store as the

instruction set in the dedicated memory device where the CPU fetches the instruction.

In SIPS, SRAMs are used to store the CPU data and program. Therefore, in simulation,

the content of the pre-built C program memory file has to be read into the SRAM

controller through the auto-generated SRAM test interface to drive the processor. In

order to simulate the function of the SDRAM device, a video memory interface test

controller was created in the test bench to respond to the SDRAM command operations.

There is a memory module inside it to store the data being written. So this interface

block works 'virtually' as the SDRAM device. The video capture interface test

controller was used to generate the video timing control signals and video data read

from an image data file to drive the video capturing in SIPS. The next few sections will

discuss some typical simulation results of each main IP component. (Note: only 8-bit

video mode simulation is presented in this section).

8.1.1.1. Video memory controller simulation results & discussions

Figure 8-2 shows the simulation result of an Avalon streaming write to the memory

controller with bust length (BL) of one. In this simulation, data OxOOOOOOOBis being

written into the upper 32 bit word at SDRAM address Ox005 (Ox16 right shift 2 bits).

From this figure, it can be seen that an Avalon streaming write with length 1 takes 5

data clock cycles to complete which includes 1 cycle for issuing the streaming control

slave (time a to b) and 4 cycles to do the entire write cycle (b to d). The actual SDRAM

write cycle completes with 3 cycles delay (d to f+ I). There are small spikes on the

September 2007 FanWu 147



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

signal data_slave_waitrequest_u and dataslave waitrequest ], however, that

wouldn't cause problems to the actual system as this system is a synchronous system

and these spikes are very short pulses. In fact these spikes only exist in the behaviour

simulation.

Figure 8-3 shows the simulation result of an Avalon streaming write to the memory

controller with bust length of 80. It can be seen, from this figure, that an Avalon

streaming write with length 80 takes 84 data clock cycles to complete (time a to f)

while the actual SDRAM burst write completes with 3 cycles latency (fto g+ 1). Time

d to g is the write sequence of 80-word data being written to memory.

Figure 8-4 shows the simulation result of an Avalon streaming read from the memory

controller, while the burst length is 1. In this simulation, 64-bit data

Ox0000000500000004 at SDRAM address Ox02 (Ox08 right shift 2 bits) is required to

be read. From this figure, it can be seen that an Avalon streaming read with length 1

takes 10 data clock cycles to complete which includes 1 cycle for the streaming control

slave to perform arbitration (time a to b), 6 cycles for issuing the Bank Activate and

Read command (time b to d), 2 cycles CAS latency (time d to I), 1 data cycle (time fto

g) and another extra cycle for valid data returned to the master (time g to h).

Figure 8-5 shows the simulation result of an Avalon streaming read from the memory

controller with burst length of 80. From this figure, it can be seen that an Avalon

streaming read with length 1 takes 89 data clock cycles to complete which includes 1

cycle for the streaming control slave to perform arbitration (time a to b), 6 cycles for

issuing the Bank Activate and Read command (time b to d), 2 cycles CAS latency

(time d to e), 80 data cycles (time e to g) and another extra cycle for valid data returned

to the master (time g to h).

From all of the simulation results given for the memory controller, it can be concluded

that an Avalon streaming write transfer with burst length n (1 :s n:S maximum memory

column size) takes n+4 data clock cycles to complete. An Avalon streaming read

transfer with burst length n (1 :s n :s maximum memory column size) takes n+9 data

clock cycles to complete. tsco (Active to ReadlWrite Command Delay Time) of 2 data

clock cycles and CAS latency of 2 data clock cycles are applied into these calculations.

September 2007 FanWu 148



An SO PC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

~.
3=;--o·
=
~
'"=-
C"=~-

September 2007 FanWu 149



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

September 2007 Fan Wu 150



An SO PC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

~~.
c..,
til
QC
I

""-<c:
tilo
3
til

3o
~
rlo=[
;-.,
~.
3
c;--o·
=..,
ac
:::

-=e-
II-'-'

September 2007 Fan Wu 151



An sope Based Image Processing ) stem Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

~.
3=~-o·
=.,
~
'"=-

September 2007 Fan Wu 152



An sope Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

8.1.1.2. Video display controller simulation results and discussions

Figure 8-6 gives a view of the display timing of an entire image with size of 640x480.

This figure shows that the video display starts as soon as the CPU sends configuration

data into the display controller via the CPU slave port just prior to time a (see the small

image). There are five time spans in this figure which represent various stages of the

vertical timing. Time a to b is the vertical sync pulse width which is approximately

0.064ms. Time b to c represents the vertical back porch width which is approximately

1.03ms. The active frame period is approximately 15.37ms from time c to d. Time d to

e is the vertical front porch width which is approximately 0.35ms. The total frame

period is therefore approximately 16.8ms which gives a frame rate for that size of

image about 60 f/s. At the end of the active vertical sync (vs) an interrupt is asserted (at

time e) on the CPU slave port to inform the CPU that a frame has been displayed.

Figure 8-7 gives a zoomed view of the horizontal video timing. As shown in the figure,

time b to c is the horizontal sync pulse width which is 3.84J.1s.Time c to d represents

the horizontal sync back porch width which is 2.12J.1s.The active video period is from

time d to e which is 25.6J.1sfor sending 640 pixels. The last time span is the horizontal

sync front porch width which is 0.48J.1s.The total time of displaying one horizontal line

is therefore 32.04J.1s.There are 480 lines in this simulation so the active frame period of

480 lines should be 32.04x48<F15.37ms which matches the time value shown in Figure

8-6. At time a when blank _n is deactivated, an Avalon streaming read request to the

memory controller is asserted for reading the next line data into one of the line buffers.

Whenever the bus is free (no conflict in accessing the memory) this read request is

handled and valid data is returned in a burst (see the small image).

8.1.1.3. Cache simulation results and discussions

Figure 8-8 shows the operation of a Cache write. In this example the CPU is writing

data OxOOOOOIEOinto the lower 32-bit word at SDRAM address OxD8. At time a a

write request from the CPU initialised. After 1 data clock cycle, at time b, this write-

though request to the memory commences, and the whole write transfer completes at

time e. At time d when the CPU slave detects that the write request has been granted to

the memory it deasserts waitrequest and the CPU write finishes at time d. The total

CPU write takes up 2 system clock cycles.

September 2007 FanWu 153



An sope Based Image Processing System Chapter 8. SystemTests, Image ProcessingAlgorithm

Implementation & PerformanceAnalysis

Figure 8-9 shows an example of Cache misses. In this example, the CPU is reading

data from the lower 32-bit word at SDRAM address Ox04 (BL=I). The CPU read

request is issued at time a. At time b, after the Cache has calculated it is a miss, a read

request to the memory is initialised, and this request completes at time c. The whole

CPU read fmishes at time d. The returned data is OxOO000408.It should be noted that

the upper 32-bit word is also read out from the memory at the same time so the next

CPU read at this address for acquiring the upper 32-bit word would be a Cache hit. The

entire Cache miss read takes 12 system clock cycles to complete when BL is I.

Figure 8-10 illustrates a Cache hit example. The CPU is reading the upper 32-bit word

from the same SDRAM address as in the last example. As mentioned before, this

would be a Cache hit. It can be seen from the figure that a Cache hit takes 4 system

clock cycles to complete.

From all of the Cache simulation results, a summary can be made which is a Cache

write takes 2 system clock cycles, a Cache miss takes 12 cycles while a Cache hit needs

4 cycles to complete when BL is 1.

8.1.1.4. Video capture controller simulation results and discussions

Figure 8-11 illustrates the simulation result of the video capture controller with

capturing one frame sized at 64Ox480. The total active frame period is approximately

16.35ms. An interrupt is generated immediately after {val becomes inactive.

Figure 8-12 gives a zoomed view of one video line capturing. The video line activates

at time a, and lasts till time b. As the capture clock in this simulation is 20MHz, the

total active line period is 32J.1s.During the inactive line period (time b to c) an Avalon

streaming write request is issued to transfer the video line that has just been captured to

the memory. The total data transfer time is I05J.1S(see small image) which takes 84

data clock cycles at a frequency of 80MHz.

The video input timing used for simulating the video capture controller was based on

the information given by the camera manual. The actual timing was measured in the

hardware test, which will be presented in the next section.

September2007 FanWu 154



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Co;;;.
"Cl
;-
t...(

rle=.....,
~
;".,
~3·
e
;-....o·
=.,
11=--

September 2007 Fan Wu 155



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

~.
3=;-...o·
:s
"'l~
'"=...
N

September 2007 Fan Wu 156



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

September 2007 Fall Wu 157



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

September 2007 Fan Wu 158



An SOPC Based Image Processing System Chapter 8. System Tests. Image Pr ccs sing Algorithm

Figure 8-10 Cache simulation re ult - ache hit

September 2007 Fan Wu 159



An SOPC Based Image Processing System Chapter 8. System Tests. Image Processing Algorithm

Implementation & Performance Analysis

September 2007 Fan Wu 160



An SO PC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

September 2007 Fan Wu 161



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Perfonnance Analysis

8.1.1.5. Full system simulations results and discussions

Figure 8-13 shows a full system simulation result. As this system is aimed for doing

general image processing, in order to examine the accuracy of it, a Sobel edge detector

was applied into this simulation example. Details of the Sobel edge detector algorithm

will be explained in section 8.2. This example utilised the Quad-bank operation.

In phase 1, the video starts to be captured into bank 0, as there is no valid data in the

other banks, the display controller sends out data with values of zero. In phase 2, the

operations in all banks are changed. Bank 0 starts to be processed and the processed

data is put into bank 3. Video is continually being captured into bank 1. In phase 3, the

video display moves to bank 3. This bank contains valid data which has just been

processed. So in this phase, valid data is started to be sent to the display.

Table 8-1 lists some pixel data used for simulation. These data are fed 'into the capture

controller. So by comparing the processed data output on the display with the

calculated results a judgement of the accuracy of image calculations and correctness of

data transfer can be obtained.

Table 8-1 Full simulation data input sets

~
Linenumbe

1 2 3 4 5 6 7 ... 640

1 OxOO OxOO OxIC Ox38 Ox54 Ox70 Ox8C ... ...
2 OxOO OxOO Ox45 Ox8A OxCF Ox14 Ox59 ... ...
3 OxOO Ox80 OxEE Ox5C OxCA Ox38 OxA6 ... ...
4 OxOO Ox80 Oxl8 OxBO Ox48 OxEO Ox78

...
'" ... ... ... ... ... ... ...

September 2007 FanWu 162



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

o(l ~'r', )~n 'a- )[ 1 vr - I ~ .-1 )"'1') 1 ) : II ;rrl )rl) :1:"! .11 {" til )," 'ft ,r" ~'ri )--. 1" :11fJ ?~) 'f:

u ,H.,._",- )~)!l t , ),~ ~ y V, J ,.~V "I.,! ,'t.1 .j_ , , 11 )1-0" I'l ,I,,_. ::')_)"J lJ "-IN ;:~'" ~',

., '~t 1;>- 'r :6 't ." ~ I, '_II • 'f" ~, " ,_, • I' -{ " ':'C "~) oM

.) :,)- Iff J, 'r. ,r ( ;V.;A -"r f r 1'1 .. ,4 Iff " to ,Cl ", r ~ I I f, ...1" ( UI ~'. :r.\
u. 'I~ '~ ,'_ , ) l ;;. W \!: til 11{ , ,¥ It • \00 I , II. I \ I. ' .. (I ll .. :' 'I,..

oc - rl)e )1:( r.~I/l lA i~L_::1I\ J8.. ):( xt »r. ' .. lV' ire J., X" ;r)_ Hi: ltol ;''.!,),' ((: 1t[ J..(, J(l .. d": :r"

Figure 8-13 Full system simulation result

Table 8-2 lists the calculated results of the input data shown in Table 8-1 based on the

Sobel algorithm. For example,

L2C2 = ILIC3+2x L2C3 + L3C3- LICI-2x L2CI- L3Cli +ILICI +2x LIC2 + LIC3 - L3CI-2x L3C2- L3C31

The output data simply takes the lowest 2 bytes of the calculated results. This lS

different from the actual implementation of the Sobel edge detector.

September 2007 Fan Wu 163



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-2 Estimated fuU simulation data output sets

b-NJ number(C)

Lme~
1 2 3 4 5 6 7 ... 640

1 DIC
2 DIC Ox66 Ox70 OxB8 OxBO OxF8 OXCO ... D/C
3 D/C OxOC OxBE OxDA 0xAA OxBE OxOA D/C
... DIC ... ... ... .., ... ... ... D/C

Note: D/C-Don't care

These calculated data sets match the display outputs shown on the bottom waveforms

in Figure 8-13. It proves the system functions correctly in simulation.

8.1.2 Hardware verifications

This section discusses the hardware tests undertaken for all main video blocks. These

tests include video memory test, Cache test, video display test and video capture test.

Each of these tests might have several sub-tests to ensure the device under test

functions properly in all aspects. Also, a special test is presented in this section to

further explain the solution to the multi-mastering issue.

8.1.2.1. Video memory test

This test was mainly to verify the working condition of the video memory controller

and the SDRAM device by writing some data to the memory from the processor and

then read the data back for checking.

In this test, the memory controller has a slightly different Avalon interface because it

was mastered directly by the Nios processor data master (no Cache between them);

single write and single read can only be performed on the memory controller by the

Nios processor each time (no streaming transfer). There is only one 32 bit video data

port so a multiplexer was placed on the data path. In order to guarantee the

synchronisation of the data transfer, the data clock of the memory controller was driven

by the same clock as for the processor - system clock. There is no streaming control

slave port. Signal data_slave_waitrequest_x was activated immediately when an

Avalon transfer request is issued instead of having a clock cycle delay.

September 2007 FanWu 164



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

SRAM
SRAM

SDRAM

Device Under Test---------------~
UART

Figure 8-14 Video memory test scheme

Figure 8-14 shows the block diagram of the video memory test. Table 8-3 lists all

device components under test and all the other supported components.

Table 8-3 Video memory test scheme

Device under test Video memory controller & SDRAM I
Support components Nios processor, SRAM controller, UART, PLL

.......... _..... _.H ..... _ .._.... _.H ...H...._ ...._.__ ......--. .............. _ .................. _ ..

Test platform Nios development board

Test Strategy

The test strategy has three individual tests: a data bus test, an address bus test, and a

device test. They were aiming at ensuring the SDRAM device is working properly, no

electrical wiring problem or missing chips and catastrophic failures, and the memory

controller is able to handle Avalon transfers and send out proper control signals to

drive the memory device as in simulations.

Data bus test

This test was to confirm that any value placed on the data bus by the processor IS

correctly received by the memory device at the other end. By using a way called

"walking l's test" [97] each bit on the data bus can be tested independently. To perform

the walking l's test, simply write the first data value in Table 8-4, verify it by reading it

back, write the second value, and verify. When reach the end of the table, the test is

completed.

September 2007 Fan Wu 165



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-4 Walking 1's test

0000 0000 0000 0000 0000 0000 0000 0001

0000 0000 0000 0000 0000 0000 0000 0010

0000 0000 0000 0000 0000 0000 0000 0100

.
1000 0000 0000 0000 0000 0000 0000 0000

L-.___ ..______ .___._..__ ._______ .________ ._ ..__

As the data width of the Avalon interface is half the SDRAM data bus width, only 32,

the data bus test must be done twice, one is for the lowest 32 bits, the second is for the

highest 32 bits.

Address test

The purpose of this test is to confirm that each of the address pins can be set to 0 and I

without affecting any of the others. The smallest set of addresses that will cover all

possible combinations is the set of "power-of-two" addresses. These addresses are

analogous to the set of data values used in the walking l's test. The corresponding

memory locations are OxOOOOl,Ox00002, Ox00004, Ox00008, OxOOOIO,Ox00020 etc,

until Ox400000 (23 address lines). In addition, address OxOOOOOmust also be tested.

To confirm that no two memory locations overlap, firstly some initial data value at

each power-of-two offset within the device is written. Then a new value, usually an

inverted copy of the initial value, is written to the first test offset. Finally this test is

verified by reading back from the memory device to check if the initial data value is

still stored at every other power-of-two offset.

Device test

Once confirm the address and data bus wiring are working, it is necessary to test the

integrity of the memory device itself.

For a complete device test, every memory location must be visited twice (write and

verify). First pass is to write any value into every memory location, and verify it by

reading it back, and the second pass is to write its inverted value into the same location

and verify it. Since there is a possibility of missing memory chips, it is best to select a

set of data that changes with (but is not equivalent to) the address. A simple example is

an "increment test" [97].

September 2007 FanWu 166



An SO PC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

The data values for the increment test are shown in the first two columns of Table 8-5.

The third column shows the inverted data values used during the second pass of this

test. There are many other possible choices of data, but the incrementing data pattern is

adequate and easy to compute.

Table 8-5 Increment test

Ox400

1111 1110
............................. -~ -..- - -..- - _ __ .._._ _._ _ _ .._ .

1111 1101

Ox03F 1111 1111

Inverted valueMemory offset Binary value
OxOOOO 0000 0001_._ __ _ _._-_ ..__ ..__ _.__ ..__ . . __ _ _ _ _ __ .._ _-_ ••.•...._ .._ .._ .......• - _

OxOOO1 0000 0010

0000 0000
0000 0001 1111 1110

Simple test programs have been written to undertake these three tests. The test result

indicated that the SDRAM device is able to be driven by the memory controller and in

good working condition.

8.1.2.2. Video display test

The idea of this video display test is to check if the video display controller is able to

drive the Lancelot board to display images on CRT monitor correctly with user-defined

information such as the resolution setting. As the memory controller was involved in

this test, streaming transfer on it can also be tested (although it's still driven by the

system clock). Figure 8-15 shows the block diagram of the video display test scheme.

Table 8-6 lists all device components under test and all other supported components.

SDRAM

Device Under Test

Figure 8-15 Video display test scheme

September 2007 Fan Wu 167



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-6 Video display test scheme

Device under test Video display controller & VGA display device

Nios processor, video memory controller, SRAM
Support components

controller, UART, Flash controller, PLL
.._-_ ..._-_._ ..._---_ ....._ ........ - -_._--_ .._.__ ..
Test platform Nios development board

Start-up procedure:

Before explaining the test scheme, a description of how to start displaying video

properly is given below.

I, set up the image resolution by writing data into the resolution register;

2, set up the DMA start address by writing data into the DMA register;

3, set the video DAC in RGB mode by writing '1' into the Set DAC mode bit in the

control register;

4, enable the video display by writing' I ' into the Start Video bit in the control register.

If the display interrupt is enabled a subroutine must be setup to handle this interrupt.

Test Strategy

A few experiments have been undertaken to test this display block to make sure it can

display an entire image properly with no missing pixel, no misalignment, no colour and

positioning problem.

Test ], VGA timingsignai test

In this test, it mainly focuses on checking the video timing output signals hs and vs on

the VGA connector by using an Oscilloscope. The specific timing of these two control

signals can be found in Figure 5-12 and Figure 5-13.

Test2. Margin test

Pixels on the margin lines and columns are likely to be missed. By doing this margin

test it could verify if the horizontal counter & vertical counter counts properly, and the

streaming transfer from the video memory to the display is lossless. As a video word is

formed by either 2 pixels in RGB mode or 8 pixels in monochrome mode, this test

could also tell whether the pixel alignments are correct or not.

The video pixels stored in the memory device were directly written from the Nios

September 2007 FanWu 168



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

processor in this test. Table 8-7 and Table 8-8 show the test results that should be

expected on this margin test.

Table 8-7 Video display margin test in 24-bit mode

Table 8-8 Video display margin test in 8-bit mode

This test was examined by observing the image on the CRT monitor screen, especially

the image margins, if it matches the image data written into the memory. Images with

smaller resolution were also tested by following this method.

September 2007 Fan Wu 169



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Test3, Static image display test

By utilising the flash memory on the Nios development board, it was possible to

download a well drawn image into the SDRAM device via the flash memory, and test

the video display block by sending this static image to the screen. The Nios SDK has

provided a utility - "nios-run' to write a file in Motorola S-record format [98] into the

flash memory. However to convert a 640x480 image in 24-bit RGB or 8-bit

monochrome into the Motorola S-Record format, it need a few more steps.

a) Crop a 24-bit or 8-bit bitmap (BMP) file into size 640x480

b) Export this file into a hex file by using tools like "010 edit" [99]. Only the data

field in the BMP file is needed to be converted

c) Use a custom PERL program to take out the line feed and new line characters from

the hex file

d) Use bin2srec utility [100] to convert this hex file into a Motorola S-record file

which is executable by the Nios system

Usage: bin2srec <options> INFILE >OUTFILE

e) run the "nios-run" script to write the flash file into the flash memory

Usage: nr -x [File Name] [Flash based address]

After uploading the image into the flash memory, then it's simple to just read the flash

memory content and write it though to the SDRAM memory, then follows the video

display start-up procedure to get the image displayed.

Test results were examined by comparing the displayed image sent out from the SIPS

with the original image in observation.

8.1.2.3. Cache test

The purpose of the Cache test is to check if the Cache is functioning properly on both

hit and miss scenarios working along with the actual memory device. In this test, the

memory controller is driven by the data clock. Figure 8-16 shows the block diagram of

the Cache test scheme. Table 8-9 lists all device components under test and all other

supported components.

September 2007 FanWu 170



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

---------------
1

SDRAM

1
1
1

Device Under Test 1

- - - - - - - - - - - - - __ I

Figure 8-16 Cache test scheme

Table 8-9 Cache test scheme

Device under test The Cache, multi-mastering issue i
I

I
Nios processor, video memory controller, SRAM!

I

Support components I

controller, UART, Nios Timer, PLL, SignaITap II
I

I
Test platform Nios development board I

I

Test Strategy

The Cache test is similar to the device test for the memory controller described III

section 8.1.2.1. However it's mainly to check the integrity of the communication

channel between the main memory and the Cache rather than checking the SDRAM.

Moreover a simple performance comparison between Cache miss and Cache hit was

also investigated. Apart from the normal data checking, some performance analyses

were also undertaken by using SignalTap II.

SignalTap II is a system-level debugging tool that captures and displays real-time

signals in a SOPC design. By using a SignalTap II Embedded Logic Analyzer (ELA) in

systems generated by SOPC Builder, designers can observe the behaviour of hardware

(such as peripheral registers, memory buses, and other on-chip components) in

response to software execution.

September 2007 Fan Wu 171



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Figure 8-17 illustrates some Cache operation on SignalTap waveforms which include a

Cache hit, a Cache miss and two Cache writes.

+24 +30 +34 +58 .Q +72 +7615:SC'41 10
I I I I I I I I

....... I. .16 -e 0 8 16 24 32 40 48 56 64 72
•• " ••• I •••••.• , •..•... l .... .1 ••••••• t ••••••••••••••• I .•••• ,1 ••••••• 1 ••••••• 1 ••••••• 1 •

1ogoc_Coche_O:the_user_Iogic_Coche_qtpu_sIove ___ boooIX»> XX ~ X X FFFFFFh AX X OCOXJl XX 1OlO! XX
ser _1ogoc_CllChe_0:!he_user_1ogic_Coche_C~pu_sbve_cs r I-- r--- F

f--- >--- I--- I---
w _1ogoc_Coche_O:!he_user _1ogic_Coche_qcpu_sbve _wr I-- ~

"-
ISer _1ogoc_CllChe_0:the_user_1ogic_Coche_qtpu_sIoveJd r r---

r---_cecre _O:the _user _1ogic_Coche_qcpu_slove _woit'equesi r
f--- : L- 11 !L ,___ ;c"-.ClIChe_O:the_user _logic_Coche_~,e""*'!JCt,!_mosier Jd - lfL "-

the _user _1ogoc_Coche_~.OITWlgd'I_master _woit'equesi -
OIJIC _cecre_O:the_user_logic _Coche_~._moster _wr _u : rIl rn.,
"09lC_Coche_O:the_us er_1ogoc_Coche_~._"",sier_,d_u
he _O!he _user _1ogoc_Coche _~._ .....ste_endo!pocket_u : n n m.,-

r-l rn f:he_n.1he_user_1ogoc_Coche_~._mas1er_w .. 'equest_u - >---
• _1ogoc_wfeo_memory_cort,oIer _Clstre...-.,gctrl_slove_cs r In
,,_1ogoc_wfeo_memory _cortroler _Clstre...-.,gct,!_sloveJd r In ?=c'Ideo _memory_corerole, _Clst,eOfTll"9C1'!_slOveJe_a(OJ _r Il
e_user _logic_VIdeo _memory _cortrolef _~a _.slave _{:3 _U rIl rn.,
,"_user _1ogoc_vrdeo_rnemory_cortrclter _~._$Iove_'d_u -
._user _1Ogrc_wfeo_memory_cortr.,.., _~._slove_wr _u : rIl r(_
lOIC_w:teo_mernory catr*, _C'lIdala_sJavt_wMreqoest_u r----l rn _n.
"',OIIe, _O.1he_us.,_Iogic_vldeo_memory _enroler _~as_n - 1JlJ v-uDflJ QDL
"I"lIe, _Othe_use, _1ogic_Vldea_memory_Cor"CrCller_qtas_n - U
Jrrt,oI!er _Othe_user _1ogic_vIdeo_memory_en,"'" _CIcs_n

"',oIler _Othe_user _1ogic_vIdeo_memory_Cor"CrCller_otwe_n - : U _.JJ.. .lJ ~-C"·LiTh.Lacne miSS -
Cachewrtte hi!

Cac:hewntc

Figure 8-17 Cache hit/miss operation waveform in SignalTap n
In this test, the data clock frequency is 80MHz, the system clock frequency is 40MHz.

Active to Read/Write Command delay time lRCD = 2 data clock cycles, CAS latency

lCL = 2 data clock cycles.

From the waveform it can tell a Cache miss takes 24 data clock cycles to complete

which is 12 system clock cycles while a Cache hit uses 8 data clock cycles which is 4

system clock cycles, if there is no other contlict in accessing the memory. A Cache

write always takes 4 data clock cycles which 2 system clock cycles to complete if there

is no other contlict in accessing the memory. These results match the simulation results.

They will be used to estimate the processing performance on the SIPS in the next

section.

A Nios Timer was also used to estimate the timing of both Cache hit and Cache write.

Test results were examined by runnmg a software program on the SIPS to

automatically verify the read data against the write data.

September 2007 Fan Wu 172



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

8.1.2.4. SMMAST-PCW test

By combining the Cache and video display in the system it is possible to test the multi-

mastering solution. Figure 8-18 shows the block diagram of the SMMAST -PCW test

scheme.

--------------'-"SDRAM I

CRT monitor

Figure 8-18 SMMAST-PCW test scheme

This idea of testing this multi-mastering transfer is to check if the memory can be

operated by both the Cache and the video display controller at the same time with

continuously reading and writing from/to the memory while the video is displaying.

The simplest way to do that is to continuously invert an image on the display. The

initial image is stored in the memory. By reading the data from the memory via the

Cache and writing the inverted results back to the memory it can be observed that the

original and the inverted image keeps altering on the screen. The images used for

inversion was the ones used for the video display margin tests.

This test wa verified by checking the following two scenarios.

1) The inversion stops occurring on the screen: this could happen if conflicts occur

but can't be olved properly, then one of the masters would be stalled forever.

2) By slowing down the inversion, it can check how each pixel is inverted on the

screen. If there are any pixels aren't inverted but the others are, then it means there

is missing transfer between the Cache and the memory.

Figure 8-19 how how a conflict is solved when the Cache and the video display

September 2007 Fan Wu 173



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

controller present read request to the memory at the same time. In this example, the

video display controller won the arbitration and gained access to the memory slave first.

.99
I26.40 '2

~~t~~~~~~~~~~~~t~~~~~~9nk~~~~· ~1~_..~_--- ....:~._.~ ...•_~~.::~._ ....~..•_~~~::_~~~ __ .:~~ __._••_~~~~ ...._._ ..~~~ ..~.: __ ... _~7~.~~~.~ ...~~:~ ~_:~._.6..._~_J.
:_C8che_o:the_userJogic_cache_01data_rTl8ster_rd_u-l'-_ --=",.,,_....,"L4..D"!W:swonw ....... ---------------+l __
o:the_user_loglc_cache_o1dal:a_mastet_W8rtreqUesl_u-l~-""7'c::~!....ll,i!!!ml!!!t1t!!!.!!lo."",ou",.u11v -----------------------;;::!1IL;f-
lIhe_user_logic_Cache_Oldata_meste,_endofpacket u r\ ../ I I f-
Jic_videO_diSPltJly_contrOller,_olstrearm!;lCtrl_rMster_rd ~ h1l'"LJ,_· -++-__ +
.dlSpI8lY_COnl:rOHer_~streamingctrl_master_WMrequest-lfr==============================:#---t-
ser_logiC_'1ideo_dlspI&y _coriroller _Old1ll8_master _rd_u __,u~ _
VIdeO display coreroter Oldata master wetrequest u l_r-'"l
I)'c_Yideo_memory_cortrOIIer_Olstreamingc:trl_SI6Ye_cs-i ----------------tr---t
1~lc_v1deo_memory _contrcler _OlstreamlJCtrl_slave_rd _

)_memory_corlloller_Olstreamingctrl_sI8ve_re8dd8tafO)== W.--------------------------------i
r_IogiC_video_memOry_controllet'_OfdMe_slave_addr_u~~~~~~~~~~~~~~~;.;lDC~1~F9g3C~h~~~~~~~~~~~~~~~OOgj;188~18h~
~er _1oQk:_vldeo_memOfY_controller _OldatS_SI8'f'e_CS_U U
ser_logic_video_memcry_contrOIIer_Olderta_S!&Ve_rd_ulul.-------------------------------rrf------,-----r-!-!-
_VIdeo memorycontroller Oldats slave wartrequest_u Ir- "L, -H! L

,uer_O:lhe_USet_IOQic_video_memorY_conIrOller_Olcs_n=l=:;r::==========================='-;:#~;=;-r=F
ler_O:the_user_klgic_vdeo_memory_contraller_Olras_n- n LF ~~
.,_O:the_us.'_k>g;c_video_"..,mory_cont'oI,,_~c as _n- r---=-u I.. ~ r!-
ler_O,the_uset'_logic_vlCleo_memory_controller_olwe_n-l-___.:"----------------------------, ~_ J+

Cache granted
access to the
memory

Video display controller granted access 10 the memory

Figure 8-19 simultaneously multi-mastering operation waveform in SignalTap II

8.1.2.5. Video capture test

This test was mainly to test the video capture controller, if it is compatible with the rest

of the system while multiple video masters exist. Another Nios system was used to

generate the video timing and data signals as the camera interface card was still under

manufacture when tests were performed. Figure 8-20 shows the block diagram of the

video capture test scheme. Table 8-10 lists all device components under test and all

other supported components.

CRT monitor
Nios development board

Figure 8-20 Video capture test scheme

September 2007 Fan Wu 174



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-10 Video capture test scheme

Device under test Video capture controller

Nios processor, video memory controller, SRAM
Support components

controller, UART, Cache, video display controller
•••........................•.••.•••............ _ ...._ ........ _ ....... _ .... _ ................. _ ....... _ .........
Test platform Nios development board

Test Strategy

This test focuses on testing the video capture controller to determine if the timing state

machines are working properly, and the received video data can be buffered and

transferred to the memory device losslessly and in the right sequence while the whole

system operates.

There are two systems used for this test. One is the SIPS under test without connecting

to the external video camera, and the second one is simulating a video camera and

generates video timing control and data signal. The signals that the auxiliary system

produces are Li/al, FVal, and 8-bit data representing the monochrome video pixel.

These two systems are connected via a ribbon cable (as shown in Figure 8-21). The

video that the second board (left) generates is a white bouncing ball on a black

background (Figure 8-22).

Figure 8-21 system view of the video capture test without a camera

This test was examined by checking if the ball is moving smoothly within the active

frame window, and whether it can reaches the boundary of the window with size of

640x480. This boundary could be set by writing white color (OxFF) into the top,

bottom lines and left, right columns.

September 2007 Fan Wu 175



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Figure 8-22 video capture test result

8.1.2.6. Full system test

This test was to test the full system together with the CameraL ink camera and the

camera interface card plugged in.

Start-up procedure:

Before using the camera, it is necessary to configure the camera to the right mode so

that the SIPS can work properly. What needed to be set typically is the resolution,

exposure time, gain, offset and trigger control. Details of the message format and

control commands can be found in the camera manual [63].

By using the UART software routine nr_uart_txchar and nr_uart_rxchar, it is able to

send or receive a character to/from the camera via the custom defined camera UART

each time. For example:

nr uart txchar ('c', na camera uart);- - --

It is used to send a character 'c' to the serial device via the camera UART. Details of

the software can be obtained in [80].

The interrupt and capture controller setup procedure are the same as the video display

controller's. Figure 8-23 and Figure 8-24 show two sample images taken by the

CameraLink camera and displayed on a CRT screen. No processing is applied into

these images. Capture and display resolution are both 640x480.

September 2007 Fan Wu 176



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Figure 8-23 Test image - camera interface card (original)

Figure 8-24 Test image - mugs and jug (original)

This CameraLink camera is sensitive to light so a proper lighting is ideally required to

be set up to obtain high quality images. Figure 8-25 shows an example of an ideal

testing environment.

Although there is not sufficient memory to generate SIPS in the 24-bit mode, some

tests have been undertaken to test the SIPS in 24-bit mode by reducing the capture

controller memory down to 8-bit mode while keeping the display memory 24-bit mode.

When transferring the 8-bit captured video data pixel to the memory it always transfers

it as a 24-bit data by mapping the 8-bit monochrome into r, g and b colour field. When

the Nios processor starts processing images, it treats the data as 24-bit ROB and

processes r, g and b separately although they are actually the same. However, this test

is not presented in this thesis. The testing results presented in this thesis are all based

September 2007 Fan Wu 177



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

on 8-bit grey scale.

Figure 8-25 An example of the testing background

September 2007 Fan Wu 178



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

8.2 Implementation of various image processing algorithms and real-

time performance analysis

This section describes the software implementation details on SIPS. Five image

processing algorithms are given as examples and real time performance analysis is

presented for each of them. Before discussing the implementation details of specific

image processing algorithms, the general software development description for setting

up SIPS and testing routines as well as the optimisation coding style are given.

8.2.1 General software development

The software for the Nios processor was written in C language. This section gives some

C program examples of how to configure SIPS, handling interrupts and implementing

multiple-bank operation.

8.2.1.1. Setting up video display & capture

The video display controller has a base address of Ox4aO. To configure the video

display it needs to set:

unsigned int *VGA=(unsigned int*)( Ox4aO);

VGA [4] = 0x2800IeO; Ilresolution register 640x480

VGA [7] = GlobaProcessingBankNo<<22; IIDMA address register

VGA[O] = Ox8; IISet up RGB mode

VGA[O] = Ox4; lienable display

The video capture controller's base address is Ox4eO. To configure the video capture

what can be set is:

unsigned int * CAMERA =(unsigned int*)( Ox4eO);

CAMERA[7]=GlobaICaptureBankNo<<22; II DMA address register

CAMERA[O]=Ox4; lienable capture

8.2.1.2. Implementing multiple bank operation & interrupt services

To implement multiple bank operation, both the display and capture interrupt must be

first enabled. The nr_installuserisr function is used to install a user interrupt service

routine(lSR) for a specific interrupt number [101]. In SIPS, the interrupt number for

display is 24 while capture is 23.

nr_installuserisr(24, VGAl SR, context);

September 2007 FanWu 179



An SOPC Based Image Processing System Chapter 8. SystemTests, Image ProcessingAlgorithm

Implementation & PerformanceAnalysis

nr_ installuserisr(23,CAMERAISR, context);

In the given example, VGAISR is the interrupt handler for the video display;

CAMERAISR is the interrupt service routine for the video capture.

void VGAISR(int context) {

unsigned int *VGA=(unsigned int*)( Ox4aO);

if (GlobaProcessedBankNo == 0)

GlobaDisplayBankNo =3;

else

GlobaDisplayBankNo=GlobaProcessedBankNo -I;

GlobaDisplaylrq = I;

VGA[7] = GlobaDisplayBankNo<<22; //change DMA address register & clear irq

}

void CAMERAISR(int context) {

unsigned int *CAMERA = (unsigned int*)( Ox4eO);

if (GlobaProcessingBankNo == 3)

GlobalCaptureBankNo =0;

else

GlobaICaptureBankNo=GlobaProcessingBankNo+ I;

GlobalCarneralrq = I;

CAMERA[7]=GlobaICaptureBankNo<<22; //change DMA address register & clear irq

}

In the main function, an example of quad-bank operation implementation is given as

follows.

if(GlobalCarneraJrq == I)

!!Image processing algorithms start

11.....•.....•...•..

!!Image processing algorithms end

if(GlobaDisplaylrq == I) {

GlobalProcessedBankNo = GlobalProcessingBankNo;

if (G1obalProcessingBankNo == 3)

GlobalProcessingBankNo = 0;

else

GlobaIProcessingBankNo++;

GlobaDisplaylrq = 0;

GlobalCameralrq =0;

}

September 2007 FanWu 180



An SOPC Based Image Processing System Chapter 8. SystemTests, Image ProcessingAlgorithm

Implementation& PerformanceAnalysis

8.2.1.3. Memory readlwrite operations

The base address of the Cache CPU slave is Ox4000000. To access a memory location

it needs to do:

unsigned int *Data = (unsigned int*)( Ox4000000 );

Data[j *1024+i]=Oxffifff;

In this example, Data[j*1024+i} is for the data at column i in row; of the SDRAM.

Number 1024 means there are 1024 32-bit words contained in each SDRAM row. As in

SIPS each memory row stores one video line. ; actually means the video line number.

In 24-bit mode, i means the i'th pixel in the current video line (pixel stars at 0). For

example, to write data Oxfefefe into the 7th pixel in row 10 what needed to be written is

Data[10*1024+7}=Oxfefefe. However, in 8-bit video mode, Data[j*1024+i} includes

the (;*4) 'th, (i*4+ 1) 'th, (;*4+2) 'th and (;*4+3) 'th pixel in tow ]. Therefore for

example, to write data Ox3e into pixel7 in row 10 it needs to write Data[10*1024+1}=

Ox3e«24. To read the 7th pixel in row 10 it needs to put Data[10*1024+1}»24 &

Oxff.

8.2.1.4. Timer function

In order to analysis the performance of specific image processing algorithm running on

SIPS, a Timer was used to measure the processing time. An example is given below.

dwStartTick = GetTickCountO;

image processing programs .

ITicksUsed = GetTickCount();

printt{"%d\n",dwStartTick -ITicksUsed - timer_overhead);

Two timer check statements are placed at the entry and the end of the program.

Subroutine 'GetTickCountO' is used to obtain the current counter number of the timer.

The Timer is driven by the system clock and every timer tick is one system clock

period. So by multiplying the number of ticks that the timer has elapsed with the

system clock period it is able to tell how much time it takes to process an image frame.

8.2.2 Discussion of software coding style - optimisation issue

Experimental work has been undertaken to find out how the software coding style

would affect the image processing efficiency of SIPS. As the Nios processor is the one

September 2007 FanWu 181



An SOPC Based Image Processing System Chapter 8. SystemTests, Image ProcessingAlgorithm

Implementation & Performance Analysis

which does the calculations, the SIPS efficiency really depends on the way the

processor processes data. For example, data type of 'unsigned int' is more efficient

than 'int'. So if the data being processed doesn't care of signed operation, then use

'unsigned int' as much as possible.

As the CPU data are stored in SRAMs which has registered input and output in order to

satisfy the system performance requirement, by decreasing the number of times of

accessing that memory could consequently increase the system efficiently. Take the

following program as example; it has two 'for' loops (which is very common to be

used in processing a block of image data). The total number of times that the inner 'for'

loop is executed is 480x160. Figure 8-17 shows how many clock cycles it takes to

change the condition of these two loop statements (from +34 to +58).
for G=O;j<480;j=j+ I) {

for (i=O;i<160;i=i+ I)

Data U*I024+i] = - Data U*I024+i];

}

}

However, by decreasing the execution times of the 'for' loops it could increase the

processing efficiency. For example, the following program executes the inner 'for' loop

eight times less than the previous example. Table 8-11 and Table 8-12 show the

processing power comparison on these two examples.
for G=0;j<480;j=j+ I) {

for (i=0;i<160;i=i+8)

DataU*I024+i] = - Data U*1024+i];

Data U*1024+i+ I] = - Data U*1024+i+I];

Data U*I024+i+2] = - Data U*I024+i+2];

Data U*1024+i+3] = - Data U*I024+i+3];

Data U*1024+i+4] = - Data U*I024+i+4];

Data U*1024+i+5] = - Data U*I024+i+5];

Data U*1024+i+6] = - Data U*1024+i+6];

Data U*I024+i+7] = - Data U*1024+i+7];

}

The only problem of doing this is it would increase the CPU instruction memory size.

However, the CPU instruction master is a latency-aware master which hence has a

September 2007 FanWu 182



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

higher efficiency.

Apart from the Nios processor, how efficient the Cache is used also affects the overall

processing efficiency. Take the following program line for example.

Data[j*1024+i]=Data[j*1024+i]»8 + Data[(j+ 1)*1024+i+ 1]+ 2*(Data[j*I024+i+ 1]»24);

In this example, the last read data Data[j*I024+i+IJ could have been a hit however it

is a miss now because Data[(j+I)*I024+i+IJ overwrote that Cache line. In order to

avoid this happening, it'd better put all processed data from the same memory row

together.

Data[j*1024+i]= Data[j*1024+i]»8+ 2*( Data[(j)*1024+i+l]»24) + Data[(j+l)*1024+i+l];

By doing this the second read Data[(j)*I024+i+ IJ would be a hit.

If a data is used several times in a single calculation while that Cache line could

possibly be overwritten. For example,

Data[j*1024+i]=abs(Data[j*1024+i] + Data[(j+l)*1024+i])+ abs(Data[j*1024+i]- Data[(j+ 1)*1024+i]);

In this case, Data[j*I024+ij was read twice, and both of them were a Cache miss.

However, it can be improved by saving those data into temporary variables before

calculating. For example,

Templ= Data[j*1024+i];

Temp2= Data[(j+ 1)*1024+i]

Datau*I024+i]=abs(Templ+Temp2)+abs(Templ-Temp2);

By doing this, Data[j*I024+ij was only read once, and so was Data[(j+I)*I024+i).

The efficiency increased because to access the CPU data memory is faster than

accessing the SDRAM.

The final thing needed to be emphasised is the division operation. It takes up the Nios

processor lots of clock cycles to implement this if the Dividend is not the power of 2.

Furthermore, the calculating time of this kind of division varies depending on the

actual image content. So be careful of using division which is not the power of 2.

However, this issue could be improved by implementing custom instructions for the

Nios processor [102].

September 2007 FanWu 183



An SOPC Based Image Processing System atapter 8. System Tests, Image Processing Algorithm

lmplcmeotatioo & Performance Analysis

8.2.3 System perfonaaace aaalysis

This section gives an overview of the overall system performance for processing

images. Section 5.6 describes if the pixel clock from the camera is 20MHz, then the

frame rate is 61 fls. Suppose SIPS is taking video with size 64Ox480 in and displaying

the same size video. The system clock is 40MHz and data clock is 80MHz. Within one

second, the capture block performs 48Ox61 streaming writes to the memory while the

display block performs 48Ox60 streaming reads. In 8-bit grey level mode, the total time

that the Avalon bus occupied for the video capture and display is

[480x60x(640+8+9)+480x61x(640+8+4)]xI2.5ns=62.784ms. So the rest of

time remains for the Nios processor to perform real-time processing. The percentage of

this time is approximately 93.712%. In 24-bit RGB mode, the real-time processing

efficiency is 76.29~A.. However, this calculation only gives an overview of how much

time is given for SIPS to process real-time data. As for how much data the SIPS can

process it must be analysed with specific processing algorithms.

8.2.4 ImplelDeatatioD of five image proeessiDg algoritluns aDd performance

aaAlysis

This section describes how the image processing algorithms are implemented on SIPS.

Five examples are given and they are the inversion, Sobel edge detector, Gaussian blur

filter, Sharpness filter and feature correlation.

All test results presented in this section are based on images size of 64Ox480 in 8-bit

grey level lDode. General test conditions were: Camera pixel clock is 20MHz with

frame rate is 61 fls. Zero pill aad offset is applied to the camera. The video display

pixel clock is 25MHz with frame rate of 6Ofls. System clock is 40MIIz while the data

clock is 8OMHz. All of the following tests were undertaken based on the two test

images shown in Figure 8-23 and Figure 8-24. So there would be two test result images

for each image processing algorithm. All tests for the same test image were undertaken

with same lighting, same camera to object distance and same camera focus.

8.2.4.1. Invenion

This algorithm simply toggles every bit of all active pixels. So for example if the

original pixel is black, then the inverted result is white. Figure 8-26 and Figure 8-27

September 2007 FanWu 184



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

show two test result images with inversion applied. Only the right half is inverted in

these two images.

Figure 8-26 Inversion image - camera interface card

Figure 8-27 Inversion image - mugs and jug

An example of software program for doing this inversion is given as following.

for (j=top _boundary;j<bottom _boundary;j=j+ 1) {

for (i=left _ boundary;i<right_boundary;i=i+ 1) { 114 pixels per 32 bit word

ProcessedData[j* l024+i] = -Processingliatalj * l024+i];

}

Table 8-11 shows a performance analysis for this program. This table tells that the

processing frame rate of video with size 640x480 is 19.6f/s.

September 2007 Fan Wu 185



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-11 Inversion processing power analysis - without optimisation

Processing Number of Timer ticks Processing Processing

window size (average) time (ms) power (f/s)

80x60 32222 0.8055 1241

160x120 129064 3.226 309

320x240 511039 12.775 78

640x480 2036506 50.912 19.6

However, if this program is optimised like the example given in section 8.2.2, the

processing power can be increased as shown in Table 8-12. This table shows with

optimisation, the processing power with video size of 64Ox480 is increased to 29.5f/s,

which is almost 50% more than without optimisation.

Table 8-12 Inversion processing power analysis - with optimisation

I
Processing Number of Timer ticks Processing Processing

window size (average) time (ms) power (f/s)!
80x60 26978 0.674 1482

i 160x120 87167 2.179 459
i
i 320x240 343257 8.581 116I

640x480 1355111 33.877 29.5
--.------------.---- ~----.-----....-.--- -_ .._--._._._ ..... _ ......... _ ...._ .._ ...__ ........_ ..

8.2.4.2. Sobel edge detector

The Sobel operator performs a two-dimension spatial gradient measurement on an

image and so emphasises regions of high spatial gradient that correspond to edges.

Typically it is used to find the approximate absolute gradient magnitude at each point

in an input greyscale image [103]. Figure 8-28 and Figure 8-29 show two test result

images with the Sobel edge detector applied.

September 2007 FanWu 186



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Figure 8-28 Sobel edge detector image - camera interface card (threshold=60)

Figure 8-29 Sobel edge detector image - mugs and jug (threshold=60)

The Sobel detector consists of a pair of 3 x3 convolution kernels as shown in Figure

8-30. One estimates the gradient in the x-direction (columns) and the other estimates

the gradient in the y-direction (rows).

-1 0 +1

-2 0 +2

-1 0 -1

-1 0 +1

-2 0 +2

-1 0 -1

Gx Gy

Figure 8-30 Sobel convolution kernels

The kernels can be applied separately to the input image, to produce separate

measurements of the gradient component in each orientation (call these Gx and Gy).

The absolute magnitude of the gradient at each point can be calculated by:

September 2007 Fan Wu 187



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Typically, an approximate magnitude can be obtained by using: /G/ = /Gx/ + /Gy/ ' which

is much faster to compute.

In the actual implementation on SIPS, it is faster to compute four pixels at a time in 8-

bit grey level mode. Table 8-13 gives an overview of the pixel alignments in 8-bit grey

level mode.

Table 8-13 Pixel alignments in 8-bit grey level mode

P[j-

1,i+ 1]

»8

i-Imn
row
j-I P[j- Pfj-

I,i-I] I,i-l]

»0 »8

i+l

Pfj- Pfj-

1,i+ 1]

»0

P[j-

I,i]

»8

P[j- P[j-

1,i] l,i]

»16 »24

Pfj- Pfj-
I

I,i-I] II,i-l] 1,i]

»16 1»24 »0

!pU:i:······
/1]
1»24

»0 »8

Plj.i+l ] P[j,i+l] P[j,i+l] P[j,i+l]

......... --..~.-....-~..-.-.-- ...-..
J P[j,i- P[j,i- P[j,i-

1] 1] 1]

»0 »8 »16

j+ I Pfj+1 Pfj+1 P[j+I

,i-I] ,i-I] ,i-I]

»0 »8 »16

Pfj+ 1 Pfj+ 1 Pfj+! Pfj+ 1 Pfj+l Pfj+ Li Pfj+ I,i

,i-1] ,i] ,i] ,i] ,i] +1] +1]

»8»24 »0 »8 »]6 »24 »0

P[j-

I,i+ I]

»16

»16

Pfj+ l,i

+1]

»16

P[j-

1,i+ I]

»24

»24

Pfj+ l,i

+1]

»24

It can be seen from the above table to convolute four pixels contained in data Plj,ij

with 3x3 convolution kernels it requires the other adjacent fourteen pixels which are

stored in the data at column i-I , i and i+1 in line ;-1, ; and r+ 1 separately. As discussed

in section 8.2.2, by using temporary variables the efficiency can be increased. An

example of doing this with Sobel operation applied is shown below.

for (j=top _boundaryj<bottom _boundary.j=j+l )

for (i=Jeft_boundary;i<right_boundary;i=i+ I) { 114 pixels per 32 bit word

data[ 0] = ProcessingData[ (j - 1 )* J024 + i-I];

data[I] = ProcessingData[(j - 1 )* I024 + i ];

data[2] = ProcessingData[(j - I )*1024 + i + 1];

data[3] = ProcessingData[(j )*1024 + i-I ];

data[4] = ProcessingData[(j )*1024 + i ];

data[5] =ProcessingData[(j )*1024 + i + 1];

data[ 6] = ProcessingData[ (j + 1 )* 1024 + i-I];

data[7] = Process ingData[ (j + 1 )* 1024 + i ];

data[8] = ProcessingData[(j + 1 )*1024 + i + 1];

sumr[O] = abs(abs (

( ( ( data[l] » 8 ) & Oxff) - ( ( data[O] » 24 ) & Oxff) ) +

September 2007 Fan Wu 188



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

2*( ( ( data[4] » 8 ) & Oxff) - « data[3] »24) & Oxff ) +

( « data[7] »8) & Oxff) - ( (data[6]» 24 ) & Oxff) » +

abs (

« (data[O] »24) & Oxff) + 2 * « data[l] »0) & Oxff) + « data[l]» 8) & Dxff j )>

« (data[6] »24) & Oxff) + 2 * « data[7] » 0) & Oxff) + « data[7] » 8) & Oxff )

»;
sumr[l] = .

sumr[2] = .

sumr[3] = .

ProcessedData[1024*(j)+i] = «( 60 < sumr[0]/4)? 255 : 0) & Oxft) I«( 60 < sumr[l]/4)? 255 :

0) & Oxft)«8 I « 60 < surnr[2]/4)? 255 : 0) & Oxft)«16 1«( 60 < sumr[3]/4)? 255 : 0) &

Oxft)<<24;

}

In the above example, only the calculation for the first pixel in data Pli,;} is given. The

others just simply follow the same calculation rules.

In the Sobel operation, the output values can easily overflow the maximum allowed

pixel value. In order to avoid this, the input can be divided by a normalising factor to

ensure the output values stay in the permitted range, in 8-bit grey level mode, this range

is 0-255. Furthermore, by applying post thresholding it could further highlight the

edges. A normalising factor of 4 and a threshold of 60 were applied into the test result

images Figure 8-28 and Figure 8-29.

Table 8-14 shows a performance analysis for the sample program given above for the

Sobel edge detector.

Table 8-14 Sobel edge detector processing power analysis

Processing Number of Timer ticks Processing Processing

window size (average) time (ms) power (f/s)

80x60 515730 12.893 77.559

160x120 2063505 51.587 19.384

320x240 8253571 206.339 4.846_._._ ..__-_. r-------------- --.----- ..- ---..--...~-----..---------.
640x480 33011145 825.278 1.211

-...-.----.----~-- ----~--------_ ..._--_._--_._----

As seen from the table the processing power of the Sobel operation is much slower than

the inversion because it involves with two 3x3 convolutions.

September 2007 FanWu 189



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

8.2.4.3. Gaussian blur filter (a low pass filter)

The Gaussian blur filter, as its name indicates, is used to 'blur' images and removes

detail and noise. It is in fact a low pass filter because high spatial frequency

components from an image are removed. Figure 8-31 and Figure 8-32 show two test

result images with the Gaussian blur filter applied. Only the right half of these two

images was processed.

Figure 8-31 Gaussian blur filter image - camera interface card (mask size 7x7)

Figure 8-32 Gaussian blur filter image - mugs and jug (mask size 7x7)

Practically the Gaussian filter operates a two-dimension convolution kernel to represent
x 2 .. yl

the shape of a Gaussian distribution which has the form of G(x, y) ::::-'- e---:;;;;-
21(02

Because the Gaussian is isotropic which is circularly symmetric, the convolution kernel

can be separated into horizontal and vertical component. Thus the two-dimension

convolution can be performed by first convolving with a one-dimension Gaussian in

September 2007 Fan Wu 190



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

the horizontal direction, and then convolving with another one-dimension Gaussian in

the vertical direction. Figure 8-33 lists some possible convolution kernel coefficients

for one-dimension Gaussian in horizontal direction .. The vertical component is exactly

the same but is orientated vertically.

2

JD!Iu.ti
o

CogOkjeOls
1

Sum llfc(1ClIlCicnls ~ 2N
I

2
~
4
5
(,

7
II
I)

10
II

2 4
s
16
.\2
64
128
256
~12
1024
2048

3 3
4 (, 4

5 10 10 5
6 15 20 15 6

7 21 35 35 21 7
8 28 56 70 56 ~5 8

I) 3<> 84 126 126 84 36 9
10 45 120 210 252 210 120 45 10

11 55 165 330 462 462 330 165 55 II

Figure 8-33 Gaussian filters coefficients (from [104])

In the actual implementation on SIPS, it would be more efficient to calculate the

horizontal components first and store the results in a temporary area in the SDRAM (be

careful not to overwrite the other banks being used for other purposes), and then

calculate the vertical components by using the data which have been stored in the

temporary area in the SDRAM. Finally the results are saved into the processed bank in

the SDRAM where it will be displayed in the next round. An example of software of

implementing this is given below. In this example, a 7x7 convolution kernel was used.

I I This loop is to calculate the horizontal components

for (j=top _boundary;j<bottom _boundary;j=j+ I) {

for (i=left_ boundary;i<right_ boundary;i=i+ 1) { 114 pixels per 32 bit word

data[O] = ProcessingData[( j )*1024 + i-I ];

data[I] = ProcessingData[(j )*1024 + i ];

data[2] = ProcessingData[(j )*1024 + i + 1 ];

sumr[O] = « data[O]» 8 & Oxff) + 6 * (data[O]» 16 & Oxff) + 15 * (data[O] »24 &

Oxff) + 20 * (datal lj > 0 & Oxff) + 15 * (data[I]» 8 & Oxff) + 6 * (data[I]»

16 & Oxff) + ( datal l] > 24 & Oxff ) I 64;

sumr[l] = .

sumr[2] = .

sumr[3] = .

Temp[1024*G)+i] = (sumr[O] & Oxfl) I (sumr[I] & Oxfl)«8 I (sumr[2] & Oxfl)«16

(sumr[3] & Oxfl)<<24;

}

September 2007 FanWu 191



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

I I This loop is to calculate the vertical components

for (j=top _boundaryj<bottom _boundary;j=j+ 1) {

for (i=left_ boundary;i<right_ boundary;i=i+ l) { 114 pixels per 32 bit word

data[O] = Temp[(j - 3 )·1024 + i);

data[l) = Temp[(j - 2 )·1024 + i);

data[2] = Temp[(j - 1 )·1024 + i);

data[3) = Temp[(j )·1024 + i);

data[4] = Temp[(j + 1 )·1024 + i);

data[5) = Temp[(j + 2 )·1024 + i);

data[6) = Temp[(j + 3 )·1024 + i);

sumr[O) = ( ( data[O) »0 & Oxff) + 6 • ( data[l) »0 & Oxff) + 15 • ( data[2) »0 &

Oxff) + 20 • (data[3]» 0 & Oxff) + 15 • (data[4]» 0 & Oxff) + 6 • (data[5)

»0 & Oxff) + ( data[6] »0 & Oxff) ) 164;

sumr[l] = ..

sumr[2] = ..

sumr[3] = ..

ProcessedData[1024·G)+i] = (sumr[O) & Oxff) I (sumr[I) & Oxff)«8 I (sumr[2) & Oxff)«16

I (sumr[3] & Oxft)<<24;

}

Again in this example four pixels are calculated together within one loop cycle. Details

of how the actual pixel number matches the SDRAM data can be found in Table 8-13.

Table 8-15 shows a performance analysis for the sample program given above for the

Gaussian filter with a 7x7 convolution kernel applied.

Table 8-15 Gaussian blur filter processing power analysis

Processing Number of Timer ticks Processing Processing

window size (average) time (ms) power (f/s)

80x60 864104 21.602 46.290

160x120 3439819 85.995 11.628

320x240 13688085 342.202 2.922

640x480 54599030 1364.975 0.732

As seen from the table the processing power of this Gaussian filter is slow, even less

than one framelsecond when operated in full frame size. It is due to its large

convolution mask. Practically the larger the convolution mask is, the smoother effect it

can get, and consequently the more processing time it takes.

September 2007 FanWu 192



An SOPC Based Image Processing System Chapter 8. System Tests, Image Proce sing Algorithm

Implementation & Performance Analysis

8.2.4.4. Sharpness filter - (a high pass filter)

A sharpness filter is used to sharpening an image by making the detailed parts such as

edges and lines more precise. As the detailed parts of an image correspond to the high

spatial frequency components, the sharpness filter is actually a high pass filter. Figure

8-34 and Figure 8-35 show the sharpening effect on the two sample images. Only the

right half part of the two images was processed with the sharpness filter.

Figure 8-34 Sharpness filter image -camera interface card

Figure 8-35 Sharpness filter image -camera interface card

In the actual implementation, the sharpness filter is slightly simpler than the obel and

Gaussian operator because it only contains one convolution mask and its normalising

factor is 1. The convolution kernel of it is shown in Table 8-16.

September 2007 Fan Wu 193



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-16 Sharpness filter convolution kernel

0 -1 0

-1 5 -1

0 -1 0

An example of software of implementing the sharpness filter is given below.

for (j=top _boundaryJ<bottom _boundaryJ=j+ I) {

for (i=left_boundary;i<right_boundary;i=i+l) {II 4 pixels per 32 bit word

data[l] = ProcessingData[(j - I )*1024 + i ];

data[3] = ProcessingData[(j )*1024 + i-I ];

data[4] = ProcessingData[(j )*1024 + i ];

data[5] = ProcessingData[(j )*1024 + i+ I];

data[7] = ProcessingData[(j + 1)*1024 + i ];

sumr[O] = (5 • (data[4]» 0 & OxfT) - (data[I]» 0 & OxfT) - (data[3] »24 & OxfT)-

( data[4] »8 & OxfT) - ( data[7] »0 & OxfT) );

sumr[l] = (5 • (data[4]» 8 & OxfT) - (data[1]» 8 & OxfT) - (data[4]» 0 & OxfT)-

( data[4] » 16 & OxfT) - (data[7] »8 & Dxff )");

sumr[2] = (5 • (data[4]» 16 & OxfT) - (data[I]» 16 & OxfT) - (data[4]» 8 & OxfT)-

( data[4] »24 & OxfT) - ( data[7] » 16 & OxfT) );

sumr[3] = (5 • (data[4] »24 & OxfT) - (data[I]» 24 & OxfT) - (data[4]» 16 & OxfT)

- ( data[5] »0 & OxfT) - ( data[7] »24 & OxfT) );

ProcessedData[1024*G)+i] = (sumr[O] & Oxff) I (sumr[l] & Oxfi)«81 (sumr[2] & Oxfi)«16

I (sumr[3] & Oxfi)<<24;

}

}

Table 8-17 shows a performance analysis for the sample program given above for the

Sharpness filter.

Table 8-17 Sharpness filter processing power analysis

Processing Number of Timer ticks I Processing Processing

window size (average) I time (ms) power (fls)

80x60 258117 6.452 154.968

160x120 1045220 26.130 38.269

320x240 4184450 104.611 9.559

640x480 16741720 418.543 2.389

September 2007 FanWu 194



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

As seen from the table, the processing time of the sharpness filter is approximately

twice faster than the Sobel detector. It is because they both use standard convolution

method however the Sobel detector has approximately twice the data to calculate than

the Sharpness filter.

8.2.4.5. Feature correlation

The feature correlation algorithm implementation on SIPS is exactly the same as what

was done on the PC-based IPS. However, because there is no full application on SIPS,

the extraction of the feature arrays on the calibration stage was very simple by just

running another program to print out the data in the feature arrays out, and then

manually copy those data into the feature arrays used by the actual image processing

program. Figure 8-36 shows a welding image after being processed by the feature

correlation algorithm.

Figure 8-36 Feature correlation image (measured on pool edges & wire edges)

This example was trying to find the welding pool edges and the welding wire edges.

Each of them uses two feature arrays including the left and the right edge. The welding

pool feature array size is 60 pixels while the length of image intensity line where the

program looks for errors is 600 pixels from 40 to 640. The welding wire feature array

size is 20 and the length of image intensity line is 360 pixels from 40 to 400. In total

there are two intensity lines were used in this example. Furthermore, as the processed

image is almost the same as the raw image except for the crosses, Triple bank operation

is used for this algorithm. The following program gives an example of implementing

feature correlation on SIPS. This example only shows how to find the welding wire

right edge match errors and draw the cross on the right edge of the wire.

September 2007 Fan Wu 195



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

II calculate the error array

for (index WireCalibrationPosition _x; index <= WireIlineRightBoundary

WireFeatureArraySize;index++) {

errarray[ index- WireCalibrationPosition _x]=0;

for (i=0;i<=WireFeatureArraySize;i=i+4) {

errarray[index- WireCalibrationPosition_x] = errarray[index - WireCalibrationPosition_x] +

abs( ( Oxff & WireRightFeatureArray[i]) - ( Oxff & ProcessingData

[(WireCalibrationPosition_y) * 1024 + (index + i) I 4] ) ) + abs( ( Oxff &

WireRightFeatureArray[ I + 1] ) - (Oxff & ProcessingData[(WireCalibrationPosition_y) *

1024 + (index + i) I 4] » 8 » + abs( (Oxff & WireRightFeatureArray[ i + 2] ) - (Oxff &

ProcessingData[(WireCalibrationPosition_y) * 1024 + (index + i) I 4] » 16 ) ) +

abs( ( Oxff & WireRightFeatureArray[i+3]) (Oxff &

ProcessingData[(WireCalibrationPosition_y) * 1024 + (index + i) I 4] »24) );

rightcrosspos = O;errarray_min = errarray[O];

II find where the minimum error is

for (index = O;index <= WireIlineRightBoundary - WireCalibrationPosition_x - WireFeatureArraySize;

index++)

if (errarray _min > errarray[ index]) {

errarray_min = errarray[index];

rightcrosspos = index;

}

rightcrosspos = rightcrosspos + WireCalibrationPosition_x+WireFeatureArraySize/2;

II draw the cross in the horizontal direction

for (i=(rightcrosspos )/4-1 ;i«rightcrosspos )/4+ 2;i=i+ 1) {

ProcessedData[WireCalibrationPosition _y*1024+i] = Oxffffffff;

}

Ildraw the cross in the vertical direction

for G=WireCalibrationPosition _y-5J<WireCalibrationPosition_y+5J=j+ I){

ProcessedDatau*I024+rightcrosspos 14] = ProcessedData U*1024+rightcrosspos 14] I ( Oxff «

(S*(rightcrossposo/04»);

}

As the feature correlation algorithm has many parameters which could affect the

processing such as the size of the feature arrays and the length of the image intensity

lines, detailed processing power analysis is not given for this algorithm. Table 8-18

only lists the processing power for the example given above.

September 2007 FanWu 196



An SOPC Based Image Processing System Chapter 8. System Tests, Image Processing Algorithm

Implementation & Performance Analysis

Table 8-18 Feature correlation processing power analysis

I Processing details
Number of Timer Processing Processing

I

I ticks (average) time (ms) power (f/s)

~wo sets of feature arrays with size of 20
i
find 60 pixels, two image intensity lines 860527 21.513 46.48
i

Fth size of 600 and 360 pixels

8.3 Summary

This chapter firstly presented all tests which have been undertaken for SIPS both in

simulation and hardware verification to prove the system works properly. Then a

general software development guideline was given to correctly setup SIPS and test

functions, followed by a discussion of coding style which leads to the optimisation

issue. Finally it described how five image processing algorithms were implemented on

SIPS. Test results, example program and performance analysis were given for each of

the algorithm implementation.

As the 24-bit RGB SIPS could not be evaluated on the current development platform,

only the software development for the 8-bit grey-level mode presented in this thesis.

However, sufficient tests have been done to ensure the system can operate properly in

24-bit mode. Compared to the coding efficiency in 8-bit mode, the 24-bit RGB mode

would be more efficient because a 32-bit data contains exactly one image pixel.

September 2007 FanWu 197



An SOPC Based Image Processing System Chapter 9. Conclusions and Future Work

Chapter 9. Conclusions and Future Work

9.1 Conclusions

Vision based systems have been used in a wide range of applications. More and more

applicants demand such systems with a compact size so that they can be placed close to

applicants whilst offer high performance and the potential to be upgraded or optimised

in future. Furthermore, commercial investors also urge to develop such a system

quicker and more cost effective. Conversional desktop or embedded microprocessors

based vision systems become difficult to meet these demands as they are either

ponderous, bulky, timing consuming to develop, lack flexibility or are difficult to

upgrade and optimise. This research, therefore investigated an alternative solution by

utilising the modem technology - System-on-a-Programmable-Chip to implement this

kind of systems. SIPS, which is the successfully developed single-chip vision based

system with the abilities of performing stand-alone real-time video acquisition,

processing and display, has demonstrated some distinct properties as follows:

• Reconfigurability - SIPS can be reconfigured to meet different system

requirements. For example, the entire system can be re-configured to work

either in 8-bit monochrome mode or 24-bit ROB mode. Furthermore, the

reconfigurability of SIPS makes it suitable for future development either in

optimisation or for specific applications with various performance requirements.

• Programmability - SIPS can be programmed to implement various Image

processing algorithms. Different video timing can also be achieved by

programming the timing registers to allow the system to interface different

types of off-chip peripherals and work at different modes.

• Flexibility - There is no restricted requirement for which type of programmable

device, processor core or some off-chip peripherals such as the display and

memory device that must be chosen to implement the system. System migration

to other types of FPOAs is easy because the system core was designed to be re-

usable and re-configurable.

September 2007 FanWu 198



An SOPC Based Image Processing System Chapter 9. Conclusions and Future Work

• Processing speed - Table 9-1 shows the performance information of some

image processing algorithms running on SIPS. As seen from the table various

processing speed up to 90 million pixels per second can be achieved on SIPS.

Table 9-1 SIPS performance summary

Operation Performance

Inversion 90 Megapixels /s

Sobel edge detection (3x3) 3.7 Megapixels /s

Gaussian filter (7x7) 3.7 Megapixels /s

Sharpness filter (3x3) 2.2 Megapixels / s

• Single-chip integration - One of the major advantages of this image processing

system compared with the existing PC-based vision system is its compactness;

just imagine a tiny size chip can do the equivalent work of a PC associated with

a graphic card and a video capture card. Furthermore, due to the high

integration of the system on the chip, the end application board design is

simpler so that it can be smaller and placed closer to the applicant.

• Power dissipation - SIPS consumes low power. Normally off-chip devices

consume most of the power such as a cooling fan, huge hard drive and other

PCI cards etc. However the high integration of SIPS results in lower load of off-

chip peripherals so the power dissipation is low. Probably a battery supply

would be used for the end application.

• Cost - The price of FPGA tends to be getting lower. The FPGA that SIPS was

evaluated on is almost the lowest level and that means SIPS can be

implemented on almost any other FPGAs, which provides the designers a wider

selection in terms of cost and performance. Further cost can be saved by using

cheap video memory and display device.

The SIPS system core consists of a Nios soft processor core, a video capture controller

core, a video display controller core, a memory controller core, a Cache core and other

vendor provided IP blocks for extra support. These IP components were integrated with

the dedicated bus system - Avalon bus, and evaluated on an Altera's Apex

September 2007 FanWu 199



An SOPC Based Image Processing System Chapter 9. Conclusions and Future Work

20K200E484-2x FPGA to perform general processing and control all off-chip

peripherals including a VGA mode CRT monitor, a CameraLink CMOS camera, an

SDRAM memory device, two SRAM chips and a Flash memory. This whole system

was developed based on the Nios development kit.

In order to increase the data processing efficiency and maximise the system

performance, a few techniques have been applied into the system design such as using

multiple master/slave pairs to increase the data bandwidth, implementing Avalon

streaming transfers in all video data transfer paths to increase the data transfer rate and

clocking the streaming data transfer with a fast clock. Furthermore, in order to solve

the conflict accessing to the common memory slave problem an effective solution of

simultaneous multi-mastering Avalon streaming transfer with peripheral-controlled

waitrequest was raised. This solution also maximises the image processing power by

eliminating the need for the CPU to arbitrate and synchronise all accesses to the shared
memory.

All of this work on SIPS has proved the challenges for this research. The successful

integration of the full image processing system on a programmable chip and the

effective bus mastering scheme has demonstrated the novelty of this research. The

development of the main SIPS core from the initial VHDL coding, the construction of

the custom PCB board from the original schematics and the successful implementation

of the system on the low-level FPGA have approved very rewarding. With the fast

evolvement of modern technologies, there are always concerns to design a system by

using very good equitments, the techniques used in the SIPS design are scalable and

can be applied into developing such a system with later generation FPGAs or faster

cameras and so on to achieve higher speed and greater processing power.

9.2 Future work

This image processing system has a lot of potentials to be optimised / improved and

developed into a full application for vision-based system.

9.2.1 Optimisation/improvements

There are two major directions of optimisation/improvements regarding what can be

September 2007 Fan Wu 200



An SOPC Based Image Processing System Chapter 9. Conclusions and Future Work

optimised / improved with a later generation FPGA and what can be optimised for a

specific application.

9.2.1.1. Later generation FPGA

Further work can be given for SIPS by implementing it on a later generation FPGA to

find out how much the performance improvement can be and to test some functions

which the original device couldn't support. Some suggested

optimisation/improvements are given as follows.

a) evaluate SIPS in 24-bit mode

b) implement a CPU cache

c) generate all clocks from the same PLL to reduce the latencies caused by re-

synchronising different clock domains

d) test the system operated at the original designed frequencies

e) implement a more advanced Cache which supports more Cache lines

f) reduce the number of pipelining and use asynchronous memory interface

9.2.1.2. FPGA Hardware processing

The initial SIPS was developed without any specific application but to prove a concept

of using SOPC solution to implement a vision based system, thus software approach

was used to perform general processing. However, for specific applications, special

investigation can be given to find out the best balance between hardware processing

and software processing for specific algorithms. Generally hardware processing is used

in low-level matrix-based image processing such as filtering while software processing

is used in high-level processing such as feature measurement. Hardware processing can

be achieved by implementing custom instructions for the soft processor core, or

dedicated DSP blocks, or a processor array which consists of a number of processing

elements and supports parallel processing by implementing instructions like single

instruction multiple data (SIMD). Furthermore, if resource is available, it is possible to

investigate the integration of multiple soft processor cores on the same chip.

9.2.2 Application

Further work can be undertaken on SIPS by developing it into a specific application for

industrial interest such as the vision-based closed loop process control system for

September 2007 FanWu 201



An SOPC Based Image Processing System Chapter 9. Conclusions and Future Work

welding. For example, by integrating some network controllers such as a synthesised

CAN core [105] or an Ethernet controller core SIPS will be allowed to transmit the

real-time measurements like what the conventional PC based system did to a remote

computer. Moreover, a higher level software program can also be developed to allow

the system to be easily controlled, for instance the calibration stage before running the

feature correlation algorithm. Finally, prototyping the application board might be

needed for the end product.

September 2007 Fan Wu 202



An SOPC Based Image Processing System References

References
[1]. Muramatsu, S, Otsuka, Y, Takenaga, H, Kobayashi, Y, Furusawa, I, Monji, T,

"Image processing device for automotive vision systems", Intelligent Vehicle

Symposium, 2002 IEEE, 17-21 June 2002, Volume 1, pp 121- 126

[2]. 1. Kang, R. Doraiswami, "Real-time Image Processing System for Endoscopic

Applications", Electrical and Computer Engineering, 2003. IEEE CCECE 2003.

Canada, -7 May 2003, Volume 3, pp 1469 - 1472

[3]. C. Balfour, J. S. Smith and S. Amin-Nejad, "Feature correlation for weld image-

processing applications", International Journal of Production Research, March

2004, Volume 42, pp 975-995

[4]. Arnold, 1.M, Buell, D.A, Hoang, D.T, Pryor, D.V, Shirazi, N, Thistle, M.R,

"The Splash 2 processor and applications", Computer Design: VLSI in

Computers and Processors, 1993. ICCD '93. Proceedings 1993 IEEE

International Conference, 3-6 Oct 1993, pp 482-485

[5]. Ikenaga, T., Ogura, T., "A DTCNN universal machine based on highly parallel

2-D cellular automata CAM2", Circuits and Systems I: Fundamental Theory and

Applications, IEEE Transactions on, May 1998, Volume 45 Issue 5, pp 538-546

[6]. Sandler, M.B, Hayat, L, Costa, L, Naqvi, A, "A comparative evaluation of DSPs,

microprocessors and the transputer for image processing", Acoustics, Speech,

and Signal Processing, 1989. ICASSP-89., 1989 International Conference on,

23-26 May 1989, Volume 3 pp 1532-1535

[7]. Raphael Canals, Anthony Roussel, Jean-Luc Famechon, and Sylvie Treuillet, "A

Biprocessor-Oriented Vision-Based Target Tracking System", Industrial

Electronics, IEEE Transaction on, Apri12002, Volume. 49, Issue 2, pp 500-506

[8]. Palacin, J., Sanuy, A., Clua, x., Chapinal, G., Bota, S., Moreno, M.,Herms, A.,

"Autonomous mobile mini-robot with embedded CMOS vision system", IECON

02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the],

5-8 Nov. 2002, Volume 3, pp 2439 - 2444

September 2007 FanWu 203



An SOPC Based Image Processing System References

[9]. Jamro, E, Wiatr, K, Inst. of Electron., AGH Tech. Univ. of Cracow,

"Implementation of convolution operation on general purpose processors",

Euromicro Conference, 2001. Proceedings 27th, 2001, pp 410-417

[10). Anthony Rowe, Charles Rosenberg, Illah Nourbakhsh, "A Second Generation

Low Cost Embedded Color Vision System", Proceedings of the 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR'OS), June 2005, Volume 3 pp 136-136

[11]. Karen Parnell, Roger Bryner, "Comparing and Contrasting FPGA and

Microprocessor System Design and Development", WP213 (vl.l), Xilinx, Inc.,

21st July 2004, http://www.xilinx.com

[12]. Altera Corporation, http://www.altera.com

[13]. Andre DeHon, "Comparing Computing Machines", 3rd November 1998,

Configurable Computing: Technology and Applications, Proc. SPIE 3526

[14]. Xilinx, Inc., www.xilinx.com

[15]. Rose, J, "Hard vs. soft: the central question of pre-fabricated silicon", Multiple-

Valued Logic, 2004. Proceedings. 34th International Symposium on, 19-22 May
2004, pp 2-5

[16]. Pat Mead, "Systems on Programmable Chips -Will SOPC Eclipse SoC?",

Designing Systems on Silicon lEE Cambridge Seminar, December 2001,

[17]. Azriel Rosenfeld, "Computer Vision: Basic Principles", Proceedings of the

IEEE, August 1988, Volume. 76, Issue 8, pp 863-868

[18]. CHAMBERS, Simon Paul, "TIPS: a transputer based real-time vision system",

PhD. Thesis, Liverpool University 1990

[19]. Euresys s.a., http://www.euresys.com

[20]. Fan Wu, "Front view image processing program manual", University of

Liverpool, April 2004

[21). Hauppauge Computer Works, Inc., http://www.hauppauge.com

[22]. Beck Zaratian, "Microsoft Visual C++ 6.0 Programmer's Guide", September 4,

1998, Microsoft Press

September 2007 FanWu 204

http://www.xilinx.com
http://www.altera.com
http://www.xilinx.com
http://www.euresys.com
http://www.hauppauge.com


An sope Based Image Processing System References

[23]. Ben Ezzell with Jim Blaney, "Windows 95 Developer's Handbook", February

1997, Sybex Inc.

[24]. Bosch, "CAN specification" Version 2.0, Robert Bosch GmbH, 1991

[25]. Udaya Kamath, Rajita Kaundin, "System-on-Chip Designs Strategy for

Success", White paper, Wipro Technologies, June 2001,

[26]. Ravi Krishnan, BCC, "System-on-Chip: Technology and Markets", November

2004, Electronics.ca Publications

[27]. Altera Corporation, "APEX 20K Programmable Logic Device Family" data

sheet, Version 5.1, March 2004, http://www.altera.com

[28]. Greg Martin, "Platform ASICs vs. FPGAs", RapidChip Technical Marketing,

LSI Logic Corp. September 1, 2005, Online resource

http://www.soccentral.com/

[29]. Altera Corporation, "ASIC to FPGA Design Methodology & Guidelines",

application note 311, Version 1.0, July 2003, http://www.altera.com

[30]. Abner Barros, Pericles Lima, Juliana Xavier, Manoel E. Lima, "Teaching SoC

Design in a Project-Oriented Course based on Robotics", Proceedings of the

2005 IEEE International Conference on Microelectronic Systems Education

(MSE'05), 12-14June 2005, pp 25-26

[31]. Tyson S. Hall and James O. Hamblen, "System-on-a-Programmable-Chip

Development Platforms in the Classroom", IEEE Transactions on education,

November 2004, Volume. 47, Issue 4, pp. 502-507

[32]. James O. Hamblen, "Using an FPGA-based SOC Approach for Senior Design

Projects", Proceedings of the 2003 IEEE International Conference on

Microelectronic Systems Education (MSE'03), 1-2 June 2003, pp. 18-19

[33]. Kyeong Keol Ryu, Eung Shin, Mooney, V.J, "A Comparison of Five Different

Multiprocessor SoC Bus Architectures", Digital Systems, Design, 2001.

Proceedings. Euromicro Symposium on, 2001, pp 202-209

[34]. Keutzer, K., Newton, A.R., Rabaey, lM., Sangiovanni-Vincentelli, A.,

"System-Level Design: Orthogonalization of Concerns and Platform-Based

September 2007 Fan Wu 205

http://www.altera.com
http://www.soccentral.com/
http://www.altera.com


An SOPC Based Image Processing System References

Design", Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions, December 2000, Volume 19, Issue 12, pp 1523-1543

[35]. Altera Corporation, "Avalon Interface Specification Reference Manual", 2004,

http://www.altera.com

[36]. ARM Limited, "AMBA specification" Rev 2.0, 13th May 1999,

http://www.arm.com

[37]. IBM Corporation, http://www.ibm.com/

[38]. Opencores.org, "Wishbone System-on-chip (SoC) Interconnection Architecture

for Portable IP cores Specification", revision B.3, September 2002,

http://www.opencores.org

[39]. Wayne Wolf, "A Decade of Hardware/ Software Codesign", IEEE Computer,

Apr. 2003, Volume. 36, Issue 4, pp. 38-43

[40]. Fine, M, Zemva, "A. Rapid HW/SW co-design of softcore processor systems",

Eurocon 2003. Computer as a Tool. The IEEE Region 8, 22-24 September, 2003,

Volume 1, pp 104-108

[41]. Habbi, A. Tabar, S., "A survey on system-on-a-chip design languages",

Proceedings of The 3rd IEEE International Workshop on System-on-Chip, July

2003, pp. 212-215

[42]. Altera Corporation, "SOPC Builder Data Sheet", Version 2.0, January 2003,

http://,,,,\.\-w.altera.com

[43]. Altera Corporation, "Using SignalTap II Embedded Logic Analyzers in SOPC

Builder Systems", Application note 323, Version 1.0, September 2003,

http://www.altera.com

[44]. Altera Corporation, "Stratix Device Family Data Sheet", v3.2, July 2005,

http://VvVvw.altera.com

[45]. Altera Corporation, "Nios 3.0 CPU" Data sheet, Version 2.2, October 2004,

http://www.altera.com

[46]. Xilinx, Inc., "MicroBlaze Processor Reference Guide", U0081 (v7.0),

September 2006, http://www.xililL.<:.com

September 2007 FanWu 206

http://www.altera.com
http://www.arm.com
http://www.ibm.com/
http://www.opencores.org
http://www.altera.com
http://VvVvw.altera.com
http://www.altera.com


An SOPC Based Image Processing System References

[47]. Damjan Lampret, "OpenRISC 1200 JP Core Specification", Rev. 0.7, Sep 6,

2001, http://www.opencores.org

[48]. Gaisler Research AB., "SPARC V8 32-bit Processor LEON3 / LEON3-FT

CompanionCore Data Sheet", Version 1.0.2, October 2006

[49]. Altera Corporation, "Excalibur Device Overview", Version. 2.0, May 2002

http://www.altera.com

[50]. Xilinx, Inc., "Virtex-II Pro and Virtex-II Pro X Platform FPGAs: complete data

sheet", DS083 (v4.6) March 5, 2007, http://www.xilin.x.com

[51]. Cypress Semiconductor, http://www.cypress.com

[52]. Atmel Corporation, http://www.atmel.com

[53]. Altera Corporation, "Nios PlO" Data sheet, Version 3.1, January 2003,

http://www.altera.com

[54]. Altera Corporation, "Quartus II Handbook", May 2005, http://www.altera.com

[55]. Altera Corporation, "Nios Hardware Development Tutorial", Version 1.2,

January 2004, http://www.altera.com

[56]. Altera Corporation, "USB-Blaster Download Cable User Guide", Version 2.3,

May 2007, http://www.altera.com

[57]. Altera Corporation, "Nios Software Development Tutorial", Version 1.3, July

2003, http://www.altera.com

[58]. Altera Corporation, "Nios Embedded Processor Development Board" Data sheet,

Version 2.2, July 2003, http://\\i'\vw.altera.com

[59]. Altera Corporation, "Nios Embedded Processor Software Development

Reference Manual", Version 3.2, March 2003, http://www.altera.com

[60]. Automated Imaging Association, "CameraLink Specifications of the

CameraLink Interface Standard for Digital Cameras and Interface cards"

Version 1.1, January 2004

[61]. Marco Groeneveld, "Lancelot VGA video controller for the Altera Excalibur

processors", 2003, http://www.fpga.nl

[62]. Toshiba, TC59SM716/08/04AFT/AFTL-70,-75,-80 specification, 11thJune 2001

September 2007 Fan Wu 207

http://www.opencores.org
http://www.altera.com
http://www.xilin.x.com
http://www.cypress.com
http://www.atmel.com
http://www.altera.com
http://www.altera.com
http://www.altera.com
http://www.altera.com
http://www.altera.com
http://www.altera.com
http://www.fpga.nl


An sope Based Image Processing System References

[63]. Cohu Inc., Electronics Division, "7800 Series 1280xl024 CMOS progressive

scan camera technical reference manual", 2002

[64]. PCB Train, http://www.pcbtrain.co.uk

[65]. 3M company, "3MTMMini D Ribbon (MDR) Connectors.050" Surface Mount

Right Angle Receptacle - Shielded 102 Series", 16th August 2005

[66]. National Semiconductor, "DS90CR285IDS90CR286 +3.3V Rising Edge Data

Strobe LVDS 28-Bit Channel Link-66MHz", July 2004

[67]. National Semiconductor, "DS90C032 LVDS Quad CMOS Differential Line

Receiver", September 2003

[68]. National Semiconductor, "DS90C031 LVDS Quad CMOS Differential Line

Driver", June 1998

[69]. National Semiconductor, "National Semiconductor Channel Link Design Guide",

May2005.

[70]. John Goldie, National Semiconductor, "Channel-Link PCB and Interconnect

Design-In Guidelines", Application Note 1108, August 1998

[71). The PCI Special Interest Group, "PCI Local Bus Specification", product version,

Revision 2.1, June 1995

[72]. Chi-Leung San, Chiu-Sing Choy, Pak-Kee Chan, Cheong-Fat Chan, Kong-Pang

Pun, "Realization of Card-Centric Framework: A Card-Centric Computer",

IEEE International Symposium on Circuits and Systems (lSCAS), 2005,

Volume 5, pp 4999-5002

[73]. Altera Corporation, "Using Excalibur DMA controllers for video imaging",

application note 287, http://W\\w.aItera.com

[74]. A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, Ph.

Marchegay, "Hardware Platform Design for Real-Time Video Applications",

Microelctronitronics, 2004. ICM 2004 Proceedings. The 16th International

Conference on, 6-8 Dec. 2004, pp 722-725

[75]. Burke Henehan (TI) and Michael Johas-Teener (formerly Zayante and Apple,

now Broadcom) Michael Scholles (Fraunhofer IPMS), Dave Thompson (Agere

September 2007 FanWu 208

http://www.pcbtrain.co.uk


An SOPC Based Image Processing System References

Systems), "1394 Standards and Specifications Summary", 1394 Trade

Association, April 2006

[76]. Steve Fielding, "USBHostSlave IP Core Specification", Rev 1.1, October 13

2006, OpenCores. Oranisation

[77]. Compaq, Intel, Microsoft, NEC, "Universal Serial Bus Specification", Revision

1.1, September 23, 1998

[78]. Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips, "Universal

Serial Bus Specification", Revision 2.0, Apri127, 2000

[79]. Altera Corporation, "Nios Timer" Data sheet, Version 3.2, July 2003,

http://www.altera.com

[80]. Altera Corporation, "Nios UART" Data sheet, Version 3.0, January 2003,

http://www.attera.com

[81]. Altera Corporation, "SDR SDRAM Controller White Paper", ver 1.1, August

2002, http://www.altera.com

[82]. Lattice Semiconductor Corporation, "SDR SDRAM Controller Reference

Design RDIOIO", July 2005, www.latticesemi.com

[83]. David A. Patterson and John L. Hennessy, "Computer Organization & Design,

the hardware/software interface", 1998, Morgan Kaufmann Publishers

[84]. Altera Corporation, "Using the ClockLock & ClockBoost PLL Features m

APEX devices", application note 115, Version 2.6, November 2003,

http://www.altera.com

[85]. William 1. Dally and John W. Poulton, "Digital Systems Engineering", June

1998, Cambridge University Press

[86]. Clifford E. Cummings, Sunburst Design, Inc., "Synthesis and Scripting

Techniques for Designing Multi-Asynchronous Clock Designs", 20th June 2005

[87]. Hang Yang, Hongyi Chen, Guoqiang Bai, "An Improved DMA Controller for

High Speed Data Transfer in MPU Based SOC", Solid-state and Integrated

Circuits Technology 2004. Porceedings. 7th International Conference on,

October 2004, Volume 2, pp 1372-1375

September 2007 Fan Wu 209

http://www.altera.com
http://www.attera.com
http://www.altera.com
http://www.latticesemi.com
http://www.altera.com


An sope Based Image Processing System References

[88]. Altera Corporation, "Nios DMA" data sheet Version 1.2, July 2003,

http://www.altera.com

[89]. Sanghun Lee, Chanho Lee, Hyuk-Jae Lee, "A new multi-channel on-chip-bus

architecture for system-on-chips", SOC Conference, 2004. Proceedings. IEEE

International, 12-15 Sept. 2004, pp 305-308

[90]. Altera Corporation, "Simultaneously Multi-Mastering with the Nios Processor",

2002, http://www.altera.com.

[91]. Austin Hung, "Cache Coherency for Symmetric Multiprocessor Systems on

Programmable Chips", A master thesis, University of Waterloo, 2004

[92]. Markus Winter and Gerhard Fettweis, "Interconnection Architecture For

System-on-Chip Design Providing Little Overhead, Low Latency and High

Throughput", 9th EUTOMICRO Conference on Digital System Design, Aug.

2006

[93]. Altera Corporation, "SOPC Builder PTF File Reference Manual", Version 1.2,

December 2003, http://www.altera.com

[94]. Altera Corporation, "Estimating Nios Resource Usage & Performance in Altera

Devices, Application note 178", Version 1.0, September 2001,

http://www.altera.com

[95]. Patrick Pelgrims , Dries Driessens, Tom Tierens, "Overview Excalibur, Leon,

Microblaze, Nios, Openrisc, VIRTEX II PRO", Version 1.1, 2003,

http:// opencontent.orgl openpubl

[96]. Altera Corporation, "Simulating Nios Embedded Processor Designs",

application note 189, Version 2.1, February 2003, http://www.altera.com

[97]. Barr, Michael. "Software-Based Memory Testing" Embedded Systems

Programming, July 2000, pp. 28-40.

[98]. Motorola Inc, "M68EVB912B32 Evaluation Board User's Manual", February

1997

[99]. Sweetscapre Software, "010 EDITOR Reference Manual",

http://'W'Ww.sweetscape.com

[100]. Ant Goffart, http://www.s-rccord.com/

September 2007 FanWu 210

http://www.altera.com
http://www.altera.com.
http://www.altera.com
http://www.altera.com
http://www.altera.com
http://'W'Ww.sweetscape.com
http://www.s-rccord.com/


An SOPC Based Image Processing System References

[101]. Altera Corporation, "Implementing Interrupt Service Routines in Nios Systems",

application note 284, Version 1.0, January 2003, http://www.altera.com

[102]. Altera Corporation, "Custom Instructions for the Nios Embedded Processor",

Application note 188, Version 1.2, September 2002, http://www.altera.com

[103]. Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart,

"HYPERMEDIA IMAGE PROCESSING REFERENCE (HIPR2)", 2003,

School of Informatics, University of Edinburgh,

http://homepages.inf.ed.ac. uk/rbf/HIPR2

[104]. Waltz, F, John W. V. Miller, "An efficient algorithm for Gaussian blur using

finite-state machines", SPIE Conference on Machine Vision Systems for

Inspection and Metrology, 1998

[105]. Fan Wu, "A Synthesised Controller Area Network (CAN) Core", M.Sc

dissertation, September 2003, University of Liverpool

September 2007 FanWu 211

http://www.altera.com
http://www.altera.com
http://homepages.inf.ed.ac.


An sope Based Image Processing System Appendixes

Appendixes
Appendix A Schematics

1. Schematic of the Camera Interface Card 1

'"
C:Q~

j 2.~~:: ,_".
J!C
!l.;~;
.;;~rr +....

flO ~.
In..
! <>~

'- ii ~' i

"~.
;S~

§ '6
·n
.'it
3'
k..

i Q
z
0

~
':

!l. '"~
1

'HI ! ~~~;:! i:ku~ " ~~ .. ;-1: . _ .
. ,.;1:11. , .i: . I J 1~II~r~r: I~lUi . _ , _

'" ''!'f '" 1~1i' 'I ~~.~
. , . . . , . ,

..

· , . . . .
_ .. _ .

'1J
r---

l~t[i< I~ ~·tZ ~II:
- . - ..

'Lo~ ! r'l::' ::. ,.
,..-.. IF II. '--- I~ ~'Q' . , .

·z·
_o,

=~i~i~U'iir--I~I~I~ I~IIfif. ,

, . I~ I~ I'" IE l~ ttl· l;-
F.. .!~H~ I·

. ,

~ ~ ~. U It' Ul' U U IU!l
; I~ I! I~ I~ II I~ ~

I~ C'>· , ·tt
~

i;li i I~ ~: ~: I! ! ~~.I~llol 10; 101

m
"Ii
~
~~

0 ...."''''~"'~
i;:J:~~~~~. ~'O)i~

C:: ;,z§+........e ........ 01
C(aJI""'''OI <~~~ ..,.....0
m'" .. nm~....~~' ~~

et.<

I~~UIn~I~~III!::!j ti~ lil11:i ~ ... .

l* lb.!:ll~
~ ;3'3. ~SH~h i:!~i:~:lI ~~;j~;;
<'> - .. -'it
3'~ ~r'! ~ ~ :~~.

I!I !III~I~iT~I&l

g I~I~ I~~. I~ ;51=

Q
·z"'.

September 2007 Fan Wu 212



An SOPC Based Image Processing System Appendixes

2. Schematic of the Camera Interface Card2

~:

.,,'
·z,=.

,+ '...
t.>'~--o,<,

." -n r:' r:' ;!i:
F F ~, ~, ,,' n

'" <' <II.
~' z' etz, n, Q '"'" n z n' W'

0, n <,
,0, .es,
S. S.

.....
ex..

."

'"
..
'"..

~ <II
N~

'" l

3. Schematic of the Lancelot VGA board

September 2007 Fan Wu 213



An SOPC Based Image Processing System Appendixes

•

n

September 2007

•

FanWu 214



An sope Based [mage Processing System Appendixes

Appendix B Camera interface card PCB details

1. Component side of the CameraLink Interface card PCB

2. CameraLink Interface card PCB with four layers

September 2007 Fan Wu 215



An SOPC Based Image Processing System Appendixes

Appendix C Pin assignments for video components

1. SDRAM device 110 pin mappings

Signal mIme " Apex20K Signal name Apex20K
bs[O] Y14 dq[26] V2
bs[l] V13 dq[27] Y22
ras n E16 dq[28] AA20
we n C15 dq[29] AA19
cs n C16 dq[30] V21
eke T13 dq[31] V22
cas n R12 dq[32] AB5
c1kO PS dq[33] AA5
add[O] V16 dq[34] AA4
add[l] V16 dq[3S] AB4
add[2] VIS dq[36] AB3
add[3] W16 dq[37] ABl9
add[4] VIS dq[38] AB20
add[S] Y16 dq[39] AAl7
add[6] WIS dq[40] AAI8
add[7] T14 dq[41] AB21
add[8] YIS dq[42] AA8
add[9] R13 dq[43] AB7
add[lO] Vl4 dq[44] AA7
add[ll] V14 dq[45] AB6
dq[O] V19 dq[46] AA6
dq[l] V20 dq[47] AB17
dq[2] W4 dq[48] AA14
dq[3] V4 dq[49] AAIS
dq[4] W3 dq[SO] ABl8
dq[S] Y3 dq[51] AAl6
dq[6] V3 dq[S2] AA9
dq[7] Y19 dq[53] AB8
dq[8] Rl7 dq[54] AAIO
dq[9] Y20 dq[SS] AAll
dq[lO] Tl7 dq[S6] AAl2
dq[ll] P16 dq[S7] ABIS
dq[12] AA3 dq[58] ABI6

dq[13] W2 dq[59] AA13

dq[14] Y2 dq[60] YS

dq[15] Y4 dq[61] Y6

dq[16] W5 dq[62] T6

dq[l7] W21 dq[63] P7

dq[18] W22 dqmb[O] Y12
dq[19] Y2l dqmb[l] T12

September 2007 Fan Wu 216



An SOPC Based Image Processing System Appendixes

dq[20] W19 dqmb[2] Yll
dq[21] V20 dqmb[3] El7
dq[22] WI dqmb[4] Dl7
dq[23] AB2 dqmb[S] Cl7
dq[24] VI dqmb[6] Hl6
dq[2S] YI dqmb[7] FI6

2. Lancelot VGA board 110 pin mappings

Signal name Apex20K Lancelot Signal name Apex20K Lancelot
r[O] R5 JPI-25 b[O] N6 JPI-27
r[l] KI JPI-23 b[I] L20 IPI-2S
r[2] P20 JPI-21 b[2] JIS JPI-29
r[3] KI IPI-IS b[3] Ml7 JPI-32
r[4] P21 JPI-17 b[4] Kl8 IPI-31
r[S] N2 JPI-16 b[S] 13 IPI-33
r[6] L7 JPI-I5 b[6] R4 JPI-36
r[7] N5 JPI-14 b[7] KS IPI-35
g[O] N20 JPI-3 hs 17 IPI-37
g[1] K20 JPI-4 vs 15 JPI-39
g[2] P4 JPI-S blank n Vl2 JPI-13
g[3] K4 JPI-6 sync n R22 JPI-12
g[4] Vll JPI-7 sync t N22 IPI-II
g[S] K22 JPI-S mI 11 JP2-li
g[6] KI9 JPI-9 mm2 112 IP2-12
g[7] P22 IPI-IO

3. Camera interface card 110 pin mappings

Signal name Apex20K Camera interface card
capture elk Rl9 11I-RXCLKOUT

LVal U3 JlI-RXOUT24
FVal TI Jl!-RXOUT2S
DVal R2 JII-RXOUT26
Trig PI7 1l2-Trig

video data[O] RI JlI-RXOUTO
video data[!] K2 111-RXOUTI
video data[2] PIS JlI-RXOUT2
video data[3] N3 l1I-RXOUT3
video datal4] MIS 111-RXOUT4
video data[S] PI JlI-RXOUT6
video data[6] P2 JII-RXOUT27
video data[7] P3 111-RXOUTS
video data[S] R3 J11-RXOUT7
video data[9] T2I JlI-RXOUTS

September 2007 FanWu 217



An SOPC Based Image Processing System Appendixes

video data[lO] N17 JII-RXOUT9
video data[ll] TI2 JII-RXOUTI2
video data[12] Kl JII-RXOUTI3
video data[13] M2 JlI-RXOUTI4
video datal 14] TIO JII-RXOUTIO
video data[15] L14 JII-RXOUTII
video datal 16] U5 JII-RXOUTIS
video datal 17] R20 JII-RXOUTIS
video data[IS] NI9 JII-RXOUT19
video data[19] PI9 JII-RXOUTIO
video data[20] LI5 JII-RXOUTII
video data[21] N16 JII-RXOUTI2
video data[22] NI J11-RXOUT16
video data[23] M3 J11-RXOUT17

Vee W20 J12-EN*031
Vee N15 J12-EN03I
Vee U19 J12-EN032
Vee U4 JI2-EN*032

txd camera uart U2 JI2-SerTC
rxd camera uart T3 J12-SerTFG

September 2007 FanWu 218



An SOPC Based Image Processing System Appendixes

Appendix D Truth table for the operation commands of SDRAM

Command OeviceStIh Ct<En.1 CKEn DQM(:!) BSO,
A10 A1', ~ m ~ w£8S1 A9-AO

Bank At:livate Id.(3) H X X V V V L L H H

Bank Precharge Any H X X V L X L L H L

Pr.charge All Any H X X X H X L L H L

Writ. Active (3) H X X V L V L H L L

Write with Auto Pracharge Active (3) H X X V H V L H L L

Read Active (3) H X X V L V L H L H

Read with Auto ~ Active (3) H X X V H V L H l H

Mode Regilt .. Se1 Ide H X X V V V L L L L

No-Operation Any H X X X X X L H H H

Burst.top Active (~) H X X X X X L H H L

Device DeHIect Any H X X X X X H X X X

Au1o-Reheh Ide H H X X X X L L L H

Self..Refreeh Entry Idle H L X X X X L L L H

Ide H X X X
SeIf..Refreeh Exit L H X X X X(Self fWrwh)

L H H X

Oock SUllpendMode Er*y Active H L X X X X X X X X

ide/AdM (8)
H X X X

P~ Down Mode EnIry H l X X X X
L H H X

Clock Suspend Mode Exit Active L H X X X X X X X X

Any H X X X
Power Down Mode Exit (P_Down) L H X X X X

L H H X

Data WrIte.'Output Eneble Active H X L X X X X X X X

Data WriteK)utput Disable Active H X H X X X X X X X

Note 1. V _ ValId, X - Don" Ca,., L - Low 1-'. H - Hghleva!
2. CKEn signal II input ._. when commandl_ iI8ued.

CKEn.11igna1 is input lew! one cIoc:k cyde befae the canmands _ is~.
3. TheM.,. state deIignated by the 880, 851 si!J18la .
.t. DeYioe ..... is F... Page Burst operation.
5. I.DCIM, UDQM (TC59SM716AFT/AFTL)
6. Power Down Mod. can not entry In the burst c;yde.

When this command -' in 1he burst c;yde. deYIc:e stat. i.dock WIpInd mode.

September 2007 FanWu 219



An sope Based Image Processing System Appendixes

Appendix E Register maps

1. Global register map

Base address End address Description

OxOOOOOOOO OxOOOOOOOO Boot monitor rom

OxOOOOO400 OxOOOOO41F
UART (For communication between the host

terminal and SIPS)

OxOOOOO420 OxOOOOO42F
Seven segment PlO (used to control the seven

segment LEDs on board)

OxOOOOO430 OxOOOOO437 Video memory controller

OxOOOOO440 OxOOOOO45F Timer

.......................................

OxOOOOO470 OxOOOOO47F Buffer Pia (to controller the onboard buttons)

......................................

OxOOOOO4AO OxOOOOO4BF Video display controller

OXOOOOO4CO OxOOOOO4DF UARTdebug

OxOOOOO4EO OxOOOOO4FF Video capture controller

......................................

OxOOOOO500 OxOOOOO51F CameraUART

......................................

OxOOO40000 OxOOO7FFFF External SRAM

OxOOl00000 OxOOlFFFFF External Flash

......................................

Ox04000000 Ox7FFFFFFF Cache

.......................................

2. Video memory controller register map

Offset Register Mode

0 Mode register W

1 -- --

September 2007 FanWu 220



An SOPC Based Image Processing System Appendixes

Mode register

Bit Name Description

31-3 -- Reserved

2-0 CAS latency Defines the CAS latency in the SDRAM mode register

3. Video display controller register map

Offset Register Mode

0 Control register W

I Status register R

2 -- --
3 -- --
4 Resolution register WfR

5 -- --
6 -- --

7 DMA address register WIR

Control register

Bit Name Description

31-4 - Reserved

3 SetDACmode A logic' l' sets the video DAC in ROB mode

2 Start video Writing '1' to this bit starts the internal state machine

1 Interrupt Enable Writing' 1' to enable the interrupt

0 Reset The video controller is automatic reset during power-up

Status register

Bit Name Description

31-10 -- Reserved

9 New frame Logic '1' indicates the next video line is the

first line of a new frame

8-4 -- Reserved

3 Blank VS This bit indicates the vertical blanking status

September 2007 Fan Wu 221



An SOPC Based Image Processing System Appendixes

2 BlankHS This bit indicates the horizontal blanking status

1 VS The status of the internal vs signal

0 HS The status of the internal hs signal

Resolution register

Bit Description

31-26 Reserved

25-16 Horizontal resolution

15-0 Vertical resolution

DMA address register

IBit I Description
I

4. Video capture controller register map

Offset Register Mode

0 Control register W

0 Status register R

1 Resolution register R

2 -- --
3 -- --
4 -- --
5 -- --
6 -- --
7 DMA address register WIR

Control register

Bit Name Description

31-3 -- Reserved

2 Start video Writing' 1' to this bit starts the internal state machine

1 Trigger Write' 1' to generate a Trig pulse

0 Enable interrupt Writing' l' to enable interrupt

September 2007 FanWu 222



An sope Based Image Processing System Appendixes

Status register

Bit Name Description
w ,

31-2 -- Reserved

1 Frame valid The status of the internal FVal signal

0 Line valid The status of the internal LVal signal

Resolution register

Bit Description

31-26 Reserved

25-16 Horizontal resolution

15-0 Vertical resolution

DMA address register

I Bit IDescription
31-0 : DMA start address

September 2007 FanWu 223



An sope Based Image Processing System Appendixes

Appendix F PTF Files - An example of Cache
CLASS user_Iogic_Cache
{

ASSOCIATED FILES
{

Add_Program = "".,
Edit_program = ....;
Generator_Program "mk_user_Iogic_Cache.pl";

MODULE DEFAULTS
{

class = "user_Iogic_Cache";
class_version = "2.0";
SYSTEM BUILDER INFO- -
{

Instantiate_In_System_Module = "1";
Is Enabled = "1";
Date_Modified = "--unknown--";

}

WIZARD SCRIPT ARGUMENTS
{
}

SLAVE cpu_slave
{

SYSTEM BUILDER INFO
{ -

Bus Type = "avalon";
Address_Alignment = "native";
Address Width = "24'"
Data Wiath = "32'" '- ,Has_IRQ = "0";
Has Base Address = "1";
Reaa Wait States = "peripheral controlled";
Write_Wait_States "peripheral_controlled";
Setup_Time = "0";
Hold_Time = "0";
Is_Memory_Device = "0";
Uses_Tri_State_Data_Bus "0";
Is Enabled = "1";

PORT WIRING
{

PORT system_elk
{

width = "1";
direction = "input";
type = "export";

PORT reset n
{

width = "1";
direction = "input";
type = "reset_n";

PORT cpu_slave_addr
{

width = "24";
direction = "input";
type = "address";

PORT cpu_slave_cs
{

width = "1";
direction = "input";
type = "chipselect";

September 2007 FanWu 224



An SOPC Based Image Processing System Appendixes

PORT cpu_s1ave_rd
{

width = "1";
direction = "input";
type = "read";

PORT cpu_s1ave_wr
{

width = "1";
direction = "input";
type = "write";

PORT cpu_slave_writedata
{

width = "32":
direction = "input":
type = "writedata";

PORT cpu_slave_readdata
{

width = "32";
direction = "output";
type = "readdata":

PORT cpu slave wait request
{ - -

width = "1";
direction = "output";
type = "waitrequest";

MASTER video_data_master_upper
{

SYSTEM BUILDER INFO
{ - -

Bus_Type = "avalon";
Address_Width = "27";
Max Address Width = "32":
Data_Width = "32";
Is_Enabled = "1":
Do_Stream_Reads = "1":
Do Stream Writes = "1";

I
PORT WIRING
{

PORT data clk
{

width = "1";
direction = "input";
type = "export";

PORT data master addr u
{

width = "27":
direction = "output":
type = "address":

PORT data master writedata u
{

width = "32";
direction = "output";
type = "writedata";

PORT data master readdata u- -
{

September 2007 FanWu 225



An SOPC Based Image Processing System Appendixes

width = "32";
direction = "input";
type = "readdata";

PORT data master rd u
{

width = "1";
direction = "output";
type = "read";

PORT data master wr u
{

width = "1";
direction = "output";
type = "write";

}
PORT data_master_waitrequest_u
{

width = "1";
direction = "input";
type = "waitrequest";

PORT data_master_endofpacket_u
{

width = "1";
direction = "input";
type = "endofpacket";

MASTER streaming_control master
{

SYSTEM BUILDER INFO- -
{

Bus_Type = "avalon";
Address_Width = "2";
Max Address Width = "32";
Data_Width = "32";
Is_Enabled = "1";
Do Stream Reads = "0";

}
PORT WIRING
{

PORT streamingctrl_master addr
{

direction = "output";
width = "2";
type = "address";

PORT streamingctrl_master_readdata
{

direction = "input";
width = "32";
type = "readdata";

PORT streamingctrl_master_rd
{

direction = "output";
width = "1";
type = "read";

PORT streamingctrl_master_waitrequest
{

direction = "input";
width = "1";
type = "waitrequest";

September 2007 FanWu 226



An sope Based Image Processing System Appendixes

MASTER video_data_rnaster_lower
{

SYSTEM BUILDER INFO
{

Bus_Type = "avalon";
Address Width = "32";
Max Address Width = "32";
Data_Width = "32";
Is Enabled = "1";
Do=Stream_Reads = "1";
Do Stream Writes = "1";

PORT WIRING
{

PORT data master addr 1

width'"' "32";
direction = "output";
type = "address";

PORT data master writedata 1

width = "32";
direction = "output";
type = "writedata";

PORT data_master_readdata 1

width = "32";
direction = "input";
type = "readdata";

}
PORT data_master rd 1
{

width = "1";
direction = "output";
type = "read";

}
PORT data master wr 1
{

width = "l"i
direction = "output";
type = "write";

PORT data_master_waitrequest_l
{

width = "1";
direction = "input";
type = "waitrequest";

PORT data_master_endofpacket_l
{

width = "1";
direction = "input";
type = "endofpacket";

SIMULATION
{

DISPLAY
{

SIGNAL a
{

September 2007 FanWu 227



An SOPC Based Image Processing System Appendixes

name = "data clk";
}
SIGNAL b
{

name = "system_clk";

SIGNAL c
{

name = "reset_n";

SIGNAL d
{

name = "cpu_slave_addr";
radix = "hexadecimal";

}
SIGNAL e
{

name = "cpu_slave_cs";

SIGNAL f
{

name = "cpu_slave_rd";

SIGNAL g
{

name = "cpu_slave_wr";

SIGNAL h
(

name = "cpu slave writedata";
radix = "hexadecimal";

SIGNAL i
{

name = "cpu slave readdata";
radix = "hexadecimal";

SIGNAL j
{

name = "cpu_slave_waitrequest";
}
SIGNAL k
{

name = "data_master_addr_u";
radix = "hexadecimal";

SIGNAL 1
{

name = "data_master_rd_u";

SIGNAL m
{

name = "data_master_wr_u";
}
SIGNAL n
{

name = "data_rnaster_waitrequest_u";

SIGNAL 0
{

name = "data_master_endofpacket_u";

SIGNAL P
{

name = "data master writedata u";
radix = "hexadecimal"; _

SIGNAL q

September 2007 FanWu 228



An SOPC Based Image Processing System Appendixes

name = "data master readdata un;
radix = "hexadecimal"; -

SIGNAL r
{

name = "streamingctrl_master_addr";
radix = "hexadecimal";

SIGNAL s
{

name = "streamingctrl_master_rd";
I
SIGNAL t
{

name = "streamingctrl_master_readdata";
radix = "hexadecimal";

USER INTERFACE
(

USER LABELS
{

name = "Cache";
technology = "Image Processing System";

}

DEFAULT GENERATOR
(

top module name = "Cache";
black_box ~ "0";
vhdl_synthesis_files = "Cache.vhd,cache slave.vhd,cache dpram 512x48.vhd,

cache master.vhd"; - --
-verilog synthesis files "";
black_box_files =-,,";

September 2007 FanWu 229


