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rule. 
The problem of model selection is studied to pick the best values of the hyper- 

parameters for a parametric classifier. To choose the optimal kernel or regularization 

parameters of a classifier, we investigate different criteria, such as the validation error 

estimate and the leave-out-out bound, as well as different optimization methods, such 

as grid search, gradient descent, and GA. By viewing the tuning problem of the multiple 

parameters of an 2-norm support vector machine (SVM) as an identification problem 

of a nonlinear dynamic system, we design a tuning system by employing the extended 
Kalman filter based on cross validation. Independent kernel optimization based on 
different measures of data separability are also investigated for different kernel-based 

classifiers. 
Numerous computer experiments using the benchmark datasets verify the theo- 

retical results, make comparisons among the techniques in measures of classification 

accuracy or area under the receiver operating characteristics curve. Computational 

requirements, such as the computing time and the number of hyper-parameters, are 

also discussed. 

All of the presented methods are applied to breast cancer detection from fine-needle 

aspiration and in mammograms, as well as screening of knee-joint vibroarthrographic 

signals and automatic monitoring of roller bearings with vibration signals. Experimen- 

tal results demonstrate the excellence of these methods with improved classification 

performance. 
For breast cancer detection, instead of only providing a binary diagnostic decision 

of "malignant" or "benign", we propose methods to assign a measure of confidence 

of malignancy to an individual mass, by calculating probabilities of being benign and 

malignant with a single classifier or a set of classifiers. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

Machine learning usually refers to the changes in systems that perform tasks associated 
with artificial intelligence, such as recognition, diagnosis, planning, robot control, and 
prediction [163]. Machine learning is very important not only because that the achieve- 

ment of learning in machines might help us understand how animal and humans learn. 
but also the following engineering reasons [163] : Some tasks cannot be defined well 

except by examples; that is, we might be able to specify input/output pairs but not a 

concise relationship between inputs and desired outputs. We would like machines to be 

able to adjust their internal structure to produce correct outputs for a large number of 

sample inputs and, thus, suitably constrain their input/output function to approximate 
the relationship implicit in the examples. Also, machine learning can be used to reach 

on-the-job improvement of existing machine designs, to capture more knowledge than 

what humans would want to write down. to adapt to a changing environment to reduce 
the need for constant redesign, and to track as much new knowledge as possible. 

Pattern classification is a supervised learning procedure in which individual items 

are placed into groups based on quantitative information on one or more characteristics 
inherent in the items and based on a training set of previously labeled items. Pattern 

classification has drawn much research attention as it spans a vast number of appli- 

cation areas [8,10,52.79,176,231,240,253], such as medical diagnosis. 

speech recognition, handwriting recognition, natural language processing, document 

classification, internet search engines. 
A pattern classification system should include feature extraction, feature selection. 

classification, and model selection. Feature extraction is to characterize an object by 
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measurements whose values are similar for objects in the same category. and different 
for object in different categories. Feature selection is performed to remove the irrelevant 

or redundant features that have a negative effect on the accuracy of the classifier. A 

classifier uses the feature vector provided by the feature extractor and feature selector 
to assign the object to a category. Parameters of a classifier may be adjusted by 

optimizing the estimated classification performance or measures of data separability. 
which leads to the problem of model selection. 

The objectives of this research are developing machine learning algorithms for fea, 

ture selection, classification, and model selection to improve the classification perfor- 
mance. All the presented methods find applications to breast cancer detection from 

fine-needle aspiration (FNA), identification of breast tumors in mammograms, screening 

of knee-joint vibroarthrographic (VAG) signals, and fault detection of roller bearings. 

For breast cancer detection, panel discussions at recent conferences on computer- 

aided diagnosis (CAD) have indicated increasing interest in not only the detection and 

classification of signs of cancer in mammographic images, but also the assignment of a 
degree of confidence in the CAD labels or marks placed on an image being analyzed. In 

such a situation, we also aim to explore methods to assign a measure of the confidence 

of malignancy to an individual mass based on its corresponding output value, instead 

of only providing a binary diagnostic decision of "malignant" or "benign". 

1.2 Original Contribution 

A summary of the the main original contributions of this work are shown below on a 

chapter-by-chapter basis. 

Chapter 5 

" We propose to perform a separate nonlinear transformation of features before the 

classification task, by applying kernel principal component analysis (KPCA) and 

kernel partial least squares (KPLS), and to employ a simple linear classifier with 

the transformed features, for nonlinear classification. 

Chapter 6 

" We propose the pairwise Rayleigh quotient (PRQ) classifier by seeking one dis- 

criminating boundary based on an unconstrained optimization objective formed 

with a set of pairwise constraints instead of individual training sample,,. which 

consequently leads to a generalized eigenvalue problem with low computational 

complexity. 
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" We propose the strict 2-surface proximal (S2SP) classifier by seeking two) proxi- 
mal planes, which are not necessary parallel, to fit the distribution of the samples 
in the original feature space or a kernel-defined feature space. Tw() (ytüiliza- 
tion objectives with the `square of sum' optimization factors are lmiximized toy 

eliminate the regularization terms. 

" We propose two variations of the support vector data description (SVDD) with 

negative samples (NSVDD) that learns a closed spherically shaped boundary 

around a set of samples in the target class. by involving different forms of slack 

vectors, including the 2-norm NSVDD niid v-NSVDD. We extend the NSVDDs 

to solve the multi-class classification problems based on distances between the 

samples and the centers of the learned spherically shaped boundaries in kernel- 

defined feature space, using a combination of linear discriminant analysis (LDA) 

and nearest-neighbor (NN) rule. The proposed methods find applications in ma- 

chine condition monitoring. 

Chapter 7 

" Different fine tuning systems, used to select the kernel and regularization param- 

eters for support vector machines (SVMs), are investigated and compared based 

on the estimated risk of an SVM. 

" We propose to view the tuning problem of the kernel and regularization param- 

eters of the 2-norm SVM as an identification problem of a nonlinear dynamic 

system, and to employ the extended Kalman filter (EKF) to determine the mul- 

tiple parameters based on cross validation. 

Chapter 8 

" All of our proposed methods find applications to breast cancer detection from 

FNA, analysis of breast masses and tumors in mammograms, and screening of 

knee-joint vibroarthrographic signals. 

1.3 Publications 

Papers arisen from the this PhD work are listed as follows: 

Journal Papers 

1. T. Mu, A. K. Nandi, and R. M. Rangayyan, Classification of breast masses using 

selected shape, edge-sharpness, and texture features with linear and kernel-based 

- classifiers, Journal of Digital Imaging, online first, DOI: 10.1007/s10278-07-9l02 

z, 2008. 
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2. T. Mu and A. K. Nandi. Autoliiýitic Tuning of L2-SVýI Pý i iuieterý Eliiploý ilia; 
Extended Kalman Filter, accepted by Expert Sys ý, 'tenis. 2007. 

3. T. I\Iu, A. K. Nandi, and R. M. Rangayyan. Analysis of breast tumors in mam- 
mograms using the pairwise Rayleigh quotient classifier. Journal of Elýctrý>iii< 
Imaging, 16(4): 043004: 1-11, DOI 10.1117/1.2803834,2007. 

4. T. Mu, A. K. Nandi, and R. M. Rangayyan, Classification of 1>rewst masses vigil 

nonlinear transformation of features based on a kernel nuitrix, Medical and Bio- 

logical Engineering and Computing, 45(8): 769-780.2007. 

5. T. Mu and A. K. Nandi, Breast cancer detection from FNA using SVM with dif- 
ferent parameter tuning systems and SOAI-RBF classifier, Journal of the Franklin 
Institute, 314(3-4): 285-311,2007. 

Conference Papers 

1. T. Mu and A. K. Nandi, Breast cancer diagnosis from fine-needle aspiration using 

supervised compact hyperspheres and establishment of confidence of malignancy. 
the 16th European Signal Processing Conference, EUSIPCO, Lausanne, Switzer- 

land, 2008. 

2. T. Mu and A. K. Nandi, Breast cancer diagnosis and prognosis using different 

kernel-based classifiers, Int'l Conf. on Bio-inspired Systems and Signal Process- 

ing, BIOSIGNALS. Funchal, Madeira, Portugal, 2008. 

3. T. Mu. A. K. Nandi, and R. M. Rangayyan, Strict 2-surface proximal classification 

of knee-joint vibroarthrographic signals, Proc. of the 29th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society. EMBC, 

pp. 4911-4914, Lyon, France, 2007. 

4. T. Mu and A. K. Nandi, A proximal classification method based on two smallest 

and supervised hyperspheres, Proc. of the IEEE Intl Workshop on Machine 

Learning for Signal Processing, MLSP, pp. 63-68, Thessaloniki, Greece, 2007. 
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Conf. on Signal Processing, Pattern Recognition, and Applicatioiis. SPPRA, pp. 

356-361, Innsbruck, Austria, 2007. 
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Chapter 2 

Machine Learning 

This chapter describes the fundamentals of machine learning, emphasis being laid on 
the topic of pattern classification. Section 2.1 provides a brief introduction to ina. chine 
learning and the applications. Section 2.2 summarizes the common types of machine 
learning algorithms. One standard formulation of the supervised learning task is c1is- 

sification, which is one of the most widely used learning techniques, and also the major 
focus of this PhD study. Section 2.3 provides a fairly comprehensive review of the main 

existing pattern classification methods. As most of the machine learning algorithms ei- 
ther use optimization or are instances of optimization algorithms, several optimization 

algorithms are recalled in Section 2.4. 

2.1 Introduction 

As a broad subfield of artificial intelligence, machine learning is concerned with the 

design and development of algorithms and techniques that allow computers to "leaarn". 

which is defined in the following by Mitchel [144], as 

"A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure M, if its performance at 

tasks in T, as measured by AI, improves with experience E. " 

Over the past 50 years, the study of machine learning has grown from the efforts of a 

handful of computer engineers exploring whether computers could learn to play games. 

and a field of statistics that largely ignored computational considerations, to a broad 

discipline that has produced fundamental statistical-computational theories of learn- 

ing processes: has designed learning algorithms that are routinely used in commercial 

systems from speech recognition to computer vision: and has spun off an industry in 
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data mining to discover hidden regularities in the glowing volume of online data [145]. 
A number of choices are involved in designing a machine learning approacli. including 
choosing the type of training experieliee, the target function to be learned. a represeli- 
tation for this target function, and an algorithm for learning the target function from 
training samples [144]. Machine learning is inherently a multidisciplinary field. which 
draws on results from artificial intelligence, probability and statistics. optimization the- 
ory, computational complexity theory, control theory, information theory. l)liilosopliv. 
and other fields. 

Machine learning has a wide spectriuii of applications including natural language 

processing [52,128,161], handwriting recognition [127,172,173,17(i], face and fingerprint 

recognition [99,172,173,248], search engines [169.231], medical diagnosis [8,10.75-126. 
. 

150,153,160,240], bioinformatics and cheminformatics [17,78,238]. detecting credit 
card fraud [95], stock market analysis [250]. classifying DNA secgnelices [79], object 
recognition in computer vision [218], image compression [245], game playing [120,207]. 

robot locomotion [110], and machine condition monitoring [74.97.98,131,138,191,252. 

253]. 

2.2 Types of Algorithms 

Machine learning algorithms are organized into a taxonomy, based on the desired out- 

come of the algorithm. Common algorithm types include supervised learning, unsu- 

pervised learning, semisupervised learning, reinforcement learning, transduction, and 

multi-task learning. 

2.2.1 Supervised Learning 

Supervised learning is a machine learning technique for creating a function from a set 

of training samples. The training samples consist of pairs of input objects (typically 

feature vectors) and desired outputs (targets). The output of the function can be a 

continuous value (regression), or can predict a class label of the input object (classifica- 

tion). The task of the supervised learner is to predict the value of the function for any 

valid input object after having seen a number of training samples (i. e. pairs of input 

feature vectors and output targets). In order to solve a given problem of supervised 

learning, one has to consider various steps: 

1. Determine the type of training samples. For instance, this might be as single hand- 

written character, an entire handwritten word, or an entire line of handwriting. 

?. Gathering a training set that contains information to represent a real-world prob- 

lem. Thus, a set of input objects and the corresponding outputs are gathered. 
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either from human experts or from measurements. 

3. Determine the input featlue representation of the learned function (feanu-e ex- 
traction). The accuracy of the leariied function depends strongly on how the 
input object is represented. Typically, the input object is transformed into ai 
feature vector, which contains a number of feat ales that are descriptive of the 
object. The number of features should not be too large. because of the curse of 
dimensionality; but should be large enough to predict the output aiccurately. 

4. Determine the structure of the learned function and corresponding learning algo- 
rithm. 

5. Complete the design. The engineer then runs the learning algorithm oil the 

gathered training set. Parameters of the learning algorithm may be adjusted by 

optimizing performance on a subset of the training set (called ýi validation set) or 

via cross-validation. After parameter adjustment and learning, the performance 

of the algorithm may be measured on a test set that is separate from the training 

set. 

2.2.2 Unsupervised Learning 

Unsupervised learning [87] is a method of machine learning where a model is fit toy 

observations. It is distinguished from supervised learning by the fact that there is 

no a priori output. In unsupervised learning, a data set of input objects is gathered, 

and treated as a set of random variables. A joint density model is then built for the 

data set. Unsupervised learning can be used in conjunction with Bayesian inference 

to produce conditional probabilities for any of the random variables given the others. 
A holy grail of unsupervised learning is the creation of factorial code of the data, 

which may make the later supervised learning method work better when the raw input 

data is first translated into a factorial code. Unsupervised learning is also useful for 

data compression. Another form of unsupervised learning is clustering [114], which is 

sometimes not probabilistic. 

2.2.3 Semisupervised Learning 

In computer science, semi-supervised learning [35] is a class of machine learning tech- 

niques that makes use of both labeled and unlabeled data for training (typically a 

small amount of labeled data with a large amount of unlabeled data). Semi-supervised 

learning falls between unsupervised learning (without any labeled training data) and 

supervised learning (with completely labeled training data). Many iiiachine-learning 

researchers [53,194] have found that unlabeled data, when used in conjunction with a 
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small amount of labeled data, can produce considerable improvement in learning ac- 
curacy. The acquisition of labeled data for a learning problem often requires a skilled 
human agent to manually classify training samples. The cost associated with the label- 
ing process thus may render a fully labeled training set infeasible, whereas acquisition 
of unlabeled data is relatively inexpensive. In such situations, semi-supervised learning 
can be of great practical value. 

2.2.4 Reinforcement Learning 

Reinforcement learning [211,245,246] is a sub-area of machine learning concerned with 
how an agent ought to take actions in an environment so as to maximize some notion 
of long-term reward. Reinforcement learning algorithms attempt to find a policy that 
maps states of the world to the actions the agent ought to take in those states. The 
environment is typically formulated as a finite-state Markov decision process (MDP), 

and reinforcement learning algorithms for this context are highly related to dynamic 

programming techniques. State transition probabilities and reward probabilities in the 
MDP are typically stochastic but stationary over the course of the problem. Reinforce- 

ment learning differs from the supervised learning problem in that correct input/output 

pairs are never presented, nor sub-optimal actions explicitly corrected. Further, there 
is a focus on on-line performance, which involves finding a balance between exploration 
(of uncharted territory) and exploitation (of current knowledge). The exploration vs. 
exploitation trade-off in reinforcement learning has been mostly studied through the 

multi-armed bandit problem. 

2.2.5 1ransduction 

Transduction was introduced by Vapnik [230] in the 1990's, motivated by his view 
that transduction is preferable to induction since, according to him, induction requires 

solving a more general problem (inferring a function) before solving a more specific 

problem (computing outputs for new cases): 

"When solving a problem of interest, do not solve a more general problem 

as an intermediate step. Try to get the answer that you really need but not 

a more general one. " [230] 

An example of learning which is not inductive would be in the case of binary classifica- 

tion. A large set of test inputs may help in finding the clusters, thus providing useful 
information about the classification labels. Some people may call this an example of 

the closely related semi-supervised learning, since Vapnik's motivation is quite differ- 

ent. An example of an algorithm in this category is the transductive support vector 

machine (TSVM) [230]. A third possible motivation which leads to transduction arises 
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through the need to approximate. An example of an algorithm falling in this category 
is the Bayesian committee machine (BCJ\I) [219]. 

2.2.6 Multi-task Learning 

Multi-task learning [31] learns a problem together with other related problems at t lie 

same time, using a shared representation. This often leads to a better model for the 
main task, because it allows the learner to use the commonality among the tasks. 
Therefore, multi-task learning is a kind of inductive transfer. 

2.3 Pattern Classification 

One standard formulation of the supervised learning task is pattern classification, in- 

cluding binary and multi-class classification. Binary classification is the task of clas- 

sifying the input samples into two groups on the basis of whether they have soiree 

common property or not, such as medical diagnosis [8,10,75,126,150,153,160.24O]. 

Given a set of l labeled training samples = {(xz, yi)}i=1 E (Rn x Y). where R" is the 

n-dimensional real feature space with a binary label space Y={1, -1 }, and yz (E Y 

is the label assigned to the sainple xi E R1 
, the aim of binary classification is to seek 

a function ýI' : RTZ -) Y that best predicts the label for an input sample. Multi-class 

classification is the task of assigning the input samples into one of the multiple cate- 

gories. One conventional way to extend binary classifiers to multi-class scenario is to 

decompose an multi-class problem into a series of two-class problems using one-against- 

all implementation [229]. To solve a c-class classification problem with a label space 

Y={1,2, 
... , c"}, c binary classifiers can be constructed, each separating one class 

from the remaining classes. In this section, the classification algorithms are explained 

and illustrated only for binary classification problem. 

2.3.1 Linear Classifiers 

Fisher's Linear Discriminant Analysis 

Fisher [65] proposed Fisher's linear discriminant analysis (FLDA) by seeking separating 

functions that best separate two or more classes of samples based on the ratio of the 

between-class and within-class scatter. The separating function. given as 

f(ý) =wTx + b, (2.1) 
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is determined by maximizing the following objective: 

WT SBw 

WTSWW' 

where w and b are the weight vector and the bias of f (x), respectively, and SB and 
SW are the between-class and within-class scatter matrices, given by 

SB 
-(m+ -m)(m+-m )T, 

SW 
2=+, 

- 

(2.3) 

Z (X - mZ)(X- m2)T, (2.4) 

xEC2 

m+ _1 l+ 

I 

(2.5) 

(2.6) 

where xi and x2 represent samples belonging to the positive (+) and negative (-) 

classes, respectively; l+ and 1- denote the number of positive and negative training 

samples, respectively; and C+ and C- denote the subsets of positive and negative 
training samples, respectively. The optimal values of w and b can be calculated by 

solving a generalized eigenvalue problem [59]. Letting f* (x) denote the derived optimal 
separating function, the label for an input sample is predicted by 

Yz(x) = sgn(f*(x)), (2.7) 

where sgn(x) is +1 when x>0 and -1 otherwise, and Y, z(x) is an estimate of the label 

for the input sample x. 

Logistic Regression 

Logistic classification is a statistical technique based on a logistic regression (LR) model 

that estimates the probability of occurrence of an event [1621. In logistic pattern clas- 

sification, an event is defined as the membership of a feature vector in one of the two 

classes of concern. The method computes a variable that depends upon the given 

features and is constrained within the range [0,1] so that it may be interpreted as a 

probability. For a given feature vector x, the LR model can be written as 

exp(ho+hlxl+h2x2+... +hnxn) 
Pevent (X) _' (2.8) 

1+ exp(ho + h1x1 + h2x2 + ... + hnxn) 

where h= [ho, h1, ..., 
hn]T is a coefficient vector. In linear regression, the coefficients 

of the model are estimated using the method of least squares; the selected regression 

coefficients h are those resulting in the smallest sums of squared distances between the 

X2 ý 
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observed and the predicted values of the dependeiit variable. The parameters of the 
LR model are estimated using the maximum likelihood method [105]: the coefficielits 
that make the observed results --most likely" are selected. The label of an input sauiiple 
x caii be predicted by 

= sgn(P, v. (I 
(x) - threshold). ('?. ý)) 

Naive Bayes Classifier 

A naive Bayes classifier (NBC) [56] is a simple probabilistic classifier bV applying the 
Bayes' theorem with strong (naive) independence assumptions. Let 1)(C; ) be the prob- 
ability of occurrence of class Cz, ;=1,2, ... , c; this is known as a priori. A posteriori 
that an observed sample x came from C; is expressed as p(C; ýx). According to Bayes 

rule [171]. 

p(Cd )= p(C11)p(xI C1) 
(2.10) 

p(x) 

where p(x) is the unconditional probability density function (PDF) of x, and p(x Cz) 

is called the likelihood function of class Ci. The NBC simply assumes features are 
independent given the class Ci, that is p(x C; ) = Hj 

1 p(., -jIC; ), thus, 

p(C 1 x) = p(Cr ) 11 p(. z. j 1Cz), (2.11) 
j=1 

where Z= p(x) is a scaling factor dependent only on x, i. e., a constant if the values 

of the feature vector are known. Models of this form in Eq. (2.11) are much more 

manageable, since they only factor into the class prior p(Cj) and the independent 

probability distributions p(xj ý C1), of which the model parameters can be approximated 
from the training samples. The decision function of the Bayes classifier is given as 

n 

(x) = arg max p(C1) flp(xCj). (2.12) 
j=1 

The decoupling of the class conditional feature distributions means that each distribu- 

tion can be independently estimated as a one dimensional distribution. This in turn 

helps to alleviate problems stemming from the curse of dimensionality, such as the need 

for data sets that scale exponentially with the number of features. 

2.3.2 Artificial Neural Networks 

Researches on artificial neural networks (ANNs) have been motivated right from it's in- 

ception by the recognition that the human brain computes in an entirely different way 

from the conventional digital computer. The brain is a highly complex, nonlinear, and 
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Figure 2.1: The structure of an SLP with one neuron in the output layer. 

parallel computer. The use of ANNs offers useful properties and capabilities of nonlin- 

earity, input-output mapping, adaptivity, evidential response, contexture information, 

fault tolerance, very-large-scale-integrated implementation, uniformity of analysis and 
design, and neurobiological analogy [84]. 

Single-layer Perceptrons 

A single-layer perceptron (SLP), with an input layer of source nodes that projects onto 

an output layer of neurons, is the simplest form of a layered ANN and used for the 

classification of linearly separable patterns [84]. The structure of an SLP with one 

neuron in the output layer is shown in Fig. 2.1. Such an SLP built on a single output 

neuron is limited to performing binary classification; the labels for an input sample x 

is predicted by 

ifwTX+b>0 
Yz(x) = 

else 

where w is the weight vector of the output neuron. 

(2.13) 

Multi-layer Perceptrons 

A multi-layer perceptron (MLP) [84], with one input layer, one or more hidden layers. 

and one output layer, has three distinctive characteristics: 

" The model of each neuron in the network includes a nonlinear activation function, 

for which a commonly used form is a sigmoidal nonlinearity defined by the logistic 

function [84]. 
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tasks by extracting progressively more meaningful features from the input feature 

vectors. 

" The network exhibits a high degree of connectivity, determined by the synapses 

of the network. A change in the connectivity of the network requires a change in 

the population of synaptic connections or their weights. 

The overall structure of an MLP with one hidden layer is shown in Fig. 2.2. The back- 

propagation algorithm [84] can employed to train an MLP by minimizing the average 

squared error energy over all the 1 training samples. 

yl 

OSigmoid 
Function- 

x71 Input node 

y2 y3 

Figure 2.2: The overall structure of an MLP with one hidden layer. 

Radial Basis Function Networks 

To perform a complex pattern classification task, radial basis function (RBF) net- 

works [84] transform the classification task into a high-dimensional space in a nonlinear 

manner, by involving the following three layers: 

" Input layer is made up of sensory units that connect the network to the environ- 
ment. 

" Hidden layer acts as a nonlinear transformation from the input space to the 
hidden space 0: R7L --º n, similar to a kernel function (see Section 2.3.3). 
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" The network contains one or more layers of hidden neurons that are not part of the 

input or output layers. These hidden neurons enable the network to learn complex 



G=l 

f(x)---op. 

Figure 2.3: The overall structure of the RBF networks. 

" Output layer supplies the response of the network to the input pattern, which 
determines the separating function f� : h- --* Y in the transformed hidden Kpme. 

The nonlinear transformation 0: R" -K is made up of rn, real-valued functions 

O(x) - 
[01(X) 

ý 02(X), ..., om" (X)]T, 

where in, is the number of neurons in the hidden layer. Given m, different points 
{ t; }12'1, the real-valued mapping functions have the form 

OZ (x) = G( x- tfl ), i. = 1,2... (2.14) 

where G(. ) is known as the RBF, and {t2}? n'1 are taken to be the centers of the RBFs. 

There are different choices of the RBF, among which the Gaussian function is commonly 

used, given as 

G(x, t, )=exp - 
4-tZ 2 

(2.15) 
20,2 

The structure of the RBF network is shown in Fig. 2.3. In the transformed feature 

space h, the RBF network determines the separating function 

fh(x) = wK 
TO(x) 

+ b,, 

by minimizing the following cost function 

I 
yhý 

-ý [yi - 
fn (X 

1 . 
)]2 + CRBF 

i=1 

(2.16) 

DfFi (X2) 112 

' 
(2.17) 

where wh and bh are the weight vector and bias of the separating function in the trans- 

formed feature space h, respectively CRBF is the regularization parameter, and D is 

a linear differential operator. Letting ru = [wý 
.... , w�ý b]T. as the regularization 
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parameter CRBF approaches zero, the optimal value of =* converges to the pseudoin- 
verse solution to the over-determined least-squares data-fitting problem for tu,. I. as 
given by [26] 

. a* = (HTH)-1HTy, ('?. 1 

where y is a column vector of labels of all the training samples, and 

(11 
G12 

' 

with 

H= 
G21 G22 ' 

ý G11 G12 ' 

G1�,,. 11 

.. G2? n,. 1 

.. Gl,, r,,. 1 

Gig = G(xi, t1); i=1,2,... 1; j=1,2.... 
, rn7.. 

The label for an input sample x is then predicted by Y, (x) = sgn (f, * (x)) 
. 

Self-organizing Maps 

) 

Self-organizing maps (SOMs) [113] map a multi-dimensional dataset onto a one- or two- 
dimensional lattice. Higher-dimensional lattices can also be used, but are not common. 
The SOMs studied in this work consist of two layers of neurons: a one-dimensional 
input layer and a two-dimensional (2D) competitive layer organized as a 2D-lattice of 

neurons. Each neuron in the competitive layer holds a weight vector w2, which has 

the same dimensionality as the input space. After the initialization of the competitive 
layer, the input samples are presented to all competitive neurons in parallel. Assuming 

that there are rn3 neurons in the competitive layer, the best-matching neuron is chosen 

as the winner, of which the index is denoted by i(x) for an input sample x, and satisfies 

i (x) = arg min { x- wj 1113' = 1,2,..., rn5}. (2.19) 

The weights of the winning neuron i(x) and all the other neurons in the competitive 
layer are adjusted towards the input sample, based on the following rule at the kth 

iteration: 

wj (k + 1) = wj (k) +q (k)h,, 2(ý, ) (k) (x - w; (k)), (2.20) 
and 

,q (k) = qo exp (-n, 
hj, i (x) (k) = exp 

\ Tl / 

2 d ý 
ý, z(x) 

ý 2((k)2 I 

(2.21) 

(2.22) 
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(o<'xp -. (2.23) 
T2 

Here, ilj, i(x) denotes the lateral distance between the winning neuron i(x) and the jth 
excited neuron in the 2D-lattice; Flo, [; 0, Ti, and T2 are the training parameters yet 1>Y 
the user. The magnitude of the change decreases with time and with distulce from the 
wining neuron. 

2.3.3 Kernel-based Classifiers 

Aizerman et al. [7] introduced the idea of using kernel functions in machine learning is 
inner products in a corresponding feature space. Kernel methods in pattern aii u1vsis 
embed the data in a suitable feature space, and then use algorithms based on lüieai 
algebra, geometry, and statistics to discover patterns in the embedded dutýi. Aiiv 
kernel method comprises two parts: a module that performs the mapping into an 
empirical feature space /K, and a learning algorithm designed to discover linear patterns 
in that space. A kernel function is a computational shortcut, that makes it possible 
to represent linear patterns efficiently in high-dimensional empirical feature spaces to 
ensure adequate representational power. Four key aspects of kernel-based classifiers are 
highlighted [200] : 

" Samples in the original feature space R7' are embedded into an empirical feature 

space /-;. 

" Linear relations are sought among the embedded feature vectors. 

" The algorithms are implemented in such a way that the coordinates of the em- 
bedded feature vectors are not needed, only their paiirwise inner products. 

" The pairwise inner products can be computed directly from the original feature 

vectors using a kernel function. 

Kernel Functions 

The use of kernel functions provides a powerful and principled way of detecting nonlin- 

ear relations using well-understood linear algorithms in an appropriate feature space. 
For kernel-based classification methods, the kernel matrix acts as a bottleneck. All the 

information available must be extracted from the kernel matrix. 

Inner Product Space A vector space R'z over the reals R is an inner product spider. 

if there exists a real-valued symmetric bilinear (linear in each argument) map that 

satisfies 
(x. xý > 0. (2.21) 
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The bilinear leap in known as the inner clot or scalar product. In the re? 1l feature sp? ice 
R", the standard inner product betweeli two vectors x, and x j, is given hY 

T (X(" xb ý= xa xh " 
(2"25) 

An inner product, space is sometimes referred as ýa Hilbert space. though Illost re- 
searchers require the additional properties of completeness and separability. as well 'is 
sometimes requiring that the dimension be infinite [2OO] 

. 

Gram Matrix Given set of feature vectors {xz}z_1, the Grain matrix is defined 

as the 1xl matrix E, whose entries are E; j_ (xi, xi) . 
If a kernel function K(., ") is 

used to evaluate the inner products in the transformed feature space K with a nonlinear 
mapping :xE Rn H O(x) E h; C Rn, the associated Gram matrix is referred as the 
kernel matrix, denoted by K, with entries given by 

Ki. i = (0 (xi), (ý (x )) = K(xi, xi). (2.26) 

Different kernel functions can be designed based on their closure properties [200]. 

Kernel Forms Three types of kernel function are used in this work, including the 

Gaussian, Cauchy, and triangle kernels, defined as 

" Gaussian kernel (RBF kernel): 

Ii (x� xv) = exp 

" Cauchy kernel [39] : 
7t 

xa-Xbll2 

_ 2(72 

1 
ryý Ký`',, a7 Xb) - 

11 11) 

+ 
(x(L2-xy22 

i=1 2U2 

" Triangle kernel [39]: 

Tb 

K(xa,, Xb) max 1- 
J'ai- xbi ý 

i=1 vý-2or 

(2.2 7) 

(2.28) 

(2.29) 

where u is the kernel width set by the user. A more versatile RBF kernel with different 

kernel width for each feature can also be used, given as 

K(Xo 
> X6) = exp 

,t (Xa. 
i- 2'bi)2 

ý 
/T 

') 

2(r 
i=1 

where ui is the kernel widths for the ith feature, and set by the user. 

(2.30) 
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Kernel Fisher's Discriminant Analysis 

Mika et al. [143] combined kernels functions with FLDA, leading to kernel Fisher's 
discriminant analysis (KFDA). By expanding the weight vector of the separating func- 
tion into a linear summation of all the training samples, the separating function in the 
kernel-defined feature space K is written as 

I 

f (x) =Ea. i (xi, x) + b, 
=1 

where {cl, }i_1 denote the summating weights. KFDA determines the optimal separat- 
ing function f* (x) by maximizing the Fisher criterion [200], as 

ý+ - /1-)2 
o(, f) _ (ýU+)2 + (j-)2' ('?.: 3ý? ) 

where 

u 

i+ 2 
ýý+ 7+ 

ýf (x 

\ i=i l 
\2 

i=1 

I- 

I- 

I 

Z(f(xZ)-µ )2. i=1 

where µ+ and p- denote the mean projections of the positive and negative samples, 

respectively, and a+ and a- are the corresponding standard deviations. By incorpo- 

rating Eq. (2.31) into Eq. (2.32), the optimal values of {cYiIli= 
1 and b can be calculated 

by solving a generalized eigenvalue problem [2001. The label for an input sample x is 

then predicted by Eq. (2.7). 

Support Vector Machines 

SVMs [46,49] construct a hyperplane as the decision surface in such a way that the 

margin of separation between the positive and negative samples is maximized in an 

appropriate feature space, known as the maximal margin rule. Boser et al. [23] corn- 

bined the kernel function with large-margin hyperplanes, leading to kernel-based SV-'Als 

that are highly successful in solving various nonlinear and non-separable problems in 

machine learning. In addition to the original C-SVM learning method [46], the v-SVVI 

learning method was proposed by Schölkopf et al. [198], which is closely related to the 

p 

1 
(0, _)2 _- 
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C-SVM but with a different optimization risk. In this section. the hard-margin SV'M 

and three soft-margin SVMs, including the 1-norm C-S\, 'NI (L1-SVM). the `? -norm 
C-SVM (L2-SVM), quid the v-SVM, are descril)ed. 

Hard-margin SVM The hard-margin SVM is used for clearly separable cases. To 
determine the separating function 

f (x) =K (w, x,, ) + 0,. 

in the kernel-defined feature space, the following regularized optimization risk is ex- 

pected to be minimized 

1, 
min R7. eg =2 ýý ý' ýýh, 

s. t. yi(K(w, xi)+ b) > 1, ,1=1,2,..., I, 

(2.3-l) 

where 11 " 11h, denotes the norm in the transformed feature space K. By introducing the 

Lagrange multipliers ß= [ß, 02, 
.... 

ß]T 
, this is equivalent to solving the following 

constrained quadratic programming (QP) problem: 

max 
/3 

L ßj -2ýýL yjyjßjlj. ils (x 

i=1 i=1 j=1 

01 
Z=1 

ßi>0, i=1.2 

and 

1 11 
ý: ý3j - 

1 

W= yi13ixi" 

i=1 

. xj), (2.35) 

(2.36) 

Soft-margin C-SVM The C-SVM is a soft-margin SVM for non-separable cases 

that introduces the margin slack vector ý= [f 1, ý2, ... , 
ý1]T to allow for the possibility 

of samples violating the following inequality 

yi(K(w, xi) +b) > 1, z=1,2,..., 1, (2.37) 

with the soft-margin loss 

C's(x, y, f) = 
0, yf(x) >1 

(2.38) 

1-yf (x), otherwise 

By involving te 1-norm of the margin slack vector ý, the LI-SVM determines the 

separating function in Eq. (2.33) bY minimizing the following regularized optimization 
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risk: 

min R 
wý', `, ` -12 

(IlWI12 

+ý ýýý1I ýi ". i=1 

s. t. yi(h(w, x,. ý + b) > 1.2, 
.... 

l. 

> O, i, = 1,2,..., 1, 

(2.: 39) 

where CSVN. 1 is the positive regularization parameter set b, by the user. By introducili ; 
the Lagrange multipliers ß, this is equivalent to solving the following constrained QP 

problem: 

max 
p 

I 
1c1 31 ; t/ryj 

i=1 j=1 
Iliýj. >h 

(X i, xj), (2.10) ý 

i=1 

l 

S. t. 
E 

yio"i = 0, 
i=1 

0G 13i < cSvM, i=1,2,..., 1. 

By involving the 2-norm of the margin slack vector ý, the L2-SVM determines the 

separating function in Eq. (2.33) by minimizing the following regularized optimization 

risk: 
l 

mill 
v 

R,. eg =2+ CsvNl (2. -t1) 
, i=1 

s. t. y2(K(w, xi) + b) >1- ýz, (2.42) 

By introducing the Lagrange multipliers ß, this is equivalent to solving the following 

constrained QP problem: 

I1ll1 

max ý ßi -2y yiyjßi, ý3j 
(I(x. 

ýý xj) + Csvýl 
6ij (2.43) 

2=1 2=1 3=1 

I 

S. t. 
IIYißi=0, 

i=1 

ßi > 0, i=12,... 

where (5 is the Kronecker b, which is 1 when and 0 otherwise. In fact, the 

L2-SVM can be viewed as a special case of the hard-margin SVM with the modified 

kernel matrix 
K'=K+ 

1 
I, (2.4 4) 

CssvNt 

where I is the identity matrix. Eq. (2.36) is satisfied for both the L1-SVAI and L2-SVAI. 



Soft-margin v-SVM The v-SVM is also ýi soft-margin SVM for non-sepurable cýlýes. 
which employs the same margin slack vector ý as in the C-SVM learning procedure, 
but a different soft-margin loss, given by 

c. 5(x, ; zjý f) = 
0. ! ]f (x) >_ p 

I (2 . 45) 
Yf (x)> Ut. ý1Cl'ýý'ltiE' 

where p denotes the margin width varying through positive values. Thus, the C'-SVNI 

can be viewed as a special case of the v-SVM with the margin width p equal to 1. The 

v-SVI\I determines the separating function by minimizing the following regularized 
optimization risk: 

1ý1 
Ilwlb Rý"eg =ý ýýw 

ý+ýý 
ýi 

- 1/ýVIýIýý, 

i=1 

s. t. 1/i (K (w, xi, ) + b) !P- ýi, 

ýi>_0, i=1,2,... 

p>0, 

(2.1G ) 

where VSVM is the regularization parameter varying through [0,1], set by the user. 
By introducing the Lagrange multipliers ß, this is equivalent to solving the following 

constrained QP problem: 

111 
max Y Yyý: il j/3iß K(xi, xj), 2 3 ' i=1 j=1 

s. t. 
I 

E yißi =ýý 
i=1 

l 
ý ýý, = I'S V I\ I 

i=1 

0<13zG ý. =1.2...., 1 

Eq. (2.36) is also satisfied for the v-SVM. 

(2.47) 

Karush-Kuhn-Tucker Optimality Conditions Let ß* denotes the optimal solu- 

tion of the constrained QP problems in Eq. (2.35), Eq. (2.40), Eq. (2.43), and Eq. 

(2.47), and w* and b* denote the optimal weights and bias of the separating function 

in Eq. (2.33), respectively. calculated with ß* (see later paragraphs). The following 

Karush-Kuhn-Tucker (KKT) optimality conditions must be satisfied, which arc slightly 

different for different types of SVI\Is [49,198]: 

" Hard-rnargin SVM 

J*[y, (h(w*. xi) + b*) - 1] = 0. i= 1.2. ... , 
1. (2.48) 
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" L, )-SVM 
`j*ýý/(Isý(cý, * ýý+bl -1]=0 

" L1-SVM 

(2.19) 

jr*[yi (Ii (w*, x; ) + b*) -1+ý; ] = 
ý ('ji - ý'svm) = 0, i=1.2 

.... 
I. (2.. 51) 

0 v-SVM 

! j; [yi(h(w*, x1) + b*) -p+ ýZ] = 0.1 = 1. ý. 
... . 

1. (22.5? ) 

C. 
Lr 

1 
ý=0, ý=1,2. 

... . 
1. (2.53) 

l 

pE Iýi - v5vrii = 0. (2.54) 
2=1 

Support Vectors The concept of support vectors (SVs) is derived from the above 
KKT optimality conditions. SVs are defined as the training samples with non-zero 3i*. 
For L1-SVM and v-SVM, the SVs are divided into two categories, including the margin 
SVs and the non-margin SVs. Margin SVs are defined as the training samples with, i'3 
not equal to zero, but less than CsvN1 for the L1-SVM or less than 1 for the v-SVM, 
which are distributed along the margin (see Fig. 2.4). Non-margin SVs are defined 

as the training samples with 3 equal to CsvN1 for the L1-SVM or equal to i for the 

v-SVM, which are distributed either inside the margin but on the correct side of the 
decision surface, or on the wrong side of the decision surface (see Fig. 2.4). Based on 
the K KT conditions, the SVs of the hard margin SVM and the L2-SVM, as well as the 

margin SVs of the L1-SVM satisfy y(K(w*, x) + b*) = 1, while the margin SVs of the 

v-SVM satisfy y(K(w*, x) +b*) = p*, where p* denotes the optimal value of the margin 

width, calculated with ß* (see the next paragraph). 

Separating Function The optimal value of the bias of the separating function for 

the C-SVM and v-SVM can be derived by 

1 1 

b* -- ,) c- 
ýEß? yzh(xi. xi), 

L. uU 

xES+ U S- i=1 

(2.55) 

where S+ and S- arc' two sets of SVs with the same size of So but different labels of +1 

and -1. By incorporating Eq. (2.36) into Eq. (2.33), the optimal separating function 

f *(x) is given by 

yi, 3z Iý (x, x) + bx. (2.56) 
2=I 
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Figure 2.4: Illustration of support vectors for linear, non-separable patterns. 

The label for an input sample x is then predicted by Eq. (2.7). The optimal vallie of 
the margin width p for the v-SVM can be calculated by 

p*-- 
1 

2So 

ll 

ßi 
°zJ'K( x, x, ) -ýZ ßi yi K(x, xi) 

xES+ i=1 xES- i=1 
I (2.57) 

The optimal value of the slack vector ý can be calculated based on the KKT conditions: 

0 C-SVM 

" v-SVM 

= max{O, 1- yz f* (xz) }, (2.58) 

= max{0, p* - Sý 

2.3.4 Proximal Classifiers 

f *(ýi)}, i=1.2, .. 
(2.59) 

Proximal classifiers solve the binary classification task by seeking two proximal planes in 

a corresponding feature space, instead of one separating plane. Bradley and Mýýiigasar 

ian [25] first addressed the topic of multiplane learning by proposing the unsupervised 
k-plane clustering method in 2000. Later, series of studies on multiplane learning have 

been developed for supervised learning, such as the the proximal SVM (PSVM) [67,68] 

and its corresponding statistical interpretation [6], parallelized algorithms for classifi- 

cation with the incremental PSVM [222], a fuzzy extension of the PSVM [170], and the 

nlultisurface PSV1\I (MPSVI\I) [135]. 
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Proximal Support Vector Machines 

The PSVMs seek two parallel proximal planes that aue pushed as far apart as possible; 
samples are classified by assigning them to the closest plane [67.68]. To maintain 
the parallelism condition and bound samples based on the maximal margin rule. the 
following proximal planes are employed for the linear PSVMs: 

fl (x) 

f2 (x) 

=wTx+b-1=0, 

=wTX+b+1=0, 

(2.60) 

(2.61) 

The optimal values of w and b are obtained by minimizing the following regularized 
optimization risk: 

I 
týlýl RI-e9 =2 WT W+ b2 + vPSVIýI ýý 

i=1 

s. t. Yi (WT X+ b) =1-ý; . .1=1,2, ..., 

(2. G2) 

(2.63) 

where ý= [ý1, ý2�"� ýl]T denotes the error variables (see also slack vector in Section 

2.3.3), and vpsvM is the nonnegative regularization parameter set by the user. Sub- 

stituting ý in terms of w and b based on the linear constraint as given in Eq. (2.63). 

the constrained optimization problem in Eq. (2.62) is reduced to an unconstrained 

minimization problem, which can be solved by setting the gradient with respect to w 

and b to zero. 
For the nonlinear PSVMs, the following proximal planes are employed: 

I 

I 

yzßzls (x27 x) +b-1=0, (2.64) 

. 
f2(x) =Z 2Ji0iI'ý(Xi, X) +b -I-- 1=0, 

i=1 

(2.65) 

where {ßZ }i_1 are Lagrangian multipliers. The constrained optimization problem to be 

solved becomes 

1 
min 
0, b, ß 2 

S. t. 

lll 
Oißj K( ýxi, xj )+ b2 + UPSVIýI 

i=1 j=1 i=1 

(l ý 

yi 
y 

, 
yjßjll (xi, xj) +bj=1- ýij=1 

(2.66) 

(2.67) 

Compared with the L2-SVM, the key idea of the PSVM is to make a simple, but fun- 

damental change by replacing the inequality constraint in Eq. (2.42) with the equality 

constraint in Eq. (2.63) and Eq. (2.67). 
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Multi-surface Proximal Support Vector Machines 

The 1\IPSVMs drop the parallelism condition on the proximal planes of the PSV'\Is. 
and require that each plane he as close as possible to one of the two classes of traiiiiiig 
samples and as far apart as possible; saaniples are classified by assigning them to the 
closest plane [135]. In the original feature space R7z. the two proximal planes are formed 
as 

f1(x)=wix+b1=0, 

f2(x)=WT x+ b2=0 

(2. G8) 

(2.69) 

where w and b arc the weight vector (direction) and bias of the proximal planes. re- 
spectively; the subscripts 1 and 2 denote the first and second plaiie, respectively. In 
the kernel-defined feature space r)-., with kernel functions employed to incorporate non- 
linearity, by expanding the direction vector of the hyperplane into a linear summation 
of all training samples, the two proximal planes are given as 

l 

fl (x) _ý, cxiZli (xz, x) + bi = 0, (2.70) 
i= 

a2ih (Xi, X) + b2 = 0, (2.71) 

i=1 

where {ckli}2-1 and {a2i}? 
=1 are summating weights. forming two column vectors of al 

and a2, respectively. To obtain the two planes fl(x) and f2(x), the following objective 
functions with the numerator parts given in the "sum of squares" form are maximized: 

01(fl) = 
1: 1=1(1 

- y, )fi O 
(2.72) 

1: 1=1(1 + yi)fi (X, ) 

02(f2) _ 
ý1=1(1 + yi)f2 (ýi) 

(2.73) 
: 

i=1(1 - yi)f2 (xi) 

A Tikhonov regularization terms [217] that is often used to regularize the least squares 

and mathematical programming problems is employed to improve the classification 

performance of MPSVMs [135]. 

For linear classification, by incorporating Eq. (2.68) and Eq. (2.69), as well as the 

regularization term, into Eq. (2.72) and Eq. (2.73), and letting ý=i = [WT, b1 and 

`4"U2 = [w2 
, 
b2], the following objective functions are required to be maximized: 

01(wl 
, 
bl) =X 

w1 + eb1 2+ j11=1112 
, 

(2.74) 
ýX w1+ebl 2 

02(w2, b2) = 
X+w2 + eb2 112 + 611'C72 112 

7 5) 

X W2 + eb2 

where b is the nonnegative regularization parameter set by the user, the l- xn matrix 

X- represents samples from the negative class; the l+ xn matrix X+ represents samples 

26 



from the positive class; and e is ra column vector with all eleluelits equal to 1. The 
optimal values of wl, bl, w2, and b2 c,, m be calculated hV solving two generalized 
eigenvalue problems [135]. 

For nonlinear classification. by incorporating Eq. (2.70) and Eq. (2.71). as well ; i. -, 
the regularization term, into Eq. (2.72) and Eq. (2.73). and letting call = [ai 

. 
bi] 

and ä2T = [a2 
, 
b>ý 

, the following oh jec"tive functions are derived and required to he 
maximized: 

K al + ebl 112 + bllal 2 
O., (a,. b, ) -J ,,,, - 1, -lý ýýK+a1 + ebl 

Ot; ̀'(a2, b2) 

,ý 

ýýK a2 + eb2II2 + 6ýIä2II2 
jK+a, ) + el), ) 112 I 

(2.7G) 

(2.77) 
where the l+ xl matrix K+ represents the kernel matrix between the samples from the 
positive class and all the training samples; the l- xl 1iiatrix K- represents the kernel 

matrix between the samples from the negative class and all the training samples. The 

optimal values of al, bl, a2, and b2 can be calculated by solving two generalized 
eigenvalue problems [135]. 

2.3.5 Prototype Classifiers 

Different from SVMs that seek a single discriminating boundary, PSVMs that seek two 

proximal hyperplanes, and ANNs that construct an information processing paradigm 

composed of neurons, prototype classifiers [18.199] learn a number of representatives 
(prototypes) for each class, and predict the label of a new sample based on the nearest 

prototype. 

k-nearest Neighbours 

The method of k-nearest neighbors (KNNs) [11] is an extreme end of the scale for 

prototype classifiers, where each training sample serves as a prototype, leading to l 

prototypes Pj = x), i=1,2, ... , 
1. Given a query sample, k number of prototypes 

closet to the query samples (with the smallest Euclidean distances) are found. The 

classification is using majority vote among the classification of the k prototypes. 

Minimum Distance Classifier 

Minimum distance classifier (MDC) [20,124,251] is another extreme end of the scale for 

prototype classifiers, where there is only one prototype Pj for each class - the class 

center (or mean), thus, Pj = 1, E xi. Distance between the the query sample 

x and each prototype is computed, and denoted as d(x, Pj). Then, the label of the 

nearest prototype, given as arg minj-_1,2, , 
(dj(x)), is chosen as the labels of x. 

27 



Learning Vector Quantization 

Learning vector quantization (LVQ) [205] is a prototype-based supervised classification 
algorithm. LVQ can be understood as a special case of an ANN. more precisely. which 
applies a winner-take-all Hebbian learning-based approach [205]. It is a preclu-sOr 
to SOM and related to Neural gas [137] and KNNs. An LVQ network has a first 
competitive layer of competitive neurons (prototypes) and a second linear laver of 
output neurons (classes). The competitive layer learns to classify input vectors in 
much the same way as the competitive layers of SOM. The linear laver transforms the 
competitive layer's classes into target classifications defined by the riser. The classes 
learned by the competitive layer are referred to as subclasses each related to a prototype. 
and the classes of the linear layer as target classes. An advantage of LVQ is that it 
creates prototypes that are easy to interpret for experts in the field. 

Clustering-based Prototypes 

Clustering [114] is the classification of objects into different groups, or more precisely. 
the partitioning of a data set into subsets (clusters), so that the datýl in each subset 
(ideally) share some common trait - often proximity according to some defined distance 

measure. In fact, all clustering algorithms can be viewed as unsupervised methods to 

create prototypes [41]. Each prototype is determined by the center of a cluster. and 
the number of prototypes is equal to the number of clusters. 

2.3.6 No Free Lunch Theorem 

Although a wide range of classifiers are available, each classifier has its strengths and 

weaknesses. Performance of the classifiers depends greatly on the characteristics of the 
data to be classified. As addressed by Duda et al. [59], 

"If we are interested solely in the generalization performance, are there ýanv 

reasons to prefer one classifier or learning algorithm over another? 

If we make no prior assumptions about the nature of the classification task. 

can we expect any classification method to be superior or inferior overall? 

Can we even find an algorithm that is overall superior to (or inferior to) 

random guessing? " 

The answer is "No" based on the No free lunch theorem- [59]. There is no single 

classifier that works best on all given problems. Various empirical tests have been 

performed to compare the performance of classifier and to find the characteristics of 

data that determine the performance of classifier. Determining a suitable classifier for 

a given problem is however still more an art than a science. 
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2.4 Optimization 

Recently, Bennett and Parrado-Hernandez [16] describe the synergistic relationship 
between the fields of machine learning and mathematical programming. They remark: 

"Optimization lies at the heart of machine learning. Most machine learning 
problems reduce to optimization problems. Consider the machine learning 
analyst in action solving a problem for some set of data. The modeler 
formulates the problem by selecting an appropriate family of models and 
massages the data into a format amenable to modeling. Then the model 
is typically trained by solving a core optimization problem that optimizes 
the variables or parameters of the model with respect to the selected loss 
function and possibly some regularization function. In the process of model 
selection and validation, the core optimization problem may be solved many 
times. The research area of mathematical programming theory intersects 

with machine learning through these core optimization problems. " 

Examples of the machine learning models with existing optimization methods include 
QP in SVM [46,49], semi-definite programming (SDP) in model selection and hypothesis 

selection [119,167,254], and dynamic programming in lightest derivation problem [63]. 
The actual optimization methods used in this work are briefly described in the following 

sections. 

2.4.1 Genetic Algorithm 

Genetic algorithm (GA) [69] is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. GA operates on a number 

of potential solutions (a population), applying the principle of survival of the fittest to 

produce better and better approximations (individuals) to a solution (see Tutorial of 
Chipperfield et al. [40]). Each individual is encoded as a string or chromosome com- 

posed over some alphabet, of which one commonly used representation is the binary 

alphabet {0,1}. The performance of each individual is assessed through an objective 
function and the fitness function. Highly fit individuals have a high probability of 

being selected for mating, while less fit individuals have a correspondingly low proba- 

bility of being selected. The selected individuals are then recombined, using crossover, 

to produce the next generation with a probability P. which is to exchange genetic 

information between pairs or larger groups of individuals. A further genetic operator 

called mutation, performed by the creation of a subtree at a randomly selected node. 

is then applied to the new individuals again with a low probability P�,, to avoid local 

minima. Mutation ensures that the probability of searching a particular subspace of 

the problem space is never zero. The fractional difference between the size of the old 
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population and the new population produced by selection, crossover. and mutation is 
termed as a generation gap. To maintain the size of the original population. those 
new individuals which have larger fitness values than those of the old individuals are 
brought into the new population. Therefore, the new population ilicludes the old indi- 

viduals which are fitter than the new individuals, and the remaining places are taken by 
the comparatively fitter of the new individuals. GA is terminated after a pre-specified 
number of generations; a subsequent test inav be applied to check the quality of the 
highly fit members of the population. If no acceptable solutions are found. GA niav be 

restarted or a fresh search initiated. 

2.4.2 Gradient Descent 

Gradient descent (GD) is an optimization algorithm, only working for differentiable 

systems. To find a local minimum of a function 0(0) with respect to the parameter 

vector 0 using GD, one takes steps proportional to the negative of the gradient (or the 

approximate gradient) of the function at the current point. Thus, GD is executed by 

first initializing the parameter vector to some value 00, and then updating each element 

of Bk based on the following rule, at the k: tli iteration: 

k 3O(9k) 
. Bk+l, i = Bk, i - ij exp(--) , r. = 1,2, 

... I no, (2.78) 

T aek,; 
where no denotes the number of elements of the vector 0, and i, j and T are used to 

control the convergence speed (set by the user). 

2.4.3 Extended Kalman Filter 

Kalman filter [103] is an efficient recursive filter that estimates the state of a dviiaunic 

system from a series of incomplete and noisy measurements. For linear dynamic systems 

with white process and measurement noise, the Kalman filter is known to be an optimal 

estimator. For nonlinear systems with colored noise, the Kalman filter can be extended 

by linearizing system dynamics about the current mean and covariance to handle the 

nonlinearity. Recently, the EKF has been widely used in the training of a neural 

network [12.45,165,178,204], and as an optimizer of the fuzzy membership functions 

for the fuzzy classifiers [203]. 

The EKF algorithm has been developed for the following general nonlinear. finite- 

dimensional, discrete-time system [121] : 

sk+l = f(sk, uh,, vk), (2.79) 
dk = g(sk, wk), (2.80) 

where sk is the state vector of the system at the A-th iteration, dk is the observation 

vector at the kth iteration, u. is the input vector at the kth iteration. f(") and g(") 
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are nonlinear functions of the state and observation vectors. Wk is the process li(>ise 
at the 'tli iteration, and vk is the ineasitrement noise at the Atli iteration. vj, and 
wk. are assumed i. i. d., and independent of current and past stat(s: vk 

R(I )), where Q(h) and R(k) are the covariance matrix of the the process 

noise vk and the measlirenient noise wk. respectively. The problem addressed is to find 

an estimate sk+l of sA. +l given dk. 

If the nonlinear dynamic system is sufficiently smooth, the state transition and 

observation equations could be approximated by the first-order polynomials based on 

the Taylor linearization [121]. By selecting the update so that the covariance of the 

estimation error is minimized, the priori update of the nonlinear dvnaiiiic systeul can 
be derived by [1211: 

8k+1 = f(sk-, Uk., vk), (?. 81) 

d; = 9(sß, wk), (2.82) 

P(k + 1) = FS(ý)P(ý)FS(ý') + Fv(ý')Q(ý')Fv(l, )T, (2.83) 

where P(k) is defined as the approximate conditional error covariance matrix at the 

L; th iteration, given by 

P(k) =E [(sk. - sk)(sk- - sk-)T Ido, dl, 
.... 

dk, 
_l]. 

(2.84) 

and 

F, (k) _ 
af(s, uk. - yk) 

Is = sk.. 
as 

7 
af(sk, uk, v) 

ag(s, wk) 

ag(sk.. W) Gw(k) 
aw 

w-wl, 

Then, the posteriori update can be derived by [121] : 

sk = sk + Kti. [dk - dk] 

P(k) _ [I - KkGS(k)]P(k, ), 

Kk =P (A')GS( ')T[GS(/ )P(A)GS(k 

+G,, (A")R(k)Gw(ý, )T]-1, 

where Kk is the Kalman gain at the kth iteration. 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

2.5 Summary 

This chapter has surveyed the fundamentals of machine learning. As this work focuses 

on pattern classification, several well-known classification methods have been reviewed. 
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covering the categories of linear classifiers, neural networks, kernel-based classifiers, 

proximal classifiers, and prototype classifiers. The synergistic relationship between the 

fields of machine learning and optimization have been discussed. Also introduced are 

three commonly used optimization methods, including the derivative-based approaches 

of GD and EKF, as well as the evolutional optimization tool GA. 
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Chapter 3 

Biomedical Signal and Image 

Analysis 

This chapter describes the essential background on biomedical signal analysis and 
biomedical image analysis. Section 3.1 provides a brief introduction to the nature 
of biomedical signals and images, and several arguments in favor of computer-aided di- 

agnosis. Section 3.2 and Section 3.3 summarizes the commonly used signal processing 
and image processing techniques to extract features for biomedical signal and image 

analysis, respectively. Section 3.4 explains the final purpose of biomedical signal and 
image analysis. Section 3.5 describes a proposed method to compute the confidence 

of malignancy of an individual mass for breast cancer detection, based on the output 

values of a chosen classifier. 

3.1 Introduction 

3.1.1 Nature of Biomedical Signals and Images 

Living organisms are made up of many component systems, such as the nervous system, 

the cardiovascular system, and the musculoskeletal system. Each system is made up 

of several subsystems that carry on many physiological processes, such as nervous or 

hormonal stimulation and control. Most physiological processes are accompanied by or 

manifest themselves as signal that reflect their nature and activities. such as biochemical 

in the form of hormones and neurotransmitters, electrical in the form of potential or 

current, and physical in the form of pressure or temperature. 
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Diseases or defects in a biological system cause alterations in its normal physiological 
processes. leading to pathological processes that affect the performance, health. nuid 
general well-being of the system. A pathological process is typically associated with 
signals that are different in some respects from the corresponding normal signal. If we 
possess a good understanding of a system of interest, it becomes possible to observe the 
corresponding signals and features and assess the state of the svsteni. 1\Iost systems and 
organs are placed well within the body and enclosed in protective layers. Investigating 

or probing such systems typically requires the use of some form of penetrating radiation 
or invasive procedure. 

The major objectives of biomedical instrumentation in the context of signal analysis 
or imaging and image analysis are information gathering, screening, diagnosis, monitor- 
ing, therapy and control, and evaluation [180,181]. In this work, diagnosis of biomedical 

signals and images is studied, which is the detection or conformation of malfunction, 
pathology, or abnormality. Difficulties, encountered in biomedical signal acquisition 
and analysis, include accessibility of the variable to measure, variability of the signal 
source, inter-relationships and interactions among physiological systems. effect of the 
instrumentation or procedure on the system, physiological artifacts and interference, 

energy limitations, and patient safety [181]. Image acquisition procedures may be cat- 

egorized as invasive or noninvasive procedures, as well as active or passive procedures. 
Difficulties, encountered in biomedical image acquisition and analysis, include acces- 

sibility of the organ of interest, variability of information, physiological artifacts and 
interference, energy limitations, and patient safety [180]. 

3.1.2 Computer-aided Diagnosis 

To improve the diagnostic accuracy and efficiency, a number of research projects on 
CAD systems have been developed to assist physician, cardiologists, neuroscientists, 

radiologists, and health-care technologists, by employing the image processing and 

computational intelligence techniques. Physicians, cardiologists, neuroscientists, radi- 

ologists, and health-care technologists are highly trained and skilled practitioners. The 

reason that why computers or electronic instrumentation are required for the analysis 

of biomedical signals and images are provided in the following paragraphs [180.181]. 

" Humans are highly skilled and fast in the analysis of visual patterns and wave- 

forms, but are slow in arithmetic operations with large number of values. which 

is commonly required in biomedical signal and image analysis. Computers can 

perform millions of arithmetic operations per second. 

" Humans could be affected by fatigue, boredom, and environmental factors, and aAre 

susceptible to committing errors. Computers being inanimate but mathematically 
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accurate and consistent machines, can be designed to perform coiiiputatioiiallN- 
specific and repetitive task. 

" Analysis by humans is usually subjective and qualitative. Derivation of quanti- 
tative or numerical features from signals or images with large number of samples 
would certainly demand the use of the computers. 

" Analysis by humans is subject to inter-observer as well as intro-observe. which 
is liable to vary with time for a given observer, or from one observer to another. 
Computers can apply a given procedure repeatedly and whenever recalled in a 
consistent manner. 

3.2 Analysis of Knee-joint Vibroarthrographic Signals 

3.2.1 Removal of Artifacts 

Most biomedical signals appear as weak signals in an environment that is teeming 

with many other signals of various origins. Any signal other than that of interest 

could be termed as an interference, artifact, or simply noise [181]. Certain types of 
noise may be filtered directly in the time domain using signal processing techniques or 
digital filters. Filters may also be designed in the frequency domain to provide specific 
lowpass, highpass, bandpass, or band-reject (notch) characteristics. Instead of using 
the ad hoc filters, for which one may have to try several filter parameters and the 

output is not guaranteed to be the best, an optimal filter may be designed to remove 

noise from a signal, such as the wiener filter with fixed characteristics, and an adaptive 
filter automatically adjusting its impulse response as the characteristics of the signal 

and (or) noise vary. 

3.2.2 Detection of Events of Interest 

The knee-joint VAG signals carry signatures of physiological event. The part of a sig- 

nal related to a specific event of interest is often referred to as an epoch. Analysis of 

the knee-joint VAG signal for diagnosis requires identifying discrete signal epochs and 

correlating them with events in the related physiological process. The used technolo- 

gies for event detection include correlation analysis, cross-spectral techniques. matched 

filter, and homomorphic filtering [181]. 
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3.2.3 Generation of Features 

Once an event has been identified, the corresponding waveform may be segmented and 
analyzed in terms of amplitude, waveshape. time duration, intervals between events. 
energy distribution, and frequency content, so that the numerical features are generated 
for further classification; more details are provided in [181]. 

3.3 Image Analysis for Breast Cancer Detection 

3.3.1 Removal of Artifacts 

Biomedical images are often affected and corrupted by various types of noise and arti- 
fact, such as random noise, structured noise, physiological interference. Different tech- 
nologies, such as synchronized or multi-frame averaging, space-domain local-statistics- 
based filters, frequency-domain filters, as well as optimal and adaptive filters, can be 

applied to remove artifacts [180]. 

3.3.2 Image Enhancement 

In several situations, the understanding of the exact cause of the loss of quality is lim- 

ited or nonexistent, and the investigator is forced to attempt to improve or enhance 
the quality of the image on hand using several techniques applied in an ad hoc manner. 
A few biomedical imaging situations and applications where enhancement would be 

desirable are micro calcification in mammograms, lung nodules in chest X-ray images, 

vascular structure of the brain, and hair-line fractures in the ribs [180]. A wide range 

of image enhancement techniques can lead to improved contrast or visibility of certain 
image features (such as edges or objects of specific characteristics), including tempo- 

ral subtraction, gray-scale transformations, histogram transformations, high-frequency 

emphasis, homomorphic filtering, adaptive contrast enhancement, and so on [1801. 

3.3.3 Detection of Regions of Interest 

In the CAD environment, one of the roles of image processing is to detect the regions 

of interest (ROIs) for a given, specific, diagnostic application. A few examples of 

ROIs in biomedical imaging and image analysis for breast cancer detection are listed: 

calcifications in mammograms, tumors and masses in mammograms, and breast outline 

or skin-air boundary in mammograms [180]. Segmentation is the process that divides 

an image into its constituent parts, objects. or ROIs, to which two major approaches 
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are based on the detection of discontinuity and similarity. More details on segineiitation 
for detection of ROIs are provided in [180]. 

3.3.4 Generation of Features 

Once the ROIs have been detected, the subsequent tasks would relate to the charac- 
terization of the regions and their classification into one of several categories. Breast 
tumors and masses usually appear in the form of dense regions in mammograms. Be- 

nign masses generally possess smooth, round, and well-circumscribed boundaries, as 
opposed to malignant tumors that usually have spiculated, rough, and blurry bound- 

aries [90]. Thus, shape analysis is important, based on which different shape factors call 
be extracted, such as compactness, moments, chord-length statistics. Fourier descrip- 

tors, and so on [180]. Texture is another important characteristics of images. Oriented 

texture is common in medical images due to the fibrous nature of muscles and liga- 

ments, as well as the extensive presence of networks of blood vessels. veins. ducts, and 
nerves. Texture features can be extracted through statistical analysis, frnctal analy- 

sis, Fourier-domain analysis, segmentation and structural analysis, and so on and so 

on [180]. More details on feature extraction are provided in [180]. 

3.4 Pattern Classification and Diagnostic Decision 

The final purpose of biomedical signal and image analysis is to classify a given signal 
(image) into one of a few known categories. In medical applications, a further goal is 

to arrive at a diagnostic decision regarding the condition of the patient. When signal 
(image) analysis is performed via the application of computer algorithms, the typical 

result is the extraction of a number of numerical features. Pattern classification based 

on the extracted features is indeed an important aspect of biomedical signal and image 

analysis. As the number of features increase, the associated diagnostic logic may become 

too complicated and unwieldy for human analysis, thus, machine learning technique', 

are employed. An automatic classification methodology may include preprocessing of 

features such as feature selection and feature transformation, classification. and model 

selection. Feature selection could remove the irrelevant or redundant features that have 

negative effect on the accuracy of the classifier. Newly generated features based on a 

certain transformation could be more informative than the original features. and inay 

have reduced number of dimensionality. For model selection, parameters of a classifier 

may be adjusted by optimizing performance on a subset (called a validation set) of the 

training set, or via cross-validation. 
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Figure 3.1: Illustration of the method to compute the confideiice of malignancy-. The 

output values of the benign masses used for training are shown as circles. and the 

output values of the malignant tumors used for training are shown as rectangles. The 

misclassified samples are shown filled in black. B1, B2, III, 
. and T) represeiit four 

partitions. "0" represents the threshold. 

3.5 Confidence of Malignancy for Breast Cancer 

For breast cancer detection, given the question ``Are we equally confident about the 

classification of all masses? ", the answer is naturally negative. Most of the c1a sifiers 

predict the label for an input sample x by applying the step function with a threshold 

on its corresponding output value, as shown in Eq. (2.7), Eq. (2.9), and Eq. (2.13). 

Different input samples may have different levels of the output value, although they 

have the same predicted label. Thus, for the first time, we propose to assign confidence 

of malignancy 1 to an individual mass based on its corresponding output value, instead 

of only providing a binary diagnostic decision of "malignant" or "benign" by using the 

step function. Methods are proposed to derive a measure of confidence with not only 

ýi single classifier but also a set of classifiers. 
A simple illustration of computing the confidence of malignancy, based on the out- 

put values of a chosen classifier, is shown in Figure 3.1. The approach is described step 

by step in the following paragraph: 

1. Sort the benign masses in descending order based on their corresponding output 

values, and divide the benign masses with negative output values (which are the 

correctly classified negative training samples) into N partitions {B}1 in the 

sorted order, each with the same number of benign masses, NB. In Figure 3.1, 

there are two partitions, B1 and B2, each with 10 benign masses; thus, ! 'N'B = 10. 

2. Sort the malignant tumors in ascending order based on their corresponding output 

values, and divide the malignant tumors with positive output values (which are 

'The method is from Prof. A. K. Nandi. 
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the correctly classified positive training samples) into N partitions {M1}N 
1 in the 

sorted order, each with the same number of malignant tumors, NNI. In Figure 
3.1, there are two partitions, M1 and M2, each with 7 malignant tumors; thus, 
NM=7. 

3. Calculate the numbers of the misclassified malignant tumors (among the training 
samples) with the corresponding output values falling in each benign partition 
Bi, denoted as EBi. In Figure 3.1, there are two malignant tumors in partition 
B1, and one malignant tumor in partition B2; thus, EB1 =2 and EB2 = 1. 

4. Calculate the numbers of the misclassified benign masses (among the training 
samples) with the corresponding output values falling in each malignant partition 
Mi, denoted as EMi. In Figure 3.1, there are two benign masses in partition M1, 
and two benign masses in partition M2; thus, EM1 = EM2 = 2. 

5. In each benign partition Bi, the probability of being benign is established as 
PBB) = NB+EBi , and the probability of being malignant is established as P( ) 

EBi with p(B) + P(M) = 1. Thus, in Figure 3.1, we have p(B) = 1o p(M) - NB-l-E Z Bz Bi Bl 121 B1 - 
2 prB) = 

io 
and P(M) - T-2-1 B2 11 7 B2 -T-1* 

6. In each malignant partition MZ, the probability of being benign is established as 
p( )= 

1vM 
i, and the probability of being malignant is established as PM(M) _ 

NM EZ, with PMZ) + PMM) =1 Thus, in Figure 3.1, we have PM l) = PM2) =2 51 

and PM) = P(M) -7 Ml M2 9' 

7. For a given test mass x, one needs to decide which partition x belongs to, based 

on its corresponding output value, and assign the probabilities of being benign or 

malignant in that partition to x, denoted as PB(x) and PM(x), respectively. In 

Figure 3.1, the test mass belongs to partition B2; thus, PB(x) = PB2 = i°, and 
P(M) - PM ýý- 

B2 - 1-1 ' 

To calculate the probabilities of being benign or malignant based on the output values 

obtained by multiple classifiers, the weighted average is employed. Assuming that 

N classifiers are employed for confidence assignment, and letting PMT (x) and PM (x) 

denote the probabilities of being benign and malignant, respectively, as obtained by 

the ith classifier for the input mass x, the combined probabilities are calculated by 

I-, l 

An(ry"l - 
ý2"-1 wPB'(ý) 

E, EN 
=1 

wi 

P wzPM (x) 
l 11/1 1 u/ /- 11 1" 

: 1V ' 

i=1 2Ui 

(3.1) 

(3.2) 
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where uw1 denotes the weight for the ith classifier. In the present work. we make the 
choice that w; =1Vi., which llieails the relevant probabilities from different classifiers 
are equally weighted. Thus. 

PB`X) 
nT /. 

PB')(X), 
1V 

PA 

i=l 

)=N 
i=1 

( 

(3.3) 

(: 1.4) 
The confidence of malignancy for an input mass x is defined a its corre. sponding prob- 
ability of being malignant. 

3.6 Summary 

This chapter has briefly reviewed the essential background on biomedical signal and 
image analysis. Several arguments in favor of the application of computers to process 
and analyze biomedical signals and images are provided. Removal of artifacts, detection 

of events or ROIs, and generation of features are three basic steps for biomedical signal 
and image analysis. Image enhancement is necessary for biomedical image analysis in 

some situations. Based on the extracted features, a further classification procedure 
is required to arrive at a diagnostic decision, using machine learning techniques. Ail 

automatic classification methodology may include preprocessing of features such as 
feature selection and feature transformation, classification, and model selection. The 

method we have proposed to compute the measure of confidence of malignancy for an 
individual mass addresses the important need of assigning a degree of confidence in 

the CAD labels or marks placed on an image being analyzed, and thereby make an 
important contribution to CAD of breast cancer. 
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Chapter 4 

Experimental Datasets and 

Feature Analysis 

This Chapter introduces the experimental datasets used in this work and summarizes 
the commonly used measures to evaluate the separability of features. Section 4.1 pro- 
vides a brief description of the used benchmark datasets, and presents explanations on 
feature extraction for one industrial and three medical datasets. Section 4.2 presents 
methods for feature analysis in both the original and transformed feature space. 

4.1 Experimental Datasets 

4.1.1 Benchmark Datasets 

Ten public benchmark datasets from the benchmark repository [2] and UCI iriachine 
learning repository [3] are used to evaluate the proposed methods in this work. The 

corresponding information of each dataset is listed in Table 4.1. The banana dataset [2] 

is a well known nonlinear and nonseparable synthetic dataset showing two 2-dimensional 

banana. shaped classes. The rest nine datasets are all practical datasets. 

4.1.2 Bearing Dataset 

The bearing dataset recorded six conditions of the rolling element bearings (see Figure 

4.1) : Two normal conditions brand new (NO) and slightly worn (NW), and four 

fault (abnormal) conditions inner race (IR) fault, outer rice (OR) fault. rolling 
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Datasets 

Banana 

Waveform 

Heart 

Thyroid 

Titanic 

Breast cancer 

Diabetes 

Wine 

Iris 

Glasses 

No. of classes No. of features No. of samples 
22 5300 

22 5000 

2 13 270 

25 215 

23 2201 

29 277 

28 768 

3 13 178 

34 150 

69 214 

Table 4.1: Benchmark datasets used in this work. 

element (RE) fault, and cage (CA) fault, each with its corresponding distinguishing 

characteristic listed as follows [74,97]: 

1. NO bearing is a brand new bearing having been run in, but in otherwise perfect 

condition. 

2. NW bearing is in good condition, but has been running for some period of time. 

3. IR fault is created by first removing the cage, moving the elements to one side of 
the bearing, and then removing the inner race. A groove was cut in the raceway 

of the inner race using a small grinding stone, and the bearing was reassembled. 

4. OR fault is created by removing the cage, pushing all the balls to one side, and 

then inserting a small grinding stone and cutting a small groove in the outer 

raceway. 

5. RE fault is created by using an electrical etcher to mark the surface of one of the 

balls, simulating corrosion. 

6. CA fault is created by removing the plastic cage from one of the bearings, cutting 

away a section of the cage, so that two of the balls were free to move, and not 

held at a regular spacing, as would normally be the case. 

The raw data was collected from a vibration test rig as shown in Fig. 4.2, which 

consists of a dc motor driving the shaft through a flexible coupling, with the shaft 

supported by two plummer bearing blocks. Accelerometers were mounted vertically 

and horizontally on a bearing housing so as to allow the monitoring of movement in a 
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Figure 4.1: Typical roller bearing, showing different component J)arts. 

polar form rather than solely vertical movement. The output from the accelerometers 
was passed through charge amplifiers, and then to the analogue to digital converter. 
The resulting signal passed through a lowpass filter with a cutoff frequency of 18.3 kHZ, 
and was then sampled at a rate of 48 kHZ. This operation was repeated ten times in 
16 different speeds for each of the six condition, leading to a total of 960 cases over six 
conditions, with 160 cases for each condition and two sampled channels (vertical and 
horizontal) for each case. 

For each case, in each of the channels sampled, a 32-point fast Fourier transform 
(FFT) of the above raw data was carried out, leading to 33 values for each channel. 
Thus, these give a total of 66 values, named as spectral features, for each of the 960 

cases, yielding a training set of 960 x 66 samples. Two other sets of 960 x 66 samples 
were obtained by repeating the same procedure, which are used as the validation and 
test sets, respectively. 

4.1.3 Wisconsin Diagnosis Breast Cancer Dataset 

Breast cancer is the most common form of cancer and the second most common cause 

of cancer deaths among women in the world, the disease affects approximately 10`% of 

all women at some stage of their life in the N estern world [60]. Definitive diagnosis 

of a breast mass can only be established through FNA biopsy, core needle biopsy. or 

excisional biopsy [5]. Among these methods, FNA, using a needle smaller than those 

used for blood tests to remove fluid, cells, and small fragments of tissue for exaliiination 

under a microscope, is the easiest and fastest method of obtaining a breast biopsy. 

and is effective for women who have fluid-filled cysts. To detect malignant breast 

tumors accurately from a set of benign and malignant samples based solely on FNA. 

the \Visconsin diagnosis breast cancer (WDBC) data was obtained with the following 
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Figure 4.2: Machine test rig used in experiments. 

processing [239,240]. 

After the FNA sample was taken from a breast lmiss. the material was mounted 
on a microscope slide and stained to highlight the cellular nuclei. A portion of well- 
differentiated cells was scanned using a digital camera. The image analysis software 
system Xcyt was used to isolate individual nuclei [134,240,241]. In order to evaluate 
the size, shape, and texture of each cell nuclei, ten characteristics were derived and 
described as follows: 

1. Radius is computed by averaging the length of radial line segments, which are 
lines from the center of mass of the boundary to each of the boundary points. 

2. Perimeter is pleasured as the sum of the distances between consecutive boundary 

points. 

3. Area is measured by counting the number of pixels on the interior of the boundary 

and adding one-half of the pixels on the perimeter. to correct for the error caused 
by digitization. 

4. Compactness combines the perimeter and area to give a measure of the compact- 

ness of the cell, calculated as: 
perimeter-2 

area 

This dimensionless number is minimized for a circle and increases with the irreg- 

ularity of the boundary. 

5. Smoothness is quantified by measuring the difference between the length of each 

radial line and the mean length of the two radial lines surrounding it. If this 
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number is small relative to the distance between consecutive boundary points. 
then the contour is smooth in that region. To avoid the numerical instability 
associated with small divisors, the following equation is used to calculate the 
smoothness: 

Epoints (lengthi - (lengthi + lengthi+1)/21 

perimeter 
where lengthi denotes the length of the line from the center of mass of the bound- 
ary to each boundary point. 

6. Concavity is captured by measuring the size of any indentations in the boundary 

of the cell nucleus. 

7. Concave points is similar to concavity, but counts only the number of boundary 

points lying on the concave regions of the boundary, rather than the magnitude 
of such concavities. 

8. Symmetry is measured by finding the relative difference in length between pairs 
of line segments perpendicular to the major axis of the contour of the cell nucleus. 
The major axis is determined by finding the longest chord, which passes from a 
boundary point through the center of the nucleus. The segment pairs are then 
drawn at regular intervals. To avoid numerically unstable results due to extremely 

small segments, the sums are again divided, rather than summing the quotients, 

Ei lefti - righti 
symmetry = Ei(lefti + righti)' 

where lefti and righti denote the lengths of perpendicular segments on the left 

and right of the major axis, respectively. 

9. Fractal dimension is approximated using the "coastline approximation" described 

by Mandelbrot [132]. The perimeter of the nucleus is measured using increasingly 

larger "rulers". As the ruler size increases, the precision of the measurement 

decreases, and the observed perimeter decreases. Plotting these values on a log-log 

scale and measuring the downward slope gives the negative of an approximation 

to the fractal dimension. 

10. Texture is measured by finding the variance of the gray-scale intensities in the 

component pixels. 

The mean value, standard error, and the extreme (largest or "worst" ) value of each 

characteristic were computed for each image, which resulted in 30 features of 569 im- 

ages, yielding a database of 569 x 30 samples representing 357 benign and 212 malignant 

cases. 
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4.1.4 Breast Masses in Mammograms 

Breast cancer may be detected via a cautious study of clinical history, physical ex- 
amination, and imaging with either mammography or ultrasound. Mammography has 
been shown to be effective in screening asymptomatic women by detecting occult breast 

cancers and by reducing mortality by as much as 35% in women aged between 50 and 69 

years [29,62]. Breast tumors and masses usually appear in the form of dense regions in 

mammograms. Benign masses generally possess smooth, round, and well-circumscribed 
boundaries, as opposed to malignant tumors that usually have spiculated, rough, and 
blurry boundaries [90]. Several shape features have been proposed for their classifica- 
tion [27,183,185,186,194] on the basis of the shape differences between benign masses 
and malignant tumors. The need for measures to characterize the sharpness of a ROI in 

an image has also been recognized, leading to different algorithms for the computation 
of measures of edge sharpness [158,183]. In addition, subtle textural differences have 
been observed between benign masses and malignant tumors, with the former being 

mostly homogeneous and the latter showing heterogeneous texture [90,194]. Methods 

of computing texture features have been proposed using the mass margin [158,159,183] 

or ribbons of pixels around masses obtained using the "rubber band straightening 
transform" [195]. 

Two digitized mammographic image sets are studied in this work. 

" The first image set contains 57 ROIs extracted from mammograms, with 37 re- 
lated to benign masses and 20 to malignant tumors, obtained from "Screen Test: 

Alberta Program for the Early Detection of Breast Cancer" [22]. The images 

were digitized with a resolution of 50 µm and 12 bits per pixel; however, texture 

analysis was performed after smoothing using a7x7 Gaussian kernel with a 

standard deviation of 2 pixels and reduction to 8 bits per pixel [8]. 

" The second image set contains 111 ROIs extracted from mammograms, with 65 

related to benign masses and 46 to malignant tumors, obtained by combining the 

first image set with 57 ROIs and another set with 54 ROIs. The images for the 

57 ROIs were digitized using the Lumiscan 85 scanner at a resolution of 50 µm 

and 12 bits per pixel. The images for the 54 ROIs were prepared, by using images 

containing masses from the Mammographic Image Analysis Society (MIAS, UK) 

database [1] and the teaching library of the Foothills Hospital in Calgary [1831. 

The MIAS images were digitized at a resolution of 50 µm, whereas the Foothills 

Hospital images were digitized at a resolution of 62 µm. 

The diagnosis of each case was proven by biopsy. Mass or tumor ROIs were manually 

identified, and contours were drawn by a radiologist experienced in screening inainmog- 

raphy. Twenty-two features were extracted from each ROT, including 5 `-. at,, 
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(C, F, FF, SI, and FD), 3 edge-sharpness features (A, Co, and CV), and 14 texture 
features, which are explained in the following paragraphs. 

" Shape features: Five shape features are considered in this study, including eoni- 
pactness (C), fractional concavity (F,. 

(. ), Fourier factor (FF), spiculation index 
(SI), and fractal dimension (FD). C is a simple measure of the efficienev of a 
contour to contain a given area, and is defined in a normalized form as 1- 4ý--ýý 

where D, and A, are the contour perimeter and area, respectively [185]. F, is 
the ratio of the cumulative length of the concave parts to the total length of the 
contour [185]. Benign masses, due to their round or oval contours. result in low 

values of C and F,.,.. On the other hand, contours of microlobulated or spiculated 
malignant tumors may be expected to have several significant concave portions. 
and hence large values of F, as well as C. FF is a measure related to the 
presence of roughness or high-frequency components in the contours [183.186]. 
SI represents the degree of spicularity of contour. Rangayyan et al. [185] pro- 
posed an algorithm to compute SI based upon a polygonal model of the given 
contour, and a combination of the segment lengths, base widths, and angles of 
possible spicules. Due to their effect on the surrounding tissues, most malignant 
tumors form narrow, stellate distortions around their boundaries, and hence have 
higher values of SI than benign masses with smooth contours. FD can be used 
to characterize self- similarity, nested complexity, or space-filling properties, and 
was derived by using the two-dimensional (2-D) ruler method [186]. 

" Edge-sharpness features: Three edge-sharpness features are used in this study, 
including acutance (A), contrast (Co), and coefficient of variation (CV). A is a 

measure of the sharpness or change in density across a mass margin [183]. Co is 

a measure of contrast [158]. CV is a feature based on the coefficient of variation 

of the edge strength computed at all points on the boundary of the ROI [158]. 

" Texture features: Fourteen texture features were computed according to the defi- 

nitions of Haralick et al. [81], using a ribbon of pixels around the margin of each 

mass [8,158,159], including angular second moment of energy (fl), contrast (f2), 

correlation (f3), sum of squares (f4), inverse difference moment (f5), sum average 
(f6), sum variance (f7), sum entropy (f3), entropy (fg), difference variance (fio), 

difference entropy (f ii), information measures of correlation (f12 and f13). and 

maximal correlation coefficient (fl, j). The texture features were computed using 

ribbons of width 8 mm obtained by dilating the mass boundaries, after filtering 

and downsampling the mammograms to an effective resolution of 200 yin per 

pixel. 

Some of the shape features used are invariant to scaling (size) and rotation by design; 

others are normalized to remove the effect of spatial resolution and size. The texture 
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and edge-sharpness features include normalization and should not be ýýffec teal bý the 
small differences in the pixel size used (50 and 62 micrometers). 

4.1.5 Knee-joint Vibroarthrographic Signals 

Detection of knee-joint pathology at an early stage is important so that appropriate 
treatment can stop or slow down the degenerative process and facilitate extended func- 
tionality of the affected knee joint [223]. The semi-invasive procedure of arthroscopy 
is a well-known diagnostic procedure to detect knee-joint disorders. but not suitable 
for repeated assessment or follow-up studies for monitoring purposes. The noninva- 
sive imaging techniques of X-ray, computed tomography (CT), and magnetic reso- 
nance imaging (MRI) can capture only gross cartilage defects, and may not be u se- 
ful for early detection of cartilage pathology or routine evaluation. Motivated by- 

the above-mentioned limitations, research on analysis of knee-joint vibration or VAG 

signals, emitted from knee joints during flexion or extension and expected to be as- 
sociated with pathological conditions in the knee joint, has been conducted since 
1902 [21,42,100,107,115,116,181,184,187,188,190,223]. Previous studies have shown 
that accurate detection and analysis of VAG signals could decrease the diagnostic use of 

arthroscopy, and lead to a noninvasive clinical tool for early detection, localization, and 

quantitative analysis of articular cartilage disorders [42,107,115,184,187,188,190,223]. 

VAG signals are nonstationary due to the fact that the quality of the knee-joint 

surfaces coming in contact may not be the same from one angular position to another 
during articulation of the joint [115]. Segmentation could be used to divide nonstation- 

ary VAG signals into quasi-stationary segments so that modeling techniques based on 
the assumption of stationarity may be used [115,116,184,223] 

. 
In order to simplify the 

signal processing and decision-making steps, as well as to minimize the clinical informa- 

tion required in the design or application of the methods, Rangayyan and W , Vu [187,188] 

proposed to analyze VAG signals without performing adaptive segmentation or associ- 

ating parts of the signals with specific parts of the articular cartilage surfaces and the 

related pathology, that forms the knee-joint VAG database being studied in this work. 
The knee-joint VAG database consists of 89 VAG signals, with 51 from normal vol- 

unteers and 38 from subjects with knee-joint pathology. The abnormal signals include 

chondromalacia of different grades at the patella, meniscal tear, tibial chondromalacia. 

and anterior cruciate ligament injuries, as confirmed during arthroscopic examination. 

The VAG signals were prefiltered (10 Hz to 1 kHz) and amplified before digitizing at the 

sampling rate of 2 kHz. Each signal was normalized to the amplitude range [0,1]. Six 

features -- form factor (FF, FFl, and FF2), skewness (S), kurtosis (K). and entropy 

(H) - were extracted from each signal, as explained below. 

9 Form factor (FF) is employed to achieve an improved representation of the vaai- 
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ability or "busyness" in order to characterize the larger variability ol)serV-ed in ab- 
normal VAG signals as compared to normal signals. and defined as FF 
where Qx, axe, and are the standard deviation of x, x1. and x", respectively: 
v' is the first derivative of the given signal 'r; and : r'is the second derivative of 
x [19,181,188]. VAG signals generated during extension of the leg have hecn ob- 
served to bear more discriminant information than those related to flexion [117]. 
Thus, values of FF were also computed separately for the extension ((1ppi oxi- 
mately the first half of the duration of the signal) and flexion (the second half) 

parts of each signal, and labeled as FF1 and FF2, respectively [188]. 

" Skewness (S) is used to characterize the differences observed between the his- 
tograms of normal and abnormal VAG signals, defined as S= "z: 3; 

, where in . 
is the kth central moment of the PDF of the given signal, denoted by p(xi) with 
xi, It = 0,1,2. 

... , 
(L - 1) representing the L bins used to represent the rauige of 

the values of the signal x [188]. 

" Kurtosis (K) is the normalized fourth moment of the PDF p(xi), also used to 

characterize the differences observed between the histograms of normal and ab-__ 
M4 normal VAG signals, defined as S=( [188]. 

M2 7 

" Entropy (H) is a commonly used measure to represent the nature and spread of a 
PDF, and is defined as H=- EL of p(a, 2) 1092[p(x2)]. H has low values for PDFs 

with narrow ranges of significant probability values, and reaches its maximum for 

a uniform PDF [188]. 

4.2 Characterization of Features 

4.2.1 Receiver Operating Characteristic 

Receiver operating characteristic (ROC) [175] is a graphical plot of the sensitivity vs. 

(1 - specificity) for a binary classifier system as its discrimination threshold is varied. 

Since the true positive rate (TPR) is equivalent with sensitivity and the false positive 

rate (FPR) is equal to (1 - specificity), the ROC can also be represented equivalently 

by plotting the fraction of TPR vs. the fraction of FPR. The area under the ROC 

curve, named as A, become a particularly important metric for evaluating diagnostic 

procedures because it is the average sensitivity over all possible specificities [80]. The 

. 
4- value derived by sliding a threshold on values of a feature can be used to evaluate 

the separability of that single feature. 
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4.2.2 p-value of Student's t Test 

Given two vectors X1 and X2, each characterized by its mean, standard devi? tt ioii. auld 
number of samples, Gosset [71] proposed the student's t test to determine whether their 
means are distinct, provided that the underlying distributions can be assiiined to be 

normal. The t statistic to test whether the means are different (,, in be calculated pis 
follows: 

Xl - Xýý 
t= 

SCI-X2 
(-1.1) 

with 

sý- 
_X2 

= 
(1,1-1)si+(12-1)s2 11 

11+12-2 11+12 (4.2) 

where s2 is the unbiased estimator of the variance, l denotes number of participants, 
(l - 1) is the number of degrees of freedom for either vector, the subscripts I Dual 2 
denote the first and second vector, respectively, and (ii + 12 - 2) is the total number 

of degrees of freedom, which is used in significance testing. If the calculated p-value 
is below the threshold chosen for statistical significance (usually the 0.05 level).. the 

null hypothesis that the two vectors do not differ is rejected in favor of an alternative 
hypothesis, which typically states that the vectors do differ. To calculate the p-value 
(significance), the probability of observing the given result, or one more extreme, by 

chance if the null hypothesis is true, the student's t-distribution [64,71,89] will be 

considered. Today, the t test is more generally applied to the confidence that can be 

placed in judgments made from small samples. In this work, the p-value of the student's 

t test are derived by employing the function "ttest2" in MATLAB. 

4.2.3 Alignment 

"Alignment" was introduced by Cristianini et al. [48] to measure the similarity between 

two kernel functions or between a kernel and a target function. To evaluate the degree 

of agreement between a learning task and the input features in the original feature 

space R', the alignment between the original inner product matrix (E) and the target 

label matrix can be employed, given as 

_ 
(E, YYT)F (4.3) AE 

(E, E)F(YYT, yyT)F 

where y denotes the column vector of the labels of the training samples. The Frobenius 

product (, )F between two Gram matrices M and N is defined as 

(M, NýF = tr(MN), (4.4) 

where "tr" denotes the trace of a matrix [48,244]. To evaluate the degree of agreement 

between a learning task and the input features in the kernel-defined feature space. 
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with the kernel function employed to compute the inner products between saiiiples. the 
alignment between the kernel matrix (K) mid the target label matrix can be employed. 
given as 

Ax 
(K, y. T)F 

= 
(K, K)F(YYT, YYT)F , 

A larger value of alignment indicates higher degree of agi c<ii1e11t than 

4.2.4 Class Separability 

A quantity to measure the class separability of the training samples 
feature space [244] that we employ for feature selection is givens by 

J= 
tr(SB) 
tr(St, j, ) ' 

(4. ) 

ýi smaller value. 

in the original 

where SB and Sij are the between-class and within-class scatter matrices. 

(4.6) 

111 t lie 

original feature space, SB and S11, are calculated by Eq. (2.3) and Eq. (2.1). In a 
transformed feature space with a nonlinear mapping R" SB rind SIt (u'(' 
calculated by 

SB = II mý - mK. I 2, 
l+ 

sli; _E jjo(xi-) 
- m, +, 2 

i=1 

MK 

mý 

1 
+ 1 

1 
l- 

lI(xT) - m, ý 
Iý2, 

l+ 

7, =1 

1- 

ýýcxz ýý 2=1 

(4.7) 

(4.8) 

(4.9) 

(4. lo) 

A larger value of J indicates better class separability of the training set than a smaller 

value. 

4.2.5 Normalized Distance 

A measure of normalized distance [212] between the centers (mean vectors) of the 

different classes can be used to evaluate their separability given by 

D= 
JIm+ -m- 

l+1 1 
ý1±1 ý? - m+I 2+ 

-1 1 Lýi=1 
jIxZ - m- 2 

two 

(L11) 

A larger value of D indicates better class separability of the training Set than a smaller 

value. 
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4.3 Summary 

This chapter has provided a description of the experimental datasets used in this work. 
and investigated how to analyze the discriminating power of a single feature or a certain 
feature combination. Information of the benchmark datasets used for evaluation and 

comparative analysis were described, including the nuiiibers of features. classes. and 

samples. The raw vibration signals and the corresponding feature extraction procedure 

were provided for the bearing dataset with six different conditions recorded. The image 

databases and the corresponding feature extraction procedures were provided for thee 

medical datasets on diagnosis, including the WDBC dataset from FNA. breast masses 
in mammograms, and knee-joint VAG signals. Five measures of data separability has 

been surveyed, including the area under the ROC curve, the p-value of the f-test, 

alignment, class separability, and normalized distance. The later four measures can 
be applied to perform the future tasks of feature selection and kernel optimization 

independent of any classifier, in contrast with the wrapper type feature selection and 

kernel optimization (see Section 5.1 and Section 7.3). 
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Chapter 5 

Feature Selection and Feature 

Transformation 

5.1 Feature Selection 

Pattern classification is concerned with using labeled samples, described I )Y a vector 

of numeric or nominal features, to induce a model that classifies objects into a finite 

set of known classes. Some of these features may be irrelevant or redundant. Avoiding 

irrelevant or redundant features is important because they may have a negative effect 

on the accuracy of the classifier. In addition, by using fewer features we inay reduce the 

cost of acquiring the data and improve the comprehensibility of the classification model. 
Different methods for feature selection can be employed, such as sequential forward 

selection [11,237], sequential backward selection [11.237], and GA [97.98225,243]. In 

this work, GA-based feature selection is studied. 
GA is a popular and easily implemented optimization method; it could serve as a 

stochastic global search method that mimics the metaphor of natural biological evo- 

lution (see Section 2.4.1). To perform feature selection using GA, each feature in the 

candidate feature combination is considered as a binary gene. Each possible feature 

combination is encoded into an a-bit binary string, where n is the total number of 

features available. An n-bit individual corresponds to an n-dimensional binary feature 

vector X, where Xi =0 represents elimination and Xi =1 indicates inclusion of the ith 

feature. To select a subset from a total of six features, ordered as (f if2. f3" f-1. f5- f6) 

the 6-bit individual 010001 denotes the feature combination (f2, f6). Two schemes can 

be employed for the GA-based feature selection: 

" Independent selection: searching the optimal combination of features with the 

objective function set as the measure of data separability, such as alignment of 

the kernel with the target function, class separability. and normalized distance. as 

53 



described in section 4.2, calculated in the original feature space. Such ýi selection 
method is independent of auly classifier. 

" Wrapper-type selection: searching the optimal combinntioli of features with the 
objective function set as the estimated risk of a chosen classifier, such as the 
leave-one-out (LOO) error and cross-validation error (sec Section 7.1). 

5.2 Feature Transformation 

In some cases of pattern classification, newly generated features based on ýa cerl ain 
transformation could be more informative than the original features. and may have 

reduced number of dimensionality. The commonly used methods of feature trails- 
formation include principal component analysis (PCA) [101], independent component 
analysis [14], partial least squares (PLS) [192], canonical correlation analysis [82]. and 
genetic programming (GP) [202]. PCA involves the transformation of a number of 
possibly correlated directions of feature vectors into a smaller number of uncorrelated 
directions, known as the principal components. By employing PCA to reduce the di- 

mensionality of features from n>3 to n=2 or n=3, a visible 2-düneiisional or 
3-dimensional distribution of features can be provided. PLS [242] creates orthogonal 

score vectors by maximizing the covariance between the input and output variables. 
To perform a nonlinear transformation, PCA and PLS can be extended to KPCA [197] 

and KPLS [193] by employing the kernel function. In the transformed KPCA and 
KPLS feature space, the discriminating capability of the original features could be 

improved [153,154]. Instead of using nonlinear classifiers with the given set of origi- 

nal features, linear classifiers can be employed with the transformed features. as the 

theory of linear classifiers is well established, with several related tools available for 

their practical application. The incorporation of a nonlinear transformation prior to 

the application of a linear classifier may be an easier and more efficient approach to 

the realization of an effective nonlinear classifier, than the design and development of 

a new nonlinear pattern classification method. 

5.2.1 Kernel Principal Component Analysis 

PCA seeks orthogonal directions in linear feature space, known as principal components. 

on which the variance of the projections is maximized. In KPCA, a kernel function 

is used to compute the inner product matrix. the so-called kernel maltrix, on pairs of 

samples in the transformed feature space (see Section 2.3.3). The kernel matrix for the 

centered data in the transformed feature space is constructed as 

K= K- 
1 

LK -1 KL + LKL. 
l1l 

(5.1) 
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where L is an Ixl inýitrix with each element equal to 1. Now. we have to find the 
eigenvalue A and the corresponding eigenvector u in the transformed feature space f;. 
which satisfy 

Au = C,;., u, 

where C�, is the c"ovýlriýlnee matrix of the l transformed and <eiitere(l samples (xi)}i1 E 
r1� calculated as 

1ý 
ýý ý -jT i 

u 
1 

(5. '? ) 

(5.: ) 
i=1 

The eigenvectors of the covariance matrix ordered by decreasing eigenvalues coirreýIm, (I 
to directions of decreasing variance in the data, with the eigenvalue giving the aniount 
of variance captured by its eigenvector. Solving the eigenvalue problem in Et. (5.2) is 

equivalent to finding the eigenvalue A and the corresponding eigenvector v which satisfy 
the following equation [197]: 

Av= 
LKv. 

Then, u is calculated by 
I 

u= 

i-1 

(5.4) 

(5.5) 

As K is positive semi-definite, all of its eigenvalues are nonnegative. We let Al > A2 > 

"""> Al denote the eigenvalues obtained; U1, u2, """, UL denote the corresponding nor- 

malized, complete set of column eigenvectors; and vl, v2, "", vi denote the (-()efficient 

column vector for each eigenvector u, . 
For a set of test samples {(x1. yi)}i_1, the pth kernel principal component (KPC) 

for Xj, in the transformed feature space, is computed by projecting the centered and 

transformed test sample q(x1) onto the pth eigenvector up. as 

KPCp(x2) = 0T (x2)up, ý"p =1 (5. G) 

Let Kt denote the txl kernel matrix between t test samples and l training samples, of 

which the centered kernel matrix kt is constructed by 

111 

Kt = Kt -1 LtK -1 KtL + 12 
LtKL. ýD. 1) 

where Lt is atx1 matrix with each element equal to 1. By incorporating Eq. (5.5) 

into Eq. (5.6), the pth KPC for x can be computed by 

KPCp(x,;, ) = Rivp, p=1,2, .. (fl.? ) 

where ki denotes the ith row of the centered kernel matrix Kt. By selecting 1-1 KPCs 

from the total of l KPCs available, the ii-dimensional feature vector x is mapped into 

another n-dimensional space, in which the transformed feature vector of x is given by 

O(x) = [KPC1(x), KPC2(X), 
... , 

KPC,, (x)]T. 

1_ 
__ 

1. 
__ !. 

1- r-r /r n\ 
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The maximal dimensionality of the transformed feature space is equal to the number 
of training samples 1. KPCA is commonly used as a dinielisionýilitý reýlýlctiolz t()(1 with 
n<a. However, for cases with small o., such as discriminant analysis using a single 
feature, by setting n>n, KPCA can also be applied as a dimensionality-c xpalision 
tool, which could increase the discriminating power of certain features. 

5.2.2 Kernel Partial Least Squares 

The basic PLS method is a regression method characterized by finding score vector in 
the input set and a score vector in the output set that have maximal coyariance betýýec11 
them. However, in this study, we aim to seek better incorporation of different feature 

sets so that maximal information could be provided for the subsequent classificatioii 
task. Therefore, we propose to seek score vectors with minimal covariance betvveell 

two blocks of feature sets instead of score vectors with maximal covariance betvýeell the 
input and output sets. 

Given l samples with n features including two feature sets. one with /zl features 

and the other with n2 features with n= nl + n, 2, the lx ii matrix Xh and the 
lx n2 matrix XK are used to denote the first and second feature sets, with zero-ineali 

variables, in the transformed feature space, respectively. The score vector is for the 

first n1-dimensional feature set and the score vector u, for the second n2-dimensional 
feature set are computed as 

ts 

= X� 
, 
w, 

2 
,q 

(5.9) 

(5.10) 

where w and q are weight vectors. By seeking the score vectors with minimal covariance 

between two blocks of feature sets, the optimization task becomes 

mill tTus, (5.11) 

subject to 

w 4l = 1. 

By introducing the Lagrange multiplier, the weight vector w can be calculated by 

solving the following eigenvalue problem [91]: 

(X I)T Xh (X2)T Xl w= Aw. (5.12) 

The eigenvectors ordered by increasing eigenvalues correspond to directions of increas- 

ing covariance between the two blocks of feature sets. The score vector t, s can conse- 

quently be calculated by Eq. (5.9). In fact, tg can also be directly estimated as the 

eigenvector of the following eigenvalue problem by simply multiplying both sides of Eq. 

(5.12) by X, l and using Eq. (5.9), leading to 

x (X )T- 2(Xh)T is =its. (>. 13) 
K, N 
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The weight vector q and the score vector us. are then esti111ate<1 a [92] 

q= (-Vh)Tt, 
ý. 

U, 5 = .v 

(. ). 14) 

ý: ý. 1. -ýý 
As the nonlinearity of the feýltures is w-hievecl by employing the kernel funct i( ii,. 

we have 

XI(XI)T = K1ý 

and 
x2(x2T 

w1 K 

(: ß. 1G) 

(5.17) 

where the two 1xl matrices K1 and K2 are the centered kernel inatriccs over the 1 

observed samples for the two feature sets, respectively, which can be calculated l ised 
on Eq. (5.1). The eigenvalue problem given in Eq. (5.13) is then equivaleiit to 

K1K2 = at, 5. (5.18) 

The score vector u9 is then given by 

ýS =K (5. i9) 
By selecting n score vectors from the total of l score vectors available, two new 5- 

dimensional features sets are generated, with minimal covariance betweeii one another. 
Thus, the original 1t-dimensional feature vector is mapped into another 2i-dimensionýd 

space. 

5.2.3 Classification with the Transformed Features 

Classification task can be perform by seeking a separating function in the transformed 

feature space , by using a linear classifier, such as FLDA (see section 2.3.1). The label 

for an input sample x is predicted by Eq. (2.7). 

5.3 Summary 

This chapter has investigated methods for preprocessing of features prior to the ap- 

plication of a classifier, including feature selection and feature transformation. GA 

can be employed to select one or a set of more inforinative combination(s) of features 

from 211 -1 available combinations. based on the measure of data separability or the 

estimated risk of chosen classifier. To obtain more powerful features with improved 

discriminating capabilities for classification. nonlinear transformation of features caii 

be employed, such as KPCA and KPLS. KPCA seeks uncorrelated orthogonal direc- 

tions in a kernel-defined feature space. with the covariance matrix computed using the 
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kernel function. KPLS seeks better incorporation with minimal covariance between 

two blocks of feature sets, so that maximal information could be provided for the sub- 

sequent classification task. A linear classifier associated with nonlinear transformed 

features may be an easier approach to the realization of an effective nonlinear classifier, 

than the design and development of a new nonlinear pattern classification method. The 

efficiency of the KPCA-based and KPLS-based feature transformation is demonstrated 

in Section 8.2.3 with a breast-mass dataset. 
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Chapter 6 

Proposed Classifiers 

6.1 SOM-RBF Network 

The SOM-RBF network (147,150] combines the SOMs and RBF Networks. of which the 
overall structure is shown in Fig. 6.1. The RBF network is eniplovedl to process the 
clustering result obtained by SOM using the salute training samples. In the SO1\I-RBF 

network, the RBF centers are set as the weight vectors of neurons from the competitive 
layer of a trained SOM, given as 

ti = wi. i=1,2, 
.... m,.. (6.1) 

For the RBF networks, the same width for each Gaussian function of Eq. (2.15) is 

employed, given as 
dmax 

(6.2) 

where dinax is the maximum distance between the chosen centers. For a 2D-lattice 5O1\I 

with a size of axb, the number of RBF centers r, is decided by the SOLI topology. a 

m.,. = a- x b. 

The SOAI-RBF network is composed of two learning blocks: the first block leariis a 

nonlinear transformation with a set of RBFs by using the unsupervised learning method 

of SOM: the second block learns a separating hyperplane in the transformed feature 

space by minimizing the cost function given in Eq. (2.17). which is similar to the SLP 

learning method. In fact, the first block is equivalent to a dimensionality reduction 

process. which reduces the dimensionality of the input feature space from ii to III,, 

corresponding to the second hyperplane-seeking block. The efficiency of the SOM-RBF 

network is demonstrated by applyiiig it to breast cancer detection from FNA in 

8 
. 
1.3. 
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Figure 6.1: The overall structure of the SOI\1-RBF clnss, ificr. 

6.2 Pairwise Rayleigh Quotient Classifier 

6.2.1 Introduction 

Machine learning based on pairwise information is a comparatively new area developed 

in recent years, of which the earliest study was done by Wagsta and Cardie [232] to im- 

prove results of clustering. Klein et al. [109] proposed an improved clustering method in 

the presence of limited supervisory information, given as pairwise instance constraints, 
by allowing instance-level constraints to have space-level inductive implications. By us- 
ing a small amount of supervised data, Basu et al. [15] presented a pairwise-constrained 

semi-supervised clustering framework with selected informative pairwise constraints. 
Extensive studies on pairwise-constraint-based learning have been conducted in the 

area of supervised learning [224], semi-supervised learning [129,2551, distance iiietric 

learning [33.86]. and mixture modeling [201], in which pairwise information including 

pairwise constraints and pairwise references have been utilized. However. less attention 

has been directed toward employing pairwise information to support the classification 

task, in which most of the current works use pairwise constraints to learn better dis- 

tance metrics or kernel functions [85] before applying supervised learning algorithms. 

Recently, Yan et al. [247] proposed a discriminative learning approach which can in- 

corporate pairwise constraints into a conventional margin-based learning framework to 

deal with the problem of insufficient labeled data in video object classification. For an 

SVM with embedded pairwise loss, named as the convex pairwise SN'VM (CPSVM) [24 7 ]. 

a more complex quadratic programming problem requires to be solved, with its corre- 

sponding dual form containing (1+7n) number of variables (where 1 denotes the number 

of training samples and in denotes the number of pairwise constraints used: see Se('- 

tion 6.2.3 for details). The method improves the learning performance at the cost of 

increased computational complexity. 
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To deal with a classification problem with insufficient training samples, and to em- 
ploy fully pairwise information to support the classification task but without a concomi- 
tant increase in computational complexity as caused by CPSVM, we propose the PRQ 
classifier by generating an unconstrained optimization objective based on a set of m 
pairwise constraints instead of l individual training samples with m<l* (l -1) [152,155] 

. This consequently leads to a generalized eigenvalue problem with low computational 
complexity. A "square of sum" optimization factor 1 is employed for the PRQ clas- 
sifier, instead of the commonly used "sum of square" factor, by considering the sign 
effect under the situation of misclassification with large projections onto the separating 
plane. Similar to the traditional Fisher's discriminant analysis (FDA) [59], our pro- 
posed PRQ classifier offers a combination of the between-class and within-class scatter 
for both linear and nonlinear cases, on which recent related studies include the alter- 
native FLDA [38] and the modified FLDA [75]. 

6.2.2 Pairwise Constraints 

Instead of a set of 1 labeled individual training samples {(xi, yi)}i_1, there is another 

way to express the training data, which is a set of pairwise constraints {(xil, xi2) zi)}i-' 1 
constructed from the labeled data, where zi E{1, -11 is the pairwise constraint assigned 
to the two samples in the pair (xi1, xi2): (xil, xi2) 1) means the two samples (xi1, xi2) 
belong to the same class, whereas (xil, xi2, -1) means the two samples (xi1, xi2) belong 

to different classes. For computational convenience, it is set in the rest of this work 
that the first sample xi1 of the pairwise constraint (xii, xi2) -1) belongs to the positive 

class, whereas the second sample xi2 belongs to the negative class. 

6.2.3 Methods 

The CPSVM deals with the problem of insufficient labeled data in video object classifi- 

cation: the method employs additional pairwise constraints together with labeled data 

to model the decision boundary directly. The CPSVM incorporates a set of pairwise 

loss functions L' = fii - zi A21 into the conventional SVM empirical risk; the regularized 

empirical risk is defined as [247] 

OW = 
1Lý (y2, f (xi)) + m1 

2=1 

m 
Ll(fi1, fi2, zi) + I12ý2 (If H) 7 

(6.3) 

where fit and fie are used to denote f (xii) and f (xi2), L is the empirical loss function, 

Q is a monotonically increasing regularization function, the pairwise factor Pi and the 

regularization constant µ2 are both regularization parameters set by the user, and 1 IH 

'The "square of sum" optimization factor developed in the PRQ work leads to the S2SP classifier 

in Section 6.3. 
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is the corresponding norm. Such a CPSVM, with (l + m) variables to be optimized 
and two regularization parameters to be tuned, improves the learning performance at 
a high cost of increased computational complexity. We propose the following PRQ 

classifier to help in classification with insufficient training samples by employing pair- 
wise constraints instead of individual samples, but without using any regularization 
parameter. 

PRQ Criterion 

The PRQ criterion is the ratio of the between-class and within-class scatter with differ- 

ences of the projections onto the vertical direction of the separating hyperplane between 

any two samples, and written as 

o'(f) d +d 

where 
r ý2 

d+ 

d 

d E (f (xi) -f (xj)) 
xiEC+, xi EC- 

ýn 12 
ý2 (1 

- zi)(. f21 
- . 

f22) 

i=1 

1 E (f (x;, ) - .f 
(xj))2 

xj, xj EC+ 

m 

++_ý 4(1 + zi)(1 + yi1)(. fil - , 
fi2)2ý 

l (l 1) 
i_1 

1 
l-(l- - 1) 

x;., xj EC- 
(f (X) -f (Xj))2 

m 

+ zi)(1 - yil)(. fil 
- . 

fi2)2ý 

(6.4) 

where d denotes the differences of projections between samples from different classes, 

d+ denotes the differences of projections between samples from the positive class, d- 

denotes the differences of projections between samples from the negative class, and yil 

denotes the label of the sample aj1. Using a set of pairwise constraints (fii - zifi2), 2= 

1,2, 
..., m, and by ignoring a constant, the PRQ criterion in Eq. (6.4) can be written 

as 

with 

ý2 
0l (f) _ 

(Ein 
1(1 - zi)(fi1 - 

fi2) 

2 
lJiý 1(Si + fi2) 

Si = 
(1+zi)(1 +yil), 11 2,..., m, 

Ml 

(6.5) 
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(1 + zi)(1 - Yii) 0i = 
m2 ,i=1,2,..., m, 

where m1 is the number of pairs of samples from the positive class C+. and m2 is the 
number of pairs of samples from the negative class C-. The objective of the PRQ 
classifier is to maximize the PRQ criterion. 

FLDA [59] is designed to make the two centers (mean projections) of the positive 
and negative classes as far apart as possible, and the samples from the same class as 
close to the corresponding center as possible. The aim of the PRQ classifier is to make 
any two samples from different classes as far apart from each other as possible. and any 
two samples from the same class as close to each other as possible. Mathematically, 
if all of the l* (1 - 1) pairwise constraints are used, the numerator parts of the PRQ 

and Fisher's criteria to calculate the between-class scatter are equivalent, whereas the 
denominator parts to calculate the within-class scatter are different. Compared with 
the pattern classification method based on individual samples, such as FLDA which 
employs m number of individual samples from a total number of l samples (m < 1), 

employing m number of pairwise constraints from a total number of 1* (l -1) constraints 
(m <1* (1 - 1)), as done in the PRQ classifier, offers more possibilities. The pairwise 

constraints that contain irrelevant or redundant information are removed to reduce the 

computational complexity, which leads to a pair selection procedure. 

The Linear PRQ Classifier 

For linear classification, by incorporating the separating function given in Eq. (2.1) 

into Eq. (6.5), the following optimization objective requires to be maximized 

of(w) = 
where 

m 

p=ppTI 

ýSi + gi)(xil - Xi2)(Xi1 - X-i2)T, 

wTpw 
wTQw I 

2= 

m 

( - zzl(xil - X-i2) . 

(6.6) 

i=1 
The objective function shown in Eq. (6.6) is a generalized Rayleigh quotient. As shown 

in [59], the optimal solution for w can be calculated directly as 

W* 
1 

-Q P" 

The optimal solution for b is then given by 

i XTW*. =-21+ xT ZW 21- 
XiE C+ xiEC_ 

(6.7) 

(6.8) 
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Unlike the linear SVM with one regularization 1)ar-aineter and the line, uF CPSV'ýl with 
two regularization parameters, the linear PRQ classifier is ýa nonparauiietric c1aýýifier, 
which is more convenient for the user as there is no need to spend time and eff(, rt on 
tuning the parameters of the classifier. 

The Nonlinear PRQ Classifier 

For nonlinear classification. by incorporating the kernel-based separating filiation gig alp 
in Eq. (2.31) into Eq. (6.5), the following optimization objective requires to be iiiaixi- 
mized 

/-I// \ aT P,.; a 
UK ýa) - 

where 

PK = PK, PK' 
m 

+ gi)qigT. 
i=1 

The j th element of the column vector p, is 

rn 

i=1 
tit)Ii (Xi, (-Ei 1- Xi 2)), 

The jth element of the column vector qj is 

qi h( 1- Xi2)), j=1,2, .., 
1; i. = 1,2,.... I>>. 

((i. 9) 

The solution of the vector a composed of the coefficients (vi is the eigenvector of Q, -'P, 

corresponding to the largest eigenvalue, and can be calculated directly as 

=QH 
1 
pK" (6.10) 

Consequently, the optimal solution of b can be calculated by 

ll 
b* =E a*h (xi, xý) - 21- 

E a*K(xý. xj). (6.11) 
21+ 

x, EC+ i=1 x, )EC'- 
i=1 

There are no extra parameters to be tuned for the nonlinear PRQ classifier. except for 

the kernel parameter for nonlinear classification, which is necessary for all kernel-based 

methods. 

The "square of sum" Optimization Factor 

As given in Eq. (6.5). the numerator of the genenited PRQ criterion employ a --s<luare 

of sum'' optimization factor, as 

ý rn 
v 

ý i=1 

E(1- tit)(fi1- 
(6.12) 
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ýý (Xi, X'z) ýý (Xi. Xn) 
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samples from different classes 
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a: No sample is misclassified 

A B 

B 

C DII 
ý- ý 

b: Sample xa from positive class 
is misclassified 

D 

c: Sample xb from negative class d: Both samples xa and xb are 
is misclassified misclassified 

Figure 6.2: Pairwise sign analysis for a simple case. 

Compared with an alternative "sum of squares" form, given by 

m 

i=1 
( 1 zi)(fil - 

A2 )2, (6.13) 

Eq. (6.12) has a more favorable classification capability than Eq. (6.13), of which a 
simple case is employed for explanation in the following. 

Assume that there are two classes, of which the positive class contains three samples 
{x1, x2, Xa}, while the negative class also contains three samples {i1, X12 , xb}. Only 

values of {f (xji) -f (xi2) }m 1 with zi = -1 will be considered here, as pairwise loss 

for samples from the same class does not contribute to Eq. (6.12) and Eq. (6.13). 

The available pairs between samples from different classes are shown in Fig. 6.2, and 
(+/-, +/-) is used to denote the sign of (f (xil), -f (xi2)). Four cases will be considered 
here: 

" Case A: No sample is misclassified (see part (a) of Fig. 6.2). As fil > 0, fit <0 
for all zi = -1, i=1,2, ... ,m due to no misclassified samples, all of the sign 
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pairs should be which naturally leads to a large value for both Eq. (6.12) 
and Eq. (6.13). 

" Case B: Only one sample Xa from the positive class is misclassified (see part (b) 
of Fig. 6.2). As Xa is misclassified, we have f (xa) < 0; the values of f (") for the 
other samples remain the same as in case A. Thus, three sign pairs of (-, +) arise 
to decrease the values of both Eq. (6.12) and Eq. (6.13). 

" Case C: Only one sample xb from the negative class is misclassified (see part 
(c) of Fig. 6.2). Sign pairs of (+, -) arise to decrease the values of both Eq. 
(6.12) and Eq. (6.13) due to the misclassified sample f (xb) > 0. Thus, for the 
PRQ classifier, to maximize the PRQ criterion of which the numerator has the 
form of either Eq. (6.12) or Eq. (6.13), both can take situations B and C into 

consideration. 

" Case D: both samples Xa and xb are misclassified (see part (d) of Fig. 6.2). 
As f (Xa) <0 and f (xb) >0 happen simultaneously, one sign pair of (-, -) 
arises corresponding to the pairwise constraint of (Xa, xb, -1). For Eq. (6.13), 

it is possible that (f (Xa) -f (xb))2 still contributes a large value to the ratio 

objective, whereas for Eq. (6.12) by putting the squaring operator out of the 

sum, f (Xa) -f (xb) will decrease the value of the objective as wished. 

Thus, Eq. (6.13) may allow a misclassification with large projections onto the direction 

w, whereas Eq. (6.12) does not, by considering the sign effect. The advantage of such 

a "square of sum" optimization factor will be considered in Section 6.3, to eliminate 
the regularization term of the MPSVMs (see Section 2.3.4). 

6.2.4 Experimental Results and Comparative analysis 

Benchmark Testing 

The effectiveness of the proposed PRQ classifier with the RBF kernel in Eq. (2.27), 

was demonstrated using four of the benchmark datasets as listed in Table 4.1 and 

the WDBC dataset described in Section 4.1.3. For comparative analysis, the same 

classification tasks were also performed by several nonlinear classifiers with the same 

RBF kernel employed, including KFDA, L2-SVM, and the regularized 6-MPSVM. 10- 

fold cross validation was performed for the WDBC dataset, and a simple training-test 

procedure was performed for the other datasets. The kernel parameter a for all the 

kernel-based classifiers, the regularization parameter CSVM for the L2-SVM, and the 

regularization parameter b for the S-MPSVM were selected based on cross validation 

within the training samples, using a grid search (GS) by varying parameter settings 

roughly from a large range with large fixed step to a smaller range with smaller fixed 

step. 
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Classification performance in percentage accuracy with the selected parameters is 
recorded in Table 6.1 for different datasets, as well as the published results obtained by 
using the RBF networks [189] and the fuzzy classifier [88]. A score was calculated by 
averaging the classification accuracies over the five datasets for each classifier and timing 
100 (see Scorer of Table 6.1). It can be seen from Table 6.1 that the proposed PRQ 
classifier provided comparable performance to the famous L2-SVM, and performed 
comparatively better than KFDA and the 8-MPSVM. Compared with the L22-SVM 
with one regularization parameter, the PRQ classifier does not need any regularization 
parameter, which makes it more convenient for the users. 

Classification of Breast Masses in Mammograms 

We also evaluated the PRQ classifier with the different widths' RBF kernel, as shown 
in Eq. (2.30), using a set 57 breast masses in mammograms (see Section 4.1.4), and 
compared the method with KFDA, L2-SVM, and the CPSVM with the same RBF 
kernel employed. The LOO procedure [59] was used to evaluate the generalized classifi- 
cation performance because of the small size of the dataset. Four feature combinations 
were studied, including the three edge-sharpness features, the 14 texture features, a 
combination of one acutance (A) and one texture (f8) features, and a combination of 
three edge-sharpness and 14 texture features. All of the features were normalized be- 

fore application as input to the classifier. Classification performance is shown in terms 

of the area under the ROC curve (A, ). The ROC curve was generated by applying a 

sliding threshold with the LS-SVMlabl. 5 toolbox [174]. All of the available pairwise 

constraints were used for the PRQ classifier. Twenty percent of the available pairwise 

constraints, selected based on A, z value, were used for the CPSVM, because of its high 

computational complexity. Values of the kernel and regularization parameters were 

specified based on the A, z value for each feature combination. 
Comparison of the nonlinear classification performance of the PRQ classifier, SVM, 

CPSVM, and KFDA are shown in Table 6.2, as well as the published results obtained 

by ANN [10] and LDA [8] using the same dataset. A score was calculated by averaging 

the A, z values over the four feature combinations and timing 100 for each classifier; 

the corresponding values are recorded Table 6.3, as well as the computing time and 

the number of the parameters required to be pre-determined for each classifier. The 

PRQ classifier provided a score of 79.7, which is slightly higher than that of the other 

classifiers. However, performance of the PRQ classifier may be improved by performing 

a pair selection procedure or employing the triangle kernel as given in Eq. (2.29), for 

which further experiments has been developed in Section 8.2.3 (see Table 8.13 and 

Table 8.15). Compared with another pairwise classifier CPSVM, the proposed PRQ 

classifier requires not only less parameters, but also less training time (see Table 6.3). 
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6.2.5 Discussion and Conclusion 

We have proposed the PRQ classifier and employed kernel functiolis to incorporate 
nonlinearity. The method seeks an optimal discriminant boundary in a corresponding 
feature space by maximizing a Rayleigh quotient generated from pairwise constraints 
over the training samples, which is subsequently reduced to a generalized eigenvalue 
problem. The proposed PRQ classifier was evaluated vvvitli different benchmark dat- 

sets, and also applied to identify malignant tumors from a set of 57 breast masses in 

mammograms. Experimental results demonstrate the effectiveness of the PRQ classi- 
fier by comparable and even better classification performance than those obtained 1>v 
KFDA, L2-SVM, CPSVM, and the regularized ö-MPSVM (sec Table 6.1. Table 6.2. 

and Table 6.3). Less number of parameters are required to be tuned for the PRQ clas- 
sifier, as compared with those of the L2-SVM, CPSVM, and the regularized O-NIPS\rrl\I 
(see Table 6.3). The PRQ classifier takes much less training time than that of the 

pairwise-based classifier of CPSVM (see Table 6.3). These make our proposed methods 
more convenient for the users. In Section 8.2.3, more experiments have been developed 
by applying the linear PRQ classifier with the selected pairs and the nonlinear PR Q 

classifier with the triangle kernel to classify breast masses. Further studies on a pair 

selection procedure for the PRQ classifier need to be developed, so that the pairwise 

constraints that contain irrelevant or redundant information can be removed to reduce 
the computational complexity and improve the classification performance. 

6.3 The Strict 2-surface Proximal Classifier 

6.3.1 Introduction 

To solve the classification problem, SVMs and FDA seek a single discriminant bound- 

ary; the prototype classifiers [111,112] learn a number of representatives (prototypes) 

for each class; and ANNs construct an information processing paradigm composed of 

neuron with interconnections. On the other hand, the recently developed multiplane- 

based pattern classification methods learn multiple surfaces, and have demonstrated 

their advantages by superior classification performance [67,68,135]. Fung and Mann- 

gasarian [67.68] proposed PSVMs by generating two parallel planes such that each plane 

is as close as possible to one of the two data sets to be classified, and the two planes are 

as far apart as possible. More recently, Mangasarian and Wild [135] dropped the parallel 

condition in the PSVM, and proposed the MPSVM by employing the Rayleigh-quotient 

optimization factor with a Tikhonov regularization term incorporated to improve the 

classification performance. However, MPSVM users will consequently face the prob- 

lem of tuning a regularization parameter b for the regularized S-MPSVM. of which the 

performance is sensitive to the setting of the regularization parameter 6. 
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Without employing any regularization term, we propose the S2SP classifier that 
seeks two proximal planes fl(x) and f2(x) in a corresponding feature space, so that 
the first plane is as close to the points of the positive class while being as far as 
possible from the points of the negative class, whereas the second plane is as close to 
the points of the negative class while being as far as possible from the points of the 
positive class. [156,157]. The S2SP classifier employs a "square of sum"' optimization 
factor (see Section 6.2.3) to eliminate the regularization term of the S-MPSVM. Users 

of parametric classifiers need to determine the parameters of the classifiers, because the 
classification performance is sensitive to the setting of the parameters, such as k for the 
k-NN classifier [122], the topology of ANNs [10], and the regularization parameters of 
SVMs [36] and 6-MPSVMs [135]. In the case of linear classification, the S2SP classifier is 

nonparametric, and consequently more stable; as a result, it is more convenient for users 
than parametric classifiers. In the case of nonlinear classification, kernel parameters are 
required to be selected for the S2SP classifier, which is necessary for all kernel-based 

classifiers. 

6.3.2 Methods 

To seek the two proximal planes, MPSVMs maximize two objectives with the numer- 

ator parts in the "sum of squares" form >()2 give in Eq. (2.72) and Eq. (2.73). 

Tikhonov regularization terms were introduced into the optimization objectives of the 

MPSVM to reduce the norm of (w, b). The nonnegative regularization parameter b 

effectively improves the classification performance of the MPSVM without using the 

regularization term. However, similar to the regularization parameter of the SVM, 

such as CSVM for the C-SVM [46] and vsvM for the v-SVM [198], the performance of 

the regularized S-MPSVM is sensitive to the setting of the regularization parameter J. 

With consideration of the sign effect under the situation of misclassification with large 

projections onto the separating plane (see Section 6.2.3), the proposed S2SP classifier 

eliminates the regularization term by maximizing two objectives with the numerator 

parts in the "square of sum" form (1: )2, given by 

[(' 

- yi)fl(xi)j 
(6.14) 01(fl) - 

L: 
1 

=1(1 
+ yi)fl 

(X, ) ' 

[ýi=1(1 
+ yi)f2(Xi)j 

02(f2) = ý`L 2 
(6.15) 

Lei=1(1 - yi)f2 (X, ) 

Let d1(x) and d2 (x) denote the Euclidean distance between a given sample x and the 

two proximal planes, respectively, in the feature space Y. The label of x can be predicted 

together using LDA [59]. by considering values of d1(x), d2(x), and d2 (X) 
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Linear Classification 

For linear classification in the original feature space, the two proximal pl? uies givc'ii 
in Eq. (2.68) and Eq. (2.69) are employed. To obtain the first proximal plain'. by 
incorporating Eq. (2.68) into Eq. (6.14), the following optimization objeectiv-<' re'<juirf"-" 
to be maximized: 

01 (wi, bl )= 
rX wl + ebil `' 

X+wi + ebi 112 (h. 1G) 

where [t'cctoi'] is used to denote the sum of the elements of the vector: and [matrix] 
is used to denote a column vector with the sum of each row. To obtain the second 
proximal plane, by incorporating Eq. (2.69) into Eq. (6.15), the following optimization 
objective requires to be maximized: 

02ýW2, b2) = 
rX+W2 + eb212 
ýIX W2 + eb2II2 

(6.17) 

Letting =i = [wi 
, 
bl] and =2 = [wz 

, 
b2] 

, and adding an element of 1 to (,, wll training 

sample as 

X+ = 

X= X- e, 

for the first plane, the maximization problem becomes 

TP zu 01ýý11 
_1 

1=1 
J 

ZUi Q1ý1 

1xý. 1 

where 

(6.18) 

P1 = rXI rXIT, Q1 = (X+)TX+. 
The optimization objective 01(=) is a Rayleigh quotient. The optimal solution of 
01(x) is the eigenvector of Q1 1P1 corresponding to the largest eigenvalue, which can 
be calculated directly by [59] 

ýi = Q11 ýX-ý . 
For the second plane, the maximization problem becomes 

=TP ZU O2/ý21 
_2 l2 

2' 
l1 

, ýTQ2=2 

where 

(6.19) 

(6.20) 

P2 =I x+l [x+]T, Q2 = (x )Tx 

The optimal solution of Oz(ru) is the eigenvector of Q2'P2 corresponding to the largest 

eigenvalue, and can also be calculated directly by 

'7'72 = Q2 1 rX+l 
. 

(6.21) 

For linear classification in the original feature space, the two proximal planes serve as 

two ridge-like distribution models to fit the samples in the two c1assees. 
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Nonlinear Classification 

Kernel functions can be employed to incorporate nonlinearity in the S2SP classifier. 
For nonlinear classification in the kernel-defined feature space K, the two kernel-Im. ecl 
proxililal planes given in Eq. (2.70) and Eq. (2.71) are employed. To obtain the first 

proximal plane, by incorporating Eq. (2.70) into Eq. ((i. 14), the following optimiz ntioii 
objective requires to be maximized: 

0ýiýalý bl) -iý, ul T t: -, u II 
K+a1 + eb1II2 

(6"'') 

For the second plane, by incorporating Eq. (2.71) into Eq. (6.15), the objective functi">i 
to be maximized becomes 

Li a. cL T w--u2 I 0r,, 
2(a2, b2) - IIK-a2 + eb2II2 

lý"="'1 

Letting äi = [oil 
, 
bi] and a= [a2 

, 
b2], and adding a column with all elements ýý<iiail 

to 1 to the kernel matrices of K+ and K- as 

K+ _ K+ eý 

K =[ K- eJ 

the following objective is maximized for the first plane: 
T al Pr 11 

OKI (&i) = a1TQn-1d1 

where 

(6.24) 

P, 1 = rK i [K-] T, Q1 = (K+)TK+ 

The optimal solution of Eq. (6.24) is the eigenvector of Q, -, 'P, 1 corresponding to the 

largest eigenvalue, and can be calculated directly by 

al = QK1 [K 1" (6.25) 

For the second plane, the objective function to be maximized is given as 

_T a2 PK2a2 
OrIZ2(a2) =' 

a2 Qr; 2a2 

where 

(6.26) 

Pf, 2 = rK+i [K+] T, Qß, 2 = (K )TK 

The optimal solution of Eq. (6.26) is the eigenvector of Qh. 2 Ph2 corresponding to the 

largest eigenvalue, and can be calculated directly by 

a2-Q, 
ý2 

*+1 (6.27) 

For nonlinear classification based on the kernel functions. the two proximal planes serve 

as two Bavcsian models to fit the samples in the two classes. The step of tuning the 

values of the kernel parameters is unavoidable in all the kernel-based classifiers, such 

as the S-MPSVM, SVM, and S2SP classifiers. 

[K¬1 + eb, 12 
ý--ii!, . ý. ýý 

FK+ag, + ebg, 12 
-I /(11 ')')\ 
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Figure 6.3: Comparison of the discriminative and proximal classification methods lying 

the CP1 dataset. 

6.3.3 Experimental Results and Comparative analysis 

Comparison of Discriminating and Proximal Classification 

Two synthetic datasets, named as CP1 and CP2, were created to illustrate and compare 
the discriminating and proximal classification methods. The CP1 dataset is an ideal 

cross plane dataset with 600 two-dimensional samples, in which the two classes of 

samples are distributed exactly along two cross planes separately (see Figure 6.3). The 

CP2 dataset consists of 600 two-dimensional samples from two classes, each distributed 

close to one of the two interesting cross planes (see Figure 6.4). FLDA was employed to 

perform the discriminating classification; the S2SP classifier was employed to perform 
the proximal classification. 

For linear classification in the original feature space, by using FLDA. it is impossible 

to find one discriminating boundary to separate these two classes satisfactorily (see part 
(b) of Fig. 6.3 and part (b) of Fig. 6.4), the classification accuracy is only 50% for the 

CP1 dataset and 55% for the CP2 dataset (see Table 6.4). However. by finding two 
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Figure 6.4: Comparison of the discriminative and proximal classification methods using 

the CP2 dataset. 
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cross proximal planes instead of one discriminating boundary using the S2SP classifier 
(see part (a) of Fig. 6.3 and part (a) of Fig. 6.4), all the samples were classified 
correctly for the CP1 dataset, and the classification accuracy reached 87.5% for the 
CP2 dataset (see Table 6.4). By employ the RBF kernel in Eq. (2.27) to incorporate 
nonlinearity, the classification accuracy of FLDA was improved to 99.5% for the CP1 
dataset and 94.0% for the CP2 dataset, and the classification accuracy of the S2SP 
classifier was improved to 95.0% for the CP2 dataset (see Table 6.4). Experimental 
results demonstrate that the proximal classification methods, such as the S2SP classifier 
and MPSVM, perform superior than the discriminating classification method. such as 
FLDA, for the cross-plane distributed datasets. Performance of the later method can 
be improved by employing the kernel function, such as KFDA. 

Benchmark Testing 

The proposed S2SP classifier was compared with KFDA, L2-SVM, the MPSVM without 
a regularization term, and the regularized S-MPSVM, using the same RBF kernel in Eq. 
(2.27), as well as the published results obtained by using the RBF networks [189] and 
the fuzzy classifier [88]. The used benchmark datasets include four practical datasets 
from Table 4.1, two synthetic datasets named as CP2 and Gaussian datasets, and the 
WDBC dataset as described in Section 4.1.3. The Gaussian data consists of 500 sam- 

ples representing a nonseparable binary classification problem with two dimensions, of 

which each class has a Gaussian distribution with equal prior probability and the same 

covariance matrix, but different mean vectors. 10-fold cross validation was performed 
for the WDBC dataset, and a simple training-test procedure was performed for the 

other datasets. The kernel parameter a for all the kernel-based classifiers, the regular- 
ization parameter CsvM for the L2-SVM, and the regularization parameter S for the 

S-MPSVM were selected based on cross validation within the training samples, using a 

grid search by varying parameter settings roughly from a large range with large fixed 

step to a smaller range with smaller fixed step. 
Classification performance in percentage accuracy with the selected parameters is 

recorded in Table 6.5 for different datasets. A score was calculated by averaging the 

classification accuracies over the seven datasets for each classifier and timing 100 (see 

Score2 of Table 6.5). It can be seen from Table 6.5 that the proposed S2SP classifier 

provided comparable performance to the famous L2-SVM, and performed much better 

than KFDA and the S-MPSVM, leading to the highest score of 88.5. 

By varying the value of log10 S from -10 to 10, classification performance of the 

S-MPSVM with fixed value of the RBF kernel width a are recorded in Table 6.6 for 

different datasets, in terms of the mean, maximum, minimum, and standard deviation of 

the performances over different values of S. Variations of the classification accuracy are 

also plotted in Fig. 6.5, from which it can be seen that the selection of 6 greatly affected 
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the classification accuracy of the 6-MPSVMI classifier. When the regularization term 
is removed, the average score of the MPSVM classifier fell dowii from 84.7 to 78. (see 
Score of Table 6.5). However, for our proposed S2SP learning method, by employing 
a "square of sum" with consideration of the sign effect to get rid of the regularization 
term, the classifier's sensitivity has been effectively reduced. and provided the higliest 

score of 88.5 (see Table 6.5). 

6.3.4 Discussion and Conclusion 

We have proposed a new proximal classification method: The S2SP classifier seeks two 

proximal planes, which are not necessary parallel, to fit the distribution of the samples 
in a corresponding feature space by maximizing two strict optimization objectives with 

a "square of sum" optimization factor. Kernel functions are used to incorporate non- 
linearity. For linear classification in the original feature space, the two proximal planes 

serve as two ridge-like distribution models to fit the samples in the two classes. For 

nonlinear classification based on the kernel functions, the two proximal planes serve 

as two Bayesian models to fit the samples in the two classes. The proposed S2SP 

classifier was evaluated with two cross-plane datasets, one synthetic Gaussian dataset, 

and five practical datsets. Experimental results show that the proposed S2SP classifier 

performed better than KFDA, L2-SVM, as well as the MPSVM and the regularized 

b-MPSVM (see Table 6.1 and Table 6.2). In Section 8.3.3, more experiments have 

been developed to demonstrate the effectiveness of the S2SP classifier by applying the 

method to screen knee-joint VAG signals. With consideration of the sign effect under 

the situation of misclassification with large projections onto the separating plane, the 

proposed S2SP classifier eliminates the regularization term; as a result, it is more con- 

venient for users than those classifiers with the regularization parameter, such as SVMs 

and the regularized MPSVMs. 

6.4 Multi-class Classification based on Extended Support 

Vector Data Description 

6.4.1 Introduction 

The minimum enclosing ball (MEB) problem was first proposed by Sylvester [213] in 

computational geometry, which seeks the smallest ball that contains all the samples in a 

training set, and can be solved by several traditional algorithms [139.236], and the core 

vector machine [220] with low computational complexity. The MEB problem can be 

easily seen to be equivalent to the hard-margin SVDD [214], which seeks a liypersphere 

containing all the training samples from the target class for one-class classification. The 
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volume of the hypersphere is minimized directly by solving a QP problem. Tax and Duin 
[214,215] also proposed the soft-margin SVDD by involving the 1-norm of slack variables 
to allow the possibility of outliers in the training set. When negative samples (objects 
which should be rejected) are available, Tax and Duin [216] proposed the NSVDD 
by adding extra constraints with outlier objects to the soft-margin SVDD, leading to 
the 1-norm NSVDD with two regularization parameters. Instead of employing the 
1-norm of slack variables, we propose the 2-norm NSVDD with two regularization 
parameters by involving the 2-norm of slack variables and the v-NSVDD with only one 
regularization parameter by employing a varying offset of the radius of the hypersphere. 
Daewon and Jaewook [51] proposed a multi-class classification scheme by modeling 
the decision boundaries via the posterior probability distribution constructed from c 
SVDDs corresponding to c output classes. Instead, we propose a multi-stage multi-class 
classification scheme by modeling the decision boundaries via a combination of LDA 

and NN rule, based on two c NSVDDs corresponding to c output classes. 

6.4.2 Previous Work 

The SVDD [215] solves the problem of data description and one-class classification, 

which always obtains a closed spherical boundary (an hypersphere) around one of the 

classes (the target class), and detects which (new) samples resemble this training set 

or are outliers. For the NSVDD [216], the negative samples that should be outside the 
boundary are incorporated in the training procedure to improve the description by the 

following computation: 

min 
a, r, 1 >ý2 

12 
2 

r Cl +>.. 1i +C2 ý2ii 

i=1 i=1 

s. t. 11xli 
-a2G 7'2 +>0, i =1,2,..., 11, 

x2i-a 
2>r2-ý2i, ý2i>0, i=1,2, 

..., 12, 

(6.28) 

where a and r denote the center and radius of the spherical boundary, {x1i}il 1 de- 

notes the training samples from the target class, {x2i}22 1 denotes the negative training 

samples, {ýli}21_1 and {ý2i}22 1 denote the slack variables, and C1 and C2 are the reg- 

ularization parameters controlling the trade-off between minimizing the radius and 

controlling the slack variables. 

6.4.3 Proposed Variations of the NSVDD 

In this work, we propose two variations of the NSVDD: the 2-norm NSVDD by involving 

the 2-norm of slack variables, and the v-NSVDD by employing a varying offset of the 

radius of the hypersphere which can either release or further tighten the constraints 

of the hard-margin NSVDD. These two variations of the NSVDD are performed in a 
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nonlinem- feature slmcc', 0: xE R" i--- O(x) E /, - C R", with a kernel function to 
evaluate the inner products. 

The 2-norm NSVDD 

The following computation is obtained for the 2-norm NSVDD: 
I1 

rz. 
I, niIlý) 

2+ 1 
2Clýýli+ 

1 

2(. > 

12 
ý2; 

- 

Z=1 2=1 
ý. t. 0(x1i) -a ýh <- r2 + 1;, i=1,2. 

..., 
I1.. 

O(x2i) 
-a2>1,2 - ý2Z, r- = 1,2, 

..., 
12, 

(6.29) 

where 1ý - ýý, ti denotes the Euclidean distance in the kernel-defined fe iture spice n. By 
introducing Lagrange multipliers. the following L igrangian is obtained: 

1 11 
1 12 

i _C ý2 L(r, a, Cc 1, ý2) = r2 +2 Cl +22 2i 
i=1 i=1 

l1 lý 

(6.30) 

+ ozi [(x) - al 
2, 

- r2 - liJ - /ýi 
[(x2) 

- all2 - r2 + 

i=1 i=1 

After differentiating with respect to the primary variables, the Lagrangian can be 

rewritten as 

(c e. =->, > cxiaj K (xi i, x1j) ->, >, 1jt`j. iI'ý(X2z, X2. i) (6.31) 
i=l j=1 

I. 1- 1,1, 
ý1 oL ul Iý1 

subject to 

i ý--ý ý, +2QißjK(xli, x2j) +n'ili(xli, xli) - 2C 1 
i=1 i=1 j=1 i=1 

12 lz 

OiK(x2i, x? i) - 
2Cý 

E0, 
i=1 ` i=1 

11 12 

Y-, Ol; -ý: ßi =1. 
i=1 i=1 

Letting 0= [cx, ß]T and employing a kernel function, a simpler QP problem is to 

be solved instead, given by 

min 
e 

5. t. 

with 

H= 

-eTHe + ATe 
8 

To= 1, 

K11 + 2c1Ili 

i=1 j= 

11 

-K12 

2 C, Iýý 

Y, 
0 ZOjll 

(Xli, X2. j) + ý: 

(6.32) 
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and A= [kll, -k22]T, where 11, is an (11 x li) identity matrix: I>ý is an (12 x 122) 
identity matrix; s is a column vector with the first 11 elements equal to 1 aiicl the next 
l2 elements equal to -1; K11 is an (li x 11) kernel matrix over the training saiiiples of 
the target class, and kil is the main diagonal of K11; K22 is an (12 x /2) kernel matrix 
over the negative training sa, niples; k22 is the main diagonal of K22; K1f and K21 sire 
kernel matrices between the training samples from the target class and the negative 
training samples, and K12 and KT have the same form as 

/ Il (x11, x21) K(x11, x22) j1(X11, X212) I 

I'ý(x12) X21) Iý (x12, x22) . .. Il (x]2, x2I. >) 

Ii (xll1, x21 h(x111, x22) jý ýxi11 x2i2ý 
11x12 

Letting 9* _ [cx*, 0*]T denote the optimal solution of the above QP problem. the 

optimal values of the hypersphere's center is computed by 

11 12 

- a* -ý ai O(Xli) 

i=1 

The v-NSVDD 

2= 

0i O(X2i)> (6.33) 

Both the 1-norm NSVDD and 2-norm NSVDD employ the following slack variableK: 

ýli - 

ý2i 

r2 - 

r2 - 

(xli) - all 
2 

. 

O(x, ), )-a 

I 

2 
ý I 

i=1,2,.... 11, 

i=1.2,..., 12. 

(6.34) 

(6.3 5) 

Differently, the v-NSVDD employs two more general slack vectors ýl and ý2, each with 

slack variables defined as 

ý1z = 
Ir2 

-P 
ý21 =17,2 +P 

a1ýI, i1,2,..., 11, 

-a112 , i=1.2,..., 12, 

(6.36) 

(6.37) 

where p denotes the offset of the radius varying through positive numbers. The following 

computation is obtained for the v-NSVDD: 

1 11 1 
12 

miii r2 + Yýji+-Eý21-7/Pi 

l2 
i=1 

s. t. 0(x1i) 
- CL 

ý< 
T2 - 

(P 

1I0(x22) 
- al 

2> 
r2 

ýli>0, i=1,2,..., ll, 

ý2z>_0) 

P? 0, 

= 1,2, ..., 
12, 

1,2,. ll. 

1,2,..., 12, 

(6.38) 
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Figure 6.6: Illustration of the incorporation of slack in the v-NSVDD under the ais- 

sumption of (p - e) >0 and (p - ý2i) > 0. The triangles and circles represent srlnil)le's 

belonging to the negative and target classes, respectively. The circle in solid line repre- 

sents the hypersphere; the other two circles represent the slack permitted. The samples 

shown boxed represent patterns violating the constraints of the v-NSVDD. 

where v is the regularization parameter set by the user, balancing the trade-off between 

minimizing the radius and controlling the slack variables. In Fig. 6.6 and Fig. 6.7. we 

show an illustration of the incorporation of slack in the v-NSVDD based on the two 

slack vectors given in Eq. (6.36) and Eq. (6.37) under two different assumptions. In 

Fig. 6.6, for (p - ý1z) >0 and (p - 2i) > 0, v-NSVDD is similar to the 1-norm and 

2-norm NSVDD. However, in Fig. 6.7, for (p - Ic1i) <0 and (p - Uzi) < 0, v-NSVDD 

employs two stricter constraints compared with those without employing any slack 

variables. The two slack vectors of v-NSVDD can either release or further tighten the 

two constraints of the NSVDD without using slack variables, corresponding to whether 

the values of (p - ý1, ) and (p - 2i) are greater than zero or not, respectively. 

80 



1.5 

A 

S 
S 

S 
S 

A 

4b 

I 
S 

S 

_r�_x II 1L "ýýý- lF -52j 

-- --- --21 

-1.5' 
-1.5 -1 -0.5 0 0.5 1 1.5 

Figure 6.7: Illustration of the incorporation of slack in the v-NSVDD under the as- 

sumption of (p - ý1i) <0 and (p - ýz; ) < 0. The triangles and circles represent saiilples 

belonging to the negative and target classes, respectively. The circle in solid line repre- 

sents the hypersphere; the other two circles represent the slack permitted. The saillples 

shown boxed represent patterns violating the constraints of the v-NSVDD. 

By introducing Lagrange multipliers as before, the following Lagrangian is obtained: 

L(r. C, a, ý2, P, 'Yl, 

1 L1 1 12 ll [(x) 
++ ý2- 

alih - r2 +P- 

l i=1 2 i=1 z=1 

Y 

, oi [ i=1 
<ý (x2i) -a 

, 

3jIl (x, 
) 1 

L1 12 
ý- 

T2 -P+ 
ý2i 

-ý -Y1iý1i -ý i2ir2i 

i=1 i=1 

where b' is a Lagrange multiplier. After differentiating with respect to the priznalry 

variables, the Lagrangian can be rewritten as 

ll ll 12 12 

L(a, ß) = -EY Cl'icljK (xlr:, xlj) - 

i=1 j=1 i=1 j=1 

1i 12 

+2ýýý'2=1 
ý=1 

12 

) 

(6.39) 

(6.40) 

ll 12 
ýCl(Xli"Xli)-ýýzh ýýýý 

/3jh(Xli) X2j) + iýý 

i=1 ý=l 
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subject to the following conditions: 

2 

"1) 

12. 

Letting 6= [a, ß]T 
,a simpler QP problem is to be solved iristead. given bV 

min 
e 

S. t. 

with 

2=1 

1 

L 
i-1 

2= 

0<<r; < 
l, 1 

0<r3, <lý. i=1,2 

-OTHO + AT0 

sl '0=1, e1'0>v, 0<0<t, 

H= 
K11 -K12 

-K21 K22 

((i. 41) 

(6.12) 

where t is a column vector with the first 11 elements equal to 7-1 and the next 12 
elements equal to l2. Letting 0* ]T denote the optimal solution of the above 
QP problem, the optimal values of the hypersphere's center is computed by 

a* = 
11 

ý 

i=1 

12 

/3i 

i=1 

(6.43) 

6.4.4 Binary Classification 

For binary classification with a label space Y= {-1,1}, two NSVDDs are trained. 

each with one class as the target class and the samples in the other class as the nega- 
tive samples, leading to two hyperspheres, named as supervised compact liypersplleres 
(SCHs), including the positive SCH and the negative SCH. The positive SCH is the 

smallest hypersphere contains the maximum possible number of the training samples 
with positive labels and the least of the training samples with negative labels; and the 

negative SCH is the smallest hypersphere that contains the maximum possible number 

of the training samples with negative labels and the least of the training samples with 

positive labels. For an input sample x, the distances between it and the centers of the 

two SCHs can be calculated in the kernel-defined feature sapce, denoted as di(x) and 

(/2(X), respectively. The label of x can be predicted by seeking a separating function 

using LDA in the distance space with di(X), dh(x), and d2 (X) as the new input features. 
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6.4.5 Multi-class Classification Scheme 

NN rule based on c NSVDDs 

For multi-class classification with a label space Y= {1.2, 
... , c}, we fiat partition 

the training samples into c-disjoint subsets {DL. }c, 
_1 according to their output classes, 

each given as Dk. = {(xi, aim) : tmj = L, Vi}. For each subset DL.. an NSVDD is tniined 
using DL. as the target class and the remaining subsets as the negative samples. This 
leads to c optimal hyperspheres, with each center denoted as a, *. With the NN rifle. 
the label of an input sample x is simply predicted as the class that its nearest neighbor 
center belongs to, given as 

Y(x) =arg min 1 
i=1, '2, .., c 

a* I, (G. 44) 

This is equivalent to prototype classification by finding one single prototype, which is 

a* here, as the representative of each specific class. 

LDA-NN based on two c NSVDDs 

To combine LDA with the NN rule, we first partition the training samples into c- 
disjoint subsets {Dk}%-1 with Dk, _ {(xi, yi) yi = k, Vi}, and c-joint subsets {Jk. }'A 

with JA. = {(x, yi) 1y, I, Vi}. For each subset Dk., an NSVDD is trained using DA. 

as the target class and the remaining subsets as the negative samples: this leads to c 

optimal hyperspheres with each center denoted as ai . 
For each subset Jk., an NSVDD is 

trained using Jk as the target class and the remaining subsets as the negative samples; 
this leads to c optimal hyperspheres with each center denoted as of . 

Letting d± (x) 

denote the Euclidean distance between an input sample O(x) and ai , and d, -(x) denote 

the Euclidean distance between O(x) and of , 
both in the kernel-defined feature space 

t1, the sample x can be mapped into a three-dimensional distance-based feature space, 

where the transformed feature vector di (x) is given as dz (x), dr (x), dý (x) The 

following classification procedure is implemented using LDA: 

1. Set j=1. 

2. For i. = 1,2, 
... , 

1, if the label of xi is j, set y=1; otherwise set yi = 0. 

3. Train a binary classifier, denoted as Cj, using LDA with { (dj (x1). yz) }j_i as the 

training samples. 

4. A binary label Bo(x) E {1,0} is assigned to the 

input of the classifier Cj, and j=j+1. 

5. If 
,j<c, 

go to Step 2; otherwise STOP. 

sample x by using dj (x) ýis the 
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Thus, a binary label vector B, 
z(x) = [B1(x), B2(x), 

... B, (X)]T iý olbtaüie(j for the input sample x. The NN rule is employed on B, z(x) to obtain the final predicted label 
)" (x): 

Casel: If Zi 
1 Bi (x) - 0, YZ(X) is predicted by Ecl. (6.4-1). 

Case2: If Ei"=Bi B; (x) = 1, Yz(x) with Bz; = 1. 

Case3: If ýi_1 Bi (x) > 1, Yz (x) is predicted by Y> (x) -a rg; lnin{ IBi=1} II`f'(x)-ai IIr;. 

6.4.6 Benchmark Testing and Comparative Analysis 

We validated the 2-norm NSVDD-based classification methods using nine public bench- 
mark datasets as listed in Table 4.1, and compared the methods with not only the pry o- 
totype classifiers but also several popular, advanced, kernel-based classifiers. is studied 
by Rätsch et al. [189] and Fung and Mangasarian [68], for binary and multi-clrlss classifi- 
cation problems, respectively. The RBF kernel in Eq. (2.27) was employed to calcUdate 
the inner-product matrix between samples in the kernel-defined feature space. The 
same regularization parameters Cl and C2 were employed for each of the r NSVDDS. 
The QP problem was solved by using the quadratic optimization function " iongp" in 
the "SVM and kernel methods MATLAB toolbox" [30]. 

Binary Classification 

We compared the 2-norm NSVDD in the original and kernel-defined feature space. 
denoted as ONSVDD and KNSVDD, respectively, with FLDA and three prototype 
classifiers of MDC. KNN. and LVQ using six two-class benchmark datasets from Table 
4.1. For a fair comparative analysis, the same classification procedure as implemented 
by Rätsch et al. [189] was applied, that is, to generate 100 partitions into training and 
test sets, and to train a classifier on each partition and compute the test-set error. The 

regularization parameters of the 2-norm NSVDD, the number of the nearest neighbors 

of KNN, and the number of prototypes of LVQ were selected by 5-fold-cross validation 

with the first five training sets of the 100 partitions. The average test error rates and 
the standard deviations over the 100 partitions of each dataset were calculated and are 

recorded in Table 6.7. It can be seen from Table 6.7 that the 2-norm NSVDD in the 

original feature space performs better than the MDC, KNN, and LVQ in most cases. 

but is still unsatisfactory for the nonlinear and nonseparable classification problems 

(such as the banana dataset). The 2-norm NSVDD in the kernel-defined feature space 

beats all the other prototype classifiers by using only one prototype for each class. It 

can also be seen from Table 6.7 that the 2-norm NSVDD performs better than FLDA. 

especially for the banana dataset with one class distributed surrounding that of the 

other class. 
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The 2-norm NSVDD in the kernel-defined feature space was also compared with 
several popular, kernel-based classifier-, including the SVMs. RBF networks. NFDA. 
and AdaBoost, in Table 6.7, based on the same training ail test procedures with the 
same datasets. The classification results of SVAls. RBF networks. and Adaßoost are 
from works conducted by Rätsch et al. [189], and the results of KFDA are from the 
dataset report available in a benchmark repository [2]. It can be seen from Table 6.7 
that the kernel-based 2-norm NSVDD provides smaller error mites than the other four 
kernel-based classifiers for all the datasets. 

Multi-class Classification 

In this experiment, the 2-norm NSVDD with the NN rule was evaluated usilig three 
multi-class benchmark datasets from Table 4.1. To compare with the classification 
results obtained by Fung and Mangasarian [68] using the multicategorv PSVMs and 
the one-from-rest QP (OFRQP) classifier. the salve training and test procediirc as 
implemented in [68] was applied. The parameters of each classifier were selected by ., - 
fold-cross validation within the training samples. We compared the performance of the 
2-norm NSVDD with the NN rule with that of the PSVM and OFRQP classifiers [68] 

in both the original and kernel-defined feature space, respectively, as well as that of the 
MDC in Table 6.8. The 2-norm NSVDD provides better performance than the PSVM 

and OFRQP in both the original and kernel-defined feature space (see Table 6.8). The 

2-norm NSVDD takes less computing time than the OFRQP classifier, and comparable 

computing time to PSVM (see Table 6.8). Especially, the 2-norm NSVDD provides a 
high classification accuracy of 92.1% for the glass dataset, which is a 10% increase as 

compared with that of the other classifiers (see Table 6.8). 

Computational Requirement 

In Table 6.9, we compare the computing time in seconds for the whole training and 

test procedure in one trial for each dataset. for the 2-norm NSVDD, SVM. and hFDA 

in the kernel-defined feature space, as well as the MDC, KNN, and LVQ. It can be seen 

from Table 6.7 and Table 6.9 that MDC and hNN are the two fastest classifiers but 

with the highest error rates; LVQ takes the longest computing time with unsatisfactory 

improvement of the classification performance as compared with the other classifiers; 

the 2-norm NSVDD, KFDA, and SVM are the most efficient classifiers with not only 

low error rates but also considerably high computing speed. of which Il. -FDA is the 

fastest classifier, and the 2-norm NSVDD provides the lowest error rate. 

With consideration of the user's convenience, model selection of a parametric clas- 

sifier is also important in discussion on efficiency. All the kernel-based classifiers. such 

as the 2-norm NSVDD, KFDA, and SVM, require selection of the value(s) of the kernel 
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parameter(s). In addition, SVM have one regularization parameter each, the 2-norm 
NSVDD with the NN rule have 2xc regularization parameters, and KFDA has no 
regularization parameter. KNN requires specification of the number of nearest neigh- 
bors. LVQ requires an initialization of the prototype locations as well as the number of 
prototypes. MDC is a non-parametric classifier but with poor performance in nonlin- 
ear and nonseparable classification problems. Although the 2-norm NSVDD requires 
more regularization parameters, it is not necessary to employ different regularization 
parameters for different NSVDDs. In fact, as what has been done in the above exper- 
iments, employing the same regularization parameters Cl and C2 for the c NSVDDs 
did provide satisfactory classification performance, and the number of regularization 
parameters has been reduced from 2xc to 2. 

6.4.7 Applications to Fault Detection of Roller Bearings 

Background 

In the manufacturing industry, to ensure a successful production and to reduce the 
maintenance costs, machine condition monitoring has been developed to meet the de- 

mand for early detection of both the development and severity of a fault condition 
within a machine system, so that the implementation of condition-based maintenance 
is enabled, rather than periodic, or responsive maintenance. Many conventional tech- 

niques require much expertise to apply these successfully [83,125]. New techniques are 

sought which allow relatively unskilled operators to make reliable decisions without 
knowing the mechanism of the system and analyzing the data. Machine learning algo- 

rithms are suitable for such purpose and have been widely applied to machine condition 

monitoring for stages of feature selection [97,210], feature generation [37,74,123,233], 

and classification [98,177,196, [98,177,196,206,209,210,249,252,253]. 

Rolling element bearings are probably among the most widely used rotating ma- 

chine components. Previous research works on fault detection for bearing-condition 

monitoring are reviewed in the following: Jack and Nandi [97,98] applied GA to re- 

move possibly irrelevant or redundant features that may have a negative effect on 

fault classification of roller bearings, and employed ANNs and SVMs with the selected 

features for classification. Zhang et al. [252] employed GP to form an independent clas- 

sifier to detect faults in rotating machineray. Zhang and Nandi [253] proposed three 

GP-based approaches to solve the multi-class classification problem in roller bearing 

fault detection, including the single-GP, independent-GPs, and bundled-GPs schemes. 

Guo et al. [74] applied GP as a feature generator to extract features from a set of raw 

vibration data recorded from a rotating machine, rather than solely as a classifier. In 

this study, we aim to solve the multi-class classification problem in fault detection of 

roller bearings based on centers of a set of SCHs, determined in a kernel-defined feature 
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Figure 6.8: Distribution of the test saillples for the dual bearing data: (a) - with the 

best two features selected from the whole 66 features; (b) - with the first two principal 

components derived from the whole 66 features. 

space, by using the NSVDDs associated with the LDA-NN rule. 

Distribution of Dataset 

With the bearing dataset as described in Section 4.1.2, one binary classification problem 
that classifies each sample as normal or abnormal. and one multi-class classification 

problem that determines the condition of each sample from six possible conditions 
(NO, NW, IR, OR, RE, and CA) are studied. We calculated the p-value [160] of each 
feature with all the validation samples with binary labels, by employing the function 

"ttest2" in MATLAB. The p-value evaluates the possibilities that the means of the two 

classes are different; smaller p-value indicate better separability with a chosen feature. 

Using two features with the smallest p-values, a 2-dimensional distribution of the test 

samples are plotted in (a) of Fig. 6.8 for the dual class, and in Fig. 6.9 for the multiple 

class. By applying PCA on the whole 66 features of the test samples, the 2-dimensional 

distribution of the first two principal components are plotted in (b) of Fig. 6.8 for the 

dual class. It can be demonstrated that the experimental dataset is of nonseparable 

case in the original feature space. 
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the best two features. 

Parameter Selection 

We compared the two proposed methods, namely 2-norm NSVDD and v-NSVDD, vv-itli 
the 1-norm NSVDD [216] for multi-class classification, employing the LDA-NN Azle, 
and several other classifiers, such as LDA, KNN, and SVI\I, as well as the published 
results using ANNs [97] with exactly the same samples and features. The Gaussian 
kernel in Eq. (2.27) was employed for the three types of NSVDD and SVAI. The input 
features were normalized to have zero mean and unit variance before being used by a 

classifier. To determine the hypersphere for one target class, two regularization parame- 
ters Cl and C2 are required to be selected for the 1-norm NSVDD and 2-norm NSVDD, 

and one regularization parameter v for the v-NSVDD. Thus, for binary classification, 
four regularization parameters are required to be selected for the 1-norm NSVDD and 
2-norm NSVDD, and two regularization parameters for the v-NSVDD. For multi-class 

classification with six conditions using the LDA-NN rule, 24 regularization parameters 

require to be selected for the 1-norm NSVDD and 2-norm NSVDD, and 12 regulariza- 

tion parameters for the v-NSVDD. In these experiments, we simply employed the same 

value of theses regularization parameters, thus, only one regularization parameter and 

one kernel parameter were selected from [0.001,0.01.0.1.1.10] based on the valida- 

tion error rate. The kernel and regularization parameters for SVM were also selected 

from [0.001,0.01,0.1,1,10,100] based on the validation error rate. The number of 

the nearest neighbors for KNN were optimized by using GA with the corresponding 

objective function set as the validation error rate. SVAI was implemented by "SVM 

and kernel methods MATLAB toolbox" [30]. 
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Figure 6.10: Distribution of the distances between the test samples alid two calcul'ited 

centers for the bearing data with six possible conditions. 

Classification of Dual Bearing Data 

The binary classification problem (normal/fault) was studied. The test success is 

recorded in Table 6.10 for different classifiers with the parameters selected using the 

validation samples. The test accuracy can reach as high as 100'/; with all the three 
NSVDDs, which is much better than that obtained by the classical method of LDA. 
The KNN and ANNs provided comparable performance of around 97W. The SVI\I pro- 
vided the second best success of around 99%. The distribution of the distances between 

the test samples and the two centers of the hyperspheres in the kernel-defined feature 

space, learned by the 2-norm NSVDD, are shown in Fig. 6.10. It can be seen that 

the original nonseparable distribution of the spectral features. illustrated in Fig. 6.8. 

has become linearly separable with the distance-based new features. As the computing 

time of these classifiers varies versus different processors, we set the computing time 

of the 2-norm NSVDD as one unit, which is around 0.5 seconds in our experiments, 

and compared this with other classifiers: LDA (0.07 units), KNN (1.51 units). 1-norm 

NSVDD (1.7 units), SVM (1.86 units), and v-NSVDD (2.47 units). Although LDA 

runs much faster than the other classifiers, the classification performance is not satis- 

factory. The 2-norm NSVDD is the second fastest classifier also with the highest test 

accuracy. The 1-norm NSVDD takes comparable computing time as the SVM, and the 

v-NSVDD takes the longest computing time. 
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Multi-class Classification of Six Bearing Conditions 

The multi-class classification problem of six conditions was studied. The LDA-NN rule 
was employed for the NSVDD-based classification. The final test success is recorded 
in Table 6.10 for different classifiers with the parameters selected using the validation 
samples, in which the test accuracy of ANN was calculated from Table 2 in [97]. More 
detailed classification results in each of the six conditions are recorded in Table 6.11, 
Table 6.12, Table 6.13, Table 6.14, and Table 6.15, for different classifiers. The 2- 
norm NSVDD with the LDA-NN rule provided the best classification performance of 
99.9%, with only one test sample misclassified by confusing the IR fault with the RE 
fault (0.1%) (see Table 6.15): The 1-norm NSVDD and v-NSVDD provided the same 
performance of 99.7% by confusing the normal condition with the OR fault (0.2%), 

and also the IR fault with the RE fault (0.1%) (see Table 6.14). KNN and SVM 

provided comparable performance between 95% and 98%. LDA and ANNs provided 
unsatisfactory performance of less than 85%. Computing time of the three types of 
NSVDD is compared in Table 6.16, from which it can be seen that our proposed 2- 

norm variation of the NSVDD increases the computing speed of the original 1-norm 
NSVDD. The v-NSVDD reduces the number of regularization parameters, but increases 

the computational complexity of the QP problem. 
We also compared the test success of two different multi-class classification schemes, 

the NN rule based on c NSVDDs and the LDA-NN rule based on two c NSVDDs, using 

the 2-norm NSVDD, in Table 6.17 and Table 6.15. The NN rule had more trouble clas- 

sifying by confusing the brand new condition with the slightly worn condition (0.8%), 

and also the slightly worn condition with the OR fault (0.1%). The LDA-NN rule 

eliminated such mistakes by learning c more hyperspheres. 

Some previous works studied the same multi-class classification problem for roller 

bearings with vibration signal. With the same samples and the same 66 spectral fea- 

tures, by using GA for feature selection and ANNs for classification, the best test 

success can reach 99.7%, but taking a couple of days to work out a solution [97]. With 

the same samples but the raw signal, by using GP for feature generation and SVM for 

classification, the best test success can reach 97.1%, taking less time but still a few 

hours to work out a solution [74]. With the same samples and 33 spectral features 

in one direction, by using GP as a separate classifier, the best test success can reach 

100.0%, but taking several hours to work out a solution [252,253]. Our proposed 2-norm 

NSVDD with the LDA-NN rule provided the test success of 99.9% without performing 

any feature selection. This method took much shorter computing time of less than one 

hour, which includes both the parameter selection and classification procedure. 
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6.4.8 Discussion and Conclusion 

We have proposed two variations of the NSVDD by involving different forms of slack vec- 
tors, including the 2-norm NSVDD and v-NSVDD, and extended the methods to solve 
the multi-class classification problem by employing the NN-rule based on c NSVDDs, 
or the LDA-NN rule based on two c NSVDDs. 

The 2-norm NSVDD with the NN rule has been evaluated with different benchmark 
datasets, and compared with several other classifiers. The computing time and imple- 
mentation requirements (number of parameters) of the 2-norm NSVDD are comparable 
with those of SVMs, and much more competitive than those of LVQ (see Table 6.9). 
Experimental results on nine benchmark datasets indicated that the 2-norm NSVDD 
outperforms all of the other prototype classifiers, including KNN, MDC, and LVQ. and 
the advanced kernel-based classifiers, such as SVMs, KFDA, RBF networks, AdaBoost, 
MPSVMs, and OFRQP (see Table 6.7 and Table 6.8). 

The three types of the NSVDDs with the LDA-NN rule have been applied to detect 
the conditions of roller bearings with vibration signals, and compared with several other 
classifiers, such as LDA, KNN, SVM, and ANNs. Our proposed 2-norm NSVDD with 
the LDA-NN rule provided the highest test accuracy of 100.0% for binary classification, 
and 99.9% for multi-class classification (see Table 6.15). The computing time of the 

original 1-norm NSVDD has been reduced by employing the 2-norm of the slack vectors 
(see Table 6.16). More importantly, the NSVDD-based classification method took 

much shorter computing time, but comparable classification results, than that of many 

relative research work by using ANNs and GA/GP. These NSVDD-based classification 

methods should find applications in machine condition monitoring. 

6.5 Summary 

Four classifiers have been proposed in this chapter: The SOM-RBF network combines 

SOMs and RBF networks by setting the RBF centers as the weight vectors of neurons 

from the competitive layer of a trained SOM. In fact, the first block of the SOM- 

RBF network is equivalent to a dimensionality reduction process, which reduces the 

dimensionality of the input feature space from n to m,,, corresponding to the second 

hyperplane-seeking block. 

The PRQ classifier seeks one discriminating boundary by generating an uncon- 

strained optimization objective, named as the PRQ criterion, based on a set of pair- 

wise constraints, which consequently leads to a generalized eigenvalue problem with 

low computational complexity. Kernel functions are employed to incorporate the non- 

linearity. PRQ classifier helps in classification with insufficient training samples by 

employing pairwise constraints instead of individual samples, but without using any 

regularization parameter. The PRQ criterion is the ratio of the between-class and 
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within-class scatter with differences of the projections onto the vertical direction of the 
separating hyperplane between any two samples. Compared with the pattern classifi- 
cation method based on individual samples, such as FLDA which employs m number 
of individual samples from a total number of 1 samples (m < 1), employing m number 
of pairwise constraints from a total number of l* (1 - 1) constraints (m <1* (l - 1)), 
as done in the PRQ classifier, offers more possibilities. 

The S2SP classifier seeks two cross proximal planes to fit the distribution of the sam- 
ples in a corresponding feature space by maximizing two strict optimization objectives 
with a "square of sum" optimization factor. Kernel functions are used to incorporate 
nonlinearity. For linear classification in the original feature space, the two proximal 
planes serve as two ridge-like distribution models to fit the samples in the two classes. 
For nonlinear classification based on the kernel functions, the two proximal planes serve 
as two Bayesian models to fit the samples in the two classes. With consideration of 
the sign effect under the situation of misclassification with large projections onto the 
separating plane, the proposed S2SP classifier eliminates the regularization term; as 
a result, it is more convenient for users than those classifiers with the regularization 
parameter, such as SVMs and the regularized MPSVMs. 

The 2-norm NSVDD and v-NSVDD involve different forms of slack vectors as com- 
pared with the original 1-norm NSVDD. The methods are extended to solve the multi- 
class classification problem by employing the NN rule based on c NSVDDs or the 
LDA-NN rule based on two c NSVDDs. The NSVDDs learn a single SCH to cover each 
class region, so that the maximum possible number of training patterns from the class 
of interest and the least possible number of training patterns from the other classes 

are encompassed. The NSVDDs with NN rule use the center of each hypersphere as 

a single but efficient prototype to represent each specific class. By learning c more 
hyperspheres, the LDA-NN rule can improve the performance of the NN rule. 

The effectiveness of these classification methods have been demonstrated with dif- 

ferent benchmark datasets and real-world problems; and compared with many popular 

classification methods. Benchmark testing results indicate that the proposed methods 

provide bettern performance than the other existing classifiers, such as SVMs, KFDA, 

and MPSVMs, in not only higher classification accuracy but also less computing time. 
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Darnsers PRQ 6-1VIPSVAI KFDA L, )-SVN'I 
Banana 89.2 87.4 88.3 88.8 

Dia b tes 76.3 71.3 75.7 76.7 

Heart 85.7 7s. 9 84.1 84.1 

Waveform 86.4 83.3 83.6 89.0 

WDBC 98.8 91.6 97.2 98.0 

Score 87.3 82.5 85.8 87.3 

Table 6.1: Comparison of classification accuracies in percentage accuracy using different 

classifiers for different datasets. The best performance for each feature combination is 

shown in bold. 

Features PRQ L2-SVAI CPSVAI KFDA Others 

Edge-sharpness (ES) 0.812 0.778 0.741 0.811 0.618 [10] 

Texture (TE) 0.793 0.810 0.768 0.769 0.652 [10] 

A and f8 0.732 0.711 0.708 0.747 0.76 [8] 

ES and TE 0.847 0.828 0.800 0.846 N/A 

Table 6.2: Nonlinear classification performance in A- values using different classifiers 

for the edge-sharpness and texture feature sets. The best performance for each feature 

combination is shown in bold. 

Classifiers Score Computing time (s) Parameters 

PRQ 79.7 5.49 n (a) 

KFDA 79.3 0.75 'n (a) 

L2-SVAI 78.2 0.82 o+1 (CsvM and a) 

CPSVAI 75.5 350.60 n+2(, ui, l<, ). and o-) 

Table 6.3: Comparison of the nonlinear classifiers tested using the RBF kernel. The 

vector o, represents the kernel parameters, and n denotes the number of kernel param- 

eters (the number of elements of a). 
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CPI C'P2 

Classifiers linear nonlinear linear nonlitienr 
S2SP 100.0 100.0 87.5 95.0 

FLDA/hFDA 50.0 99.5 55.0 94.0 

Table 6.4: Comparison of the classification accuracies of the discriminating ýuicl proxi- 

mal classifiers with the CP1 and CP2 datasets. 

Datasets S2SP MPSVM cS-MPSVM KFDA L, )-SVAI other", 

CP2 95.0 86.0 95.0 94.0 93.0 N/A 

Gaussian 85.7 83.0 85.3 85.0 85.0 N/A 

Banana 90.0 86.3 87.4 88.3 88.8 89.2 [189] 

Diabetes 77.0 66.3 71.3 75.7 76.7 75.7 [189] 

Heart 84.7 71.9 78.9 84.1 84.1 82.4 [189] 

Waveform 88.1 72.8 83.3 83.6 89.0 89.4 [189] 

WDBC 99.2 85.3 91.6 97.2 98.0 95.8 [88] 

Score 88.5 78.8 84.7 86.9 87.8 N/A 

Table 6.5: Comparison of classification accuracies in percentage accuracy using different 

classifiers for different datasets. The best performance for each feature combination is 

shown in bold. 

Dataset log10 c, Mean Std. dev. Max Min 

CP2 0.0 92.7 2.4 95.5 85.5 

Gaussian 0.0 84.6 0.9 85.7 83.0 

Banana -0.3 82.0 5.0 87.5 52.9 

Diabetes 4.8 59.1 7.9 72.0 53.3 

Heart 0.6 73.3 3.2 80.4 68.5 

Waveform 0.9 70.2 7.0 83.3 51.1 

WDBC 0.6 86.0 3.7 91.7 76.2 

Table 6.6: Statistical performance in percentage accuracy of the 6-AIPSVNT cl 

over different values of 6. 
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Methods Banana Heart Thyroid Titanic B. Cancer Diabetiý 

ONSVDD 38.2+5.1 15.1+2.7 7.9±2.5 22.9+0.8 2 7.9+4.6 23.9+1.7 

KNSVDD 10.5±0.6 13.9+3.0 3.1+2.1 22.2+0.8 22.9+3.9 20.3+1.9 

MDC 46.2+4.1 16.2+2.9 16.4+3.6 25.5±2.3 29.0+4.8 26.5+2. (' 

KNN 11.9+0.7 16.0+2.7 15.0+3.3 28.3+4.5 27.7+4.8 23.8+1.6 

LVQ 15.5±3.2 18.0+0.4 15.5+2.9 23.2+0.1 27.0+3.1 24.5+2.1 

FLDA 46.2+4.4 16.1±2.8 14.8±3.5 23.7±2.6 31.5+5.6 24.3+2.0 

KFDA [2] 10.8+0.5 16.1±3.4 4.2±2.1 23.3+2.1 24.8+4.6 23.2+1.6 

SVM [189] 11.5±0.7 16.0+3.3 4.8±2.2 22.4+1.0 26.0+4.7 23.5+1.7 

RBF [189] 10.8+0.4 17.6+3.3 4.5±2.1 23.3±1.3 27.6+4.7 24.3+1. () 

AdaBoost [189] 10.7+0.4 14.5+3.5 4.4+2.2 22.6+1.2 25.9+4.6 23.9+1.6 

Table 6.7: Classification error rates in percentage of different classifiers for the six 

two-class datasets. 
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Wine Iris G'lýltis 

Trmii Trani Train 
Test Test Tost 

Methods Time (s) Time (s) Time (s) 
83.37Y(, 93.3`rß, 80.0`X 

MDC 87.5`%, 94.7% 69.3`% 
0.01 0.01 0.02 

2-norm 100. O`7(, 98.7`7(; 84.0% 
NSVDD (0) 98.9% 97.3% 81.6 % 

0.15 0.13 0.36 

2-norm 100.0`X 100.0 % 100.0% 
NSVDD (K) 100.0% 100.0 % 92.1 % 

0.13 0.22 0.78 

100.0% 97.6`Ä 68.9% 
PSVM (0) [68] 99.4% 97.3% 63.0% 

0.11 0.11 0.14 

100.0% 99.5% 78.1% 
PSVM (K) [68] 100.0I'h 98.7I%, 69.1 % 

0.45 0.31 0.59 

100.0% 98.7`%, 72.9% 
OFRQP (0) [68] 96.1% 98.0% 67.2% 

1.39 0.73 1.80 

99.2`/o 98.1 % 88.5 % 
OFRQP (K) [68] 97.7% 98.0 % 70.0 % 

5.39 9.05 3.01 

Table 6.8: Classification accuracies in percentage and computing time in seconds of 

different classifiers for the three multi-class datasets, where PSVM (0) refers PSVM in 

the original feature space, PSVM (K) refers PSVM with the RBF kernel in Eq. (2.2 7) 

incorporated, OFRQP (0) refers OFRQP in the original feature space, and OFRQP 

(K) refers OFRQP with the RBF kernel in Eq. (2.27) incorporated. 
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Dn. t2LSCts KNSVDD MDC KNN LVQ hFDA SVN-I 

Banana 13.490 0.014 8.660 183.458 0.729 : 3.763 

Heart 0.235 0.006 0.022 78.740 0.027 0.142 

Thyroid 0.118 0.005 0.015 65.739 0.017 0.133 

Titanic 1.741 0.010 1.160 70.607 0.114 0.174 

B. cancer 0.469 0.006 0.019 94.232 0.041 0.334 

Diabetes 2.978 0.007 0.143 220.970 0.42) 7 3.026 

Table 6.9: Comparison of computing time in seconds for different classifiers and the six 

two-class datasets. 

Test Success LDA KNN SVM ANN [97] 1-NSVDD 2-NSVDD v-NSVDD 

Dual Class 83.7 96.7 99.1 97.0 100.0 100.0 100.0 

Six Classes 83.3 95.5 97.6 82.5 99.7 99.9 99.7 

Table 6.10: Comparison of the test success in percentage accuracy using different clas- 

sifiers. 

Received Actual condition 

condition NO NW IR OR RE CA 

NO 1 00.0 3.0 2.0 0.4 2.6 0.6 

NW 0 97.0 1.0 0 3.1 0.7 

IR 00 96.4 0 0.4 1.6 

OR 000.3 99.6 0.9 0 

RE 000.2 0 92.8 0 

CA 000.1 0 0.2 97.1 

Table 6.11: Test success for LDA using 66 spectral features in six conditions. 

97 



Received Actual condition 

condition NO NW IR OR RE CA 
NO 99.5 

NW 0 

IR 0.3 

OR 0.2 

RE 0 

CA 0 

0.1 0000.3 

9 9.2 0 1.2 0 0.2 

0 99.1 0 0.3 0 

0.7 098.8 0 0.1 

0 0.8 0 99.7 0 

0 0.1 00 99.4 

Table 6.12: Test success for KNN using 66 spectral features in six conditions. 

Received Actual condition 

condition NO NW IR OR RE CA 

NO 100.0 0.2 0.3 0 0.1 0.6 

NW 0 99.8 0 0.1 0.1 0 

IR 00 99.5 0 0.2 0.2 

OR 000 99.9 0 0.1 

RE 000.2 0 99.4 0 

CA 00000.2 99.1 

Table 6.13: Test success for SVM using 66 spectral features in six conditions. 

Received Actual condition 

condition NO NW IR OR RE CA 

NO 99.9 00000 

NW 0 99.9 0000 

IR 00 99.9 000 

OR 0.1 0.1 0 100.0 00 

RE 000.1 0 100.0 0 

CA 00000 100.0 

Table 6.14: Test success for 1-norm NSVDD and v-NSVDD with the LDA-NN rule 

using 66 spectral features in six conditions. 
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Received Actual condition 

condition NO NW IR. OR RE (A 
NO 100.0 00000 

NtiV 0 100.0 0000 

IR 00 99.9 000 

OR 000 100.0 00 

RE 000.1 0 100.0 0 

CA 00000 100.0 

Table 6.15: Test success for the 2-norm NSVDD with the LDA-NN rule using 66 S1>e(tnil 
features in six conditions. 

Methods Runl Run2 Run3 R, un4 Run5 Run6 

1-norm NSVDD 16.15 18.06 11.21 15.99 12.15 12.59 

2-norm NSVDD 10.23 11.58 7.77 10.39 8.62 8.88 

v-NSVDD 14.79 14.14 17.78 14.50 21.18 21.53 

Table 6.16: Comparison of the computing time in seconds for three types of the NSVDD. 

The computing time to obtain dz(x). i=1,2, .... 
6 is recorded for each run. 

Received Actual condition 

condition NO NW IR OR RE CA 

NO 99.0 00000 

NNNr 0.8 99.9 0000 

IR 00 99.9 000 

OR 0.2 0.1 0 100.0 00 

RE 000.1 0 100.0 0 

CA 00000 100.0 

Table 6.17: Test success for the 2-norm NSVDD with the NN rule using 66 spectral 

features in six conditions. 
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Chapter 7 

Model Selection 

Classification performance of a parametric classifier depends on the process of picking 
the best values for the hyper-parameters. such as the number of the nearest neigh- 
bors for KNN, the topological structure for ANNs, and the kernel and regularizatioii 

parameters for SVMs. This leads to a nontrivial model selection problem [136] that 

needs either an exhaustive search over the space of hyper-parameters or an optirnizat ion 

procedure that explores only a finite subset of the possible values. 

7.1 Estimates of Classification Performance 

Ideally, one would like to select models of a classifier, based on the true risk of the 

classifier. Unfortunately, such a quantity is not accessible; one has to build estiniate5 

or bounds for the true risk of a classifier [36]. 

7.1.1 Single Validation 

If one has enough data available, it is possible to estimate the error rate on a validation 

set. Such an estimate is unbiased and the corresponding variance gets smaller as the 

size of the validation set increases [36]. Letting z' denote the set of II - labeled validation 

samples iii)}ý 1E (RT' x Y), with no intersection with the training samples 

in the space, the validation error estimate (VEE) is given by 

I 
I IV 

sgn ý-yzf (ii)) 
. , ý. 

Z=1 
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7.1.2 Cross Validation 

If there is not enough data available for validation. a k-fold- cross-validation proce(llure 
within the training samples can be employed to estimate the error rate of a classifier. 
Such a procedure is executed by randomly dividing the training samples into L groups. 
In one trial, one group is used for validation and the remaining U-1 groups f()r 
training, so that every group is used as the validation set once. The cross-validation 
error estimate (CVEE) is calculated by averaging the classification error rates of the U 

validation sets, given as 

T=EL sgn (-yi. j. 
f (xj, 

j)) . (7.2) 
i=1 j=1 

where Wi denotes the number of validation samples in the itli trail, and x denotes 

the jth validation sample in the ith trail, with yi, j as its corresponding label. 

7.1.3 Leave-one-out Error 

The LOO procedure removes one sample from the l training samples and constructs 
the decision rule on the basis of the remaining l-1 training samples, then tests on 
the removed training sample. In this fashion, one tests all of the / training sýuilples 

using 1 different decision rules. The LOO error gives an almost unbiased estimate of 
the expected generalization error [130]. 

7.2 Parameter Selection for SVMs 

7.2.1 Introduction 

SVMs are highly successful in solving various nonlinear and non-separable probleinis in 

machine learning [23,46,49,200]. For an SVM, choosing a suitable kernel is imperative 

to the success of the learning process; the regularization parameter is also important 

that controls the tradeoff between the complexity of an SVM and the number of non- 

separable points [200]. To date, many approaches have been developed to perform 

optimization of the kernel and selection of the regularization parameter, which are 

summarized in the following. 

One way of constructing a suitable kernel is to choose a parametric family of ker- 

nels, such as the RBF kernels, and to select the values of the kernel parameters base(l 

on a certain criterion. Chapelle et al. [36] summarized different criteria to estimate 

the error rate of the SVM, and applied GD approach to select the kernel parameters. 

heerthi [106] proposed to apply the Quasi-Newton (QN) algorithm to select the ker- 

nel parameters based on the radius-margin bound for an L2-SVM. Chung et al. [43] 
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extended the radius-margin bound, only applicable to the hard margin cases (hard 
margin SVM and L2-SVM, see Section 2.3.3), to the modified differentiable radius- 
margin bound applicable to the L1-SVM, and applied the QN algorithm to optimize 
both the kernel and regularization parameters. Instead of estimating the generalized 
SVM performance, Xiong et al. [244] proposed a new measure of class separabilit\, in an 
empirical feature space; the GD approach was applied for optimization. Ayat et al. [13] 
proposed another GD-based method for parameter selection based on the estimate of 
the error probability of an SVM 

. 
More recently, Cristianini et al. [48,50] proposed a weighted summation of a class of 

base kernels to construct an optimal kernel; the summating coefficients are optimized 
based on alignment between the kernel and the labels, which measures the degree of 
agreement between a kernel and a learning task, instead of the trial and error heuristics. 
Kandola et al. [104] proposed to use the Gram-Schmidt/incomplete Cholesky factoriza- 

tion algorithm to approximate the kernel matrix, which is suitable for a large dataset. 
Lanckriet et al. [119] proposed a more general class of base kernels, like a set of initial 

guess of the kernel matrix such as linear, RBF, or polynomial kernels with different 
kernel parameter values; SDP was applied to optimize the combination of these base 

kernels. Bousquet and Herrmann [24] proposed a much simpler implementation of the 
GD approach instead of the more computationally expensive SDP, by restricting the 
linear combination of base kernels with non-negative coefficients and fixed trace, and by 

introducing the new objective function of Rademacher complexity. Tsuda et al. [221] 

proposed an em algorithm based on the information geometry of positive definite matri- 

ces to optimize the parametric model of a set of spectral variant of the auxiliary kernel 

matrix. Crammer et al. [47] proposed to use the boosting paradigm to optimize linear 

combinations of simple base kernels. Ong et al. [167] proposed a kernel optimization 

method by introducing a reproducing kernel Hilbert space on the space of kernels itself, 

and learning the kernel with a hyperkernel using SDP based on a quality function . 
Evolutionary algorithms have also been applied to perform the kernel optimization. 

Howley and Madden [93] proposed to apply a GP to construct a genetic kernel. Kim 

et al. [108] applied a GA to optimize the SVM parameters. Friedrichs and Igel [66] 

proposed another evolutionary method of covariance matrix adaptation to optimize 

the kernel functions. Evolutionary strategies are suitable for both differentiable and 

non-differentiable kernel functions, as well as arbitrary model selection criteria. 

By analyzing these existing model-selection methods for SVMs, three observations 

can be made: 

" Optimizing the kernel and regularization parameters of an SVM by searching 

through the parameter space over a family of parametric kernels provides an 

efficient and easy implementation to improve the SVM performance, but with 

the limitation of fixed kernel form. 
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" Using a class of base kernels to construct the optimal kernel is aI more aeneral 
method, but with high computational complexity. 

" Evolutionary methods caui be used not only to select parameters for a certain 
kernel but also to produce optimal kernels with comparatively free forms. but 
with low training speed. 

In this work, several measures to estilnate the error rate for Dui SV \I, sueIi as t he 

single validation estimate, cross-validation estimate. and the span bound, and several 
approaches to optimize the parameters of an SVM. such as the GD and GA appnwd, vs. 
are investigated. An automatic tuning method of the parameters of an L1-SVM <u(' 
proposed by employing the EKF algorithm based on k-fold cross validation. 

7.2.2 Span Bound 

It is costly to actually compute the LOO error for an SVM, since the LOO procedure 

requires running the training algorithms l times. Thus, the strategy is to upper bound 

or approximate the LOO error by an easily computed quantity. Several lneastures 
have been proposed to bound the LOO error of the SVMs, such as the Ja, lkkola- 
Haussler bound [96], Opper-\Vinther bound [168], radius-margin bound [44], and span 
bound [226-228]. In this work, we investigate the use of the span bound to trine the 

parameters of an SVM. 

Vapnik and Chapelle [226,228] proposed the span bound based on the concept of 

span for an SVM, including the C-span and v-span, for the C-SVM (see Section 2.3.: 3) 

and v-SVM (see Section 2.3.3). respectively. Let V03), M(ß), and N(ß) denote the 

sets of the SVs, margin SVs, and non-margin SVs, respectively, in the solution ß; V, (ß). 

ilIp(ß), and Np(ß) denote all the SVs, margin SVs, and non-margin SVs, without the 

pth SV, respectively, in the solution ß; and " denote the number of elements in the 

input set. The concept of span is given in the following definitions, for the C-SVM and 

v-SVM, respectively: 

Definition 1. The C-span of the pth SV for the C-SVM is defined as [73]: 

SC' 
}) = mill 

{ 

where 

np' Aiý 
iEAIa, (ß*) 

') 
i' ý 

hý ý, Enp}, 

E Ai =1, biE11Iý, (ß*): 0 

ZEnrp(p*) 

i3l* + Aiyiz/ 
'31" 

< CS v1 Iý. 

Definition 2. The v-span of the pth SV for the v-SVM is defined is [73]: 

S�p=min{, -i-a 
2 
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where 

Av 
p 

ý 
A2 

x! 

l7E l1/l, (A* ) T Z 
iEnl,, ()3*) 

y 
,/ 

JiYIpAi =l. biE? IIp(ß*): 0 
2EA%p(O*) 

z 

Under the assumption that the sets of margin and non-margin St's remain the sauce 
during the LOO procedure, the definitions of A and A can be simplified as p 1) 

ýý _ 1ý { ýiEAIp(ß*) 

nv p 
iE1lrp(p*) 

Ai xi 

A2 
ýl 

A; = 1. 

iEillp(Q*) 

+ Al 
mýj" ý 

} 

1 
1 

(7.: ) 

Az=1, (7.4) 
ýEA 1,, (p*) ý, Eýý>>(p*) 

where the removed constraints are viewed as true by default. Consequently. the spun 
bound of the LOO error for the C-SVM and v-SVM, also named as the span error 

estimate (SEE), are calculated based on the following two theorems: 

Theorem 1. If 11H()3) 0, the C-span in Definition 1 exists. The SEE for the C-SVM 

is given by [73] : 

ES L(ý(ß*) , 

where 
Lß (ß*) = V(, ß*) fl {p: Sß, 

1 
31, > yp(I1 (w*, x, ) + b*)} 

. 

Theorem 2. If the sets of the margin and non-margin SV. besides the pth SV J, 

being left out, stay the same for every SV x,, the v-span in Definition 2 

The SEE for the v-SVM is given by [73]: 

ES =Z IL"(, ß*) , 

where 

'' W-1 /- ' \r' /" Ur'-VIP ,p T. v(fV) - Tt(m*) n 
fn 

ý2 :3 
v 

1, > 1 

Here, v is a value set by the user. 

For the hard-margin SVM and L2-SVM (see Section 2.3.3), L«'(ß*) can be simplified 

as 

Lc(ß*) =V (O*) n {p : Sc, Pßp 
? i} . 

(7.5) 

The span of the pth SV defined above can also be calculated using the matrix 

inversion [36], given by 

= 

(_1)pp' 
(7.6) 
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vti"liere (- ),, 
1, 

denotes the matrix element in the pth column mid the pth aii(I for 
the hard-margin SVJ\I and L. )-SV1 J, 

K= 

for the L1-SVM, 

K= 

for the w-SVAI, 

K= 

(Ks. 

,. l 
e 

(KAI 
e1 

e 

(KAI 
ynl eI 

T 
yAl 00 

(, ., ) 

(,., ý) 

(7.9) 

er 0 0) 

and yAI is a column vector of labels of all the margin SVs. Kk- denotes thw kel-1)(A 

matrix of all the SVs, and KAI denotes the kernel matrix of all the 1m rgili SVs. 

7.2.3 Automatic Tuning of Parameters of an SVM 

By employing the GD, GA, and EKF algorithms based on cross validation and the 

span bound, five different tuning systems of the SVM parameters are studied in this 

work [148,150]. It is worth mentioning that the gradient-based tuning approaches. 

such as the GD and EKF algorithms, are only applicable to the L2-SVM, as it is 

difficult to calculate the derivatives of optimal Lagrange multipliers with respect to 

the regularization parameters of the L1-SVM and v-SVM, which are necessary in the 

derivative-based optimization procedures. However. the GS and GA approaches can be 

developed for all SVMs, not only the L2-SVM but also the L1-SVM and v-SVhl. 

Gradient Descent Based on Cross validation 

The overall structure of a GD-based tuning system to determine the optimal values of 

the L. )-SVM parameters based on cross validation is shown in Fig. 7.1. Let B denote 

the hyperparameter vector including the kernel and regularization parameters. The 

CVEE of the L2-SVM is calculated by averaging the validation errors over t)' training- 

výllidLltion trails (see Section 7.1.2). By incorporating Eq. (2.56) into Eq. (7.1). the 

validation error of each training-validation trail is given by 

ýý i1- i 7/ IIIIIIII I- ý ''I 

T(e) =« ýý= ý -I/ jZ tli`jý(a)Iý(xj, ýz)+b*(e) j1J. (;. lu» 
r0ºº11 

d=1 ý ýý=1 /1 
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Figure 7.1: The overall structure of the GD- (or GA-) based tuning system. 

Here, to perform the GD approach, a differentiable function ca(-) is used to get a 

smooth approximation of the validation error instead of the step function sgn(. ) that 

is not differentiable. For this purpose, a sigmoid function can be employed, given as 

(n (, r) - 
1 

Ir ýwj 1+ e-Ax 
' (7.11) 

where A is the positive sigmoid factor. The derivatives of the objective function 0(0), 

formed as the CVEE over U training-validation trails, with respect to the pth element 

of 0 at the kth iteration are given by 

ao(9k) 1U aT2(ek) 

aek, p 
=U aek pp=1,2, 

... ý no, (7.12) ý 
z-1 

where no denote the number of parameters to be selected, and TZ (9) denotes the VEE 

of the ith training-validation trail. Letting ß* = [ß*, b*]T, the derivative of TZ (9) with 

respect to the pth element of 0 at the kth iteration is calculated by 

aT2(ek) aTz(ek) 
aek, p - aek, p 

and 

aT2 (ek) aß* (ek) 
p =1,2, ..., no, , Ci*fixed + 

aß* (ek) Öek 
p 

H* n(e0 - -H-1 
H 

H-1ý1 ... 110)Tý 

(Kv 
yvl 

aek, p ýý aek, p 

H= I 

\yV 
0) 

where yV is a column vector of the labels of all of the SVs. 

(7.13) 

(7.14) 

(7.15) 
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Genetic Algorithm Based on Cross validation 

The GA-based tuning system to determine the optimal values of the SVM parameters 
based on cross validation employs the same structure as shown in Fig. 7.1. The 
objective function is set as the CVEE. Real values of the SVM parameters are encoded 
with n bits. The efficiency of GA greatly depends on the setting of its parameters, such 
as the population size, crossover type and probability, mutation type and probability. 
and the number of generations. There are several recommended settings such as Dejong 
settings [102] and Grefenstette settings [72]. It has been indicated that pure selection 
convergence time is O(log N), where N is the population size [70]. It is worthy to be 
mentioned that such a GA approach based on cross validation can be employed to tune 
the parameters of any classifier. 

Extended Kalman Filter Based on Cross validation 

Motivation Among the existing tuning methods to determine the optimal values of 
the SVM parameters, the GD approach is commonly used, but affected significantly by 

the setting of initial values; the GA approach is easily executed and suitable for both 
differentiable and non-differentiable objective functions, but takes comparatively long 

training time. We propose to view the tuning problem of the multiple parameters of the 
L2-SVM as an identification problem of a nonlinear dynamic system, and to solve the 

problem using the EKF algorithm [148,149]. The proposed EKF-based tuning method 
turns out to be not so sensitive to the initial values as the GD approach, and converges 

much faster than the GA approach. 

System Design To apply the EKF algorithm, we view the tuning problem of the 

SVM parameters as a weighted least-square minimization problem, where the error vec- 

tor is computed between the L2-SVM outputs and the validation targets. The overall 

structure of the proposed EKF-based multiple parameter tuning system based on k-fold 

cross validation is shown in Fig. 7.2. As k-fold cross validation is applied, there are 

k sub-SVM classifiers within this nonlinear system, sharing the same kernel and reg- 

ularization parameters, but using different groups of training and validation samples. 

The tuning problem of the multiples parameters of the L2-SVM becomes an identi- 

fication problem of a nonlinear dynamic system, where the kernel and regularization 

parameters are viewed as the state vector of the system (s = 6). To execute a stable 

EKF algorithm, one needs to add some artificial process noise and measurement noise 

to the system model [178,203,204]. With two added Gaussian noise Vk and wk, the 

nonlinear dynamic model of the proposed tuning system, where the EKF algorithm can 

be applied, becomes: 
ek+l = ek + Vk, (7.16) 
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Figure 7.2: Overall structure of the EKF-based tuning system of the multiple SVM 

parameters [148,149]. 

dk = 9k (e) + wk . 
(7.17) 

Assuming the number of folds used in the k-fold-cross-validation procedure is U, 

gk is set as the predicted validation target vector for the U sub-SVM classifiers with 
U training and validation groups over the label space 1-1,11 at the lath iteration. 

Consequently 

dk - dk dk d dk dk T 
- 

[11,121 
..., 1N1,..., U, 1) ..., UNUl 7 

k- kkkkkT 
9, L91,1,91,2ý..., 91, N17..., 9u, 1) ..., 9u1vUý ý 

and 

Tr Vectors 2 
Tr. Targets 2 
Va Vectors 2 

Tr Vectors k 
Tr Targets k 
Va Vectors k 

Va Targets 1 

Va Targets 2 

9ýj _ý (K(ý'*(ek), ý, ý) + b*(e0) 1 

(7.18) 

(7.19) 

(7.20) 

where w*(6k) and b*(Ok) denote the optimal weight vector and bias of the separating 

function learned by the L2-SVM with the parameters selected as Ok, respectively: Xij 

denotes the jth validation sample for the ith sub-SVM; dkj denotes the observed output 

value of the system for Xjj at the lath iteration; gkj denotes the predicted target of xj 

at the lath iteration; Ni denote the number of validation samples for the ith sub-SVM: 

and J(") is a differentiable output function employed to fit the EKF algorithm, which 

can be set as the purelin, log-sigmoid, or tan-sigmoid functions (see Fig. 7.3). 

if; 
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Optimization Procedure To derive the optimal values of the kernel and regular- 
ization parameters from the constructed EKF-based tuning system (see Fig. 7.2), one 
needs to calculate four derivative matrices of Fe, F, Ge, and G. (see Eq. (2.81) - 
Eq. (2.91)). Based on Eq. (7.16) and Eq. (7.17), Fe, F, and Gw at the lath iteration 

can be simply computed as 
Fe(k) _ 

Fz, (k) _ 

Gw(k) _ 

Ine x ne , 

Ine x ne , 

Inwxn,,, 

(7.21) 

(7.22) 

(7.23) 

where no denotes the number of parameters to be selected for the L2-SVM, and nu, 
denotes the number of elements of the noise vector w. Based on Eq. (7.17), Eq. (7.19), 

and Eq. (7.20), Go at the kth iteration can be derived by 

Ge(k) = [Vg1,1'ýg1,2ý 
..., og1, N1, ..., ýgv, i, ... ' 

Vgv, NulT , (7.24) 

where 
akakakT 

k gZ, ý g2, ß g2, ß 7.25 pg2 
0ek, 1 , 90k2' ... 0 k, ne 

() 

Similar to Eq. (7.13), derivative of gkj with respect to the pth element of 9 at the kth 

iteration is calculated by 

agýý 
- 

agýý agýj aß* 
p_ no (7.26) 1' 2ý...,. 

a8k p aek, p , ý* fixed + 
aß* aek, p 

' 

Values of 
{ 

a, 3. J 
no 

can be calculated based on Eq. (7.14). 
a0k, P = ,P1 . -1 

Based on the above preparation works and the six equations in Section 7.2.3 (Eq. 

(2.81) to Eq. (2.83), and Eq. (2.89) to Eq. (2.91)), a priori update of the kernel and 
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regularization parýunwters c"ýill be derived by 

ek: 
+l 

dk 
P(A'+l) = 

9k + vk . 

9(ek) + wk, 

P(A') + Q(/,. ). 

Consequently, the posterior llp(Llte (U1 be derived b 

ek 
P(k) 

I 
.=1I 

(,. 2,, ý, ) 
( , -. 21)j 

9/,. + Ký. [dk - dk], (7.30) 
[I - KA, Ga(A-)]P(k), (7.31) 
P(1,: )Ga(k)T [Ga(1; ")P(k)Ga(A, )T + R(ý')]-ý (ý.: 3? ) Kk = 

The use of process noise vk and measurement noise wk, manifests themselves as the 
addition of two diagonal matrices Q(k) and R(k) in Eq. (7.29) and Eq. (7.32), re- 
spectively. Such a heuristic mechanism of adding artificial noise cam avoid computa- 
tional difficulties such that P(k) can become singular, lose the necessary property of 
nonnegative definiteness, or vanish completely, and relate to the rate of coiiverr; ence. 
avoidance of local minima, and quality of solution, as demonstrated by Puskoriils and 
Feldkamp [178,179]. Small and nonnegative values of the components of the diagonal 

matrices Q(k) and R(k) are recommended, e. g. in the range 10-6 to 10-2 [179]. The 

proposed EKF-based tuning system for the L2-SVM can be viewed as black box. 

where the kernel and regularization parameters form the state vector. The validation 
targets perform outside the black box, while all of the training vectors. training targets 

and the validation vectors perform inside the black box as the fixed parameters of the 

dynamic system. 

Grid Search Based on Span Bound 

The GS-based tuning system to determine the optimal values of the SVM parameters 

based on the span bound employs the same structure as shown in Fig. 7.1. The SV M 

is trained for various parameter settings, roughly from a large range with a large fixed 

step to a smaller range with a smaller fixed step; the SEE is then calculated for each 

parameter setting. Parameters with the smallest SEE are finally selected. Based on 

the Theorem 1 and 2 in Section 7.2.2, the objective function 0(9) of the GS approch 

is calculated as follows: 

for the L1-SVM, 

1 sý 
0(0) = 

Ysgn (s))(o)ß; 
(o) -yp 

p=1 

for the L2-SVM. 

l 

yj3; I1(xj. xp 
j=1 

S, 

p= 

0 (9) =1ý sgn (S', 
p(e)ß, 

(e) - 1) . 

+ý'ýBýl l . 
U.: 3: 31 

(7.34) 
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for the v-SVM, 

Is, 
0(0) sgn (S])(O)(O) 'e- + ý, ý 

ý) Fi lvl ý 

11 p=1 ý `ý / 

where Sz, denotes the number of SVs. 

Gradient Descent Based on Span Bound 

(;. 3., ) 

The GD-based tuning system to determine the optimal values of the L>-SVi\I par; unc- 
ters based on the span bound employs the same structure as shown in Fir;. i. 1. Instcml 

of using the objective function given in Eq (7.34), the following objective function. with 
a sigmoid function given in Eq. (7.11) to smooth the SEE, is employed 

O(9) =LS yý(s", p 
(e), ßp(9) - 1). 

p=1 

(7.36) 

Thus, the derivative of the objective function 0(0) with respect to the »th element of 
the SVM parameter 0 at the lath iteration is calculated by 

00 (0k) 1y 
(SC(aý)ßp (ak) -1) aekp p-z ý=1 

* ýSý. ý>(ek) . ýý X ßp(8, ) ÖBý 
+ SC', 

ý, 
(9k) ýý 

p 
ý, 

p 

and 

(7.37) 

aS2 cp(ek) 
_ S4 

px 
(8k)-1 

OK (0k) K(ey) p= 1,2 ..... 
5,., (7.38) 

30k, p aak, p pp 
where the matrix k^-) is described in Eq. (7.7), Eq. (7.8), and Eq. (7.9). Values of 

r dp, (eti. ) SV 

aek, l, }T)- nan 
hQ 

ýý1ý�latPrl hq.,, Pcl cm 
Fn- 

Iý C7_ 
(7.14). 

Vwll ýJli Uwlyulwývýa ----"Z' \- -- -ý . Öek, 
p 

p=1 

7.2.4 Experimental Results and Comparative Analysis 

Comparison of the EKF-, GD-, and GA-based Tuning Systems 

In this experiment, the proposed tuning method using the EKF algorithm based on 

cross validation for an L2-SVM is evaluated using two benchmark datasets from Table 

4.1 and the WDBC dataset as described in Section 4.1.3, and compared with the GD- 

and GA-based tuning systems based on cross validation using the same classification 

scheme. Both the same width's RBF kernel in Eq. (2.27) and the different widths 

RBF kernel in Eq. (2.30) were employed. For the heart and \ 'DBC datasets. the 

1 ýý I */aý \ 
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available samples were randomly divided into ten subsets. In each trial, one subset was 
used for test and the remaining nine subsets for training. 5-fold cross validation within 
the training samples of the first trail was used to select the parameters. Ten trails of 
training and test procedure were repeated with the selected parameters; the mean value 
of the ten test accuracies was used to evluate the final classification performance. For 
the waveform dataset, 5-fold cross validation within 400 training samples was used to 
select the parameters, and 4600 test samples were used to evaluate the classifier with 
the selected parameters. The L2-SVM was trained with the "SVM and Kernel Methods 
MATLAB Toolbox" [30]. GA was executed using the "Genetic Algorithm Toolbox for 
use with MATLAB v1.2" [40]. The EKF algorithm was executed using the "Kalmtool 
Toolbox Version 2 for use with MATLAB" [164]. 

Same width's RBF kernel: For an L2-SVM with the same width's RBF kernel, 

two parameters need to be selected, and B= [a, C]T. For the GD approach based on 
CVEE, the factor A of the sigmoid function was set as 10, the convergence controlling 
parameter q was set as 1 for both C and a, T was set as the number of iterations. 
For the EKF approach, the process noise vk and the measurement noise wk were used 

as two regularization terms to avoid a singular covariance matrix P (k) and improve 

the rate of convergence, but without corrupting the real values of the observation and 

state vectors. Thus, zero mean and small standard deviation were preferred. In this 

experiment, two Gaussian noises each with zero mean and 0.01 standard deviation were 

employed, hence 

Q=0.01*I2x2, 

R=0.01 * In,,, xn,,, - 

The initial value of the error covariance matrix was set as 0.001, hence 

P(0) = 0.001 *'2x2" 

The output function 0(") of the EKF-based tuning system was set as the sigmoid 

function, with the same form as shown in Eq. (7.11), and the factor A was set as 10. 

Usually, performance of the gradient-based optimization method greatly relates to 

the setting of the initial values and the stopping condition. An inappropriate initial 

setting may cost more time to converge, or lead to a convergence towards other unex- 

pected local minima. So different initial settings of B were investigated and compared 

for the EKF- and GD-based tuning systems, of which the corresponding performance, 

as well as the number of iterations and the initial values of 9, are recorded in Table 

7.1. Convergence comparison of the training errors using the EKF and GD approaches 

was shown in Fig. 7.4, Fig. 7.5, and Fig. 7.6, for different initial values of 0 and the 

three datasets. With an appropriate initial setting of the SVM parameters, both the 

EKF and GD approaches can converge to a satisfactory optimal solution (see Fig. 7.4, 
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Fig. 7.5 and Fig. 7.6). With an inappropriate initial setting, the GD approach cannot 
converge to the expected local minima, with the classification accuracies staying higher 
than 0.5 in 1000 iterations; but the EKF approach can still rapidly converged in less 
than 10 iterations for all the three datasets (see Fig. 7.4, Fig. 7.5 and Fig. 7.6). 

For the GA approach, the objective function was set as the CVEE, the fitness 
function was calculated using linear ranking with the selected pressure set as 2 (see [40]), 
the population size was set 50, the number of generations was set as 1,000, the crossover 
type was two point crossover, the crossover rate was set as 0.6, the mutation type was 
bit flip, and the mutation rate was set as 0.001. Each element of loglo 0 was searched 
along [-3.0,5.0] for the WDBC dataset, and [-5.0,5.0] for the Heart and Waveform 
datasets, of which the corresponding performance are recorded in Table 7.2. It can 
be seen from Table 7.2 that the EKF approach achieves comparative performance to 
the GA approach. However, the latter method costs much longer training time, with 
not only more generations but also more training time for each generation. In each 
generation, the GA approach requires to train the L2-SVM fifty times corresponding 
to the population size, while this is done only once for the EKF-based tuning system. 

Different widths' RBF kernel: For an L2-SVM with the different widths RBF 
kernel, (n + 1) parameters need to be selected, and 8= [a1, a2, ... , an, C]T 

. 
The 

same system settings, as used in Section 7.5, were employed for the EKF-, GD-, and 
GA-based tuning systems. 

Different initial settings of 8 were investigated for the EKF- and GD-based tuning 

systems, of which the corresponding performance, as well as the number of iterations 

and the initial values of 0, are recorded in Table 7.3. It can been see from Table 7.3 that, 
for the EKF approach, the final classification accuracies with different initial settings of 
0 were comparable to one on other in most cases; for the GD approach, different initial 

settings of 8 led to very different final classification accuracies. However, for the heart 

dataset, it is difficult to converge to the expected local minima for both the EKF- and 
GD-based tuning systems with the initial values of log10 0 set as (-1.0, -1.5) (see Table 

7.3). Convergence comparison of the training errors using the EKF and GD approaches 

was shown in Fig. 7.7, Fig. 7.8, and Fig. 7.9, for different initial values of 8 and the 

three datasets. Inappropriate initial settings of 8 result in a dissatisfactory convergence 
for the GD approach. The proposed EKF-based tuning system is less sensitive to the 

initial settings of 0 as compared to the GD-based tuning system (see Fig. 7.7, Fig. 7.8, 

and Fig. 7.9). 

As for the computational complexity, it is observed that, for the same CPU with the 

same WDBC dataset, the EKF algorithm costs 0.76 seconds per iteration on average 

and takes only 20 iterations to converge to the local minimum, while the GD approach 

costs 1.29 seconds per iteration on average and takes more than 40 iterations to converge 
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to the local minimum. Thus, the EKF algorithm costs not only less training time for 
each iteration, but also less number of iterations for the whole convergence 

For the GA-based tuning systems, each element of log10 8 was searched along the 
same interval as used for the smile width's RBF kernel. of which the corresponding 
performance are recorded in Table 7.2. The EKF-based tuning method provides similar 
performance to GA (see Table 7.2), but possesses much faster training speed with not 
only less generations but also less training time for each generation. 

Performance Comparison Classification accuracies of the L, )-SVM with the EKF-. 
GD-, and GA-based tuning systems based on k-fold cross validation are summarized 
in Table 7.4, and compared with those obtained by Chung et al. [43] usiiig the QN 

algorithm based on the RMB, and by Xiong et al. [244] using the GD approach based 

on the class separability (see Section 4.2.4). It can be seen from Table 7.4 that the 
EKF-based tuning systems provides satisfactory performance for all the three datasets. 
Especially, the SVM accuracies of the WDBC and heart datasets have been oob\'iously- 
improved from 97.0% to 99.5%, and from 84.2% to 87.3%, respectively, by applying 

a fine tuning of the SVM parameters using the EKF algorithm, compared with the 

published results [244]. 

Usually, before applying the GD approach, one needs to perform a rough GS to 
determine an optimal parameter range so that the initial values of those parameters 
to be tuned are appropriately set. Using the proposed EKF-based tuning method, 

with the advantage of not much reliance on the initial values, one can rapidly find the 

optimal parameters for the L2-SV1\I over a wider range for any differentiable kernels. 

The rough GS becomes unnecessary or can be performed even more roughly. which caii 

save much time for the SVM users when determining the SVM parameters without too 

much a priori knowledge about the dataset. 

Tuning of SVM Parameters Based on Span Bound 

In this experiment, the WDBC dataset from FNA (see Section 4.1.3) is used to evaluate 

and compare the SEE-based tuning methods using the GD and GS approaches for 

different types of SVMs. The RBF kernel in Eq. (2.27) was employed for all the SN'-Ms. 

All the results are summarized in terms of classification accuracy in percentage based 

on 10-fold cross validation. The L1-SVM and L2-SVM classifiers were trained with the 

"SVM and kernel methods Matlab toolbox" [30]. The v-SVM classifier was trained with 

the quadratic optimization functions in the above mentioned toolbox and the Matlab 

optimization toolbox. 

GS approach based on span bound: The Ll-SVM. L2-SVM. and v-SV'-M cl<ISSi- 

fiers with the same width's RBF kernel in Eq. (2-27) were trained separately for various 
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parameter settings. The kernel and regularization parameters were selected using the 
GS approach based on the SEE. For each SVM classifier, as 10-fold cross validation was 
employed, ten parameter settings with the smallest SEE were adopted for each of the 
ten training groups, which were then used to train the remaining nine groups of train- 
ing sets, respectively, to calculate the corresponding SEE. The final parameters with 
the smallest mean value of the ten training groups' SEE were selected. Classification 
accuracies with the selected parameters are recorded in Table 7.5, from which it can 
be seen that all the three SVM classifiers offer similar performance of over 98%. 

To verify whether the appropriate kernel and regularization parameters were de- 
rived, we compared the SEE with the test error versus different values of one parame- 
ter, with the other parameter fixed at the selected value for the L1-SVM, L2-SVM. and 
v-SVM, on the same training and test group (see Fig. 7.10, Fig. 7.11, and Fig. 7.12). 
It can be seen that the SEE predicts the values of the true test error as well as its vari- 
ation in a satisfactory manner, which yields appropriate selections of parameters for all 
the three SVMs. It can also be seen that the performance of an SVM is more sensitive 
to changes in the kernel parameter than in the regularization parameter. Distributions 

of the span performance estimate (1 - SEE) and the test performance versus different 

values of both the kernel and regularization parameters are plotted for the L1-SVM, 

L2-SVM, and v-SVM with the same training and test group in Fig. 7.13, Fig. 7.14, and 
Fig. 7.15. For the L2-SVM, it is clearly seen that there is a large triangular zone in the 

parameter space where high performance can be reached (see Fig. 7.13). An SVM with 
the parameters selected from the central area of the triangular region performs with 

more stability than with other parameter selections. It is also seen that, for the v-SVM, 
the span bound will not exist (due to the appearance of the singular matrices) as vsvM 

and o, increase, while the test error becomes noisy and sensitive as vsvM decreases and 

a increases, where the SEE cannot truly predict such a noisy behavior (see Fig. 7.15). 

For the L1-SVM, as CSVM decreases and o- increases, the SEE does not exist either, 

but can still well predict the test error, as long as it exists (see Fig. 7.14). 

Comparison of span bound and, single validation using GD approach: To 

tune the kernel and regularization parameters of the L2-SVM, the GD approach based 

on the SEE was compared with the GD approach based on the VEE. The validation 

data were selected by first training an L2-SVM classifier using all training samples for 

each group (with no restriction on the SVM parameter values, CSVM = 2.4 and a=6.3 

were used in our experiments), then sorting the training samples based on their values 

of the separating function f (A), and finally selecting the validation data by choosing 

every ninth sample from the sorted training samples (1 :9: 512). The sigmoid function 

given in Eq. (7.11) was employed to smooth the VEE and SEE, of which the factor A 

was set as 10 for VEE and 15 for SEE, respectively. In Fig. 7.16, the smoothed SEE 
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and VEE are compared with the test error on the same training aiid test group. versus different values of one parameter with the other fixed at the selected values. For the 
GD approach, the convergence-controlling parameter q. was set as 1 for both 
and a. Different values of 500,800, and 1000 were used for T. The stopping condition 
was decided jointly by the iteration number, which was set as 300 in this experiment. 
and the value of O(Ok+1) - O(6k)j to overcome the problem of over-fitting. Different 
from the GD approach, as implemented by Chapellel et al. [36], we repeated the GD 
iterative procedure three or four times, each time with a different initial setting of 0. 
which is equivalent to finding an optimal area by converging from different directions. 

There are two different ways to calculate the derivatives of the smoothed VFE and 
SEE, of which one is using Eq. (7.12) and Eq. (7.37), and the other is using the 
following approximation based on the definition of the derivative: 

Of. f(: 1, +D: zý) - f(z') 
- ,ý I (7.: ) v: r' O: r 

where Ox is close to 0. We show a comparison of the above two ways of computing 
the derivatives of VEE and SEE with respect to CSVM and u in Fig. 7.17. from which 
it can be seen that the two results are similar to each other. However. to calculate the 
derivatives using Eq. (7.39), one has to train the L2-SVM classifier twice to get the 

values of 0(0) and 0(0 + A9), which costs more time as compared with the method 
using Eq. (7.12) and Eq. (7.37). Therefore, Eq. (7.12) and Eq. (7.37) are preferable 
to calculate the derivatives, compared with Eq. (7.39). 

The selected parameters and the corresponding classification performance of the 
L2-SVM using different parameter tuning systems, including the GS approach based 

on the SEE (GSSEE), GD approach based on the VEE (GDVEE), and GD approach 
based on the SEE (GDSEE), are recorded in Table 7.6. The classification accuracy 

obtained by using the GDVEE tuning system is 98.1% (see Table 7.6). Although more 
than 10% of the training samples were sacrificed for validation, this performance is still 

statistically close to the performance 98.4% reached by using the GSSEE tuning svstelli 
(see Table 7.6). With the GDSEE tuning system, a satisfactory performance of 98. G`% is 

reached for the L2-SVM classifier (see Table 7.6). The use of the SEE has improved the 

classification performance in comparison with the VEE, with the advantage of making 

more data available for training. The GDSEE tuning system not only provides a more 

accurate method for parameter tuning, but also provides more information to train all 

L2-SVM classifier. 

7.2.5 Discussion and Conclusion 

We have surveyed and studied several measures to estimate the error rate for an SVM. 

such as the single validation estimate, cross-validation estimate, and the span bound. 
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as well as several approaches to optimize the parameters of an SV 1. such as the GD 
and GA approaches. The L1-SVM, L2-SVM, and v-SVM classifiers with the GSSFE. 
GDVEE, and GDSEE tuning systems were evaluated and compared with the «'DBC 
dataset. Experimental results demonstrate the effectiveness of different fine tuning 
systems of the SVM parameters. The best classification performance reaclied is 
for the WDBC datasets by using the GDSEE tuning system (see Table 7.6). Sele( in, 
the SVM parameters based on the SEE increases the available training data. whicli is 
especially useful when working with a small dataset. The GD-based tuning svsteni for 
the L2-SVM classifier can not only speed up the parameter tuning procedure, but also 
lead to more accurate classification. However, the GD approach is affected significantly 
by the setting of initial values. 

Thus, we have proposed an EKF-based tuning method to determine the optimal 
values of the L2-SVM parameters based on k-fold cross validation, by viewing the tuning 
problem as an identification problem of a nonlinear dynamic system. The proposed 
method is validated with three datasets, and compared with the GD- and GA- based 
tuning methods. The benchmark testing results show that the EKF approach leads to 
better classification performance for the L2-SVM, compared with those obtained by the 
GD and GA approaches, and by the published methods from [43] and [244] (see Table 

7.4). The classification performance of the WDBC dataset reached 99.5% by using the 
EKF-based tuning system (see Table 7.4). Both the EKF and GD approaches converge 

much faster than the evolutionary parameter selection method of GA. Furthermore, the 
EKF approach is less sensitive to the setting of the initial values. and performs much 
better when converging from an inappropriate initial values than the GD approach 
(see Fig. 7.4 to Fig. 7.9), which makes it more favorable when optimizing the SVM 

parameters without too much a priori knowledge regarding the dataset. 

Although the gradient-based tuning approaches, such as the GD and EKF algo- 

rithms, can provide better performance as compared with the GS approach, they are 

only applicable to the L2-SVM. The GA approach can be developed for all SVI\Is, not 

only the L2-SVM but also the L1-SVM and v-SVM, but requires longer computing 

time. 

7.3 Independent Kernel Optimization 

The wrapper-type kernel optimization determines the optimal values of the kernel pa- 

rameters based on the estimated risk of a chosen classifier, such as VEE, (TEE. and 

LOO error, as described in section 7.1. However, the selected values of the kernel pa- 

rameter relate to the logic of the classifier. The kernel parameters selected based on 

the error estimate of the classifier A may not work well for the classifier B. Instead, 

an independent kernel optimization method searches the optimal values of the kernel 
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parameters based on the measures of data separation calculated in the kernel-defined 
feature space, such as alignment of the kernel with the target function. class separa- 
bility, and normalized distance, as described in section 4.2. Such a selection method iý 
independent of any classifier; the selected values of the kernel parailieter can l, e uHed 
for different kernel-based classifiers. 

7.4 Measure of Robustness 

As the nonlinearity of a kernel-based classifier is achieved by employing kernel functions, 
its classification performance is subject to variation dependent upon the setting of the 
hyper-parameter of the kernel, which is unavoidable with all kernel-lased classifiers. 
To evaluate the robustness of the classifier around a certain selected value of the kernel 

parameter, we propose a measure of robustness R as 
N 

R= 
i=-N 

P(O* +ZOe) - P(6*) 
2N2/'\\9 

(i 
. 
4O) 

where 9* denotes the selected value of the kernel parameter, and P(O) denotes the 

classification performance derived with the kernel parameter set as 0; values of N and 
AO are set by the user. A large value of R indicates low robustness around 9*. 

The classification performance based on the transformed features obtained by KPCA 

and KPLS (see Section 5.2.1 and Section 5.2.2) depends upon not only the setting of the 

kernel parameter, but also the selected number of KPCs n in KPCA, and the selected 

number of score vectors n for each feature set in KPLS. To evaluate the robustness of 

the two nonlinear transformation methods around a certain selected parameter vector 
(9*, n*), where n* denotes the selected number of KPCs for KPCA (or score vectors 
for KPLS), the following measure of robustness is proposed: 

for n* > 1, 

R* ,n* 

+ 

i P(8*ý n* + 1) - P(e*, n*) 
ý 

+I p(e*, 12*) - p(gx n* - 1) I? 

2 

, ijý, P(B* + iOB, n*) - P(6*, l, *) 1 EI1 `V T _v It 

') ATA A ul ý cýv 

i=-N 

for n* = 1, 

R9*, 1 = P(9*22) - P(9*, 1) 2+ 
N 

ZI 

P(e*+zoe, 1) -P(e*, 1) 
2NA9 IlI 

)2] 
1 
2 

(7. -I1) 

; ý. 4'? j 

where P(9, n) denotes the classification performance derived with the kernel parameter 

log10 or set as 9, and the number of KPCs for KPCA (or score vectors for KPLS) tict 

*ý 
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as m; the values of N and AO are set by the user. A large value for R indicate, low 
robustness around (6*, n*). 

7.5 Summary 

This chapter has investigated techniques for automatically tuning the parameters of 
a classifier. Different methods to estimate the true risk of a classifier has been sur- 
veyed, as well as an efficient method to bound the LOO error for an SVM. To optimize 
the parameters of an SVM, the GD and GA approaches were employed based on es- 
timates for the generalized error of the SVM. An EKF-based system for tuning the 
multiple parameters of the L2-SVM has been proposed, by viewing the tuning problem 
as an identification problem of a nonlinear dynamic system based on cross validation. 
An independent kernel optimization method based on data separation has also been 
discussed, which is independent of any classifier so that the selected values of the ker- 

nel parameters can be used for different kernel-based classifiers. To evaluate the the 

variation of the classification performance around the corresponding selected values of 
parameters, measures of robustness has been proposed for the kernel-based classifiers 
and the kernel-based transformation methods of features. 

Experiments have been conducted to compare the efficiencies of the GS-, GD-, GA-, 

and the proposed EKF-based tuning systems, as well as the measures of the SEE and 
VEE, using the benchmark datasets and the WDBC dataset (see Section 7.2.4). Several 

conclusions have been made from the benchmark testing results: (1) Compared with the 

VEE, choosing the SVM parameters based on the SEE increases the available training 

data, which is especially useful when working with a small dataset. (2) Compared with 
GS and GA, the GD approach can not only speed up the parameter tuning procedure, 
but also lead to more accurate classification for the L2-SVM. (3) Compared with GD 

and GA, the EKF approach leads to better classification performance for the L2-SVM. 

(4) Both the EKF and GD approaches converge much faster than GA. (5) the EKF 

approach is less sensitive to the setting of the initial values, and performs much better 

when converging from an inappropriate initial values than the GD approach, which 

makes it more favorable when optimizing the SVM parameters without too much a 

priori knowledge regarding the dataset. 
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Figure 7.4: Convergence comparison of the training error using the EKF- and GD-based 

tuning systems with the same width's RBF kernel for the WDBC data. 
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Figure 7.5: Convergence comparison of the training error using the EKF- and GD-based 

tuning systems with the same width's RBF kernel for the Heart dataset. 
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Figure 7.6: Convergence comparison of the training error using the EKF- and GD-based 

tuning systems with the same width's RBF kernel for the Waveform dataset. 
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Figure 7.7: Convergence comparison of the training error using the EKF- and GD-based 

tuning systems with the different widths' RBF kernel for the WDBC data. 
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tuning systems with the different widths' RBF kernel for the Heart data. 
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Figure 7.9: Convergence comparison of the training error using the EKF- and GD-based 

tuning systems with the different widths' RBF kernel for the Waveform data. 
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SVM parameter, with the other fixed, for the L1-SVM. 
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Figure 7.15: Comparison of the span and test performance versus different value, of 

the kernel and regularization parameters for the v-SVM. 
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EKF & L, )-SVM GD S- L., -SN"\I 

Datasets Ini. loglo 0 Runs Accu. Ini. log10 0 Runs Accii. 

Waveform (2.5,2.0) 

Waveform (-0.2, -0.2) 

Heart (1.0,2.0) 

Heart (-1.0, -1.5) 

WDBC (2.0,2.0) 

WDBC (-0.4, -1.0) 

80 89.1 (2.5,2.0) 80 8ý. 3 

100 89.9 (-0.2. -0.2) 1000 67.1 

60 83.5 (1.0,2.0) 60 1.7) 

100 80.8 (-1.0, -1.5) 1000 ý8.6 

80 97.9 (2.0.2.0) 100 97.4 

100 97.4 (-0.4, -1.0) 1000 60.5 

Table 7.1: Test performance in percentage accuracy of the L2-SVM classifier using the 

EKF- and GD- based tuning systems with the same widths RBF kernel. as well als 

the number of iterations (denoted by Runs), and the initial values of (log10 (7, log10 C) 

(denoted by Ini. log10 e) 

Same width's RBF Diff. widths' RBF 

Datasets EKF GD GA EKF GD GA 

Waveform 89.9 88.3 88.4 87.5 86.7 88.4 

Heart 83.5 83.5 83.9 87.3 86.9 83.9 

WDBC 97.9 97.4 97.9 99.5 97.0 98.4 

Table 7.2: Comparison of the test performance in percentage acclirýlcY using different 

tuning methods. 
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EKF &; L>-SVNI GD k-, L. >-SV-M 

Datasets Ini. log10 0 Runs Accu. Ini. log10 0 Ruin A(. (.,,. 

Waveform (2.5,2.0) 80 87.5 (2.5.2.0) 80 8G. 7 

Waveform (-0.2, -0.2) 100 82.9 (-0.2, -0.2) 1000 G7.1 

Heart (1.0,2.0) 80 87.3 (1.0,2.0) 80 86.9 

Heart (-1.0, -1.5) 100 68.5 (-1.0, -1.5) 1000 48.6 

WDBC (2.0,2.0) 80 98.1 (2.0,2.0) 80 97.0 

WDBC (-0.4, -1.0) 100 99.5 (-0.4. -1.0) 1000 60.5 

Table 7.3: Test performance in percentage accuracy of the L2-SVM classifier using the 

EKF- and GD-based tuning systems with the different widths' RBF kernel, l5 well as 

the number of iterations (denoted by Runs), and the initial values of (log10 0'. lO(, lo C) 

(denoted by Ini. loglo 9). 

Datasets EKF&L2-SVM GD&L2-SVM GA&L2-SVM Others 

WDBC 

Heart 

Waveform 

99.5 97.7 98.4 97.0 [244] 

87.3 86.9 83.9 84.2 [244] 

89.9 88.3 88.4 89.8 [43] 

Table 7.4: Comparison of the test performance in percentage accuracy for different 

tuning methods. 
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Classifiers Kernel Para. Reg. Pare. Accuracy 

Li-SVM log10 Q- 0.6 loglo C= 0.8 98.2 

L,, -SVM loglo or = 1.0 loglo C= 1.3 4% 

v-SVM loglo u=1.4 loglo v= -0.9 98.2% 

Table 7.5: Performance comparison in percentage accuracy for different types of 5VMH 

using the GS approach based on the span bound. Para. = Parameters. Rey 
. 

Regularization. 

lulling Systems loglo a loglo C Accuracy in % 

GSSEE 

GDVEE 

GDSEE 

1.0 1.3 98.4 

0.87 1.42 98.1 

0.97 1.35 98.6 

Table 7.6: Performance comparison in percentage accuracy using different paraiiieter 

tuning systems for the L2-SVM. 
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Chapter 8 

Applications of Machine 

Learning in Medical Diagnosis 

8.1 Breast Cancer Detection from FNA 

8.1.1 Introduction 

The WDBC dataset described in Section 4.1.3 was obtained by first applying image 

processing techniques to derive directly from digital scans of FNA slides [208.239. 

240], and then employing machine learning techniques to differentiate benign from 

malignant samples [133,240,241]. This could be the earliest study of machine learning 

application to breast cancer detection. Later, to improve the accuracy and efficiency 

of the detection of breast cancer, a number of research projects of are focusing on 
developing method of computational intelligence for CAD of breast cancer from FNA 

[9,76]. In this work, we aim to investigate the benefits of applying different kernel- 

based classifiers and different fine tuning systems of the hyperparauileters to 1)1 ea"'t 

cancer diagnosis from FNA, using the WDBC dataset [150.151]. 

8.1.2 Techniques and Schemes 

Built on the success of the previous works by «'olberg et at. [239-241]. we employed 

different classification methods to diagnose breast masses based solely on FN A. includ- 

ing FLDA 
. 

KFDA, SVMs, MPSVM, regularized ö-MPSVM, as well as our proposed 

SOM-R, BF network, PRQ classifier, S2SP classifier, and the 2-norm N SV'DD. Instead of 
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only providing a binary diagnostic decision of benign and niali, O, na it. «-e also calculated 
the confidence of malignancy for each mass based on the output values obtained by 
FLDA, KFDA, SVM, and the NSVDD-based classifier. 

8.1.3 Experimental Results and Comparative Analysis 

Classification Using SVMs with Fine Tunings of Parameters 

The L1-SVM, L2-SVM, and v-SVM classifiers with the GSSEE. GDVEE, and GDS1`1-: 
parameter tuning systems, as described in Section 7.2.3, were applied to imprý ývv the 
detection accuracy of malignant tumors in the WDBC dataset generated from FNA. 
The same implementations as used in Section 7.2.4 were employed. All the results are 
summarized in terms of classification accuracy in percentage based on 10-fold cry 55- 
validation. The corresponding performance are recorded in Table 8.1, and compared 
with those obtained by the linear SVM classifier [76], the SVM classifier with the 
RBF kernel [34], the fuzzy classifier using an evolutionary scatter partition of the 
feature space [88], and the edited nearest-neighbor (ENN) with pure filteriiig [11]. 

It can be seen from Table 8.1 that all of the SVM classifiers with a fine tuning of 
the regularization and kernel parameters offer higher performance of above 98`% and 
lower standard deviation than the others. In particular, the L2-SVM With the GDSEE 

parameter tuning system offers the highest detection accuracy of 98.6(Y(:. 

Classification Using SOM-RBF Network 

The SOM-RBF classifier was employed to identify breast tumors from FNA with the 

WDBC dataset. The results were also summarized in terms of classification accuracy in 

percentage based on 10-fold cross-validation. The topology structure was selected based 

on VEE. All of the training, validation and test samples were normalized before being 

provided as input to the SOM-RBF classifier. The validation samples were selected 

using the same way as in the last experiments. The 2-D hexagonal grid was employed. 

The optimal SOM size was selected from 3x2,6 x 3,6 x 4,5 x 5,7 x 7,10 x 5, 

and 12 x6 based on the average validation error over ten groups of validation data. 

Different training epochs of 500,800,1000 were used. The final SOM size of 6x -l was 

selected for the WDBC data. The corresponding detection accuracy was 97.1 %% hase(l 

on 10-fold cross-validation (see the 6th row in Table 8.1). The SOAI-RBF classifier not 

only improves the performance of the distance-comparison-based SOM satisfactorily. 

which is only 94.4% in accuracy (see the 7th row in Table 8.1), but also has a low 

standard deviation of 0.4% indicating that it is a more stable classifier than the others 

evaluated. 
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Classification Using Different Kernel-based Classifiers 

The SVM, KFDA, PRQ classifier, MPSVM, regularized 6-MPSVM. and S2SP classi- fier were employed to identify breast tumors from FNA with the WDBC dataset. The 
features were normalized to have zero mean and unit variance before being used as 
the input of a classifier. Classification performance is shown in terms of classificatiuii 
accuracy in percentage. The RBF kernel in Eq. (2.27) was employed. Parameters of 
each classifier was selected by using the 5-fold-cross validation, and the 10-fold-cross 
validation was used to evaluate the classifier with the selected parameters. The classifi- 
cation performance, the corresponding computing time, and the number of parameters 
required to be tuned are recorded in Table 8.2 for each classifier. The S2SP classifier 
provided the best accuracy. KFDA, SVM, and the S2SP classifier possess faster train- 
ing speed than MPSVMs, S-MPSVMs, and the PRQ classifier, and performs better 
than MPSVMs and 6-MPSVMs. The classification performance of the PRQ classifier 
is comparable to those obtained by KFDA, SVM, and the S2SP classifier. KFDA, the 
PRQ classifier, and the S2SP classifier do not need any parameters. Both the SVM and 
b-MPSVM classifiers require to determine one extra regularization parameter. How- 

ever, the step of tuning the values of the kernel parameters is unavoidable for all these 
kernel-based classifiers. 

Classification Using the 2-norm NSVDD 

In this experiment, a total of 250 samples of the WDBC dataset were randomly selected 
for training (150 benign masses and 100 malignant tumors), and the rest 319 samples 
for test. Our proposed 2-norm NSVDD for binary classification was employed with the 
WDBC dataset, and compared with FLDA, SVMs, and KFDA. The RBF kernel in 

Eq. (2.27) was employed for the 2-norm NSVDD, SVMs, and KFDA. Parameters of 

each classifier was decided by cross validation within the training samples. The corre- 

sponding classification performance in accuracy is recorded in Table 8.3, as well as the 

computing time in seconds. The proposed 2-norm NSVDD provided the highest classi- 
fication accuracies (100.0% for training and 98.8% for test), but the slowest computing 

speed, as there are two QP problems required to be solved. However, the computing 

time of the 2-norm NSVDD were still comparable to that of SVMs and KFDA. The 

distribution of the first two principal components of the original features was compare 

with the distribution of the distances between samples and the centers of the two SCHs 

learned by the 2-norm NSVDD, in Figure 8.1 and Figure 8.2. By learning the positive 

and negative SCHs, better dispersion was reached in the SCH-defined distance space, 

for both the training and test samples. 
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Confidence Assignment 

We calculated the combined confidence of malignancy for the test misses with the 
selected features, using LDA. KFDA, SVM, and 2-norm NSVDD. The training sample, 
were divided into four partitions, with two related to benign (B1 and B2) and two to 
malignant (M1 and M9). The separate probabilities of being benign and malignant in 
each partition, computed with the training samples, are recorded in Table x. 31. The 
2-norm NSVDD provided 100% confidence for each mass. By applying a threshold of 
50% on values of the confidence of malignancy for the test i misses. only one malignant 
tumor was misclassified, leading to an improved test accuracy of 99-5(X, with sensitivity 
of 99.1% and specificity of 0.0%. The result is better than the accuracy of 95. G'i'( 
obtained by the ENN with pure filtering [118] and the best accuracy of 98.9`% obtained 
by GP [75], with the same dataset. The value of the confidence of lnalignýuicý was 3O`iß 
for the misclassified malignant tumor. 

8.1.4 Discussion and Conclusion 

Different classifiers and fine tuning systems have been applied to breast cancer diagno- 

sis from FNA using the WDBC dataset. We have studied and compared the benefits 

of these classifiers in classification accuracy, computing time, and sensitivity to the 

regularization parameter. Experimental results demonstrate that the classification ac- 

curacies of SVM, KFDA, S2SP, and PRQ classifiers are comparable. However, the PRQ 

classifier possesses the slowest computing speed, as the PRQ criterion built on pair vise 

constrains leads to an increase of the computing speed by 12 as the size (1) of the train- 

ing samples increases. The classification performance of MPSVAI is unsatisfactory. 

and sensitive to the setting of the regularization parameter b. The 2-norm NSVDD 

provides better performance than that of LDA, KFDA, and SVM, with the training 

accuracy of 100.0% and the test accuracy of 98.8%, using the GA-selected features. For 

the first time, the confidence of malignancy was computed for each mass based on the 

corresponding output values obtained by multiple classifiers, e. g. LDA, KFDA, SVN'I. 

and 2-norm NSVDD. By applying a threshold of 50% on these confidences, only one 

malignant tumor was misclassified, leading to an improved test accuracy of 99.5v. 

8.2 Analysis of Breast Tumors in Mammograms 

8.2.1 Introduction 

To improve the accuracy and efficiency of mammographic screening programs for the 

detection of early signs of breast cancer, a number of research projects are focusing on 

133 



developing methods for CAD to assist radiologists in diagnosing breast cancer, including 
works on image analysis including works on image analysis [4,27,32,54,55,57.77.146. 
1581159,166,182,183,185,186) 194] and computational intelligence [8,10,61,153.153. 
160,234,235] for efficient detection of breast cancer. 

Many combinations of shape, edge-sharpness, and texture features have been eval- 
uated using different pattern classification methods, such as ANNs [10], kNN. LR. 
Mahalanobis distance, and LDA [8], as well as GP [160]. All of these studies led to 
the same conclusion that shape features are the most significant features, with higher 

classification accuracy than the other two sets of edge-sharpness and texture features: 

see also Sahiner et al. [194]. Texture features do not appear to be significant or consis- 
tent in classification performance. However, although shape features can provide high 

sensitivity and specificity, they are highly dependent on the accuracy of the contour of 
the mass ROI, which is difficult to obtain automatically from mammograms, and not 
easily drawn even by an experienced radiologist. Therefore, it is important to conduct 
further studies on edge-sharpness and texture features to reduce the dependence of the 
features upon the accuracy of the contour to the extent possible. 

Shape-based features fail to distinguish between benign and malignant masses when 
they possess similar shapes [185]. Several research works on feature extraction based on 
the gradient and textural information contained in masses [158,159] have been devel- 

oped with the aim of improving shape-based classification of breast masses. However, 

not all edge-sharpness and texture features can improve the classification performance 

of shape features. Alto et al. [8] obtained a classification accuracy of 98.2% using one 

shape feature with a dataset of 57 mammograms; the accuracy fell down to 96.5% when 

an edge-sharpness feature was added. Andre and Rangayyan [10] achieved a classifi- 

cation performance of 0.98 in terms of Az, the area under the receiver ROC curve, 

for the same dataset, using three shape features; the performance deteriorated to 0.95 

when 14 texture features were incorporated. Thus, it is important to investigate ef- 

ficient means to incorporate features representing multiple radiological characteristics 

for more accurate classification. 
One commonly used method to incorporate features representing multiple radiolog- 

ical characteristics in the analysis of breast masses is feature selection. Alto et al. [8] 

selected fractional concavity, acutance, and sum entropy as the three most effective 

features from the sets of shape, edge-sharpness and texture features, respectively, by 

excluding inappropriate or poorly performing features. Nandi et al. [160] applied GP, 

associated with sequential forward (and backward) selection and statistical tests, to 

select combinations of shape, edge-sharpness, and texture features that are important 

for the purpose of classification using the GP classifier. Previous research works demon- 

strate that feature combinations with high classification performance using a specific 

classifier may not always be extended to other classifiers. For example, the classifica- 
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" Identify malignant breast tumors using FLDA. but with more informative, trail, formed, nonlinear features obtained by KPCA and KPLS. 

" Identify malignant breast tumors using the PRQ < la iffier. with different feature 
combinations formed on the basis of diagnostic significance and c1as,, ification per- 
formance. 

" Identify malignant breast tumors using FLDA, SVM. and the S2SP (1ýlssjfi('r. 
as well as their corresponding kernel-based nonlinear versions. with th( selected 
combinations of shape, edge-sharpness, and texture features by GA based o>ii 
measures of data separability. 

" Identify malignant breast tumors using the 2-norm NSVDD. with differellt rum- 
binations of shape, edge-sharpness. and texture features. 

" Assign a confidence of malignancy to each mass by calculating the probabilities 
of being benign and malignant, based on the output valves obtained by 5\'M 

and KFDA, as well as our proposed S2SP classifier, ILPC'A-based clýýssif ýltiýu 
method. and the 2-norm NSVDD. 

All of the features were normalized before application as input to the classifier. (1as- 

sification performance is shown in terms of the area A, under the ROC curve and 
the corresponding standard error (SE). Each ROC curve was generated by applying a 
sliding threshold to the output of the classifier with the LS-SVl\llabl. 5 toolbox [17-11. 

"Genetic Algorithm Toolbox for use with MATLAB (version 1.2)" [40] «was employed 
to implement GA. 

8.2.3 Experimental Results and Comparative Analysis 

Classification with the KPCA- and KPLS-transformed Features 

A set of 57 breast masses described in Section 4.1.4 was studied, with 20 breast masses 

related to malignant tumors and 37 to benign masses. To investigate the potential 

benefits of performing nonlinear transformation on shape, edge-sharpness. and texture 

features in the classification of breast tumors, several experiments were conducted, in- 

cluding KPCA transformation for improving the discriminating power of comparativ-elY 

weak features, and KPLS transformation for better incorporation of the edge-sharpness 

and texture features with the shape features. FLDA was used to perform the classifica- 

tion task. Due to the limited number of the samples available. the LOO procedure ýt a 

used to evaluate the proposed methods. The feature combinations used in the study 

are listed in Table 8.5, which were formed based on previous evaluations of performance 
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of the features, as well as the interest in incorporating several features from different 
radiological perspectives in the classifiers. 

KPCA transformation with single features: In the first set of experiments, dis- 
criminant analysis of each single feature based on feature transformation via KPCA was 
performed. We applied KPCA with the Gaussian kernel in Eq. (2.27) on the 22 features 
individually, and selected a certain number (n) of KPCs with an appropriate value of 
the kernel parameter a for each feature. The transformed feature vectors were then 
classified using FLDA (denoted by KPCA-FLDA); the corresponding performance is 
recorded in Table 8.6 and compared with those obtained by directly applying FLDA (de- 
noted by FLDA), and by Andre and Rangayyan [10] and Rangayyan and Nguyen [186] 
(denoted by Others). It can be seen that by expanding each one-dimensional (1-D) fea- 
ture into an n-dimensional (n-D) feature vector, the discriminating capability of most 
of the features has been significantly improved (see Table 8.6). It is worth mentioning 
that the classification performance of the features FD, A, and fj has been improved 
from 0.91 to 1.0, from 0.75 to 0.92, and from 0.65 to 0.87, respectively, which is an 
increase of more than 10% (see Table 8.6). However, it should be remarked that KPCA- 
based feature transformation could not improve the discriminating power of all of the 
22 features. Notably, the classification performance of F, remained the same, as it is, 

on its own, a strong feature with performance in A, z value as high as 0.99 with most 

classification methods. The classification performance of certain texture features, such 

as f2, flo, fli, and f14, remained essentially the same (see Table 8.6). 

We compare the distribution of acutance A with its transformed feature vector in 

Fig. 8.3. It can be seen that, by using KPCA, the transformed feature vector has 

been redistributed along a quadratic curve (see part (a) of Fig. 8.3), instead of the 

original distribution along a straight line (see part (b) of Fig. 8.3), and different values 

of a lead to different shapes of the quadratic curve (see parts (a) and (c) of Fig. 8.3). 

By freely seeking decision boundaries along different directions instead of the vertical 

direction only, the discriminating power of such an expanded feature vector has been 

increased, which is illustrated in Fig. 8.4. In the first two plots (a) and (b) of Fig. 8.4 

based on the original feature before and after using FLDA, respectively, most of the 

benign and malignant samples are mixed together. However, in the third plot (c) of Fig. 

8.4 based on the transformed feature vector with loglo a=0.8 after using FLDA, the 

benign and malignant samples can be clearly separated, by choosing a simple threshold, 

with only three benign samples misclassified, which leads to a high sensitivity of 100% 

and specificity of 91.9%. We also compare the distribution of SI with its transformed 

feature vector in Fig 8.5. By expanding SI into a 3-D transformed feature vector via 

KPCA, the benign and malignant samples can be completely separated (see part (c) of 

Fig 8.5); the LOO performance was consequently improved to 1.0 as compared to 0.93 

137 



in A. values based on the original feature (see Table 8.6). 

KPCA transformation with feature combinations: The same methods 
scribed above were applied to the four feature combinations FS,,. F. F. ß'1. and F., - 
as listed in Table 8.5, without using any highly discriminant shape features. the details 
of performance of which are recorded in Table 8.8. The KPC A traiisfo>"Ilia t'oil has 
improved the classification performance of comparatively poorly performing features in 
most cases (see Table 8.8). In particular, the classification performance in 

. -1, value of 
using only the edge-sharpness and texture features (FS-1), via 1111PC'A transformation, 
has been significantly improved from 0.75 to 0.85 (see Table 8.8). 

For better illustration, we compare the original distribution of FS) with its trans- 
formed feature vectors with loglo a=0.5 in Fig. 8.6, and compare their LOO output 
values of FLDA and the corresponding ROC curves in Fig. 8.7. It can be seen that. 
for the benign samples, the FLDA output values using the original features are central- 
ized in a certain range, whereas for the malignant samples, the FLDA output va11ie5 
are dispersed on the two sides (see Fig. 8.7); for this reason, it is difficult to find a 
threshold to separate the two classes. On the other hand. the FLDA output values 
using the transformed features via KPCA, for the benign and malignant samples, are 
split towards opposite directions to a greater extent, of which the LOO performance 
has been improved to 0.77 from 0.72 in A7 value, as compared to the performance with 
the original features (see Table 8.8). 

KPLS transformation with feature combinations: In this experiment. we inves- 

tigate the incorporation of combinations of the shape features with the egde-sharpness 

and texture features to achieve better classification performance. Six feature sets FS(;. 

FS7, 
..., 

FS11, as listed in Table 8.5, were studied, including combinations of the 

egde-sharpness and texture features with F, and combinations of the egde-sharpness 

and texture features with all of the shape features. We divided each feature set into 

two data blocks, as shown in Table 8.9, and applied the KPLS transformation with 

the Gaussian kernel given in Eq. (2.27). For the feature sets FS6, FS7. and F. 55. 

F,, together with n score vectors derived from block X2 were used as the input to the 

FLDA classifier; for FS9, FS10, and FS11, n score vectors derived from block X1 and 

n score vectors derived from block X2 were used as the input to the FLDA classifier. 
The resulting classification performance (denoted by KPLS-FLDA) is recorded in Table 

8.10, and compared with those obtained by applying FLDA to the original features (de- 

noted by FLDA), by applying FLDA to the transformed features via KPCA (denoted 

by KPCA-FLDA), and by using the features selected by Alto et al. [8] (denoted by 

FS-FLDA). It can be seen from Table 8.10 that, by using the KPLS transformation. 

the classification performance of nearly all of the six feature sets has been improved to 
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1.0 in A, z value, whereas the KPCA transformation and general feature selection could 
not reach such a performance. For the feature set FS11, the classification performance has been significantly improved to 1.0 from 0.95 in Az value, via KPLS transformation, 
as compared to the FLDA performance with the original features. 

Evaluation of robustness: The nonlinear classification performance of features af- 
ter KPCA and KPLS is affected by the setting of the related parameters. including the 
kernel width a, the number of KPCs n in KPCA, and the number of score vectors it 
for each feature set in KPLS. We show plots of the variation of the FLDA classifica- 
tion performance based on KPCA and KPLS, in A, z values, versus different values of 
log10 a, but with a fixed value of n for the feature SI and the feature sets FS4 and FS7. 
in Fig. 8.8. It can be seen that the classification performance based on KPCA and 
KPLS is sensitive to the variation of log10 a in certain intervals. To study this aspect of 
KPCA and KPLS, we evaluated the robustness R around the selected parameter vector 
(log10 a, n), based on the measure given in Eq. (7.41) and Eq. (7.42), for all the single 
features and feature sets studied in this work, with N=2 and A=0.05; the results 
are recorded in Table 8.7, Table 8.8, and Table 8.11. Smaller values of R indicate higher 
levels of robustness of the nonlinear transformation and the feature set used. It may 
be observed that the inclusion of one of the shape factors, in particular F, leads to a 
highly robust feature set. Further study is in progress on the optimization of a and n. 

Classification Using the PRQ Classifier 

The results of using both the linear and nonlinear PRQ classifiers for the identification 

of malignant tumors are presented with a set of 57 breast masses described in Section 

4.1.4. Twenty-one feature combinations were studied, which are listed in Table 8.12. 

Linear classification: In this experiment, we applied the PRQ classifier, FLDA, 

SVM, and CPSVM in the original (normalized) feature space without employing any 
kernel function on the 21 feature combinations listed in Table 8.12. The selected pair- 

wise constraints are based on the A, z value of the PRQ classifier. The corresponding 

classification performance in Az values is recorded in Table 8.13, and compared with 

those obtained by Andre and Rangayyan [10] using the single-layer perceptron, by 

Rangayyan and Nguyen [186] using a discriminant function based on Bayes formula, 

and by Alto et al. [8] using LDA. It can be seen from Table 8.13 that, for all feature 

combinations, the linear classification performance obtained by the PRQ classifier is 

comparable to or better than those obtained with FLDA, SVM, and CPSVM, and much 

better than those obtained by Alto et al. [8], Rangayyan and Nguyen [186], and Andre 

and Rangayyan [10]. 
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The feature combinations FS1 to FS14, FS18, and FS19 provide high classification 
performance of around 0.99 in A, z value with any classifier among the PRQ. FLDA. 
SVM, and CPSVM, because all of these feature combinations include at least one 
shape feature. The set of shape features is the most significant feature set with higher 
classification accuracy as compared with the other two sets of edge-sharpness and tex- 
ture features, but highly dependent on the accuracy of the contour of the mass ROI. 
For the comparatively weak feature combinations of FS15 to FS17 and FS20 with no 
shape features included, the PRQ classifier with the selected pairs provided better clas- 
sification performance than those obtained by FLDA, SVM, and CPSVM (with about 
5% improvement, see Table 8.13). 

For better understanding of the PRQ classifier, we show the discriminant boundary 
derived by the PRQ classifier, as well as three pairwise constraints for the feature set 
FS8 (F, A) in Fig. 8.9. We also compare the discriminant boundary learned by the 
PRQ classifier with that learned by FLDA with the 2-dimensional feature set FS16 
(A, f8), and the 3-dimensional feature set FS15 (A, Co, CV) in Fig. 8.10 and 8.11, 

respectively. 
For each method, a score, shown in the second column of Table 8.14, was calculated 

by averaging the A, z values of each method over the 21 feature combinations and mul- 
tiplying the result with 100. The classifier with the highest score may be regarded as 
the best. The computing time of each method is recorded in the third column of Table 

8.14 for the same feature combination (FS15) with one LOO procedure (57 runs). The 

number of parameters required to be tuned for each classifier is shown in the fourth 

column of Table 8.14. The PRQ classifier and the CPSVM based on pairwise con- 

straints provided higher scores, but required longer computing time than the SVM and 
FLDA. Although the CPSVM provided a performance comparable to that of the PRQ 

classifier, the computing time of the CPSVM is much longer than that of the PRQ 

classifier. Both SVM and CPSVM need to predetermine the values of their regular- 

ization parameters. Although FLDA has no parameter to be tuned and runs faster. 

the classification performance is the lowest among the classifiers tested. Thus, from an 

overall consideration, the proposed PRQ classifier is efficient, with the highest score of 

95.4 with comparatively short training time and no need to spend time on tuning of 

the regularization parameter (see Table 8.14). 

Nonlinear classification with the triangle kernel: In this experiment, the tri- 

angle kernel given in Eq. (2.29) was employed with the PRQ classifier with aim of 

improving the classification performance of the challenging feature sets. The 21 fea- 

ture combinations as listed in Table 8.12 were evaluated. The best-performing kernel 

parameter o was selected based on the A,, value for each feature combination, of which 

the corresponding classification performance in A, z values, as well as the selected value 
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of the kernel parameter (log10 u*), are recorded in Table 8.15. It is found that nearly 
all the feature combinations can reach the perfect performance of A=1.0 by em- 
ploying the triangle kernel with an appropriate kernel width a for the PRQ classifier 
(see Table 8.15). The A, z values in Table 8.15 are typically 19% to 27% higher than 
the corresponding performance achieved by using the RBF kernel, for the challenging 
feature combinations of FS15 to FS17 and FS20 (see Table 6.2). 

For a fair comparison, we compare the nonlinear PRQ classification performance 
only with the results obtained by Andre and Rangayyan [10] using the MLP for some 
feature combinations, as they are both nonlinear classification methods, but use differ- 
ent approaches to achieve the nonlinearity. In the PRQ classifier, kernel functions are 
used to perform the nonlinear transformation of features, whereas in the MLP, the non- 
linearity is effected by varying its topological structure. However, in the transformed 
triangle kernel feature space, most of the feature combinations are sensitive to variation 
of the kernel parameter a in a certain interval. We show plots of the variation of the 
nonlinear classification performance in A, z values versus different values of log10 0- for 
the feature sets FS2, FS17, and FS15 by using the PRQ classifier with the triangle 
kernel in Fig. 8.12,8.13, and 8.14, respectively. It can be seen that the A, z value varies 
significantly for different values of log10 a-, especially when log10 a is less than 0. Sim- 
ilar results were observed for the other feature combinations. Furthermore, for the 21 
feature combinations tested, the perfect results of A,, = 1.0 were reached at scattered 

values in the range log10 a<0. 
To study the variability of performance of the nonlinear PRQ classifier, we evalu- 

ated the robustness of the classifier around the selected kernel parameter based on the 

robustness measure shown in Eq. (7.40). Letting 8= log10 u, N=2, and t8 = 0.1, 

with the classification performance P(O) given in A, z values, R was calculated as 

A, (o* + O. li) - Az(e*) 
0.4i (s. l) 

For the triangle kernel, values of R as well as the corresponding selected kernel parame- 

ter are recorded in Table 8.15, for all feature combinations; smaller values of R indicate 

higher levels of robustness of the classifier and the feature set used. In general, the use 

of shape factors, especially F,,, led to robust performance of the classifier. Although 

the comparatively weak edge-sharpness and texture feature combinations, such as FS16. 

FS17, and FS20, could reach the perfect classification performance of Az = 1.0, it is 

difficult to pre-determine the associated optimal kernel parameter. Further study is in 

progress on the formulation and optimization of the kernel parameter. 
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Classification with the Selected Features 

In the following experiments, a set of 111 breast masses described in Section 4.1.4 was 
studied, with 46 breast masses related to malignant tumors and 65 to benign iiiaasses. 

Evaluation of single features: Distributions of the normalized values of the 22 
features are shown in Fig. 8.17, which illustrates the separability and (or) overlap 
between the benign and malignant categories of the various features used. Five different 

measures were evaluated for each single feature, including the area A, under the ROC 

curve, the p-value of the t-test derived by employing the function '*ttest2" in MATLAB, 

as well as alignment, class separability, and normalized distance as described in Section 

4.2. Larger values of A, alignment, class separability, and normalized distance, and 

smaller values of the p-value indicate stronger discriminating power. The calculated 

values of the five measures are recorded in Table 8.16; the features are ranked in Table 

8.17 with each measure. A score was calculated by averaging the ranking numbers 

as given by the five measures for each feature; the resulting ranking of the features is 

recorded in the last column of Table 8.17. To ensure only two edge-sharpness features 

included, features with scores less than 14 were selected to form the feature combination 

FSbestl with all the five shape features, two edge-sharpness features A and CV, and 

six texture features f l, 2,5,9,10,11. To ensure only one edge-sharpness feature included, 

features with scores less than 11 were selected to form the feature combination FSbest2 

with all the five shape features, one edge-sharpness feature A, and five texture features 

f2,5,9,10,11 

Independent feature selection: Feature selection was performed using GA based 

on the three measures of data separability, as described in Section 4.2, calculated us- 

ing all the 111 breast masses. Such a feature selection procedure is independent of 

any classifier. For each GA individual, we set that at least one feature should be se- 

lected from each feature category of shape, edge-sharpness, and texture. The objective 

function of GA was set as alignment, class separability, and normalized distance. The 

fitness function was calculated by using linear ranking. The population size was set 

as 50. The generation gap was set as 0.6. Two-point crossover was employed, with 

the corresponding crossover rate set as 0.8. Bit flip was used for mutation, with the 

corresponding mutation rate set as 0.05. The maximum number of generations was set 

as 500. In the last generation, 50 feature combinations were derived, corresponding to 

50 final individuals, each represented by a 22-bit binary string. 

More frequently a feature appears in the GA individuals in the final population, 

more important the feature is to provide better separability for classification. Thus. for 

each feature and each measure, a score of importance was calculated by counting the 

number of times the feature was included in the 50 individuals and divided by 50: the 
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result is recorded in Table 8.18. Features with higher scores are more important for the 
purpose of classification. It can be seen from Table 8.18 that there is a clear gap betwecn 
the important and unimportant features, with scores above 0.85 and lower than 0.1 5. 
respectively. The five shape features and the texture feature f9 possess high scores for 
all of the three measures (see Table 8.18). By running GA multiple times, the same 
three combinations of shape, edge-sharpness, and texture features, containing features 
with scores higher than 0.85, were derived based on the three objective functions: 
FSalignment with all the five shape features, one edge-sharpness feature CV, and one 
texture feature f9i FSseparability with all the' five shape features, one edge-sharpness 
feature A, and one texture feature f9; and FSdistance with five shape features, one 
edge-sharpness feature A, and two texture features f6,9. 

Pattern classification: The following experiments were conducted with FSI,,, 
St 1, 

FSbest2, FSalignment, FSseparability, and FSdistance; the individual shape, edge-sharpness, 

and texture feature sets; as well as all of the 22 features combined without performing 
feature selection, for comparison. Both the LOO and half-half random (HHR) split 
procedure were used to evaluate the generalized performance of the classifiers with the 
features of the 111 breast masses. For the HHR split procedure, 100 training-test trials 

were conducted. In each trial, 25 benign masses and 25 malignant tumors were selected 

at random as the training samples (a total of 50 training samples), and the remaining 
61 masses were used as the test samples. 

Nine different feature sets, including the shape, edge-sharpness, and texture feature 

sets; the whole set of 22 features; and the five selected combinations of shape, edge- 

sharpness, and texture features, were evaluated using FLDA, linear SVM (LSVM), 

and the linear S2SP (LS2SP) classifier with both the LOO and HHR split procedures. 
The corresponding classification accuracies in Az values are recorded in Table 8.19 and 
Table 8.20. The classification accuracies of FLDA, LSVM, and the LS2SP classifier 

are comparable; FLDA and LSVM performed slightly better than the LS2SP classifier. 

The best linear classification performance achieved is 0.93 in Az value (see Table 8.19 

and Table 8.20). 

From Table 8.19 and Table 8.20, the following observations can be made: Shape 

features are the most significant features, with higher classification accuracy than the 

other two sets of edge-sharpness and texture features. The addition of edge-sharpness 

and texture features does not improve the classification performance of the shape fea- 

tures without feature selection. Feature selection using GA based on data-dependent 

measures improves the classification performance over using the whole set of 22 fea- 

tures without feature selection. The feature combinations selected by GA (FSalignment, 

FSseparability, and FSdistance) perform better than the combinations selected by ranking 

the features (FSbestl and FSbest2). However, shape features on their own provide clas- 
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sification performance similar to the performance provided by the feature combinations 
selected by GA. 

The same nine feature sets were also evaluated using KFDA. and the nonlinear 
versions of the SVM and the S2SP classifier, denoted by KSVM and KS2SP. respec- 
tively. The Gaussian kernel in Eq. (2.27) was employed for the three kernel-based 
classifiers. The value of Q for each classifier was determined by cross-validation in this 
experiment. Both the LOO and HHR split procedures were used to evaluate the three 
kernel-based classifiers; the classification accuracies in A, z values are recorded in Table 
8.21 and Table 8.22. The classification accuracies of KFDA, KSVM, and the KS2SP 
classifier are comparable (see Table 8.21 and Table 8.22). Observations similar to those 
for the linear classification can also be made from Table 8.21 and Table 8.22. The best 
nonlinear classification performance achieved is 0.95 in A, z value. 

Comparative analysis: Comparison of the ROC curves for pairs of the linear versus 
kernel-based classifiers (LS2SP/KS2SP, FLDA/KFDA, and LSVM/KSVM) is shown 
in Figure 8.15 using the feature set FSbest2, as well as the ROC curves of the feature 

set FSalignment and the five shape features, all evaluated with the LOO procedure. 
Comparison of the ROC curves obtained by the three kernel-based classifiers (KS2SP, 
KFDA, and KSVM) is shown in Figure 8.16 using the feature set FSbest2, evaluated 
with the LOO procedure. The average A, z values over the nine feature sets with the 
LOO and HHR procedures, the training time for the feature set FSseparability with 
the HHR split procedure, and the number of parameters required to be specified for 

each classifier are recorded in Table 8.23. By using the ROCKIT software [140], we 

also performed the area test [142] with the features set FSbest2 to test the statistical 
differences between two ROC curve, for various kernel-based classifiers, for the linear 

versus kernel-based classifiers, and for the selected versus the solely shape-based feature 

sets, based on the LOO. procedure. The area test is a univariate z-score test of the 

difference between the areas under the two ROC curves (i. e., the difference in the 

overall diagnostic performance of the two tests), of which a null hypothesis indicates 

the datasets arose from binormal ROC curves with equal areas beneath them [58,141]. 

The computed value of the correlated test statistic (observed z-score), the corresponding 

two-tailed p-value, and the approximate 95% confidence interval (CI) for the difference 

are recorded in Table 8.24, Table 8.25, and Table 8.26, for different pairs of classifiers 

and feature sets. The following observations can be made from these Tables and Figures: 

" The Gaussian kernel improves the performance of the linear classifiers, such as 

the LS2SP and LSVM, which indicates that advantages in classification accuracy 

may be gained by embedding kernel functions in the classifier (see Table 8.23. 

Table 8.25, and Figure 8.15 ). 

" The selected combinations of shape, edge-sharpness and texture features improve 
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the classification performance of the shap(, feet "res on their owli (see Table ý.? 1. Table 8.22, Table 8.26, and Figs lre 8.15). 

" There is no significant statistical difference in the perforinauce of the till. (, (, kernel- 
based chlssifiers (see Table 823. Table 8.24. and Figure 8.1(; ). 

" Kernel-based classifiers take longer training time than the corresponding 
classifiers (see Table 8.23), 

" The SVM possesses lower training speed than the S2SP class ifier and FLDA/KFD: 1 
(see Table 8.23). 

" The S2SP classifier and FLDA/KFDA are more conveiiient for users than classi- 
fiers with a regularization parameter, such as SVM 

. as there are fewer parameters 
required to be specified or pre-determined (see Table 8.23). 

Classification Using the 2-norm NSVDD 

In the following experiments, a set of 111 breast masses described in Section 4.1.4 wvns 
studied. The 2-norm NSVDD with the Gaussian kernel in Eq. (2.27) was euli)hoyed 
to classify three feature sets, including FS, with all the 22 features. FS> with t Bice 
features (SI, A, fg), and FS: 3 with seven features (C. SI. F, FF, FD. A. fg), and 
compared with KFDA, SVM, the S2SP classifier, and the KPCA-based classificntion 
method with the same kernel. 

Parameter selection and classification: For the 2-norm NSVDD, the same reg- 

ularization parameters were used to learn the positive and negative SCHs, thus. one 
kernel parameter and two regularization parameters required to be tuned, given as 
[a, C1, C2]. The L2-SVM was employed, thus, one kernel parameter and one regular- 
ization parameter required to be tuned for SVM, given as [a. C]. KFDA, the S2SP 

classifier, and the KPCA-based classification method do not need any regularization 

parameter, thus, only one kernel parameter or required to be tuned for each. By setting 
C'1 = C2 =C=1 and varying loglo a from [0,5], variations of the LOO performance in 

A- value using different classifiers are plotted in Figure 8.18, for the fCatlire set FS:,,. 

Several observations can be made from Figure 8.18: Similar A- values were reached 

iii the interval of 0.5 < loglo a<1.5. marked by rectangle. for all the classifiers: the 

selected value of the kernel parameter is expected to fall into this intervval. The 2- 

norm NSVDD, S2SP classifier, and KFDA can all provide a stable : 4- value around or 

above 0.9, in the large interval of loglo > 0.6. SVAI and the KPCA-based classification 

method can provide a stable A4 value above 0.9, in a smaller interval of 0.5 < loglo < 2. 

The highest A- value was reached by both the 2-norne NSVDD and SV'-M. 
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For independent kernel optimization, value of loglo a was searched through 
based on the measure of class separability in the kernel-defined feature space (see 5*'(. - tion 4.2.4). Variation of the values of class separability were compared «-itli that of 
the LOO performance for different classifiers, with the same feature set F. S. i. in Figure 
8.19. The kernel parameter with the largest class separability was selected. yvliich fell 
into the expected interval of 0.5 < log10 a<1.5 (see Figure 8.18 and Figure ("-". 19). 
Values of C1, C2, and C were searched among (0.01,0.1,1, and 10) based on the LOO 
error. The regularization parameters with the smallest LOO error were selected. The 
corresponding performance with the selected parameters is recorded in Table x. 27. Ta- 
ble 8.28, and Table 8.29, for feature sets FS1, FS2, and FS3. The proposed 2-norm 
NSVDD provided the best classification performance, which is Az = 0.93 for FS1, and 
Az = 0.94 for FS2 and FS3. 

GA is employed to perform the wrapper-type optimization, with the saliie set- 
ting as used in feature selection, but the objective function set as 1- Az. Value of 
log10 a was searched through [0,5], and values of log10 C1, log10 C2, and loglo C were 

searched through [-3,3]. The corresponding performance with the selected paraIlletens, 
is recorded in Table 8.27, Table 8.28, and Table 8.29, for feature sets FS1, FS2, and 
FS3. We plot the output values of the 111 mass obtained with the LOO procedure 

using different classifiers in Figure 8.20, for the feature set FS3. The proposed 2-norm 

NSVDD provided a high classification performance of Az = 1.0 for all the three feature 

sets, while the other kernel-based classifiers can only provide Az values between 0.91 

and 0.94 (see Table 8.27, Table 8.28, and Table 8.29). The original distribution of 

the first two principal components of FS3 was compare with the distribution of the 

distances between each sample and the centers of the positive and negative SCHs with 

FS3, in Figure 8.21 and Figure 8.22. By learning these two SCHs, the nonseparable 

patterns in the original feature space become linear separable patterns in the SCH- 

defined distance space, which can be correctly classified by only applying a threshold 

on the distances to the negative SCH (see Figure 8.22). 

For each feature set, a mean performance was calculated by averaging the LOO 

performance in Az value, obtained by the five classifiers, as recorded in Table 8.27. 

Table 8.28, and Table 8.29. The corresponding SE was calculated by 

5 

SE =5 SE2, 
i=1 

(8.2) 

where SEA denotes the value of SE obtained by the ith classifier. The mean values 

of A, 
z and SE are recorded in Table 8.30 for the three features sets FSI, FS2. and 

FS3. Several observations can be made from Table 8.30: Classification performauice 

can be improved by selecting several important features from the whole feature set. The 

GA-selected combination of the shape, edge-sharpness, and texture features (P'3: C. 
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SI, FF,, FF, FD, A, and fg) provided better performance than combing the tirrý, il eat feature from each category (FS, 
-): 

SI, A, and fg). AV'rapper-type selection of panainetvrý 
provided better performance than the independent selection of parameters. 

Confidence assignment: We calculated the probabilities of being benign (PB) and 
malignant (PM) for the feature sets FS1 and FS3, based on the output Values obtained 
using five kernel-based classifiers, including KFDA, SVM. S2SP, KPCA-, and the 2- 
norrn NSVDD, with the LOO procedure. As there are only 111 masses. the datýtset 
was divided into 4 partitions, with 2 related to benign (B1 and B2) and 2 to malignant 
(M1 and M2). The separate probabilities of being benign and malignant obtained 
by each classifier are recorded in Table 8.31 for each partition, from which it eaa. n 
be seen the further the partition is from the threshold, the larger the confidence is 
provided. The SCH-based classifier provided 100% confidence for each mass. The 

combined PB for each benign mass and combined PA1 for each malignant tumor (ire 
recorded in Table 8.32, Table 8.33, Table 8.34, and Table 8.35, for FS1 and FS; u. 
respectively, with parameters of each classifier selected by wrapper-optimization. By 

applying a threshold of 50% on these probabilities, 7 benign masses and 9 malignant 
tumors were misclassified using FS1; and 6 benign masses and 7 malignant tumors 

were misclassified using FS3. Circumscribed benign masses and spiculated malignant 
tumors possessed larger values of PB and PAl 

, as compared with spiculated benign 

masses and circumscribed malignant tumors. Contours of the misclassified masses and 
tumors are shown in Figure 8.23 and Figure 8.24, for the feature set FS1, from which 
it can be seen that all of the misclassified benign masses are spiculated, and most of 

the misclassified malignant tumors are circumscribed. The results demonstrate that 

shape features possess stronger effect on diagnostic decision than the edge-sharpness 

and texture features. With the feature set FS3 used, spic-fb-195, spit-fm-184, and 

m63rc97 were correctly classified, the remaining misclassified masses were exactly the 

same as that of FS1 (see Table 8.32, Table 8.33, Table 8.34, and Table 8.35). 

8.2.4 Discussion and Conclusion 

We first investigated and presented results of classification of breast masses witll a set 

of 57 regions in mammograms, each represented with five shape factors, three edge- 

sharpness measures, and 14 texture features. Two nonlinear transformation methods 

- KPCA and KPLS were applied; FLDA was employed to perform the clas i- 

fication task with the transformed features. For single-feature cases. KPCA can be 

viewed as a dimensionality-expansion tool, which helps to extract potentially 1l5eful 

information hidden in each feature. For the case of multiple features, KPCA could 

serve as a dimensionality-reduction tool, which helps to concentrate on the uncorre- 
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lated information contained in the dataset. KPLS can be an efficient tool for seeking 
efficient incorporation of multiple radiological characteristics. Experimental results 
demonstrate that the KPCA transformation of features can improve the classification 
performance of the comparatively poor edge-sharpness and texture features by 4(7(-20(/'( 
(see Table 8.6 and Table 8-8). Furthermore, it is clear from Table 8.10 (see columns 2 
and 8) that the KPLS transformation, in conjunction with FLDA, improves the clas- 
sification performance in each of the feature sets (from FS6 to FS11) to the range of 
Az = [0.99,1.0], compared to the performance of FLDA on its own. The PRQ classifier 
was also applied to identify malignant tumors. Experimental results demonstrate the 
effectiveness of the linear PRQ classifier in terms of Az values comparable to those 

obtained by the SVM, CPSVM, and FLDA, and better than those obtained by Alto et 
al. [8], Rangayyan and Nguyen [186], and Andre and Rangayyan [10] using the same 
data (see Table 8.13). It is worth mentioning that the linear classification performance 

of the edge-sharpness and texture feature combinations has been improved by around 
5%, using the PRQ classifier, as compared with those obtained by the SVM, CPSVM, 

and FLDA. The results demonstrate that compared with the Fisher criterion based on 
individual samples, the PRQ criterion employs m number-of pairwise constraints from 

a total number of l* (l - 1) constraints (m <l* (l - 1)), which offers more possibilities. 
More importantly, for the nonlinear PRQ classifier, by employing the triangle kernel 

with an appropriate kernel width, nearly all of the feature combinations tested could 

achieve the perfect performance of A, z = 1.0 (see Table 8.15), but with different levels 

of robustness to variation of the kernel parameter a. 
We then investigated and presented results of classification of breast masses with 

a set of 111 regions in mammograms, each represented with five shape factors, three 

edge-sharpness measures, and 14 texture features. Feature selection independent of 

any classifier was performed by GA based on alignment of the kernel with the target 

function, class separability, and normalized distance. Three linear classifiers, including 

FLDA, linear SVM, and the linar S2SP classifier were employed to perform the classifi- 

cation task; the best linear classification performance reached 0.93 in Az value with the 

selected combinations of shape, edge-sharpness, and texture features. Five nonlinear 

classifiers with the RBF kernel, including KFDA, SVM, S2SP classifier, KPCA-based 

classification method, and the 2-norm NSVDD, were also employed to perform the 

classification task. With the independent selection of kernel parameter, the 2-norm 

NSVDD provided the best LOO performance of Az = 0.94 (see Table 8.27, Table 8.28. 

and Table 8.29). With the wrapper-type selection of parameters, the 2-norm NSVDD 

provided the best LOO performance of Az = 1.0 (see Table 8.27, Table 8.28, and Table 

8.29), and the S2SP classifier provided the second best LOO performance of Az = 0.95 

(see Table 8.21). Confidence assignment has been performed by calculating probabil- 

ities of being benign and malignant for each breast mass based on the corresponding 
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output values obtained by five classifiers, including KFDA. SVNI. S2SP, KPCA and the 2-norm NSVDD. By applying a threshold of 50% on these probabilities. 6 benign 
masses and 7 malignant tumors were misclassified using the GA-selected feature set. The observation that all of the misclassified benign masses are spiculated, and most 
of the misclassified malignant tumors are circumscribed leads to the conclusion that. 
shape features are the most significant features, as compared with the edge-sharpness 
and texture features. 

Compared with PCA, which does not always improve the classification performance 
of most classifiers and does not identify specific features as the best-performing features, 
the independent feature selection methods used in this work not only reduce the dimen- 
sionality of the features provided, but also improve the classification performance of 
several classifiers and identify the strong features. Feature selection based on the per- 
formance of a specific classifier can determine a set of feature combinations with high 
classification performance; however, the results cannot always be extended to other 
classifiers, especially to nonlinear classifiers with different logic and structure. Feature 

selection in the present study is independent of any classifier; the selected combina- 
tions are suitable for use with several different classifiers. A limitation of the proposed 
approaches to feature selection is that the correlation existing between the given fea- 
tures is not accounted for, and consequently the selected combinations of features may 
contain more than the minimal set of features that could provide similar classification 
performance. 

The increased classification accuracy values obtained indicate that the incorporation 

of features representing multiple radiological characteristics, such as edge sharpness, 
texture, and shape, instead of shape alone, could lead to improved representation and 

analysis of breast masses in mammograms, by using advanced kernel-based classifiers, 

such as the PRQ classifier, S2SP classifier, and the 2-norm NSVDD, associated with 
feature selection using GA based on measures of data separability, as well as nonlin- 

ear transformation of features via KPCA and KPLS. The texture and edge-sharpness 
features are expected to be less dependent on the accuracy of localization of the mass 

region than the shape factors [8]. (See Sahiner et al. [194] for a study on the effect of 

the accuracy of segmentation of breast masses on their characterization. ) However, the 

relatively weak texture and edge-sharpness features demand advanced pattern classifi- 

cation methods in order to achieve high classification accuracy. 
The author is aware of that firm inferences are limited to the small size of the 

breast-mass dataset used. Further studies should be conducted with 10x larger sets, 

like digital database for screening mammography. 
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8.3 Screening of Knee-joint Vibroarthrographic Signals 

8.3.1 Introduction 

Research on analysis of knee-joint VAG signals, emitted from knee joints during flexion 
or extension and expected to be associated with pathological conditions in the knee 
joint, has been conducted since 1902 [21,42,100,107,115,116,181,184,187,188,190.223]. 

VAG signals are nonstationary due to the fact that the quality of the knee-joint surfaces 
coming in contact may not be the same from one angular position to another during 

articulation of the joint [115]. Segmentation could be used to divide nonstationary 
VAG signals into quasi-stationary segments so that modeling techniques based on the 

assumption of stationarity may be used. Krishnan et al. [116] derived autoregressive 
(AR) coefficients from VAG signal segments and tested the methods with a database 

of VAG signals of 90 subjects (51 normal and 39 abnormal); the methods provided 

a classification accuracy of 68.9% using LR analysis (LRA) with the LOO procedure. 
Rangayyan et al. [184] derived dominant poles and cepstral coefficients from AR models 

of adaptively segmented VAG signals using the same database as above. The cepstral 

coefficients appeared to be the best discriminant features, providing a classification 

accuracy of 75.6% as evaluated by LRA with the LOO procedure. Krishnan et al. 
[115] used the matching pursuit time-frequency distribution (TFD), a nonstationary 

signal analysis tool, to avoid segmentation and joint angle estimation; the best normal- 

versus-abnormal classification accuracy achieved was 68.9% as evaluated by LRA with 

the LOO procedure. Recently, Umapathy and Krishnan [223] applied wavelet packet 

decomposition and a modified local discriminant bases algorithm to a set of 89 VAG 

signals (51 normal and 38 abnormal), and achieved a classification accuracy of 79.8% 

using LDA. 

In order to simplify the signal processing and decision-making steps, as well as to 

minimize the clinical information required in the design or application of the methods, 

Rangayyan and Wu [187,188] proposed to analyze VAG signals without performing 

adaptive segmentation or associating parts of the signals with specific parts of the 

articular cartilage surfaces and the related pathology. Features were generated by using 

statistical parameters derived from VAG signals with no restriction imposed on the type 

of pathology. The classification performance in terms of the area (Az) under the ROC 

curve achieved was 0.78, by using the RBF network with the LOO procedure, which is 

comparable to the performance obtained with more sophisticated nonstationary signal 

analysis methods with the same dataset [115,116,184,223]. In this work, we aim 

to improve the classification performance of statistical parameters derived from VAG 

signals by employing the GA for feature selection, and our proposed S2SP classifier for 

classification. 

150 



8.3.2 Techniques and Schemes 

A database of 89 VAG signals described in Section 4.1.5 was studied, with : 51 from 
normal volunteers and 38 from subjects with knee-joint pathology. The used macliin(. 
learning techniques and classification schemes are listed in the following: 

" Wrapper-type selection of features using a GA. 

" Classification of the knee-joint VAG signals as normmil or abnormal using the ')'2 P 
classifier with the selected features. 

"Genetic Algorithm Toolbox for use with MATLAB (version 1.2)" [40] wýls enipl(). \-(, (l 
to implement GA. Classification performance is shown in ternis of the urea A- under 
the ROC curve and the corresponding SE. Each ROC curve was generated by applying 
a sliding threshold to the output of the classifier with the LS-SVMlab1.5 toolbox [174]. 

8.3.3 Experimental Results and Comparative Analysis 

Feature Selection Using GA 

To select the optimal feature combination, the objective function of GA was set as the 

estimation of the performance of a given classifier. Optimal features were selected basedl 

on the LOO performance of both FLDA and the S2SP classifier. The fitness function 

was calculated by using linear ranking. The population size was set as 10 because of 
the small number of available features. The generation gap was set as 0.6. Two-poiiit 

crossover was employed, with the corresponding crossover rate set as 0.8. Bit flip was 

used for mutation, with the corresponding mutation rate set as 0.05. 

For different random settings of the initialized individuals, the algorithm quickly 

converged to the single set of features (FF1. FF2, S, K, H) in less than 50 generations 
for all cases, with both objective functions based on FLDA and S2SP. WWI'e shot an 

illustration of the selected features indicated by the best individual in each generation 

in Fig. 8.25, where each star indicates the corresponding feature selected in each 

generation. We also show a plot of the variation of the values of the S2SP-basel 

objective function for the best individual in different generations in Fig. 8.26. Both 

of the figures indicate the results for the first 160 generations. as the best individual 

generated and the corresponding fitness value remained the saine after 100 generations. 

Classification Using the S2SP Classifier 

The following experiments were conducted by using the five selected feature (FF, 

FF2, S. K, H), which were normalized to have zero mean and unit variance before 

being used as the input of a classifier. Several advanced pattern classification nietlio L. 
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including SVMs, RBF networks, KFDA, and AdaBoost, have been evaluated and coin- 
pared by Rätsch et al. (available in [189] and the dataset report from [2]) using iiiaiiv datasets from a benchmark repository [2]. It has been observed that the four methods 
mentioned above provide similar performance [2,189]; and KFDA possesses the fastest 
training speed. Thus, we compare the S2SP classifier with KFDA to demonstrate the 
efficiency of the proposed method. 

Leave-one-out evaluation: The LOO procedure was used to evaluate the general- 
ized classification performance of the feature combination (FFI, FF2, S, K, H). Three 
different forms of the kernel function were used for nonlinear classification, including 
the Gaussian, Cauchy, and triangle kernels given in Eq. (2.27), Eq. (2.28), and Eq. 
(2.29). The classification performance of both the linear and nonlinear S2SP classifiers 
in A, z values are shown in Table 8.36, and compared with those obtained by using 
FLDA and KFDA with the same LOO procedure. It can be seen from Table 8.36 that, 
the linear S2SP classifier achieved 0.82 in A, z value, which is 5% better than the FLDA 

performance of 0.78 in A,, value based on the five selected features, and 17% better 
than the FLDA performance of 0.70 in A, z value obtained by Rangayyan and Wu [187] 

using all the six features without performing feature selection. The nonlinear S2SP 

classifier using both the Cauchy and Gaussian kernels reached 0.95 in A, z value with an 
SE of 0.03. This is nearly 19% better than the best KFDA performance of 0.80 in Az 

value using the triangle kernel with the five selected features; nearly 16% better than 

the performance obtained by Rangayyan and Wu [188], 0.82 in A, z value with an SE 

of 0.05, using the RBF networks with the five selected features; and nearly 22% better 

than the performance obtained by Rangayyan and Wu [187], 0.78 in Az value with an 
SE of 0.05, using the RBF networks with all the six features without performing feature 

selection. 
We show plots of the ROC curves derived for both the linear and nonlinear S2SP 

classifiers in Fig. 8.27. Comparisons of the variations of the nonlinear classification 

performance in A, z value versus different values of loglo a are shown in Fig. 8.28 for the 

nonlinear S2SP classifier and KFDA with the Cauchy, Gaussian, and triangle kernels. 

It is observed from Fig. 8.28 that the Cauchy and Gaussian kernels provide similar 

performance when loglo a>0, and perform much better than the triangle kernel when 

loglo a>4; the Cauchy kernel performs better than both the Gaussian and triangle 

kernels when loglo ci < 0; and the triangle kernel possesses poor robustness when 

loglo a<0. It is also found that there exists a comparatively wide interval of loglo aE 

[4,5] in which the nonlinear S2SP performance using the Gaussian and Cauchy kernels 

can reach the high A, z value of 0.95, with good robustness around the selected kernel 

parameter a (see Fig. 8.28). Although higher A, z values could be reached around 

loglo a=5 for the Gaussian and Cauchy kernels, and some scattered values for loglo a< 
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0 with the triangle kernel (see Fig. 8.28), the associated robustness is poor. 

Half-half-random split evaluation: The selected five features were evaluated by 
using the HHR split evaluation. For each trial, 26 normal samples and 18 abnormal 
samples were selected at random as the training samples (a total of 44 training samples), 
and the remaining 25 normal samples and 20 abnormal samples were used as the test 
samples (a total of 45 test samples). One hundred such trials were repeated for the 
linear S2SP classifier and FLDA, as well as the nonlinear S2SP classifier and KFDA 
with the Gaussian, Cauchy, and triangle kernels. The mean, maximum, minimuni. 
and standard deviation (SD) of the classification performance in A4 value over the 
100 trials are recorded in Table 8.37. The S2SP classifier provides a linear classification 
performance of 0.78 in A, z value and a nonlinear classification performance of 0.83 in A. 

value using the Gaussian kernel, which are slightly better than the FLDA performance 
of 0.76 in A, z value and the KFDA performance of 0.81 in Az value using the triangle 
kernel (see Table 8.37). The LOO evaluation provides better performance than the 
HHR split evaluation, because the size of the training set for the HHR split evaluation 
has been reduced to 44 from 88, as compared with the LOO evaluation, and the size 

of the test set for the HHR split evaluation has been increased to 45 from one (LOO 

evaluation). 
The ROC curves of the linear S2SP classifier are plotted in Fig. 8.29 for one trial 

with the best test performance, one trial with the worst test performance, and one trial 

with the performance equal to the mean Az value. The ROC curves of the nonlinear 
S2SP classifier with the Gaussian kernel are plotted in Fig. 8.30, also for one best trial, 

one worst trial, and one trial with the performance equal to the mean Az value. The 

Gaussian kernel gives the highest average Az value over the 100 HHR splits, and also 

the highest minimal Az value and the lowest SD (see Table 8.37). The maximal Az 

value with the Gaussian kernel (0.95) is almost the same as the maximal Az value with 

any other kernel (0.96, see Table 8.37). These results lead to the conclusion that the 

Gaussian kernel is the most suitable kernel for classification of the VAG signal features 

used with the nonlinear S2SP classifier. 

Comparative Analysis with Existing Methods 

We compare the LOO classification accuracies of the linear S2SP (LS2SP) classifier 

and the nonlinear S2SP (NS2SP) classifier with the Gaussian kernel, based on the five 

statistical features selected by GA, with those obtained by Krishnan et al. [116] using 

LRA with the LOO procedure based on AR coefficients extracted by applying adaptive 

segmentation, by Rangayyan et al. [184] using LRA with the LOO procedure based on 

cepstral coefficients (CC) extracted by applying adaptive segmentation. by Krishnan 
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et al. [115] using LRA with the LOO procedure based on features extracted by using 
the matching pursuit TFD, and by Umapathy and Krishnan [223] using LDA with the 
LOO procedure based on features extracted by applying wavelet packet decomposition 
(WPD) and a modified local discriminant bases algorithm; the summarized results are 
listed in Table 8.38. Such a comparison is reasonable and fair as all of the above- 
mentioned studies used nearly the same dataset as used in our study (see Section 4.1.5) 

and employed the same LOO procedure for evaluation. It can be seen from Table 8.38 

that, using the statistical parameters as in the present study and performing feature 

selection by GA, the linear S2SP classifier provides comparative or even better classi- 
fication accuracies than those obtained by using classical pattern recognition methods, 

such as LRA and LDA, based on features extracted by applying more complex nonsta- 
tionary signal analysis tools. The nonlinear S2SP classifier with the Gaussian kernel 

provides the highest classification accuracy of 91.0%, which is a nearly 15% increase 

compared with the accuracy obtained by applying more complex nonstationary signal 

processing techniques but simpler pattern classification methods. 

8.3.4 Discussion and Conclusion 

The GA-S2SP-based classification scheme using the S2SP classifier association with a 

GA-based feature selection procedure has been applied to screen knee-joint VAG signals 

based on statistical parameters, including FF, FF1, FF2, S, K, and H, with no seg- 

mentation other than splitting the duration of each signal in halves. The five features 

of FFl, FF2, S, K, and H were selected as the optimal feature combination from all of 

the six available features by using GA. In both linear and nonlinear classification, and 

with both LOO and HHR evaluation, the S2SP classifier provided the best classification 

performance. It is worth mentioning that the nonlinear S2SP classifier with the Gaus- 

sian kernel provided a high classification performance of 0.95 in A, z value and 91.0% in 

accuracy, which is a nearly 15% increase compared with the performance obtained in 

related previous studies [115,116,184,187,223] (see Section 8.3.3 and Table 8.38). The 

results are significant, as the basic statistical parameters derived from VAG signals, 

associated with an advanced pattern classification method, do not require any clinical 

information regarding the patient, reports related to auscultation of the knee joint, or 

clinical interpretation of the VAG signal, as used in a related previous study [184]. The 

proposed methods eliminate the segmentation process and obviate the need to estimate 

the joint angle corresponding to the knee-joint pathology, and could lead to a practical 

clinical tool for screening patients with complaints related to the knee joint. 
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8.4 Summary 

This chapter has investigated the applications of the machine learning techniques to 
medical diagnosis, including breast cancer detection from FNA, identification of breast 
tumors in mammograms, and screening of knee-joint VAG signals. Several existing 
classifiers, four proposed classifiers, different fine tuning systems, as well as the meth- 
ods for feature selection and feature transformation have been applied. The following 

conclusions can be made from the experimental results: Feature selection is necessary 
to reduce the dimensionality of features and concentrate on more informative feature 

subsets. Nonlinear classification methods may provide better performance than lin- 

ear classification methods. Kernel-based classification methods may be preferred as 

compared to neural networks, as they provide higher classification accuracies and take 

less computing time in most cases. Features that perform poorly in pattern classi- 
fication experiments using traditional, linear classifiers need not be discarded if they 

are considered to be important from other perspectives, such as radiological, patho- 
logical, and physiological aspects: their performance could be improved via the use of 

an advanced nonlinear classification method. Our proposed kernel-based classification 

methods should find applications in medical diagnosis. 
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Figure 8.3: Illustration of the original feature and the transformed feature vector of 

A via KPCA (a) 2-D distribution of the transformed feature vector (ý(A) with 

log10 a=0.8, as well as the position of the decision boundaries (dl and d2) for two 

test samples, (b) 1-D distribution of the original feature A. (c) 2-D distribution of the 

transformed feature vector O(A) with log10 a=1.8. 
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(a) Normalized feature values of A 
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(b) Normalized LOO output values of FLDA classifier for the original feature A 
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(c) Normalized LOO output values of FLDA classifier for the transformed 
feature vector via KPCA for A 
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Figure 8.4: Distributions of different output values -- (a) the normalized values of A, 

(b) the normalized LOO output values of FLDA with the normalized values of A as the 

input, (c) the normalized LOO output values of FLDA with the transformed feature 

vector O(A) as the input. In (c), the three misclassified benign samples are marked 

with squares. 
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(a) 1 -D distribution of the original single feature SI 
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(c) LOO output values of FLDA classifier for the transformed 
feature vector via KPCA for SI 
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Figure 8.5: Illustration of the original feature and the transformed feature vector of 

SI via KPCA--- (a) 1-D distribution of the original feature SI. (b) 3-D distribution of 

the transformed feature vector O(SI) with log10 a=2.7, (c) LOO output values of the 

FLDA classifier with the transformed feature vector O(SI) as the input. 
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(a) 3-D distribution of the normalized original features of (A, Co, Cv) 

> 0 

Co -5 4 A 
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Figure 8.6: Comparison of the distribution of the original feature set. FSz (A, Co. CV) 

with its 3-D transformed feature vectors via KPCA. 

(a) LOO output values of FLDA classifier for the 
transformed features via KPCA, with 
Iog, 

oa=0.5 and m=3. for (A, Co, CV) 
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(c) Normalized LOO output values of FLDA classifier 
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(d) ROC curve for the original features of (A, Co. CV) 
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Figure 8.7: Comparison of the LOO output values acid ROC curves for the original 

and transformed feature set FS2 (A. Co, CV) via KPCA- (a) LOO output values of 

the transformed features, (b) ROC curve of the transformed features, (c) LOO output 

values of the original features, (d) ROC curve of the original features. 
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(b) KPCA for A. Co, CV, and 14 texture 
features (m=4) 

Figure 8.8: Variation of the FLDA classification performance in . 4, 

KPCA transformation versus different values of loge) (T. 
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Figure 8.9: Illustration of the PRQ classifier based oil pairwise constraints. and the 

corresponding discriminant boundary derived for the feature set FS8 (Fc, . 
4). 
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Figure 8.10: Coiiiparison of the cliseriiiiinairt boundaries learned 1w the PRQ aiid FLDA 

classifiers for the feature set FSI (; (A. f). 
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Figure 8.11: Comparison of the discrinill, ant boundaries learned by the PRQ and FLDA 

classifiers for the feature set FS15 (A, Co, CV). 
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Figure 8.12: Variation of the nonlinear classification performance in 
_4_ N, aIlues versus 

different values of log10 a using the PR. Q classifier with the triangle kernel for the fentim, 

set FS2 (F,,, FF). 
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Figure 8.13: Variation of the nonlinear classification performance in A- vý1lues Vers"'- 

different values of log10 a using the PRQ classifier with the triangle kernel for the fe<lture 

set FS, -, (14 texture features). 
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Figure 8.14: Variation of the nonlinear classification performance in A_ values N-ersiis 

different values of loglo a using the PRQ classifier with the triangle kernel for the fe itllre 

set FS15 (A, Co, CV). 
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Figure 8.15: ROC curves of different pairs of classifiers (or feature sets) with the LOO 
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Figure 8.16: ROC curves of KFDA, KSVM, and the KS2SP classifier using the features 

set FSl), St, 2 with the LOO procedure. 
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Figure 8.18: Variations of the LOO performance of different classifiers versus different 
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Figure 8.20: Output values of different classifiers with parameters selected based on the 
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the misclassified samples. The misclassified benign samples are marked by square. the 
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Figure 8.21: Distribution of the first two principal components of FS: j (C, SI. F, 

FF, FD, A, fý)). 

09 0.95 1 1.05 1.1 

Distance to positive SCH 
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Figure 8.23: Contours of misclassified benign masses based on the probmbility of being 

benign obtained by multiple classifiers, including KFDA, SVM, S2SP. KPCA. quid the 

2-norm NSVDD, for FS1 with all the 22 features. 
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Figure 8.24: Contours of misclassified malignant tumors based on the probability of 

being malignant obtained by multiple classifiers, including NFDA, SVIýI, S2SP, hPC ý. 

and the 2-norm NSVDD, for FSi with all the 22 features 
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Figure 8.25: Illustration of the selected features indicated by the best individual in eýtc11 

generation. The numbers of 1,2, 
..., 6 denote the indices of the six ordered features 

of FF, FFI, FF2, S, K, and H, respectively. 
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Figure 8.26: Variation of the values of the S2SP-based objective function for the best 

individual for the first 160 generations. 
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ROC Curve for LOO Procedure 
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Figure 8.27: ROC curves for the linear S2SP classifier and the nonlinear S2SP classifier 

employing the Gaussian kernel with the LOO procedure. 
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ROC Curve for Linear S2SP Classifier with HHR Split Procedure 
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Figure 8.29: ROC curves for the linear S2SP classifier with the HHR split procedure. 
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Figure 8.30: ROC curves for the nonlinear S2SP classifier employing the Gau siaui 

kernel with the HHR split procedure. 
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Methods 

Li-SVM/GSSEE (Gaussian) [150] 

v-SVM/GSSEE (Gaussian) [150] 

L2-SVM/GSSEE (Gaussian) [150] 

L2-SVM/GDSEE (Gaussian) [150] 

L2-SVM/GDVEE (Gaussian) [150] 

SOM-RBF [150] 

SOM [150] 

SVM (linear) [76] 

SVM (Gaussian) [34] 

Fuzzy [88] 

ENN [118] 

Mean Std. dev. Max Min 

98.2 1.2 100 96.5 

98.2 1.5 100 96.5 

98.4 1.3 100 96.5 

98.6 1.1 100 96.5 

98.1 1.9 100 94.1 

97.1 0.4 97.5 96.1 

94.4 1.8 97.4 89.4 

94.0 N/A 95.0 N/A 

97.7 2.5 N/A N/A 

95.8 3.1 N/A N/A 

95.6 N/A N/A N/A 

Table 8.1: Performance comparison in percentage accuracy for different classification 

methods based on 10-fold cross-validation. 

KFDA PRQ SVM MPSVM b-MPSVM S2SP 

Accuracy (%) 97.2 98.8 98.0 85.3 91.6 99.2 

Parameters 1 (a) 1 (a) 2 (a, CSVM) 1 (a) 2 (a, b) 1 (a) 

Time (s) 0.09 8.02 0.09 0.90 0.67 0.10 

Table 8.2: Performance comparison in percentage accuracy and computing time for 

different kernel-based classifiers based on 10-fold cross-validation [151]. 
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Classifiers LDA KFDA SVA 2-norm NSVDD 

Training 95.6`%; 97.6% 99.2% 

Test 95.6`%; 96.2% 97.5% 

Time (s) 0.013 0.303 0.302 

100.0`% 

98.8`% 

0.536 

Table 8.3: Comparison of test performance in classification accuracy and computing 

time for different classifiers. 

B2 Bl N'il All'> 

LDA PB (%) 100.0 89.2 4.2 0.0 

PI (%) 0.0 10.8 95.8 100.0 

SVM PB (%) 100.0 97.4 0.0 0.0 

PAI (%) 0.0 2.6 100.0 100.0 

KFDA PB (%) 100.0 93.7 2.0 0.0 

P, 1 (%) 0.0 6.3 98.0 100.0 

2-norm NSVDD PB (%) 100.0 100.0 0.0 0.0 

PI (%) 0.0 0.0 100.0 100.0 

Table 8.4: Values of probability of being benign (PB) and probability of being malignant 

(P I), calculated with the training samples. in the four partitions B1. B2, MI, and Nl,. 
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Feature sets Features used 

FS1 Five shape features (FC. 
(., SI, FD, C, and FF) 

FS2 Three edge-sharpness features (A, Co, and CV) 

FS3 Fourteen texture features (fl, f2, 
..., 

f14) 

FS4 FS2 and FS3 

FSr, A and f8 

FS6 F, and FS2 

FS7 F, and FS3 

FS8 F,,, FS2. and FS3 

FS9 FS, and FS, ) 

FS10 FS1 and FS3 

FS11 FS1, FS2, and FS3 

Table 8.5: List of different feature combinations used for KPCA transformation. 
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KPCA-FLDA FLDA Others 
C 0.992 0.974 0.983 [10] 

FF 0.987 0.977 0.980 [1<ý6] 

F'cc 0.997 0.997 0.997 [10] 

SI 1.000 0.927 0.966 [10] 

FD 1.000 0.907 0.910 [186] 

Co 0.865 0.734 0.758 [10] 

A 0.919 0.747 0.749 [10] 

CV 0.784 0.708 0.713 [10] 

fi0.866 0.611 0.648 [10] 

f2 0.676 0.643 0.676 [10] 

ß 0.687 0.474 0.529 [10] 

f4 0.765 0.666 0.668 [10] 

A 0.681 0.600 0.621 [10] 

f6 0.735 0.591 0.577 [10] 

f7 0.800 0.668 0.668 [10] 

f8 0.784 0.655 0.685 [10] 

fo 0.755 0.628 0.648 [10] 

flo 0.664 0.655 0.687 [10] 

fii 0.654 0.610 0.634 [10] 

f12 0.632 0.537 0.554 [10] 

f 13 0.700 0.500 0.586 [10] 

f1-i 0.661 0.632 0.662 [10] 

Table 8.6: Comparison of classification performance in Av values for each single feature. 

Significantly improved values of A- are shown in bold. 



1"-FLDA 

log10 (T ir SE 

FLDA 

R SE 
C 0.4 4 0.008 0.014 0.017 

FF 0.2 4 0.011 0.115 0.017 

F, 0.0 3 0.004 0.000 0.004 

SI 2.7 3 0.000 0.000 0.048 

FD 0.8 3 0.000 0.223 0.057 

Co 1.2 3 0.056 0.263 0.075 

A 1.7 2 0.045 0.304 0.081 

CV 3.0 3 0.068 0.081 0.069 

fi0.0 3 0.059 0.024 0.073 

f2 -1.0 3 0.090 0.787 0.073 

f3 2.6 4 0.071 0.703 0.083 

f4 2.6 4 0.066 1.176 0.071 

f5 -1.0 3 0.086 0.068 0.075 

f6 2.6 3 0.096 0.878 0.079 

f7 2.8 3 0.089 0.341 0.071 

f8 0.0 3 0.075 0.277 0.071 

fo 0.0 3 0.079 0.611 0.073 

flo 2.8 4 0.076 1.689 0.072 

f 11 2.2 4 0.073 1.017 0.074 

f12 2.0 4 0.078 0.294 0.081 

f13 0.0 3 0.102 0.814 0.089 

f14 2.6 4 0.079 1.507 0.076 

Table 8.7: The setting of the parameters a and ir. used, standard error (SE) of the _4_ 

value, and the robustness values (R) around the selected values of i and log10 a, for 

each single feature. 
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FS2 

log10 Q 0.5 

n3442 

A, z 0.766 0.680 0.853 0.8/ 3 

SE 0.064 0.071 0.057 0.050 

R 0.307 0.693 0.071 1.365 

Azl 0.724 0.678 0.751 0.795 

Az2 

Table 8.8: Parameter values and classification performance in A, z values as well as the 

robustness values for four feature combinations. (A,,: classification performance based 

on the transformed features via KPCA using FLDA; A,,: classification performance 

obtained using FLDA with the original features; Az2: results obtained by Alto et al. [8] 

using LDA, and by Andre and Rangayyan [10] using the single-layer perceptron; SE: 

the standard error; R: measure of robustness. ) Significantly improved values of A4 are 

shown in bold. 

0.62 [10] 0.67 [8] N/A 0.76 [8] 

FS3 FS4 FS5 

0.6 1.6 1.4 

Feature sets Block 1 (Xi) Block 2 (X2) 

FS6 

FS7 

FS8 

F, c 

Fcc 

Fcc 

3 edge-sharpness features 

14 texture features 

3 edge-sharpness features and 14 texture features 

FS9 5 shape features 3 edge-sharpness features 

FS10 5 shape features 14 texture features 

FS11 5 shape features 3 edge-sharpness features and 14 texture features 

Table 8.9: Division of the feature sets for KPLS transformation. 
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KPLS-FLDA 

SE 

KPCA-FLDA 

4ýý1 SE 

FS6 0.997 0.004 

FS; 1.000 0.000 

FSs 1.000 0.000 

FSq 1.000 0.000 

FS1 p 1.000 0.000 

FS11 1.000 0.000 

0.997 0.004 

0.980 0.014 

0.980 0.014 

0.987 0.012 

0.984 0.012 

0.970 0.021 

FS-FLDA 

4-») sE 

0.997 0.004 

0.997 0.004 

0.99 7 0.004 

0.984 0.013 

0.993 0.007 

0.987 0.011 

FLD: 1 

ýý; i sl'_ 

0.99 ý 0.00-1 

0.98-1 0.012 

0.96ý 0.0'22 

0.982 0.01-1 

0.963 0. O`2; 

0.954 0.029 

Table 8.10: Comparison of classification performance in A. valrneti for different inethods 

and feature combinations. SE: the standard error [153]. 

KPLS 

loglo Q iýý. 

FS6 -0.6 

FS; 0.5 

FS8 -0.4 

FS9 0.55 

F, 510 0.0 

FS11 0.3 

hPCA FS 

R, log10 C7 

1 0.000 0.8 

3 0.132 1.0 

2 0.034 0.9 

3 0.068 0.8 

4 0.128 0.9 

4 0.041 0.9 

R Selected Features 

3 0.010 F, and A 

3 0.500 FC(. and f8 

4 0.071 F, A. and f8 

4 0.003 FS1 and A 

2 0.051 F51 and f8 

4 0.010 FSi. A, and f8 

Table 8.11: Parameter values used, the robustness values around the selected paranie- 

ters. and the selected features for FS-FLDA. R: measure of robustness [153]. 
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Feature sets Features used 

FS, 

FS, ) 
FS3 

FS-1 

FS, S 
FS6 

FS7 

F, and C 

F, and FF 

F, c mid FD 

Fýc mid SI 

F,,., C, and SI 

Fcc, SI1 and FD 

F, SI, FD, C, and FF 

FS8 F, and A 

FS9 F, and f8 

FS1o F, A, and fs 

FS11 C, FF, and FD 

FS12 FF and SI 

FS13 C and SI 

FS14 FD and SI 

FS15 A, Co. and CV 

FS16 A and fs 

FS17 14 texture features 

FS18 F, and 14 texture features 

FS19 F, C. SI, and 14 texture features 

FS20 A, Co, CV, and 14 texture features 

FS21 All 22 features 

Table 8.12: List of the 21 feature combinations used for the PRQ classifier. 
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PRQ SVM 

FS1 0.997 

FS2 0.997 

FS: j 0.997 

FS4 0.996 

FS;, 0.996 

FS6 0.996 

FS7 0.997 

FS8 0.997 

FS9 0.997 

FS10 0.999 

FS11 0.984 

FS12 0.985 

FS13 0.977 

FS14 0.989 

FS18 0.987 

FS19 0.992 

FS21 0.974 

CPSVM FLDA 0 tlI c r's 
0.997 0.997 0.995 N/A 

0.997 0.997 0.996 N/A 

0.997 0.997 0.997 0.99 [186] 

0.997 0.997 0.991 0.99 [186] 

0.996 0.997 0.988 0.983 [10] 

0.997 0.997 0.991 0.99 [186] 

0.995 0.997 0.989 N/A 

0.997 0.997 0.997 0.98 [S] 

0.997 0.997 0.997 0.99 [8] 

0.996 0.997 0.997 0.98 [8] 

0.984 0.978 0.970 N/A 

0.980 0.985 0.957 N/A 

0.978 0.980 0.962 N/A 

0.964 0.935 0.927 0.97 [186] 

0.995 0.988 0.987 N/A 

0.989 0.987 0.965 0.951 [10] 

0.984 0.966 0.905 N/A 

FS15 0.778 0.715 

FS16 0.822 0.769 

FS17 0.705 0.628 

FS20 0.873 0.828 

0.741 0.728 0.618 [10] 

0.801 0.781 0.76 [8] 

0.662 0.629 0.652 [10] 

0.842 0.751 N/A 

Table 8.13: Linear classification performance in A, z values using different classifiers 

in the original (normalized) feature space. The best performance for cacli fceaturaa 

combination is shown in bold. 
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Classifier Score Computing time (s) Parameters 

PRQ 95.4 4.23 0 

CPSVM 94.3 280.44 2 (A, µ) 

SVM 94.2 0.04 1 (A) 

FLDA 92.8 0.04 0 

Table 8.14: Comparison of the linear classifiers tested in the original feature space. The 

parameters A and u for the CPSVM represent two regularization parameters named 

the pairwise factor and regularization constant, respectively. The parameter A for the 

SVM represents the regularization constant. 
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PRQ (Triangle kernel) Other-, 

FS, 

FS2 

F$; 3 
FS4 

FS5 

FS6 

FS7 

FS8 

FS9 
FS1o 

FS11 

FS12 

FS13 

FS14 

FS15 

FS16 

FS17 

FS18 

FS19 

FS20 

FS21 

loglo 17* Az SE R 

-2.3 1.000 0.000 0.165 N/A 

-1.8 1.000 0.000 0.014 N/A 

-1.1 1.000 0.000 2.813 0.99 [186] 

-1.1 1.000 0.000 1.275 0.99 [186] 

-1.8 1.000 0.000 0.059 0.991 [10] 

-2.3 1.000 0.000 0.034 0.99 [186] 

-2.2 1.000 0.000 0.287 N/A 

1.0 0.997 0.004 0.000 0.98 [8] 

-1.8 1.000 0.000 0.074 0.98 [8] 

-1.2 1.000 0.000 1.456 0.993 [10] 

-0.5 1.000 0.000 0.539 N/A 

-2.3 1.000 0.000 0.755 N/A 

-1.3 1.000 0.000 1.439 N/A 

-1.5 1.000 0.000 1.076 0.97 [186] 

-1.1 1.000 0.000 0.076 0.974 [10] 

-2.1 1.000 0.000 5.782 0.76 [8] 

-1.4 1.000 0.000 3.731 0.987 [10] 

-1.2 1.000 0.000 4.628 N/A 

-1.8 1.000 0.000 1.078 0.981 [10] 

-1.3 1.000 0.000 3.147 N/A 

-1.8 1.000 0.000 2.682 N/A 

SE 

N/A 

N/A 

N/A 

N/A 

0.011 [10] 

N/A 

N/A 

N/A 

N/A 

0.012 [10] 

N/A 

N/A 

N/A 

N/A 

0.033 [10] 

N/A 

0.012 [10] 

N/A 

0.019 [10] 

N/A 

N/A 

Table 8.15: Nonlinear classification performance in A, values using the PR. Q classifier 

with the triangle kernel, as well as the parameter setting and the corresponding value 

of the measure of robustness R. 
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Features Az Alignment Separability Distance 1)-valid 
C 0.8980 0.4677 0.0345 5.2186 0.0000 

SI 0.9134 0.5039 0.0401 4.8699 0.0000 

F, 0.8866 0.4576 0.0331 5.5692 0.0000 

FF 0.9100 0.4809 0.0364 5.2407 0.0000 

FD 0.9137 0.4459 0.0315 3.9774 0.0000 

Co 0.5843 0.0275 0.0011 0.1623 0.0776 

A 0.6839 0.0913 0.0039 0.5414 0.0011 

CV 0.7027 0.0550 0.0022 0.1903 0.0119 

fl 0.6863 0.0879 0.0037 0.4982 0.0013 

f2 0.7110 0.0922 0.0039 0.4584 0.0010 

f3 0.5575 0.0173 0.0007 0.1058 0.1624 

f4 0.6405 0.0402 0.0016 0.2393 0.0323 

f5 0.6829 0.0980 0.0042 0.8421 0.0007 

A 0.5759 0.0242 0.0009 0.1779 0.0980 

f7 0.6398 0.0393 0.0016 0.2326 0.0341 

f8 0.6565 0.0712 0.0029 0.5038 0.0040 

f9 0.6853 0.0982 0.0042 0.7844 0.0007 

flo 0.7187 0.0971 0.0041 0.3577 0.0007 

fl1 0.6896 0.0973 0.0041 0.8121 0.0007 

f12 0.5903 0.0272 0.0011 0.1882 0.0792 

f 13 0.5082 0.0002 0.0000 0.0010 0.8794 

f14 0.5329 0.0064 0.0002 0.0347 0.3980 

Table 8.16: Values of the various measures of separability studied for each feature. 
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Features Az Alignment Separability Distance p-value Average 
C433332 

SI 211411 

Fcc 544143 

FF 322224 

FD 155555 

Co 18 17 17 19 17 17 

A 12 11 11 9 11 11 

CV 8 14 14 16 14 14 

f1 10 12 12 11 12 12 

f2 7 10 10 12 10 10 

f3 20 20 20 20 20 20 

f4 15 15 15 14 15 15 

A 13 77678 

f6 19 19 19 18 19 19 

f7 16 16 16 15 16 16 

f8 14 13 13 10 13 13 

A 11 66866 

flo 699 13 99 

f11 988787 

f12 17 18 18 20 18 18 

f13 22 22 22 22 22 22 

f14 21 21 21 21 21 21 

Table 8.17: Ranking of the 22 features based on the various measures of separability. 
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Features Alignment Separability Distance 

C 0.95 

SI 0.96 

F, 0.91 

FF 0.92 

FD 0.89 

Co 0.09 

A 0.06 

CV 0.92 

fi 0.06 

f2 0.08 

f3 0.07 

f4 0.07 

f5 0.05 

f6 0.08 

f7 0.08 

f8 0.05 

fo 0.91 

flo 0.08 

fil0.03 

f12 0.06 

f13 0.06 

f14 0.07 

0.92 0.88 

0.94 0.93 

0.89 0.92 

0.92 0.96 

0.89 0.94 

0.06 0.06 

0.93 0.95 

0.03 0.06 

0.07 0.08 

0.07 0.10 

0.10 0.05 

0.05 0.11 

0.07 0.05 

0.12 0.91 

0.09 0.06 

0.06 0.08 

0.89 0.91 

0.08 0.08 

0.05 0.09 

0.10 0.10 

0.11 0.05 

0.09 0.08 

Table 8.18: Scores of importance derived by GA with different objective functions for 

feature selection. 
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LS2SP FLDA 

Feature Sets SE A, z SE 

Shape 

Gradient 

Texture 

All 

FSalignment 

0.90 0.03 0.91 0.03 

0.67 0.05 0.68 0.05 

0.64 0.05 0.65 0.05 

0.88 0.03 0.88 0.03 

0.92 0.03 0.93 0.02 

0.92 0.03 FSseparability 0.92 0.02 

FSdistance 0.92 0.03 0.92 0.03 

0.92 0.03 FSI, F,, 1 0.87 0.04 

FSbest2 0.89 0.03 0.93 0.02 

LSVM 

SE 

0.91 0.03 

0.65 0.06 

0.65 0.05 

0.89 0.03 

0.93 0.02 

0.92 0.03 

0.92 0.03 

0.91 0.03 

0.91 0.03 

Table 8.19: The classification performance of different feature sets using linear classifiers 

with the LOO procedure. SE represents the standard error. 
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LS2SP FLDA 

Feature Sets A, z SE A,, SE 

Shape 

Gradient 

Texture 

All 

FSaligninent 

FSseparability 0.92 0.03 

FSdistance 

FSbestl 

FSbest2 

0.91 0.03 0.91 0.03 

0.67 0.06 0.66 0.07 

0.62 0.06 0.61 0.07 

0.83 0.09 0.84 0.05 

0.92 0.03 0.92 0.03 

0.92 0.03 

0.92 0.03 0.92 0.03 

0.87 0.04 0.89 0.03 

0.89 0.04 0.91 0.02 

LSVM 

A- SE 

0.92 0.02 

0.66 0.07 

0.65 0.06 

0.89 0.04 

0.93 0.02 

0.93 0.03 

0.92 0.03 

0.91 0.03 

0.92 0.03 

Table 8.20: The classification performance of different feature sets using linear 61ssifier, 

with the HHR split procedure. Each Az value shown is the average of the A_ values 

over 100 HHR split classification experiments. SE represents the standard error. 
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KS2SP KFDA 

Feature Sets Az SE Az SE 

Shape 0.92 0.03 0.93 0.02 

Gradient 0.68 0.05 0.69 0.05 

Texture 0.74 0.05 0.68 0.05 

All 

FSalignrnent 

0.92 0.03 0.92 0.03 

0.95 0.02 0.93 0.02 

FSseparability 0.94 0.02 0.93 0.02 

FSdistance 

FSbestl 

FSbest2 

0.94 0.02 0.93 0.02 

0.94 0.02 0.93 0.02 

0.94 0.02 0.93 0.02 

hSVM 

A- SE 

0.91 0.03 

0.65 0.06 

0.66 0.05 

0.92 0.03 

0.94 0.02 

0.94 0.02 

0.93 0.02 

0.93 0.02 

0.94 0.02 

Table 8.21: The classification performance of different feature sets using the kernel- 

based classifiers with the LOO procedure. SE represents the standard error. 

190 



hS2SP KFDA 

Feature Sets 

Shape 

Gradient 

Texture 

All 

FSýIjjbtj Went 

SE SE 

0.92 0.03 0.92 0.03 

0.65 0.08 0.67 0.07 

0.68 0.06 0.61 0.07 

0.93 0.02 0.93 0.02 

0.93 0.02 0.93 0.02 

0.93 0.03 FSseparability 0.94 0.03 

FSbestl 

FSbestz 

0.94 0.03 0.93 0.03 

0.94 0.03 0.94 0.02 

0.94 0.02 0.94 0.02 

ILSVNI 

SE 

0.93 0.02 

0.6? 0.06 

0.69 0.05 

0.93 0.03 

0.94 0.03 

0.94 0.02 

0.94 0.03 

0.94 0.02 

0.94 0.02 

Table 8.22: The classification performance of different feature sets using the kernel- 

based classifiers with the HHR split procedure. Each A- value shown is the average of 

the Az values over 100 HHR split classification experiments. SE represents the standard 

error. 

Classifiers Az (LOO) A_ (HHR) Time (Second) 

LS2SP --j KS2SP 0.84 -ý 0.89 0.84 --ý 0.87 

FLDA --ý KFDA 0.86 -ý 0.87 0.84 --0.87 

LSVM --ý KSVM 0.85 --ý 0.87 0.86 -i 0.88 

Pararneter, s 

0.80-->0.93 0---ý 1(or) 

0.65 0.68 0---j 1(ý) 

2.21 ----> 2.56 1(ý) 2(ý. ý) 

Table 8.23: Comparison of the linear and kernel-based classifiers studied. The symbol 

indicates the advantage to be gained or the additional cost as the linear v-e, rsioiI of 

a classifier is replaced by its kernel-based version. 
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Groupl KS2SP 

vs. 

Group2 KFDA 

KS2SP KFDA 

vs. vti. 

KSVM KSVM 

95% CI1 [0.89,0.97] [0.89,0.97] [0.86,0.97] 

95% CI2 [0.86,0.97] [0.88,0.97] [0.88,0.97] 

ti-score 0.90 -0.57 -0.85 

p-value 0.37 0.57 0.39 

95% CId [-0.012,0.033] [-0.008,0.004] [-0.031,0.012] 

Table 8.24: Statistical analysis of the difference between the ROC curves of pairs of 

various kernel-based classifiers. CI1 denotes the asymmetric 95%/ CI for A, - of the 

classifiers in Group 1. CI2 denotes the asymmetric 95% CI for A_ of the classifiers in 

Group 2. CId denotes the approximate 95% CI for the difference of A, z between each 

pair of classifiers. CI = confidence interval. 
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Group 1 LS2SP FLDA LSVM 

vs. vs. N's. 

Group 2 KS2SP KFDA KSVM 

95% CI1 [0.81,0.94] [0.87,0.96] [0.85.0.96] 

95% CI2 [0.89,0.97] [0.86,0.97] [0.88,0.97] 

.: -score -2.23 -0.10 -2.23 

p-value 0.03 0.92 0.03 

95% CId [-0.102, -0.007] [-0.021,0.019] [-0.047, -0.003] 

Table 8.25: Statistical analysis of the difference between the ROC curves of pairs of 

linear versus kernel-based classifiers. CI1 denotes the asymmetric 95% CI for A- of the 

classifiers in Group 1. CI2 denotes the asymmetric 95% CI for Az of the classifiers in 

Group 2. CId denotes the approximate 95% CI for the difference of A- between ew'll 

pair of classifiers. CI = confidence interval. 

193 



Group 1 Shape 

vs. 

Group 2 All 

Vs. Vti. 

Shape Shape 

95% Cl, [0.84,0.96] [0.90,0.98] [ 0.89,0.97] 

95% Cl. -) [0.85,0.96] [0.84,0.96] [0.84.0.96] 

ti-score -1.37 1.36 0.96 

p-value 0.17 0.18 0.34 

95% CId [-0.017,0.003] [-0.012,0.065] [-0.018,0.052] 

Table 8.26: Statistical analysis of the difference between the ROC curves of pairs of 

various feature sets. CI1 denotes the asymmetric 95%; CI for A- of the classifiers in 

Group 1. CI2 denotes the asymmetric 95% CI for A- of the classifiers in Group 2. C'I, 1 

denotes the approximate 95% CI for the difference of A, - between each pair of classifiers. 

CI = confidence interval. 

Independent Wrapper-type 

Classifier Az SE SE 

KFDA 0.90 0.03 0.92 0.02 

S VM 0.92 0.03 0.92 0.02 

S2SP 0.90 0.03 0.93 0.02 

KPCA 0.91 0.03 0.93 0.02 

2-norm NSVDD 0.93 0.02 1.00 0.00 

Table 8.27: Comparison of the classification performance in -4- values for F. S1 with all 

the 22 features. 
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Independent Wrapper-type 

Classifier SE SE 

IN FDA 

SVM 

S2SP 

KPCA 

0.91 0.03 0.94 0.02 

0.93 0.02 0.94 0.02 

0.91 0.03 0.91 0.03 

0.91 0.03 0.93 0.02 

2-norm NSVDD 0.94 0.03 1.00 0.00 

Table 8.28: Comparison of the classification performance in . 
4, z values for FS. ) with 

(SI, A, fg). 

Independent Wrapper-typ¬ 

Classifier A, z SE SE 

KFDA 0.92 0.03 0.93 0.02 

SVM 0.94 0.02 0.94 0.02 

S2SP 0.91 0.03 0.94 0.02 

KPCA 0.93 0.02 0.93 0.02 

2-norm NSVDD 0.94 0.02 1.00 0.00 

Table 8.29: Comparison of the classification performance in A, values for FS: i with (C, 

SI, F, FF, FD, A, f9). 

FSl FS, ) FS3 

SE A_ SE -4- 
SE 

Independent 0.91 0.03 0.92 0.03 0.93 0.02 

Wrapper-type 0.94 0.02 0.94 0.02 0.95 0.02 

Table 8.30: Comparison of the average performance over different classifiers for the 

three feature sets. 
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Independent 

B2 B1 M1 NI1) Býý 

NVra hhe r-tYhc 

B1 Nil MI) 

> 

KFDA PB (%) 90.3 88.2 26.9 0.0 96.1 80.0 35.7 0.0 

SVM 

PA, j (%) 9.7 11.8 73.1 100.0 3.6 20.0 64.3 100.0 

PB (%) 100.0 80.6 32.1 0.0 100.0 74.4 32.0 0.0 

PA, 1 (%) 0.0 19.4 67.9 100.0 0.0 25.6 68.0 100.0 

S2SP PB (%) 100.0 77.1 37.9 4.8 100.0 83.3 20.8 8.7 

PA 1 (%) 0.0 22.9 62.1 95.2 0.0 16.7 79.2 91.3 

KPCA PB (%) 100.0 84.4 37.5 0.0 100.0 84.9 31.0 4.5 

PAI (%) 0.0 15.6 62.5 100.0 0.0 15.1 69.0 9: 5.5 

2-norm PB (%) 100.0 80.0 34.5 0.0 100.0 100.0 0.0 0.0 

NSVDD PAI M 0.0 20.0 65.5 100.0 0.0 0.0 100.0 100.0 

Table 8.31: Values of probability of being benign (PB) and probability of being malig- 

nant (PAl) in four partitions of B1, B2, M1, and M2, for FS3 with (C, SI. F. (.. FF. 

FD, A, f9). 
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Mass, name PB PB (%) 1ýIý15ý nýllncý 
b110rc95 

b1451095 

b148rc97 

bl55ro95 

b1581c95 

b1611o95 

b164ro94 

b621x97 

b62rc97a 

b62rc97d 

b62ro97a 

b62ro97d 

b64rc97 

circ-db-315 

circ-fb-012 

circ-fb-059v2 

circ-gb-002 

circ-gb-019 

spic-db-193 

spic-db-200 

spic-fb-204 

spic-gb-190 

94.9 b110ro95 

99.3 bl46rc96 

80.8 b148ro97 

80.8 b1571c96 

99.3 b1581o95 

80.8 bl64rc94 

80.8 b1661c94 

80.8 b621c97 

99.3 b62rc97b 

99.3 b62rc97e 

99.3 b62ro97b 

94.3 b62ro97e 

80.0 circ-db-244 

99.3 circ-fb-005 

99.3 circ-fb-025 

99.3 circ-fb-069 

99.3 circ-gb-015 

99.3 circ-gb-021 

46.1 spic-db-198 

80.8 spic-db-207 

55.3 spic-gb-175 

85.8 spic-gb-191 

85.8 b1451c95 

80.8 b146ro96 

80.8 b155rc95 

85.5 b1571o96 

94.6 b1611c95 

80.8 b164rx94 

80.8 b1661o94 

80.8 b621o97 

99.3 b62rc97c 

99.3 b62rc97f 

99.3 b62ro97c 

99.3 b62ro97f 

89.4 circ-db-290 

80.0 circ-fb-010 

80.8 circ-fb-059v1 

99.3 circ-gb-001 

99.3 circ-gb-017 

80.8 spic-db-145 

46.1 spic-db-199 

46.1 spic-fb-195 

46.1 spic-gb-188 

55.3 

PB (%) 

90.7 

80.8 

80.0 

80.8 

80.8 

80.8 

80.8 

99.3 

99.3 

94.3 

99.3 

85.8 

80.8 

99.3 

85.8 

99.3 

99.3 

80.8 

46.1 

46.1 

46.1 

Table 8.32: Probability of being benign of each benign breast mass obtained by multiple 

classifiers, including KFDA, SVM, S2SP, KPCA, and the 2-norm NSVDD, for F 5'1 with 

all the 22 features. error = 7/65 = 10.8%. 
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Mass name PA, (`X, ) ý name P-11 (%) 1ýIýýsý name Pv (`I) 

m221c9 7 

in231o97 

m551c97 

m58rm97 

m591o97 

m621x97 

m63ro97 

circ-fm-028 

circ-grn-270 

spic-dm-202 

spic-fl2895 

spic-fm-148 

spic-gin-181 

spic-s-112m 

spic-s-404m 

100.0 m221o97 

73.9 in5lrc97 

100.0 m551o97 

79.7 rn58ro97 

100.0 m611c97 

35.6 rn621o97 

39.2 m641c97 

39.2 circ-fm-141 

39.2 circ-s-404m 

39.2 spic-fh0956 

100.0 spic-fh3729 

73.9 spic-frn-184 

73.9 spic-grn-186 

100.0 spic-s-401m 

80.5 spic-x-106m 

100.0 m231c97 3 

73.9 m51ro97 100.0 

94.2 m58rc9 7 94.2 

94.1 m591c97 100.0 

73.9 m611o97 100.0 

73.9 in63rc97 48.4 

100.0 circ-fl11618 73.9 

73.9 circ-gm-023 39.2 

93.3 circ-x-104in 64.7 

100.0 spic-fh2802 73.9 

100.0 spic-fm-144 56.8 

39.2 spie-fm-206 79.7 

73.9 spic-s-102m 79.7 

100.0 spic-s-403m 100.0 

100.0 spic-x-lllm 73.9 

spic-x-123m 73.9 

Table 8.33: Probability of being malignant of each benign breast miss obtained by 

multiple classifiers, including KFDA, SVAI, S2SP, KPCA, and the 2-norm NSVDD, for 

FS, with all the 22 features. error = 9/46 = 19.6%. 

198 



AI a55 ll all1(' 

b110rc95 

b1451o95 

b148rc97 

bl55ro95 

b1581c95 

b1611o95 

b164ro94 

b621x97 

b62rc97a 

b62rc97d 

b62ro97a 

b62ro97d 

b64rc97 

circ-db-315 

circ-fb-012 

circ-fb-059v2 

circ-gb-002 

circ-gb-019 

spic-db-193 

spic-db-200 

spic-fb-204 

spic-gb- 190 

PB (%) l\Ia-s name 

99.3 

99.3 

96.3 

84.5 

87.5 

93.0 

84.5 

96.3 

99.3 

99.3 

92.7 

92.7 

75.7 

99.4 

99.3 

90.8 

94.2 

84.5 

36.2 

84.5 

73.8 

87.8 

bl10ro95 

b146rc96 

bl48ro97 

b1571c96 

b1581o95 

b164rc94 

b1661c94 

b621c97 

b62rc97b 

b62rc97e 

b62ro97b 

b62ro97e 

circ-db-24-1 

circ-fb-005 

circ-fb-025 

circ-fb-069 

circ-gb-015 

circ-gb-021 

spic-db-198 

spic-db-207 

spic-gb-175 

spic-gb-191 

ý12ýtiý llýýlll(' Pß CA) 

9: 3.0 b1ý15 1c I):; 

PB CX) 
96.3 

96.3 b146ro96 84.5 

96.3 b155rc95 93.0 

84.5 b1571o96 84.5 

99.3 b1611c95 96.3 

87.8 b164rx94 96.3 

84.5 b1661o94 89.6 

84.5 b621o9 7 99.3 

99.3 b62rc97c 99.3 

99.3 b62rc97f 87.5 

94.2 b62ro97c 87.5 

99.3 b62ro97f 99.3 

84.5 circ-db-290 84.5 

85.5 circ-fb-010 96.0 

84.5 circ-fb-059v1 87.5 

99.3 circ-gb-001 87.5 

87.5 circ-gb-017 94.2 

76.0 spic-db-145 64.9 

41.5 spic-db-199 43.9 

43.9 spic-fb-195 52.4 

43.9 spic-gb-188 43.9 

56.4 

Table 8.34: Probability of being benign of each benign breast mass obtained by multiple 

classifiers, including KFDA, SVM, S2SP. KPCA, and the 2-norm NSVDD. for F 

(C, SI, Fr«, FF, FD, A, fg). error = 6/65 = 9.2`% 

:3 with 
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Mass naine Pý, 1 (%ý lýIaýS aalilc PA1 Pl (`ý) 

rn221c97 

in231o97 

m551c97 

m58rm97 

rn591o97 

rn621x97 

rn63ro97 

circ-frn-028 

circ-gm-270 

spic-din-202 

spic-f112895 

spic-fm-148 

spic-gm- 181 

spic-s-112m 

spic-s-404m 

97.4 in221o97 

92.1 m51rc97 

97.4 m551o97 

76.1 m58ro97 

97.4 rn611c97 

46.3 m621o97 

35.5 m641c97 

46.3 circ-fm-141 

35.5 circ-s-404m 

46.3 spic-fh0956 

97.4 spic-fh3729 

88.5 spic-frn-184 

67.6 spic-gm-186 

91.0 spic-s-401m 

81.3 spic-x-106m 

97.4 rn231c97 47.:; 

76.1 rn51ro9 7 7.4 

91.0 1ii58rc97 3.8 

97.4 rn591c97 7.4 

76.1 in611o97 81.3 

76.1 m63rc97 76.1 

97.4 circ-fh1618 76.1 

76.1 circ-gm-023 32.2 

97.4 circ-x-104m 76.1 

97.4 spic-fh2802 76.1 

90.2 spic-fm-144 58.8 

67.6 spic-fm-206 85.7 

76.1 spic-s-102m 87.8 

97.4 spic-s-403rn 97.4 

91.0 spic-x- lll rn 82.5 

spic-x-123m 82.5 

Table 8.35: Probability of being malignant of each benign hrcast irlass obtained by 

multiple classifiers, including KFDA, SVM, S2SP, 1-1, PCA, and the 2 norm NSVDD, for 

FS3 with (C, SI, F, FF, FD, A, fg). error = 7/46 = 15.2'/'(. 
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S2SP-LOO FDA-LOO 

Kernel SE Az SE 

Linear 0.82 0.04 0.78 0.05 

Cauchy 0.95 0.03 0.78 0.05 

Gaussian 0.95 0.03 0.77 0.05 

Triangle 0.80 0.05 0.80 0.05 

Table 8.36: Classification performance in A, values evaluated with the LOO procedure 

using the S2SP classifier and FDA for both linear and nonlinear cla5sihcýltioli. SF 

represents the standard error. 

S2SP-HHR FDA-HHR 

Kernel Mean Max Min SD Mean Max Min SD 

Linear 0.78 0.91 0.62 0.06 0.76 0.90 0.53 0.06 

Cauchy 0.82 0.95 0.72 0.05 0.80 0.95 0.63 0.05 

Gaussian 0.83 0.95 0.74 0.04 0.80 0.95 0.63 0.05 

Triangle 0.82 0.96 0.66 0.05 0.81 0.96 0.66 0.05 

Table 8.37: Classification performance in Az values evaluated with the HHR split 

procedure using the S2SP classifier and FDA for both linear and nonlinear classification. 

SD represents standard deviation. 
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Method Groups Normal Abnormal Total Average Accuracy 

AR-LRA [116] Normal N/A N/A 51 

Abnormal N/A N/A 39 68.9% 

CC-LRA [184] Normal N/A N/A 51 

Abnormal N/A N/A 39 75.6% 

TFD [115] Normal 40 11 51 

Abnormal 17 22 39 

WPD-LDA [223] Normal 38 13 51 

Abnormal 8 30 38 

GA-LS2SP Normal 35 16 51 

Abnormal 7 31 38 

GA-NS2SP Normal 45 6 51 

68.9% 

76.4% 

74.2% 

Abnormal 2 36 38 91.0% 

Table 8.38: Comparison of the classification accuracy using different feature extraction 

and pattern classification methods. 
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Chapter 9 

Conclusions and Future Works 

9.1 Summary and Conclusions 

This thesis has been devoted to the core problem of pattern classification and the 

applications to breast cancer detection, diagnosis of knee-joint pathology. and machine 
condition monitoring. Three stages have been studied throughout: preprocessing of 
features, classification, and model selection for a classifier. 

Before the classification stage, feature selection is used to reduce the dimensionality 

of features, and select a more informative subset of features to get rid of the uncorrelated 
information. In some cases, newly generated features based on a certain transformation 

could be more informative than the original features, and may also reduce the number of 
dimensionality. Chapter 5 has explored methods for feature selection by employing GA 

based on different measures of data separability or estimated risk of a chosen classifier, 

as well as methods to perform a separate nonlinear transformation of features before 

the classification task, by applying KPCA and KPLS. A simple linear classifier can be 

employed with the transformed nonlinear features to achieve the nonlinear classification. 

For the pattern classification stage, several pattern classification methods have been 

proposed in chapter 6: The SOM-RBF networks applied an unsupervised clustering 

method SOM to decided the RBF centers for the RBF networks, which can be viewed 

as a dimensionality reduction process, by reducing the dimensionality of the input fea- 

ture space from o to m, The PRQ classifier helps in classification with insufficient 

training samples by employing pairwise constraints instead of individual samples. but 

without using any regularization parameter, which makes it more convenient than an- 

other pairwise-based classifier CMPSVMI [247]. Compared with FLDA which employs 

m number of individual samples from a total number of 1 samples (»z < 1), the PRQ 
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classifier offers more possibilities by employing m number of pairwise constraints from 
a total number of l* (l - 1) constraints (m <l* (l - 1)). The S2SP classifier eliminates 
the regularization term of the regularized MPSVMs [135] by considering the sign effect 
under the situation of misclassification with large projections onto the separating plane, 
so that it is more convenient for users with less parameters required to be tuned, and 
performs more accurately than the MPSVMs. The 2-norm variation of the NSVDD 
increases the computing speed and the v-NSVDD reduces the number of regulariza- 
tion parameters, as compared with the original 1-norm NSVDD [216], and both with 
comparable or even better classification performance. The NSVDD-based multi-class 
classification scheme predicts the labels for the input samples using the LDA-NN rule, 
which improves the traditional NN rule by learning c more hyperspheres. 

For a chosen classifier, chapter 7 investigated techniques to determine the optimal 
values of the corresponding hyperparameters. Different optimization criteria, such as 
SEE and VEE, and different optimization methods, such GD, GS, and GA, have been 

studied to optimize the kernel and regularization parameters for the SVMs. An EKF- 
based tuning system based on cross validation has been proposed by viewing the tuning 

problem of the L2-SVM parameters as an identification problem of a nonlinear dynamic 

system, and compared with the GD- and GA-based tuning systems for the L2-SVM. To 

select the optimal kernel parameters, independent kernel optimization based on different 

measures of data separability, calculated in the kernel-defined feature space, has been 

employed and compared with the wrapper-type optimization based on estimates of the 

generalized performance of a chosen classifier. 
Instead of providing a diagnostic decision of "malignant" or "benign", we have 

proposed a new method to compute a measure of confidence in the assignment of a label 

to a mass, in Section 3.5, by calculating probabilities of being benign or malignant for 

each mass based on the corresponding output values obtained by multiple classifiers, 

e. g. KFDA, SVM, S2SP, KPCA, and the 2-norm NSVDD. 

We have applied these methods to detect breast cancer from FNA, to identify breast 

tumors in mammograms, to screen knee-joint VAG signals as normal or abnormal, and 

to fault detection of roller bearings, in Chapter 8 and Section 6.4.7. Classification 

accuracy of the WDBC data from FNA has been improved to 99.5% by using the 

L2-SVM with the proposed EKF-based tuning system, as compared with the previous 

results of 95.6% obtained by ENN with pure filtering [118]. Classification performance 

of a set of 57 breast masses has been improved to 1.0 in A, z value by using the KPCA 

transformation, KPLS transformation, or the PRQ classifier with a triangle kernel, as 

compared with the previous results of 0.98 in Az value obtained by Alto et al. [8]. 

Classification performance in Az value of a set of 111 breast masses has been improved 

to 0.95 by using the S2SP classifier, and 1.0 by using the 2-norm NSVDD, as compared 

with the previous results of 0.93 in A, z value obtained by Rangayyan and Nguyen [186]. 
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Classification accuracy of a set of 89 knee-joint VAG signals has been improved to 91. (Y7 
by using the S2SP classifier with the GA-selected statistical features, as compared with 
the previous results of 76.4% obtained by Umapathy and Krishnan [223]. Classification 
accuracy of the bearing data with six conditions has been improved to 99.9% by using 
the 2-norm NSVDD with the LDA-NN rule without performing feature selection, as 
compared with the previous results obtained by Jack and Nandi [97]: 82.5% using 
ANNs without feature selection and 99.7% using ANNs with GA-selected features. 
Furthermore, the ANN-GA method took a couple of days to work out a solution, while, 
our method takes only less than one hour, including the model selection procedure. 

The proposed classification methods have demonstrated excellent classification per- 
formance, and could be useful in CAD systems. Features that perform poorly in pat- 
tern classification experiments using traditional, linear classifiers need not be discarded 

if they are considered to be important from other perspectives, such as radiological, 

pathological, and physiological aspects: their performance could be improved via the 

use of an advanced nonlinear classification method. Panel discussions at recent con- 
ferences on CAD have indicated interest in not only the detection and classification of 

signs of cancer, but also the assignment of a degree of confidence in the CAD labels 

or marks placed on the image being analyzed. The methods we have proposed for the 

assignment of a measure of confidence in the labeling of a sample as being benign or 

malignant addresses this important need in CAD of breast cancer. 

9.2 Future Work 

The following is a list of possible points which could lead the continuation of the present 

investigation: 

" Classification performance of the comparatively weak features has been improved 

by using our proposed kernel-based classifier in this work. However, it is difficult 

to pre-determine the associated optimal kernel parameter, as the robustness is 

not satisfactory around those values of the kernel parameters that can provide 

a high classification accuracy. The formulation and optimization of the kernel 

parameter is an important issue to be explored. 

" Nearly all the works that have been developed in this project is based on a 

single classifier. Research on multiple classifier systems would be interesting, as 

the committee schemes incorporate multiple experts which not only may lead to 

modular solutions but also can reduce the computational complexity. 

" Both the GD-based and EKF-based tuning systems developed in this work are 

limited to the derivable L2-SVM. Derivative-free model selection method should 
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be explored, such as using the polynomial optimization, instead of GA with com- 
paratively long training time. 

" The pariwise-based PRQ classifier has been developed to help in classification with 
insufficient training samples , such as classification of breast masses with only 57 
regions in mammograms, in this work. The methods could be extended to cases 
with more training samples, by further studies on a pair selection procedure. 

" The benefits of the "square of sum" factor used in the S2SP and PRQ classifiers 
still remain to be proved theoretically, such as providing error bounds for the 
PRQ and S2SP classifier. 

" Although the 2-norm NSVDD with the LDA-NN rule can provide high classifica- 
tion performance, the method is not computationally economical by solving more 
rather slow QP problems. It would be beneficial to exploit methods with low 

computational complexity to obtain the compact hyperspheres. 

" More complex classifiers designed with a small dataset may appear to have higher 

performance than simpler classifiers because of overtraining, but they may gen- 

eralize poorly to unknown cases. Many studies have shown that sometimes even 
thousands of cases are not enough to ensure generalization. This is particularly 
true when using powerful nonlinear techniques with multiple stages. As many of 

the experiments carried out in this study employed small size of medical datasets, 

further studies should be conducted with 10 x larger sets, like digital database for 

screening mammography (DDSM). 
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Abstract 

Machine learning is concerned with the design and development of algorithms and 
techniques that allow computers to "learn" from experience with respect to some class 

of tasks and performance measure. One application of machine learning is to improve 

the accuracy and efficiency of computer-aided diagnosis systems to assist physician, 

radiologists, cardiologists, neuroscientists, and health-care technologists. This thesis 
focuses on machine learning and the applications to breast cancer detection. Emphasis 

is laid on preprocessing of features, pattern classification, and model selection. 
Before the classification task, feature selection and feature transformation may be 

performed to reduce the dimensionality of the features and to improve the classification 

performance. Genetic algorithm (GA) can be employed for feature selection based 

on different measures of data separability or the estimated risk of a chosen classifier. 
A separate nonlinear transformation can be performed by applying kernel principal 

component analysis and kernel partial least squares. 
Different classifiers are proposed in this work: The SOM-RBF network combines 

self-organizing maps (SOMs) and radial basis function (RBF) networks, with the RBF 

centers set as the weight vectors of neurons from the competitive layer of a trained 

SOM. The pairwise Rayleigh quotient (PRQ) classifier seeks one discriminating bound- 

ary by maximizing an unconstrained optimization objective, named as the PRQ crite- 

rion, formed with a set of pairwise constraints instead of individual training samples. 
The strict 2-surface proximal (S2SP) classifier seeks two proximal planes that are not 

necessary parallel to fit the distribution of the samples in the original feature space or 

a kernel-defined feature space, by maximizing two strict optimization objectives with 

a "square of sum" optimization factor. Two variations of the support vector data de- 

scription (SVDD) with negative samples (NSVDD) are proposed by involving different 

forms of slack vectors, which learn a closed spherically shaped boundary, named as the 

supervised compact hypersphere (SCH), around a set of samples in the target class. We 

extend the NSVDDs to solve the multi-class classification problems based on distances 

between the samples and the centers of the learned SCHs in a kernel-defined feature 

space, using combination of linear discriminant analysis and the nearest-neighbor 
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4.1.4 Breast Masses in Mammograms 

Breast cancer may be detected via a cautious study of clinical history. physical ('X- 
amination, and imaging with either mammography or ultrasound. Matnniography has- 
been shown to be effective in screening asymptomatic women by detecting mciilt bre. tst 
cancers and by reducing mortality by as much as 35`%, in women aged bet«"een TO and 69 
years [29,621. Breast tumors and masses usually appear in the form of dense regi0 ins in 
mammograms. Benign masses generally possess smooth, round, and well circtunscri )e(1 
boundaries, as opposed to malignant tumors that usually have spiculated. rough, and 
blurry boundaries [90]. Several shape features have been proposed for their cl; issiiic"ai- 
tion [27,183,185,186,194] on the basis of the shape differences between benign utasses 
and malignant tumors. The need for measures to characterize the sharpness of a HOI in 
an image has also been recognized, leading to different algorithms for the computation 
of measures of edge sharpness [158,183]. In addition, subtle textural differences have 
been observed between benign masses and malignant tumors. with the former being 

mostly homogeneous and the latter showing heterogeneous texture [90.19-1]. Methods 

of computing texture features have been proposed using the mass margin [158.1 i>9.1 83] 

or ribbons of pixels around masses obtained using the `'rubber band straightening 
transform" [195]. 

Two digitized mammographic image sets are studied in this work. 

" The first image set contains 57 ROIs extracted from mammograms, with 37 re- 
lated to benign masses and 20 to malignant tumors, obtained from `-Screen Test : 
Alberta Program for the Early Detection of Breast Cancer" [22]. The images 

were digitized with a resolution of 50 µm and 12 bits per pixel; However, texture 

analysis was performed after smoothing using a7x7 Gaussian kernel with a 

standard deviation of 2 pixels and reduction to 8 bits per pixel [8]. 

" The second image set contains 111 ROts extracted from manlniograms, with 65 

related to benign masses and 46 to malignant tumors, obtained by combining the 

first image set with 57 ROIs and another set with 54 ROIs. The images for the 

57 ROIs were digitized using the Lumiscan 85 scanner at a resolution of 50 pin 

and 12 bits per pixel. The images for the 54 ROIs were prepared by using images 

containing masses from the Mammographic Image Analysis Society (MIA . S. UK) 

database [1] and the teaching library of the Foothills Hospital in Calgary [183]. 

The MIAS images were digitized at a resolution of 50 µm. whereas the Foothills 

Hospital images were digitized at a resolution of 62 'im. 

The diagnosis of each case was proven by biopsy. Mass or tumor ROls were manually 

identified, and contours were drawn by ai radiologist experienced in screening mammog- 

raphy. Twenty-two features were extracted from each ROI, including 5 shape features 
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tion accuracy of the comparatively weak texture features was even higher than that of the shape features using ANNs with a selected topological structure [10]. but w much lower than that of the shape features using a linear classifier [8]. Thus, in this work, we propose to select combinations of shape, edge-sharpness, and text lire features independent of any classifier, so that the selected combinations are suitable for use with 
several different classifiers. A GA [28] is employed, instead of an exhaustive search of 
all possible subsets of features of the chosen cardinality. based on measures of data 
separability in the original feature space, as described in Section 4.2, such as alignment 
of the kernel with the target function, class separability, and normalized distance. 

Another method to improve the discriminating power of the comparatively weak 
edge-sharpness and texture features, and seek better incorporation of features represent- 
ing different radiological characteristics is to employ the kernel-based transformation 
methods of features. We propose to improve the discriminating power of the edge- 
sharpness and texture features by applying KPCA, and seek better incorporation of 
the edge-sharpness and texture features with the shape features by using hPLS, as 
described in Section 5.2.1 and Section 5.2.2. In the transformed KPCA and KPLS 
feature space, the discriminating capability of the original features could be improved. 
Consequently, more informative, transformed features could be used as the input's to 
a pattern classifier. In this work, FLDA is employed to perform the classification task 
based on the transformed features. As the classification performance of FLDA based 

on the transformed features is dependent upon the setting of the kernel parameter as 
well as the number of KPCs in KPCA and the number of score vectors in KPLS, a 
measure of robustness, as described in Section 7.4, is used to evaluate the stability of 
the two nonlinear transformation methods around selected values of the parameters. 

One can also improve the classification accuracy of the comparatively weak edge- 

sharpness and texture features or different feature combinations by using advanced 
kernel-based classifiers, such as our proposed PRQ classifier, S2SP classifier, and the 

2-norm NSVDD. The results were compared with that obtained by other existing clas- 

sification methods to demonstrate the efficiency of our proposed methods. 

8.2.2 Techniques and Schemes 

Machine learning techniques presented in previous chapters are employed to perform 

feature selection, feature transformation, and pattern classification. so as to identify 

malignant breast tumors from two sets of breast masses in mammograms described in 

Section 4.1.4, of which one contains a total of 57 ROIs with 20 related to malignant 

tumors and 37 to benign masses, the other contains a total of 111 R. OIs with 65 related 

to benign masses and 46 to malignant tumors. The used machine learning techniques 

and classification schemes are presented in the following paragraph. 
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