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Abstract 

This thesis deals with computational problems that are defined on matrix 

semigroups, which playa pivotal role in Mathematics and Computer Science 

in such areas as control theory, dynamical systems, hybrid systems, compu

tational geometry and both classical and quantum computing to name but 

a few. Properties that researchers wish to study in such fields often turn out 

to be questions regarding the structure of the underlying matrix semigroup 

and thus the study of computational problems on such algebraic structures 

in linear algebra is of intrinsic importance. 

Many natural problems concerning matrix semigroups can be proven 

to be intractable or indeed even unsolvable in a formal mathematical sense. 

Thus, related problems concerning physical, chemical and biological systems 

modelled by such structures have properties which are not amenable to 

algorithmic procedures to determine their values. 

With such recalcitrant problems we often find that there exists a tight 

border between decidability and undecidability dependent upon particular 

parameters of the system. Examining this border allows us to determine 

which properties we can hope to derive algorithmically and those problems 

which will forever be out of our reach, regardless of any future advances in 

computational speed. 

There are a plethora of open problems in the field related to dynami

cal systems, control theory and number theory which we detail throughout 

this thesis. We examine undecidability in matrix semigroups for a variety 

of different problems such as membership and vector reachability problems, 

semigroup intersection emptiness testing and freeness, all of which are well 

known from the literature. We also formulate and survey decidability ques

tions for several new problems such as vector ambiguity, recurrent matrix 

problems, the presence of any diagonal matrix and quaternion matrix semi

groups, all of which we feel give a broader perspective to the underlying 

structure of matrix semigroups. 
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Chapter 1 

Introduction 

1.1 Background 

"Quod est, nullum non problema solvere ", 

There is no problem which cannot be solved, 

Fram;oise Viete. 

Matrices play a fundamental and central role in a plethora of mathematical 

disciplines. They describe linear transformations and their use has propa

gated to such an extent, that to prove a result purely in terms of matrix 

theory can induce an abundance of related results in a set of diverse fields. 

Matrices are central to linear algebra which studies general properties 

of vector spaces. Our aim is to study a core set of problems which may 

be defined in terms of linear algebra. We shall detail an amalgamation of 

disparate computational problems whose decidability status we shall explore 

using several methods which shall be studied and developed in the early 

chapters of this thesis. The exact and formal mathematical definitions of 

these problems will appear in Section 2.3 of Chapter 2 but we shall give a 

less formal description of them here in order to motivate the reader as to 

the type of problems considered. 

1 
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There are many natural and important questions in terms of linear alge

bra and one such problem is the membership problem, which is to determine 

whether some element (linear transformation) is present within a given set 

(of linear transformations). As an instance of the problem we are given a 

finite set of objects e.g and a binary operator allowing us to take two elements 

and create a new element. Thus from the set e.g, we can create a new set 

of elements which may be infinite in size called Y. The set ,51' is formally 

named a semigroup and we shall be dealing with matrix semigroups where 

each element of the set is a square matrix. The membership problem on 

matrix semi groups asks whether a particular matrix is contained within the 

semigroup. 

Another interesting and fundamental problem concerning semigroups is 

the vector reachability problem (VRP). This question asks "given a set of 

linear transformations and two points x and y, is it possible to find a com

bination of transformations from the set that maps x to y?". The problem 

can also be formulated in terms of a matrix semigroup 1, ,51', and a pair of 

vectors x, y as input and the problem then becomes whether there exists any 

matrix M E ,51' such that M x = y. A related problem is the scalar reach

ability problem which takes as input a finitely generated matrix semigroup 

,51', two vectors a, b and a scalar k. The problem asks, "does there exist any 

matrix M E ,51' such that aT Mb = k?". The equality can also be replaced 

by other relations such as <, >,~,~, etc. 

Other problems often arise in the study of semigroups such as determin

ing the freeness of a matrix semigroup. In this problem we must determine if 

a given finitely generated semi group is free, i.e., if every element of the semi

group has a unique factorisation over elements of the generator. Studying 

the decidability of such general problems for matrix semigroups can prove 

the decidability of problems in many other areas. We shall now show several 

such areas from mathematics and computer science where problems that are 

1 We may define the set of linear transformations as a matrix semigroup since the 

combination of linear transformations corresponds to matrix multiplication 
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being researched are strongly related to computational problems on matrix 

semigroups. 

In automata theory, it is a widely known and utilised fact that finite state 

machines can be simulated via a set of integral matrices. If we allow the 

finite state machine to be non-deterministic and assign probabilities which 

sum to 1 on each outgoing edge set for each vertex, this gives us probabilistic 

finite state automata (PFA). Such automata may be simulated by a set of 

rational matrices, one for each input letter. A possible question we might 

ask on a PFA is "Starting from a given state, does there exist a word w, 

leading to a final state with a probability greater than a certain threshold?". 

It is possible to define this problem instead as a type of scalar reachability 

problem on stochastic matrix semigroups as is not difficult to show, see [15] 

for example. 

If we instead specify that the sum of squares of the values of outgoing 

edges from each vertex equals 1 then we obtain the model of quantum fi

nite state automata. When studying quantum automata, the matrices in 

the generator are unitary matrices. Thus, if we have general properties for 

computational problems on stochastic or unitary matrices in different di

mensions (such as the decidability status of various problems) then it can 

aid in the study of problems on probabilistic and quantum automata. 

Another field where matrix problems play a central role is dynamical 

systems in which we often aim to describe some real world system and 

derive properties of it. For example, we may wish to simulate the trajectory 

of a billiard ball on a table, the motion of celestial bodies or the dynamics 

of particles in a fluid. Properties studied include fixed points of the system, 

convergence and divergence of the system, the onset of chaotic behaviour 

and various stability criteria. In a linear dynamical system we can describe 

the evolution of a point via matrix equations and thus the properties of 

the system we wish to discover can turn out to be specific properties of the 

matrices used to represent it. 
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Let us consider an example of one such dynamical system. Given an 

initial state vector So = (Uo, U 1, ... , Un-I) TEen and a set of matrices, 

r;g = {Mo,M1, ... ,Mk} E enxn . If we consider a discrete time model, 

then at each time step we non-deterministically (i.e., randomly) choose a 

particular matrix !vfi and obtain the next state vector, thus Uj+l = Afiuj' 

This process continues iteratively and we can see that it is a type of linear 

non-deterministic dynamical system. 

Typical questions we might ask on such a model are: "Given an in

stance of the system, is it possible to reach a particular state v?" or another 

question might be "Given a fixed set of matrices, does every initial vector 

converge to the zero vector for all possible products?". The former problem 

seems very natural to ask but in fact we show that it is undecidable (which 

we explain later) even for just 7 rational matrices of dimension-3 in The

orem 4.10. The decidability status of the latter problem is a fundamental 

but open problem in the field related to the joint spectral radius of a set of 

matrices, see [15, 52]. 

Matrices and matrix semi groups also playa key role in other areas of 

Mathematics and Computer Science. In Graph theory we model pair-wise 

relations between vertices from a given set, often via adjacency matrices. 

There exists a large number of problems on graphs such as colouring prob

lems, the clique problem, the Hamiltonian path problem and the travelling 

salesman problem to name but a few. Again we may often define these 

problems in terms of properties of specific classes of matrices. 

In the field of computer graphics we are interested in visualising mathe

matically described objects on a 2D computer screen. We can conceptualise 

the process by having a matrix represent the movement and rotations of 

objects or the "camera" out of which we view the scene. 

The above examples illustrate only a fraction of subjects whereby the 

structures in question may be modelled via matrices or matrix semigroups. 

Thus, as previously mentioned, algorithmic solutions to these questions on 
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specific classes of matrix semigroups can aid us in several disciplines. 

Complexity and Computability Theory 

The discussion can now turn to complexity and computability issues arising 

from the study of computational questions on these structures. For many 

problems we may create a decision problem which will return the correct 

answer "true" or "false" in a short amount of time whereby we use the stan

dard definition of a short amount of time to mean time which is proportional 

to a polynomial of the input size of an instance in some "reasonable" rep

resentation. 2 The class of all such problems is denoted P for polynomial 

time algorithms. 

However, it is well known that certain problems seem to be much more 

difficult to solve than problems in P. If we allow an algorithm to "guess" 

the next computational step randomly and allow that the algorithm accepts 

a given instance if and only if at least one path leads to an accepting state, 

then we get the class N P of non-deterministic polynomial time algorithms. 

It is a well known and fundamental open problem whether P = N P in 

computer science but the equality is widely believed to be false and most 

scientists would conjecture that P f. N P. 

Even in the case of N P problems however, there exists an algorithm 

which will return the correct answer "true" or "false" after some finite 

amount of time, even if the amount of time turns out to be exponential 

in the size of the input. Throughout this thesis we shall not study the time 

complexity of algorithms, we shall instead be interested in whether or not 

any algorithm exists which will solve the problem regardless of any time 

constraints. This is the area of computability theory. 

We shall show many decision problems on matrix semigroups for which 

there does not exist any algorithm which is guaranteed to return the correct 

answer "true" or "false" in a finite amount of time. The problems are 

2Sy reasonable we mean storing integers in binary rather than unary encoding etc. 
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termed undecidable. Alan Turing proved the first undecidable problem in 

computability theory, known as the halting problem. From this result we 

can use a technique called "reduction", discussed in Chapter 3, to show 

many other problems are also undecidable. 

One of the first results of undecidability in matrix semi groups was by 

A. Markov [42] in 1947 where he proved results which we may interpret as 

the emptiness testing of the intersection of matrix semigroups. We study 

this problem in Section 4.4 and show some variations of the undecidability 

results. In 1970, M. Paterson showed the mortality problem is undecidable. 

This problem is concerned with determining whether the zero matrix (a 

matrix with all zero elements) is in a semigroup generated by a given finite 

set of integer matrices. Since that time there has been much interest in 

decidability questions for problems concerning matrix semigroups. 

One might question the rationale of studying the undecidability of com

putational problems since an undecidability result inherently means a solu

tion for the problem does not exist. There are two main reasons which may 

be highlighted. Firstly, once a problem has been shown to be undecidable, 

it can be considered futile to search further for an algorithmic solution to 

the problem. 

In this case we do have available choices such as simplifying the system 

to some extent or using approximations of solutions for example which can 

lead to algorithmic solvability of a problem. Let us illustrate this with an 

example. Given a finite set of matrices, we may assign a non-negative real 

number to the set called the joint spectral radius which can be thought of as 

a generalisation of the spectral radius on single matrices. It was shown in 

[15] that determining if the joint spectral radius, p, of a set of matrices ~ is 

less than or equal to 1, i.e., determining if p(~) ::; 1 is undecidable. However, 

it is known from a result of [11] that we can approximate the joint spectral 

radius to any degree of accuracy greater than O. Thus, seemingly similar 

properties can have a different decidability status and if we can tolerate 
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some degree of approximation or probability then algorithmic solutions can 

be developed. 

The second reason to study undecidability is from a purely theoretical 

perspective; we are truly studying the limits of what is computable. Often 

with a small change to a parameter, i.e., the dimension of the matrices con

sidered, the number of matrices in the generator or the number system used 

in the matrices, we can observe a change from decidability to undecidability. 

Understanding the reasons for this change is fundamental to understanding 

computability in general. 

Hopefully the above reasoning shows that since matrices and matrix 

semigroups are so ubiquitous in mathematics and computer science, the 

study of computability of problems on such structures is fundamental and 

important in determining the computability of problems defined in many 

diverse fields. 

1.2 Currently Known Results 

In this section we shall give the current state of known decidability results 

for a set of problems in several dimensions and over different number fields. 

Since this is a currently active research area, many of these results may be 

improved upon relatively quickly but they are correct at the time of writing 

as far as the author is aware. 

Let us now give a list of the problems with a brief and informal descrip

tion of each. For more details and rigorous definitions, see Section 2.3 of 

Chapter 2. 

Given a finite set of n x n matrices f§ over a semi-ring IF, generating a 

semigroup Y we define the problems: 

• MEMBERSHIP - Given a particular matrix M E lFnxn , is it true that 

MEY? 

• VECTOR REACHABILITY (VRP) - Given two vectors x, y E lFn does 
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there exist a matrix M E Y such that M x = y? 

• MORTALITY - Does the zero matrix belong to the semigroup Y? 

• IDENTITY - Does the identity matrix belong to the semigroups Y? 

• FREENESS - Is the semigroup Y free? I.e. does each element of Y 

have a unique factorisation over elements of r,g'? 

• ANY DIAGONAL (AD) - Does the semigroup Y contain any diagonal 

matrix? 

• SCALAR - Does the semigroup Y contain a specific scalar matrix kI 

(where k =f 0, ±1)? 

• VECTOR AMBIGUITY - Given a vector x E IFn, is the set of vectors 

{Mx: M E Y} free? I.e. is it true that for two matrices M, N E Y, 

it holds that Mx = Nx => M = N? 

We shall present a table of known results including some, but not all, of 

our contributions to the field presented in this thesis (highlighted in bold and 

underlined). Let us discuss the notation; the top row represents the problem 

to which we refer and they are listed above, the left column represents the 

dimension of the matrices. Each element at arbitrary row i and column 

j is of the form {D, U}(IF)n or empty. The letters D and U represent 

Decidable and Undecidable respectively, IF represents the particular semi

ring over which the decidability status refers and the subscript n represents 

the number of matrices in the generator (the symbol k means the result 

holds over any arbitrary (finite) number k). 

Dim MEMB VRP MORT IOENT FREE AD SCALAR 

1 D(Ch D(C)k D(Hh D(Ch D(C)k D(JHl)k D(Hh 

2 U(JHI)14 U(JHl)14 D(Qh D('1,h U(JHl)ts U(Hh U(H)I4 

3 U('1,)s U(Q)II U('1,)s ? U(Nhs ? U(Qh4 

4 U('1,)s U('1,)1I U('1,)s ? U(N)Is U(C)14 U('1,h4 
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The underlined and bold symbols represent a subset of our results that 

are presented within this thesis. Note that we have the containment hierar

chy: NeZ c Q c C c !HI. This means that if a problem is decidable over 

Q for example, then it is also automatically decidable over Nand Z but it 

does not follow that the problem is decidable over C or lHI. The opposite 

assertion is also true; if a problem is undecidable over Q then it follows that 

it is undecidable over C and lHI but not necessarily over N or Z. In a similar 

fashion, if a problem is undecidable when its generator contains j matrices 

then the problem is also undecidable using any number greater than j of 

matrices. The number of matrices required is based upon the minimum 

instance size for which Post's correspondence problem (pcP) or one of its 

variants is currently known to be undecidable, therefore these numbers may 

change if smaller instance sizes are found for which the corresponding pCP 

variant used is still undecidable. 

In dimension 1 all problems are straight forwardly decidable over the 

complex numbers since they are commutative. Some problems are also easy 

over the quaternions, for example the mortality problem, since the quater

nions do not have zero divisors. However, we later state an open problem 

about the decidability of membership in one-dimensional quaternion semi

groups in Open Problem 7.9 and also the decidability of the one-dimensional 

quaternion semi group freeness problem in Open Problem 7.10. 

All the undecidability results in two-dimensional quaternion matrix semi

groups are from our paper [10] but decidability results in two dimensions 

are very sparse. In fact, only partial results are known for sub cases of many 

problems, for example a subclass of upper-triangular matrices is known in 

two dimensions where the freeness is decidable, see [17]. The decidability of 

the membership problem for the identity matrix in a matrix semigroup in 

two-dimensional integral matrices was shown in [19]. 

The mortality problem for three-dimensional integral matrices was shown 

to be undecidable in [45] and the number of matrices required in the genera-
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tor for undecidability was reduced to just 8 in [25]. Note that the mortality 

problem is a special case of the membership problem. We later show, in 

Theorem 4.10, that the vector reachability problem is undecidable for ma

trix semigroups generated by 7 rational matrices of dimension 3. This result 

is from our paper [8]. The mortality problem was shown to be decidable 

for a pair of rational 2 x 2 matrices in [16]. The decidability status for an 

arbitrary number of matrices is an important open problem which we state 

in Open Problem 6.6. 

We also mention that the problem of determining whether a finitely 

generated semigroup over any field is finite or not is a decidable problem, 

see [24] and [41]. From this result it follows that determining whether the 

semigroup generated by a single matrix is free or not is a decidable problem. 

To see this, we simply determine if the semigroup generated is finite, in which 

case the semigroup is not free; else the semigroup is free. The mortality 

problem for a single matrix is also thus decidable since we simply determine 

if the semigroup is finite and if it is, search for zero matrix in the finite 

number of matrices given. Lastly, the same argument holds to show that 

the membership problem for the identity matrix is decidable for a matrix 

semigroup generate by a single matrix (since the presence of the identity 

matrix means the semigroup must be finite, thus we simply need search the 

finite set for its presence). 

1.3 Overview of the Thesis 

We shall now show the general structure of the thesis. Chapter 2, "Prelim

inaries ", gives all the required elementary definitions from matrix theory, 

group theory and abstract algebra that will be used throughout. We have 

attempted to make this as self contained as possible and indicated references 

to books for other material when necessary. We also introduce hypercomplex 

numbers, specifically quaternions in this chapter. Since these are perhaps 

not as well known to some researchers, we have given a more thorough 
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treatment of them. 

Several classes of computational questions such as "membership prob

lems", "vector reachability problems" and "freeness problems" are then 

given and discussed. The majority of problems studied throughout the thesis 

will fall into one of these categories and we give a general overview of them 

from a higher level here. Finally we show the strong connection between 

words and matrices and present a list of semigroup and group morphisms 

both from the literature and our work which may be useful as a reference. 

In Chapter 3, "Decision Problems for Words", we introduce the formal 

concept of undecidability and reduction which will be so useful throughout. 

This allows us to then show the familiar Post's correspondence problem 

(pcp) with some of its more recent variants. We provide two new versions 

which we name Index Coding PCP and Fixed Element PCP for reasons 

which become clear upon examining their proofs. The usefulness of the 

undecidability of these two problems becomes apparent later in the thesis 

when we reduce them to show new undecidability proofs of important matrix 

semigroup problems. 

We then introduce two models of computation, namely, Turing machines 

and two-counter Minsky machines. A method of encoding these computa

tional devices within two words will be shown and this allows us to obtain 

results later in the chapter. In fact, the simulation of a Turing machine via 

two words is exactly the way pCP can be shown to be undecidable. The 

results of this chapter and some from Chapter 4 were presented in [9]: 

• P. Bell and I. Potapov, Periodic and Infinite Traces in Matrix Semi

groups, Technical Report, The University of Liverpool, 2007. 

Chapter 4, "Integml to Complex Matrix Semigroups", begins the dis

cussion of matrix semi groups problems on number fields up to the rational 

complex numbers 3. We show that the membership problem for a scalar 

matrix in an integral matrix semigroup is an undecidable problem. A scalar 

3i.e., integers, rationals, complex rationals but excluding the quaternions 
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matrix is one with a particular value k on each element of the main diagonal 

and 0 elsewhere. Such a matrix is important since it scales all matrices or 

vectors by an equal amount. These types of matrices occur in many ap

plications due to this property. For the proof of this theorem we use the 

Index Coding PCP discussed in Chapter 3. We presented this paper at the 

Developments in Language Theory conference (DLT05) [5] and subsequently 

published in the Theoretical Computer Science journal, [7]: 

• P. Bell, 1. Potapov, On the Membership of Invertible Diagonal Matri

ces, Developments in Language Theory (DLT05), LNCS 3572, 146-157, 

2005 . 

• P. Bell, 1. Potapov, On the Membership of Invertible and Diagonal 

Scalar Matrices, Theoretical Computer Science, 372:37-45, 2007. 

We then move to a problem which upon initial examination appears 

somewhat contrived but actually has links to several areas, namely that 

of determining whether in a particular finitely generated integral matrix 

semigroup any matrix has a zero in the top right element. The problem 

is often named the Zero in the Upper Right Corner Problem and is related 

to Skolem's problem on linear recurrences as is shown in Chapter 6 and 

the related Zero in the Upper Left Corner Problem was used in the proof 

of the mortality problem, see [25]. We reduce the dimensions of the two 

matrices needed for undecidability with an encoding technique which may 

be useful in other areas. We also use this technique to reduce the dimensions 

needed for the undecidability of the vector reach ability problem to just 11 for 

semigroups generated by two rational matrices. These results were presented 

at the Developments in Language Theory 2006 conference and are currently 

awaiting publication in a special issue of Theoretical Computer Science, see 

[6,8]: 

• P. Bell, 1. Potapov, Lowering Undecidability Bounds for Decision Ques

tions in Matrices, Developments in Language Theory (DLT06), LNCS 
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4036, 375-385, 2007 . 

• P. Bell, 1. Potapov, On Undecidability Bounds for Matrix Decision 

Problems, Special Issue of Theoretical Computer Science, (accepted 

for publication), 2007. 

Next we move to the problem of determining whether any matrix in a ra

tional complex matrix semigroup is diagonal. Clearly we can see similarities 

in the problem description to that of the scalar matrix problem mentioned 

above however the scalar matrix problem looks for a single particular matrix 

but there may also be other diagonal matrices which are in the semi groups 

which do not correspond to correct solutions of the pCP instance. Thus we 

cannot prove undecidability for any diagonal matrix using that particular 

method. The problem was given in [14] and the decidability status was 

said to be an open problem in any dimension. We show it is undecidable 

for four-dimensional rational complex matrix semi groups using the Fixed 

Element PCP of Chapter 3. 

We then study several vector reachability problems and specifically the 

Vector Ambiguity Problem, the precise definition of which we leave for Sec

tion 2.3. At this point we then show how to simulate the previously men

tioned computational models within a matrix semigroup in order to derive 

results on the undecidability of properties of the structure of matrix semi

groups such as the Recurrent Matrix Problem. 

The intersection emptiness problem for two semigroups is then discussed 

and undecidability results are shown similar to those studied by A. Markov 

[42]. This problem can roughly be stated as "Given two finitely generated 

semi groups S, T, is the intersection of these two semigroups empty? I.e. is 

IS n TI = O?". The results on semigroup intersections are from [4]: 

• P. Bell, A note on the emptiness of semigroup intersections, Funda

menta Informaticae, 79:1-4, 2007. 
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Chapter 5, "Quaternion Matrix Semigroup Problems" , concerns compu

tational problems on quaternion matrices which can be thought of as an 

extension to complex numbers which retain associativity but lose the com

mutativity property. Even more exotic number systems exist for any dimen

sion which is a power of 2 however, after the four-dimensional quaternions, 

these numbers systems (starting from the 8-dimensional octonions) lose the 

property of associativity with their multiplication. Since semi groups require 

associativity by their definition, when using multiplication as the binary 

operator, the quaternions are the most abstract number system we may use. 

For this reason we study computational problems on quaternion and 

quaternion matrix semi groups since in some ways this gives a more complete 

understanding of these problems. We start the chapter with an introductory 

discussion on the quaternions and then move to word morphisms. We then 

show a monomorphism, : 1::* t-+ lHI(Q) between words and quaternions. This 

result allows us to encode word problems and show undecidability for several 

results such as membership, vector reachability, freeness, the existence of 

any diagonal matrix in the semigroup and semigroup intersection emptiness 

problems. We can also use the result to derive a free group of complex 

unitary matrices. We presented the majority of the results of this chapter 

in [10]: 

• P. Bell, 1. Potapov, Reachability Problems in Quaternion Matrix and 

Rotation Semigroups, Mathematical Foundations of Computer Science 

(MFCS), accepted for publication, 2007. 

In Chapter 6 we consider matrix interpretations of Skolem's problem. 

We show the well known result that Skolem's problem can be interpreted as 

the zero in the upper right corner problem but we also show it is equivalent 

to the zero in the upper left corner problem. This proves useful since we 

can then show that Skolem's problem can be reduced to an instance of the 

Mortality problem on a semigroup generated by two matrices. 



1.3. Overview of the Thesis 15 

The results of this thesis were presented at the British Colloquium 

of Theoretical Computer Science (BCTCS 2005), Developments in Lan

guage Theory conference (DLT 2005, DLT 2006), Workshop on Algorithms 

on Words (WAW 2007), Mathematical Foundations of Computer Science 

(MFCS 2007) and several internal seminars in the Department of Computer 

Science at the University of Liverpool. 



Chapter 2 

Preliminaries 

In this chapter we shall outline the introductory material from number the

ory, matrix theory, group theory and abstract algebra that will be required 

in this thesis. We try to give full definitions when possible for completeness 

and refer to the literature for any concepts not fully defined. A rather more 

complete introduction to quaternions is also given since this subject is per

haps not as widely known or studied in the field. We study computational 

problems on quaternions and quaternion matrices in Chapter 5. 

We shall also define a general set of problems on matrix semigroups which 

will be studied extensively throughout this thesis with different constraints. 

To a large extent, all the problems studied will fall into one of these general 

categories. 

The well known connection between binary words and matrices will also 

be shown and a selection of 2 x 2 free matrix semigroups and groups will 

be given. This will prove invaluable in many of the proofs of this paper and 

we collect them here for reference. The different homomorphisms between 

words and matrices have different properties which will aid us in later proofs. 

16 
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2.1 Definitions 

We use the standard notations N, Z, Q, C for the sets of natural numbers 

(including 0), integers, rationals and complex numbers respectively. We 

denote by C(Q) the field of rational complex numbers, i.e., numbers of the 

form a + bi where a, b E Q and i = A. This avoids the problem of how 

to input real numbers which do not have a finite representation. 

Where we wish to be more general and not restrict ourselves to a specific 

number system, we shall use the notation IF to refer to an arbitrary ring 

(defined below). 

A set is a collection of distinct objects (called elements of the set). Given 

two finite sets, for example, A = {w,x,y} and B = {x,y,z}, the union of 

A and B is denoted by AU B = {w, x, y, z} and is the set of objects from 

either set A or B (discounting multiplicities). The intersection of sets A 

and B is denoted by An B = {y, z} and is the set of objects appearing in 

both A and B. 

The cardinality of a set A = {aI, a2, ... an} is denoted by IAI and is 

defined as the number of objects in the set A, thus IAI = n (note that we 

do not allow multiple copies of the same element in the set). 

2.1.1 Matrix Theory 

We denote an m x n matrix over a ring IF by ]Fffixn. Actually, we shall 

almost exclusively be dealing with square matrices where m = n. We shall 

use basic properties of matrices which are outlined below. See [31] for a 

more thorough treatment. We denote by In the n x n identity matrix: 

100 

o 1 0 

001 

For a matrix !vI E Fnxn we denote the element in the i'th row and j'th 
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column by .M[i,j] E IF. For a matrix !vI, we denote the transpose of AI by AfT. 

This is obtained by exchanging rows for columns, i.e., setting MU,i] = M[i,j]' 

A row vector x is a 1 x n matrix x = (xo, Xl, .. . , xn-d. A column 

vector is the transpose of a row vector and of dimension n x 1. Two vectors 

x = (XO,Xl, ... ,Xk)T, Y = (YO,Yl,'" ,Ykf are said to be orthogonal if 

k 

xT Y = (xo, xl,···, Xk)(YO, Yl,·· ., Ykf = L XiYi = O. 
i=O 

If the vectors x, yare both of unit length, i.e., 2:~=0 X[ = 2:7=0 Yl = 1, and 

also orthogonal, then they are said to be orthonormal. 

The determinant of a matrix M is denoted by det(M). We may define 

it inductively using the Laplace expansion by minors. Given a matrix A = 
[aij] E IFnxn where IF is an arbitrary ring, then let Aij E IF(n-l)x(n-l) denote 

the submatrix of A with row i and column j deleted. Assume that the 

determinant is already defined on IF(n-l)x(n-l), then let: 

n 

det(A) = L(-I)i+j aijdet(Aij) 
j=l 

for alII::; i ::; n and define that the determinant of a 1 x 1 matrix is the 

single value in the matrix. See also [31] for more details. The important 

property that we shall require is that the determinant is multiplicative: 

det(AB) = det(A) . det(B); A, BE IFnxn 

A matrix M is invertible (i.e., has an inverse, M- 1 , such that M M- 1 = 

1) iff det(M) i= O. Otherwise M is called singular or non-invertible. A 

matrix D is said to be diagonal if D[i,j] = 0 whenever i i= j, i.e., all off 

diagonal elements are zero. A matrix T is said to be upper triangular if 

T[i,j] = 0 whenever j < i, i.e., the lower triangular part of the matrix 

(excluding the leading diagonal) is zero. 

Given a matrix ME IFnxn , a non-zero vector X E IFn such that }.IIx = AX, 

where A E C, is called an eigenvector. The scalar A is called an eigenvalue 
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of the matrix ]v!. In general, the matrix M may have up to n different 

eigenvalues but it may have duplicates. We denote by a(M) the set of 

eigenvalues of M. This is called the spectrum of M. The spectral radius of 

M is the non-negative value p(M) = max{I>'1 : >. E a(M)}. 

If AI x = >.x then (>.1 - M)x = O. Since x is not the zero vector, (>.1 - M) 

is singular, thus det(>.I - M) = O. This gives a degree n polynomial, named 

the characteristic polynomial, the roots of which are the eigenvalues of M. 

Given two matrices A E lFixj and B E IFkxm then the Kronecker product 

of A and B, denoted by A ® B is defined by: 

( 

A[I,.I]B .... 

A®B= : '. 

A[i,l]B ... 

A[I,jJB ) 
: E lFikxjm. 

A[· ·]B t,) 

We shall require the mixed-product property of Kronecker products: 

Lemma 2.1. [32} Let A E Fxn,B E IFpxq,C E IFnxk and D E IFqxr. Then 

(A®B)(C®D) = AC®BD. 

Given two matrices A E IFmxm and B E IFnxn, the direct sum of A and 

B, denoted by A EB B is given by: 

A[l,l] Ap,m] 0 0 

AEBB= 
A[m,I] A[m,m] 0 0 E IF(m+n)x(m+n). 

0 0 B[l,l] B[l,n] 

o 0 B[n,I] B[n,n] 

It is easily shown that det(A EB B) = det(A) . det(B) by the definition 

of the determinant. 

2.1.2 Group Theory 

A semigroup is denoted by (Y,·) where Y is a (possibly infinite) set of 

elements and· is an associative binary operation such that if a, bEY then 
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a' b E .9'. We usually omit· and simply write abo It is also a standard abuse 

of notation to refer to the semigroup itself by.9'. We call the minimal set 

of elements <§ such that any element of .9' can be expressed as a product of 

elements of <§ the generator of the semigroup .9'. If each such factorisation 

is unique, we call the semigroup free. 

If there exists an element e E .9' such that for all x E .9', we have 

that xe = ex = x, then e is called the identity element and .9' is then 

called a monoid denoted by (.9',., e). It can be proven that the identity 

element e is unique. Furthermore, if for all x E .9' there exists ayE .9' 

such that xy = yx = e then .9' is called a group (each element has an 

inverse). If· is also commutative (i.e., ab = ba for all a, b E .9') then the 

above structures are called a commutative semigroup, commutative monoid 

and an Abelian group respectively. If each factorisation of elements of .9' 

is unique with respect to the generator of the group for reduced products 

(where we discount consecutive inverse elements), then the group is said to 

be free. 

A semi-ring is a set .9', with two operations defined on it, denoted + 

and . and two distinct elements 0,1 such that (.9', +,0) is a commutative 

monoid and (.9'",1) is a monoid. If (.9', +,0) is an Abelian group then .9' 

is known as a ring. If (.9' \ {O},·, 1) forms an Abelian group as well, then 

Y is a field [1]. 

A division ring is a ring in which each element has a multiplicative 

inverse. We can see that a division ring is thus similar to a field but with

out the requirement of multiplicative commutativity. We shall see that the 

quaternions form a division ring but not a field since they have a non

commutative multiplication. Division rings are also sometimes known as 

skew fields or non-commutative fields in the literature but we shall not use 

this terminology since it is non standard. 
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2.1.3 Abstract Algebra 

The structures discussed in Section 2.1.2, such as semigroups, groups, fields 

etc., are known collectively as algebraic structures (note that the list of 

structures given is by no means complete). We shall utilise functions or 

mappings between equivalent algebraic structures which preserve certain 

properties. 

Given two algebraic structures A, B of the same type, we define a func

tion 1j; mapping elements of A (called the domain) to elements of B (called 

the codomain) by 1j; : A f--+ B. If each element of A maps to a distinct 

element of B, i.e., 1j;(x) = 1j;(y) =} x = y, then 1j; is said to be injective. If, 

for each element y E B, there exists some x E A such that 1j;(x) = y, then 

1j; is said to be surjective. A function which is both injective and surjective 

is called bijective. 

A homomorphism is a mapping 'Ij; between two algebraic structures of 

the same type A, B such that 1j;(x * y) = ¢(x) o1j;(y) for all x, yEA 

where * is the binary operator of A and 0 is the binary operator of B. 

A monomorphism is an injective homomorphism and an isomorphism is a 

bijective homomorphism. 

2.1.4 Finite Words 

Given an alphabet f = {ao, al,"" ak} we define a finite word, w, over the 

set f by W = WOWI ... Wn E f*. Given two words, U = UOUl ... Urn and 

v = VOVI ... Vn over the same alphabet, u, v E f*, the concatenation of U 

and v, written U . v (or uv for brevity) is given by: 

uv = UOUI •.• UmVOVI ... Vn E f*. 

The reverse of word W = WOWI ..• Wn is written w R and is defined by 

w R = Wn ... WI Wo0 The empty word is denoted by £ and signifies a word 

with 0 letters. The notation Iwi is used for the length of word w, thus for 

the word W = WOWl ... W n , clearly Iwi = n + 1 and also 1£1 = O. 
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The inverse of a letter, a is denoted by either a-lor a (depending which 

is clearer in the proof). The inverse of a word W = WOWI ... Wn may be 

defined as: W = w- I = Wn ... WI . Wo, which is the reverse of W with each 

letter replaced by its inverse. This is the inverse of W since clearly: 

WW = Wo . WI ... Wn . Wn ... WI . Wo = c. 

2.1.5 Hypercomplex Numbers 

Rational complex numbers, which we denote by C(Q), are of the form a + bi 

where a, b E Q and i = J=I. There is a natural extension to complex 

numbers which gives hypercomplex numbers where we allow more imaginary 

parts. 

W. R. Hamilton discovered that by using four dimensions, we can extend 

complex numbers to form a division ring with similar properties to the com

plex numbers. In fact, using the so called "Cayley-Dickson construction", 

it is possible to define such an algebra in any dimension which is a power of 

two. 

In a similar style to complex numbers, rational quaternions, which are 

hypercomplex numbers, can be written {) = a+bi+cj+dk where a, b, c, d E Q. 

To ease notation let us define the vector: J-l = (1, i,j, k) and it is now clear 

that {) = (a, b, c, d) . J-l where· denotes the inner or 'dot' product. We denote 

rational quaternions by IHI(Q). A quaternion with real part 0 is called a pure 

quaternion and the set of such rational quaternions is denoted IHI(Q)o. 

Quaternion addition is simply the componentwise addition of elements 

as in complex numbers, i.e., 

It is well known that quaternion multiplication is not commutative. Mul-
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tiplication is completely defined by the equations 

i2 = j2 = k2 = -1, 

ij = k = -ji, 
jk = i = -kj, 

ki =j = -ik 

23 

Thus for two quaternions '!9 1 = (aI, b1, C1, d1)/L and '!92 = (a2' b2, C2, d2)/L, 

we can define their product as: 

'!9 1'!92 = (a1 a2 - b1b2 - C1 C2 - d1d2) + (a 1b2 + b1a2 + C1d2 - d1C2)i 

+(a1 c2 - b1d2 + C1 a2 + d1b2)j + (a 1d2 + b1C2 - C1b2 + d1a2)k 

which can be verified by laborious multiplication using the above equations. 

In a similar way to complex numbers, we define the conjugate of '!9 = 

(a, b, c, d) . /L by "J = (a, -b, -c, -d) . /L. We can now define a norm on 

the quaternions by 11'!911 = ffl = J a2 + b2 + c2 + d2. The inverse of a 

quaternion is given by: 
-1 "J 

'!9 = 11'!9112 

since we see that 
-1 '!9"J 11'!9112 

'!9'!9 = 11'!9112 = 11'!9112 = 1 

Any non zero quaternion has a multiplicative (and obviously an additive) 

inverse [38J. Note also that '!9 I = (1,0,0, O)/L E lHI(Q) is the multiplicative 

identity quaternion which is clear from the multiplication shown above. The 

other properties of being a division ring can be easily checked. 

A unit quaternion has norm 1 and corresponds to a rotation in three

dimensional space. Given a unit vector r = (r1' r2, T3) and a rotation angle 

° ~ (J < 211", we would like to find a quaternion transformation to represent 

a rotation of (J radians of a point pi = (x, y, z) E Q3 about the r axis. To 

facilitate this, we require an encoding of pi as a pure quaternion P, namely 

p = (O,x, y, z) ./L E lHI(Q)o. 

Let us define a function 'I/lq : lHI(Q) I-t lHI(Q) by 'I/lq(P) = qPq-1 q, P E 

lHl(Q) and Ilqll = 1. If q is correctly chosen to represent a rotation of (J about 
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a unit axis r, then this function will return a pure quaternion of the form 

(O,x',y',z')·11 where (x',y',z') E Q3 is the correctly rotated point. 

It is well known (see, for example, [38]) that: 

represents a rotation of angle () about the r axis. Therefore using 1/JiJ(P) as 

just described rotates P as required. This will be used in the next section. 

All possible unit quaternions correspond to points on the three-sphere. 

Any pair of unit quaternions p, q represent a four-dimensional rotation. 

Given a point x E lHI(Q), we define a rotation of x, by pxq [53]. Also we use 

the notation 8U2 to denote the special unitary group (the set of all 2 x 2 

unitary unimodular matrices), the double cover of 803 which is the special 

orthogonal group (the set of all 3 x 3 orthogonal unimodular matrices). 

2.2 Connections between Words and Matrices 

There is a strong connection between word problems and matrix prob

lems. In this section we shall emphasise this connection and show several 

monomorphisms between words or set of words and low dimensional ma

trices. Obviously, since the complex numbers are commutative, we cannot 

hope to store a word within a single complex number when using standard 

multiplication for concatenation, however we shall show that words can be 

stored in 2-dimensional matrices even over the integers. 

We shall only be considering binary words in this section and most of 

the thesis, since we can usually use a simple homomorphism from arbitrary 

alphabets to binary alphabets. For example, given two alphabets, r = 

{Xl, X2,··· xd and E = {a, b}, we may define the homomorphism 1/J : r* t-t 
E* by 1/J(Xi) = aib for example. This is an injective homomorphism (thus a 

monomorphism) and can usually be used to reduce problems over arbitrary 

alphabets to problems on binary alphabets. 
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We shall give examples of both free semigroups and free groups (where 

we require the presence of inverse letters also). These morphisms will be 

used in several places throughout this thesis and all but ( below are well 

known from the literature. We arrived at the freeness of ( through studying 

quaternions, see Chapter 5. 

2.2.1 Semigroup Monomorphisms 

Given a binary alphabet ~ = {a, b}, let 1'1 : ~* 14 Z2x2 be defined by: 

,I (a) = (~ :), ,I (b) = (: ~) 
then 1'1 is a monomorphism. 

Next we shall give a pair of monomorphisms which will be useful in 

Section 4.4. Let p, r : ~* 14 Z2x2 be monomorphisms defined as: 

pia) = (~ :), p(b) = (~ :) ria) = (~ ~), rib) = (~ ~). 
The interesting properties of p and r are that they are both integral and 

upper triangular. Furthermore, since element [2,2] of P(W1) and element 

[1,IJ of r(w2) are equal to 1 for any WI, W2 E ~*, when we form the direct 

product p(wI)EBr(w2), we can join this element together and map into N3x3 

(which will also be upper triangular) rather than N4x4. See Section 4.4 for 

further details. 

2.2.2 Group Monomorphisms 

Given a binary alphabet with its inverses ~ = {a, b, (1, b} forming a group 

(E, .). Let). : E* 14 N2x2 be defined by: 

A(a)=(~ :),A(b)=C ~)'A(")=(~ ~2)'A(b)=(~2~) 
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It is well known from the literature that>. is an injective homomorphism, 

i.e., the group generated by {>.(a), >'(b), >.(a), >.(b)} is free. 

In Chapter 5 we shall deal with computational problems on rational 

quaternions. The theorems developed there allow us to define a mapping 
2x2 ( : E* I---t C(Q) where: 

((a) ~ ( 
3 + 4, 

~~~i ). ((b) ~ ( 
3 4 ). 5 51 5 5 

0 4 3 
-5 5 

(' 4· 

':'i ). ((b) ~ ( 
3 4 ) ((a) = 5 ~ 51 5 -5 
4 3 

5 5 5 5 

We prove that ( is an injective homomorphism in Section 5.2.1 and thus the 

group generated by {((a), ((b), ((a), ((b)} is free. Note that these matrices 

are unitary. 

2.3 Computational Problems in Matrix Semigroups 

We shall primarily be dealing with computational problems on matrix semi

groups. There are a general set of problems which we can consider on such 

structures which we shall now outline. 

Problem 2.2. MEMBERSHIP PROBLEM - Given a semigroup .Y genemted 

by a finite set ~, and some single element X. Is it true that X E .Y? 

We ask these computational problems for a class of instances rather than 

a single specific instance. For example, we might ask "Given a generator of 

10 integral matrices of dimension 4 generating a semigroup .Y, does there 

exist an algorithm to determine if X E .Y where X E Z4X4?". We wish to 

either find a single algorithm which can take any instance of this class and 

return the answer "true" or "false" after some finite amount of time or else 

we wish to prove that no such algorithm exists. 
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Problem 2.3. VECTOR REACH ABILITY PROBLEM - Given a semigroup 

of matrices Y, generated by a finite set f# c lFnxn and two column vectors 

x, y E lFn. Does there exist some matrix M E Y such that M x = y? 

It should be clear that in the vector reach ability problem the matrix M 

is not unique. For example, we see that: 

Problem 2.4. SCALAR REACH ABILITY PROBLEM - Given a semigroup 

of matrices Y, generated by a finite set f# c lFnxn two column vectors 

x, y E lFn and a scalar r E IF. Does there exist some matrix M E Y such 

that xTMy = r? 

Again, it is clear that M is not unique in the scalar reachability problem. 

Problem 2.5. SEMIGROUP FREENESS PROBLEM - Given a finite set of 

matrices f# generating a semigroup Y, does every element M E Y have 

a single, unique factorisation over f# ? 

As an example of the SEMIGROUP FREENESS PROBLEM, imagine we 

have a set of two matrices f§ = {A, B} generating a semigroup Y. Consider 

the binary tree of products of f§ in Figure 2.l. 

If for example the two elements marked, AAB and BBA, are equal then 

the matrix they are equal to does not have a unique factorisation over f#. If 

every matrix in the infinite binary tree is unique, then the semigroup is free. 

We study the freeness of quaternion matrix semigroups in Theorem 5.8 of 

Section 5.3. 
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Figure 2.1: Binary Tree of Two Matrices 

Problem 2.6. VECTOR AMBIGUITY PROBLEM - Given a semigroup 

Y <;:;; IFnxn and an initial vector u E IFnxn. Let V be a set of vectors 

such that V = {v : v = Mu; M E S}. Does Y and u genemte an am

biguous set of vectors? In other words the question is whether for every 

vector of set V there is a unique matrix M E Y such that M u = v? 

This problem can be thought of as the freeness problem for a set of 

vectors formed by multiplication of each matrix is a finitely generated semi

group. We show that this problem is undecidable in Theorem 4.12 of Sec

tion 4.2. 

Throughout this thesis we shall study these and related decision prob

lems on algebraic structures. Our main aim is to explore the boundaries of 

decidability for the problems. This means we would either like to present an 

algorithm to solve the problems or to prove that no algorithm exists which 

will always halt and give the correct answer to the decision problem. In the 

next chapter we shall therefore begin the discussion of undecidability for 

word problems by embedding computational models. This will allow us in 

later chapters to encode such problems within matrix semigroups. 



Chapter 3 

Decision Problems for Words 

In this chapter we shall begin exploring computability theory and introduce 

the fundamental mathematical concept of undecidability which will feature 

heavily throughout this thesis. The problems we shall encounter will be 

defined on words. Since we showed the strong correspondence between word 

problems and matrix problems in the last chapter, we will then be able 

to interpret the undecidable problems of this chapter in terms of matrix 

problems in later results. 

One of the central problems that we will utilise several times called Post's 

correspondence problem will be shown and proven to be undecidable via the 

standard encoding of a Thring machine within it such that the instance has 

a solution if and only if the corresponding Thring machine halts. This may 

be familiar and a standard result, however we give a simple proof of the 

theorem in Section 3.3.2, both for completeness and also since the details of 

the proof itself will be required for a later result. 

Two models of computation will be shown, namely "Thring machines" 

and "Two-counter Minsky machines". The concept of a universal machine 

will be introduced and will playa role in a later theorem. 

29 
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3.1 Algorithmic Undecidability 

A decision problem takes an instance of a problem in some representation, 

performs a calculation on the instance data using a computational device 

(such as a Thring machine [49]) and returns the answer "true" or "false". 

Given a class of instances of a decision problem, then the problem is 

said to be decidable for that class if there exists an algorithm A that 'halts' 

after some finite amount of time on every input of the class and returns the 

correct "true" or "false" answer to the decision problem. 

If, for some decision problem, we can show that no such algorithm ex

ists, the problem is said to be undecidable. The natural question then is 

"how do we prove that no such algorithm can exist for a particular class of 

problems?" . 

Alan Thring, building upon previous work by Kurt Godel, famously 

proved that the halting problem is undecidable. He then reduced this to the 

"Entscheidungsproblem" (German for "decision problem") posed by David 

Hilbert. The idea of algorithmic reduction is a key step in showing unde

cidability and we shall give an informal description of the method (see [49] 

for more details). 

Given two problems A and B, a reduction is a way of converting problem 

A to problem B such that a solution to problem B gives a solution to problem 

A. We say A is reducible to problem B. Thus, intrinsically problem B is at 

least as hard as problem A. If we know that problem A is "hard" in some 

formal sense, then so is problem B. 

We shall show an intuitive example of this. Imagine we have a problem 

"FACTOR" which takes a natural number and returns its full factorisation. 

We also have a second problem "PRIME" which takes a natural number and 

returns "true" or "false" (it is a decision problem) depending whether the 

number is a prime. Obviously "PRIME" is reducible to "FACTOR" since if 

we can factor a number then it is prime iff the number itself and 1 are its 

factors. 
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We shall heavily utilise a well known undecidable problem known as 

Post's correspondence problem (pcP). By reducing this problem to other 

problems we consider, we can show that they are also undecidable. In fact, 

Post's correspondence problem is a reduction from the halting problem dis

cussed above but clearly reduction is transitive. 

3.2 Post's Correspondence Problem (PCP) and 

Variants 

We shall use Post's correspondence problem several times throughout this 

thesis and therefore we shall give two equivalent definitions of the problem. 

Sometimes one definition may be easier to visualise than the other or may 

give a simpler proof but it is clear that the two formulations are essentially 

the same. 

Problem 3.1. PCP Version 1 - Given a binary alphabet E 

and a finite set of pairs of words: 

{a, b} 

Does there exist a finite sequence s = (S1' S2, " . ,Sk) of indices such that 

U U ···U -v v "·V ? 81 82 8k - 8) 82 8k' 

and the equivalent formulation of the problem: 

Problem 3.2. PCP Version 2 - Given a finite alphabet r, a binary 

alphabet E and two homomorphisms h, 9 : r* f--t E*. Does there exist any 

word wE r+ such that hew) = g(w)? 

Once again we state that Problems 3.1 and 3.2 are equivalent as can 

easily be seen. The instance size of Post's correspondence problem (pcP) 
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is the number of pairs of words n in Problem 3.1 or the cardinality of r in 

Problem 3.2. These two values are also equivalent in each problem regardless 

of which definition of the problem we use. 

Post's correspondence problem was shown to be undecidable in 1946 by 

Emil Post [46]. In fact it is undecidable even when If! = 7 as was shown 

in [43] and it is known to be decidable when WI = 2 [22]. The decidability 

status when 3 ~ WI ~ 6 are currently open problems. We denote by npcp 

the minimum instance size of pCP which is known to be undecidable, thus 

npcp currently equals 7. We show a standard proof of the undecidability of 

pCP in Section 3.3.2 after we have introduced the mathematical model of a 

Turing machine. 

An example of Post's correspondence problem - Given the set of 

pairs of words P = {PI. P2, P3 } such that: 

[(Lab] [oa] [ao] PI = ~ , P2 = -;;: , P3 = bbaabb ' 

where we have placed the first word on top and the second word on the 

bottom to make the example clearer. Now take the sequence PIP2P3P2 

which gives: 

[aab] [ba] [~] [ba] . 
a a bbaabb a 

Reading the top and bottom words we see that they are equal thus this is a 

correct solution to pCP. 

3.2.1 Claus Instances of PCP 

We shall now describe a variation of Post's correspondence problem (pcP) 

which allows us to use a smaller instance size in several problems. We 

shall state the theorem without proof and refer the interested reader to the 

original recent paper [28]. The authors of that paper name such instances 

of pCP as Claus Instances of pCP after the author of a paper (V. Claus) who 

shows how to encode a semi-Thue system within PCP instances of small size 
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[20]. This result was later used by Y. Matiyasevich and G. Senizergues to 

show that pcp(7) is undecidable. 

Problem 3.3. CLAUS INSTANCES PCP: Given a finite set of letters 

r = {Xl,X2, .. ·,Xn }, a binary alphabet E = {a,b}, and a pair of ho

momorphisms h, 9 : r* ~ E*. Does there exist a solution Xl wXn where 

wE {X2,X3, ... ,xn-d·? I.e. does h(XIWXn ) = g(XIWXn )? 

Note that this means the first and last letters, Xl and Xn respectively, are 

used just once and their positions within the solution are known in advance. 

The following result was studied in [28] and originally shown in the works 

of [20] and [43]: 

Theorem 3.4. (20, 28, 43] Problem 3.3, CLAUS INSTANCES PCP is unde

cidable with 7 letters in the domain, i. e., WI = 7. 

In fact, even Post's original proof of the undecidability of pCP used a 

similar formulation whereby we fix the first and last letters of the domain 

which are used just once in (respectively) the first and last positions of the 

solution. It is often possible to use this problem instead of the usual version 

of pCP in order to derive lower dimensions of undecidability in many cases. 

Indeed, we use this theorem several times throughout this thesis. Actually, 

by studying the proof of [43] where the authors prove pCP is undecidable 

with just 7 words, the authors encode a semi-Thue system exactly in the 

above way. Thus whenever we use the result of [43] we are in fact using 

these "Claus instances" already. 

3.2.2 Index Coding PCP 

A new coding technique for Post's correspondence problem (pcP) which we 

call INDEX CODING PCP will be of use several times throughout this thesis. 

We developed this coding in order to show the scalar matrix membership 
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is undecidable in matrix scmigroups. It appears to be of separate interest 

however since it has been useful in other contexts [10] and was recently 

studied by V. Halava, T. Harju and M. Hirvensalo [28]. 

Problem 3.5. INDEX CODING PCP: Given a binary alphabet ~ = 

{a, b}, inverse alphabet ~ = {a, b} and a finite set of pairs of words: 

Does there exist a finite sequence s = (S1, S2,' .. ,Sk) such that exactly one 

Sj = n and US) U S2 ••• U Sk = V S ) V S2 ••• V Sk = c:? 

Theorem 3.6. The INDEX CODING PCP (Problem 3.5) is undecidable. 

We shall utilise this theorem several times throughout this thesis. By 

examining and proving the result purely in terms of words, we can later use 

the proof in matrix problems with reasonably straight-forward encodings. 

We use a similar style to that of [28] by proving the result in terms of words 

rather than just matrices, but we do not use Claus instances and thus the 

number of matrices in the generator will be somewhat larger than required. 

See [28] for details. 

Proof. We shall first give an outline of the proof followed by the detailed 

explanation. The proof is somewhat technical in nature but not difficult 

to follow once the general idea is understood. Given a standard version of 

PCP, we try to find a sequence S = (SI' S2,···, Sk) such that US) U S2 ••• U Sk = 

VS) V
S2 

••• V Sk but without using inverse alphabet ~. If we invert the second 

word, we see that: 

This means we only need store one word rather than two, and if some non

empty sequence equals c, we have a solution to the pCP. However, we need 
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to ensure that the sequence of indices is also in the correct order and for 

this we require the second word. With the encoding we outline below, the 

first and second word will both equal c in the case that we have a correct 

solution to PCP. 

We can think of the indices as being a stack, we push on each index of 

the u word we use and then pop each once we start using v words. Using 

our encoding, if there is ever an "error" (the sequence is not in the correct 

order), then the word produced cannot ever equal c after that. We shall 

now give the details of the proof. 

Given an instance of Post's correspondence problem (pcP), i.e., a finite 

set {(Uj,Vj) : 1 ~ j ~ n} C l;* x l;* where l; is a binary alphabet. Define 

the set of pairs of words P by: 

We use the mixed modification PCP where the first pair used is fixed, see 

Section 3.3.2. For a technical reason, we also append * to the beginning of 

U1 in the instance (which is then mapped into a unique binary sequence as 

explained in the proof). We then put * under this same binary encoding 

into the first element of the final pair of words (*, b). The reason for this 

will become apparent later. 

Let m = IPI = 2n + 2 and assume there exists some sequence s = 

(so, S1," ., Sk) with each 1 ~ Si ~ m, exactly one Sj = m and PSOPS1 ••• P Sk = 

(c, c) using pairwise concatenation. Let us consider the form the second word 

must take. 

Take the set of second words from pairs in P, i.e., S = {aib, aib, b, b : 1 ~ 

i ~ (n - I)}. We shall prove that for all words W E S+ such that W = c and 

w uses the final word (b) exactly once, w is a conjugate of the form: 

Let us assume for now that both band b are used only once in the second 

word. 
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Clearly w equals f so we must only prove that any word w E S+ con

taining exactly one b and (b) equalling f is of the given form. 

Notice first that no product from A = {aib, o;ilj : 1 ~ i ~ n} equals the 

identity element. Thus if band b are consecutive then the product contains 

no element from A if it equals c. Since the first words corresponding to b 

and b are not inverse by the construction of the pCP, we can discount this 

situation since the first word would not equal c and we thus require that 

at least one aib and aib type word from S is used. Assume then that the 

product does contain elements from A and thus band b are not consecutive. 

Assume we have a product containing exactly one band b in the second 

word which equals c. Clearly then we can write the product in the form: 

by cyclically permuting the product (since it equals identity). If Xn = aib for 

some i, then we have xnb = aibb. No element of A can left or right multiply 

to reduce this product and we cannot right multiply by the remaining b since 

band b would then be consecutive. Thus Xn = aib for some i. This gives 

the product xnb = ai . Now consider Yl; if it equals aj b for some j, then we 

get xnbyl = ai+ib. Since b has been used however, we cannot reduce this 

further by right multiplications, thus Yl = aib for some j. 

Assume that i -:f j, then XnbYl equals either ai-ib if i > j or ai-ib if 

j > i. The only way these can be reduced is to right multiply by b giving 

ai- i or a;i-i with both band b now used. But now we must right multiply 

by ai-ib or ai-ib respectively leaving a single b or b. But since we only have 

one such element, it cannot reduce the product to c; thus i = j. 

Finally then we see that Xn = aib and Yl = aib for some i. This gives the 

central product XnbYl = b. We can continue this argument inductively and 

see that the product must be a conjugate of the form given on the previous 

page (t). 

This therefore fixes the form of the second word in a sequence where 

both words equal c. Now we shall observe the form of the first word when 
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the second word is of the form (t). It clearly must be: 

From the mixed modification PCP we used, the first pair of words is fixed, 

thus i l = 1. Clearly then, this product equals £ if and only if Uil Ui2 ... Ui t = 
Vii Vi2 ... Vit if and only if the mixed modification pCP instance has a solution. 

Thus the problem is undecidable as required. 0 

In our proof we required that the last two pairs of words were use only 

once instead of only the last pair, however it was proven in [28J that using a 

different encoding and Claus instances of PCP, we can in fact fix that only 

one pair of words must be used once and also reduce the number of pairs of 

words required. 

Corollary 3.7. {28J The INDEX CODING PCP is undecidable for 2nCLAUS 

pairs of words were one specific pair is used only once in any product. 

We shall now give an example of INDEX CODING PCP to show how an 

instance of the standard PCP can be adapted to fit into this problem using 

the ideas present in the previous proof. 

An example of Index Coding PCP - We will use the same initial 

instance of pCP from the previous example and extend the instance set using 

the instructions of Theorem 3.6. Let us define: 

L1 = [*(Wb] L _ [ba] L _ [ ab ] [E:] -- , 2- - , 3- -- M= -
ab aab aaab b ' 

RI = [~] , R2 = [ Ii _] , R3 = [bbaa~l)] N = [~] , 
lib aab aaab b 

where according to the construction, Ul, U2, U3 are stored in the first word 

of Ll,L2,L3 and Vl,V2,V3 are stored in the first words of Rl,R2,R3 re

spectively. Thus since as in the previous example a correct solution was 

PIP2P:~P2' a correct solution in this example is LIL2L3L2M R2R3R2RIN. 
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Note that. as required, N is used once. The first word of this product is 

given by: 

as we expect. The second word in this product can be seen to be: 

ab aab aaab aab b aab aaab aab ab b = c, 

again as expected. Thus if we have such a solution, the top and bottom 

words will equal c and correspond to it (so long as a specific element N is 

used once in the solution). 

3.2.3 Fixed Element PCP 

We shall now detail another variant of Post's correspondence problem (pcP) 

which shall later be useful. It is similar to the INDEX CODING PCP but 

with some interesting differences which allow us to directly show the un

decidability of determining if there exists any diagonal matrix in a com

plex matrix semigroup. The proof is also somewhat simpler than that of 

INDEX CODING PCP since we avoid conjugates. 

Problem 3.8. FIXED ELEMENT PCP - Given an alphabet r = 

{a, b, a, b, *} and a finite set of pairs of words over r, 

Does there exist a finite sequence of indices s = (S1, S2, .. . , Sk) such that 

This variant of pCP is interesting since it looks similar to the original 

pCP however it is over a binary group alphabet and instead of testing for 

a solution via equality checking for two arbitrary words, the solutions will 

have a specific form for a fixed letter *. This is useful since we know the 

specific form of a solution. 
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Theorem 3.9. The FIXED ELEMENT PCP is undecidable. 

Proof. Given a binary alphabet ~ = {a, b}, let us define a new alphabet, 

r= ~u{a,b.*}, where*,~~. 
The instance set of FIXED ELEMENT PCP will now be defined. Given 

a standard instance of pCP: 

we define the two sets: 

L = {(*u1,*bab),(ui,a i b)} C r* x r* ;2::; i::; m (3.1) 

R = {(vi,aib), (vm,bamb)} c r* x r* ; 1::; i::; m -1 (3.2) 

Since we are looking for a product of pairs of words equal to (*, *) and 

* -1 ~ r, then the first pair L1 = (*U1, *bab) must occur exactly once. Let 

us therefore define any such product (if it exists) as: 

It can be seen that Xl = L1, otherwise if Xj = L1 for some j > 1, then: 

((L U R) \ {Lt}) ;2 X1 X2'" Xj-1 = (c, c), 

but this is impossible since clearly c ~ ({bamb, aib, aib : 1 < i < m}), 

therefore the second word cannot equal c. Thus we must have: 

Let us consider the second words, in order to determine the sequence 

they must take to give *. We have the set of elements: 

A { b b -b-m-b 2b mb - -b -i-b} = *a, a ,a , ... a ,a, ... ,a . 

We know the first element is *bab which is used only once. We must find 

the form of any product equal to *. 
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Clearly. (*bab)(ba:b) = * is one such solution but since the first words 

will not be equal (unless we have a trivial PCP solution), we discount such 

a situation. Since (*bab) is the first element used, assume that the next 

element is from R. i.e., of the form aib for some 1 < i < m - 1. But this 

gives (*bab)(a:ib) and this cannot be reduced by further right multiplications 

since clearly from the set A, there is not any product of elements with a 'b' 

on the left hand side (even when using products of elements). 

Thus, the second element must be of the form aib for 2 ~ i ~ m. Let 

j + 1 be the first index at which we do not have an element from L, thus 

the product X 1X 2 ··· Xj is of the form: (*bab)(ai2 b)(ai3 b) ... (aijb) where 

2 ~ i2, i3," . , i j ~ m. To reduce this product, the next element must be 

bamb since this is the only element with a 'b' on the left. The product of 

(aijb)(bamb) is am-ijb. Ifm =1= ij then this will not reduce to 'b' and similarly 

to before, we cannot reduce this product any further since the right hand 

element is b. Thus i j = m. 

The next element to the right cannot be bam'b since this will have a'b on 

the right hand side which cannot be cancelled, thus using the same argument 

as before, it must be of the form a:kb giving: 

which cancels again to give b iff k = ij-l. This continues inductively for 

each pair of elements from the centre outwards and we see that we finally 

reach * if and only if the product is of the form: 

L 1L· L· · .. L R .. ·R· D. Rl II 12 m m t2~LtI 

The first word corresponding to this is a correctly encoded PCP sequence 

which equals * iff it corresponds to a correct solution word completing the 

proof. 

Recall that the original pCP can be encoded into words over just two 

letters. In a similar way we may encode ~' into two letters {a, b} together 
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with inverses {a:, b} and a special symbol * and thus we get the result of the 

theorem. 

In fact. we could map all letters into just the set {a, b, a:, b} by using a 

homomorphism such that * is not contained in the image of the morphism. 

For example, given the set r = {a, b, a, b, *} we map each element via an 

injective homomorphism, : r 1-+ {a, b, a, b} defined as: 

This idea will be useful later in Theorem 4.1.3. D 

3.3 Word Embeddings of Computational Models 

The undecidability results for matrix semigroups we shall show will in gen

eral use a reduction from Post's correspondence problem (pcP) which sim

ulates a Turing machine and thus deciding whether it has a solution is an 

undecidable problem. In this section we will show other direct embeddings 

of classical computational models such as Turing machines and two-counter 

automata into matrix semigroups. The simulation is done via pairs of words 

as in PCP, but in such a way that the termination of the computation is not 

always required for analysis, which is similar to the idea of infinite PCP. 

We shall convert these word problems into matrix problems in Sec

tion 4.3. We shall then show that the proposed simulations can be used 

as a new tool for the analysis of matrix semigroup structures. In particu

lar, we reformulate several undecidable questions for the above models into 

matrix semigroup problems. This is a different approach from standard un

decidability results which may have far-reaching consequences and may help 

with some open problems that are difficult to explore by reduction directly 

from the undecidability of Post's Correspondence Problem. 

3.3.1 Computational Models 

Turing Machines - Let M = (Q, E, r, 6, qQ, qacccpt, qrejcct) be a Turing ma-
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chine, where Q is the finite set of states, I: is the input alphabet, r is the 

tape alphabet qo is the initial state, qacccpt is the accepting state, qrcjcct is the 

rejecting state and f> is the transition function. An instantaneous descrip

tion of the Turing machine is given by 8182 ... 8m} qit1t2 ... tm2 where each 

8j, tj E rand qi E Q. This means that M is in state qi and 8182 ... 8mj are 

the symbols to the left of the tape head and t1t2 ... tm2 is to the right of the 

tape head (or the words may be empty). 

The transition function f> defines the next rule to apply depending which 

state we are in and the next symbol read to the right of the tape head. The 

rule can change the current state, write a new symbol to the right of the 

tape head and then move left or right one step. If L denotes a left move and 

R denotes a right move, then f> : Q x r ~ Q x r x {L, R} is the transition 

function. For example, let f>(qi' a) = (qj, b, R). This means, if we are in 

state qi with symbol 'a' to the right, then we move to state qj, change the 

'a' to a 'b' and move the tape head to the right. In terms of instantaneous 

d ., thO " "'11 t" b " d 1< C escnptlOns, 1S means ... qia. .. W1 map 0 .•. qj... un er U lor 

example. 

Two-Counter Register Machine - In this section we describe a well 

known model known as a Minsky machine (or register machine). Informally 

speaking, a Minsky machine is a two-counter automata that can increment 

and decrement counters by one and test them for zero. It is known that a 

two-counter Minsky machine represents a universal model of computation 

[44]. Being of very simple structure, Minsky machines are very useful for 

proving undecidability results (see for example [36, 37, 40]). 

It is convenient to represent a counter machine as a simple imperative 

program M consisting of a sequence of instructions labelled by natural num

bers from 1 to some L E Z+. Any instruction is one of the following forms: 

I: ADD 1 to Ski GOTO I'; 

I: IF Sk =F 0 THEN SUBTRACT 1 FROM Ski GOTO I'; 
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ELSE GOTO i"; 

i: STOP; 

where k E {1,2} and i, i', [" E {I, ... ,L}. 

The machine M starts executing with some initial non-negative integer 

values in counters 51 and 52 and the control at instruction labelled 1. We 

assume the semantics of all above instructions and of entire program is clear. 

Without loss of generality one can suppose that every machine contains 

exactly one instruction of the form 1: STOP which is the last one (l = L). 

It should be clear that the execution process (run) is deterministic and has 

no failure. Any such process is either finished by the execution of L: STOP 

instruction or lasts forever. 

As a consequence of the universality of such computational model the 

halting problem for Minsky machines is undecidable: 

Theorem 3.10 ([44]). It is undecidable whether a two-counter Minsky ma

chine halts when both counters initially contain O. 

3.3.2 Simulation of Computational Models 

Turing Machine Simulation - We shall illustrate the simple encoding of 

a 'lUring machine by a set of pairs of words as is standard in the proof of 

Post's correspondence problem [49]. 

Given a 'lUring machine M, our aim is to produce a set of pairs of words 

p = {( U I , VI)' (U2' V2), ... , ( Un, Vn )} such that there exists a finite sequence 

of indices 5 = (iI, i2, ... ,ik) with each 1 $ i j $ n where Uil uh ... Uik = 

vit Vi2 ... Vik iff AI halts on input v which is encoded in VI. The sequence 5 

we shall call a solution and corresponds to a halting configuration of M. 

We may assume without loss of generality that M doesn't attempt to 

move its tape head to the left of an empty word which is an easy restriction to 

impose. F\lrthermore, we currently assume the first pair used for a solution 

is (111, VI) and we remove this restriction later. 
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We shall now show a set of pairs of words simulating the Turing machine 

M. L<>t U' = 11'1 W2 ... wf c E* be the input word. Then define the pair 

(UI, vd = (#, #QOWl 102 ... wf#) E P. This is the initial configuration of 

M. Now, for every a, b E r and every qi, qj E Q, with qi i qreject, if 

c5(qj, a) = (qj. b. R). add pair (qja, bqj) to the set P. 

Also, for every a, b, c E r and every qj, qj E Q with qi i qrejcct, if c5(qj, a) = 

(qj,b,L). add pair (cqja,qjcb) to set P. Now, for every a E r, add (a,a) to P. 

Also add (#, #) to P which is used to separate instantaneous descriptions 

and for all a E r, add (aqacccPt' qacccpt), (qacccpt a, qaccept). 

We can now see that the given construction will have a solution iff 

the 'lUring machine M halts on input w. We must start with the first 

pair (Ul' vd = (#, #qOwIW2'" wf#) as stated previously. The next pair 

(Ui2' Vi2) in a solution must have Ui2 = qOWl and thus Vi2 will be the 

corresponding pair from the transition function. We must then use pair 

( Ui3 , Vi4) = (W2' W2) and this continues for the rest of w until we must use 

pair (#, #). At this point we may have the following pairs: 

for example. As can be seen, the first word contains the first instantaneous 

description qow and the second contains the first description qow followed 

by c5 applied to the first configuration. After the next iteration of applying 

these pairs of words, the second configuration will be concatenated to the 

first pair and the third configuration will be appended to the second pair. 

This continues until we reach a state with qaccept at which point we use the 

pairs (aqacccPt' qacccpt), (qaccepta, qacccpt) which will increase the size of the first 

word to be equal to the second word which corresponds to a correct solution. 

We can enforce that the first pair used must be (UI' VI) by using a word 

morphism. Let Y = YIY2'" Yn C f* be any word and let '*,1>' be new letters 
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not in r. Then define the three functions: 

*y = *Yl * Y2 ... * Yn 

y* = Y 1 * Y2 * ... Yn * 
*y* = *Yl * Y2 * ... * Yn * 

We finally add (lIn,Vn ) = (*1>,1» to set P. Now, for each element of 

p = {( Uj , Vi) 11 s: i s: n} C (Q u r u { *, I> } ) * x (Q u r u { *, I> } ) *, we apply one 

of the three above * functions to each word pair. Let (Ul' vd = (*Ul, *Vl *), 

(Uj, Vj) = (*Uj. Vj*) for each 2 s: j s: (n - 1) and (un, vn) = (*1>,1» is left as 

before. Clearly if a match occurs in P it must start with this new (UI' VI) 

since only the first two letters in these two words are equal. Examining the 

morphism allows us to conclude it must then proceed as before using the 

new pairs (Uj, Vi) with 2 s: i s: n and finally finish with the pair (un, vn ), see 

[49] for further details. 

Two-Counter Minsky Machine Simulation - Finally we show how 

to simulate a two-counter Minsky machine using a set of pairs of words P. 

We use the definitions of a two counter machine from [33]. We require two 

operations, firstly "from state q, increment counter {I, 2} and move to state 

s". Secondly we require operation "test if counter {1,2} is zero, moving 

to state r if it is, or state t if it is positive". We shall use the symbol 'z' 

throughout to denote a zero counter. 

We start with the initial pair of words (Ul, VI) = (#, #zaiqOaj z#) where 

i denotes the value of the first counter C1 and j denotes the value of the 

second counter C2 · Note that a i is simply i copies of the letter 'a', thus 

a i = aa· .. a. Let us deal with the first type of operation. To move from 

state q to s and increment C 1, we add the pair (q, as) to P. To move 

from state q to s and increment C2, we add the pair (q, sa) to P. But the 

counters could be zero (denoted zqC2 or CIqz) so we also add pairs (zq, zas) 

to increment C I and (q::, saz) to increment C2 . 

For the second operation, we require to move from q to r if C I is zero, so 
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we add pair (zq. zr). To move from q to l' if C2 is zero, we add pair (qz, rz). 

To move from q to t and decrement C1 if not zero, we add pair (aq, t) and 

to move from q to t and decrement C2 if not zero, we add pair (qa, t). 

Finally. we add pairs (a. a). (#, #), (z, z), (aq,,«cpt, qacccpt), (qaccepta , qacccpt) 

and (#c>. c» to P. 

Once more. we use morphism * to ensure pair (u 1, vd E P is used 

first and to avoid trivial pCP solutions and if there exists some sequence 

S = (il.i2.···,id such that the equation UIUil U i2 "'Uik = VIVilVi2 "'Vik 

holds, then it corresponds to a correct halting computation of a two-counter 

machine and it is thus undecidable whether such a sequence Sexists. 

Proposition 3.11. Turing machines and two-counter machines can be sim

ulated by Post's correspondence problem (pcP). 

This is straight-forward from the above descriptions. It is usual to prove 

PCP undecidability by simulating a Turing machine but we have shown it is 

also possible to directly simulate a two-counter Minsky machine. 

3.3.3 Periodicity in Counter Machines 

Counter machines are a particularly nice model of computation since they 

are simple to define whilst retaining universality with just two counters. It 

was proven in [12J that given a counter machine M which mayor may not 

halt, we can construct a second counter machine, called M', such that M' 

never halts and has a periodic configuration if and only if M halts. Since the 

halting problem for arbitrary counter machines is undecidable, this means 

that checking the periodicity of counter machines is also undecidable. 

We shall now give a simpler proof to the above result from [12J: 

Theorem 3.12. Let M' be a counter machine that has no halting con

figumtion. The problem of deciding if M' has a periodic configumtion is 

undecidable. The problem is undecidable even in the case of two-counter 

machines. 
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Figure 3.1: linsky ma hin with k counters 

Proof. Giv nap ific ounter machin M. L t qo be the initial state 

of M and H = {qhl qh2 ... qh t } b th set of halting states. Let R = 

{Rl R2 , .. · Rd b h t of ount rs (or registers) of M. See Figure 3. l. 

Th tran ition rune ion of !II depends upon whether specific registers 

qual z roo Fir tly it an in r ase a r gi t r R;. and move to a new state. 

Secondly if a p ifi r gi r R;. is non-zero it an d cr ase R;. and then 

th rwi e, if r gi t r Ri is qual to zero, it leaves it 

unchang d and mov 

a et of such rul . 

o a new tat s. Th transition function, 8, will be 

We shall now how how to r ate a n w machin M'. Initially, let M' 

have the ame tat Q as 1 and th am transition function 8. We add a 

new start tate qI and add th tw rul to 8 which mov from qI to state qo 

r gardless of wh th r h fir t r gister Rl quaIs z ro and leaves all registers 

as they ar . 

We d fin all halting H ~ Q to b non-halting tates and add new 

tat s qRll qR2 ... qRk· Th n w tat will bud to zero all counters. 

W add rul which mov u from ach q E H to qRl regardless of whether 

Rl is non-zero and I v 

state qR;, 1 $ i < k w 

unt r at th ir curr nt valu . Then for each 

dd rul which d cre R;. if it is non-zero and 

remain in th urr nt ta . W dd a rul to m v to tat qr i+1 if it does 

qual z r (thu unt rid r m nt d t z r b for going to the next 
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Figure 3.2: P riodic Minsky machine 

state. Finally for state qRk w add a rule to decrease Rk if it is non-zero 

and stay in state qRk or lse move to the initial state qr if it does equal zero 

(note that once we go to qr all counters are equal to 0 and we are back to 

the original configuration). 

Thu , if /VI reach d a halting state with some values in its counters R, 

then M' will instead d cr ment all ounters to zero and restart the compu

tation. learly th only way to get back to qr is via some state in H of M, 

thus the only way M' i P riodic (i .. , the only way it goes to qr and zeros 

all counters) i if 111 halts as required. 

We may note that th r may b som configuration of M which is peri

odic, thus M' will contain an ultimately periodic configuration (though not 

periodic since it till wont go to qr). We an avoid this situation if required 

by a simple construction. Add a n w counter P such that every transition 

from machin 111 incr m nts P and th n does what it would do normally 

(we n d to add n w tat and rul s to do this). Then add a new state qp 

such that qRk now go to qp instead of qT· Then add rules to decrement 

qp to zero as befor and then mov to state qr . The only way to decrement 

count r P i vi a halting tat thu now th only p riodic configuration 

contains ql with all ount r z ro in the p riod . See Figure 3.2. 0 
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Theorem 3.13. Let Af' be a nondeterministic n-counter machine. The 

problem of deciding if AI' has an infinite number of trajectories leading to a 

halting state s final with zero in all counters is undecidable for any n ~ 2. 

Proof. The problem of determining if a counter machine M can reach a 

halting state with zero counters is undecidable. Without loss of generality 

we can also assume that the initial state of M will be visited only once. Let 

us construct a new nondeterministic counter machine M' based on a deter

ministic counter machine AI as follows. First, we add two extra states q!inal 

(which is the only halting state of M') and qcontinue. Then add transitions 

from all halting states of M leading to both qfinal and qcontinue which will 

only be executed if both counters are zero. Secondly, we create copies of all 

transitions from the initial state of M and add them to the automaton as 

outgoing transitions from qcontinue· 

As a result, we have that the initial state of M' (which is the same 

as in M) will be visited only once and a state qfinal with zero counters is 

reachable in M' if and only if machine M can reach a halting state with zero 

counters. On the other hand, if qfinal with zero counters can be reached at 

least once, we can construct an infinite number of traces that will lead to 

qfinal by returning from the halting state of M to qcontinue and repeating 

the same looping trace an unbounded number of times before going to state 

W~. 0 

3.3.4 The Infinite Post Correspondence Problem 

It was shown in [12] that the INFINITE POST CORRESPONDENCE PROBLEM 

is undecidable for 105 pairs of words. This result was later improved to 9 by 

V. Halava and T. Harju [27] by encoding semi-Thue systems and utilising 

Claus's construction for Post's correspondence problem (pcP). The authors 

of [27] also show a related result that determining if a particular PCP instance 

has a solution that is non ultimately periodic is undecidable. 
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Lemma 3.14. (27} If the termination problem is undecidable for n-TUle 

semi- Thue system, then it is undecidable for instances of the PCP size n + 3 

whether or not there exists an infinite solution that is not ultimately periodic. 

We recall that an infinite word is said to be ultimately periodic if it can 

be written in the form w = UV
OO where u, v are non-empty, finite words. 

We shall not give the definition of the termination problem for a semi-Thue 

system, (see [27]), but merely state that it is undecidable for instances of size 

3 as was proven in [43]. Thus Lemma 3.14 is undecidable for PCP instances 

of size 6. 

We shall use our encoding of two-counter Minsky machines into pairs 

of words and thus pCP instances and Theorem 3.12 of [12] to derive a re

sult on a specific set of words (we use the definition of pCP in terms of 

homomorphisms) : 

Theorem 3.15. There exists a class of instances of Post's correspondence 

problem which have a guaranteed single infinite solution and no finite solu

tion where it is undecidable whether the solution is ultimately periodic. 

Proof. We saw a construction in Section 3.3.2 which allowed us to simulate 

an arbitrary two-counter machine by a pair of words as is done in pCP. 

We shall use the idea from Theorem 3.12 in which we start with an initial 

counter machine A1 and create a second counter machine M' such that M' 

does not halt and M' has a periodic configuration if and only if M halts on 

its input in the same way as was originally done in [12]. Since determining 

if the arbitrary counter machine M halts is undecidable, determining if M' 

has a periodic configuration is undecidable as explained in Theorem 3.12. 

It is well known that a k-counter machine can be simulated by a two

counter machine (with an increase to the number of states and instructions). 

Let R I , R 2 , .. . , Rk be the k counters of the machine. We create a new 

machine with two counters GI , G2 such that Gl stores the prime number 

encoding of the previous counters, i.e., 

CI = 2RI3R25R3 ... 7r(k)Rk; Ri EN, 
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where rr(k) is the k'th prime number. We can thus increment register Rj by 

multiplying C l by rr(j), test counter Rj for zero equality by testing if C1 is 

divisible by rr(j) and decrement C1 by performing this division. The second 

counter C2 allows us to achieve these operations whilst retaining the other 

values in counter Cl· 

Therefore, from machine M', we create a third machine M" which has 

only two states using the prime power idea of the previous paragraph. Using 

the construction in Section 3.3.2, and Proposition 3.11, we can simulate 

machine Al" via an instance of pCP which we denote P. However, because 

of the construction of M', we know that it does not halt, thus P has no 

solution. 

The counter machine M' is deterministic and has a guaranteed infinite 

run since it does not halt. Therefore instance P has a single infinite word 

solution. By the conversion from a two-counter machine to a pCP instance 

from Section 3.3.2, there is a single letter 1'1 E r which must be used first 

and then never again. Therefore, the infinite solution to pCP is of the form: 

w' = IlW; 11 E r,w E (r \ bd)oo. 

Since determining if M' is periodic is undecidable, it is also undecidable 

whether W is a periodic word, or equivalently, whether w' is ultimately 

periodic, thus completing the proof. 

Therefore our steps are as follows. Given any two-counter Minsky ma

chine M, we create a second machine M' such that M' does not halt and it 

is periodic if and only if M halts (see Theorem 3.12). Then we create a third 

machine M" which is equivalent to M' but uses only two states. Next we 

convert Mil to a pCP instance with a guaranteed single infinite solution and 

no finite solutions (see Section 3.3.2). This gives us a specific infinite word 

of the form 11 w for each initial counter machine M such that w is periodic 

if and only if M halts. 0 



Chapter 4 

Integral to Complex Matrix 

Semigroups 

In this chapter we shall explore various reach ability problems on semigroups 

of matrices defined over integers, rational numbers and complex rational 

numbers in small dimensions such as those outlined in Section 2.3. In gen

eral, we shall identify which problems are undecidable and attempt to min

imise the number of matrices required in the generator of the semigroup as 

well as the dimension of the matrices used. 

Since the integers are a subset of the rationals which in turn are a sub

set of rational complex numbers, we will also try to prove results on the 

smallest subset possible, i.e., integers before rationals which in turn we try 

to use before complex rationals. When the number system used impacts the 

dimension or number of matrices required however, we may indicate both 

bounds in corollaries. 

We have separated these results on integral, rational and rational com

plex matrix semigroups from that of Chapter 5 which deals with hypercom

plex numbers. There are two main reasons for this. Firstly, number systems 

up to the complex numbers are more 'traditional' to study for computability 

problems and there exists a plethora of results in this area. It may be un-

52 
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clear how the results on quaternions matrices should be compared with the 

current results in the field and thus they are included separately so that we 

can give a better context for their study. Secondly, the quaternions are non

commutative and thus they have a fundamental difference from numbers up 

to the complex rationals which we study here. 

4.1 Membership Problems 

We recall from Section 2.3 the general definition of a membership problem: 

MEMBERSHIP PROBLEM - Given a semigroup Y generated by a finite set 

f§, and some single element X. Is it true that X E Y? 

We shall evaluate the decidability of this problem for a particular scalar 

diagonal matrix and then consider a special case of the membership whereby 

we are only interested in a specific single element of the matrices generated. 

One of the first problems in this area shown to be undecidable was 

THE MORTALITY PROBLEM, which is the membership problem of the zero 

matrix in a finitely generated matrix semigroup. The problem was shown 

to be undecidable for three-dimensional integral matrix semigroups in 1970 

by M. Paterson [45]. It was then shown by V. Halava and T. Harju that the 

problem is in fact undecidable even when the generator contains only eight 

matrices, see [25]. See Chapter 6 for a reduction of SKOLEM'S PROBLEM to 

THE MORTALITY PROBLEM. 

The presence of a zero matrix in a semigroup is important since it means 

any time we multiply by this matrix, all current values are lost; there is no 

way to recover the previous state. This is indeed the case for any singular 

matrix (when the determinant equals 0) since we cannot invert the matrix 

to retrieve the state before applying this matrix. 

Another important matrix is the identity matrix I. Multiplication by 

I leaves the matrix unaffected and the presence of the identity matrix in 
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a semigroup is an important property to determine for many problems, for 

example it tells us whether the semigroup is a monoid and also whether the 

semigroup is a group. 

It is known that for commuting matrix semigroups, membership is de

cidable, see [3J. In fact there exists a polynomial time algorithm to solve the 

membership problem. It was shown in [39J that membership in integral row

monomial matrix semigroups is decidable in any dimension which is one of 

the very few known decidable cases for non-commuting matrix semigroups. 

We shall now consider membership problems for scalar matrices which 

have interesting geometric properties. 

4.1.1 Scalar Matrix Membership Problem 

A rational scalar matrix is a matrix of the form kIn where k E Q and In is 

the n x n identity matrix. It is thus of the form: 

k 0 0 

o k 0 
; kEQ. 

o 0 k 

Geometrically, a scalar matrix will scale a vector to be of a different 

length (the length is multiplied by k) but the direction remains unchanged. 

When multiplied by a matrix a scalar matrix will multiply all elements by k 

while retaining the general properties of the matrix. The determinant will 

clearly be multiplied by kn. 

We are now ready for the main result of this section: 

Theorem 4.1. Given a finite set of integer matrices 'of in dimension 4 

generating a semigroup Y, and a scalar k E IE such that Ikl > 1, it is 

undecidable whether kI4 E Y. 

Proof. In order to prove this result we shall use the INDEX CODING PCP 

(see Section 3.2.2). Given a binary alphabet ~ = {a, b} and inverse alphabet 
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E = {a, b}, an instance of this problem is of the form: 

and we must determine if there exists a finite sequence S = (Sl' S2,· .. , Sk) 

such that exactly one Sj = nand U Si U S2 ••• U Sk = V Si V S2 ••• V Sk = c. We 

shall reduce this problem to the membership problem for a particular k

scalar matrix in a 4 x 4 integral matrix semigroup such that the matrix kI 

is in the semigroup if and only if the instance of INDEX CODING PCP has 

a solution thus proving the undecidability of the membership problem. 
Let us use the injective homomorphism>. : (E U E)* ~ Z2x2 from Sec

tion 2.2.2 defined by: 

Since this is an injective homomorphism, the group ({ >.( a), >.(b), >.(0:), >.(b)}) 

is free. Given the instance P above, for each pair (Ui' Vi) E P, where 1 :::; 

i :::; n, we define a matrix: 

where 02 is the 2 x 2 zero matrix. Note that by the definitions of the 

monomorphisms used, each Xi is unimodular. We must enforce that in the 

INDEX CODING PCP the final pair (un, vn ) is used only once. To encode 

this within the semigroup, we shall multiply the final matrix Xn by a scalar 

k (say k = 2 will do). 

Now, let ,51' be a semigroup generated by {Xl, X 2 , .•. , kXn }. If matrix 

kI4 (the k-scalar matrix) is in ,51', it implies that the matrix kXn is used 

in its product exactly once since all other matrices in the generator are 

unimodular (the determinant is multiplicative). Therefore there exists a 

finite product: 
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where exactly one Xs; = X n. Examining the top left and bottom right 2 x 2 

matrices of this product, since>. is a monomorphism, we see that if such a 

product exists. then: 

again with exactly one Si = n. This is a reduction of INDEX CODING PCP 

to the membership of the matrix kI4 in a matrix semigroup Y. Since 

INDEX CODING PCP is undecidable with 14 pairs of words [28], the mem

bership problem is undecidable for semigroups generated by 14 matrices. D 

We can also extend the generator by a single matrix to gain a more 

general result for different k: 

Corollary 4.2. Given a finite set of rational matrices f;# in dimension 4 

generating a semigroup Y, and any scalar k E Q\ {O, ±1}, it is undecidable 

whether kI4 E Y. 

Proof. In the last step of Theorem 4.1, we multiplied matrix Xn by 2. 

Clearly we could multiply by any k E Q \ {O, ±1} instead and obtain a 

more general result. o 

We might ask about the excluded cases whereby k = 0, ±1 in which our 

construction fails to hold. For k = ° this is simply the mortality problem, 

"Does the zero matrix belong to a finitely generated semigroup?". This was 

shown to be undecidable by M. Paterson, see [45]. 

For the case where k = 1, this is also an important open problem which 

has been studied extensively without avail: 

Open Problem 4.3. IDENTITY MATRIX MEMBERSHIP PROBLEM - Given 

a finitely generated matrix semigroup Y, does the identity matrix I belong 

to Y? 

This seems to be a difficult and long standing open problem whose solu

tion might have many consequences in different settings. Unfortunately our 
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construction above fails to work for the identity matrix. We must ensure 

that one specific pair of words in INDEX CODING PCP is used exactly once 

in a correct sequence. We enforce this by making all matrices unimodular 

except one special matrix Xn whose determinant k is not equal to 0, ±1. 

This allows us to conclude that if we have a matrix product with deter

minant k, it must contain Xn exactly once as required. But by using all 

unimodular matrices we cannot enforce this constraint and we no longer 

reduce the problem correctly to that of membership. 

4.1.2 Zero in Upper Right Corner Problem 

In Section 4.1.1, we showed the undecidability of a particular matrix in a 

matrix semigroup. We shall now consider a slightly different membership 

type problem where we ask if there is any matrix M in the semi group such 

that the top right element is equal to O. 

Problem 4.4. ZERO IN THE UPPER RIGHT CORNER PROBLEM 

(Z UR C)- Given a finite set of n x n integral matrices <;# generating 

a semigroup Y. Does there exist any matrix M E Y such that 

M[l,nJ = O? 

This may seem somewhat artificial at first glance, however the problem 

of whether a zero appears in the upper right corner of a matrix can encode 

Skolem's problem as we show in Chapter 6. Furthermore, the presence 

of a zero in the top left corner was a pivotal point in the proof of the 

undecidability of THE MORTALITY PROBLEM [45]. 

We shall consider the zero in the upper right corner problem where the 

generator contains just two integral matrices. This problem was known to 

be undecidable for dimension 3npcp + 3 (currently 24) in [18] and this was 

improved to 3npcp + 2 (currently 23) in [23]. We shall now prove the problem 

is undecidable even for dimension 2npcp + 4 (currently 18). 
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Theorem 4.5. The ZERO IN THE UPPER RIGHT CORNER PROBLEM is un

decidable for a semigroup generated by two integral matrices of dimension 

2npcp + 4 (currently 18). 

Proof. We have already seen that there exists an injective morphism between 

pairs of words over a binary alphabet ~ = {a, b} and integral matrices 

in Section 2.2. In fact, one such morphism, which was originally used by 

M. Paterson to prove the undecidability of the mortality problem for integral 

matrix semigroups [45], is >..' : ~* X ~* ....... Z3x3 defined by: 

A'(S, t) = 0 31tl O"(t) 
( 

3181 0 O"(S)) 

o 0 1 

for two words s = SlS2··· Sr and t = tlt2··· tj, with Si, ti E ~, where O"(w) 

is the 3-adic representation of the binary word w, i.e., let 1,2 correspond to 

a,b respectively, then 

Iwl 
O"(w) = L wk3lul-k ; Wi E {1,2}. 

k=l 

Now consider the following matrix: 

which is self-inverse since H H = h. We can thus define a similarity trans

form H A'(S, t)H which gives us the alternate (but still injective) morphism: 

( 

3181 31tl - 3181 O"(t) - O"(S) ) 

A(S, t) = HA'(S, t)H = 0 31tl O"(t) 

001 

Notice that S = t iff A(S, t)[1.3] = 0 since the top right element of the 

matrix is the subtraction of the 3-adic representations of s, t. It is therefore 
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easy from this point to obtain the undecidability of ZRlJC for npcp integral 

matrices of dimension 3. However, we would like to obtain the result for a 

semigroup generated by just two matrices. 

Given a PCP instance P = {(Ul' vd, (U2' V2), ... , (un, vn)}, we can apply 

a new encoding technique to embed the n matrices >'(Ui' Vi) for 1 :s; i ::; n 

into a single matrix, B, of size 2n + 1 and use a second matrix T which is a 

permutation matrix to give all possible products of words in the semigroup. 

Let us define: 

31ud 31vd _ 31ud 0 0 O'(Vl) - O'(UI) 

0 31v11 0 0 0'( VI) 

0 0 31U21 31v21 _ 31u21 0'(V2) - a(U2) 
B= 

0 0 31v21 0'( V2) 0 

0 0 0 0 1 

and define the permutation matrix T by: 

0 h 0 0 

12n-3 0 0 0 
T= 

0 0 1 0 

0 0 0 1 

It is clear that B, T E z(2n+l)x(2n+1). Note that applying T to matrix B 

alters the ordering of the pairs of rows but preserves the word mapping itself 

since it is a permutation matrix. We can see that a product containing both 

Band T has a zero in the upper right corner iff there exists a solution to the 

PCP. This follows since the top right element will simply be the subtraction 

of two words 3-adic representations. However, T has a zero upper right 

corner on its own so the required result does not immediately follow. We 

can apply the encoding technique used in [18J so that the case with a power 
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of only T matrices can be avoided. Define: 

° 1 x 1 ° 1 x 1 

° ° ° 1 
B'= T'= ° 1 ° 1 

° ° B z ° ° T z 

° ° ° ° ° ° 
where x = (1,0"" ,O),z = (0,0"" ,If, with x E Zlxk,z E Zkxl and k is 

the dimension of matrix B (and T). It is clear that the sub-matrices B, T 

are multiplied in the same way as before and unaffected by this extension. 

Notice the element [2,2] is ° in B' and 1 in T'. This will be used to avoid 

the pathological case of a matrix product with only T matrices. 

Consider an arbitrary product Q = QI Q2 ... Qm where Qi E {B', T'} 

for 1 :S i :S m. It is easily seen that if m :S 2 then the top right element 

of Q equals 1 for any QI, Q2. Let us thus assume m ~ 3 and write this 

multiplication as Q = QIC'Qm where C' = Q2Q3'" Qm-l, 

C'= 

° * * * 
° A ° * 
° ° C * 

° ° ° 
where * denotes unimportant values, A = {a, I} and C is a submatrix equal 

to some product of B, T matrices. 

Now we compute the top right element of Q. Let r denote the dimension 

of matrix C' (or Q). The first row of QI C' equals (0, A, CI,I, C I,2," . ,C1,k, *) 

where again * is unimportant. Note that this vector contains the top row of 

the C submatrix. We can now easily see that Q[l,rJ = (QIC'Qm)[I,rj equals 

(0, A, Cu, Cl.2, ... ,CU, *). (1,1, zT, of = A + CI,k' It is clear that A = I iff 
C' = (T,)m-2, i.e., C' is a power of only T' matrices. In this case, note that 

(c,m-2)(1.kJ = ° since this is a power of matrix T. Thus Q[l,rJ = 1 + ° = 1 

which is non-zero as required (since this is not a solution). 
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In the second case, A = 0 whenever G' contains a factor B'. Therefore 

Q[1.r] = 0 + C[l.k] = Cp.k] which is exactly the top right element of G as 

required. This equals 0 iff there exists a solution to the pCP instance. 

We must increase the dimension of the matrices by 3 for this encoding 

therefore the problem is undecidable for dimension 2npcp + 1 + 3 = 2npcp + 4 

(currently 18). 

D 

4.1.3 Any Diagonal Matrix Problem 

A related problem to that of Theorem 4.1 (determining whether any element 

of a matrix semigroup is equal to a particular scalar matrix) was given as 

an open problem in [14]: 

Problem 4.6. Given a finite set of matrices C§ genemting a semigroup 

Y. Does there exist any matrix DEY such that D is a diagonal matrix? 

We shall now show that Problem 4.6 is undecidable for mtional complex 

matrix semigroups by using the FIXED ELEMENT PCP. In our proof we 

shall exhibit a semigroup that has no diagonal matrices if the instance of 

pCP has no solution and an infinite number of diagonal matrices (which are 

powers of a specific, known diagonal matrix) if the pCP instance does have 

a solution. 

Theorem 4.7. Given a finitely genemted matrix semigroup .Y ~ C(Q)4X4, 

it is algorithmically undecidable to determine whether there exists any matrix 

DEY such that D is a diagonal matrix. 

Proof. We shall utilise the FIXED ELEMENT PCP, the matrix representa

tion ( of the free group of rational quaternions and some properties of linear 
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algebra. Recall the definition of (: 

thus, «(a), «(b), «(a)-1, «(b)-1 E C(Q)2X2 and they form a free group as 

we shall prove later in Corollary 5.2 (see Section 5.2.1). Recall also that in 

FIXED ELEMENT PCP we have an alphabet over 5 letters, r = {a, b, a, b, *}. 

We shall use a homomorphism, "( : r* I--t C(Q)2X2, to encode these letters 

using elements of (. Specifically, let: 

"((*) I--t «(aaa), "((a) I--t ((aba), "((b) I--t ((bab) 

"((a) I--t ((aba), "((b) I--t ((bab) 

Now, given an instance of FIXED ELEMENT PCP: 

we create the new set of pairs of two-dimensional rational complex matrices: 

Using the mixed product property of Kronecker products that for any 

four matrices A, B, C, DE cjxj: 

(AB (9 CD) = (A ® C)(B (9 D), 

given in Lemma 2.1, we create a final set of four-dimensional rational com

plex matrices: 

From the definition of FIXED ELEMENT PCP, we know that a solution 

8 = (81,82,"" sJ;) gives the equation U S1 U S2 ••• USI< = V S1 V S2 ... V Sk = * 
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for the special symbol *. Now, using our above encoding, we observe that 

,(*) = ((a)3 which is clearly a diagonal matrix. Thus, given a correct 

solution to FIXED ELEMENT PCP, there exists a matrix D E (T) such 

that: 

which is diagonal (since the Kronecker product of two diagonal matrices is 

diagonal). It can be seen that any word which is not a solution will contain 

at least one mat.rix ((b) or ((b) which can be clearly observed by considering 

the definition of the morphism ,. Since these two matrices are not diagonal, 

the Kronecker product will not be diagonal either. 0 

This shows that Problem 4.6 is undecidable for four-dimensional rational 

complex matrix semigroups. We can convert all the matrices to rational 

matrices by using a simple well-known encoding from complex numbers to 

two-dimensional real matrices by defining a function ¢ : C(Q) ~ Q2X2 by: 

( 
R(z) -~(z)) 

¢(z) = ~(z) R(z) ; z E C(Q), 

and dearly we can apply ¢ to each element of the four-dimensional rational 

complex matrices constructed in Theorem 4.7 to map into eight-dimensional 

rational matrices. However a correct solution will now only give a block 

diagonal matrix (of 2 x 2 blocks). Thus the problem remains open in any 

dimension for rational and thus integral matrices. We shall therefore state 

the open problem which is a subcase of that found in [14]: 

Open Problem 4.8. ANY DIAGONAL MATRIX - Given a finite set of in

tegral matrices f§ generating a semigroup Y. Does there exist any matrix 

DEY such that D is a diagonal matrix? I.e. is Problem 4.6 decidable for 

integral matrices? 
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4.2 Vector Reachability Problems 

In this section we shall evaluate the decidability of reachability problems on 

planar points mapped by a semigroup of two-dimensional affine transforms. 

We can represent a point on the plane Po via a two-dimensional rational 

vector (x, y) E Q2. An affine transformation of point (x, y) is a function 

'IjJ : Q2 t-+ Q2 such that 1jJ((x,y)) = (alx + a2Y + a3,b1x + b2y + b3) and 

ai, bi E Q for 1 :s i :s 3. 

Theorem 4.9. Given a semigroup of two-dimensional affine transforma

tions Y generated by a finite set of transformations f§, determining if a 

particular point Po can be mapped back to itself via some transformation in 

Y is undecidable. 

Proof. Let E = {a, b} be a binary alphabet and define the monomorphism 

..\ : E* t-+ Q2X2 by: 

..\(a) = (0
1

2
1), 

as stated in Section 2.2.1, this pairs of matrices generates a free semigroup. 

Let us also define a second monomorphism, : E* t-+ Q2X2 using the inverse 

matrices of ..\: 

Assume that we have an instance of Post's correspondence problem 

(pcP), h, 9 : r* t-+ E*. For each element C E r, we shall create the pair 

of matrices ..\( h( c)) and ,(g( c)). Note that if there exists a solution to 

PCP, then there exists a word w E r+ such that h( w) = g( w) and thus 

h(w) . (g(W))-1 = c. 

Thus to encode this problem, we shall begin with the empty word c and 

to add the next pCP lett('r. c E r, we will add h(c) to the left and (g(c))-l 
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to the right. i.e .. E f-+ h(c)E(g(c))-l. We continue this iteratively for a word 

w E r+ and clearly we return to the empty word e: iff h( w) = g( w). 

In terms of matrices. we associate a matrix Cw E Q2X2 where w E r* 
with h(w)(g(w))-l and clearly Cw is of the form: 

_(1 x). Cw - , 
o y 

x,y E Q 

To extend this configuration by the next letter c E r, we multiply Cw to the 

left by 'x(h(c)) and to the right by ')'(g(c)) giving: 

Cwe = 'x(h(c))Cw')'(g(c)) 

This will give us a matrix product of the form: 

Performing the matrix multiplication, we find that: 

(
IX: ) = (1 q2x + q2Pl Y + ql ) 
o y 0 Q2P2Y 

But in fact we see that this is a two-dimensional affine transformation 

of the point (x, y). It can be written as: 

{

X' = Q2x + Q2PlY + Ql 

y' = P2Q2Y 

Since the starting configuration is e:, we start with the matrix CE = 12, 

the 2 x 2 identity matrix which corresponds to the point x = 0, y = 1 and 

a correct solution to PCP maps 12 to 12 which also corresponds to the point 

(0,1). Therefore, the problem of mapping point (0,1) back to itself by using 

a set of two-dimensional affine transformations is undecidable as required. 

Note that we require npC'P (currently 7) transforms in the generator <;1. 0 
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We recall the general definition of a vector reach ability problem for a 

matrix semigroup from Section 2.3: 

VECTOR REACIIABILITY PROBLEM: Given a semigroup of matrices Y, 

generated by a finite set C§ c IFnxn and two column vectors x, y E ~. 

Does there exist some matrix A1 E Y such that M x = y? 

Utilising the undecidability results on two-dimensional affine transfor

mations from Theorem 4.9 allows us to easily gain an undecidability result 

on three-dimensional integral matrices: 

Theorem 4.10. The vector reachability problem is undecidable for three

dimensional mtional matrix semigroups. 

Proof. We proved in Theorem 4.9 that there is a set of two-dimensional 

affine transformations generating a semigroup for which it is undecidable if 

there exists an element of the semigroup mapping point (0,1) to (0,1). We 

shall convert each two-dimensional affine transformation into an equivalent 

three-dimensional linear transformation as follows: 

) 
(

X' ) (q2 q2Pl ql) ( X ) ( x:: q2
x + Q2PI Y + Ql => y' = 0 P2Q2 0 Y 

Y P2Q2Y 1 0 0 1 1 

Thus for a set of n affine functions, this conversion gives us a set of 

} ,n,3x3 matrices {MI' M2 . ... , Mn C '"'J:: • 

From the proof of Theorem 4.9 follows that the problem to decide whether 

there exists a product M = Mil Mi2 ... Mik where 1 ~ ij ~ n for 1 ~ j ~ k 

such that Mv = v where v = (0,1, I)T is undecidable. Theorem 4.9 was 

shown undecidable for semigroups generated by npcp transforms thus the 

vector reachability problem is undecidable for three-dimensional rational 

matrix semigroups generated by npcp matrices. o 
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We shall now show that the vector reachability problem is also unde

cidable for semigroups that are generated by just 2 rational matrices of 

dimension 2(npcp - 2) + 1. 

Theorem 4.11. The vector reachability problem is undecidable for semi

groups generated by two rational matrices of dimension 2(npcp - 2) + 1 (cur

rently 11). 

Proof. We shall perform three steps and reduce the dimensions of the two 

matrices in each of these steps. Given a set of matrices {MI' M 2, ... , Mn} 

where Mi E Q nlXnl
• Let us define two block diagonal matrices Al and TI 

by: 

Ah 0 0 

0 M2 0 
( 0 I; ) Al = MI EB· .. ED Mn = TI = 

In(m-I) 

0 0 Mn 

where 0 denotes a submatrix with zero elements. The dimension of both of 

Al and TI is nm. Furthermore, it can be seen that for any 1 :::; j :::; n then 

T~-j+1 AIT(1 permutes the blocks of Al in a cyclic way, so that the direct 

sum of T~-j+l AITt- 1 is Mj ED Mj+1 EB··· ED Mn EB MI EB··· EB M j - I . We can 

also note that Al I"V T~-j+l AITtl (therefore this is a similarity transform) 

since T~-j+l. Ttl = If = In· It is therefore apparent that any product of 

the matrices can thus occur and in fact can appear in the first block of the 

nm matrix product. 

Let us define a vector x = (v, 0,,,, ,of E Qnm where v = (0,1,1). It 

is easily observed that there exists a matrix product M = Mil Mi2 ... Mit 

satisfying Mv = v a.." in Theorem 4.10 iff there exists a matrix R E (AI, TI ) 

satisfying R:r = x unless R = Tr = I which is a pathological case we must 

avoid. This can ea.."ily be achieved by increasing all dimensions by one but 

we shall not detail this since we are going to reduce the dimensions two times 

further. From Theorem 4.10 then, this establishes the undecidability of the 
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vector reachabilit~· probl(,1ll for 2 rational matrices of dimension 3npcp + 1 

(currently 22). 
The first step is now complete, however we can reduce the dimensions 

of the two matrices AI, T I · We observe that (Mi)[3,3j = 1 and Mi is up
per triangular for all 1 :s i :s n. Let us now construct two new matrices 
A2, T2 E Q(2n+2)X(2n+2) directly using the elements from the matrices in 

Theorem 4.10: 

(q2) I (Q2PI) I 0 0 (ql)l 

0 (P2q2) I 0 0 0 

( J,~-2 n 0 0 (q2h (q2Plh (qd2 12 
A2 = 0 0 0 (P2Q2h 0 ' T2 = 0 

0 

0 0 0 0 0 1 

where 0 denotes either the number zero or a submatrix with zero elements, 

h is the k dimensional identity matrix and (X}i denotes the element x from 

matrix Mi used in Theorem 4.10. Straight-forward calculation shows that 

T;-j+1 A2Ti-1 permutes the pairs of rows in A2 and using a similar argu

ment as before, we thus can form any product of matrices in the first two rows 

of this matrix. We define a 2n+2-dimensional vector w = (0,1,0, ... ,0, ll. 
Finally we see that there exists a solution M v = v to PCP as in The

orem 4.10 iff there exists a matrix R E (A 2 , T2) satisfying Rw = w unless 

R = T; = I for some kEN which again is a pathological case we can avoid 

by increasing the dimensions by one. This completes the second step and 

gives the undecidability of the vector reach ability problem for semigroups 

generated by two rational matrices of dimension 2npcp + 2 (currently 16). 

We now perform the final reduction to create two rational matrices 

A3, T3' We shall use Claus instances of pCP (see Section 3.2.1) which al

low our previous encoding to use smaller dimensions. Recall that in the 

Claus construction of pCP we fix an initial and final pair (Ul, vt), (un, vn) 

and must find a seqllence 8 = (81,82, ... , Sk) such that: 
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where 2 ::; Sj ::; (1/ - 1). 

In terms of matric('s, this means if r§ = {J\,h, M2 ,· .. ,Mn} encode each 

pair of words. thm we may fix the first and last matrices M I , Mn and then 

take the semigroup Y genf:'rated by C#\ {MI' Mn}. This set is of size nCLAUS-

2 and using thl' construction for the second reduction above, this reduces 

the matrix dill}('nsioll in the generator to 2( nCLAUS - 2) + 1 (we ignore the 

pathological cas£' of Tk for the moment). 

Since Afl is the first matrix of the product and Mn is the last, given a 

product of til<' form: 

as in Theorem 4.10. we can instead write this product as: 

where x = Moll and y = Milt' (clearly MI is invertible by the construction). 

Applying this idea to the second step above also avoids the pathological case 

of a matrix in the semigroup containing Tk = I giving an incorrect result, 

since now x "# y as can be seen by examining the Claus construction. This 

completes the proof giving the undecidability of the Vector Reachability 

Problem for semigroups generated by two rational matrices of dimension 

2(nCLAUS - 2) + 1 (currently 11). 0 

We shall now show that the related VECTOR AMBIGUITY PROBLEM is 

undecidable. \Ve recall the previous definition: 

Problem 2.6. VECTOR AMBIGUITY PROBLEM - Given a semigroup 

.9' ~ ]F1lxn and an initial vector u E ]F1lxn. Let V be a set of vectors 

such that V = {v : II = AI u; M E S}. Does.Y and u generate an am

biguous set of vt'Ctors? In other words the question is whether for every 

vector of set V there is a unique matrix M E .Y such that M u = v? 
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Theorem 4.12. The VECTOH AMBIGUITY PROBLEM is undecidable for 

matrix semigml1ps oller integcr'8 in dimension 4 and over rational matri

ces in dimension 3. 

Proof. It wa.'i prov(,1l ill [12J that distinguishing between counter machines 

that have a periodic configuration from those that do not, is an algorith

mically ulldffidabl(' probl('m. We gave a simpler proof which used a fewer 

number of rul('s in Throrem 3.12 from Section 3.3.3. 

The proof of TIH'orem 3.12 was achieved via a reduction of the classical 

counter halting problem for counter machines. In the proof, we started with 

a machine !If and described how to construct a counter machine M' that 

has no halting configuration and that has a periodic configuration if and 

only if AI halts on its initial configuration in a similar way to that of [12}. 

Let us use a construction proposed in Section 3.3.2, which simulates any 

two-counter machine by a set of pairs of words. Note that our method does 

not require defining a halting state of the machine and in this case we can 

only predefine an initial configuration of a counter machine M. 

Assume that a set of pairs of word that are used for a counter machine 

simulation is P = {( Ui , Vi) 11 ::; i ::; n}. Let us construct a set of pairs of 

2 x 2 matrices using the homomorphism 'x: 

{('x(Ui), 'x(vd),···, ('x(un ), ,X(vn ))}. 

Instead of equation u = v we consider a concatenation of two words 11 . v 

which equals E only in the case where u = v. We associate 2 x 2 matrix C 

with a word tv of the form u' v. Initially C is a matrix that corresponds 

to the initial configuration of th(' machine which is stored in the first pair 

(UI' vd, so C = 1Tl· 1'1· 

The extension of a word tv by a new pair of words (Ur , vr ) (Le., that 

gives us w' = tLr . W . t'r) corr('sponds to the following matrix multiplication 

(1) 
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Let us rewrit<' operatioll (1) ill more detail. 

In this case. pairwise multiplication will correspond to an update of the 

current state accordillg to the operation of the two-counter machine M. 

Let us consider tht' dynamic-s of changes for the matrix C. It is easy to 

see that in the cast' of an incorrectly applied command for a machine M, 

the pairwise concat('nation (multiplication) will lead to an increase of the 

length for a word 1/' and will never end up in a repeated word after that. 

Therefore after an ill('orrt'ct application of a command of M, a matrix C 

will never have tht' same value again. The correct application of pairwise 

concatenation of words or multiplication of matrices covers the set of correct 

configurations of a two-counter machine M. In the case of a periodic two

counter machine. til(' finiteness of the configuration space will lead to the 

finiteness of tht' set X of possible C matrices that can be generated during 

the correct application of rules for M, since every matrix C E X corresponds 

to a unique reachable configuration of M. Thus the set of matrices that can 

be generated by pairwise multiplication may contain repetitions if and only 

if a two-counter machine has periodic behaviour. 

In order to finish the proof of undecidability for the case of an integer ma

trix semigroup. we represent matrix C as a vector x = (ew ll , ew 12 , ew 21 , ew 22 )T 
increasing the dimension to 4 and rewriting pairwise multiplication as a four

dimensional lin('ar transformation of a vector x. 

II ell 
CU" w 

12 ( ttl I u l2 ) (V11 v 12 ) e12 
CU" 

® 21 
w 

= 
21 u21 u22 v22 e21 

C 1/" 
V w 

22 e22 
CU" w 

The same lTH'thod can 1)(' used to prove the undecidability of the vector 

freene-ss prohlplJI il1 dinH'l1sion three for rational matrices by using another 
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homomorphism T ba.'i('d on a fre<' semigroup: 

T{a) = (1 1), 
o 2 

r(a) = 

r(b) = (012
2)' 

T(b) = (~ ~1) 

72 

The rest of t h(' proof repeats the above arguments along the lines of 

the proof of undecidability for the vector reachability problem for rational 

matrices in dimension 3 shown in [81· o 

Note tha.t from the above rcsult it follows that it is undecidable whether 

there exists a periodic trace of configurations in a one-state blind nonde

terministic four-count('r machine with counter updates in terms of linear 

transformations. 

We can also Se<' that it follows from the above proof that any periodic 

orbit of the given two-counter Minsky machine will correspond to a unique 

solution of the INDEX CODING PCP. 

4.3 Matrix Embeddings of Computational Models 

We shall now show how a Turing machine or two-counter Minsky machine 

can be encoded within a finitely generated integral matrix semigroup. We 

use the simulation of a computational device via a set of pairs of words as 

in Section 3.3.2. 

We gave a construction in Proposition 3.11 showing that a Thring ma

chine and a two-count('r ~linsky machine can be stored within an instance 

of Post's correspondence problem (pcP) such that the instance has a solu

tion if and only if th(' computational model halts and accepts. In Theo

rem 3.6 we showed how to couvert an instance of pCP into an instance of 

INDEX CODING PCP which is Prohlem 3.5. 
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Let \1S t hPrl'fort, cOllsidt'r an instance of INDEX CODING PCP corre

sponding to tIl(' simulation of a Turing machine or a two-counter Minsky 

machine giVPIl by: 

where r = {(/ . f). (j. b} is a binary alphabet with inverses. We shall use the 

homomorphism -\ : ro ....... l'2x'2 defined by: 

(12) (10) (1 >.(a) = . ,\(11) := • >.(a) = 
() 1 2 1 0 

,>.(b) = -2) - (1 
1 -2 

0) 
1 ' 

which, a.'i stah,<l ill Sl'<,tion 2.2.2, is an injective homomorphism. Let us 

now create a set of matrices ~4 defined by: 

where O2 is t Ilf' 2 x 2 .:ero matrix. This is now exactly an instance of 

INDEX CODIN(; PCP as ddlllt,<l in Problem 3.5 which directly simulates 

a Thring Machint' or two-counter Minsky machine. We shall use this con

struction in tht' next thl'<)f('Ill. 

Theorem 4.13. Thor i$ a fixed matrix semigroup Y with an undecidable 

membership problem. Then: i.s a fixed semigroup T with undecidable vector 

reachability problem. 

Proof. It is well known t hat there exists universal Thring machines which 

can simulate another Turing machine input in a pre-defined way which halts 

iff the machine it is simulating halts. Thus, we can define semigroup Y to 

be a fixed encoding of a IIniversal Turing machine generated by a finite set 

of integral matric('s. From til{' proof of Theorem 3.6, it can be seen that the 

first pair (u I. t'l) in sIKh lUi instance is used only once. 

Sinc(' tIl stores tIll' input word to the problem, we may remove the cor

responding matrix X == '\(llt) (f) -\(vd from the generator set C§. Now, a 

correct solution to INDEX CODING PCP corresponds to the identity matrix 
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and uses X exactly on«'. thus we see that X-I E Y if and only if there 

exists a solution to INDEX CODING PCP. 

Finally theIl. we see that the semigroup generated by C§' = C§ \ {X} 

stores a universal Turing machine and the input to this 'lUring machine is 

contained within matrix X = A{ud EB A(vd· Thus, we have a fixed matrix 

semigroup Y' generated by C§', and determining if X-I E Y for varying X 

is algorithmically undecidable as required. 

The existence of a semigroup with an undecidable vector reachability 

problem follows from the same arguments and the construction of an unde

cidable vector reachability problem for 3 x 3 matrix semigroups over ratio

nals and 4 x 4 matrix semigroup over integers (due to the invertibility of the 

matrices). For more details see Theorem 4.10 and [47]. 0 

The next problem that we consider here is the problem of whether an 

element of a matrix semigroup has an infinite number of factorisations over 

elements of the generator. This question is trivially undecidable in the 

case of singular matrices since it can be reduced to the mortality problem 

(whether a zero matrix belongs to a semigroup). Here we show that this 

problem is also undecidable for invertible matrix semigroups. 

Problem 4.14. RECURRENT MATRIX PROBLEM - Given a matrix semi

group Y genemted by a finite set of matrices C§ and a matrix M. Does 

M have an infinite number of factorisations over elements of C§? 

Theorem 4.15. The RECURRENT MATRIX PROBLEM is undecidable for in

tegml 4 x 4 matrix semigroups. 

Proof. The proof is achieved via a simulation of a nondeterministic two

counter machine, where the problem of deciding if M' has an infinite number 

of trajectories leading to a final state S final with zero counters is undecidable, 

see Theorem 3.13. 
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Note that in Section 3.3.2 we showed how to simulate a Turing machine 

via a PCP instance but as mentioned in the comments, the proof is essentially 

the same for a two-counter machine. 

Given an instance of pcp, P', which simulates the two-counter machine 

M' above, we create an insta.nce of INDEX CODING PCP, P as explained in 

Theorem 3.6 and embed t he instance into a four dimensional integral matrix 

generator set C§ as is done in Theorem 4.1. Since a particular matrix, N, 

must appear exactly once in a product equalling the identity matrix for a 

correct solution, we shall consider the semigroup generated by f'# \ {N} (N 

is invertible by the construction). 

If N-1 E (C§\ {N}), then it corresponds to a correct computational path 

of the counter machine M'. Let us assume that we have an algorithm to 

check if matrix N- 1 has infinitely many factorisations. This means that M' 

has an infinite number of trajectories leading to a configuration S final with 

zero counters. Since the last problem is undecidable the problem whether 

M' has an infinite number of factorisations is undecidable. o 

4.4 Semigrollp Intersection Problems 

In this section we shall study the decidability of the intersection of a pair 

of matrix semigroups. Such problems were studied by A. Markov [42] and 

more recently by V. Halava and T. Harju [261· We shall use a different 

encoding to that of V. Halava and T. Harju to obtain a similar result which 

more closely mirrors that of A. Markov but in reduced dimensions. 

Our primary aim shall be to determine if the intersection of two semi

groupS generated by a finite set of matrices is empty or not. In other words, 

is there some matrix in one semigroup that is also in the other semigroup? 

The emptiness problem for matrix semigroup intersection was shown to be 

undecidable by A. t>.larkov. although we have written the theorem in a dif

ferent but equivalent form, [42J: 
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Theorem 4.16. /42/ Given two finite sets X = {X I ,X2 , ... ,Xn} andY = 

{YI , Y2} of 4 x 4 non-negative integer uni-modular square matrices. It is 

undecidable if I(X) n (Y)I = O. We may assume that all matrices in X, Y 

except for Xl are fixed 1. 

Note that ~Iarkov's result was recently improved by the following theo-

rem: 

Theorem 4.17. /26/ Given two sets X = {Xl, X 2 , •.• , Xn} and Y = 

{YI, Y2} of 3 x 3 integer non-singular matrices. It is algorithmically un

decidable if I (X) n (Y) I = O. 

Note that the authors in [26] used semigroups over Z3x3 rather than 

N4X4 as was used by A. Markov. We use a new encoding to show that it 

is in fact possible to obtain a similar theorem over N3x3 even with upper 

triangular matrices. We shall also show that we may prove a similar result 

on unimodular matrices as Markov did, but we require matrices over Q3X3 

instead. It was shown that an embedding of two words is not possible into 

2 x 2 complex matrices using matrix multiplication as the binary operator 

in [17]. 

Theorem 4.18. Given two sets X = {X I ,X2, ... ,Xn } and Y = {Y1,Y2} 

of 3 x 3 non-negative upper-triangular integral non-singular matrices. It is 

undecidable if I(X) n (Y)I = o. 

Proof. Let r = {a, b} to be a binary alphabet. Let: 

be an instance of Post's correspondence problem (pcP). Define two mor

ph isms 0', T : r- t-+ N2x2 by: 

IThe statemmt that all matrices except XI can be fixed is not difficult, see [26]. 
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We stated in S('('tiOll 2.2.1 that 0', T are injective homomorphisms. Note 

that for all pairs of words U'I.W2 E r*,0'(Wd[2,2] = T(W2)[I,I] = 1 thus the 

pair of 2 x 2 matrin's. a(w)). T(W2)' can be embedded into N3x3 by using 

the direct sum O'(u'd e T(W2) and joining the common element 1. Let us 

define the morphism A : r* x r* ~ N3x3 by: 

( 

21wli x 

"\(11.,).11'2) = a(wJ) EB T(W2) = 0 1 

o 0 

y 

o 

where WI, W2 E r* and :r. yEN. This is still a monomorphism. Define 

Xi = ..\(Uj, vd for each 1 ~ i ~ n, YI = A(a, a) and Y2 = A(b, b). If there 

exists a solution to th(' PCP (i I, i2, ... , ik) then Xii X i2 ..• X ik E (X) is of 

the form A(UilUi2"·Uik.VilVi2"·Vik) = ..\(w,w) E (Y) for some wE r* 

thus their intersection is non-empty. Clearly (Y) contains only matrices 

embedding the same two words which corresponds to a correct solution to 

the PCP. Thus the intersection is not empty iff there exists a solution to the 

PCP. Since PCP is undecidable with 7 pairs of words[43], X is generated by 

7 matrices and Y is generated by 2 matrices. o 

Corollary 4.19. Gillen two sets X = {Xl, X 2,···, Xn} and Y = {YI, Y2} 

of 3 x 3 non-negative upper-triangular mtional unimodular matrices. It is 

undecidable if I (X) n (Y) I = O. 

Proof. Since each matrix in X, Y is invertible we can divide through by 

the cubic root of the determinant ({ldet(A(wl' W2)) = ~2Iwd+lw21) to make 

each unimodular (but mapping instead into JR3X3) and obtain the same result 

since the determinant is multiplicative, however the resulting matrices are 

now real. Using a similar idea as in [26] suggested by M. Soittola, we can 

replace the 2 on the main diagonal in the definitions of 0', T and A with 8. 

This will give 8-adic numhers on the off diagonal elements rather than 2-adic 

numbers and they r('tain their freeness. The determinant of ..\ will now be 

a power of 8. thus th(' ('lIbie root of the determinant will be a power of 2. 

Therefore we can Illap into Q3X:l M required. 0 
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Using the idt'i\ of pCP and "Claus instances" as in [26], we can reduce 

the required nUll11H'r of matrices after slight modification of the problem. 

Given two matrices A.B and two semigroups X = ({X1,X2, ... ,X5}), 

y = ({Y1, Y2 }) it is ull<i('cidahl(' if there exists M E X such that AM BEY. 

See 126] for a mOf(' deta.iled discussion. 



Chapter 5 

Quaternion Matrix 

Semigroup Problems 

5.1 Hypercomplex Numbers Introduction 

Quaternions have long been used in many fields including computer graph

ics, robotics, global navigation and quantum physics as a useful mathemat

ical tool for formulating the composition of arbitrary spatial rotations and 

establishing the correctness of algorithms founded upon such compositions. 

Many natural questions about quaternions are quite difficult and cor

respond to fundamental theoretical problems in mathematics, physics and 

computational theory. Unit quaternions actually form a double cover of the 

rotation group S03, meaning each element of S03 corresponds to two unit 

quaternions. This makes them expedient for studying rotation and angular 

momentum and they are particularly useful in quantum mechanics. The 

group of unit quaternions form the group SU2 which is the special unitary 

group. The large number of applications has renewed interest in quaternions 

and quaternion matrices ([2J, [211, [50], [54], [55]). 
Quaternions do not COllllllute and this leads to many problems with their 

analysis. In particular. defining the determinant and finding the eigenvalues 

79 
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and the invers(' of a quat ern ion matrix are unexpectedly difficult problems 

[55]. In this chapter. we shall study decision questions about semigroups of 

quaternions. quatf'rnion matrices and rotations, such as several reachability 

questions, l1l('mb('rship problems. freeness problems, etc. 

It appears that t here has not so far been much research on computational 

problems for quatC'rnions and quaternion matrices. This is partially because 

the results for matricC's over Z, Q, C are not easily transferable to the case 

of quaternions. WC' shall investigate most of the open problems for 2 x 2 

matrix semigroups showing undecidability of them in the case of matrices 

over quaternions. After the quaternions, the hypercomplex numbers lose 

the associativity property and thus no longer form a semigroup. Due to this 

fact it could be concludC'd that research on quaternion matrices gives a more 

complete picture of decision problems for matrix semigroups. We shall also 

study several problems for the case of Lipschitz integers and state several 

new open problems which arose from our research. 

We shall also establish connections between classical matrix semigroup 

problems and reachahility problems for semigroups of rotations. In fact, 

using unit quaternions for encoding computational problems gives us an op

portunity to formulate and prove several interesting results in terms of 3 

and 4-dimensional rotations defined by quaternions. In particular, we will 

show that the point-to-point rotation problem for the 3-sphere is undecid

able. The same problem for the 2-sphere is open and can be formulated 

as a special case of the scalar reach ability problem for matrix semigroups 

that we show is undecidable in general. As an additional benefit, the results 

on rotation semigroups give immediate corollaries for a class of orthogonal 

matrix semigroups. 

These type of gromctric interpretations of quaternions and quaternion 

matrices will be studied later in Chapter 7. We show that studying such 

matrix problems is of interest since they do arise in many situations in the 

real world. 
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5.2 Quaternion Word Morphisms 

Let E = {a, b} b(' a binary alphab('t and 'f = {a, b} be the inverse alphabet, 

thus a = a-I and b = b- I . Let u = (1,0,0) and v = (0,1,0) with u,v E Q3. 

Define 'P : (E U 'f). x Q 1-+ IHI(Q) to be the following homomorphism: 

":;(0.0) = (cos(~), usin(~)) . /-L, 

.,:;(b.O) = (cos(~), vsin(~)) . /-L, 

":;(0.0) = «'os(~), -usin(~)). /-L, 

.,:;(b.O) = «('Os(~), -vsin(~)) . /-L, 

where 8 E Q E [0.211"). i.(' .. .,:;(a.O) is aquaternion corresponding to a rotation 

of angle 8 about the u axis and <p(b,8) corresponds to a rotation of angle 

8 about the v axis. with the iuv('rse elements being the opposite rotations. 

cp(c,8) = {) I is the lIlultiplicative identity element of the division ring of 

rational quaternions. Not(l that u . v = 0 and lIull = IIvll = 1, thus these 

two vectors ar(l orthonormal. 

Let us define a spffific instance of this morphism. Let Q = 2 arccos ( i) E 

JR. Now we define., : (EUE)* 1-+ IHI(Q) where 1'(a) = <p(a, 0:), "Y(a) = <p(a, 0:), 

"Y(b) = <p(b,o) and ...,(b) = .,:;(b.o). This gives the homomorphism: 

"Y(a) = (cos(!\rccos(~»), usin(arccos(i»)· /-L 

"Y(a) = "Y(a)-I = ...,(a)" 

"Y(b) = (cos(!\r('c()s(~», l;sin(arccos(~») . /-L 

"Y(b) = 1'(b)-1 = )(b)· 

=(i, ~,O,O)'/-L 
= (i, -~, 0, 0) . /-L 

=(i,O, ~,O)'/-L 
= (~,O,-~,O)· /-L 

which follows from til(' identity cos20 + sin2
(J = 1 since VI - (~)2 =~. It 

can be seen that the rational quaternions in the image of"Y are unit, i.e., 

'Vw E E*, Ib(U')11 = 1 sillc(' quat(lrnion length is multiplicative (lIqlq211 = 

IIqIlI . Ilq211, which we prow later in Lemma 5.12) and "Y(a), "Y(b) have unit 

length. 

Lemma 5.1. Tile mal'l'1119 ..., : E· 1-+ lHl(Q) is a monomorphism. 
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Proof. It was prov('n in [51] that if ros(O) E Q then the subgroup of S03(lR) 

generated by rotations of angl(' 0 about two perpendicular axes is free iff 

cos ( 8) i o. ± ~. ± 1. We not(' t hat in the definition of , we use a rotation 

about two orthonormal c\ .. X('S Ii.p. We use a rotation of Q = 2arccos~. From 

basic trigonometry. ('os(2ar('cos(~)) = -2sin2(arccos(~)) = 1-2(~)2 = -i5 
and sin(2arccos(~)) = ('os(arccos(~))sin(arccos(~))) = ~~, thus the cosine 

and sine of both angles are rational and not equal to 0, ±~, ±1 (we only 

require this of til(' cosill(,) a..'l required. We showed that all elements of the 

quaternions are mtional. thus we have a free subgroup of S03(Q) generated 

by ,(a), ')'(a). ') (b). ')(b) E lHI(Q). 0 

Note that the conditions mentioned are guaranteed to give a free group 

but are not necessary for freeness. See [21]. 

5.2.1 Matrix Representation of Quaternions 

It is possible to repr('S('nt a quaternion q E lHI(Q) by a matrix M E C(Q)2X2. 

For a general quat('rnion t~ = (a, b, c, d) . It we define the matrix: 

(
a + bi c + di ) 

AI= . 
-c + di a - bi 

The correctness of multiplication and addition under this encoding can 

be checked by verifying the result of the operation in terms of quaternions 

and matrices separately. 

Corollary 5.2. There exi.'it.'l a class of two-dimensional complex unitary 

matrices fonning a fre(' group. 

Proof. We can ddilH' a morphism similar to ')' which instead maps to two

dimensional complex matric("S: Formally, ( : E* I--t C(Q)2X2 where: 

( 

:1 + ·1, 0) ( 
«(0)= f, f,l. ,((b)= 

o ~ - 1 i .) 5 
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Note that matrices ((a) and ((b) are unitary, therefore let «(a) = «(a)-l = 

«(a)* and ((b) = ((b)-I = ((b)* where * denotes the Hermitian transpose, 

thus: 

((a) = ( ~ - ~ i . ° ) , «(b) = (i -~) o ;!+:1i :1 ~ , 
5 5 5 5 

Therefore we have the injective morphism ( : p:U~)* ...... C(Q)2X2. Since 

'Y is an injective homomorphism, ( is also clearly injective and therefore the 
- 2x2 

set f§ = {«(a). «(a). «(b), «(b)} C C(Q) generates a free group of two-

dimensional complex rational matrices. 0 

Also note that we can define such matrices for any two orthonormal 

vectors where the rotation angle () satisfies cos(())E Q and cos(O) ¥ 0, ±~, ±1. 
Thus we can find an infinite number of such matrices which will obviously 

be unitary by the definition of ( and unit quaternions. 

Notice that we can multiply both matrices by the scalar matrix with 

element 5 to give a Gaussian integral matrix (at the expense of losing uni

modularity). 

5.3 Low Dimension Quaternion Matrix Semigroups 

We shall now show an undecidability result similar to the one considered 

in Section 4.4 concerning semigroup intersections as studied by A. Markov 

[42]. 

Theorem 5.3. Given two sets A = {aI, a2,"" an} and B = {bl, b2, ... ,bn }, 

where A, B c IHI(Q). it is undecidable whether there exists a non-empty se

quence of indices l' = (1'1.1'2, ... ,rm ) such that a r1 ar2 ... arm = br1 br2 ..• brm . 

Moreover', this holds for It = npcp· 

Proof. We usc a reduction of Post's correspondence problem (pcP) (see Sec

tion 3.2) and the morphism 'Y defined in Section 5.1. Given two alphabets 

r,~, such that ~ is billary, and an instance of the PCP, ( h, g) : r* ...... ~*. 
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We proved in Leillma 5.1 that') : (~u ~) ........... lHI(Q) is a monomorphism. 

Thus let liS d<'fllH' a lit',," pair of Illorphisms (p, T) to map r+ x r+ di

rectly into JHI(Q) x IHl(Q) (W(' can think of this as 8U2 x 8U2 since each of 

these unit quah'rnions rl'pn'S('nts an element of 83 (the 3-sphere)). For

mally, p : r" 1-+ JHI(Q). T : r" .......... IHl(Q) where for any w E r+, we define 

p{w) = ,(h(tL')) and T(II') = ,(g(ll')). This is clearly injective since it is the 

composition of two injN'tiv(' homomorphisms. 

Thus for an instance of PCP. r = {aI, a2, ... , am}, (h,g), we instead 

use the pair of 1ll0rphisIlIs (p. T). Define two semigroups S1, S2 generated 

respectively by {p(nd. p(a2)' . ... p(nm )} and {T(ad, T(a2)' ... , T(am )}. We 

see there exists a solution to the given instance of pCP iff 3w E r+ such that 

p{w) = T(W). o 

We now mov(' to an ('xtel1sion of the previous theorem where it is no 

longer necessary to consider the index sequence. Markov obtained a similar 

result by extending tll(' dilll('nsion of the integral matrices to 4 x 4. 

Theorem 5.4. Git'(:n two sets a/matrices A = {A 1,A2 , ... ,An } and B = 

{Bll B2} where A. B c JHI(Q)2X2 generating two semigroups S, T respec

tively. It is undecidable i/ IS n TI = O. Furthermore, all matrices in S, T are 

diagonal. 

Proof. Given an inshulC(, of PCP, (h, g) where h, 9 : r* 1-+ E*. We again use 

the injective morphisms p, T : r* .......... lHI(Q) introduced in Theorem 5.3. Now, 

for each a E r w(' d£'fin(': 

Aa = ( p(oa) 0 ) 
T(a) 

and these matrices form th(' generator for the semigroup S. For the second 

semigroup, T. w(' simply wish to encode each symbol from E in the [1,1] 

and [2,21 elelll('llts llsing th(' morphism, : E* 1-+ JHI(Q) which was shown to 
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be injective in Lemma 5.1: 

B\ = (,(0) 0 ), 
o ')(0) 

B2 = ( ')'( b) 0 ). 
o ')'(b) 
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Now we can prove the throrem. We see that for some MEA, M[l,lJ = 

M[2,2J iff there exists a solution tv E r+ to the instance of pCP. This follows 

since element [1. 11 of AI stores an encoding of h(w) and element [2,2] of 

M stores an encoding of g(tv). Clearly any such matrix M will also be 

in B since every matrix in B corresponds to an encoding of a word over 

E+. Matrices in B clearly store all encoding of the same word in elements 

[1,1] and [2,21. Note that all matrices are diagonal and each element on the 

leading diagonal is a unit quaternion by the definitions of the morphisms 

used. o 

The previous two theorems used two separate semigroups. It is more 

natural to ask whether a particular element is contained within a single 

semigroup. We shall show an undecidable membership result for a class of 

two-dimensional quaternion matrices. 

Theorem 5.5. Given a matrix semigroup .5" genemted by the (finite) set 

'.I = {Xl, X2,"" Xn} C H(Q)2X2 where Xi is diagonal for each 1 ~ i ~ n. 

It is undecidable for a fixed matrix Y whether Y E .5" . Moreover, Y can be 

chosen such that each diagonal element of Y has the form (a, 0, 0, 0) . 1-£ with 

a E Q \ {O, ± I}. 

Proof. This theorem can be proved essentially in the same way as Th~ 

rem 4.1 using an instance of INDEX CODING PCP. We shall however use a 

different injective homomorphism in order to map into the rational quater

nions rather than 2 x 2 integral matrices. 

We shall usc the version of INDEX CODING PCP which is defined using 

the pair of homomorphisms h, 9 : r· 1-+ (~U ~). where E = {a, b} is a 

binary alphabet and r = {o 1. 02, ... , an}. We thus require a solution to 
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INDEX CODING PCP: 

W = Wl W2 ... Wk E r*, 

such that exactly One Wi = nand h(w) = g(w) = E. 

Recall the injective homomorphism 'Y : (E U E)* 1-+ lHI(Q) defined by: 

3 2 'Y(a) =(5' 5,0,0)'JL, 'Y(b) = (~, 0, ~,O)· 11, 

'Y(a) = (~, -~,O,O)· JL, 
- _ 3 2 'Y(b) - (5,0, -5,0) . JL, 

from above. 

We define the matrices '# = {Xl, X2, .. " Xn} C lHI(Q)2X2 where: 

which is analogous to the mapping into matrices we used in Theorem 4.1. If 

there exists a solution to INDEX CODING PCP, say W = WIW2'" Wk E r* 
with exactly One Wi = n, then: 

We need to enforce the constraint that only one element of this product 

equals Xn however. We achieve this in a similar way to that in Theorem 4.1. 

We multiply matrix Xn by a scalar such as 2, giving X~ = 2Xn and we 

can therefore see by the construction that 212 E ('#) iff the instance of 

INDEX CODING PCP has a solution. 

We again require 14 matrices since INDEX CODING PCP is undecidable 

for an instance of size 14. o 

Note that in Theorem 5.5 we use diagonal quaternion matrices which are 

equivalent to double quaternions. 

Corollary 5.6. The vector reachability problem for a semigroup of 2 x 2 

quaternion matrices is undecidable. 
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Proof. The vector rea('hahilit~· question for quaternions is defined as: "Given 

two vectors a. b E Iil(Q)" and a finitely generated semigroup of matrices 

.9' c H(Q)nxn. does th('f(' exist some M E.Y such that Ma = b?". 

The undecidability of this problem is straightforward from Theorem 5.5. 

Let X,Y E H(Q)2 and r = (l.l)T.y = (2,2)T. Then, for some M E.Y, it is 

clear that M:r = y iff ;\1 = 212 since all matrices in .Y are diagonaL Since 

determining if 2h E .Y was shown to be undecidable, the vector reach ability 

problem is also undt'Cidable. 0 

The next problclll wa." giwn as an open problem over matrices of natural 

numbers N in any dinwnsion [141. We show it is undecidable over 1HI(Q)2x2. 

Theorem 5.7. It is undecidable for a two-dimensional rational quaternion 

matrix semigroup .Y whether there exists any diagonal matrix D E .Y. This 

holds for a semigroup generated by n pCP matrices. 

Proof. Given a pair of homomorphisms h, g : r* 1-+ E* which are an in

stance of Post's correspondence problem (pcP) where E = {a,b} is a binary 

alphabet. We use the injective homomorphism "y : E* 1-+ lHI(Q) defined and 

proven injective in Section 5.2. 

Let us define a homomorphism'll: lHI(Q) x Hl(Q) 1-+ 1HI(Q)2X2, where for 

any two quaternions q. r E Iil(Q): 

1 ( q+r \II(q. r) = -2 
q-r 

q-r) 
q+r 

It is clear that \II is a homomorphism, as shown in [13], since clearly 

(f(ql, rd . 'II (q2, r2) = 'II(Qlq2. rl r2) which is verified easily via: 

It is now obvious that Ii'(q. r) is diagonal iff q = r since the top right 

and bottom left elements of tilt' matrix equal 0 only if the two quaternions 

are equal. 
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Therefore, given an instance of Post's correspondence problem (pcP), 

h,g: r* 1-+ ~., where r = {al,a2, ... an }, we define the set of matrices 

tif = {Xl,X2,.'''Xn } C 1HI(Q)2X2 where: 

If there exists a solution WI W2 ... Wk E r* to the given instance of pCP, 

then h( w) = g( w) and therefore: 

which is diagonal, and as previously stated, this is the only case in which 

such a diagonal matrix will occur in the semigroup .Y = (f§). Since we 

know that pCP is undecidable for If! = 7, this problem is undecidable for 

semigroups generated by 7 quaternion matrices of dimension 2, 0 

Unfortunately this does not hold when we convert the matrices to four

dimensional rational matrices since we only get a block diagonal matrix. We 

showed previously in Theorem 4.7 that the problem is also undecidable for 

4 x 4 complex rational matrix semigroups. 

Another problem which can be stated is that of freeness of quaternion 

matrix semigroups. We shall use an almost identical proof to that in [17J 

to show the undecidability of the problem, and we obtain the result for 

matrices over II(Q)2X2 rather than (Z+)3X3: 

Theorem 5.S. Given a semigroup .Y genemted by a finite set of matrices 

r.I = {MI,.··, Mn} where Mi E 1HI(Q)2X2, deciding whether.Y is free is 

algorithmically undecidable. 

proof. Since we can store two words within a matrix M j E 1HI(Q)2X2 we can 

use an almost identical proof that was used in [17J. We will give a brief 

sketch of the proof and reff?r to [17J for a more rigorous version. 
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The mixed mooificatioll pCP (or MMPCP) is a variant of the standard 

Post's correspondence problem (pcP). As in the original PCP, we are given 

two (finite) alphabets r. E and two morphisms h,g : r* ~ E*. The MMPCP 

asks whether there exists a word W = WI W2 ... Wm E E+ such that: 

where each hi, gi E {h. g} and hj :f. gj for some 1 ::; j ::; m. We shall use a 

reduction of this problem to the freeness of quaternion matrix semigroups. 

Define the set of 2 x 2 quaternion matrices: 

'§ = {( )'(a) 0 ), ()'(a) 0 ) 
o h(a) 0 g(a) 

If Y is not free then there is a word W = WI W2 ••. Wn E E+ such that 

hl(wdh2(W2)'" hm(wm) = gl(wdg2(W2)'" gm(wm) since any equal matrix 

product in .7 must have the same word W in the top left element and the 

same element in the bottom right which was generated by different matrices. 

Thus the problem of freeness for 2 x 2 rational quaternion matrix semigroups 

is undecidable. See [171 for more details of the proof method. 

Note that an alphabet size of Ifl = 7 was required for the undecidability 

of MMPCP (see [281), thus the problem is undecidable for a semigroup 

generated by 7 matrices. 0 

We now consider a problem which is decidable over complex numbers, 

but undecidable over rational quaternions. This gives a bound between the 

computational power of complex numbers and quaternions. We first require 

a lemma. 

Lemma 5.9. {3/ Given a semigroup .7 of commutative matrices of any 

dimension, then the membership problem for Y is decidable. 

Corollary 5.10. The problems for diagonal matrices stated in Theorems 

5.9, 5.4 and 5.5 are decidable when taken instead over any field up to the 

complex numbers. 
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Proof. In Theorem 5.3 we can change the problem to one over two-dimensional 

matrices which will be equivalent. For each 1 ~ k ~ n we define 

Mk = (qik 0) EC2X2
• 

o qjk 

Now define a semigroup Y generated by r§ = {MI' M2,"" Mn}. Clearly 

then the problem becomes "Does there exist a matrix X in Y such that 

X[l.l) = X!2.2]?"· This is decidable if the matrices commute (in the case 

of complex diagonal matrices) and we have shown it to be undecidable for 

diagonal matrices over the quaternions. 

Theorem 5.4 concerns the emptiness testing of the intersection of two 

semigroups A, B. However, B is just the set of matrices with equal elements 

on the diagonal generated by 'Y(a) and 'Y(b). Thus the problem when taken 

for complex numbers is simply: "Does there exist some matrix, X E A with 

X[I.I) = X[2.2]" as in the previous paragraph. Again, since the matrices are 

diagonal and complex. they commute and the problem is clearly decidable. 

For Theorem 5.5. all matrices in the semigroup commute since they are 

diagonal with complex entries. By Lemma 5.9 this means we can decide if 

any M is in semigroup Y (in polynomial time) thus concluding the proof. 

o 

5.4 Computational Problems in Lipschitz Integers 

We shall now consider decision questions on matrices over Lipschitz integers, 

denoted by HI(Z) which are quaternions with integral parts. 

Corollary 5.11. The problem" stated in Theorems 5.3 and 5.4 are unde

cidable for matrix semigroups when taken instead over the Lipschitz integers 

JH[(Z). 

proof. Note that in Lemma 5.1 we showed 'Y is injective and in Section 5.2.1 

we showed an isomorphism between quaternions and a subgroup of the two

dimensional complex matrices, lHl(Q) ~ C2x2. If we examine the definition 
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of ( in 5.2.1 we see that all elements have 5 as their denominator thus we 

can multiply «(a). «(b) by the scalar matrix 512 thus giving two-dimensional 

matrices over the Gaussian integers. This will still be free and is equivalent 

to the (non-unit) quatcrnions ql = 5(~, ~,O,O) 'IL = (3,4,0,0) 'IL and q2 = 

5(~, 0, ~, 0)· J.L = (3.0,4.0) 'Il which still form a free semigroup. We therefore 

define). : E* t-+ lHl(Q) by 

) ( 
5· )'(x) if x # e ) 

>.(x = . 
)'(x) ifx=e 

Thus in Theorems 5.3 and 5.4 we can replace the definitions of p, T to 

use ). instead and this will give an injective morphism over the Lipschitz 

integers H(Z). This cannot be extended to Theorem 5.5 however since the 

inverse of a non-identity Lipschitz integer is not itself a Lipschitz integer 

(obviously it must have rational coefficients). 0 

Lemma 5.12. The modulus of quaternions is multiplicative and the ring of 

Lipschitz integers with multiplication and addition is closed. 

proof. These simple results are needed in Theorem 5.13 below. For the first 

statement we wish to prove IIqlq211 = IIqtll . IIq211· Fortunately we do not 

need to use a laborious proof of this since the determinant of the matrix 

representation of a quaternion shown in 5.2.1 corresponds to the modulus. 

It is well known that the determinant of complex matrices is multiplicative, 

see [311. 
The second part is easy to see by examining the product of two quater-

nions. We only multiply and sum entries in the product therefore if both 

quaternions have integral components, so does their product. Thus the prod

uct of two Lipschitz integers is a Lipschitz integer and obviously the sum is 

also closed since it is simply the component-wise addition of integers. 0 

Theorem 5.13. Given a .'Jet of Lipschitz integers f§ E lHl(Z) generating a 

semigroup .Y = (f#). the problem of deciding for an arbitrary L E lHl(Z) if 

LEY is decidable. 
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Proof. Note that all nOll-zero quaternions have modulus d E jR+. further

more, it is obvious that for any non-zero Lipschitz integer L E lHI(Z), that 

d ~ 1, with equality iff 

L E ~ = {(±1.0.0.0) '1" (0. ±1,0,0) . It, (0,0, ±1,0) 'Il, (0,0,0, ±1) ·Il}· 

We have named this set 4> for later explanation. It is easily seen Vq E 4> 

that q is of unit length. i.e., 

Also note that their fourth powers are all equal to the identity element, Le., 

'Vq E ~,q4 = iJ, = (1. 0. 0, 0) . It which is easily checked. 

For a given L E H(Z) whose membership in ,:/ we wish to determine, it 

will have a magnitude IILII = mER. If m < 1 then L cannot be a product a 

Lipschitz integers since the magnitude must be at least 1 by definition of the 

quaternion magnitude. If m = 1 then L can only be a product of elements 

from ~ and membership is trivial by examining the generator '§. Otherwise, 

m > 1. Let '§' = f./ \ 4> (which is the generator set 'of minus any elements of 

.). We can see that there exists only a finite number of products to check 

since m > 1 and \;Ix E (f./') we have that IIxll > 1. Again, this is easy to see 

from the definition of the magnitude when considering integral components. 

Thus, excluding 4> we have a finite set of products of finite length to 

check. However if a (non-identity) element of ~ is in the generator, we must 

include these in the products. Let':/' = (';/'). For each product from ':/' 

whose magnitude equals L: 

P = P1P'l' "Pn I(pt E 8') 1\ (IIPII = m) 

we define the (finite) set of products: 

{p = (g r,p, )rn+l1rhP, E lIII(Z)} , 

where each T, varies ()v('r all clements of [(4)n';/)ut?,] for 1 :::; t :::; n+ 1. I.e. Tt 

varies over all pos .... ihlt, products of elements of 4> that are in '§ or the identity 
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quaternion in all po" ........ ibl(' plac('S in the product (since elements of (<.I» are 

unimodular). We must simply prove that (<.I» (the semigroup over elements 

of ~) is finite. This is eusily seen however from the following three facts; 

the only Lipschitz integers with moduli 1 are in <.1>, the quaternion moduli 

is closed under multiplication and the product of two Lipschitz integers is a 

Lipschitz integer. 

The first fact is obvious since the square root of a sum of four squares is 

equal to 1 iff exactly one component is 1. The second and third facts were 

proven in Lemma 5.12. Thus (4)>) is a finite semigroup and there exists a 

finite set of products to dleck for equality to L E JHI(Z) and thus this is a 

decidable problem. o 



Chapter 6 

Reductions of Skolem's 

Problem 

In this chapter we shall study some encodings of a well known problem 

known 88 SKOLEM'S PROHLI-:M. It is also sometimes called Pisot's problem. 

The problem itself is concerns the decidability of determining zeros in linear 

recu~nt sequences whidl we shall soon detail. We shall show how the prob

lem is related to TUE MORTALITY PROBLEM and exponential Diophantine 

equations. 

We are often intt>rt'Stcd in systems whereby future states depend on some 

finite history. Given such a system we would then like to characterise its 

properties. For example, is the set of possible future states bounded? Is it 

periodic? Can wt' rE:'ach a particular state? Such problems are related to 

dynamical systems but it is frustrating that for even simply defined systems 

we often cannot dew lop algorithms to determine the types of properties 

listed. We shall now define a very simple example of this type of system. 

A sequencE:' U = (110. UI.···) = (ud~o is called a linear recurrent se

quence if it satisfies the condition that: 
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for all k ~ n where (ro, rI,"" rn-I) E zn is a fixed integral vector we shall 

call the coefficient vector. We can see that the next value Uk depends upon 

this fixed coefficient vector and the n previous values Uk-I, Uk-2,' .. Uk-n0 

Let us consider an example. Take Uo = 0, UI = 1 and the coefficient 

vector (2,1). Thus, U2 = 2Ul+UO = 2, U3 = 2U2+UI = 5 and U4 = 2U3+U2 = 

12 etc. This gives us the sequence (0, 1,2,5, 12,25, 70, 169,408, ... ) which 

are the so called Pell numbers which can be used to approximate J2 by the 

formula 
v'2 ~ Uk-l + Uk • 

Uk 

Another more famous example is given by Uo = 0, UI = 1 and the coeffi

cient vector (1,1) which generates the Fibonacci sequence of natural num

bers (0,1,1,2,3,5,8,13,21,34,55, ... ). 

We are now ready to state SKOLEM'S PROBLEM: 

Open Problem 6.1. SKOLEM'S PROBLEM - Given a linear recurrent 

sequence (UO,UI,U2,' .. ) E ZN, does there exist some value k 2: Osuch 

that Uk = 0'( 

We can represent linear recurrent sequences using matrix notation and 

properties of the sequence can then be formulated as a property of the 

underlying matrix and vector equations. We shall show this representation 

in the next section. This will allow us to express SKOLEM'S PROBLEM in 

terms of a matrix property. 

The decidability status of SKOLEM'S PROBLEM is a long standing open 

problem. It is known to be decidable for n = 5 which is a highly non-trivial 

result requiring algebraic number theory, see [29]. A related problem, that 

of determining whether all elements of a linear recurrent sequence of depth 

2 are all positive, is known to be decidable [30). 

We can represent linear recurrent sequences using matrix notation and 

properties of the sequence can then be formulated as a property of the 
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underlying matrix and vector equations. We shall show this standard rep

resentation in the next theorem. 

6.1 Zero in the Upper Right Corner 

There is a well known construction whereby we can convert an instance of 

SKOLEM'S PROBLEM to an instance of the zero in the upper right corner 

problem for a single integral matrix. Let (TO, TI,·· . ,Tn-d be the coefficient 

vector and U = (Un,Un-I, ... UO) be the initial values. We construct the 

matrix: 
Tn-l 1 0 0 

A'= T2 0 1 0 E znxn. 

Tl 0 0 1 

TO 0 0 0 

Let 0 = (0,0, ... ,O? E zn be a zero vector. We may now extend matrix 

A' by 1 dimension to give the matrix: 

A = (0 UA') E Z(n+l)x(n+l) 
o A' , 

and clearly by studying the form of the matrix we can see that: 

Ai = (0 UA'~) E z(n+l) x (n+l) . 
o A'} 

Thus the top right element of this matrix, A11,n+l) = uHn for any j ~ 1 

as required. Therefore it follows that SKOLEM'S PROBLEM has a solution if 

an only if some power of matrix A has a zero in its upper right corner as 

required. 

This construction is well known from the literature and for a depth n 

linear recurrence it requires a matrix of dimension n + 1. We shall next 

show that instances of SKOLEM'S PROBLEM can be converted to instances 
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of the zero in the upper left corner problem on a single matrix of dimen

sion n. The resulting matrices are rational however rather than integral. 

The reason for us showing such a construction is to reduce any instance of 

SKOLEM'S PROBLEM to the mortality problem for a pair of integral matrices 

later in the chapter. 

6.2 Zero in the Upper Left Corner 

In this section we shall show a new formulation in terms of rational matrices 

where SKOLEM'S PROBLEM instances can be converted into instances of 

the ZERO IN THE UPPER LEFT CORNER PROBLEM (which we now define), 

and also into the THE MORTALITY PROBLEM for integral matrix semigroups 

which we define in the next section. 

Problem 6.2. ZERO IN THE UPPER LEFT CORNER PROBLEM - Given 

a finite set of matrices f§ = {M}, M2,···, Mn} ~ Zkxk generating a semi

group .Y, does there exist some M E .Y such that MII,I] = O? I.e. does 

there exist some matrix in the semigroup with a zero in the top left ele

ment? 

In the next theorem we convert instances of SKOLEM'S PROBLEM to 

an instance of ZERO IN THE UPPER LEFT CORNER PROBLEM with just a 

single matrix in the generator. Then we shall show that we can also convert 

into instances of THE MORTALITY PROBLEM which we define in the next 

section with just two matrices in the generator. 

Theorem 6.3. SKOLEM'S PROBLEM of depth n is equivalent to an instance 

of the ZERO IN THE UPPER LEFT CORNER PROBLEM for a semigroup gen

erated by a single matrix M E Qn x n . 

Proof. Let u = (uo, Ut, ... , un-If E zn be the initial vector of values for a 

depth n linear recurrence and r = (ro, rl, ... , r n-l) E zn be the coefficient 
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vector. 

We may write the updating procedure using matrices in the following 

way: 
0 1 0 0 Uo 

0 0 1 0 Ul 

R= , U= U2 

0 0 0 1 

TO Tl T2 Tn-l Un-l 

where R E znxn and we see that R . U = (Ul' U2, ... , Un _l,Un )T, and more 

generally: 
(6.1) 

We can then define a vector x = (0,0, ... ,If E zn and individual values 

of the sequence can be obtained: 

U - x TRk+ l u' n+k - , 

Now let us define two new matrices 8,8-1 E znxn by: 

Uo 1 0 0 0 0 0 

0 1 0 1 0 0 
ul 

8= 8-1 = 0 1 0 

Un -2 0 0 1 

Un-l 0 0 0 0 0 0 

_1_ 
Un-l 

_-.!!IL 
un -! 

_-Yl...... 
Un-l 

_Un -2 

Un-l 

Clearly, det(8) = (_I)n-l . Un-I, and 8 is thus invertible (since if Ui = 0 

for 1 ::; i < n, we have a trivial solution to Skolem's problem). Let us now 

examine element (R8)[n,l] (the bottom left element of this product). It is 

equal to L:?':-Ol TiUi which is exactly Un. Now consider element (8-1 R8)[1,1j= 

1 n-l 

(8-1 R8)[1,1] = --u- . L Tiui, 
n-l i=O 
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and we know Un -l '" 0 as stated previously. Let us define X = S-1 RS and 

consider powers of this matrix. We see that: 

(6.2) 

We see that (Rk 
. S)[n.1J = l:~:-1 TiUi = Un+k which follows from (6.1) 

since the first column of S equals the vector u. Finally then we see as before 

that: 

(6.3) 

Since u1n '" 0, then (Xk)[I,IJ = 0 iff l:f.:ol riuk+i = 0 iff there exists a 

solution to the instance of Skolem's problem. 

The characteristic polynomial of R equals tn - T n-l tn - l - ... - TO and 

therefore by the Cayley-Hamilton theorem: 

Xn xn-l + X n-2 + I = Tn-l Tn-2 ... + ro . 

Thus, X k+n = T n _lx k+n-l + r n _2X k+n-2 + ... + roXk for any k E Z+ 

validating the correctness of the encoding. 0 

We now state a simple result we shall require later on: 

Lemma 6.4. The characteristic polynomial of a depth n minimal linear 

recurrent sequence does not have 0 as a solution. 

Proof. The characteristic polynomial is tn - Tn_ltn- l - •.• - ro. If ro = 0 

then the linear recurrent sequence is not minimal, we can replace it by an 

equivalent recurrence of depth (n - 1). 0 

Therefore, we initially have an integral matrix R E znxn and then de

fine X = S-1 RS for S, S-1 E GLn(Q), such that the given instance of 

SKOLEM'S PROBLEM has a solution iff there exists k > 0 such that X~,11 = O. 
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6.3 The Mortality Problem 

We have shown that SKOLEM'S PROBLEM can be converted to an instance 

of the ZERO IN THE UPPER LEFT CORNER PROBLEM. We shall now show 

that it can also be converted to THE MORTALITY PROBLEM which we now 

define: 

Problem 6.5. THE MORTALITY PROBLEM - Given a finite set of integml 

matrices C§ = {.MI, M2 , .•• , Mn} ~ Zkxk genemting a semigroup.5", does 

there exist Z E .5" where Z is the zero matrix? 

It is known that THE MORTALITY PROBLEM is undecidable for semi

groups generated by 8 integral matrices of dimension 3, see [25]. Conversely, 

it is known that the problem is decidable for a pair of 2 x 2 rational matrices, 

see [16}. The problem is currently open for an arbitrary number of matrices 

in dimension 2: 

Open Problem 6.6. Is THE MORTALITY PROBLEM decidable for a 

semigroup generated by a finite set of 2 x 2 rational matrices? 

Theorem 6.7. SKOLEM'S PROBLEM for linear recurrences of depth n can be 

converted to THE MORTALITY PROBLEM for a 2-genemtor integml matrix 

semigroup of dimension n. 

Proof. This can be shown in a similar way to THE MORTALITY PROBLEM 

was proven undecidable in [25]. Let X = 8-1 R8 as in the previous theorem. 

Define 
1 

0 
P= 

0 

0 

0 

0 

o 
o 

o 
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Now define a semigroup .Y = (X,P). Notice that PXrp has zero's 

everywhere except the top left element which is 0 iff X[J,I) = 0 iff Ur+k = O. 

Now, assume that some matrix M E .Y is equal to the zero matrix: 

M = M1M2'" Alt = O. Since P is idempotent (Le., p2 = P), clearly we 

can equivalently write this in the form: 

where i, m, k ~ 0 and j, > 0 for each 1 $ 1 $ k, since it either starts/ends 

with a power of X matrices or with P. If (Xi 'P)[l,l) = 0 or (p.xm)[l,l) = 0 

then we are done (since this is a solution), otherwise assume they do not. 

Now consider each central product (P . XiI. P). Clearly from the form 

of P this equals Xt:,l) . P, which is a matrix with all zeros except the top 

left element which equals the top left element of Xi,. 

Thus if (P . X31 . P)(P . Xh . P) ... (P . Xi" . P)[l,l) = 0 then one of 

the bracketed subproducts equals 0 which corresponds to a correct solution. 

Thus, again assume no such product equals the zero matrix. 

Finally then we have a product M = (Xi. P)(>.P)(P . xm) = 0 where 

>. E Q \ {O}. But (Xi. P)(>. . P) = Xi . >'P. This has zero's everywhere 

except the leftmost column and (P . xm) has zeros everywhere except the 

uppermost row. Thus element M[l,l) = (Xi. >'P)[l,l] . (P . xm)[l,lj = 0 but 

this is a contradiction since if the upper left corner is zero it corresponds to 

a correct solution. o 

6.4 Exponential Diophantine Equations 

It is also interesting to note that from this matrix representation we may 

derive a related problem in terms of exponential Diophantine equations. 

This may also be derived more directly from the Cayley-Hamilton theorem 

but we include it here for completeness and to show the connection between 

these three problems. 
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Problem 6.8. Given two vectors x = (XO, Xl,···, Xn-1), Z = (ZO, Zl,"" Zn-1) 

where x, Z E en and each Xi, Zj are algebraic integers. Does there exist some 

kEN such that: 
n-l 

LZiXf = O? 
i=O 

Or equivalently: 

Problem 6.9. Given two vectors of algebraic integers x, Z E Cn, we can 

define the decision question, 

00 n-l 

Does II L zjxf = O? 
k=l i=O 

We shall now show a case where SKOLEM'S PROBLEM can be reduced 

to Problem 6.8, or equivalently to Problem 6.9. In other words we show 

a subset of instances of SKOLEM'S PROBLEM that have a solution if either 

Problems 6.8 or 6.9 have an algorithmic solution. 

Theorem 6.10. Given an instance of SKOLEM'S PROBLEM with linear re

current sequence u = (uo, U1,"" un), if the companion matrix of u has a 

characteristic polynomial with distinct roots then the instance can be reduced 

to Problem 6.8. 

Proof. Since the characteristic polynomial of R has distinct non-zero roots 

(by the statement of the theorem and Lemma 6.4), R is diagonalizable, thus 

R = T-IDT where T E GLn(C) and DE cnxn is a diagonal matrix. Now, 

as before, we let X = S-l RkS. Therefore we see that: 

S, T E GLn(C), DE cnxn 

It is now apparent that we have fixed matrices S-lT-l, TS and a di

agonal matrix D whose powers are easy to compute. We are interested in 

the upper left corner of X. Let u be the top row of S-lT-1 and v be the 

leftmost column of TS. Obviously uT v = 1 since these matrices are inverse 

to each other. 



6.4. Exponential Diophantine Equations 103 

Let D = dl ED d2 ED ... ED dn where di E C be the diagonal matrix. Thus 

Dk = d~ ED d~ EB ... EB d~. Now we see that: 

n 

X~.ll = (uld~, u2d~, ... , und~) . vT 
= L UiVidf 

i=l 

Clearly UiVi is constant for each instance and we simply take the initial vector 

x in the statement of Problem 6.8 to be x = (UIVI,U2V2, ... 'unvn) E en. 

We take the second vector z to be z = (dl , d2 , ... , dn). And now we see that 

the two problems are indeed equivalent. Note that we still have the factor 

...L which changes the result but since this is non-zero, the summand equals 
Un 

zero iff the instance of Skolem's problem has a solution. 0 

What form will the diagonalizing matrix for R (a companion matrix) 

take? The next proposition will show this. 

Proposition 6.11. If the characteristic polynomial of a companion matrix 

R E enxn has n distinct roots {ao, al,"" an-d, then it is diagonalized by 

the Vandennonde matrix V of these values. 

Proof. Let us define the Vandermonde matrix V of {ao,al, ... ,an-I} by: 

1 1 1 

ao al an-l 

V= a~ a~ 2 
an-l 

n-l ao 
n-} a} n-} 

a n- 1 

Let {xo,X}, ... ,xn-I} be the set of row vectors of V-I. Thus: 

(tt) 

where dij is the Kronecker delta. Recall the companion matrix R defined 
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as: 
0 1 0 0 

0 0 1 0 

R= 

0 0 0 1 

TO TI T2 Tn-I 

Consider the product R· V. Since the characteristic polynomial p(>.) 

of R is defined by p(>.) = det(>.I - R) = >.n - Tn_l>.n-l - ... - TO then 

rOoj + TIa; + ... + Tn_laj-l = aj iff p(aj) = O. Thus if {ao, a}, ... , an-I} 

are indeed latent roots of R, then: 

ao al an-I 

a 2 a2 2 

RV= 
0 I a n- 1 

a8 a~ a~_1 

Finally we must compute V-I R = [bij] E cnxn . Element bij of V-I RV 

is given by Xi • Yj where Xi is the i'th row vector of V-I and Yj is the j'th 

column vector of RV (i.e, Yj = (aj, aj, ... , aj)T). From (tt) on the previous 

page, we know that Xi • (1, aj, a;, ... ,aj)T = Oij thus: 

n-I n-I 

bij = XiYj = :~:)xi)kaJ+1 = aj . L(xi)ka~ = aj . bij, 
k=O k=O 

and [bij ] is a diagonal matrix (due to the Kronecker delta) which is equal to 

00 EB al $ ... $ an-I as required. 0 

It is now clear that in Theorem 6.10, T can be taken to be the Vander

monde matrix of the eigenvalues of R. Let D = [bij ] = ao Ea al E9 ... Ea a n-l 

be the diagonal matrix from the last theorem. Then V-I RV = D and thus 

R = VDV-1• 

In Theorem 6.3, we defined a matrix X = 8-1 R8 and noted that the 

linear recurrent sequence had a zero iff there exists a particular k > 0 such 
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that X~.IJ = 0 with k a positive integer. Since R = V DV-1 we can see 

that X = S-IVD\/-lS and that a zero in the linear recurrent sequence is 

present iff there exists a k > 0 such that (S-lVDkV-1S)[l,lj = O. 

In conclusion, we have shown that any instance of SKOLEM'S PROBLEM 

with a linear recurrent sequence of depth n can be reduced to an instance 

of THE MORTALITY PROBLEM with a pair of integral matrices of dimension 

n x n. We have also shown a subclass of instances of SKOLEM'S PROBLEM 

which can be reduced to a form of exponential Diophantine equation prob

lems where the coefficients are algebraic integers. 



Chapter 7 

Geometric Interpretations 

and Applications 

In this section, we will move from an algebraic point of view to geometric 

interpretations of previously considered problems and in particular, new 

theorems concerning quaternion matrix semigroup problems. This leads to 

an interesting set of problems which we shall now outline. 

Problem 7.1. POINT ROTATION PROBLEM (PRP(n)) - Given points 

x, y E Qn on the unit (n -I)-sphere and a semigroup Y of n-dimensional 

rotations. Does there exist M E Y such that M rotates x to y'l 

In general, we can consider PRP(n) with a semigroup of n-dimensional 

rotation matrices (i.e., orthogonal matrices with determinant 1). In 3-

dimensions, we may take Y to be a semigroup of quaternions and define 

the rotation problem to be "Does there exist q E Y such that qx' q-l = y' 

where x', y' E H(Q)o are pure quaternions with imaginary components cor

responding to the vectors x, y. 

We shall show that the POINT ROTATION PROBLEM is decidable for 2-

dimensions. Further, it is undecidable in 4-dimensions, and its decidability 
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status is op<'n in 3-dimensions. 

Theorem 7.2. The POINT ROTATION PROBLEM, PRP(2) is decidable. 

Proof. Points x. y E Q2 where x = (xo, xt), y = (Yo, yt), can be represented 

instead as complex numbers x', y' E C. Using the exponential representa

tion, let x' = TICi8\ and y' = r2ei92 where rl = lxi, r2 = Iyl, 81 = arccos(~) 
and 81 = arccos ( III ). We can convert all rotations of the semigroup in the 

I/o 

same way to give a complex semigroup Se. Now the problem becomes: 

"Does there exist AI E Se such that M x' = y'?", but clearly M = ~ and x 

since Se is commutative, membership is decidable [3], proving the result. 0 

We can define a standard scalar reach ability problem in terms of quater-

nions: 

Problem 7.3. QUATERNION SCALAR REACHABILITY PROBLEM 

(QSRP(n)) - Given vectors u, v E lHl(Qt a scalar r E lHl(Q) and a 

semigroup of matrices Y C lHl(Q)nxn. Does there exist M E Y such that 

uTMv = r? 

Now we can prove that: 

Theorem 7.4. The POINT ROTATION PROBLEM PRP(3) is reducible to the 

QUATERNION SCALAR REACHABILITY PROBLEM QSRP(2). 

Proof. Since we are dealing with throo-dimensional rotations, we can convert 

all elements of the PRP(3) instance to quaternions. Specifically, we define 

x', y' E lHl(Q)o to be pure quaternions with imaginary parts corresponding 

to x, y vectors respectively. We convert each throo-dimensional rotation, R 

in Y to an equivalent unit quaternion q such that the imaginary vector in 

qx' q-l is equivalent to Rx for example. 

Each quaternion q in the PRP(3) is of unit length, therefore it is invert

ible and thus if qxq-l = y we may write qx = yq. Let f§ = {qo, ql,"" qm} = 
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y \ y2 be the generator of Y. Define 0: = (y, 1) and {3 = (-1, x f and let 

'i§' = {Mo, A'h,···, !11m } where 

and let Y' = ('i§') be a new semigroup. 

Then ::JAIl E Y' such that o:M{3 = 0 iff::Jq E Y such that qxq-l = y. To 

see this, note that aM(3 = qx - qy where M = (~ ~) and 

qx - yq = 0 

::::;. qx = yq 

=> qxq-l = y 

as required. 0 

In fact we know that QSRP(2) is undecidable in general: 

Theorem 7.5. The QUATERNION SCALAR REACH ABILITY PROBLEM is un

decidable for a semigroup Y generated by 5 two-dimensional diagonal quater-

nion matrices. 

Proof. Let 'Y : E* ~ IHl(Q) be an injective homomorphism as defined previ

ously. Let 

{(Ul,Vl),(U2,V2), ... ,(un ,Vn )} c E* x 1;*, 

be a Claus instance of PCP. Then we see that if 

Mi=('Y(Ui) 0) ;2:Si:Sn-l, 
o 'Y(Vi) 

and 0: = (-y(ut}, 'Y(vt}), {3 = (-y(un ) , -'Y(vn)f and r = 0 then: 

where Mw = MWI MW2 ... MWk and 1 :S Wi :S n - 1 for each 1 :S i :S k. 

Since there exists a Claus instance of pCP which is undecidable for n = 7 [28], 
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the problem is undecidable for 5 matrices (since we have put the first and 

last elements inside the vectors 0:, (3). 0 

But the decidability status of PRP(3) remains open (since the reduction 

is one way): 

Open Problem 7.6. 3D POINT ROTATION PROBLEM (PRP(3)) - Given 

two points on the 2-sphere, x, y E Q3, and a semigroup oj rotations Y 

generated by a finite set r,g. Does there exist some rotation R E Y such that 

R rotates x to y? 

The rotation problem P RP(3) is not only related to problems on quater

nions but can also be reformulated as a l-dimensional vector reachability 

problem for a semigroup or a group of rational linear functions over the 

complex field also known as Mobius transformations. In geometry, a Mobius 

transformation is a function, J : C I-t C defined by: 

J(z) = az + b 
cz + d' 

where z, a, b, c, dEC are complex numbers satisfying ad - be =1= O. Mobius 

transformations may be performed by taking a stereographic projection from 

a plane to a sphere, rotating and moving the sphere to a new arbitrary 

location and orientation, and making a stereographic projection back to the 

plane. Since there is a unique mapping between rotations of the 2-sphere and 

Mobius transformations, problem P RP(3) is equivalent to the reach ability 

problem of nondeterministic iterative maps: "Given a finite set M of one

dimensional linear rational functions over the complex field and two points 

x and y on the complex plane. Does there exist an algorithm to determine 

whether it is possible to map x to y by a finite sequence of linear rational 

functions from the set M?". 

We next show that PRP(4) is undecidable. 

Theorem 7.7. The Jour-dimensional Point Rotation Problem (PRP(4)) is 

undecidable. 
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Proof. The set of all unit quaternions forms a 3-dimensional sphere (3-

sphere) and any pair of unit quaternions a and b can represent a rotation in 

4D space. We can rotate a point x = (Xl, X2, X3, X4) on the 3-sphere, repre

sented by a quaternion qx = (Xl, X2, X3, X4), in the following way: aqxb- l
. 

Given a finite set of rotations, {(al,bl ), ... , (an,bn )), represented by 

pairs of quaternions. The question of whether a point X on the 3-sphere 

can be mapped to itself by the above set of rotations is equivalent to the 

problem whether there exists a non-empty sequence of indices (rl, ... ,rm ) 

such that arl .•. arm qxb:;'~ ... b;:/ = qx· 

If X is a point represented by quaternion (1,0,0, O)tL the above equation 

only holds when a rl ar2 ... arm = brl br2 .•. brm • According to Theorem 5.3 

we have that the four-dimensional Point Rotation Problem is undecidable 

for 7 rotations. Moreover it is easy to see that PRP(4) is undecidable even 

for 5 rotations using the idea of Claus instances of PCP, see Section 3.2.1 

and [28]' where two of the rotations (the first and the last one) can be fixed 

and used only once. D 

Corollary 7.8. The vector reachability problem for n x n rational orthogonal 

matrix semigroups is decidable when n ~ 2 and undecidable for n ~ 4 with 

at least 5 matrices in the semigroup generator. 

It is not clear whether or not the membership for semigroups of rational 

quaternions is decidable and thus we pose the open probl~: 

Open Problem 7.9. QUATERNION MEMBERSHIP PROBLEM - Given a semi

group of rational quaternions, .7, generated by a finite set C§ c JH[(Q) , is 

membership decidable for .7? I. e. can we decide if X E .7 for any x E JH[( Q) ? 

Another natural question to ask on finitely generated semigroups of ra

tional quaternions concerns the decidability of the freeness of the semigroup: 

Open Problem 7.10. QUATERNION FREENESS PROBLEM - Given a semi

group of rational quaternions, .7, generated by a finite set C§ C JH[(Q) , is.7 
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free? J. e., is it decidable to determine whether each element of Y' has a 

unique factorisation in terms of elements of C§? 

Note that the Problem 7.10 can be formulated instead as a freeness 

problem on two-dimensional rational complex matrices since there exists 

an injective homomorphism between the two structures. Some decidable 

conditions on freeness for two-dimensional rational matrix semigroups were 

given in [17] but the case of complex matrices would appear to be more 

difficult. 

It seems unlikely that the above two open problems would be unde

cidable since it would almost certainly imply we could simulate universal 

computation within a two-dimensional complex matrix semigroup. Since we 

know that two separate words cannot be stored and updated by standard 

multiplication in two-dimensional complex matrices by the results of [17], 

this makes it improbable that universality can be achieved; this is of course 

only a conjecture however. 



Chapter 8 

Conclusion 

New Results 

In this thesis we explored a wide range of computational decision problems 

on matrix semigroups. We were primarily concerned with the computabil

ity of such problems, i.e., we attempted to derive algorithms which solved 

the decision problems for a set of instances or prove that no such general 

algorithm could exist. In the introductory chapter we showed how matrices 

and matrix semi groups underlie many fields of mathematics and computer 

science and thus the decidability of problems on these structur~s can have 

wide ranging consequences in other fields. We do not simply show a set of 

undecidable membership problems, but instead try to st-udy fundamental 

problems on semigroup structures themselves as we shall outline below. 

We presented four distinct variants of "Post's correspondence problem 

(pcP)", two of which were our own and these allowed us to prove several 

undecidability results throughout the thesis. Specifically, we formulated 

and proved the undecidability of "Index Coding PCP" and "Fixed Element 

PCP". The definitions and proofs of these two variants are similar, however 

the different formulations were essential is the proofs of a set of results 

discussed below. We also presented the so called "Claus Instances" of pCP 
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since they are perhaps not yet widely known, however we did not prove their 

undecidability within this thesis, see [20] and [28] for these proofs. We also 

gave a standard proof that pCP is undecidable. 

The first undecidability proof given was that of membership for a scalar 

matrix in a finitely generated 4 x 4 integral matrix semigroup. We presented 

the results of this theorem in [5, 7] and showed the undecidability of the 

problem via an embedding of the Index Coding PCP. The problem seems 

both natural and fundamental since a scalar matrix has an obvious geometric 

meaning, that of scaling an object represented by a set of vectors, by a 

fixed amount. The problem would also appear to be connected to the long 

standing open problem called the identity matrix membership problem, see 

Open Problem 4.3. This problem asks whether the identity matrix is present 

in a finitely generated semigroup. The connection between the two problems 

seems strong but our technique unfortunately does not work in this specific 

case. 

We then proved that the "Zero in the Upper Right Corner Problem" IS 

undecidable for a semigroup generated by a pair of 18-dimensional integral 

matrices. This problem has appeared several times in the literature and 

we reduced the dimensions needed for undecidability using a new encoding 

technique. We presented this result in [6, 8]. 

Next we considered the problem of determining whether any matrix in 

a semigroup is diagonal. This appeared as an open problem in a recent 

book "Unsolved Problems in Mathematical Systems and Control Theory" 

[14] and we showed it's undecidability for 4 x 4 complex matrix semigroups 

by utilising the Fixed Element PCP in [9]. Diagonal matrices are extensively 

used in linear algebra and thus determining if any matrix in a semi group is 

diagonal appears to be an important question, see also Open Problem 4.8. 

We then study "Vector Reachability Problems" (VRP) on matrix semi

groups. We show that the VRP on a semigroup generated by five rational 

3 x 3 matrices is undecidable. Using the above mentioned Claus instances 



114 

of PCP, we then show how this problem is in fact undecidable even for semi

groups generated by just two rational matrices of dimension 11 in [6,7]. The 

next result in this section concerns the "Vector Ambiguity Problem". This 

problem asks whether a set of vectors generated by left multiplication of a 

specific vector by elements of a semigroup is free. We show that the prob

lem is undecidable for a finitely generated semi group of three-dimensional 

rational, or four-dimensional integral, matrices in our paper [9]. 

Next we showed that there exists a specific fixed matrix semigroup such 

that determining whether a matrix is present in the semi group is undecid

able. This is an interesting result since usually the instance of the member

ship problem is both a specific matrix M and a set of matrices f# comprising 

the generator of the semigroup. We show that even if the generator is fixed, 

we can still have an undecidable membership problem for varying single ma

trix M. This proof is achieved via an encoding of a universal Turing machine 

within a set of matrices. 

We also study the so called "Recurrent Matrix Problem" which asks 

whether a specific matrix M has an infinite number of factorisations over 

elements of a generator f#. We ask the problem for an invertible matrix M, 

since the problem is not so interesting for a singular matrix (the problem 

is trivially undecidable from the proof of undecidability of the mortality 

problem). These results were also from our recent paper [9]. 

The testing for emptiness of the intersection of two semigroups of ma

trices of the same size was studied by A. Markov in 1947 where he showed 

the problem is undecidable for four-dimensional unimodular non-negative 

matrices [42]. This result was improved by V. Halava and T. Harju to semi

groups in three-dimensional integral non-singular matrix semigroups. We 

prove a slight improvement of this result where we obtain the result for 

three-dimensional integral non-singular upper-triangular non-negative ma

trices by using a different embedding of words into matrices. We also show 

that the problem remains undecidable for three dimensions when the ma-
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trices of the generator are unimodular, non-negative and upper-triangular 

although this result is over rational numbers rather than integers [4]. 

The next chapter of the thesis deals with computational decision prob

lems on quaternion and quaternion matrix semigroups. This is a relatively 

unexplored area and we gave a solid justification as to its study in the intro

duction. This mainly stems from the fact that the quaternions are a superset 

of the complex numbers (they are so called hypercomplex numbers) which 

still retain the property of associativity (although they lose commutativ

ity). The next number system in the Cayley-Dickson construction are the 

8-dimensional octonions which in fact lose the associativity property. Since 

associativity is required by definition in semigroups, the quaternions are the 

most abstract number system we may reasonably use in such computational 

problems. Furthermore, the quaternions have a natural geometrical inter

pretation and thus we can derive many corollaries from the algebraic results 

we obtain on quaternion semigroup problems. 

We prove that most problems are undecidable for quaternion matrix 

semigroups in dimension two. Specifically we show that membership, vector 

reachability and freeness are all undecidable. We also show semigroup in

tersection problems are undecidable for dimension 1 and 2 depending upon 

the definition. Determining whether any matrix in a finitely generated two

dimensional quaternion matrix semigroup is diagonal is also shown to be 

undecidable. This is in contrast to the same problem being shown to be 

undecidable over four-dimensional complex matrix semigroups. It should 

be noted that we are required to use completely different proofs for these 

two results, one does not follow as a corollary of the other result. We leave 

Open Problem 4.8 unresolved, which is the determination as to whether any 

matrix in an integral matrix semigroup is diagonal. 

We show that membership is decidable for a semigroup of Lipschitz in

tegers (quaternions with integral components) although we also show semi

group intersection emptiness problems over Lipschitz integers is undecidable. 
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All of the quaternion matrix semigroup results were presented in [lOJ. 

Skolem's problem (or Pisot's problem) is the decidability status of the 

algorithmic determination as to whether or not a given linear recurrent 

sequence has a zero. We showed a reduction of this problem to the mortality 

problem for a pair of integral matrices and an equivalence with exponential 

Diophantine equations in a restricted subclass of instances of the problem. 

Finally we examined computational problems from a geometric perspec

tive. Since quaternions have a geometric meaning, the study of computa

tional problems on them gives rise to many naturally defined questions from 

a real world physical perspective which could have a wide range of appli

cability in different fields. We mainly study rotation problems; given two 

specific points x, y and a finitely generated semigroup of rotations, is it pos

sible to find a rotation mapping x to y? In three dimensions this problem 

can be defined on a robotic arm for example. If the arm can only rotate in a 

certain number of ways, can we move the arm to a specific point? The prob

lems are also interesting from a purely theoretical point of view since they 

are reachability problems on algebraic structures as we examine throughout 

the thesis. 

Open Problems 

There is much more work to be carried out in this area" and indeed there 

exists a number of open problems within the field, some of which we have 

highlighted throughout the thesis. Clearly defining the boundary between 

decidable and undecidable problems is worthwhile since it can indicate the 

necessary conditions for undecidability to be present and help us to under

stand computability theory to a greater extent. 

Some problems appear to be of a more fundamental nature, such as 

determining whether the identity element is present within a semigroup. 

This is because the presence of the identity matrix has many implications 

for other problems. If a product of elements equals the identity element, 
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then each element of the product has a multiplicative inverse and it allows 

us to determine if a given generator set forms a group rather than just a 

semigroup; therefore if the membership problem for the identity matrix is 

decidable, so is determining if the semigroup is a group for example. 

We shall now collect together and discuss the complete list of open prob

lems present within this thesis which are all concerned with the decidability 

status of decision problems. 

Open Problem 4.3 IDENTITY MATRIX MEMBERSHIP PROBLEM -

Given a finitely generated matrix semigroup ..'7, does the identity ma

trix I belong to ..'7? 

This seems to be a very important problem and despite extensive study 

by several researchers, it remains unsolved. The problem seems superficially 

related to the scalar matrix reachability problem which was shown to be un

decidable in Theorem 4.1 which is concerned with the membership problem 

for a scalar matrix of the form kI where Ikl > 1 and I is the multiplicative 

identity matrix. However, the property that k must be non-unit appears 

intrinsic to the use of the "Index Coding PCP" , since we must ensure a spe

cific matrix in the semigroup is used only once when we obtain a product 

corresponding to a correct pCP solution. Despite many attempts we cannot 

use this technique for proving a similar result on the identity matrix. 

Open Problem 4.8 ANY DIAGONAL MATRIX - Given a finite set of 

integral matrices C§ generating a semigroup..'7. Does there exist any 

matrix D E ..'7 such that D is a diagonal matrix? 

The problem was posed in [14] and the authors there considered a case for 

three-dimensional integral matrices which does not quite work. We showed 

the problem to be undecidable in two-dimensions over quaternions matrices 
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in Theorem 5.7 and over four-dimensional rational complex matrix semi

groups in Theorem 4.7. Thus the problem remains open for integral matrices 

over any dimension. 

Open Problem 6.1 SKOLEM'S PROBLEM - Given a linear recurrent se

quence (uo, Ul, u2, . .. ) E ZN, does there exist some value k ::::: 0 such that 

Uk = O? 

This is a very famous open problem and has been extensively studied. 

We showed a reduction of the problem to the mortality problem for a pair 

of integral matrices and a sub case where the problem is reducible to an 

exponential Diophantine equation but the decidability of the problem itself, 

of course, remains open. The problem is decidable for linear recurrences of 

size 5 [29]. 

Open Problem 6.6 The 2 x 2 MORTALITY PROBLEM - Is the mortality 

problem decidable for a semigroup generated by a finite 5~t of 2 x 2 rational 

matrices? 

This open problem first appeared in [48] in a slightly different form. The 

problem is known to be decidable when we have a semigroup generated by a 

pair of 2 x 2 rational matrices, see [16]' but the decidability for an arbitrary 

number of matrices in the generator is unknown. It is an important open 

problem since it is related to the controllability of a switched linear system 

and has been studied several times, see also [34] and [35]. 

Open Problem 7.6 3D POINT ROTATION PROBLEM (PRP(3» - Given 

two points on the 2-sphere, x, y E Q3, and a semigroup of rotations Y 

generated by a finite set r§. Does there exist some rotation R E Y such 

that R rotates x to y? 
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This problem is similar to Problem 7.9 below, but the two problems are 

not exactly the same and since this problem is of a strictly geometric nature, 

its solvability might have an impact in the real world since it deals with 3-

dimensional space. The decidability status of the problem might also have 

an impact on more general algebraic questions on quaternion semigroups. 

Open Problem 7.9 QUATERNION MEMBERSHIP PROBLEM - Given a 

semigroup of rational quaternions, Y, generated by a finite set I§ C IHl(Q), 

is membership decidable for Y? I.e. can we decide if x E Y for any 

x E lHI(Q)? 

Since a single rational quaternion may be represented by a two-dimensional 

rational quaternion matrix, this problem is a restricted form of the decid

ability of membership for 2 x 2 complex matrix semigroups. It is known that 

a pair of words cannot be stored in such a semigroup where standard matrix 

multiplication is the binary operator, see [17]. The problem posed has addi

tional constraints, thus is would seem unlikely that it would be undecidable 

but we do not know of a decision procedure for it. 

Open Problem 7.10 QUATERNJON FREENESS PROBLEM - Given a semi

group of rational quaternions, Y, generated by a finite set '# C lHI(Q), is it 

algorithmically decidable whether Y is free? I.e. is it decidable whether 

each element of Y has a unique factorisation in terms ~f elements of f§? 

This is another problem which naturally arose from our study of quater

nion matrix semigroup problems. Freeness problems for 2 x 2 matrix semi

groups were recently studied in [17] but even for upper triangular integral 

matrices the problem appears difficult and only some restricted subclasses 

are known which are decidable. However, since the quaternions have a dif

ferent form, perhaps the problem can be tackled with a new technique. 
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