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Abstract 

In this thesis we study the computational aspects of knots and knot trans

formations. Most of the problems of recognising knot properties (such as 

planarity, unknottedness, equivalence) are known to be decidable, however 

for many problems their precise time or space complexity is still unknown. 

On the other hand, their complexity in terms of computational power of 

devices needed to recognise the knot properties was not studied yet. In this 

thesis we address this problem and provide first known bounds for some 

knot problems within this context. In order to estimate and characterise 

complexity of knot problems represented by Gauss words, we consider vari

ous tools and mathematical models including automata models over infinite 

alphabets, standard computational models and definability in logic. 

In particular we show that the planarity problem of signed and unsigned 

Gauss words can be recognised by a two-way deterministic register au

tomata. Then we translate this result in terms of classical computational 

models to show that these problems belong to the log-space complexity class 

£. Further we consider definability questions in terms of first order logic and 

its extensions and show that planarity of both signed and unsigned Gauss 

words cannot be expressed by a formula of first-order predicate logic, while 

extensions of first-order logic with deterministic transitive closure operator 

allow to define planarity of both signed unsigned Gauss words. Follow

ing the same line of research we provide lower and upper bounds for the 

planarity problem of Gauss paragraphs and unknottedness. 

In addition we consider knot transformations in terms of string rewriting 

systems and provide a refined classification of Reidemeister moves formu

lated as string rewriting rules for Gauss words. Then we analyse the reach

ability properties for each type and present some bounds on the complexity 

of the paths between two knot diagrams reachable by a sequence of moves of 

the same type. Further we consider a class of non-isomorphic knot diagrams 

generated by type I moves from the unknot and discover that the sequence 



corresponding to the number of diagrams with respect to the number of 

crossings is equal to a sequence related to a class of Eulerian maps with 

respect to the number of edges. We then investigate the bijective mapping 

between the two classes of objects and as a result we present two algo

rithms to demonstrate the transformations from one object to the other. 

It is known that unknotting a knot may lead to a significant increase in 

number of crossings during the transformations. We consider the question 

of designing a set of rules that would not lead to the increase in the number 

of crossings during knot transformations. In particular we introduce a new 

set moves in this regard which can be used to substitute one of the rules 

of type II that increases the number of crossings. We show that such new 

moves coupled with Reidemeister moves can unknot all known examples of 

complex trivial knot diagrams without increasing number of crossings. 
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Chapter 1 

Introduction 

1.1 Background 

Knot theory is the area of mathematics that studies mathematical knots and links. A 

knot (a link) is an embedding of a circle (several circles) in 3-dimensional Euclidean 

space, ]R3, considered up to a smooth deformation of the ambient 1 space. It is a well 

established and active area of research with strong connections to topology [44], algebra 

[4] and combinatorics [52]. 

Major problems in knot theory have algorithmic or computational nature: equiv

alence problem (how to recognise that two knots are equivalent), or unknottedness 

problem (how to recognise that a knot is a trivial one). Consideration of such problems 

led to fruitful interactions between knot theory and computer science. In particular, 

the questions of computational complexity of knot problems have been addressed in 

[30]. Examples of other interactions include works on formal language theory [36] and 

quantum computing [1; 22; 45]. 

Algorithmic and computational topology is a new growing branch of modern topol

ogy. Much of the recent effort has focused on classifying the inherent complexity of 

topological problems. 

One of the founding theorems of knot theory states that any two diagrams of a given 

knot may be changed from one into the other by a sequence of local moves referred 

to as Reidemeister moves [58]. This result is crucial as it allows one to define a knot 

1 An ambient space is the space surrounding a mathematical knot(or link respectively). 
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1.1 Background 

invariant as an invariant of a diagram which is unchanged under Reidemeister moves. 

In this thesis we formalise Reidemeister moves in terms of string rewriting rules for 

words encoding knot diagrams and analyse the minimal number of distinct rules for 

each type. 

Decidablity of Knot Equivalence and Unknottedness problems was demonstrated 

more than 40 years ago [26], but the first results on the complexity of these problems 

only appeared much later. Hass, Lagarias and Pippenger in [30] have shown that Un

knotedness and some related problems on links can be decided in Non-deterministic 

Polynomial Time (NP). As an upper bound, the number of Reidemeister moves suffi

cient to transform a knot diagram with n crossings to a trivial knot is 2= where c=1011 

[29] and later improved to c = 154 [64]. For the general case of equivalence of knots, 

a new recent upper bound based on the number of Reidemeister moves for knots and 

links was shown to be 2cn [13] where c = 106 . As to the lower bound for unknottedness, 

the number of Reidemeister moves required is quadratic with respect to the number 

of crossings [31; 32]. Furthermore, a result on a normal form was obtained where it 

was shown that two knots are equivalent iff one can be obtained from the other by a 

sequence of type Itl moves, followed by a sequence of type lIt moves, followed by a 

sequence of type III moves, followed by sequence of type 1I-t.2 moves [12]. This result 

raises a number of questions regarding the complexity bounds of such a sequence by in

vestigating the complexity of each move as well as the complexity of a subset of moves. 

In this thesis we address such questions by evaluating the length of the path between 

two reachable knot diagrams by each type of Reidemeister moves separately as well as 

by a combination of moves. 

Perhaps one of the reasons the number of Reidemeister moves is exponential can be 

due to the existence of some knot diagrams which require an increase in their crossings 

number before they can be simplified into the unknot3 . One may ask whether introduc

ing new moves in addition to ordinary Reidemeister moves may help with simplifying 

trivial knot diagrams without increasing their number of crossings during the trans

formation (Le. by avoiding Reidemeister moves of types It and lIt). Such a question 

was investigated in [24] where some generalised version of Reidemeister moves of types 

1 A rule with an t involves increasing the number of crossings 
2 A rule with an .!. involves decreasing the number of crossings 
3 An unknot is a trivial diagram with no crossings usually represented by a standard circle 
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1.1 Background 

I and II (referred to as pass moves [14]) were presented. However, a counter example 

was presented in the same paper where it still required an increase in the number of 

crossings even after considering the new added moves. 

In this context we will introduce a set of moves which are more general than the 

moves proposed in [24] but can be seen as a restrictive case of pass moves for links 

described in ([14], page 67). Although these moves are restrictive, we will show that all 

known examples of classical complex trivial knot diagrams (including Goretiz's coun

terexample) can be simplified using our new moves coupled with ordinary Reidemeister 

moves without increasing their number of crossings. 

In addition, we consider a class of knot diagrams obtained by application of Rei

demeister moves of type I. Starting from an unknot we generate all possible diagrams 

and count the number of non-isomorphic knot diagrams with respect to the number 

of crossings. Surprisingly, we discover that our sequence matches the sequence corre

sponding to a class of unrooted Eulerian n-edge planar maps with a distinguished outer 

face (see the On-Line Encyclopedia of Integer Sequences [63]). Then we investigate the 

correspondence between the two classes of objects and present explicit algorithms for 

the construction of knot diagrams represented by Gauss diagrams and vice versa. 

One of the earliest questions of an algorithmic nature related to knots was the 

question of characterisation of Gauss words [23]. With every knot one can associate a 

word, called a Gauss word, which is a sequence of labels for the crossings read off directly 

from the projection of the knot on a plane. Depending on whether the information on 

the orientation is present, the word can be signed or unsigned. The simple property 

of any Gauss word is that every label (index) in it appears twice. The converse is not 

true, there are the words with every label appearing twice which do not correspond 

to any classical planar knot diagram. The question of characterisation of "true", or 

planar Gauss words was posed by Gauss himself [23] and was eventually resolved by 

Nagy in [53]. Since then many criteria and algorithms have been proposed both for 

recognition of signed [7; 38] and unsigned [8; 16; 17; 37; 46; 48; 57; 60; 60; 61; 62] 

Gauss words. The questions of computational complexity of the proposed algorithms 

were rarely explicitly addressed with notable exceptions being [38] where linear time 

algorithm for the signed case is proposed, and in [61] where a linear time complexity 

for unsigned case is established and compared with earlier quadratic bounds in [57]. 

3 



1.2 Overview of the thesis 

Most of the problems of recognising knot properties (such as planarity, unknotted

ness, equivalence) are known to be decidable, with different time complexity. However 

their complexity in terms of computational power of devices needed to recognise the 

knot properties was not studied yet. In this thesis we will address this problem and 

provide first known bounds for recognisability of knot properties in terms of various 

automata models over infinite alphabets. The infinite alphabet appeared naturally due 

to the fact that the number of crossings in knots is unbounded. 

As an alternative and complementary approach to address the complexity of knot 

problems, we consider definability questions about expressibility of knot properties in 

terms of logic and show lower and upper bounds for the planarity and unknottedness 

properties. 

The main goal of the proposed approach is to give a new insight on knot problems 

and characterise knot problems according to their computational complexity. 

The results presented in this thesis were achieved by a combination of methods from 

knot theory, automata theory and logic. Part of these results has been published in 

[41; 42] 

1.2 Overview of the thesis 

In Chapter 2 we give an introduction to knots and their representations, adopting some 

notions from knot theory. We begin by showing how knots can be combinatorially en

coded by finite structures, such as graphs or words. We then present a set of local 

diagrammatic moves known as Reidemeister moves used to show if two of knot dia

grams are of the same type and finally describe some problems related to knots that 

will be studied in this thesis. 

In Chapter 3 we consider the formulation of Reidemeister moves in terms of string 

rewriting rules and analyse their reachability properties. In Section 3.2 we formalise 

Reidemeister moves in terms of string rewriting rules for Gauss words and analyse the 

minimal number of distinct rules for each type of Reidemeister moves with respect to 

cyclic order and renaming of labels. As a result we show that there are two minimal 

rules for type I, two minimal rules for type II and eight minimal rules for type Ill. 

In Section 3.3 we analyse the reachability properties of Reidemeister moves. We 

evaluate the lower and upper bounds on the number of transformations for the equiva-

4 



1.2 Overview of the thesis 

lence problem of two reachable knot diagrams by type I, type 11 and type III individually 

as well as a combination of rules of types {I,Il}, {I,IIl} and {Il,Ilf}. We show 

linear lower and upper bounds for types I and Il, and a quadratic lower bound for type 

III with respect to the number of crossings in a knot diagram while for the set of rules 

of types {I, Il}, {f, Ill} and {Il, fIl} we provide some plausible classes of diagrams 

that can be used to establish some lower bounds. 

In section 3.4 we consider oriented knot diagrams (represented by Gauss diagrams) 

generated by application of Reidemeister moves using type I moves only. Starting from 

an unknot (the simplest trivial diagram) we generate all possible diagrams and count 

the number of non-isomorphic knot diagrams with respect to the number of crossings. 

We show that the number of non-isomorphic knots with n-crossings is equal to the 

number of unrooted Eulerian n-edge maps with a distinguished outer face in the plane. 

Then we investigate the bijective mappings between the two classes of objects and 

provide two explicit algorithms to demonstrate the construction of Gauss diagrams 

from maps and vice versa. 

In Section 3.5 we introduce a new set of moves referred to as generalised Reidemeis

ter moves to be used in companion with classical Reidemeister moves for the purpose 

of simplifying complex trivial knot diagrams into the unknot without increasing their 

number of crossings during the transformation. Considering all known classical exam

ples of complex trivial knot diagrams we show that each diagram can be transformed 

into the unknot without exceeding number of crossings of the original diagram. 

In Chapter 4 we consider several computational models to be used for the purpose 

of evaluating the complexity of some knot theoretic problems represented by Gauss 

words. In section 4.1 we describe and extend the models of automata over infinite 

alphabet that will be used for establishing the lower and upper bounds on recognition 

of knot properties. 

In Section 4.2 we show the simulation of counters and pebbles by register automata 

and demonstrate generic results on the mutual simulations between logspace bounded 

classical computations (over finite alphabets) and register automata working over infi

nite alphabets. 

In Section 4.3 we apply register automata to establish some lower and upper bounds 

for the recognisability of some knot properties. We show that the languages of Gauss 

words (signed and unsigned) are not recognisable by a non-deterministic I-way register 
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1.2 Overview of the thesis 

automata while the same languages are recognisable by a deterministic 2-way register 

automata. Although register automata is one of the weakest models of automata over 

infinite alphabet, we show that it can recognise non-trivial properties, specifically we 

show that a deterministic 2-way register automaton can recognise whether two Gauss 

words are isomorphic (Le. two Gauss words are isomorphic if they are equivalent upto 

cyclic shift and renaming of labels). 

In Chapter 5 we investigate the descriptional complexity of knot theoretic problems 

and show upper bounds for planarity problems of signed knot diagrams represented by 

Gauss words and signed link diagrams represented by Gauss Paragraph (to determine 

whether a given signed Gauss word (paragraph) is planar, Le. encodes a plane diagram 

of a classical knot (link) in R 3.) 

In Section 5.1 we show that the language of planar signed Gauss words can be 

recognised by deterministic two-way register automata by simulating the algorithm 

presented in [7] and in Section 5.2 we show that the language of planar signed Gauss 

paragraphs (a set of Gauss words representing links) can be recognised by deterministic 

two-way register automata simulating the recently discovered linear time algorithm 

in [38]. Furthermore in Section 5.3 we translate this result in the classical settings 

and show that the languages of planar signed Gauss words and planar signed Gauss 

paragraphs belong to the deterministic log-space complexity class .c. 

In Chapter 6 we continue the same line of research as in the previous chapter 

but focussing mainly on the unsigned case. In Section 6.1 we provide an analysis of 

Cairns-Elton algorithm for planarity of unsigned Gauss words and show that it is im

plementable by co-non-deterministic register automata and in Section 6.2 we show that 

planarity of unsigned Gauss paragraph is recognisable by a linearly bounded memory 

automata simulating Kauffman algorithm [37]. Further we refine our results to demon

strate that the Cairns-Elt on algorithm can be implemented in S.c (symmetric logspace) 

and therefore in .c . As a consequence we show that planarity of unsigned Gauss words 

is recognisable by deterministic register automata. 

An alternative and to some extent a complementary approach to the study of de

scriptional complexity of recognisability problems is that based on definability in some 

logic. In Chapter 7 we pose the questions of definability of the knot properties by their 

expressibility in first order logic and its extensions. We show lower and upper bounds 
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1.2 Overview of the thesis 

for definability of planarity of Gauss words and Gauss paragraphs, and the unknot

tedness encoded by logical structures. In Section 7.1 we introduce first-order predicate 

logic and its inductive extensions. Then we define two encodings for Gauss words as 

logical structures and describe the conditions for Hanf locality that is widely used to 

prove undefinability in first-order predicate logic 

In Section 7.2 we show that planarity of both signed and unsigned Gauss words 

can not be defined by a formula of first-order predicate logic, while extensions of first

order logic with deterministic transitive closure operators allow to define planarity of 

signed and unsigned Gauss words and in Section 7.3 we show that the property of 

unknottedness can not be defined in FO and demonstrate an implicit upper bound by 

showing that it is definable in existential second order logic relying on the fact that 

NP = ESO [21J. 

7 



Chapter 2 

Knots and their representations 

In this chapter we give an introduction to knots and their representations adopting 

some notions from knot theory. We begin by showing how knots can be combinatori

ally encoded by finite structures, such as graphs or words. Then we present a set of 

local diagrammatic moves known as Reidemeister moves used to show if two of knot 

diagrams are of the same type and finally describe some problems related to knots that 

will be studied in this thesis. 

2.1 Knots representations 

A knot is defined as a simple closed curve in three-dimensional Euclidean space. There 

are various discrete representations for knots. One of such discrete representations is 

a Gauss word consisting of a sequence of symbols (labels 0 ("over") and U ("under") 

with indices and signs), which can be read off directly from a projection of the knot on 

a plane. 

2.1.1 Knot diagrams 

A knot diagram is a picture of a projection or a shadow of a knot onto a plane with the 

restriction that each point on the diagram is the shadow of no more than two points 

called a crossing. 

At each crossing we create small breaks in the strand that passes underneath (as 

depicted in the left-hand side of Figure 2.1) to distinguish between the over-strand and 
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2.1 Knots representations 

Figure 2.1: Trefoil - An example of a knot diagram 

the under-strand so that the original knot can be reconstructed. The knot diagram of 

the trefoil knot is illustrated on the right-hand side of Figure 2.1. 

Figure 2.2: - Faces of a trefoil knot diagram 

It's clear that in addition to crossings, a knot diagram contains faces (cycles) 

bounded by arcs (edges connecting the crossings). For example in Figure 2.2, the 

trefoil knot diagram contains 5 faces labelled /1, . . . ,15. The face 15 will be referred to 

as an outer face and the faces /1, ... ,14 will be referred to as inner faces. 

Oriented knots. A choice of a direction to travel around a knot is called an 

orientation of the knot. An oriented knot is a knot together with a specific choice of 

orientation as shown in Figure 2.3. In this thesis we consider oriented knot diagrams 

only. 

Fixing an orientation of a knot, one needs to distinguish between the two types 

of crossings corresponding to right-handed twists and left-handed twists depicted in 

Figure 2.4. To represent the difference, two opposite signs will be assigned; a + sign 

(for a right-handed twist) and a - sign (for a left-handed twist). One type of crossing 

will be called positive and the other type will be called negative. The crossing is positive 

if one can rotate the under-strand in a clock-wise direction so that its arrow-head is in 

line with the arrow head of the top-strand. 

9 



2.1 Knots representations 

Figure 2.3: Trefoil - An example of oriented knot diagrams 

)(~ .... -.. ~ 
••••••• • •••••• 

Figure 2.4: Types of crossings - positive and negative crossings 

Although knot diagrams provide a clear visual impression of knots, another discrete 

representation in terms of strings or words would be more suitable for analysing their 

computational properties. One such representations is Gauss words. Gauss words 

considered as finite sequences of letters representing crossings for which every letter in 

the Gauss word appears exactly twice [23]. 

2.1.2 Gauss words 

The Gauss word is obtained from an oriented knot diagram by first labelling each 

crossing with a number and indicating the sign of a crossing as in Figure 2.4. Then we 

choose a starting point (at any place other than a crossing) on the knot diagram and 

walk along the diagram following the chosen orientation. At each crossing encountered 

we record the name of the crossings and whether the walk takes us over it or under 

it until we arrive back at our starting point. For signed Gauss words, we also record 

whether the sign of the crossing is positive or negative (see Figure 2.5). 

As to shadow Gauss words, only the labels for the crossings are recorded. The signs 

and information about over-crossing and under-crossing are not considered. 

A Gauss word w can be described as a sequence of pairs (aI, bl ),'" ,(alwl' b1wl ) 

10 



2.1 Knots representations 

o,U,o,U,o,U, o;U;o;U;o;U; X 
Figure 2.5: - Trefoil with its corresponding Gauss words (unsigned and signed) 

where the first component consists of the labels aI, ... ,alwl which is from a finite set 

( {U, O}) and the second component consists of the data values bI , .. , ,b1wl taken from 

an infinite set (N). This description is known as data words [5; 54]. 

In this dissertation, Gauss words (signed, unsigned and shadow) will be considered 

by default as cyclic words except in the context of automata where Gauss words are 

considered to be linear words as inputs for automata. 

For a word wand a symbol d denote by I w Id the number of occurrences of din w. 

As usual I w I denotes the length of the word w. 

Formal definitions for signed, unsigned and shadow Gauss words are given below. 

Definition 2.1.1. A signed Gauss word w is a data word over the alphabet ~ x N 

where E = {U+, 0+ , U- , O-}, such that for every neither 

• Iwl(u+,n) = Iwl(o+,n) = Iwl(u- ,n) = Iwl(o- ,n) = 0, or 

• Iwl(u+,n) = Iwl(o+,n) = 1 and Iwl(u- ,n) = Iwl(o- ,n) = 0, or 

• Iwl(U-,n) = Iwl(O-,n) = 1 and Iwl(u+,n) = Iwl(o+,n) = 0. 

The language of all signed Gauss words is denoted by LSGw. 

Definition 2.1.2. An unsigned Gauss word w is a data word over the alphabet 

~ x N where E = {U, O}, such that for every n E Neither 

• Iwl(U,n) = Iwl(O,n) = 0, or 

• Iwl(U,n) = Iwl(O,n) = 1. 

11 



2.1 Knots representations 

The language of all unsigned Gauss words is denoted by LUGw. 

Definition 2.1.3. A shadow Gauss word w is a word over the alphabet N (i. e. jin'ite 

sequence of natural numbers) such that for every n E Neither Iwln = 0 or Iwln = 2 

(i.e. every label in w should appear exactly twice). 

The language of shadow Gauss words is denoted by LShGW. 

Throughout this dissertation we will use the notion of interlacement graph which 

is a graph associated with a shadow Gauss word, defined as follows: 

Definition 2.1.4. Given a shadow Gauss word w, the vertices of the interlacement 

graph G(w) correspond to the labels in wand the edges ofG(w) are the pairs of labels 

(i, j) such that i and j are interlaced in w if i occurs once between the two occurrences 

of j and vice versa. 

For an example see Figure 2.6. 

r-?\\ 
12312344 

"----.-/ V 

Figure 2.6: - An interlacement graph G(w) for w = 12312344 

Another useful discrete representation of knots is known as Gauss diagrams. 

2.1.3 Gauss diagrams 

A Gauss diagram is a diagrammatic representation of a Gauss word of the knot depicted 

in Figure 2.7. We form a Gauss diagram by taking an oriented circle with a basepoint 

chosen on the circle. 

Walk along the circle marking it with the labels for the crossings in the order of 

Gauss word. Now connect two points of the same label by an edge from the inside of 

12 



2.2 Reidemeister moves 

1 

U1 +02 +U
3 
+0

1 
+U2 +03 + 

Figure 2.7: - Gauss words with its corresponding Gauss diagrams (signed and unsignd) 

the circle (such an edge is referred to as a chord). Orient each chord from overcrossing 

site to undercrossing site. Mark each chord with a + or a - according to the sign of 

the corresponding crossing label in the Gauss word. 

2.2 Reidemeister moves 

Two knots are isotopic if one can be continuously manipulated in 3-space until it looks 

like the other. Reidemeister in [58] demonstrated that knot diagrams of isotopic knots 

can be connected by a sequence of operations. These operations are referred to as 

Reidemeister moves. A Reidemeister move refers to one of the following local moves 

on a knot diagram: 

Move I. Twist and untwist in either direction as illustrated in Figure 2.8. 

Figure 2.8: Type I - Type I Reidemeister moves 

Move 11. Move one loop completely over another as depicted in Figure 2.9. 

Figure 2.9: Type 11 - Type II Reidemeister moves 
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2.3 Knot problems 

Move Ill. Move a strand completely over or under a crossing as indicated in Figure 

2.8. 

\ I )( -}-- \ .-.......: ~ 

\ I \ 

\ I X/ ->\--1 .........: ~ 

/ I \ 

Figure 2.10: Type III - Type III Reidemeister moves 

Theorem 2.2.1. ([58J) Two knot diagrams are equivalent if and only if one can be 

obtained from the other by a sequence of Reidemeister moves. 

Example Given two knot diagrams Kl and K2 illustrated in Figure 2.11, we will 

show that Kt = K 2 by transforming K 1 into K 2 using a sequence of Reidemeister 

moves. 

8 --
K1 K2 

Figure 2.11: Example - Kl and K2 are both trivial knot diagrams 

The moves shown in Figures 2.8 to 2.10 are intended to indicate local changes that 

are made in a larger diagram. Figure 2.12 shows a sequence of Reidemeister moves 

used for transforming Kt to K2. 

2.3 Knot problems 

Planarity, equivalence and unknottedness are three main computational problems in 

knot theory. In this section we introduce and formulate these problems. 
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Figure 2.12: Knot transformation - Transforming Kl into K2 by Reidemeister moves 
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2.3 Knot problems 

2.3.1 Planarity 

The construction of a Gauss word is quite straightforward as it can be obtained by 

starting from a non-crossing point on the curve and writing down the labels of the 

crossings and their types of strand that occur as the curve is traversed according to 

the orientation of the knot until the same starting point is met for the second time. 

However, the inverse problem of reconstructing a knot diagram from a Gauss word is 

harder because the construction does not always results in a planar diagram. So if an 

arbitrary Gauss word does not encode a classical diagram then such Gauss word will 

correspond to a non-classical knot diagram, i.e. a diagram that will contain additional 

crossings which do not appear in the Gauss word (see Figure 2.13). Such crossings are 

known as virtual crossings. This observation was one of the motivations for introducing 

virtual knot theory [37J. A Gauss word representing a knot diagram on a plane without 

virtual crossings is called classical or planar. The problem of recognising planar Gauss 

words have been formulated by Gauss himself and recently several algorithmic solutions 

for both signed and unsigned cases have been proposed. 

Planar signed Gauss words. The planarity problem of signed Gauss words has 

been studied first in [9J. Two different algorithms has been proposed by [7; 38] based 

on the work of Carter in [9]. These two algorithms are described in details in Chapter 

5. 

The planarity question for signed Gauss words can be formulated as follows: 

Problem 1. (Planarity of signed Gauss words) 

Instance: Given a signed Gauss word w. 

Question: Does w represents a planar knot diagram? 

In Section 2.1.2 we described that for every knot, one can produce a corresponding 

Gauss word w. However, not every Gauss word correspond to a classical knot (Le a knot 

is classical if its projection can be embedded in the plane without self-intersections). 

For example the Gauss word w = 01" 02" U1 ot Vi ut, does not correspond to any 

classical knot and may only correspond to a virtual knot (a non-planar diagram) pre

sented in Figure 2.13 (to distinguish between classical crossing and virtual crossings, 

the virtual crossing are marked by a circle on the diagram). 
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2.3 Knot problems 

Figure 2.13: Non-planar knot diagram - An example of a non-planar knot diagram 
with 2 virtual crossings 

There are many criteria for characterising the planarity property for knots, in partic

ular Cairns-Elton algorithm in [7] can be applied to check the Gauss word w. Therefore 

it can be determined that w is non-planar because the first condition of algorithm does 

not hold. The algorithm presented by Cairns and Elton in [7] is discussed in details in 

Chapter 5, Section 5.1.1. 

Planar unsigned Gauss words. The planarity problem of unsigned Gauss words 

has generated a lot of interest since it was posed by Gauss in [23]. As a result, several 

algorithmic solutions have been proposed, e.g. in [8; 16; 37; 46; 48; 57; 61; 62]. 

The planarity question for unsigned Gauss words is formulated as follows: 

Problem 2. (Planarity of unsigned Gauss words) 

Instance: Given an unsigned Gauss word w. 

Question: Does there exist a choice of signs that can be assigned to w so that w 

represents a planar knot diagram? 

2.3.2 Equivalence 

The equivalence problem is a central problem in knot theory. The problem has shown to 

be decidable [26] and recently a new upper bound based on the number of Reidemeister 

moves was shown to be highly exponential with respect to the number of crossings [13]. 

Problem 3. (Equivalence) 

Instance: Given two knot diagrams Kt and K2. 

Question: Can Kl be transformed into K2 by a sequence of Reidemeister moves? 
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2.3 Knot problems 

--
K2 

Figure 2.14: non-trivial knot diagrams - an example of two equivalent non-trivial 
knot diagrams 

2.3.3 Unknottedness 

Unknottedness (also referred to as the unknotting problem) can be seen as a special 

case of equivalence. The problem has been shown to be in the class NP [30J and in 

the same paper the authors conjectured that the unknottedness problem is contained 

in NP n co.NP. Recently it was shown that the unknottedness problem is contained in 

AM nco-AM [28J (Le. this is the class of decision problems for which both "yes" and 

"no" answers can be verified by an Arthur-Merlin protocol). The first algorithm for 

the unknottedness problem was presented in [26J based on normal surface theory and 

since then a new algorithm based on arc-presentation theory was presented in [19J. As 

an upper bound for the Reidemeister moves sequence, it was shown in [29; 64] that the 

number of Reidemeister moves sufficient to transform a knot diagram with n-crossings 

to the unknot is exponential with respect to the number of crossings and as a lower 

bound, the number of Reidemeister moves required is quadratic with respect to the 

number of crossings [31; 32]. The unknottedness problem is formulated as follows: 

Problem 4. (Unknottedness) 

Instance: Given a knot diagram K 

Question: Can K be transformed into an unknot by a sequence of Reidemeister 

moves? 

A knot diagram is called trivial if it can be transformed by a sequence of Reidemeister 

moves into the unknot otherwise it is called non - trivial. For an example of trivial 
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2.4 Summary 

knot diagrams see Figure 2.11. 

2.4 Summary 

In this chapter we gave an introduction about knots and their representations. We have 

described how knots can be encoded by Gauss words and similarly by Gauss diagrams 

in a discrete way so that problems about knots can be reduced to the questions about 

Gauss words or diagrams. In order to estimate and characterise complexity of knot 

problems represented by Gauss words or Gauss diagrams, we will use different tools 

and mathematical models including automata models, computational complexity and 

definability in logic. 
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Chapter 3 

Knot rewriting and algorithmic 

problems for knots 

In this chapter we consider knot transformations in terms of string rewriting systems. 

We begin with Section 3.5.1 where we introduce some definitions and notation to for

mulate the concept of knot transformations in the context of Gauss word rewriting. 

Then we move to Section 3.2 to consider some local diagrammatic moves presented in 

[58] known as Reidemeister moves which are used for the transformations between two 

knots of the same type. We formulate the Reidemeister moves in terms of string rewrit

ing rules for Gauss words and analyse the minimal set of rules sufficient for rewriting. 

Then in Section 3.3 we investigate the reachability properties of each type and pro

vide some lower and upper bounds on the complexity of the paths between two knot 

diagrams reachable by a sequence of moves of the same type. 

Further in Section 3.4 we consider a class of oriented knot diagrams (represented 

by Gauss diagrams) generated by application of Reidemeister moves of type I only. 

Starting from an unknot (a diagram with no crossings) we generate all possible dia

grams. We are interested in the question of how many non-isomorphic diagrams can be 

obtained from the unknot for a fixed number of crossings and discover that the number 

of non-isomorphic knot diagrams with n-crossings (where n 2: 1) is equal to the number 

of unrooted Eulerian n-edge maps in the plane. Then we investigate the bijective map 

between the two classes of objects and as a result we present two explicit algorithms 

to describe the transformations from Gauss diagrams to maps and vice versa. 
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3.1 Definitions and notation 

Furthermore in Section 3,5 we consider the question of knot transformations by 

means of reduction and introduce a new set of moves that can be seen as a more 

generalised version of Reidemeister moves of types II and III formulated also in terms 

of string rewriting rules for Gauss words, It's known that transforming a knot into 

an un knot can lead to a significant increase in the number of crossings during the 

transformations, we demonstrate that our moves coupled with Reidemeister moves can 

unknot all known examples of complex trivial knot diagrams presented in the literature 

[24; 32; 47] without increasing number of crossings, 

3.1 Definitions and notation 

In this section we introduce some definitions needed to formulate knot rewriting, 

Definition 3.1.1. Let ~ be an alphabet, a cyclic shift Sk with kEN is a function 

Sk : ~* -+ ~. such that for a word w E ~. where w = Wl, ,." wn , the cyclic shift of w is 

defined as Sk(Wl, .. " wn ) = wL .. " w~ where W(i+k) (mod n) = w~ for some i = 1, .. " n, 

Definition 3.1.2. Let wand w' be some Gauss words, w =e W' (w is equivalent to w' 

up to cyclic shift) iff Iwl = Iw'l = n such that 3k : 0 :S k < nand w = Sk( w'), 

By [w]e, we denote a c-equivalence classes of w, 

Example. Let w = OlU203Ul02U3, the following words are equivalent words to w up 

to cyclic shift: 
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3.1 Definitions and notation 

Definition 3.1.3. Let w = (aI,b l ),(a2,b2)' ... ,(an,bn) where a E {O,U} and bEN, 

w =r w' (w is equivalent to w' up to renaming of labels) iff there exists a bijective 

mapping r: N -t N such that w' = (aI, r(bl)), (a2' r(b2)), ... , (an, r(bn)). 

By [wl r , we denote an r-equivalence classes of w. 

Example. Let w = 0lU203UI02U3 and w' = 02U301U203UI. To show that w =r w'. 

We check that the symbols of the first component ofw (OUOUOU) have the same order 

the same as those in the first component of w' and there is a bijective mapping between 

the elements of the second component of w (123123) and the elements of the second 

component of w'. That is 1 -t 2, 2 -t 3 and 3 -t 1. 

Definition 3.1.4. Let wand w' be two Gauss words, w =er W' (w is equivalent to w' 

up to cyclic shift and renaming of labels) iff =er = (=c u =r) *. By [w 1 er, we denote a 

cr-equivalence classes of w. 

Example. Let w = 01 0203Ul U2U3 and w' = 02 U3 UI U20301' To illustrate that 

w =er w'. First we apply cyclic shift to w' to obtain S4(W') = 030102U3UIU2 and 

then determine the bijective mapping between the elements of the second component of 

w (123123) and the elements of the second component of w' . That is 1 -t 3, 2 -t 1 

and 3 -t 2. 

In the next definitions, we define the string rewriting rules system. 

Definition 3.1.5. Let X denote a finite set of variables and E denote an alphabet such 

that E = {(O, i) liE I} U {(U, i) liE I} where I is a finite set. 

For an alphabet E, the language of all cyclic words over E is defined as E~ = 

We define a Gauss string rewriting system T as a tuple (X, Ec, R), where R is a 

set of rewriting rules of the form I ++ r such that I, r E (E U X)~ and var(l) = var(r) 

where var(l) (or var{r)) denotes the set of variables of in l (or in r respectively). 

Let (J denote a ground substitution defined as a function (J : X -t E* which can 

be extended homomorphically (and preserving the name) to (J : (E U X)* -t E*. In 
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3.2 Classification of Reidemeister moves as rewriting rules 

here, we will use a to denote a quotient mapping a : (~ U X)~ -+ ~~. Application of a 

substitution a to a word w is denoted by wO'. 

Definition 3.1.6. Let R = {tI, t2, .'" t n } denote the set of rewriting rules and let 

t E R, a one-step rewriting relation =>t~ ~~ X ~~ where t = l +-7 r is defined as follows: 

w =>t w' ifJ:la from (~ U X)~ -+ ~~ and [W]e = lO' and [w'le = ra or [w]e = ra and 

[w'le = la. 

=>R= UtER =>t· The reflexive transitive closure of =>R is denoted by =>R' 

3.2 Classification of Reidemeister moves as rewriting rules 

In this section, we consider Reidemeister moves as rewriting rules for Gauss words. 

We analyse the minimal number of distinct rules for each type of Reidemeister moves. 

Because the symbols on a Gauss word follow some cyclic order, the Reidemeister moves 

will take into account orientation of the strands. So for each type, we will consider all 

possible orientations of the strands involved and the order in which they are visited 

during the traversal of the knot diagram. We will show that there are two distinct 

rewriting rules for type I, two distinct rewriting rules for type Il and eight distinct 

rewriting rules for type Ill. 

In this section our goal is to define Reidemeister moves as Gauss string rewriting 

rules to make the following diagram in Figure 3.1 commutative. We demonstrate that 

if a knot diagram Kl is transformed into K2 by a Reidemeister move of type i where 

i E {I,II,III} then similarly the Gauss word corresponding to Kl (Gw(Kt)) can be 

transformed into Gw{K2) by a rewriting rule of type i. 

3.2.1 Type I 

Type I move involves a single strand and can be applied to any part of the knot by either 

introducing a "kink" (a simple loop) which in turn increases the number of crossings by 

one or removing the kink, thereby decreasing the number of crossings by one. The rule 

corresponding to type I moves which increases (or decreases respectively) the number 

of crossings will be denoted by I t (or I .J.. respectively). We illustrate all possible 

variants of type I shown in Figure 3.2 that can be obtained by twisting a kink in two 
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3.2 Classification of Reidemeister moves as rewriting rules 

Figure 3.1: - Reidemeister moves on knot diagrams correspond to rewriting rules on 
Gauss words 

different directions (clockwise and anti-clockwise) and assigning to a kink two opposite 

orientations. 

a b c d 

Figure 3.2: - All variants of type I 

Let the set rh = {a, b, c, d} denote all variants of type I pictured in Figure 3.2 

such that x is a subword which corresponds to the curve with dashed lines. Then 

a = XOiUi t-t x, b = XUiOi t-t X, C = OiUiX t-t x and d = UiOiX t-t x. 

In the following proposition, we will show that for the purpose of rewriting Gauss 

words!, the following set of rules {a,b} is equivalent to the set nl. Diagrammatic 

representations of the two rules are shown in Figure 3.3. 

Proposition 3.2.1. =>* - =>* fh - {1.1,1.2} 

lRecall from Section 2.1.2 that Gauss words are considered by default as cyclic words 
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3.2 Classification of Reidemeister moves as rewriting rules 

Proof. Consider cyclic permutations of each element in fh. As a result of cyclic shift 

a = XOiUi, b = XUiOi, c = XOiUi and d = XUiOi. Hence a and c are equivalent to 1.1 

and band d are equivalent 1.2 o 

' .. 

Figure 3.3: Type I - Minimal classes of type I 

3.2.2 Type 11 

Type II moves involve the interaction between two strands such that either one strand 

is placed on top of the other creating two new crossings or the two strands are pulled 

apart removing two crossings. The rule corresponding to type II moves which increases 

(or decreases respectively) the number of crossings will be denoted by lIt (or lIj.. re

spectively). We observe that moves of Type lIt can only be applied to two strands 

Figure 3.4: - Application of type lIt to two strands in Kl that do not share a common 
face 

which share the same face in a knot diagram otherwise there will be some intersec

tions with other intermediate strands that may result in creating additional crossings 

(known as virtual crossings [37]) which will not be present in the corresponding Gauss 
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3.2 Classification of Reidemeister moves as rewriting rules 

word. For an example, let K1 be a knot diagram (with labelled faces from A to F) 

representing the Gauss word w = U1U203U4020104U3 and let K2 represents the new 

word w' obtained from w by applying type IIt move to U1U2 and U3U1 in w. Now 

considering the two diagrams K1 and K2 illustrated in Figure 3.4, it's clear that the 

strands in K1 corresponding to U1 U2 and U3Ul do not share a common face between 

them and in order to connect them we had to cross an intermediate strand (resulting 

in two additional crossings) which are not taken into account in w'. 
For the purpose of rewriting we only need to consider variants that correspond to 

oriented knot diagrams. In Figure 3.5 we present all possible variants for type II rules 

obtained by considering all possible orientations of the strands involved and the order 

in which they are visited during the traversal of the knot diagram. , ..... vi 'V .. Y..--_ " ) '. " ( " Q" i -' 
I \ ' \ 
I I I I 
I , I I 
I , I I 

\ I " \ I,' I 
\ ,\ I 

X \ (' 'y y', ' X I . ..' ..... -..'-,' .. _ .... : ... ' "'x--'" 
a b c 

Figure 3.5: Type 11 - All variants of type II 

Let the set O2 = {a, b, c, d} denote all variants of type II pictured in Figure 3.5 

such that x and y are subwords corresponding to the two curves with dashed lines. 

Then a = XOiOjyUiUj ++ xy, b = XOiOjyUiUj ++ xy, c = XOiOjyUjUi ++ xy and 

d = XOiOjyUjUi ++ xy. 

In the following proposition, we will show that for the purpose of rewriting Gauss 

words, the following set of rules {a,c} is equivalent to 02. Diagrammatic representations 

of the two rules are shown in Figure 3.6. 

Proposition 3.2.2. =>02 = =>{2.1,2.2} 

Proof. The proof is similar to that in type 1. Here, a and in b are equivalent to 2.1 and 

c and d are equivalent to 2.2. o 

26 



3.2 Classification of Reidemeister moves as rewriting rules 

Q~)( 
/ , / 

'--- -----
Figure 3.6: Type 11 - Minimal classes of type 11 

3.2.3 Type III 

Type III moves involve the interaction between three strands with triple crossing points 

which share the same face; a top strand (going over two crossings), a middle strand 

(going over one crossing and under the other) and a bottom strand (going under two 

crossings). A type III move does not change the number of crossings in a knot but 

rather it rearranges the order of crossings. 

Variants of type III If one considers all possible orientations of the involved strands 

and their order in which they appear in the knot. Then as shown in Figure 3.7, there 

are 8 possible ways in which the three strands can be oriented, plus 4 different forms 

in which the three strands may appear in the knot in a legal type III move and 2 

different ways in which the strands can be ordered in the knot. So in total there are 64 

variants corresponding to a particular move and another 64 variants corresponding to 

the inverse move. These are listed below in terms of rewriting rules. 
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3.2 Classification of Reidemeister moves as rewriting rules 

a12 

Figure 3.7: - a set of variants of type III 
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35 XOiOjyOkUjZUkUi H XOjOkyUjOiZUkUi 

36 XOiOjyUjOkZUiUk H XOiOjyOkUiZUkUj 

37 XOiOjyOkUjZUiUk H XOjOkyUjOiZUiUk 

38 XOiOjyUiOkZUjUk H XOiOjyOkUjZUkUi 

39 XOiOjyUiUkZOkUj H XOjOkyU;UkZUjOi 

40 XOiOjyUjUkZUiOk H XOiOjyUkUiZOkUj 

41 XOiOjyOkUjZUiUk H XOjOkyUjOiZUiUk 

46 XOiOjyUiUkZUjOk H XOiOjyUkUjZOkUi 

47 XOiOjyOkUjZUkUi H XOjOkyUjOizUkUi 

48 XOiOjyUjOkZUiUk H XOiOjyOkUiZUkUj 

49 XOiOjyUjOkZUkU; H XOjOkyOiUjZUkUi 



3.2 Classification of Reidemeister moves as rewriting rules 

\ 
Figure 3.8: Type III - Two types of moves 

In Figure 3.8, we show that there are two possible outcomes for application of type 

III where the first outcome corresponds to sliding the top strand from one side of a 

crossing to other side (denoted by 3a) and the second outcome corresponds to sliding 

the bottom strand to the other side of a crossing (denoted by 3b). In terms of rewriting 

on a Gauss words; we will consider the following example: 

Example. Let w = XOiOjyUkUjZOkUi, w' denote the word obtained after applying 3a 

to wand w" be the word obtained after applying 3b to w. 

Application of type III results in two outcomes depending on whether the move 

3a or 3b is applied (See Figure 3.8). The effect of this on a word is as follows: If 3a 

is applied to a word w, then the positions of the symbols OiOj remain unchanged in 
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3.2 Classification of Reidemeister moves as rewriting rules 

w' and likewise the positions of UkUj in w" (after 3b is applied) but the positions of 

the remaining symbols are altered. We notice that the rearrangement of the remaining 

symbols depends on whether the symbol k E {Uk, Ok} appears before or after the 

counterpart symbols of OiOj (if 3a is applied). Application of 3a rearranges the symbols 

associated with k in the following way: If Ui (or Uj respectively) is a predecessor of 

k then application of a rule make Uj (or Ui respectively) to become a successor of 

k. For instance, consider the word w = XOiOjyUiUkZOkUj where Ui is a predecessor 

of Uk and Uj is a successor of Ok. After application of 3a to w, we obtain a new 

word w' = XOiOjyUkUjZUiOk where Uj becomes a successor of Uk and Ui becomes a 

predecessor of Ok. 

Alternatively the rewriting procedure for type III rules can be described in terms 

of the interlacement of the symbols involved. Recall in Definition 2.1.4 we defined the 

notion of interlacement of symbols where two labels i and j are said to be interlaced in w 

iff the label j appears once between the two labels of i and vice versa, e.g i, ... , j, ... , i, .... j 

The rewriting procedure can be described as follows: Let w' be the resultant word 

obtained from wafter application of type Ill. 

1. If 3a is applied then 

• Fix the positions of OiOj and rearrange the remaining symbols in such away 

that for all ij, i and j interlace in w' iff i and j do not interlace in w. 

2. If 3b is applied then 

• Fix the positions of UiUj and rearrange the remaining symbols in such away 

that for all ij, i and j interlace in w' iff i and j do not interlace in w. 

We notice that the interlacement of symbols in a Gauss word relates to the intersection 

of chords in a Gauss diagram (see Figure 3.9). That is, for any labels i and j in a Gauss 

word w, i and j interlace in w iff chord i intersects with chord j in the corresponding 

Gauss diagram. 
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3.2 Classification of Reidemeister moves as rewriting rules 

UI ...l!.... 

UI ~ 

Figure 3.9: Gauss diagram - Interlacement of symbols appear in a Gauss diagram as 
intersection of chords 

Let fh denote the set of all variants of type Ill. In the following proposition we will 

show that fh is equivalent to the following set of rules. 

Proposition 3.2.3. =>03 = =>{3.1, ... ,3.8}' where 

Proof. Determine all possible equivalent classes in terms of cyclic shift and renaming 

of labels. As a result, one will obtain the following: 

• 3.1 = 1,13,18,24,39,43,60,62 

• 3.2 = 2,7,11,14,33,40,44,45 
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3.2 Classification of Reidemeister moves as rewriting rules 

• 3.3 = 3, 15,20,22,37,41,58,64 

• 3.4 = 4,5,9, 16,35,38,42,47 

• 3.5 = 6,10,19,21,36,48,57,63 

• 3.6 = 8,12,17,23,34,46,59,61 

• 3.7 = 25,26,31,32,51,52,53,54 

• 3.8 = 27,28,29,30,49,50,55,56 

o 

The claim below follows from Propositions 3.2.1 to 3.2.3. 

Claim 1. Reidmeister moves on a knot diagram can be formalised as the following set 

of rewriting rules on a Gauss word: 
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(3.8) 

Figure 3.10: Type III - Minimal classes of type III 
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3.3 Reachability properties of Reidemeister moves 

The above claim means that if you take a knot diagram Kl and perform some knot 

transformations in some order to obtain another diagram K2 then it can be presented 

as follows: Take a corresponding Gauss word of Kl and apply the above set of rewriting 

rules in some order to obtain another Gauss word corresponding to K2. 

3.3 Reachability properties of Reidemeister moves 

According to the Reidemeister theorem, if two knot diagrams are equivalent then there 

exists a finite sequence of moves of types I, 11 and III that can transform one knot 

diagram into the other. There has been some research devoted towards the estimation 

of the length of such sequence and in particular an initial upper bound on the length 

of the sequence which leads to the unknot was demonstrated to be that 2cn [29] where 

c=1011 and n is the number of crossings and later improved to 2cn where c = 154 [64]. 

The only lower bounds presented for the unknotting problem based on the sequence of 

transformations involving I, 11 and III were shown to be quadratic with respect to the 

number of crossings [31; 32]. For the general case of equivalence of knots as well as links 

a new recent upper bound was shown to be to 2cn [13] where c = 106 . Furthermore, 

two knot diagrams are equivalent iff one can be obtained from the other by a sequence 

of type I t moves (increase), followed by a sequence of type II t moves (increase), 

followed by a sequence of type III moves, followed by sequence of type I I ..t. moves 

(decrease) [12]. This is denoted by 

It, II t,III, II ..t. 

This result raises some questions about the complexity bounds for the equivalence 

problem based on the number of transformations, particularly for a subset of rules. 

In this section we analyse the reachability properties of Reidemeister moves and 

provide lower and upper bound on the number of transformations for the equivalence 
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3.3 Reachability properties of Reidemeister moves 

problem of two knot diagrams reachable by a sequence of moves of the same type. We 

show linear lower and upper bounds for types I and 11, and a quadratic lower bound 

for type III with respect to the number of crossings while for a subset of rules of type 

{ I, Il}, {I, Il I} and {Il, Il I} we provide some classes of structures useful for proving 

lower bounds. 

3.3.1 Basic definitions 

For definitions on string rewriting systems we refer the reader to Section 3.5.1. 

Because application of types I and 11 rules can either increase or decrease the size 

of a Gauss word, we need to distinguish between the two different operations. So 

applications of type it can increase the size of w whereas applications of type 'i -I.. 

decreases the size of w, where i E {I, Il}. 

For a set of rewriting rules R over a finite set E, we define some properties on the 

relation =}R induced by R. For an illustration see Figure 3.11. 

Definition 3.3.1. A relation =}R is said to be locally confluent iff for all w, w' and w" 

in E~, if w => R w' and w => R w" then there exist Will in E~ such that w' => R Will and 

w" =>jz w'" (3j. 

Definition 3.3.2. A relation =>R is said to be (globally) confluent iff for all w,w'and 

w" in E~, if w => jz w' and w => jz w" then there exist Will in E~ such that w' => R Will 

and w" => jz Will. This is also known as Church-Rosser property /3). 

Lemma 3.3.1.1 ([56]). If a relation =>R is locally confluent and has no infinite rewrit

ing sequences (wo => R Wl => R ... => R Wi => R ... => R) then => R is globally confluent. 

Definition 3.3.3. Let w be a Gauss word and R = {I ,J..}, {Il -I..}, {I ,J.., Il ,J..}, then w is 

reducible iff there exists a word w' such that w =>jz w'. The word w' is called R-reduct 

of w (denoted by reduct R (w)) if w' is not reducible by => R respectively. 
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Will Will 

Locally Confluent Confluent 

Figure 3.11: - Properties of rewriting systems 

3.3.2 Reachability by type I 

In this subsection, we investigate the complexity of the path between two equivalent 

knot diagrams represented by Gauss words which are reachable by a sequence of Rei

demeister moves of type I and present lower and upper bounds on the number of 

transformations for transforming one diagram into the other. 

In the following proposition we will state that the relation => Rover E where 

R = {I .!-} is confluent and then demonstrate an upper bound on the number of 

transformations between two Gauss words reachable by {I}. 

Proposition 3.3.1. Let R = {I .!-}, the relation => Rover E is confluent. 

Proof. To prove that => R is confluent, we will need to show that => R is locally confluent 

and that all reduction sequences of => R terminate. 

To show that =>R is locally confluent, assume that W =>R w' and W =>R w" for 

some word w. Let w = xaybz where a, b E {OiUi, UjOj} for some i,j ~ 1. Then 

w = xaybz =>R xybz = w' and W = xaybz =>R xybz = w". Now we have w' =>R xyz 

and w" =>R xyz (see Figure 3.12 for an illustration). Thus local confluence holds for 

the relation =>R· Now it remains to show that all sequences of =>R terminate. Let us 

consider any sequence Wl => R W2, ... , => R W n , since at each step we decrease the size 

of resulting word, that is for any two words Wi, Wj in the sequence if Wi => R Wj, then 

IWjl < IWil; so the sequence will terminate after finite number of steps. Therefore by 
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xayz a 

Figure 3.12: - D('monstratin~ th(' local confluence property of the relation =>{I.\.} 

Lemma 3.3.1.1 ::::} R is a confluent. o 

Proposition 3.3.2. Let w, w' E 1:~ and R = {I -l.}, if W ::::}{I} w' then ReductR{W) = 

Reduct R ( 11/) 

Proof. Suppose that W ::::}R w'. Then W ::::}R ReductR{W) and w' ::::}'R ReductR{w'). It 

follows that U' =>R Rc:ductR(W'). By Proposition 3.3.1 ReductR{W) = ReductR{w'}. 0 

Corollary 3.3.1. If tl'::::}jll,l then w=>h.nReduct(w')::::}{It} w' 

In the above Corollary we show that given two Gauss words w and w', if there 

exists a path reaching w' from W via the sequence I* then there exists another path 

from which w' is reachable using the sequence I ..1.* and I t*. 

To compute the upper bound we count the number of steps taken to transform W 

into w' via the sequence I..\. *It"· 

Proposition 3.3.3. Given two Gauss words wand w' where Iwl = 2n and Iw'l = 2m, 

if w ::::}j tv' then the total number of transformations sufficient to rewrite w to w' is at 

most n +m 

Proof. This is the total number of transformations in the sequence 

obtained from Corollary 3.3.2. Since type I can increase or decrease the size of a Gauss 

by ±2. then the number of transformations sufficient to reach Reduct{I.n{w') from w 

is no more than n and no more than m to reach w' from Reduct{I.n{w'). o 
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For computing the lower bound, we consider two classes of diagrams A and B in Fig

ure 3.13. Let w represent An and w' represent Bm where w = UiOj, ... , OnUn, ... , UjOi 

and w' = UjOj, ... , UmOm · For the purpose of proving the lower bound, we associate 

( ·~9 .... ·-p 
Figure 3.13: - Reachability by Reidemeister move of Type I 

--JJ 
Figure 3.14: - Diagrams An and Bm for n = 4 and m = 3 

an integer vector with a Gauss word defined below. 

Definition 3.3.4. Given a Gauss word w, we associate a non-negative integer vector 

5(w) = (x, y) with w where x denote the number of adjacent pairs of OU and UO in 

wand y denote the number of adjacent pairs of UU and 00 in w. 

Example Given w = UIU2U3U404030201 and w' = UI0IU202U303U404 (note 

that wand w' are assumed to be cyclic words). Let SI and S2 be two vectors associated 

with wand w' respectively. Then SI = (2,6) and 52 = (8,0). 

Since the ,'alues of a vector are defined in terms of the first component of w (a 

sequence of Os and Us) then application of type I i move will correspond to the 

addition of two symbols of the form UO or OU and type I ..l. will correspond to the 

deletion of the symbols UO or QU. In the next proposition we will show how of 

application of type I can affect the values of a vector 5(w). 
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Proposition 3.3.4. For Gauss words wand w' the following holds: 

1. If w =>It w' then either S(w') = S(w) + (2,0) or S(w') = S(w) + (0,2) 

2. If u: => n. w' then either S(w') = S( w) - (2,0) or S( w') = S( w) - (0,2) 

Proof. Suppose that w =>/t w'. The values of S(w') depend on where the symbols UO 

or DU are inserted in w. There are eight cases below one needs to consider: 

• w = OOx. w' = OUOOx and S(w') = S(w) + (2,0). 

• w = UUx, w' = UUOUx and S(w') = S(w) + (2,0). 

• w = UOx, w' = UUOOx and S(w') = S(w) + (0,2). 

• w = OUx, w' = OUOUx and S(w') = S(w) + (2,0). 

• w = Oar, w' = OOUOx and S(w') = S(w) + (2,0). 

• w = UUx, w' = UOUUx and S(w') = S(w) + (2,0). 

• w = UO.1.·, W' = UOUOx and S(w') = S(w) + (2,0). 

• w = OU.1.·, w' = OOUUx and S(w') = S(w) + (0,2). 

Now suppose that w =>n. w'. There are also eight cases to be considered for application 

of type I .!. moves. 

• w = OUOOx, w' = OOx and S(w') = S(w) - (2,0). 

• w = UUOUx, w' = UUx and S(w') = S(w) - (2,0). 

• w = UUOOx, w' = UOx and S(w') = S(w) - (0,2). 

• w = OUOUx, w' = OUx and S(w') = S(w) - (2,0). 

• w = OOUOr, w' = OOx and S(w') = S(w) - (2,0). 

• w = UOUUx, w' = UUx and S(w') = S(w) - (2,0). 
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• w = UOUOx, w' = UOx and S(w') = S(w) - (2,0) . 

• w = OOUUx, w' = OUx and S(w') = S(w) - (0,2). 

o 

Next we will show that the number of transformations required to rewrite w to w' 

is at least linear with respect to the number of crossing labels in w. 

Theorem 3.3.1. Let w = Ui,···, UnOn, ... , Oi and w' = UiOi, .. " UmOm where Iwl = 

2n and Iw'l = 2m, then w =}j w' and the total number of transformations required to 

rewrite w to w' is at least n+m-2 

Proof. Let S(w) and S(w') be the vectors associated with wand w' respectively. By 

Definition 3.3.4. S(w) = (2,2(n - 1)) and S(w') = (2m,0). By Proposition 3.3.4 

application of type I i moves to w can only reduce either the value of first component 

or the value of the second component of S( w) by 2 and application of type I t moves can 

only increase either the value of first component or the value of the second component 

of S(w) by 2. Therefore to transform w to w', we will need to use at least n - 1 

applications of type I i moves to reduce the value of first component of S( w) from 

2(n - 1) to ° and at least m-I applications of type I t moves to increase the value of 

second component of S(w) from 1 to 2m. 0 

3.3.3 Reachability by type II 

In this subsection, we investigate the complexity of the path between two equivalent 

knot diagrams (encoded by Gauss words) which are reachable by a sequence of Rei

demeister moves of type II and present some upper and lower bounds based on the 

number of transformations for transforming one diagram into the other with respect to 

the number of crossings. In the following proposition we show that the relation =} {II.!.} 

is confluent and then use this property to derive the reachability path between two 

Gauss words reachable by a sequence of type II moves. 

Proposition 3.3.5. Let R = {IJ i}, the relation =}R over ~ is confluent. 
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Proof. To prove that ~R is confluent, we will need to show that ~R is locally confluent 

and that all reduction sequences of ::::} R terminate. 

Assume that W ~R w' and W ~R w" for some word w. Let w = xabycdz where 

a = OiOj, b = UkUm, c = UiUj or c = UjUi and d = OkOm or d = OmOk for 

some i, j, k, m 2: 1 and i < j < k < m. Then w = xabyc-ilz ::::}R xbydz = w' and 

w = xabycdz ~R xaycz = w". Now we have w' ~R xyz and w" ~R xyz. Thus local 

confluence holds. 

To show that ~R terminate. Let us consider a sequence WI ~R W2, ... ,::::}R wn , 

notice that is for any two words Wi, Wj in the sequence if Wi ~R Wj, then IWjl < IWili so 

thc scqIlCIH'{' does terminatc after finite number of steps. Therefore by Lemma 3.3.1.1 

~R is a confluent. o 

Proposition 3.3.6. Letw,w' E I:~ and R = {If -l-}, ifw ::::}{II} w' then RedudR{w) = 

RedudR{w') 

Proof. The proof uses an argument similar to the argument in the proof of Proposition 

3.3.2. o 

Corollary 3.3.2. Ifw~ilw' then w::::}{II.j.}Reduct{w')~{lIt}w' 

In the above Corollary we show that given two Gauss words wand w', if there exists 

a path reaching w' from w via the sequence f f* then there exists another path from 

which w' is reachable without exceeding the number of crossings using the sequence 

11-1-*1It* 

To compute the upper bound we count the number of steps taken to transform w 

into w' via the sequence I I .,J.. * I I t*· 

Proposition 3.3.7. Given two Gauss words wand w' where Iwl = 2n and Iw'l = 2m, 

if w ~iJ U" then the total number of transformations sufficient to rewrite w to w' is 

at most n1m. 
Proof. This is the total number of transformations in the sequence 
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obtained from Corollary 3.3.2. o 

For computing the lower bound, we consider two classes of diagrams A and B 

illustrated in Figure 3.15. Let w represents diagram An and w' represents Bn where 

w = Ui, ... , UnOi.··· ,On and w' = Ui , ... , UmOm, ... ,Oi such that n = m == 0 mod 1. 

r····· .. ········· '\ 
I~J ••••••••••••••. ~ 

Figure 3.15: - Reachability by Reidemeister move of Type II 

We consider second component of a Gauss word only (a sequence of natural numbers 

for the crossing labels referred to as a shadow word) and associate an interlacement 

graph with a shadow word in the following way: Create a node for each label i E 

{I ... n} in wand connect two nodes i, j by an edge iff i occurs only once between the 

two appearances of j in w. For an example see Figure 2.6 in Chapter 2. 

To estimate the lower bound, we define a vector based on the number of edges and 

nodes of the interlacment graph associated with a shadow word. 

Definition 3.3.5. Let w be a Gauss word and G(w) be an interlacement graph associ

ated with w, then S(Gw ) = (x, y) is a vector associated with G(w) where x denotes the 

number of nodes of G( w) and y denotes the number of edges of G( w). 

Proposition 3.3.8. For Gauss words wand w', the following hold: 

1. If w =>lIt w' then S(GW') = S(Gw ) + (2, y) for y = 0, ... , 2n + 1 

2. If'lL' =>1I.!. u/ then S(GWI) = S(Gw ) - (2, y) for y = 0, ... , 2n - 3 

Proof. Suppose that w => It w'. Then application of type I t move to w can increase 

the number of nodes of S( GWI) by 2 and the number of edges of S( GWI) can change 

depending on where the labels ij and ii or ij and ij are inserted in w. So we have the 

following cases to consider: 
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• w = 1···n1···n w' = ij1···n1·. ·nji and S(Gw') = S(Gw ) + (2,0). 

• w = 1···n1···k···n w' = ij1···kij···n1···k···n and S(Gw') = S(Gw ) + 

(2, 2k + 1). 

• w = 1···n1···n w' = ij1···nij1···n and S(Gw') = S(Gw ) + (2,2n+ 1). 

Now suppose that w =} n w'. Then the number of nodes can decrease by 2 and the 

number of edges can decrease as follows: 

• w = ij1···n1·· ·nji w' = 1·· ·n1···n and S(Gw') = S(Gw ) - (2,0). 

• w = ij1···kij···n1···k···n w' = 1···n1···k···n and S(Gw') = S(Gw ) + 

(2,2k - 3). 

• w = ij1··· nij1···n w' = 1·· ·n1···n and S(Gw') = S(Gw ) + (2,2n - 3). 

o 

Theorem 3.3.2. Let w = Ui· .. UnOi ... On and w' = Ui ... UnOn .. ·Oi where n, m = 
1 mod 2, then w =}j[ w' and the total number of transformations of type II required to 

rewrite w to w' is at least ~ - 1 

Proof. Let S( Gw ) and S( Gw') be the vectors associated with wand w' respectively 

as defined in Definition 3.3.5. Then S(Gw ) = (n, n(n2-1)) and S(Gw') = (m,O). By 

Proposition 3.3.8 application of type I I ..\.. moves to w can reduce either the number of 

nodes in S(Gw ) by 2 or the number of nodes by 2 and the number of edges by at most 

2n - 3 while application of type I I t moves can increase either the number of nodes by 

2 or the number of nodes by 2 and the number of edges by at most 2n + 1. 

To calculate the minimal number of steps required to reduce number of edges in 

S(Gw ) from n(n2-1) to 0, we do the following computations. Let k denote the number 

of steps where for each step i = 0, ... , k - 1, the number of nodes is reduced by n - 2i 

and the number of edges is reduced by a maximal number 2( n - 2i) - 3. Then we have 

the following equation. 

n(n - 1) 
2 = 2(n - 0) - 3 - 2(n - 2) - 3 ... - 2(n - (k - 1)) - 3 

43 



3.3 Reachability properties of Reidemeister moves 

To find the minimal number of such steps we compute k by rewriting the equation in 

a closed form and using the quadratic formula to solve it. 

n(n
2
- 1) = 2(n - 0) - 3 - 2(n - 2) - 3 ... - 2(n - (k - 1)) - 3 

n(n - 1) = k(2n _ 3) _ 2k(k - 1) 
2 

n(n - 1) = 2(k(2n - 3) - 2k(k -1)) 

n(n - 1) = (4n - 2)k - 4k2 

4k2 - (4n - 2)k + n(n - 1) = 0 

k _ 4n - 2 - J( -4n - 2)2 - 4 x 4 x (n2 - n) _ n - 1 
- 2x4 - 2 

4n - 2 + J(-4n - 2)2 - 4 x 4 x (n2 - n) n 
k= 2x4 =2" 

Next we will show that no matter how type II ..!.. is applied we still need to have at 

least n;-l applications. To do this we define some local property to demonstrate that 

applications of I I ..!.. I I t is no better than applications of I I t I I ..L.. 

Let I I ..L. max denote the maximal number of edges that can be removed by I I ..!.. and 

let w ==?Il~",a;r w' and w ==?Il~ w" then the value of y' in S(GWI) is less or equal to the 

value of y" in S(GW") and similarly if W ==?Il~ma", W' ==?lIt w" and w ==?lIt Will =>1I~max 

W"" then the value of y" in S(GW") is less or equal to the value of y"" in S(GW"")' Now 

we can use this property globally to rearrange the sequence of applications of types 11 

by sorting all applications of type I I ..!.. followed by all applications of type I I t. 

So far we have computed the minimal number of applications of type I I ..!.. moves 

required to reduce the number of edges of S(Gw ) from n(n2-1) to O. Now it remains to 

compute the number of applications of type I I t moves needed to increase the number 

of nodes of S(Gw ) from 1 to m. Let l ~ (n;l) denote the number of applications of 

type I I ..L., and p denote the number of applications of type I I t, to compute p we need 
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to solve the following equation: 

n+ 2p- 21 = m 

n-1 
n+2p-2(-2-)~m 

2p+ 1 ~ m 

m-I 
P>-- 2 

Therefore to transform w to w', we need to use at least n2"l applications of type 

I ..j.. moves to reduce the number of edges of S(Gw ) from n(~-l) to 0 and at least m21 

applications of type I t moves to increase the number of nodes of S(Gw ) from 1 to 

rn. o 

«(n-1/2) 11-1- ) 

Figure 3.16: - Diagrams An and Bm for n = 5 and m = 5 

3.3.4 Reachability by type III 

In this subsection, we investigate the complexity of the path between two equivalent 

knot diagrams which are reachable by a sequence of Reidemeister moves of type III and 

present a quadratic lower bound on the number of transformation needed to transform 

one diagram into the other with respect to the number of crossings. The complexity 

of Reidemeister moves of type III has been studied in [10] where some constant lower 

bound for the number of moves of type III was presented by using extended n-colorings 

of knot diagrams in the plane. 

As to the upper bound, one can obtain a trivial exponential upper bound with 

respect to the number of symbols of a Gauss word by computing its permutation. This 

because transformations involving type III does neither increase of decrease the number 
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of crossings. However, a precise upper bound is still to be studied. 

It is a known fact in knot theory that the writhe is a signed knot diagram invariant 

[14] under Reidemeister moves of types Il and Ill. The writhe is defined as the sum of 

signs of all crossings in a signed knot diagram. The value assigned to each crossing is 

1 if a crossing is positive and -1 if a crossing is negative. So from this fact we derive 

the following proposition: 

Proposition 3.3.9. [141 Let wand w' be signed Gauss words representing two knot 

diagrams and Wr(w) denote the writhe of a Gauss word w, ifw ~iII w' then lVr(w) = 

Wr(w') 

The fact that the converse does not hold can be shown by providing two knot 

diagrams that are not reachable from each other by type III but have the same writhe. 

This is illustrated in Figure 3.17. It is easy to see that type III is not applicable to any 

of the diagrams. 

Figure 3.17: - Two different knots with the same writhe (Wr(Kl) = Wr(K2 ) = -1) 

To estimate the lower bounds for type Ill, we consider two classes A and B of knot 

diagrams where for any knot diagram Ak E A, the number of crossings of Ak and Bk is 

3k for some k ~ 1 such that Ak and Bk are constructed in the same form as in Figure 
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k-twists 

k 

3.3 Reachability properties of Reidemeister moves 

. .. k 

..1, k-strands 

III * 
( ) 

Figure 3.18: - Diagrams Ak and Bk with 3k crossings 

A 
2 

Figure 3.19: - Diagrams Ak and Bk for k = 2 

Proposition 3.3.10. Given two knot diagrams Ak and Bk with n crossings where 

n = 3k and k 2: 1, if Bk is reachable from Ak by a sequence of Reidemeister moves of 

type III then the number of moves required to transform Ak to Bk is at least G)2 

Proof. Ak consists of k twists and k horizontal strands. Application of Type III moves 

to diagram Ak is limited as it can only be applied to the k-strands by moving them 
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down (or down and then up) through the crossings corresponding to the k twists. To 

have the minimal steps we need to move the k-strands down through each twist. Since 

application of type III corresponds to moving one strand through a single crossing, 

then we would require at least k2 steps to move k strands through k crossings. Hence 

D 

3.3.5 Combination of Reidemeister moves types 

In this section we analyse the reachability properties of Reidemeister moves for a com

bination set of rules and present linear upper bounds on the number of moves of type 

{I, Il} and quadratic lower bounds on the number of moves of type {I, Ill} to reach 

one diagram from the other. In addition we provide some plausible classes of structures 

which can be used to prove lower bounds for types {I, Il} and {Il, Ill}. 

3.3.5.1 Reachability by types I and 11 

In this subsection, we investigate the complexity of the path between two equivalent 

knot diagrams which are reachable by a sequence of Reidemeister moves of type {I, I I} 

and demonstrate a linear upper on the number of transformations between two Gauss 

words reachable by {I, Il}. Then we present two classes of structures which can be 

used to prove the lower bound and we expect that the number of moves of types {I, I I} 

required to transform one diagram into the other is linear with respect to the number 

of crossings. 

In the following proposition we will show that ~ R is confluent where R = {I .!-, I I .!-} 

and then use this property to derive the reachability path between two Gauss words 

reachable by a sequence of type {I, Il}. 

Proposition 3.3.11. Let R = {I .!-, I I .!-}, the relation ~ R over ~ is confluent. 

Proof. Assume that w ~R w' and w ~R w" for some word w. There are three 

cases to be considered for R; R = {I H, R = {Il .!-} and R = {I .!-, Il .!-}. By 

Proposition 3.3.1 the relation =*{I.j.} is confluent and by Proposition 3.3.5 the relation 
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=> {I I.j..} is confluent. Now it remains to show for R = {I ~,II H, the relation => R is 

confluent. Let U' = xabycz where a = OiOj, c = UiUj or c = UjUi and b = OkUk or 

b = UkOk for some i, j, k ~ 1 and i < j < k. Then W = xabycz => R xaycz = w' and 

W = xabycz =>R xbyz = w". Now we have w' =>R xyz and w" =>R xyz. Thus local 

confluence holds. 

To show that => R terminate. Let us consider a sequence Wl => R W2, ... , => R Wn , 

notice that is for any two words Wi, Wj in the sequence if Wi =>R Wj, then !Wj! < !Wi!j so 

the sequence does terminate after finite number of steps. Therefore by Lemma 3.3.1.1 

=> R is a confluent. o 

Proposition 3.3.12. Let w, w' E r:~ and R 

ReductR(w) = ReductR{w') 

{I ~,II ~}, if W =>{I,II} w' then 

Proof. The proof uses the same argument as in the proof of Proposition 3.3.2. 0 

Corollary 3.3.3. If W =>{I,II} w' then W =>{J.j..,IIH Reduct(w') =>{Jt,lIt} w' 

To compute the upper bound we count the number of steps taken to transform W 

into w' via the sequence =>{J.j..,II.j..}' =>{It,IIt}· 

Proposition 3.3.13. Given two Gauss words wand w' where !wl = 2n and Iw'! = 2m, 

if w =>j,I[ w' then the number of moves sufficient to rewrite w as w' is at most n+m-1. 

Proof. This is the total number of transformations in the sequence 

w =>{I.j..,II.j..} Wi,"" =>{I.j..,II.j..} ReductR{w') =>{It,IIt} Wj, ... , =>{It,IIt} w' 

obtained from Corollary 3.3.3. Here, we assume that type II is applied once. 0 

For computing the lower bound, we consider two classes of diagrams A and B 

(where B can be seen as mirror images of diagrams in A) for which Reidemeister moves 

of type I and II are applicable. The sequence of diagrams of A and B follow the form 

illustrated in Figure 3.20 where both Ak and Bk have 3k crossings for some k ~ 1. For 

an example where k = 2, see Figure 3.21. 
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Figure 3.20: - An instance of two knot diagrams Ak and Bk with 3k-crossings reachable 
by rules of type I and 11 

Figure 3.21: - Transformation of Ak into Bk by types I and 11 where k = 2 
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Conjecture 3.3.1. Given two knot diagrams Ak E A and Bk E B with n-crossings 

where n = 3k for some k ~ 1, if Bk is reachable from Ak by a sequence of Reidemeister 

moves of types {l, Il} then the number of moves required to transform Ak to Bk is at 

I t 4(n+m) 2 eas -3- - . 

Comment. Notice that Ak is a mirror image of Bk obtained by inverting the 

crossings of Ak from over-crossing to under-crossing and vice versa. We believe that 

the minimal way is to reduce Ak and Bk is to a common diagram. So the only common 

diagram reachable from Ak and Bk by Reidemeister moves of types I I ,J.. and I ,J.. is 

a diagram with one crossing. Since Ak has 3k crossings we will require at least k 

applications of type I I ,J.. moves and k - I-applications of type I ,J.. moves to reduce the 

number of crossing Ak to 1 and then to reach Bk will need at least k applications of 

type I I t and k - I applications of type I t to increase the number of crossings from 1 

to 3k. So in total the number of steps required is at least 2(k -1) + 2k = 4k - 2. Now 

b · . k b n h 4(n+m) 2 su stltutmg y 3' we ave 3 -. 

Essentially to make it a full proof we need to show that any other way will lead to 

a longer sequence. We believe it's true but we don't have the full proof at the moment. 

3.3.5.2 Reachability by types I and III 

In this subsection we present two classes of diagrams A and B illustrated in Figure 3.22 

such that for any diagram Ak E A, Ak has 3k crossings and any diagram Bk E B Bk 

has 2k crossings for k ~ 1. Using the proposed classes of diagrams we will show that 

the number Reidemeister moves of types I and III required to transform Ak into Bk is 

at least quadratic with respect to the number of crossings. 

Proposition 3.3.14. Given a knot diagram Ak E A and Bk E B where k ~ 1, if Bk 

is reachable from Ak by a sequence of Reidemeister moves of types {l, I I I} then the 

number of moves required to transform Ak to Bk is at least k2 + k 

Proof. To transform Ak to Bk, we need to undo all twists in Ak to reduce the number 

of crossings from 3k to 2k. Application of type III move does not affect the number of 
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3.3 Reachability properties of Reidemeister moves 

k-twists ( {I,III} ) 

k 

Figure 3.22: - Diagram Ak with 3k crossings and Diagram Bk with 2k 

crossings and application of type I move can either increase of decrease the number of 

crossings by 1. 

Notice that any sequence involving type It moves does not help in reducing ap

plications of type III to move the k-strands down through the crossings and allow us 

undo the k- twists in Ak. This is because application of type It moves only creates new 

loops on a single strand and as a result of this it will increase the number of crossings 

in which in turn increases the number of transformations. 

Therefore the shortest way to reduce the number of crossings in Ak is to apply 

type I .!-. The only way to make type I .!- applicable is by moving the k-strands down 

through the crossing. Since there are k-twists and k-horizontal strands, to move the 

k-strands down through each crossing, we would require at least k 2 moves of type III 

and k moves of type I .!- to undo the twists. 0 

3.3.5.3 Reachability by types 11 and III 

In this section, we consider a class of diagrams presented in [31] which were used to 

demonstrate lower bound on the number of Reidemeister moves of types {I, I I, I I I} 

for the unknottedness problem. We modify such class of diagrams as depicted in Figure 
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(~(l11) ) 

A 
k 

Figure 3.23: - Transformation of Ak into Bk by types I and III where k = 2 

3.24 to make it more complex and propose to use it for proving the lower bound on 

the number of Reidemeister moves of types II and III required for the equivalence of 

two knot problems. We expect that the number of moves is quadratic with respect to 

the number of crossings. Let A and B be two classes of diagrams such that for any 

diagram Ak E A, the number of crossings of Ak is 19k - 5 and for any diagram Bk E B 

the number of crossings of Bk is k + 3 for some k ~ 1 and Ak has the same form as 

Figure 3.24 and Bk has the same form as Figure 3.25. 

k 

Figure 3.24: - Diagram Ak for k = 4 

Conjecture 3.3.2. Given two knot diagrams Ak and Bk where n=19k-5 k ~ 1, if Bk 
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3.4 Non-isomorphic knot diagrams generated by applications of type I 

Figure 3.25: - Diagram Bk for k = 4 

is reachable from Ak by a sequence of Reidemeister moves of types {I I, I I} then the 

number of moves required to transform Ak to Bk is at least 6k2 + 4k 

Comment. To transform Ak to Bk, we need reduce the number of crossings of Ak 

from 19k - 5 to k + 3. Applications of type III does not affect the number of crossings 

whereas type I I can affect the number of crossings by ±2. Before type I I .!- move can 

applied we need to apply type III move a number of times, so we expect that at least 

k(6k - 4) moves of type III and 8k moves of type II .!- are needed. For an example 

consider Figure 3.26 for the transformations of A4 to B4. We believe this is the minimal 

way because type I I .!- is applied here while applications of type I I t moves will only 

make it worse. 

3.4 Non-isomorphic knot diagrams generated by applica

tions of type I 

In this section we demonstrate the connection between knot diagrams generated by 

Reidemeister moves of type I and unrooted Eulerian n-edge maps. Let us consider 

oriented knot diagrams in the plane represented by Gauss diagrams. Starting from an 

unknot (a diagram with no crossings) we apply type I moves to generate all possible 

diagrams. We are interested in the question of how many non-isomorphic diagrams 
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( 3k(II» 

( 61<-4k(lII) ) 
+6k-k{ii) 

Bk 

Figure 3.26: - Transformation of Ak into Bk by types II and III where k = 2 

can be obtained from the unknot. To conduct this experimentation we developed a 

Java program and discovered that the sequence of non-isomorphic knot diagrams with 

n-crossings we obtained matches the sequence of unrooted Eulerian n-edge maps in 

the plane with a distinguished outer face (see the On-Line Encyclopedia of Integer Se

quences [63]). Further we were looking for the bijective map between the two classes of 

objects and as a result we found two explicit algorithms to describe the transformations 

from Gauss diagrams to maps and vice versa. 

A 2-cell embedding is an embedding in which every face is homeomorphic to an 

open disk (i.e. if each of the faces is a simply connected region). 

Definition 3.4.1. /43} A map is a 2-cell embedding of undirected connected graph, 

loops and parallel edges allowed, on an unbounded surface. If the surface is a sphere 

then the map is a planar map; if the surface is an infinite plane then the map is a plane 

map and one of its faces is distinguished as an outside face. 

Definition 3.4.2. [43} A homeomorphism between two maps on orientable surfaces is 

a bicontinuous bijection between their embedding surfaces that takes the vertices, edges 

and faces of one map into the vertices, edges and faces of the other; in the case of plane 
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3.4 Non-isomorphic knot diagrams generated by applications of type I 

maps, it also takes the outside face of one map into the outside face of the other. 

An unrooted map is an equivalence class of maps under orientation-preserving home

omorphism. 

Definition 3.4.3. A Gauss diagram is an oriented circle with oriented chords. The 

orientation of the circle corresponds to the orientation of the knot diagram and the 

orientation of a chord denotes over-crossing to under-crossing passes. The region inside 

the circle will be called an inner face and the region in the outside of the circle will be 

called an outer face. 

3.4.1 Gauss diagrams to maps 

In this subsection we will describe the first part of the correspondence by presenting 

an algorithm for the transformation of a Gauss diagram to a map. There are two main 

parts of the algorithm. The first part is to construct a set of cycles by adding new 

edges from outside the circle and the second part is to join all cycles together to make 

the corresponding map. 

Let Ui denote a point in the Gauss diagram with an incoming chord and Oi denote 

a point with an outgoing chord where i denotes the label of the chord. 

First we add a new edge from the outer face to connect two points on the circle if 

either there are two consecutive (in counter-clock wise direction) points on the circle of 

the form UiOi and UiOj or Ui . S· Oi and Ui . S· OJ where S denote a set of connected 

points that separates Ui from Oi or Ui from OJ. Then we join two cycles together if 

there are two consecutive points of the form UiUj or OiUj such that the first point 

belong to the first cycle and the second points belong to the second cycle. Further we 

merge two points that belong to the same cycle if there are two consecutive points of 

form UiOi or OiUi. Finally we merge the points of any two cycles that were joined by 

an edge from the inner face. 

At every step of this algorithm there are many choices of how connections are 

created. However the outcome of any choice is equivalent up to orientation-preserving 

homeomorphism as defined in Definition 3.4.2. This means the algorithm will produce 
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3.4 Non-isomorphic knot diagrams generated by applications of type I 

a unique outcome up to this equivalence. 

3.4.1.1 Algorithm 1 

1. For all non-connected points U followed by 0 in a Gauss diagram 

(a) Connect in anti-clock wise direction from an outer face a non-connected U 

with the nearest non-connected 0 separated by connected vertices only. 

@ 
;<.~.-.--.-. 

i ~ 

\ \ 
q'\.: 

, 
\\ \. --'L..-"'
\" , 

' .. "~-"'-'~ 

Figure 3.27: Step 1 - Connecting new edges between points on the circle from the outer 
face 

2. For any two consecutive points (in counter-clock wise direction) of the form UiUj 

or OiUj, if the first point belong to cycle Ci and the second point belong to cycle 

Cj then create a new edge from the inner face to join the two points together. 

Figure 3.28: Step 2 - Connecting new edges between cycles from the inner face 

3. For each cycle, if there are two adjacent points of form UiOi or OiUi then merge 

the two points into one. 

4. For any two cycles Ci and Cj, if Ci is connected to Cj then remove the edge 

joining the points of Ci and Cj and glue the two points together. 
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.,.-: .. -,,,--,~-.,,.,, 
I ! .. , ' 
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...... -... -:~;.~~.' 

Figure 3.29: Step 3 - Merging two points in a cycle 

Figure 3.30: Step 4 - Removing edges between two cycles created in step 2 and gluing 
the two points joining the cycles 

Proposition 3.4.1. Algorithm 1 transforms a Gauss diagram with n non-crossing 

chords into an unrooted Eulerian map with n-edges where n > O. 

Proof. Application of Reidemeister moves of type It correspond to adding a chord 

(with two different possible directions) only to a free segment on the oriented circle 

(intersection of chords is not allowed). This is illustrated in Figure 3.31. 

D~)~D 
Figure 3.31: - Application of type It move on a Gauss diagram 

We will consider the proof by induction. To show that the base step holds, we 

consider all possible Gauss diagrams with one chord and apply the steps of algorithm 

1 to each Gauss diagram in a sequential way to show that the corresponding map has 

only one edge. Since there are two variants of type It moves, we consider each case 

separately. After applying algorithm 1, it is clear that each case results in a map with 

one edge as illustrated in Figure 3.32. 
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3.4 Non-isomorphic knot diagrams generated by applications of type I 

Figure 3.32: Base step - Possible Gauss diagrams with one chord 

Let us assume that a Gauss diagram G with n chords can be transformed by algo

rithm 1 into a map with n edges. We will show that if we add a new chord to G, the 

number of edges of the corresponding map should also increase by one. The segment 

of the circle with dotted lines is assumed to contain n - 1 non-crossing chords. To 

add a chord, we need to consider the two different directions of the new added chord, 

two different directions of the existing adjacent chord and two different possibilities of 

placing a chord either in a sequential order (after another existing chord) or in parallel 

(between the two end of an existing chord). Such consideration give rise to the following 

eight cases: 

1. Adding a new chord (~) immediately after another chord with the same direction 

(see Figure 3.34). 

2. Adding a new chord (~) immediately after another chord with opposite direction 

(see Figure 3.35). 

3. Adding a new chord (~) between the end-points of another chord with the same 

direction (see Figure 3.36). 

4. Adding a new chord (~) between the end-points of another chord with opposite 

direction (see Figure 3.37). 

5. Adding a new chord ( +-) immediately after another chord with opposite direction 

(see Figure 3.38). 
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Figure 3.33: - all possible cases for adding a new chord 
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Figure 3.34: case 1 - Adding a new chord (""""*) immediately after another chord with 
the same direction 
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n~, ~> 
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>CI Step2 >CI IStep3 >~l I, I Step4> ~,. I 
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Figure 3.35: case 2 - Adding a new chord (-t) immediately after another chord with 
opposite direction 

A 
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Figure 3.36: case 3 - Adding a new chord (-t) between the end-points of another chord 
with the same direction 

A C::=I ::=:;> ~ 
\.... ............. / \" 

Addln, a 
new chord 

Figure 3.37: case 4 - Adding a new chord (-t) between the end-points of another chord 
with opposite direction 
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Figure 3.38: case 5 - Adding a new chord (f-) immediately after another chord with 
opposite direction 

6. Adding a new chord (f-) immediately after another chord with the same direction 

(see Figure 3.39) 

new chord 

~IStePl 
, .............. ~ ...• / 

Figure 3.39: case 6 - Adding a new chord (f-) immediately after another chord with 
the same direction 

7. Adding a new chord (+- ) between the end-points of another chord with the same 

direction (see Figure 3.40) 

8. Adding a new chord (+-) between the end-points of another chord with opposite 

direction (see Figure 3.41). 

In each case, we add a chord to a Gauss diagram G with n chords and apply the 

steps of algorithm 1 sequentially to transform G into a map. The number of edges 

of the map obtained coincide to the number of chords of G. The transformation as 
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Figure 3.40: case 7 - Adding a new chord (+-) between the end-points of another chord 
with the same direction 
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Figure 3.41: case 8 - Adding a new chord (+-) between the end-points of another chord 
with opposite direction 
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3.4 Non-isomorphic knot diagrams generated by applications of type I 

illustrated in Figures 3.36 to 3.38 does not change the whole map except for a local 

part where the new edge is added. Thus the statement is true for n + 1. 

o 

For a Gauss diagram x, by x -+ fm(x) we will denote the correspondence map of x 

constructed using Algorithm 1. 

3.4.2 Maps to Gauss diagrams 

In this subsection, we present an algorithm to describe the second part of the corre

spondence concerning the transformation of an Eulerian map in the plane into a Gauss 

diagram. The first part of the algorithm is to construct an oriented circle and the 

second part is to construct oriented chords. 

Definition 3.4.4. Let G denote an Eulerian map, E denote a set of edges of G and 

V denotes a set of points of G. A cycle is a sequence of edges S ~ E connecting a set 

of points such that the starting point and the ending point are the same. An inner face 

of a cycle Ci is a region in the plane that is surrounded by Ci. An outer face of Ci is a 

region that surrounds the boundary of Ci· 

We begin by partitioning the map into disjoint set of oriented cycles such that if 

two cycles share the same point then we make a copy of that point and attach one copy 

for each cycle then connect the two points by a new edge with a dashed line to join the 

two cycles together. Here, we assume that all points have distinct labels (i, il, ... , in) 

and denote by D the set of directed edges with dashed lines. The number of edges 

with dashed lines incident to a point in any cycle is at most four (Le. two edges (an 

incoming and an outgoing) from inside the cycle and two other edges from outside the 

cycle). 

For example, ifthere are a set of cycles C = {Cl, ... , en} where n ;::: 1 glued to point i 

then we separate the cycles and arrange them in the plane from right to left with respect 

to the same order in which they appear in the map. We connect the points il, ... , in 

which were previously glued to point i E Ci by edges in D as follows: If the cycles are 
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3.4 Non-isomorphic knot diagrams generated by applications of type I 

glued to point i from the inner face of cycle Ci and either no cycles linked to point j 

from inner face or the cycles linked to point j from the inner face are disjoint from those 

linked to point i from the inner face then connect d(i,1),d(1,2), ... ,d(n -l,n),d(n,j) 

where d E D and i, j E Ci. Otherwise connect d(i, 1), d(l, 2), ... , d(n-1, n), d(n, i) where 

d E D and i E ('~ such that point 1 belongs to the first cycle Cl which is located on 

right-hand side of point i and point n belongs to the last cycle which is located on the 

left-hand side of point i. 

The cycles are arranged in this way to allow us obtain the order of chords on the 

circle. 

We obtain an oriented circle by marking a starting point in the outer face and 

visiting each edge twice according to a set of rules formulated in step 3 of the algorithm. 

Once each edge has been visited twice then we return to our starting point. Finally we 

obtain the chords by removing all edges that were connected from the outside of the 

circle and all edges with dashed lines. 

3.4.2.1 Algorithm 2 

1. Orient all cycles in counter-clock wise direction. 

Figure 3.42: Step 1 - Orient all cycles in counter-clock wise direction 

2. Partition the map into disjoint set of cycles such that if there are a set of cycles 

C = {Cl, ... , en} where n ~ 1 glued to point i then 

(a) If the cycles Cl. ... , en are glued to a point i from the inner face of cycle 

Ci where i E Ci AND If either there are no cycles glued to point j from the 

inner face of Ci where i, j E Ci OR there exists a set of cycles d,l ... c' , , m 
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where m ~ 1 glued to points j from the inner face of Ci AND ~, ... ,c'm are 

disjoint from the cycles glued to point i then 

i. Attach a new point k E {il,' .. , in} to each cycle Ck E C 

ii. Arrange the cycles Cb ... ,en in the plane inducing the same cyclic order 

imposed on the edges incident to point i in the map such that Cl is the 

first cycle attached to point i and en is the last cycle attached to point 

i. 

iii. Connect d(i,it},d(iI,i2),'" ,d(in-l,i),d(in,j) where d E D and i,j E 

q. 

(b) Else 

• Apply steps 2(a)i and 2(a)ii 

• Connect d(i, id, d(il, i2),'" ,d(in-I. in), d(in, i) where d E D 

Figure 3.43: Step 2 - Partitioning the map into disjoint set of oriented cycles joined by 
dashed line edges 

3. Mark an arbitrary point in the outer face and walk along each edge twice until 

the same initial point is reached for the second time according to the following 

rules: 

Figure 3.44: Step 3 - Traversing along edges to obtain a Gauss diagram 

66 



3.4 Non-isomorphic knot diagrams generated by applications of type I 

(a) If one crosses an edge eij from an outer face of cycle Ci where eij E Ci then 

1. If there exists an edge dik E D such that k is connected to i from the 

inner face of Ci, then 

• Move to the edge ekm where ekm E E 

ii. Else move to ejn. 

(b) If one crosses an edge eij from an inner face of some cycle Ci where eij E Ci 

then 

i. If there exists an edge dik E D such that k is connected to i from the 

outer face of Ci, then 

• Move to the edge ekm where ekm E E 

ii. Else move to eij' 

4. Orient the circle in counter-clock direction and remove all edges in the outer face 

of the circle and all other edges with dashed lines. 

Proposition 3.4.2. Algorithm 2 transforms an unrooted Eulerian map with n-edges 

into a Gauss diagram with n non-crossing chords where n > O. 

Proof. The proof is by induction on the number of edges of a map. For the base case, we 

consider an Eulerian map with one edge and show that the outcome is a corresponding 

Gauss diagram with one chord. In Figure 3.45 we apply algorithm 2 to a map with one 

edge and illustrate the transformations involved in each step to produce the expected 

Gauss diagram with one chord. 

Figure 3.45: Base step - Transforming A Gauss diagram into a map 

For the inductive step, we will assume that it holds for any map with n edges and 

demonstrate that if we add a new edge, the number of chords of the corresponding Gauss 
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diagram increases by one. To add a new edge, we either place a point on an existing 

edge (to split it into two edges) or add a new loop to an existing point. There are only 

two possibilities of where the new loop can be appear on the diagram (either attached 

to a point from an inner face or an outer face). We consider all possible cases below. 

In each case, we consider a map with n edges and its corresponding Gauss diagram 

(the bottom part of the map with dotted lines is assumed to contain n - 1 edges). 

After adding a point or a loop, we follow the steps of the algorithm by partitioning the 

map into disjoint set of oriented cycles and then introducing new directed edges (with 

dashed lines) to join the cycles. Finally, we obtain a Gauss diagram by walking along 

all edges according to the rules formulated in step 3: 

1. Adding a loop to an existing point from an inner face as illustrated in Figure 

3.46. 

Q=A 
\ 0';: ......................... . 

\ ............... . 

~H 
...................... 

Figure 3.46: case 1 - Adding a new loop to a point from an inner face 

2. Adding a loop to an existing point from an outer face as illustrated in Figure 

3.47. 

3. Adding a point to an existing edge 

The transformation as illustrated in Figures 3.46 to 3.48 is done locally and does not 
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Figure 3.47: case 2 - Adding a new loop to a point from an outer face 
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Figure 3.48: case 3 - Adding a point to an existing edge 
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change other parts of the Gauss diagram. The number of chords of the corresponding 

Gauss diagram is also increased by one when either we add a loop or a point. 0 

For a map ]j, by y -+ h(y) we will denote the correspondence Gauss diagram of Y 

obtained by algorithm 2. 

Conjecture 3.4.1. For any Gauss diagmm x and any map y, if x -+ fm(x) and 

Y -+ fk(Y) then x = h((fm(x)) and Y = fm(h(Y))· 

Comment. Because both algorithms are deterministic and produce a unique out

put for each distinct input we believe that this conjecture is true but still needs some 

formal proof. 

3.5 Generalised Reidemeister moves 

In general the upper bound for transforming a trivial knot diagram into the unknot 

diagram based on Reidemeister moves has shown to be exponential with respect to 

the number of crossings [31]. One of the reasons the number of Reidemeister moves is 

exponential is possibly due to the existence of some knots which require an increase 

in their crossings number before they can be simplified into the unknot. One may 

ask whether introducing new moves in addition to ordinary Reidemeister moves may 

help with simplifying trivial knots without increasing their number of crossings during 

the transformation (Le. by avoiding Reidemeister moves of types It and lIt). Such 

a question was investigated in [24] where some generalised version of Reidemeister 

moves (illustrated in Figure 3.49 taken from [25]) also referred to as pass moves [14]) 

particularly for types I and II were presented. However, a counter example (see Figure 

3.57) was presented in the same paper where it still required an increase in number of 

crossings even after considering the new added moves in Figure 3.49. 

In this section, we introduce a new set of moves depicted in Figure 3.51 that will 

be referred to as generalised Reidemeister moves (GR). Our proposed moves are more 

general than [24] but can be seen as a restrictive case of pass moves for links shown 
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"'n···.( IV /V··' 

Figure 3.49: - types IV and V pass moves [25] 

in [[14], page 67]. Although these moves are restrictive, we will show in Proposition 

3.5.1 that all known examples of classical complex trivial knot diagrams that we found 

in the literature can be simplified using our new set of moves coupled with ordinary 

Reidemeister moves without increasing their number of crossings. In particular, our 

>0 .. , ORI "{5;-. .. '. " .. ( . 
" i-' .. ' '-....J .' 

-~ 
~ .... ) : :. ~··c ~ .. 

Figure 3.50: - Transformation of Goeritz moves by Generalised Reidemeister moves of 
type I 

generalisation as demonstrated in Figure 3.50 captures the two moves presented by 

Goeritz by CRI. Extending GRI (with two strands entering the circle and two other 

strands emanating out of the circle), we obtain GRIll which is a more generalised 

form of an ordinary type III move. Similarly Reidemeister move of type II is extended 

by GRII. The dotted circle denotes a local fragment of the knot. 

The introduction of generalised moves can lead to an improvement in the overall 

complexity bounds for the unknotting problem if the transformation is restricted to knot 

diagram simplification. This in turn reduces the overall number of Reidemeister moves 

required for the transformation by avoiding types It and IIt (increase) particularly 
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Figure 3.51: - Generalised Reidemeister moves 

when either types I.J.. and lI.J.. (decrease) or type III become unavailable. The difficulty 

with application of type lIt as we noted in Section 3.2.2 is that it can not be applied 

arbitrarily for Gauss words because information about faces of the knot diagram is 

required to maintain the planarity of the resultant diagram. In addition to faces, we 

need to determine which of the strands if selected would result in decreasing number of 

crossings of the diagram. In both case such information is not available for Gauss words 

(with an exception to signed Gauss word where there is a procedure for determining 

faces [38]). 

Let RAf = {RAf I, RAf I I, RAf I I I} denote a set of Reidemeister moves and G R = 

{ G RI, G RI I, G RI I I} denote a set of generalised Reidemeister moves, we will show in 

the next proposition that if a given knot diagram Kl can be transformed by GR into 

another knot diagram K2 then likewise the same knot diagram can be transformed via 

RAf. 

Proof. The proof consists of showing that each move in G R can be replaced by a 

sequence of RAf. In each G R move we require to pass a strand consisting of either one 

crossing (for the case of GRI) or two crossings with the same type (either two-over

crossings or two-under-crossings for the case of GRIl and GRIll) through a sequence 

of crossings belonging to a fragment (or a partition) of the knot diagram (marked by a 

dotted circle in Figure 3.51) to reach some position located outside the dotted circle. 

We will show that the sequence of RM of types lIt III and II.J.. can be used to substitute 

any GR move. 
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3.5 Generalised Reidemeister moves 

Figure 3.52: - Moving a strand over a fragment of a knot diagram 

Let us consider the diagram in Figure 3.52 for which the configuration on the left 

denote the precondition of the rule and the configuration on the right denote the post

condition of the rule and let F denote the set of outer faces of fragment S where a face 

f of a fragment S is called an inner face iff all of the arcs (edges) surrounding f belong 

to S and otherwise it is called an outer face iff some of the arcs (edges) surrounding f 

belong to S. 

Starting with Figure 3.53 we show how a strand can passed through a single crossing 

using a sequence of RM of types lIt, III and II.J... 

~ ... 
i i 

Figure 3.53: - Passing a strand through a single crossing using a sequence of Reidemeister 
moves of types II and III 

More generally for the cases of GRI and GRII where it's required to pass a strand 

through a sequence of crossings we apply the same sequence to move through each 

crossing in a breadth first search manner by visiting neighbouring faces as follows: 

1. For each face belonging to the fragment 

(a) Mark all edges with lIt as illustrated in Figure 3.54. 

(b) Encircle the crossing points by applying moves of type I I I and II.J.. 
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(c) Move to the next neighbouring faces until one of the outer faces of the 

fragment is reached. 

Step 1(bj 

Figure 3.54: - Passing a strand through a face il of some fragment subsuming all edges 
and crossing points of !1 using steps l(a) and l(b) 

2. If the outer face is reached then apply II.J... 

Since the fragment of a knot contains finitely many faces and crossings therefore 

the procedure is guaranteed to terminate. 

o 

In the next proposition, we consider all known classical examples of complex trivial 

knot diagrams which can be unknotted using classical Reidemeister moves only by first 

increasing number of crossings of the original diagram (Le. where the original diagram 

does neither admit types It and I1.J.. nor type III and therefore the only applicable move 

is type lIt). We will show that each diagram can be transformed into the unknot 

without exceeding number of crossing of original diagram by substituting types IIt 

with generalised Reidemeister moves. 

Proposition 3.5.2. The following knot diagrams in Figure 3.55 can be transformed 

into the unknot diagram without increasing number of crossings. 

Proof. Apply a generalised move when either types I1.J.. and 1.J.. or type III are not 

available. To avoid increasing number of crossings during transformation we substitute 

Reidemeister moves of type lIt with a more generalised move depicted in Figure 3.51. 

See Figures 3.56 to 3.61 for an illustration of the transformations of diagrams 

A .. , D to the unknot respectively. , , o 
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A B c o E F 

Figure 3.55: Complex trivial diagrams - A and B([24]); C ([32]); D and E ([47]); F 
(KnotPlot) 

~~~~~:;;?~ 
V~" ~ ~f'\~ 

~a~ ~ft~ 
~~~~ 
~~ 

o 
Figure 3.56: A - taken from [24) - Transformation of diagram A into the unknot 
without increasing number of crossings 
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Figure 3.57: B- taken from [24] - Transformation of diagram B into the unknot 
without increasing number of crossings 
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Figure 3.58: C- taken from [32] - Transformation of diagram C into the unknot 
without increasing number of crossings 
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(GR 11 ) 

r--

-~ - _J 
~-[ 

~_,~ ( RM 117 ~ 
[;~~ 

Figure 3.59: D- taken from [47] - Transformation of diagram D into the unknot without 
increasing number of crossings 

78 



3.5 Generalised Reidemeister moves 

(RM I ) 

Figure 3.60: E- taken from [47] - Transformation of diagram E into the unknot without 
increasing number of crossings 

Figure 3.61: F- taken from KnotPlot - Transformation of diagram F into the unknot 
without increasing number of crossings 
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3.5.1 Generalised Reidemeister moves as rewriting rules 

In this subsection, we consider formalising generalised Reidemeister moves in terms 

of string rewriting rules for Gauss words. In a similar way to classical Reidemeister 

moves, we take into account all possible orient at ions of the strands involved and all 

possible ways in which they can be connected (or ordered) on the knot diagram. We 

present one rule for CRI, two rules for GRII and 14 rules for type Ill. The rules are 

formulated as conditional rewriting rules and not in the form as defined in Section and 

also we use abbreviations like i to denote either Oi or Ui . 

Definition 3.5.1. A Gauss word s is self-contained word if for every symbol Oi in s 

there exists a corresponding symbol Ui in s and vice versa. 

Type I 

A Gauss words admit GR I, if it contains a subword s that is a self-contained word 

and one of the symbols Ui or Oi adjacent to s for some i E N. For the purpose of 

simplification the adjacent symbol to s will be denoted by i to capture both cases (Ui 

and Oi) since it will not affect the definition of a self-contained word. 

Definition 3.5.2. Let w be a Gauss word, w admits GR I i./J W = xis or w = xsi 

where 8 is self-contained. 

Let w be a Gauss word that admits GR of type I, application of GR I allows us to 

move a symbol i adjacent to a self-contained subword s from the beginning of s to the 

end of s and vice versa. To capture this effect we formulate the following rule for GR 

I. 

GR1.1 xi.'1 f-tx.'1i 

Type 11 

Definition 3.5.3. Let w be a Gauss word and s = p . q be a self-contained subword 

of w, w admits GR 11 i./J either w = xIPWaq] or w = x]pwaqI where Wa = OiOj or 

Wa = UiUj and I,] denote the counterpart symbols of Wa. 
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Unlike GR I and GR In, application of GR II can affect the size of W by ±4. In 

the following rules the concatenation of p and q denoted by p' q forms a self-contained 

word. 

GR2.1 xlPWaq) t-txpq 

GR2.2 X)pwaql t-txpq 

Type III 

In the following definition we introduce some notation to describe the relation between 

two symbols in a Gauss word for the purpose of simplifying the various cases used in 

Definition 3.5.5. 

Definition 3.5.4. Let x, y be some symbols in a Gauss word w 

• We denote by Px,y = {(x, y)lxy E w} the set of pairs (x, y) where x is a predecessor 

of y (i.e. x appears to be the first symbol on the left-hand side of y). The set 

Sx,y = Py,x denotes the set of pairs (x, y) where x is a successor of y and the set 

Ax,y is defined as either Ax,y = PX,y or Ax,y = Py,x 

• The symbol x denotes the counterpart of x where x = Oi iff x = Ui and vice versa. 

Definition 3.5.5. Let w be a Gauss word and s = p . q be a self-contained sub word of 

w, W admits GR III iff w = XWayWbZWc where 

- Wb E AI,p and Wc E A.1,q or Wc E Ai,p and Wb E A.1,q or 

- Wb E A],p and Wc E Ai,q or Wc E A],p and Wb E AI,q or 

- Wb = lp] and Wc = q or Wc = LP) and Wb = q or 

- Wb = ]pI and Wc = q or Wc =]pI and Wb = q 

Let W be a Gauss word admitting GR Ill, we denote by PI and Pn (and ql and qn 

respectively) the first symbol and last symbol of p (and q respectively). The rewriting 
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of W by GR III depends on whether the pair (PI, Pn) interlace with the pair (qI, qn) in 

W or not such that either PI = (/1 (the first symbol in P is equal to the counterpart of 

the first symbol in q) and Pn = q~ or PI = qn and Pn = iiI. The third case captures the 

case when either PI =f: tii and Pn =f: q~ or PI 1:- q~ and Pn =f: qI· 

The rules 3.1 to 3.4 correspond to the first case where the symbols connecting to the 

counterpart symbols of Wa holds and the rules 3.5 to 3.8 correspond to the second case 

where the interlacement property does not hold. The rules 3.9 and 3.14 correspond to 

the third case 

GR3.1 waxlpyqJz H waxpJYlqz 

GR3.2 waxpiyjqz H waxjpyqiz 

GR3.3 waxpyjqiz H waxjpiyqz 

GR3.4 waxpyiqjz H waxipjyqz 

GR3.5 waxipyjqz H waxpjyqiz 

GR3.6 Waxpiyqjz H waxjpyiqz 

GR3.7 waxPYlqJz H waxJplyqz 

GR3.8 waxpyjqlz H waxlp]yqz 

GR3.9 waXpty]qz H wax1pyq]z 

GR3.10 waxpiyqjz H waxipyjqz 

GR3.1l waxpjyiqz H waxjpyqiz 

GR3.12 waxpjyqiz H waxjpyiqz 

GR3.13 waxipjyqz H waxpyjqiz 

GR3.14 waxjpiyqz H waxpyiqjz 
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3.6 Summary 

3.6 Summary 

In this chapter we considered local diagrammatic moves called Reidemeister moves 

used for the transformations between two knots of the same type. We provided a 

formalisation of Reidemeister moves in terms of string rewriting systems and analysed 

the minimal set of rules sufficient for rewriting. Then we analysed the reach ability 

problem of Gauss words in terms of string rewriting rules and provided some lower and 

upper bounds based on the number of transformations needed to reach one word from 

the other by considering a set of rules of the same type as well as using a combination 

set of rules of different types. 

Further we considered oriented knot diagrams (represented by Gauss diagrams) 

generated by application of Reidemeister moves of type I only and counted the number 

of non-isomorphic knot diagrams with n-crossings (where n ~ 1). We discovered that 

our sequence corresponds to the number of unrooted Eulerian n.-edge maps in the plane 

and provided explicit algorithms to describe the construction between maps and Gauss 

diagrams. 

Furthermore we introduced a new set of moves that can be seen as a more generalised 

version of Reidemeister moves of types 11 and III formulated also in terms of string 

rewriting rules for Gauss words. We considered all known examples of complex trivial 

knot diagrams that can only be reduced to the trivial knot diagram by first increasing 

the number of crossings of the original diagram and shown that our generalised moves 

can be used to substitute application of Reidemeister moves of type lIt and therefore 

simplifying the transformational process into a reduction one. Finally we formulated 

some open questions left as conjectures for future work. 
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Chapter 4 

Computational models 

In this chapter we introduce and analyse some computational models over infinite 

alphabets for the purpose of evaluating the complexity of some knot theoretic problems 

represented by Gauss words. 

Since knots can have arbitrarily many crossings then Gauss words will be considered 

as strings over an infinite (unbounded) alphabet. In section 4.1, we describe and extend 

the models of automata over infinite alphabet that will be used for establishing the lower 

and upper bounds on recognition of knot properties. 

In Section 4.2 we examine the capability of a register automata to handle some 

useful operations required for checking knot properties and show that over a class of 

all languages of our interest register automata can simulate the behaviour of a counter 

machine and that of a pebble automata. Then we demonstrate generic results on 

the mutual simulations between logspace bounded classical computations (over finite 

alphabets) and register automata working over infinite alphabets. 

In Section 4.3 we apply register automata to establish some lower and upper bounds 

for the recognisability of some knot properties. We show that the languages of Gauss 

words (signed and unsigned) are not recognisable by non-deterministic I-way register 

automata but they are recognisable by deterministic 2-way register automata. We also 

show that non-trivial properties such as checking the equivalence of two Gauss words 

in terms of cyclic shift and renaming of labels referred to as isomorphic Gauss words 
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problem can be recognised by a deterministic 2-way register automata. 

4.1 Automata over infinite alphabets 

Let D be an infinite set called an alphabet. A word, or a string over D, or shortly, 

D-word or D-string, is a finite sequence db .. . , dn , where di E D, i = 1, ... , n. A 

language over D (a D-language) is a set of D-words. For a word w and a symbol d, 

denote by I w Id the number of occurrences of din w. As usual I w I denotes the length 

of the word w. A language L over an infinite alphabet D is called n-bounded if there 

is a constant nE N such that for any w ELand for any d E D one has I w Id~ n. All 

languages considered in this thesis are bounded. 

The language of shadow Gauss words Lover D is 2-bounded due to the double 

occurrence of the symbols of din w, i.e. I w Id= 2. The language of nested words [2] 

can also be viewed as a language of 2 - bounded data words. 

4.1.1 Words and data words 

In previous works on the computational models on infinite alphabets it has been ac

knowledged that in many situations it is natural to consider infinite alphabets as the 

subsets of E x ~ where E is a finite set and ~ is an infinite set. Thus, the symbol 

here is an ordered pair (a, b). The words over such alphabets are called data words. 

In the definition of automata over data words, it is sensible to assume that when an 

automaton reads a symbol (a, b) it has a direct access to both components of the pair. 

For this purpose, the form of transition rules in automata can be adapted to include 

one extra argument on the left-hand sides as defined in Definition 4.1.3. 

For the language of Gauss words, we consider one of the weakest models of automata 

over infinite alphabet called register automata, introduced in [35] and studied further 

in [55]. This model is quite restrictive in a way that it can only store unique values 

from the infinite alphabet in registers. This restriction was inconvenient for designing 

automata to check Gauss word properties. 
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In the next section, we describe how to overcome this restriction. 

4.1.2 Register automata 

Register automata are finite state machines equipped with a finite number of memory 

cells called registers which may hold values from an infinite alphabet. There are several 

variants of register automata which have different computational power. These are 

deterministic, nondeterministic, one-way and two-way register automata. Below, we 

describe the formal definition of a two-way k-register automaton taken from [55]. 

Definition 4.1.1 ([55]). A (non-deterministic) two-way k-register automaton over an 

infinite alphabet D is a tuple (Q,qo,F,TO ,P) where Q is a finite set of states, qo E Q 

is the initial state,F ~ Q is the set of final states, To : {l, ... ,k}~ DU {C>,<J lis the 

initial1'egister a:;signment and P is a finite set of transitions of the forms: 

1) (i, q) ~ (q', d) (If a current state is q and the observed symbol on the tape 

equals to a value in register i then enter the state q' and move along the string 

according to the specified direction d where i E {1, .. , k}, q, q' E Q and d E 

{stay, left, right}). 

2) q ~ (q', i, d) (If a current state is q and the observed symbol on the tape does 

not equal to any value held in registers then enter the state q', copy the current 

symbol to a specified register i and move along the string according to the specified 

direction d where i E {1, .. ,k},q,q' E Q and d E {stay, left, right}). 

Given aD-word w delimited by symbols C>,<J on the input tape, an automaton starts 

in a state qo and in the position of the first letter of w and applies non-deterministically 

any applicable rules. A configuration of an automaton on w is a tuple [.7, q, r] where 

j denote a position of a letter of w or the position of either C> or <J, q E Q and 

T: {1, ... , k} ~ DU {C>, <J}. As usual, if automaton is able ever to reach a state q E F, 

it accepts the word, otherwise the word is rejected. The set of all accepted words forms 

a language recognisable by an automaton. 
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An automaton is deterministic if for all rules there are no two rules with the same 

left-hand-side and different right-hand-side so that for any configuration at most one 

transition applies. 

We modify the above definition by allowing more general transition rules which 

will accept replication of the same value in different registers. This does not affect the 

computational power of the model (see Lemma 4.1.2.1 below) but makes the design of 

such automata for various recognition problems much more natural and easier. Similar 

modifications (in more general setting) have appeared in [15; 18]. 

We define modified two-way k-register automata by adding to the definition above 

two extra types of transition rules: 

Definition 4.1.2. (41; 55] A non-deterministic two-way k-register automaton over an 

infinite alphabet D is a tuple (Q,qo,F,To ,P) where Q is a finite set of states, qo E Q is 

the initial state, F ~ Q is the set of final states, To " {l,,,.,k}~ D U {e>,<l } is the 

initial register assignment and P is a finite set of transitions: 

1) (i,q) ~ (q',d) (If a current state is q and the observed symbol on the tape 

equals to a value in the register i then enter the state q' and move along the 

string according to the specified direction d where -i E {I, '" k}, q, q' E Q and 

dE {stay,left,right}) 

2) q ~ (q', i, d) (If a current state is q and the observed symbol on the tape does 

not equal to any value held in registers then enter the state q', copy the current 

symbol to a specified register i and move along the string according to the specified 

direction d where i E {I, '" k}, q, q' E Q and d E {stay, left, right}). 

3) (i,q) ~ (q',j,d) (If a current state is q and the observed symbol equals to a 

value in the register i then enter the state q', copy the current symbol to a 

register j and move along the string according to the specified direction d where 

i,j E {l,,,,k},q,q' E Q and d E {stay, left, right}). 

4) q -+ (q', d) (If a current state is q and the observed symbol does not equal to any 
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value held in registers then enter the state q' and move along the string according 

to the specified direction d where q, q' E Q and dE {stay, left, right}). 

Deterministic and co-non-deterministic register automata as well as the language 

accepted by automata are defined in the standard way. 

In the following lemma we show that the new added rules does not affect the com

putational power of original model. 

Lemma 4.1.2.1. The models of original register automaton and modified register 

automaton over an infinite alphabet aTe equivalent. 

Proof. Let MI be a register automaton over an infinite alphabet and M2 be a modified 

model of register automaton over an infinite alphabet. Since A12 contains all rules of 

Afl (Le. M2 is a generalisation of Mt). Then any computations on MI can be simulated 

by M2 in a straight forward way. That is the rules of MI coincide with the first two 

rules of M2' Now to prove that the converse statement holds we will show that the two 

extra types of rules of M2 can be simulated by Mt. 

The rule (-i, q) ~ (q', j, d) of type 3 of M2 can be simulated in MI by using the 

following construction. 

The state of the registers of M2, that is a sequence of not necessarily different values 

R = [Tt, r2, ... ,rk] is represented in the simulating automaton as a pair: 

• the set of unique values U = {rI, r2,···, rk+t} , and 

• the surjective mapping lP : {I, ... ,k} ~ U 

The content of U is kept in the registers and since the mapping 1J is finite, it can be 

kept in the finite state control. Now it is straightforward to simulate the effects of type 

3, in terms of pairs U, lP as follows: 

The rule (i, q) ~ (q', j, d) of type 3 is replaced by (lP(i), [q, 1Jx]) ~ ([q', lPy], lPy(j), d) 

where x and y correspond to the current index of a mapping at states q and q' respec

tively. We update lPx by changing lP(j) to be equal to 4>( i). 
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R u 

Figure 4.1: - Simulation ofrule 3 in M2 by Ml 

The rule q ~ (q', d) of type 4 in M2 can be simulated by adding one extra dummy 

register k + 1 and replacement of rules of M2 of the form q ~ (q', d) by either (k + 1, q) ~ 

(q', d) or q ~ (q', k + 1, d). If a value of the register k + 1 is equal to the observed symbol 

then the rule (k + 1,q) ~ (q',d) is applicable otherwise the rule q ~ (q',k + I,d) is 

applicable. 

In terms of the data structure proposed for the simulation of rule 3, the rule of type 

4 can implemented in the following way: 

Let I be a register in M2 where I E {I, ... , k} such that cj:>(l) = k+ 1, if a value of the 

register k + 1 is equal to the observed symbol then the rule (4)x(l), [q, cPx]) ~ ([q', cPy], d) 

is applicable otherwise the rule [q, cPxl ~ ([q', cPy], cPy(l) , d) is applicable. 

o 

In Definition 4.1.2 we defined register automata as a model of computation for 

languages over an infinite alphabet. Another option is to define register automata as a 

model of computation for data words. A data word is a finite sequence of ~ x N, where 

~ is a finite set of labels and N is an infinite set data values. 

In t he context of Gauss words, the following definition is more convenient and thus 

it will be used throughout this thesis. 
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Definition 4.1.3. A non-deterministic two-way k-register automaton A over an alpha

bet D where D = ~ x N is a tuple (Q,qo,F,TO ,P) where Q is a finite set of states, qo E 

Q is the initial state, F ~ Q is the set of final states, To : {l, ... ,k}-+ DU {[>,<J } is 

the initial register assignment and P is a finite set of transitions: 

1) (s, i, q) -+ (q', d) (If a current state is q and first component of the observed symbol 

on the tape is .'i and second component of the observed symbol equals to a value 

in the register i then enter the state q' and move along the string according to 

the specified direction d where i E {I, .. ,k},q,q' E Q and dE {stay, left, right}) 

2) (s, q) -+ (q', i, d) (If a current state is q and first component of the observed symbol 

on the tape is s and second component of the observed symbol does not equal to 

any value held in registers then enter the state q', copy the current symbol to a 

specified register i and move along the string according to the specified direction 

d, where i E {l, .. , k}, q, q' E Q and d E {stay, left, right}). 

3) (s, i, q) -+ (q', j, d) (If a current state is q and first component of the observed 

symbol on the tape is s and second component of the observed symbol equals 

to a value in the register i then enter the state q', copy the current symbol to a 

register j and move along the string according to the specified direction d where 

i, j E {I, .. , k}, q, q' E Q and d E {stay, left, right}). 

4) (s, q) --t (q', d) (If a current state is q and first component of the observed symbol 

on the tape is s and second component of the observed symbol does not equal 

to any value held in registers then enter the state q' and move along the string 

according to the specified direction d, where q, q' E Q and d E {stay, left, right}). 

Given a data word w = Wi··· Wn where Wi = (ai, bi) with ai E E and bi E N, a 

configuration of A on [> W <l is a tuple [j, q, T] where 0 ~ j ~ n + 1 is a current position 

of the head in the word, q E Q is the current state, and T : {I, ... , k} -+ Du {[>, <l} is 

the current register assignment. The initial configuration is [1, qo, TO]. A configuration 

[j, q, T] with q E F is accepting. As usual, if automaton is able ever to reach a state 
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q E F, it accepts the word, otherwise the word is rejected. The set of all accepted 

words forms a language recognisable by an automaton. 

4.1.3 Pebble automata 

As an alternative model of automata over infinite alphabet, pebble automata(PA) were 

introduced in [50] and further studied in [55]. We follow the definitions in [55]. In 

this model, instead of registers, finite state machines are equipped with the finite set 

of pebbles which can be placed on the input string and later lifted following the stack 

discipline. That means pebbles are numbered from I to k and pebble i + 1 can only be 

placed when pebble i has already been placed on the string and vice-versa, pebble i can 

only be lifted if i + 1 is not on the string. Further assumption is that the pebble with 

the highest number acts as a head, so an automaton has an access to the symbol of the 

string under such a pebble and to the information on which other pebbles are located 

at the same position. The transition of pebble automata depends on the following: the 

current state, the pebbles placed on the current position of the head, and the equality 

type of the data values under the placed pebbles. The effect of the transition is the 

change of a state, movement of the head and, possibly, removal of the head pebble, or 

placement of the new pebble. A new pebble is placed at the position of the most recent 

pebble and pebble i-I becomes the current head when pebble i is removed. 

As usual acceptance of a word is defined as reachability of one of the final states. 

Definition 4.1.4 ([55]). A nondeterministic two-way k-pebble automaton A over an 

infinite alphabet D is a tuple (Q, qo, F, T) where 

• Q, qo E Q and F c Q are a finite set of states, the initial state, and the set of 

final states, respectively; and 

• T is a finite set of transitions of the form Q ~ f3 

- 0: is of the form (i,s,P, V,q) or (i,P, V,q), where i E {I,··· ,k}, sE DU{!> 

<J} PVC {I ... i-I} and , , , - , , 
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- f3 is of the form (q, d) with q E Q and dE {stay, left, right, place-new-pebble, 

lift-current-pebble} . 

Given a word w = dl ... dn E D*, a configuration of A on [> w <l is a triple [i, q, 0] 

where i E {I,··· ,k}, 0 : {I,··· ,i} -+ {Q,l,· .. ,n,n + I}. The function e defines 

the position of the pebbles and is called pebble assignment. The initial configuration 

[1, qo, eo], with eo(l) = 1. A configuration [i, q, 0] with q E F is called an accepting 

configuration. 

Let do =[>, dn+l =<l and di = ai E w. A transition (i, s, P, V,p) -+ f3 applies to a 

configuration [j, q, 0] if 

1. i = j and p = q, 

2. V = {l < ild(J(I) = d(J(i)}' 

3. P = {l < ile(l) = O(i)}, and 

4. d(J(i) = s. 

A transition (i, P, V, q) -+ f3 applies to a configuration [j, q, 0] if the first three conditions 

hold and no transition of the form (i, s, P, V, q) -+ f3 applies to [j, q, e]. 

Intuitively, a transition (i, s, P, V, p) -+ f3 applies to a configuration if pebble i is the 

current head, p is the current state, V is the set of pebbles that see the same symbol as 

the top pebble, P is the set of pebbles that sit at the same position as the top pebble, 

and the current symbol seen by the top pebble is s. 

4.1.4 Linearly bounded memory automata 

In all models above the input can be thought of as given on the input tape which can 

only be read, but not written on. Linearly bounded memory automata (LBMA) are 

an extension of register automata with the input tape. The automaton can read and 

write in the tape cells symbols of an infinite alphabet. The input is given on the initial 

part of the tape and for the input size n, the size of the tape is assumed to be O(n), 
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4.1 Automata over infinite alphabets 

i.e. linearly bounded. Types of rules of LBMA include all types of rules of (modified) 

RA and additional rules allowing us to write on the tape. For every form L ~ ( ... ) of 

rules of the (modified) RA model the following is a form of rule for LBA: L ~ ( ... ,I), 

where I E {I, ... k}. The effect of application of the latter is the same as of the former, 

plus the automaton writes the content of the register I in the current position on the 

tape before possible head movement. 

Definition 4.1.5. A deterministic linearly bounded memory automaton over an infinite 

alphabet D is a tuple (Q,qo,F,To ,P) where Q is a finite set of states, qo E Q is the initial 

state, F ~ Q is the set of final states, To : {l, ... ,k}~ DU {!>,<J } is the initial register 

assignment and P is a finite set of transitions: 

1) (i, q) ~ (q', d) (If a current state is q and the observed symbol on the tape 

equals to a value in the register 'i then enter the state q' and move along the 

string according to the specified direction d where i E {I, .. , k}, q, q' E Q and 

dE {stay,left,right}) 

2) q ~ (q', i, d) (If a current state is q and the observed symbol on the tape does 

not equal to any value held in registers then enter the state q', copy the current 

symbol to a specified register i and move along the string according to the specified 

direction d, where i E {l, .. ,k},q,q' E Q and d E {stay, left, right}). 

3) (i,q) ~ (q',j,d) (If a current state is q and the observed symbol equals to a 

value in the register i then enter the state q', copy the current symbol to a 

register j and move along the string according to the specified direction d where 

i, j E {I, .. , k}, q, q' E Q and dE {stay, left, right}). 

4) q -7 (q', d) (If a current state is q and the observed symbol does not equal to any 

value held in registers then enter the state q' and move along the string according 

to the specified direction d, where q, q' E Q and d E {stay, left, right}). 

5) (i, q) -7 (q', d, I) (If a current state is q and the observed symbol on the tape equals 

to a value in the register i then enter the state q', move along the string according 
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to the specified direction d where i E {I, .. , k}, q, q' E Q and dE {stay, left, right} 

and write the content of register I in the current position on the tape). 

6) q 4 (q', i, d, I) (If a current state is q and the observed symbol on the tape does 

not equal to any value held in registers then enter the state q', copy the current 

symbol to a specified register i, move along the string according to the specified 

direction d, where i E {1, .. ,k},q,q' E Q and d E {stay, left, right} and write the 

content of register 1 in the current position on the tape). 

7) (i,q) 4 (q',j,d,l) (If a current state is q and the observed symbol equals to 

a value in the register i then enter the state q', copy the current symbol to a 

register j, move along the string according to the specified direction d where 

i,j E {1, .. ,k},q,q' E Q and d E {stay,left,right} and write the content of 

register I in the current position on the tape). 

8) q 4 (q', d, l) (If a current state is q and the observed symbol does not equal to 

any value held in registers then enter the state q', move along the string according 

to the specified direction d, where q, q' E Q and d E {stay, left, right} and write 

the content of register I in the current position on the tape). 

Given a word w delimited by symbols t>, <J on the input tape, A configuration of 

an automaton on w is a tuple [j, q, T, p] where j denote a position of a letter of w or the 

position of either t> or <J, q E Q, T : {I, ... , k} 4 DU{t>, <J} and p is the current content 

of the tape. The function p : N H DU {t>, <J} is a partial function with domain of p 

being a fragment [1, ... ,m] of N. The initial configuration [0, qo, TO, Po] with po(O) =t>, 

po(I) = wl(1 ~ i ~ 11.) and Po(n+ 1) =<J. A configuration [i, q, T, p] with q E F is called 

an accepting configuration. 

As usual, if automaton is able ever to reach a state q E F, it accepts the word, oth

erwise the word is rejected. The set of all accepted words forms a language recognisable 

by an automaton. 
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4.1.5 Turing Machine 

A deterministic Turing machine is a 7-tuple (Q,E,r,TO,qO,#,F) where Q is a set of 

states, E is the input alphabet, r is the tape alphabet, TO is the partial transition 

function, # E r is a symbol called blank, qo E Q is the initial state and F ~ Q is a set 

of final states. 

The transition function for the Turing machine is given by TO: Q ---? Q x r x {L, R}. 

This means when the machine is in a given state (Q) and reads a given symbol (r) 

from the tape, it replaces the symbol on the tape with some other symbol (r), goes to 

some other state (Q), and moves the tape head one square left (L) or right (R). 

A configuration of a Turing machine requires the state the Turing machine is in, 

the contents of the tape, and the position of the tape head on the tape. This is written 

as a string of the form Xi ... XjqmXk .•• Xl where the x's are the symbols on the tape, qm 

is the current state, and the tape head is on the square containing Xk (the symbol 

immediately following qm). 

4.2 Register automata and classical complexity 

In this section we examine the capability of a register automata to handle some useful 

operations required for checking knot properties. We show that over a class of bounded 

languages including all languages of our interest register automata can simulate the 

behaviour of a counter machine and that of a pebble automata. Further in Sections 4.2.3 

and 4.2.4 we demonstrate generic results on the mutual simulations between logspace 

bounded classical computations (over finite alphabets) and register automata working 

over infinite alphabets. 

4.2.1 Simulation of counters by register automata 

In this Subsection we explain how a two-way register automata with k registers on 

the input with t distinct symbols can simulate k counters bounded by t. 
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w I a a b c b a 

Registers: Counters: 

RI Q--GCI 

Rz @---0CZ 

R3 rr-G C3 

Figure 4.2: - Modelling of counters by registers in a register automaton model 

Let us assume that a word on an input tape has at least t distinct symbols. The 

value of a counter stored in a register i will corresponds to the number of distinct 

symbols from the beginning of the word till the position of the first appearance of 

symbol stored in the register (for for an illustration, see Figure 4.2). Then we can 

increase (decrease) the value by updating the register with the next (previous) symbol 

on the string that will appear for the first time. Counter i is equal to zero if the value 

stored in the register i is the first symbol on the input tape. If we use k registers then 

we can store k counters bounded by t, where t is a number of distinct symbols on the 

input tape. 

4.2.2 Simulation of pebble automata by register automata 

As expressive power concerned, in general pebble automata are incomparable with 

register automata [55]. We will show, however, in the following proposition that over a 

class of bounded languages, including all languages of our interest, PA can be effectively 

simulated by RA. 

Proposition 4.2.1. If an n-bounded language over infinite alphabet D can be recognised 

by a k-pebble automaton, then it is also recognised by a k + 2-register automaton. 

Proof. Let PA = (Q, qO, F, T) be a pebble automaton, we will first show how to repre

sent the configuration ri, q, 9] of PA where i E {l, ... ,k}, q E Q and () : {l, ... ,i} ---7-
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{O, 1, ... , I w I + 1}, on the input word w = d1 , ... ,d1wl by a configuration of a register 

automaton. Then we will show how to simulate the transition rules of P A on RA. 

For the purpose of modelling P A, we define a register automaton RA = (Q, qO, P, TO, 1') 

where its finite set of states Q = Qaux X Q x Q~ where Qaux is a finite set of auxiliary 

states (for controlling the executions of general subroutines needed to check certain 

conditions on the transition rules), Q~ = {O, 1,··· , n} (for keeping a reference to the 

number of previous occurrences of the symbol stored in register i) and n is a constant 

of the bounded language. The number of registers of RA is the number of pebbles of 

PA. Before we complete the definition of RA, let us explain the representation of the 

configuration of PAin a configuration of RA. 

Let, = [i, q, 0] be a configuration of PA on the input word w. Then the configura

tion [j, q' , T] of RA encodes , if: 

• T(l) = dOll)' J01' 1 ::; I ::; 'i 

• tl = I{rlr < 0(1) and dr = dO(I)}1 + 1, Jor 1 ::; I ::; i 

• tl = 0, Jor i < I ::; k 

It easy to see that the definition of the notion of the encoding does not depend on j. 

To explain the above encoding the position of pebble i is determined as follows: 

Suppose that pebble i is placed on the symbol x E D from the word u . x . v, where 

u, v E D*. Then the position of this pebble can be uniquely represented by a pair 

(x, tx), where x is a symbol marked by pebble i and tx = lulx , i.e. the number of 

occurrences of a symbol x in a word u (that is to the left of x). Thus, in order to 

simulate a pebble we need one register (for storing x) and a finite number of states 

0, .. , ,n (for keeping tx in a state space) since tx is bounded by a constant n. 

If RA is in state ij where ij = (8, q, tt.· .. , tk) E Q then placing a pebble i on 

a symbol x will correspond to storing x in register i and updating the states of ti 

accordingly and lifting a pebble i will correspond to updating the state ti to O. Under 
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this encoding the top most pebble on a input correspond to the right most state among 

tl, ... , tk with a non-zero value. 

The initial configuration ,0 = [1, qo, 90l with 90 (1) = 1 of P A on the input word 

w is represented by the configuration [1, tio, ro] of RA where ro(l) = d l , ro(k + 1) =C>, 

ro(k + 2) =<3 and qO = (s, qo, 1,0" .. ,0). F is the set of accepting states of RA where 

F= {(S,q,tl,'" ,tk)l(s,q,tl,'" ,tk) E Q and q E F}. 

Next we will explain how a transition rule of P A can modelled by the transition 

rules t of RA. To model the effect of transitions rule transition rule (i, P, V, p) ~ (q, d) 

of PA (meaning, if pebble i is the current head, p is the current state, P is the set of 

pebbles that sit at the same position as the top pebble, V is the set of pebbles that 

see the same symbol as the top pebble, and the current symbol seen by the top pebble 

is x), RA should be able to execute the transition rules t by checking the conditions 

of the rule described in first four steps and perform the updates in steps 5 and 6 as 

follows: 

1. i is the current head, that is tl = 0, for i < I ~ k and for 1 ~ I ~ i where 

0< tl ~ n. 

2. P = {Ill < i and r(l} = rO) and tl = ti}, for 1 ~ l < i 

3. V = {lll < i and r(l) = r(i)}, for 1 ~ I < i 

4. P = (s, p, iI, ... ,tk) E Q p is a state of the modelled P A, that is a current state 

of RA (so,p, t},'" ,tk) E Q for some So, tl'" ,tk 

5. ij = (so, q, ti," . ,t~) E Q, the state of RA should become (s' q, ti," . ,tU for 

some ti,'" ,t~ 

6. d = {stay, left, right, place-new-pebble, lift-current-pebble} can be modelled 

as follows 

(a) d = left then r(i) = dO(i-I)' 

(b) if d = right then r(i) = dO(i+l) 
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(c) if d = stay then r(i) = dO(i) 

(d) if d = place - new - pebble then tHI = t/ where t/ = 0, for i < 1 :S k and 

0< tl :S n for 1 :S 1 :S i. 

(e) if d = lift - current - pebble then ti-I = tl where tl = 0, for i < 1 :S k and 

0< tl :S n for 1 :S 1 :S i. 

So far we have shown that how to model a configuration and transition rules of 

P A by RA. Now to show that RA accepts the same language as P A, we model an 

accepting run for P A by RA depicted in Figure 4.3 as follows: 

w PA 

models models models 

w ........... -0- .......... . RA 

Figure 4.3: - Modelling an accepting run for P A by RA 

Starting from an initial configuration, we launch a sequence of intermediate subrou

tines to obtain a new configuration that models the configuration in P A which resulted 

from application of onc transition rule to initial configuration. We do the same as in 

the previous step for each other transition until the final configuration to modelled is 

reached, and if the sequence is an accepting run for P A then there is an acceptance 

sequence for RA and vice versa. 

o 

In the next section we will show that if a language L over an infinite alphabet is 

recognisable by register automata then the encoding of L over a finite alphabet can be 

recognised by a 'lUring machine with log-space memory. This results is quite interesting 

as it will allows to translate our results on recognisability by automata in the classical 

settings. 
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Definition 4.2.1. We define the following classes of languages in terms of their recog

nisability by the appropriate computational device. 

• DRA is the class of languages over an infinite alphabet recognisable by a deter-

minis tic register automata. 

• Co-NRA is the class of languages over an infinite alphabet recognisable by a Co

non-deterministic register automata. 

• [, is the class of languages recognisable by a deterministic Turing machine in 

log-space memory. 

• N[' is the class of languages recognisable by a non-deterministic Turing machine 

in log-space memory 

• Co - N£ is the class of languages whose complements are in N£. 

4.2.3 RA to ,c 

We will show that if a language L over the alphabet E x D is acceptable by two-way 

register automata then the encoding of L over a finite alphabet can be accepted by a 

Turing machine in log space memory. Let us first define the encoding of L over a finite 

alphabet as follows. 

Let L be a language over the alphabet E x D. For any pair of symbols (x, y) of a 

word w E L we denote by ordw(y) (or ord(y) if w is understood) the number of distinct 

symbols of the second component in w to the left of the first occurrence of y in w. So, 

for example, if w = (0, a)(O, c)(U, c)(U, b)(U, a)(O, b) then ordw(a) = 0, ordw(c) = 1 

and ordw(b) = 3. Let r xl: JR* ...-+ N where x is rounded up to the nearest natural 

number, we define T : E ...-+ {0,1}k as a mapping from the letters of finite alphabet to 

their binary encoding where k = rlog(IEl)l 

If <P is a mapping from natural numbers into their binary encoding, <p( i) : N ...-+ 

{0,1}"', then for any word w = (al,b1)···(an,bn) EL where ai E E and bi E D for 

each i E {1,··· , n}, the mapping 1jJ(w) : (E x D)* ...-+ {O, 1, #}* is an encoding of a 
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word w, where each binary encoding of (ai, bd is separated by a special symbol #: 

Thus a language Lfinite = {1jI(w)lw E L} is an encoding of L over the finite alphabet 

{O, 1, #} and Ltnnary is a natural encoding of Lfinite over {O, I} alphabet, where 0 ~ 00, 

1 ~ 01 and # ~ 11. 

Proposition 4.2.2. If L is recognisable by a finite register automata then Lfinite is 

recognisable by a Turing machine in log space memory. 

Proof. Let L denotes the language accepted by a finite register automaton A with r 

registers. Let us show that the language Lfinite is recognisable by a Turing machine At 

in log space memory. Let w = (ab b1) ... (an, bn) ELand Iwl = n, then w consists of 

no more then n different symbols, so the length of the binary encoding of ai is no more 

than flog ( I El) 1 and the length of the binary encoding of bi is no more than log n, i.e. 

IT(ai)1 ::; k where k = rlog(IEI)l and Ict>(ord(bd) I :::; log n. We design a Turing machine 

Al that can mimic all the computations of A by keeping the value of registers of A on its 

working memory tape. The operation of storing a symbol x from the infinite alphabet 

in a register in A can be simulated in At by storing the finite encoding of ord(x) on 

the working memory. The storing procedure in M is organised by fixing the length of 

the binary encoding of each symbol to log n and adding a # at the end of each binary 

word to distinguish between the values held in the registers. The finite state control in 

M will correspond to t he finite state control in A and the content of r registers in A 

will be stored on the working memory tape in M, which require r log( n + k) cells and r 

is a constant. The only two operation of register automaton are: to store a symbol in 

a register and to compare the register value with a symbol on a tape will not require 

any extra space apart from r log( n + k) cells. 0 
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4.2.4 [, to RA 

For a data word w = (a 1, bI), ... ,( alwl' blwl) over the alphabet E x D , we define its 

variability 1'{W) as the number of distinct symbols of the second component (from D) 

in w. For a language L and an integer function !(n) we say that variability of L is of 

the order !(n) iff minWEL,lwl=nv(w) 2: !(n), i.e. !(n) is a lower bound of variabilities 

of words of length n in L. 

Lemma 4.2.4.1. Computations of a Turing Machine on a work tape T o! size c·Zog(k) 

over a binary alphabet can be simulated by Register Automata model on an input string 

S, where v(S)=k. 

Stack operations 

S1·Push(O) 
S1·Push(1) 
S1· POP(O) 
S1· Pop(1) 

Content of stack 
w1 7 w1·O 
w1 ~ w1·1 
w1·O ~Wl 
w1.1 7 w1 

Integer representation 
x=2x 
x=2x+l 
x=x/2 
x=(x-l)/2 

Figure 4.4: The schema for simulating the operations of a Turing machine 
(TM) by a two pushdown stacks and representing a binary word on a stack by 
a counter machine (CM) as an integer-

Proof Assume that a head H is on a work tape T at the position T(i). First all 

operations under the tape head such as rewriting, checking current symbol on a tape 

and head moves can be simulated by operations on two pushdown stacks, where first 

stack keeps the front part of T: T(O) ... T(i) and the second part of T, is stored in the 

second pushdown stack with T{i+l} on the top [51J. Also it is easy to see that a binary 

word on a stack can be represented by an integer x, where empty stack corresponds 

to 1 value, push a 0 onto the top of a stack corresponds to x I--i- 2x and pushing 

a 1 corresponds to x I--i- 2x + 1; checking the top symbol can be done by checking 
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divisibility by 2 and popping off a 1 or 0 can be done by operations x I--t (x - 1)/2 

or x I--t x/2 respectively(see Figure4.4 for an illustration). Further we notice that the 

register automata on an input with k distinct symbols can simulate any finite number 

of counters of size F for any constant c with the following main operations: increment, 

decrement, multiplication by 2, division by 2 and zero testing. Storing a symbol x in a 

register represents a value ord(x) + 1 of a counter. The implementation of all required 

operations is straightforward albeit tedious. The operation of increment (decrement) by 

one can be implemented by moving forward to the first occurrence of the next (previous) 

distinct symbol on an input string [41]. Testing of a counter to be equal to 1 corresponds 

to dlCckillg whether a stored symbol appear as a first symbol of an input. Also it is 

well known that operation of multiplication (or division) by 2 can be implemented by 

a finite number of extra counters with increment and decrement operations and zero 

testing (or testing to be equal to 1) [51]. Thus, all operations for integer representations 

of pushdown stacks can be implemented by a register automaton. So since the virtual 

counters can store a value of size kC and simulate two pushdown stacks of size log(kC) 

we have that the length of a work tape T which is simulated by register automaton on 

an input with k distinct symbols is bounded by log(kC
). 0 

Theorem 4.2.1. Given a language L with a variability of the order f(n), if a finite 

projection Lbinary of L belongs to SPACE(log(f(n))) then L can be recognised by a 

register automata. 

Proof. The binary code of each symbol in w E L is of a logarithmic size from the 

number of distinct symbols in w. So for any word of size n over an infinite alphabet, the 

length of the binary code for each symbol is no more than log(n). Since the number of 

distinct symbols in any word w E L is at least f(n), thus by the construction described 

above in Subsection 4.2.4.1 we can simulate virtual tape over a binary alphabet of a 

length c .10g(J(n)) for any integer constant c. Therefore register automaton can take 

any symbol y from an infinite alphabet on an input string and convert it into a finite 

binary representation in the virtual work tape over a binary alphabet, by counting the 
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number of previously appeared distinct symbols from the beginning of an input string 

and storing it on a virtual tape, i.e. converting y into a binary representation of ord(y). 

Also by the same construction described in Subsection 4.2.4.1 we have that any extra 

memory of size O(log(f(n)) can be implemented by a finite number of registers on a 

language L with a variability of the order f(n). So any computations over language 

Lbinary that requires SPACE(log(J(n))) can be implemented by a register automaton 

on a language L with a variability of the order f(n). 0 

4.3 Automata and Gauss words 

In this section we will show that for the purpose of Gauss words, a l-way register 

automaton even when equipped with the power of non-determinism is weak as it fails 

to recognise the characteristic property of a Gauss word (that is, for every symbol Oi 

in an input word there exists a corresponding symbol Ui and vice versa). However, 

considering a stronger variant we show that the languages of Gauss words whether 

signed or unsigned as well as non-trivial properties related to Gauss words such as 

the equivalence of two Gauss words in terms of cyclic shift and renaming of labels are 

recognisable by a 2-way deterministic register automata. 

4.3.1 The language of Gauss words 

In the following propositions we show that the languages of signed and unsigned Gauss 

words are not recognisable by a non-deterministic I-way register automata but they 

can be recognised by a deterministic 2-way register automata. 

Proposition 4.3.1. The languages of unsigned Gauss words (LuGw) and signed Gauss 

words (LsGw) are not recognisable by non-deterministic one-way register automata. 

Proof. We show the argument only for the case of LUGw. With obvious modifications 

it works for LSGW as well. The argument is not new and was used e.g. in [5] to show 

non-recognisability of some data languages by one-way register automata. Assume that 
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language L is recognisable by some one-way register automaton A with n registers. 

Consider the word 

w = (U, 1)( U, 2) ... (U, n + 1) ( 0, 1) ( 0, 2) ... (0, n + 1) E L. 

The automaton A accepts this word. After reading first n+ 1 positions, there is at least 

one index value i E {L ... , n + I} which does not appear in any register of A. That 

means that automaton A also accepts a word w' (j. L obtained from w by replacing 

(U, 'i) with (U, i + 1). This contradicts the assumption on A. o 

Proposition 4.3.2. The languages LUGW and LSGW are recognisable by deterministic 

2-way register automata. 

Proof. We explain only the construction of a 2-way deterministic register automaton 

A which recognises LUGw· With obvious modifications the automaton can be adapted 

to the case of LSGw. Let w be a data word (aI, bl) ... (an , bn ) such that a E L = {U, O} 

and bEN. The automaton A reads the first symbol bi and stores the value of bi in some 

register, then it moves right then left along the word to compare the current symbol 

(aj, bj) with the value of bi held in some register. If the symbol (aj, bj) where bi = bj 

and ai # aj is found and there are no further occurrences of bi, then the automaton A 

moves right along the word and checks the next symbol. If the next symbol is equal to 

the end symbol then A moves to an accepting state. o 

The main property of Gauss words that we checked in Proposition 4.3.2 is that for 

each Ui in w there is a unique corresponding Oi such that i occurs twice in w. To 

determine if a Gauss paragraph I is correct, we check the same property. Since Gauss 

paragraphs posses the same property as Gauss words, then by Proposition 4.3.2 the 

language of Gauss paragraphs (signed and unsigned) can also be recognised by a 2-way 

deterministic register automaton. 

1 A Gauss paragraph is disjoint set of Gauss words representing a link diagram, a formal definition 
is given in Definition 5.2.2 and Definition 6.2.1 for the cases of signed and unsigned respectively 
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4.3.2 Isomorphic Gauss words 

In this section, we investigate the recognition problem of isomorphic Gauss words. That 

is Gauss words which are equivalent up to cyclic shift and renaming of labels. 

The definitions for the equivalence of Gauss words in terms of cyclic shift and 

renaming of labels are described in Chapter 3, Section 3.5.1. Let u and v be two Gauss 

words, u and v are called isomorphic Gauss words iff u =CT v (Le. u and v are equivalent 

up to cyclic shift and renaming of labels). 

Definition 4.3.1. Let E# = {U, O} U {# }, the language of isomorphic Gauss words L 

is defined as L = {u(#, a)vlu =CT v, (#, 0.) E E# x N}. 

In the following proposition we show that the recognisability problem of isomorphic 

Gauss words is implementable by a two-way deterministic register automaton. 

Proposition 4.3.3. The language of isomorphic Gauss words can be recognised by 

2-way deterministic register automata. 

Proof. Let 'U' = u#a v where 1t and v are Gauss words separated by a 0. character. To 

check that the words u and v are equivalent up to cyclic shift and renaming of labels. 

The automaton required will need first to find all cyclic words of u and then compare 

each word with the word 1'. To check all cyclic words of u, the automaton will go 

through each symbol in u until the symbol 0. is found. It will record the first symbol 

of each cyclic word in a register and then move right until 0. is found. Once it reaches 

the symbol 0. the automaton will move back to the start symbol and then right until 

it reaches the symbol which marks the beginning of that cyclic word. Now to check 

the next cyclic word the automaton moves a step to the right, stores the new symbol 

in the register and then traverses the word u in the same way. If the next symbol is 0. 

then the automaton will terminate (uses the fact that no symbol repeats). To compare 

the symbols of each cyclic word in tt with the word v, the automaton will check two 

conditions: it will check that the first component (0 or U) of each symbol of the cyclic 

word is in the same order as that in v and that the number of symbols between each 

pair of the same labels is also the same. 
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4.3 Automata and Gauss words 

To check the order of first component of each symbol of the cyclic word, the au

tomaton starts at the beginning of each cyclic word and keeps information about the 

first component of the symbol and its label (data value) in some specified registers. 

The same information about the word v will be kept in other specified registers. The 

information about first component of each symbol will be used for comparison and the 

information about labels will be used to identify the position in which to return to later 

before checking next symbol. 

For each cyclic word in u, if the first component of the symbol is matched with its 

corresponding symbol in v then the automaton checks next symbol and the information 

about the previous symbol that were held in the registers will be overwritten with new 

information about current symbol. This process is continued until all symbols of the 

cyclic word have been checked. However if there is a mismatch then the automaton 

will check next cyclic word otherwise it will move back to the beginning of the current 

cyclic word and then check the number of symbols between each pair of the same label. 

To check the number of symbols between each pair of the same label, the automaton 

will require the use of counters. The counters can be implemented as described in Sec

tion 4.2.1. The first counter will be used to identify the position of the first occurrence 

of each label. The value of this counter will be set to 0 at the beginning and it will 

be increased by 1 for each new label encountered for the first time whilst moving right 

along the word and decrease by 1 otherwise. The second counter will be used to count 

the number of symbols between a pair of the same label. The value of this counter will 

be set to 0 at the position of the first occurrence of each label and it will be increased by 

one for each encountered symbol in between the pair of the two labels. The automaton 

will go through each label i in the cyclic word and each label j in v by moving to the 

first occurrence of each label and then it will move right incrementing the value of the 

second counter by 1 for each encountered symbol until the second occurrence of the 

same label is reached. If the values of the counter for each label i in the cyclic word 

corresponds to that in v then the automaton moves to an accepting state otherwise it 

will check the next cyclic shift. 
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o 

4.4 Summary 

In this chapter we considered automata over infinite alphabets for the purpose of study

ing complexity of problems related to knots and demonstrated generic results on the 

mutual sillllllatiolls betweell log-space bounded classical computations (over finite al

phabets) and register automata working over infinite alphabets. our characterisation of 

languages recognisable by register automata is more general than one proposed in [55]. 

Non-trivial lower bounds for some knot problems are unknown and weak automata 

models are plausible candidates here to try. In opposite direction, knot theory provides 

a rich supply of natural problems formulated in terms of languages over infinite alpha

bets, and that, one may expect, will influence the development of the theory of such 

languages and related computational models. 

In the next chapter we will apply automata over infinite alphabet to investigate the 

computational complexity for the recognition problem of planar signed Gauss words 

and Gauss paragraphs. 
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Chapter 5 

Signed Planarity 

In this chapter we investigate the descriptional complexity of knot theoretic problems 

and show upper bounds for the planarity problems of signed knot diagrams represented 

by signed Gauss words and signed link diagrams represented by signed Gauss Para

graph. For establishing the upper and lower bounds on recognition of knot properties, 

we study these problems in a context of automata models over an infinite alphabet. 

The central problem that we study in this chapter is to determine whether a given 

signed Gauss word (paragraph) is planar, i.e. encodes a plane diagram of a classical 

knot (link) in Jlt3. 

In Section 5.1 we investigate the complexity of planarity problem of signed knot dia

grams represented by signed Gauss words and demonstrate an upper bound by showing 

that it can be recognised by a deterministic two-way register automata simulating the 

algorithm presented in [7] and in Section 5.2 we consider the planarity problem of 

signed link diagrams represented by Gauss paragraphs and show that the language of 

planar signed Gauss paragraphs can be recognised by deterministic two-way register 

automata simulating the recently discovered linear time algorithm in [38]. 

Further in Section 5.3 we translate our results obtained in Sections 5.1 and 5.2 in 

terms of classical complexity and show that languages of planar signed Gauss words 

and planar signed Gauss paragraphs belong to the complexity log-space class ,c. 
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5.1 Planarity of signed Gauss words 

5.1 Planarity of signed Gauss words 

Every knot can be represented by a signed Gauss word, but not every signed Gauss 

word represents a classical knot in 1R3. For example, any attempt to reconstruct a knot 

diagram from the Gauss word 0lOiuIOtUiUt inevitably leads to new (virtual) 

crossings which are not present in the Gauss word, see Figure 5.1. 

Figure 5.1: Virtual knot diagram - An example of a virtual (non-planar) knot diagram 
with 2 virtual crossings 

The ambiguity in reconstructing the curve from the Gauss word depends on the 

choice of whether one curve crosses the other from right-to-left or left-to-right at a 

crossing. Such problem was resolved in [9] by labelling the letters in the Gauss word 

with signs leading to signed Gauss words. Based on the work of Carter in [9], Elton 

and Cairn presented an algorithm in [7] that deals with the planarity problem of signed 

Gauss words. 

5.1.1 Cairns-Elt on algorithm 

The algorithm was presented in [7] to deal with the planarity problem of signed Gauss 

words. The encoding used to describe knots is different from the standard Gauss words, 

i.e. information about under-crossing and over-crossing is omitted and two opposite 

signs are associated with the pair of labels representing the same crossing. However, 

this encoding can be converted into standard Gauss words and vice versa. 

To describe the implementation of the algorithm, we use the modified version of the 

algorithm presented in [8, Theorem 1 '] and adopt the same notation. 

110 



5.1 Planarity of signed Gauss words 

5.1.1.1 Notation 

Given a set S = {aI, ... , ab all, ... , a;l}, an abstract Gauss word w is defined as a 

permutation of S. An abstract Gauss word can encode a knot diagram in the following 

way: label the crossings with letters ab ... , ak. Choose an orientation for the curve and 

start traversing the curve from an arbitrary point x until the same point is reached 

for the second time. At each crossing ai record ail if one passes through the crossing 

point ai and the curve that one crosses is travelling from right to left or record atl 

otherwise. The positive superscripts are omitted. 

Definition 5.1.1. The value Ui(W) is a sum of the values of the superscripts (signs) 

of the set Si (where Si denote the letters appeared between the two occurrences of the 

letters ai and ail) (mod 2). 

Definition 5.1.2. Let Si = Si U {ai, ail} and set S;l denote set Sj but with signs 

reversed. The value of i3i,j (w) is a sum of the values of the superscripts of the letters 

in the intersection of Si and S;1 taken modulo 2, for all i,j E {l, ... , k}. 

Notice that the value attributed to each sign is ±1. So the contribution it makes to 

the sum of values of D:i(W) or f3ij(W) is 1 (mod 2) which is in fact similar to counting 

the number of letters, i.e. if the total number of letters between any pair ai and ail is 

o (mod 2) then the sum of signs of the letters is also 0 (mod 2) and vice versa. 

5.1.1.2 Implementation 

Given the word w with 2k labels, the algorithm proceeds in two stages. 

1. For all i E w, check if D:i(W) = 0 (mod 2) where i = {l, ... , k}. 

2. For all i,j E w, check if f3i,j(W) = 0 (mod 2) where i,j = {l, ... , k}. 

If conditions 1 and 2 are satisfied then the algorithm returns "the word W is planar", 

otherwise if any of the conditions is not satisfied, the algorithm returns "the word W is 

I " non-p anar . 
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5.1 Planarity of signed Gauss words 

The complexity of the algorithm has not been established neither in terms of time 

nor space. However, In terms of computational power of devices, we will demonstrate an 

upper bound by showing that the property expressed in this algorithm is recognisable 

by a deterministic two-way register automata. 

Theorem 5.1.1. The language of planar signed Gauss woms can be recognised by a 

2-way deterministic register automata. 

Proof. To check the value of Q!i(W), the automaton keeps in the register the current 

index i of each positive letter ai and goes through each element between ai and ail. It 

will keep a count of the number of letters (mod 2) between ai and ail in finite state 

control by alternating between odd and even states. If ail is reached and state is odd 

then the automaton halts, otherwise it moves to the right and checks the value of Q!i (w) 

for the next positive letter ai· If for all ai the parity of Q!i (w) is even the automaton 

proceeds to check the second condition. 

To check the value of f3ij (w), the automaton needs two registers to store the current 

indices of each ai and aj. Again the counting is done in finite state control by alternating 

between odd and even states iff for each symbol ak E Si, the inverse of ak (a;l) belongs 

to the set Sj (Le this is equivalent to checking elements of the set Sjl). If the automaton 

reaches ail and state is odd then it terminates, otherwise it will continue to the check 

the next value. If for all ai, aj E w, the parity of f3ij(W) is even then the automaton 

moves to an accepting state. 

o 

Due to the fact that a knot diagram is defined as a link with one component, the 

planarity problem of signed Gauss words can be seen in general as a restriction case 

of the planarity problem of signed Gauss paragraphs. The above algorithm therefore 

is not applicable for links represented by Gauss paragraphs due to the fact that the 

algorithm was designed to deal with single Gauss words rather than with a set of Gauss 

words (for the case of links). However in the next section, we will consider a different 

algorithm designed for checking the planarity of signed Gauss paragraphs presented in 
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[38]. 

5.2 Planarity of signed Gauss paragraphs 

The planarity problem of links represented by Gauss paragraphs is formulated in a 

similar way to the planarity problem of knot diagrams represented by Gauss words. 

The only difference is that for links the input is a set of cyclic words usually known as 

Gauss paragraph. Before we discuss the algorithm, we will begin with some definitions 

to define links and their encodings. 

Definition 5.2.1. A link is a smooth embedding (image) of several disjoint circles in 

lR3 . Each knot representing the image of one of these circles is called a link component. 

Figure 5.2: - An oriented link diagram with its corresponding Gauss paragraph 

A link can be represented by a Gauss paragraph by encoding a link diagram in a 

combinatorial way. We associate a word to each component circle in the diagram. We 

record the crossing points with signs according to their order in the circle by travelling 

around the circle exactly once. The set of resulting words form a Gauss paragraph (see 

Figure 5.2). Any link diagram can be encoded by several Gauss paragraphs since there 

are five choices that can be made: 

• Choosing a base point of each circle. 
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5.2 Planarity of signed Gauss paragraphs 

• Choosing an orientation of each circle. 

• Relabelling of the crossings. 

• Changing the signs for crossings. 

• Permuting the order of the component circles. 

To define signed Gauss paragraphs formally, we use the same notations as for the 

definitions of Gauss words. 

Definition 5.2.2. A signed Gauss paragraph Waver the alphabet E = {O+, 0- , U+, U-} x 

N is a set of data words {w}, ... , Wk} where k ;::: 1 such that IWll + IW21 ... + IWkl is even 

and for every i E Neither 

• IWI(u+,i) = IWI(o+,i) = IWI(u-,i) = IWI(O-,i) = 0, or 

• IWI(U+,i) = IWI(o+,i) = 1 and IWI(u- ,i) = IWI(o- ,i) = 0, or 

• IWI(U-,i) = IWI(O-,i) = 1 and IWI(u+,i) = IWI(o+,i) = 0. 

5.2.1 Kurlin algorithm 

The main idea of the algorithm is to find the least genus1 of the surface containing 

a knot diagram without virtual crossings encoded by a given Gauss paragraph. For 

this purpose the Euler characteristic X [49] of the combinatorial Carter surface (a 2-

cell complex2 constructed from a Gauss paragraph where vertices correspond to the 

crossing labels, edges correspond to two consecutive labels and faces are found by 

successive left turns on each crossing as illustrated in Figure 5.4) [9] associated to the 

Gauss paragraph is computed as the number of faces (cycles) minus the number of edges 

plus the number of vertices. The Gauss paragraph includes the information required 

to reconstruct the Carter surface. We first derive a diagram (a 4-regular graph) in the 

lThis is the minimum number of handles that must be added to the sphere in order to embed the 
knot on the surface. The genus 9 is related to the Euler characteristics X by the formula X = 2 - 29. 

2This is a topological space with cell structure consisting of O-cells corresponding to vertices, 1-cells 
corresponding to edges and 2-cells corresponding to faces. 
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5.2 Planarity of signed Gauss paragraphs 

plane (not necessary embeddable in the plane) where the number of edges is the length 

of the Gauss paragraph, the number of vertices is the number of crossings (half the 

length of the Gauss paragraph) and the number of faces can be found by implementing 

traversal rules described in Definition 5.2.3. The Carter surface is obtained by gluing 

all faces of the diagram together. 

5.2.1.1 Notation 

Let W = {WI' ... , Wk} be a Gauss paragraph of length 2n. That is IWll + ... + IWkl = 

2n. We associate a Carter surface M {w}, ... , Wk} with W as follows: Take n vertices 

labelled by 1, ... , n and connect vertices i, j by an edge with a mark (a,b) or (b,a) 

if one of the cyclic words WI, ... , Wk contains the ordered pair ab or ba of successive 

letters respectively, for some a E {O;, Ui+, 0;, Ui-,}, b E {ot, ut, OJ, UT,} where 

i,j E {I, ... , n}. We traverse a face in the resulting graph by travelling along an edge 

(a, b) encoding the direction of the path by (a, b)R if the letter a precedes b in the 

Gauss paragraph and by (a, b)L otherwise. After passing an edge we choose the next 

edge based on a set of traversal rules defined in Definition 5.2.3. 

Example. Let W = {0Iut,u1-ot} be a Gauss paragraph representing the link dia

gram in Figure 5.3. Then W generates the graph with 2 vertices connected by -4 edges 

(Olut), (utO)) , (U10t), (otUl) and 2 faces bounded by the edges 

(Olut)R(otul)R(Olut)L(otul)L and 

(OIUih(OtUl)R(OIUi)R(otul-)L. 

Figure 5.3: - A non-planar link diagram with two virtual crossings 
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5.2 Planarity of signed Gauss paragraphs 

5.2.1.2 Traversal rules 

The traversal of a face containing a crossing i in the link diagram can be done by 

choosing an initial direction and turning left at each consecutive visited crossing starting 

from i. This global property of "turning left" can be defined by a deterministic set of 

traversal rules that take into account only local property of the current crossing and 

some finite information about the previously visited one. In general we have 8 cases 

since there are 2 types of crossings (positive and negative) and 4 directions from which 

we can approach each crossing, see Figure 5.4. From a topological point of view, we 
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.... ~~~ / 
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...... ~ .. ........... /·/2··········· ....... :.t 
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Figure 5.4: - Geometric interpretation of traversal rules for selecting faces 

take the graph G defined by a Gauss paragraph and associate faces to cycles always 

turning left at every vertex, which leads to a surface. If the resulting surface is a 2-

dimensional sphere whose Euler characteristic is 2 then the given Gauss paragraph is 

planar since we have embedded the graph into the plane. We follow the interpretation 

of the local rules for selecting cycles defined in [38], but present them here in slightly 

different notation, which is more appropriate for the design of a register automaton. 

A register automaton that is observing a current symbol S, needs to choose a correct 

symbol corresponding to the next crossing after turning (geometrically) to the left on a 

link diagram. In fact on the Gauss paragraph, it will correspond to finding S' that is the 

counterpart of S and then choosing a symbol which is either a left or right neighbour 

of S'. 

For example, if S is Oi (Ui' respectively) with any sign e = ± then we choose a 

neighbour of Ui (Oi, respectively) with same sign e in the Gauss paragraph. Geomet

rically, taking the right neighbour in the Gauss paragraph is equivalent to going in the 
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direction of the orientation of the corresponding link diagram, while taking the left 

neighbour means moving in the direction opposite to the orientation. In order to define 

whether we need a neighbour from the left or from the right side we need to know the 

current type of the crossing which is 8 and the information about the previous choice 

of direction, i.e. whether 8 was chosen as a left or a right symbol. 

Definition 5.2.3. We define eight rules in the form (D,8) => (8', D'), where D, D' E 

{R, L} and 8, 8' E {U, O} x N x {+, -}. Each rule can be read as follows: if the current 

symbol 8 is reached via direction D then find S' (counterpart of 8) and move one step 

in the specified direction. 

5. (R, Ui-)=> (Oi-, R) 

6. (R, Oi-)=> (Ui-, L) 

7. (L, Ui-)=> (Oi-, L) 

8. (L, Oi-)=> (Ui-, R) 

The first rule (R, On ~ (Ui+, R) correspond to a curved dashed line labelled with 

a 1 in the first left-hand-side picture of Figure 5.4. The remaining 7 rules correspond to 

other 7 curved dashed lines with arrows showing 'the left turn'. The sign of a crossing 

does not change, while any overcrossing is replaced by an undercrossing and vice versa. 

To make the rules reflect the geometric interpretation for traversing a face on a 

diagram by always turning left at each visited crossing, we need to draw a distinction 

between the search for locating the counterpart of some symbol and the move to the 

right (or to the left respectively) after locating the counterpart. That is, to locate 

the counterpart of a symbol, one can go through all symbols in the Gauss paragraph 

whereas for the second part, one can only move within the word that the counterpart 

symbol belongs to. So to identify the right-symbol of the last symbol or the left-symbol 

of the first symbol of some particular word, we need associate some extra symbols to 

mark the beginning and end of each word and two other symbols to mark the beginning 

and end of the Gauss paragraph. 

117 



5.2 Planarity of signed Gauss paragraphs 

Definition 5.2.4. Let r = {C>, <I, #, *} and W = {Wl, W2, ... , wn } be a Gauss paragraph 

where n ~ 1. We obtain a new word W = # C> Wl <lC> W2 <I, ... , C> Wn <J * by 

concatenating the set of words in W such that each word Wi E W is associated with the 

symbols C>, <I Er. 

Lemma 5.2.1.1. A two-way deterministic register automaton can traverse all faces 

containing a crossing i in the Carter surface associated with a link diagram. 

Proof. We follow the rules defined in Definition 5.2.3. We can design a register automa

ton that keeps the finite information about its previous choice of direction (Right or 

Left) in its state space and chooses the Right or Left symbol of Sf after observing the 

symbol S. It can also keep records on which rule was applied to the starting symbol S 

and will terminate the traversal of a face if the same rule will be applied for S again. 

The fact of the repetition corresponds to the completion of a cyclic path. In order to 

traverse all faces which are adjacent to a crossing i, we need to start from two different 

initial conditions associated with labels (Oi or Ui ) and two different initial direction 

(Left or Right). o 

Lemma 5.2.1.2. Two-way deterministic register automata can compute the Euler 

characteristic of the Carter surface associated to a signed Gauss paragraph according 

to the construction described in Section 4·2.1. 

Proof. To compute the Euler characteristic we count the numbers of edges and vertices 

in the graph G represented by a signed Gauss paragraph. Geometrically G is the 

underlying graph of the link diagram encoded by the Gauss paragraph and all its 

vertices (crossings of the diagram) have degree 4 only. The number of vertices in G 

is the number of distinct symbols, while the number of edges is twice as much. Both 

values can be counted in a straightforward way. The number of faces attached to 

the graph in the combinatorial Carter surface can be counted by traversing G in the 

following way. The automaton goes sequentially through the list of vertices. For each 

vertex i it traverses (as described in Lemma 5.2.1.1) all adjacent faces and increases the 

counter by one for every face F not containing vertices with indices less than i. Also 
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the automaton counts how many times the crossing i is met during the traversal of faces 

adjacent to i. As soon as the value reaches 4 the automaton starts the traversal for 

the next crossing. The computation of the Euler characteristic X is done by counting 

the values for edges, vertices and faces in individual counters and then by subtracting 

number of edges from the sum of the numbers of vertices and faces. Since the number of 

each value in counters is bounded by the number of distinct symbols, the computation 

can be done by the two-way deterministic register automaton. o 

Theorem 5.2.1. The language of planar signed Gauss paragraphs can be recognised by 

two-way deterministic register automata. 

Proof. Compute the Euler characteristics by the two-way deterministic register au

tomaton. If the Euler characteristics X is equal to 2, i.e. the combinatorial Carter 

surface is a sphere, then a signed Gauss word is planar [9; 38]. 0 

5.3 Complexity bounds of signed planarity 

We have shown that in Chapter 4 Lemma 4.2.2 that if a language L over the infinite 

alphabet D is acceptable by two-way register automata then the encoding of Lover 

a finite alphabet can be accepted by a Turing machine in log-space memory. As a 

consequence we have the following corollaries providing first known results in terms of 

classical space complexity for the planarity problems of signed Gauss words and signed 

Gauss paragraphs. 

Corollary 5.3.1. The language of planar signed Gauss words is in .c. 

Corollary 5.3.2. The language of planar signed Gauss paragraphs is in .c. 

5.4 Summary 

We have applied automata over infinite alphabets for studying complexity of problems 

related to knots. We have shown that the languages of planar signed Gauss words and 
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5.4 Summary 

signed Gauss paragraphs can be recognised by deterministic two-way register automata. 

Therefore this result is final in the sense that the power of non-deterministic one-way 

register automata is not even enough to recognise whether an input is a Gauss word. 

We have also shown that planarity of signed Gauss words and signed Gauss para

graphs can be recognised in deterministic logarithmic space on classical computational 

models. In the next chapter, we consider the languages of planar unsigned Gauss words 

and unsigned Gauss paragraphs. 

120 



Chapter 6 

Unsigned Planarity 

In this chapter we investigate the complexity of knot theoretic problems and show 

upper bounds for planarity problem of unsigned knot and link diagrams. 

A knot can be encoded by a string of symbols Oi'S (over-crossing i) and Ui'S (under

crossing i) where i is a label for some crossing such that each crossing has a unique 

label. The double occurrence sequence of labels was first described by Gauss in [23] 

and this string of symbols is known as a Gauss word. 

The question of characterisation of "true", or planar Gauss words was posed by 

Gauss himself [23] and was eventually resolved by Nagy in [53]. Since then there has 

been proposed many criteria and algorithms both for recognition of signed [7; 38] and 

unsigned [8; 16; 17; 37; 46; 48; 57; 60; 60; 61; 62] Gauss words. The questions of 

computational complexity of the proposed algorithms were rarely explicitly addressed 

with notable exceptions being [38] where linear time algorithm for the signed case is 

proposed, and in [61] where a linear time complexity for unsigned case is established 

and compared with earlier quadratic bounds in [57]. 

In Chapter 5 we proposed to evaluate the complexity of problems of recognising 

knot properties in terms of the computational power of devices needed to recognise 

the properties. Following the proposal we demonstrated lower and upper bounds for 

recognisability of knot properties in terms of various automata models over infinite 

alphabets. The infinite alphabet appeared naturally due to the fact that the num-
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ber of crossings in knots is unbounded. The main property addressed was planarity 

problem for signed Gauss words and signed Gauss paragraphs. We have shown that 

languages of planar signed Gauss words and signed Gauss paragraphs can be recognised 

by deterministic register automata working over infinite alphabets. 

In this chapter, we continue this line of research focussing mainly on the unsigned 

case. Our contribution is as follows: 

1. In Section 6.1 we provide an analysis of Cairns-Elton algorithm for planarity of 

unsigned Gauss words and show that it is implementable by co-non-deterministic 

register automata. 

2. In Section 6.2 we show that planarity of unsigned Gauss paragraph is recognisable 

by a linearly bounded memory automata simulating Kauffman algorithm [37]. 

3. In Section 6.3 we further show that Cairns-Elton algorithm is implementable 

in S£ (symmetric logspace) and therefore in £ [59]. It follows that planarity of 

unsigned Gauss words is recognisable by deterministic register automata, refuting 

the conjecture from [41]. 

6.1 Planarity of unsigned Gauss words 

In this section we address the question of recognising planarity of Gauss words by sim

ulating an algorithm presented by Cairns and Elton in [8] and present an upper bound 

for the planarity problem of unsigned Gauss words by showing that it is recognisable 

by a co-non-deterministic register automata. 

The fact that every knot can be represented by a Gauss word follows directly from 

the constructive definition of a Gauss word and the fact that the converse does not 

hold is illustrated in Figure 6.1. Such an observation was one of the motivations for 

introducing virtual knot theory [37]. A Gauss word which represents a classical knot 

diagram, that is a diagram embeddable into a plane without virtual crossings, is called 

classical or planar. 
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6.1 Planarity of unsigned Gauss words 

Figure 6.1: Non-planar knot diagram 

6.1.1 Extended version of Cairns-Elton algorithm 

Cairns and Elton provided a combinatorial algorithm in [8] which is an extension of the 

previous algorithm presented in [7] for signed planarity which we considered in Section 

5.1. An extra condition is added to check that the parity of the sum of values (assigned 

to edges) is even for every closed path in the interlacement graph constructed from the 

Gauss word. 

6.1.1.1 Notation 

We will begin with some definitions to describe the main steps of the algorithm. 

Definition 6.1.1. For a Gauss word w, denote by Qi(W) the number of symbols that 

occur in w in cyclic order between the symbols Ui and Oi, taken modulo 2. 

Notice that, due to the fact that every label appears twice in a Gauss word, in the 

above definition one can swap Ui and Oi, so the definition of Qi(W) will not be affected. 

Definition 6.1.2. A signing s is a mapping s : N -+ {+, -}. 

Definition 6.1.3. For an unsigned Gauss word wand a signing s, a signed word WS is 

obtained from w by replacing all symbols (U,i) with (Us(i),i) and (O,i) with (os(i),i). 

Let Si denote the subset of symbols that occur in WS in cyclic order between, either 

the symbols ut and ot, or 0; and Ui-· Let Si denote {U:(i), O:(i)} U Si and Si! 

denote the set Si after swapping Us with Os, that is Si-1 = {(us(j),j)l(os(j),j) E Si} 
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u{(OS(j),j)I(US(j),j) E Sd. Then r3ij(WS) is the number of elements in the intersection 

of Si and Sj-l taken modulo 2 (i.e. r3ij(WS) = ISi n 5;11 (mod 2)). 

Notice that r3ij(1l'S) depends on signs s(i) and s(j) but not on s(k) for k # i,j. 
Given an unsigned Gauss word w, we associate an interlacement graph G( w) as 

defined in Definition 2.1.4 where the vertices of G( w) are labels in a shadow projection 

sp(w) (natural numbers) and the edges of G(w) are the pairs of labels (i,j) such that 

i and j are interlaced in sp( w). 

Example. Given w = UI03U4U201U502U30504, the interlacement graph G(w) ofw 

is shown in figure 4. Let i = 1, j = 2, s(1) = + and s(2) = +. Then fr1(W) = 

I{03, U4, U2}1 = 3 == 1 (mod 2), and r312(WS
) = IS1 n Sill = 

I{U:(l) , 0;(3), U:(4), U;(2) , 0:(1)} n{u:(1),O~(5)}1 = I{U:(l)}1 == 1 (mod 2) 

3 

I I 2 I I 
U103U4U201US02U30S04 

I 1 I I I 5 I I 
4 

(a) (b) 

Fig. 4. Non-planar Gauss word wand its corresponding interlacement graph G(w) with edges 

( i, j) labelled by i3ij ( w B 
) 

For a signed word WS and for each edge eij in G ( w ), we assign the number f3ij ( WS
) E 

Z2. According to [8] that assignment defines a Z2 1-cochain1 B(wS
) and the property 

that the Cairns-Elton algorithm checks is whether this co-chain is closed. For the pur

pose of this paper we need only characterisation of the closedness of B( W S
) in terms 

of notions we have already introduced: B( wB
) is closed if and only if for every closed 

path P in G(w), the sum of the numbers f3ij(W B
) = 0 (mod 2) for each edge (ij) E P. 

1 This is an algebraic means of representing the relationship between the cocycles and coboundaries 
in various dimensions of some space. 
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6.1 Planarity of unsigned Gauss words 

The closed path is in fact a simple cycle with no repeated vertices other than starting 

and ending vertices. 

The Propositions 6.1.1 and 6.1.2 provide with the properties crucial for the efficient im

plementation of the Cairns-Elton algorithm. Also as an easy consequence of Proposition 

6.1.1, we formulate Lemma 6.1.1.1. 

Proposition 6.1.1. [8, page 139} f3ij(W 8
) does not depend on s whenever i and j do 

not interlace. 

Lemma 6.1.1.1. Let G(w) denote the interlacement graph of the Gauss word wand 

N(Vi) denote the set of vertices connected to Vi, then f3ij(W) = IN(Vi) nN(vj)1 (mod 2) 

whenever i and j do not interlace in w. 

Proposition 6.1.2. [8, Lemma 1} The condition B(w8
) to be closed depends on w but 

not on s. 

For all positive signing s, that is s(i) = + for all i E N, we denote B{w8
) by B(w) 

and f3ij{W 8
) by f3ij(W). 

6.1.1.2 Implementation 

Given an unsigned Gauss word w, the algorithm proceeds by checking that 

1. For all i E w, Cti(W) = O. 

2. For all i,j E w, f3i,j{W) = 0 whenever i and j do not interlace. 

3. B{w) is closed. 

If conditions 1,2 and 3 are satisfied then the algorithm returns "the word W is 

planar", otherwise if any of the conditions is not satisfied, the algorithm returns "the 

word W is non-planar". 

We will show in this subsection that the checking of first two conditions of the 

above algorithm is implement able by a deterministic register automata whereas the 

checking of the third condition is implement able by a co-non-deterministic register 
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6.1 Planarity of unsigned Gauss words 

automata (that is the negation of this condition is checkable by a non-deterministic 

register automata). 

First, we refine the above description of the algorithm and present it in more details. 

Given an unsigned Gauss word w, the algorithm proceeds in three stages. 

I The input word is checked on whether the number of neighbours of Vi is odd for 

some Vi in G(w). If "yes", the algorithm stops with the result "the input word is 

non-planar", otherwise the algorithm proceeds to the second stage. 

11 The input word is checked on whether i3ij (w) is odd for some pair of vertices 

(Vi, Vj) in G( w) that are not connected by an edge. If "yes" , the algorithm stops 

with the result "the input word is non-planar", otherwise the algorithm proceeds 

to the third stage. 

III For all positive signing s, the input word is checked on whether there exists a cycle 

in G(w) such that the sum of i3ij(WB
) assigned to its edges eij is odd. If "yes", 

the algorithm stops with the result "the input word is non-planar", otherwise the 

algorithm stops with the result "the input word is planar" . 

Theorem 6.1.1. The language of non-planar unsigned Gauss words (UNSIGNED 

NONPLANARITY) can be recognised by a two-way non-deterministic register automa-

ton. 

Proof. The proof is divided into two parts. In the first part we show that the first two 

conditions can be implemented by a deterministic register automata and in the second 

part we show the third condition can be implemented by a non-deterministic register 

automata. Let w be an unsigned Gauss word and G{w) be the interlacement graph of 

w. Denote by N(lIi) the set of all neighbours of a vertex Vi E G(w). 

w-U,U.U,o.o,o. 

H 1 ~ I p GCwI 

Figure 6.2: Example - N(vd = {3}, N(V2) = {3} and N(V3) = {I, 2} 
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6.1 Planarity of unsigned Gauss words 

Part! For the first condition, the automaton checks the parity of the number of neigh

bours of each vertex Vi E G(w). It will store in the register the first occurrence of the 

label i in w which corresponds to vertex Vi and store the parity of IN(Vi)1 in finite 

state control of the automaton. Checking the parity of IN(Vi)1 corresponds to checking 

the parity of the number of symbols between the two occurrences of i in w. So the 

automaton goes through each symbol j in between the pair of the labels i and i-I in w 

(where i-I represents the second occurrence of i in w) and on the first occurrence of j 

it moves first to an odd state and then alternates between odd and even states for any 

further occurrences. If i-I is reached and the current state is odd then it moves to an 

accepting state. Otherwise if, for all vertices Vi E G(w), the parity of IN(Vi)1 is even 

then it checks condition (2). 

For the second condition, we use Lemma 6.1.1.1 where the automaton is required 

to check the number of common neighbours (IN(Vi) n N(vj)l) for any pair of vertices 

(Vi, Vj) that are not connected by an edge in G(w). Two vertices (Vi, Vj) are connected 

by an edge in G( w) if the label i appears between the two occurrence of j in w only 

once and vice versa. Otherwise the two vertices (Vi, Vj) are not connected by an edge 

in G(w) if j appears twice between the two occurrences of i in w or does not appear at 

all between the two occurrences of i in w . 

To verify that a vertex Vi is not connected to any vertex Vj, the automaton stores 

in the registers the first occurrence of i and the first occurrence of each j and then 

it checks whether there is an even number (either 2 or 0) of occurrences of each j in 

between i and i-I. If the number of occurrences of j in between i and i-I is even 

then it stores the symbol k in the register (which occurs in between i and i-I) and 

compares it with the symbols in between j and j-I. The parity of IN(Vi) n N(vj)1 is 

stored in finite state control of the automaton. If there is a match, it will move first to 

an odd state and then alternate between odd and even states for any further matches. 

If i-I is reached and current state is odd, the automaton moves to an accepting state. 

Otherwise if, for all pairs of vertices Vi, Vj E G(w) that are not connected by an edge, 

the parity of IN(Vi) n N(vj)1 is even then it checks condition 3. 
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6.2 Planarity of unsigned Gauss paragraphs 

Part2 For checking Condition 3, we assume that s is all positive signing. First, we show 

how to check if two vertices Vi and Vj are connected by an edge and how to compute 

their !3ij(WS
) value. Then we show how to sum up the !3ij(W8) values online during the 

traversal of a cycle. To verify that two vertices Vi and Vj are connected by an edge in 

G(w), the automaton keeps a copy of i and j in the registers and checks that there is 

only one occurrence of j in between Ui and Oi' Now to calculate the value of !3ij(W8
) 

for all positive signing ~, the automaton moves its head to find the symbol Uj then 

compares the counterpart of each symbol k in between Uj and OJ (notice that all such 

counterparts form the set S;I) with the symbols in the set Si(Ui, ... , Oi). If there is 

a match it will move first to an odd state and then alternate between odd and even 

states for any further matches until OJ is reached. Finally to traverse a cycle in G(w), 

the automaton non-deterministically chooses a vertex Vi and moves along chosen edge. 

During the traversal, it sums up the !3ij(W8
) values of each visited edge by incrementing 

the counter by 1 (mod 2) only if the value of f3ij(W 8
) is odd, and continue updating the 

counter until the same vertex Vi is met for the second time. If Vi is met for the second 

time and the value of the counter is odd then the automaton moves to an accepting 

state. o 

Corollary 6.1.1. The language of planar unsigned Gauss words can be recognised by 

two-way co-non-deterministic register automata. 

In the next section we investigate the complexity of the planarity problem of links 

encoded by unsigned Gauss paragraphs. 

6.2 Planarity of unsigned Gauss paragraphs 

The algorithms in [] designed for recognising planarity of unsigned Gauss paragraphs 

have quite non-trivial properties in contrast with properties for recognising planarity 

of unsigned Gauss words. One may ask whether we can reduce the planarity question 

of unsigned Gauss paragraphs to the planarity question of unsigned Gauss words. The 

Cairns-Elton algorithm described in previous section works only for knot diagrams rep-
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resented by Gauss words and in general does not work for links. To make it applicable 

for links, one has to transform a link diagram into a knot diagram while preserving the 

planarity of the link diagram. For such transformation, a method was presented in [38] 

designed for transforming signed Gauss paragraphs into signed Gauss words. In this 

section we will modify this method to make it applicable for the unsigned Gauss para

graphs with the aim of applying the Cairns-Elt on algorithm. However will show that 

such transformational method requires more than finite memory and as an alternative 

we consider the implementation of Kauffman algorithm introduced in [37] designed for 

checking the planarity of Gauss paragraphs. 

Before we discuss the transformation procedure we will first give a definition of 

unsigned Gauss paragraphs. We use a similar notation to the signed case in previous 

chapter. 

Definition 6.2.1. An unsigned Gauss paragraph W over the alphabet L = {D, U} X N 

is a set of data words {Wl' ... , Wk} where k ~ 1 such that IWll + IW21· .. + IWkl is even 

and for every i E Neither 

• IWI(U,i) = IWI(o,i) = 0 or 

• IWI(U,i) = IWI(o,i) = 1 

6.2.1 Gauss paragraphs to Gauss words 

In this section we present a modified version of the method presented in [38] for trans

forming a signed Gauss paragraph into a signed Gauss word adapted for the unsigned 

case with the aim of applying the Cairns-Elton algorithm for checking the planarity 

problem of unsigned Gauss words. The reason for considering such transformation 

method is because the recognisability problem of planar unsigned Gauss paragraphs 

does not seem to be implement able with finite memory as oppose to the planarity 

problem of unsigned Gauss words. 

The main idea of the transformation is to add a new crossing each time to two 

different components of a link diagram and to merge the two different components in 
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6.2 Planarity of unsigned Gauss paragraphs 

a way that preserves the planarity property of the link diagram until we have a single 

component (Le. a knot diagram). 

Given a Gauss paragraph W! = {WI, ... , Wk} of length 2n (2n = IWll + ... + IWkl) 
with k words, we associate a Gauss word of length 2n + 2k - 2. The transformation 

procedure is done as follows: 

• Take two words Wi and Wj where Wi, Wj E Wand i, j E {1, ... , k} such that either 

Ol E Wi and Ul E Wj where I E {1, ... , n}. 

• Rewrite Wj cyclically so that the letter Ul in Wj is the last letter of Wj. We insert 

a new crossing m (where m ~ {1, ... , n}) by using the following rules: 

• merge the two words together by inserting Wj directly after alUm in Wi. 

• Repeat this process until we have a single component Gauss paragraph 

Since the above transformation involves rewriting and merging several words before 

deriving the final Gauss word, the size of the final Gauss paragraph is increased by 

2k - 1 compared to the size of the original Gauss paragraph with k words. It will 

obviously require more than constant memory and therefore can not be transformed 

by a two-way deterministic register automaton with finite memory. 

As an alternative, we will consider an algorithm presented by Kauffman in [37] 
.1 

designed to deal with the planarity problem of unsigned Gauss paragraphs also based on 

rewriting of a Gauss paragraph but without increasing the size of the Gauss paragraph. 

6.2.2 Kauffman algorithm 

We consider an algorithm for recognition of planar unsigned Gauss paragraphs proposed 

by Kauffman in [37]. In fact, planarity here does not depend on first components of 

Gauss data words, i.e. on information whether particular crossing is under- or over

crossing. Because of that the input for the algorithm is a shadow Gauss paragraph, 

Le a sequence of labels (=natural numbers), where each label in the sequence occurs 
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twice. We assume the labels in the input word ware 1,2, ... ,n and they first occur in 

w in that order. The idea of the algorithm is to rewrite the shadow Gauss paragraph 

as single shadow word and then check the duality property (defined below) on the 

final word. The geometric intuition behind this rewriting is the conversion of the link 

diagram into a single Jordan curve (Le a simple closed curve which divides the plane 

into two partitions) by smoothing each crossings [37]. 

Before we describe the algorithm in details, we will need to introduce the following 

notations: 

6.2.2.1 Notation 

For the definition of a shadow Gauss word refer to Definition 2.1.3 in Chapter 2. 

Definition 6.2.2. A shadow Gauss word w is called dually paired iff the set of all labels 

of w can be partitioned into two subsets such that no two labels in the same subset are 

interlaced. 

The algorithm proceeds in three stages: 

Figure 6.3: An interlacement graph of a non-planar Gauss word-

Let the set W = {Wl,"" Wk} be a Gauss paragraph where k ~ 1 and let IWI = 2n 
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such that n 2: 1. 

1. If W is a single component Gauss paragraph (k = 1) then 

(a) For each i = 1, ... , nEW 

i. check if the parity of the number of labels that occurred between the 

two appearances of i is even 

2. For each -i = 1,2, ... , n. 

(a) If i E Wj and i E Wk where Wj #- Wk the two words are 

1. Cyclically permute Wj and Wk to make i be the first label in each word. 

11. Attach Wk to the end of Wj 

Ill. Rewrite the labels between the two occurrences of i in reverse the order. 

(b) Else rewrite the labels between the two occurrences of i in reverse order. 

3. Let W* be the resulting word. W* is checked on whether it is a dually paired word. 

6.2.2.2 Implementation 

Let the set W = {WI, ... , Wk} be a Gauss paragraph where k 2: 1 and let IWI = 2n 

such that n 2: 1. The three stages of the algorithm are described below in more details. 

1. If k = 1, then the input word is checked on whether there is even nu;mber of 

labels in between two appearances of any label. If" yes" the algorithm proceeds 

to the second stage, if "no" the algorithm stops with the result "no, the input 

word is non-planar" . 

2. Starting with i = 1, the order of labels occurrence between two occurrences of i is 

reversed if the pair of label belongs to the same word. Otherwise we permute the 

two words to make i the first label in each word then we join them together and 

rewrite the labels between the two occurrences of i in reverse order. The process 

is repeated successively using i = 1,2, ... , n. Let w* is a resulting word. 
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3. w* is checked on whether it is a dually paired word. If "yes" the algorithm stops 

with the result "yes, the input word is planar". If "no" the algorithm stops with 

the result "no, the input word is non-planar". 

Returning to the question on lower and upper bounds for the planarity of unsigned 

Gauss paragraphs problem one may notice that the first stage of the Kauffman algo

rithm is obviously implement able on the deterministic register automata. The second 

stage looks problematic, for to implement reversing, the finite memory appears to be 

insufficient while the third stage is implementable by a non-deterministic two-way reg

ister automata as shown in Proposition 6.2.1. 

The next proposition will be used later to show upper bound for planarity of un

signed Gauss paragraphs problem. 

Proposition 6.2.1. The shadow Gauss language of not dually paired words is recog

nisable by a non-deterministic two-ways register automaton. 

Proof. Consider an interlacement graph Gw associated with a shadow Gauss word w . 

It is straightforward to verify that w is dually paired iff Gw is a bipartite graph. The 

graph is bipartite iff it does not contain the cycle of the odd size. Required register 

automaton given a word w simulates non-deterministic traversal of the graph Gw . At 

the beginning it picks up non-deterministically a vertex i of Gw by moving its head 

to the first occurrence of the label i in w, stores the label i in the register and starts 

the traversal of the graph moving along the edges of Gw . The parity of the l~ngth of 

the path is stored in the finite state control of the automaton. If during traversal the 

automaton arrives at the vertex stored in the register it checks the parity of the path 

covered so far and if it is odd the word is accepted. o 

In order to get a better upper bound one may try to extend the register automata 

with pebbles. However, in Chapter 4 Proposition 4.2.1, we showed that over Gauss 

words register automata are capable to model effects of adding any finite number of 

pebbles. 
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Theorem 6.2.1. Planarity of unsigned Gauss paragraphs is recognisable by determin

istic linearly bounded memory automata (LEMA). 

Proof. The proof consists in showing that the Kauffman algorithm is implement able 

on LBMA. 

Indeed, the first stage of the algorithm is implement able with the finite memory. 

Also, it is straightforward to implement the second stage (reversing) on the linear 

memory. Proposition 6.2.1 states that the third stage of the algorithm, that is the 

search for the cycles of odd size on the graph associated with the Gauss word, can be 

done non-deterministically using only the finite memory. Notice, that if the cycle of 

odd size exists in the graph, then necessarily the odd cycle of the size no more than 

n also exists, where n is the length of the input word. Deterministic automaton may 

iterate then over all paths of the length up to n and check the odd cycle condition. The 

linear order on the input Gauss word induces the linear order on the vertices of the 

associated graph. It is clear that this order as well as the relation "next" with respect 

to the order are computable using only finitely many registers. The linear order on 

vertices is extended lexicoraphically on paths in the graph. Deterministic automaton 

iterates over paths along this order. No more than O(n) memory is needed. 0 

6.3 Complexity bounds of unsigned planarity 

In this section we refine the complexity bounds of plamirity recognition and show that 

the language of planar unsigned Gauss words is in the complexity class £. 

In Corollary 6.1.1 we showed that the language of planar unsigned Gauss words can 

be recognised by a co-non-deterministic register automata and in Chapter 4 Proposition 

4.2.2 we showed that if a language is recognisable by register automata then the same 

language can be recognised by a Turing machine with log space memory. As a result 

of this we have the following corollary. 

Corollary 6.3.1. The language of planar Gauss words is in co-N£ and therefore is in 

N£ [34}. 
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Next we refine the complexity bounds of planarity recognition by showing that the 

language of planar unsigned Gauss words is in £ . 

We have shown in Theorem 6.1.1 that planarity of Gauss words is recognisable by co

nondeterministic register automata and therefore belongs to the complexity class co-N£ 

(= N£). Using simple arguments one can show that in terms of classical complexity 

classes, the result can be refined further, that is the language of planar unsigned Gauss 

words belongs to £ (deterministic logspace). Indeed, the only place when one needs 

nondeterminism in the proof of Theorem 6.1.1 is in checking condition 3 where the 

search for the cycles in the interlacement graph bearing odd sum of labels. It is routine 

to check that the rest of the algorithm can be easily implemented in £. It follows 

then that the language of non-planar unsigned Gauss words is logspace reducible to the 

problem from the following proposition and therefore is in £. 

Proposition 6.3.1. The following problem is in £ (deterministic logspace) 

GIVEN: An undirected graph G with every edge labelled by 0 or 1 

QUESTION: Is there any cycle C in G that the sum of labels of all edges in C is 

odd? 

Proof. The search for the required cycle can be done nondeterministically in logspace 

by guessing next edge in the cycle and computing the Pl}rity of the sum of label.s online. 

Since the graph is undirected, the search can be implemented in symmetric logspace 

[39]. By [59] S£ = £. Since £ is closed under complementation, it follows that the 

language of planar unsigned Gauss words is in £. o 

Corollary 6.3.2. . The language of planar Gauss words can be recognised by a two-way 

deterministic register automata. 

The above corollary follows from Proposition 6.3.1 and Theorem 4.2.1 in Chapter 

4.1. 
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6.4 Summary 

In this chapter we have investigated the complexity of planarity of knot diagrams rep

resented by unsigned Gauss words and planarity of link diagrams represented unsigned 

Gauss paragraphs. We have shown that planarity of unsigned Gauss words can be 

recognised in deterministic logarithmic space on classical computational models and 

by deterministic register automata over infinite alphabets while planarity of unsigned 

Gauss paragraphs is recognisable by a linearly bounded memory automata. To demon

strate the results for planarity of unsigned Gauss words we have used generic mutual 

simulation between both computations models for the languages of bounded variabil

ity. Notice that unlike the case of signed Gauss words discussed in Chapter 5 we do 

not provide explicit deterministic logspace bounded decision procedure for planarity of 

unsigned Gauss words and rather refer to the general reduction of S.c to .c [59]. An 

explicit deterministic logspace algorithm for the later case as well as the comparison of 

its complexity with the algorithm(s) for signp-d case is a topic for further work. 
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Chapter 7 

Definability of knot properties 

In Chapters 5 and 6 we proposed to evaluate the complexity of problems of recognising 

knot properties in terms of the computational power of devices needed to recognise 

the properties. Following the proposal we demonstrated lower and upper bounds for 

recognisability of knot properties in terms of various automata models over infinite 

alphabets. The main property addressed was planarity of knot diagrams. 

An alternative and to some extent a complementary approach to the study of de

scriptional complexity of recognisability problems is that based on definability in some 

logic. 

In general the expressive power of register automata over infinite alphabets and 

definability in logics are incomparable, in particular, it was shown in [55] that expres-
J 

siveness of register automata indeed is incomparable with First Order logic (FO) and 

Monadic Second Order logic (MSO) on words over an infinite alphabet. There are some 

languages that are recognisable by register automata but not even definable in MSO, 

on the other hand there FO properties not expressible in register automata. 

In this chapter we investigate the complexity of knot properties by their definability 

in first order logic and its extensions. We show lower and upper bounds for the planarity 

and the unknotting problems encoded by logical structures. 

In Section 7.1 we define the syntax and semantics of first-order predicate logic and 

its extension with a transitive closure operator. Then we define two encodings for Gauss 
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words as logical structures and prove that both encodings are uniformally translatable 

to each other. Further we describe the conditions for Hanf locality that will be used 

later to prove un definability in first-order predicate logic. 

In Section 7.2, we show that planarity of both signed and unsigned Gauss words 

can not be defined by a formula of first-order predicate logic, while extensions of first

order logic with deterministic transitive closure operators allow to define planarity of 

signed and unsigned Gauss words and in Section 7.3 we show that the property of 

unknottedness can not be defined in FO and demonstrate an implicit upper bound by 

showing that it is definable in existential second order logic. 

7.1 Preliminaries 

In this section we define the syntax and semantics of first-order predicate logic and first

order predicate logic plus the transitive closure operator. We provide two encodings for 

the definition of Gauss words as first-order structures and show that the encoding of 

the two structures are translatable to each other using first-order predicate logic plus 

deterministic transitive closure operator (FO+DTC). Then we describe the conditions 

for Hallf locality widely used to prove undefinability in FO. 

7.1.1 FO 

First order logic (also known as predicate logic) allows ~xpressibility of declara~ive sen

tences with quantification and predicates to express properties of objects and relations. 

There are two key parts of first order logic: The syntax determines which collections of 

symbols are legal expressions in first-order logic, and the semantics which determines 

the meanings behind these expressions. 

7.1.1.1 Syntax 

A vocabulary in first-order logic consists of three sets: 

1. A set of predicate symbols P of positive arities. 

138 



1.1 Preliminaries 

2. A set of function symbols F of positive arities. 

3. A set of constant symbols C (function symbols of zero arity). 

There are two key types of legal expressions: terms, which intuitively represent 

objects, and formulas, which intuitively express statements that can be true or false. 

A term t can be defined as t ::= xlclf(tl, ... , tn) where x denote any variable, c 

denote a constant and f E F is a function with an arity n such that n > O. 

A formula ~ can be defined as 

~ ::= p(tl, "" tn)l(--'~)I(~ 1\ ~)I(~ V ~)I(~ ~ ~)I'v'x~13x~ 

where pEP denote a set of predicate symbols with n terms such that n 2 1. 

A formula in FO is called a sentence (closed or bounded formula) if it has no free 

variables (Le, each variable is in the scope of a corresponding quantifier). In contrast, 

a formula has free variables if it is not a sentence. For example 'v'x p(x, y) is not a 

sentence because it has a variable y which is not bounded by a quantifier and the 

formula P(x) 1\ 'v'xQ(x) has two occurrences of the variable x with the first occurrence 

being free and the second occurrence is bounded by a quantifier whereas the formula 

'v'x3y p(x, y) is a sentence as each variable is within the scope of a corresponding 

quantifier. 

1.1.1.2 Semantics 

An interpretation or a structure At is: M = (U, f tt, f ~ , , .. , c~l, efl, , .. " pr, P2M, ... ) 

where 

• U is a non-empty set called the universe. 

• fr : Uni -+ U, where ni is the arity of the function symbol fi 

• Pi
M of an arity ni is a subset of Uni 
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Each term t(x) where Ixl = n is assigned an element tM(a) E U, where a E un is 

defined by the corresponding object assignment. 

If ~ is a sentence, then one can define the satisfaction relation (f=) between struc

tures on one hand and sentences on the other hand. For a formula cp, M f= cp, meaning 

M satisfies cp (under some object assignment) is defined by: 

1. M f= tl (a) = t2(a) iff ttt (a) = tr (a) 

2. M f= P(tl(a),··· ,tk(a)) iff (tl(a),··· ,tk(a)) E pM 

3. M f= .~ iff M ~ ~ 

4. M F ~ /\ w iff M F ~ and M F W 

5. M F ~ V w iff M F ~ or M F W 

6. M f= 3x'lf'(a, x) iff M F ~(a, b) for some bE U 

7. M f= VX'lf'(a, x) iff M F ~(a, b) for every bE U 

7.1.1.3 Quantifier rank 

The quantifier rank of a formula cp, written qr(cp) is defined inductively as follows: 

• if cp is atomic formula then qr( cp) = 0 

• if cp = .'If' then qr(cp) = qr('If'). 

• if cp = 'If'l V 'If'2 or cp = 'If'l /\ 'If'2 then qr( cp) = max( qr( 'If'd, qr( 'If')). 

• if cp = 3x'lf' or cp = VX'lf' then qr(cp) = qr('If') + 1. 

7.1.1.4 Elementary equivalence (up to quantifier rank n) 

For two structures A and B, we say that A =n B if for any sentence cp with qr(cp) $ n, 

A F cp if, and only if B F cp. 
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7.1.1.5 Definability of a class of structures in FO 

Let 1: be some vocabulary and K a class of ~-structures (that is structures which can be 

used to interpret any formula over vocabulary ~). We say that the class K is definable 

over ~ if there is a closed ~-formula cjJ such that for every ~-structure S, S F cjJ iff 

SEK. 

It is well-known that first-order logic has limited expressive power. In particular 

it lacks recursion and counting mechanism. For instance, the transitive closure (TC1) 

operator can not be expressed in FO [40] (Le. there is no such an FO-formula cjJR(X, y) 

on any structure whose vocabulary is R that would define the transitive closure of R). 

In other words, the transitive closure operator can not be precisely characterised within 

the framework of FO. By adding transitive closure operators to FO, we obtain a natural 

family of logics with a recursion mechanism. 

We adopt the following definitions of FO+TC and FO+DTC from [20]. 

7.1.2 FO+TC 

Transitive closure logic is closed under the usual first-order operations. It's obtained by 

augmenting the syntax of first order logic by the following rule for building formulae: 

Let cjJ(x, y) be a formula with variables x = Xl,'" ,Xk and y = Yl,'" ,Yk, and let u 
and ii be two k-tuples of terms. Then [TCx,ycjJ(x, y)](u, ii) is a formula which says that 

the pair (u, ii) is contained in the transitive closure of the binary relation on k-tuples 

that is defined by cjJ. In other words, A F [TCu,vcjJ(x, Y)](a, b) if and only if, there exist 

an n 2: 1 and tuples CO, ... ,~ in A such that CO = u, ~ = ii and A F cjJ(q, Ci+l), for 

all i < n. 

The transitive closure logic is defined by the following BNF: 

cjJ ::= p(tl ... ,tn )(·<1»I(<I> 1\ <1»\(<1> V <1»1(<1> ~ <1» \'v'x<I> l:lx<I>\TCx,ycjJ(x, y)](tl' t"2) 

where the variables in xy are pairwise distinct and where the tuples x, y, ii. and t"2 are 

lThe transitive closure of a relation R is defined as the smallest relation extending R that is 
transitive. 
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all of the same length, tl and t-; being tuples of terms. 

7.1.3 FO+DTC 

Deterministic transitive closure logic is an interesting variant of FO+TC which defines 

the transitive closure of any deterministic definable relation. The syntax of FO+DTC 

is analogous to FO+TC, allowing us to build formulae of the form [DTCx,y</J(x, y)](u, v) 

for any formula </J(x, y). The semantics can be defined by the equivalence 

[DTCx,y</J(x, Y)](u, v) == [TCx,y</J(x, y) /\ VZ</J(x, z) -t y = z](u, v) 

FO+ TC has shown to be more expressive than FO+ DTC and likewise FO+ DTC 

is more expressive than FO [20]. 

7.1.4 Gauss structure 

In order to address definability questions of knot properties, we will use the two variants 

of knot encodings, namely representations of Gauss diagrams and Gauss words by finite 

FO relational structures. 

Definition 7.1.1. A Gauss diagram can be described as a finite relational structure F, 

where F = (V, R, S) and Rand S are binary relations. 

• V = VoUVu where Vis a finite set of points such that vonVu = 0 and VouVu = V. 
) 

• (V, S) is an oriented cycle 

• R is a bijection relation between Va and Vu. 

We will also use a variant of the above definition called a pointed Gauss diagram 

defined as Fe = (V, R, S, c) where c is constant denoting a distinct point in V. When we 

consider definability of properties of diagrams in the extensions of first-order logic by 

transitive closure operators, we may assume that pointed diagrams are linearly ordered, 

for linear order is definable over pointed diagrams in obvious way. 
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Definition 7.1.2. A Gauss word w over the alphabet E x N can be described as a finite 

structure Gw = (1\1, <, "', Po) where: 

• M = {I, ... , n} where Iwl = n, 

• < is a binary relation "less than" on M 

• '" is an equivalence relation where two positions are equivalent if they have the 

same data value (elements of the second component). 

• Po is a predicate symbol satisfying the label (the element of first component) 0 

at some position. 

Definition 7.1.2 above can be seen as a special case of the encoding of general data 

words considered in [6] without the successor relation +1. The successor relation +1 

was needed in [6] because the logic used was a fragment of FO which was restricted 

to quantification over only two variables (F02) whereas in the above definition we 

don't consider such restriction and hence the relation +1 can be defined in terms of 

the relation <. Another difference is the structures we consider in Definition 7.1.2 

correspond to bounded Gauss words where every equivalent class of the relation '" 

contains two elements. 

It easy to see that the encoding of the two structures are uniformly translatable 

to each other using FO+ DTC and DTC is only heeded to define linear order for the 

encoding of Gauss words using the relation S on the ellcoding of Gauss diagrams. 

Let :Y denote a class of structures of all Gauss diagrams F, :Ye denote a class of 

structures of all pointed Gauss diagrams Fe and 9 denote a class of structures of all 

Gauss words Gw . 

Proposition 7.1.1. :Ye is uniformly FO-translatable to 9 (i.e. there are FO-formulae 

<ps(x, y), <PR(X, y) and <Pe(x) in vocabulary «, "', Po) such that given a Gauss word 

structure Ggd = (V, $, "', Po) corresponding to the Gauss diagram gd, then Fgd = 

(V, R, S, c) is a pointed Gauss diagram structure corresponding to the Gauss diagram 
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gd. Here 8 = {(a, b) E VIGgd F cPs(a, b)} and R = {(a, b) E VIGgd F cPR(a, b)}) and 

c E V such that Ggd F cPc(c). 

Proof. To define Fgd in terms of Ggd, we consider the following FO-formulae: 

• cPs(x,y) = [x < y 1\ -'~z(x < z 1\ z < y 1\ x t- z 1\ Y t- z)] V ['v'u(u t- x => u < 

x) 1\ 'v'v(v t- y => y < v)], 

• cPR(X, y) = Po(x) 1\ -'Po(y) 1\ x f'V y and 

• cPc(x) = 'v'z(z t- x => z < x). 

Now it's straight forward to check that these two formulae define what we need. 0 

From the above proposition, it follows that if some property of Gauss diagram/words 

is FO-definable over ~c then is definable over 9. By contraposition, if some property is 

not FO-definable over 9 then it is not definable over ~c. 

Proposition 7.1.2. 9 is uniformly FO+DTC-translatable to l' (i.e. there are FO+DTC

formulae cPdx, y), cP~(x, y) and <PPo in vocabulary (R, 8, c) such that given a Gauss dia

gram structure Fw = (V, R, 8, c) corresponding to the Gauss 'Word w then Gw = (V, <, f"V 

,Po) is a Gauss word structure corresponding to the Gauss word w. Here <= {(a, b) E 

VlFw F cP< (a, b)}, "'= {(a, b) E VlFw F cP",(a, b)} and Po = {a E VlFw F cPpo(a)}). 

Proof. Let cPdx, y) = DTCu ,v(8(u, v) 1\ v t- c)(x, y), cP",(x, y) = R(x, y) V R(y, x) and 
J 

cPPo(x) = ~yR(x, y) 

Now it's straight forward to check that these two formulae define what we need. 0 

From this proposition, it follows that if some property of Gauss diagram/words is 

FO+DTC-definable over 9 then it is FO+DTC-definable over ~c. By contraposition, 

if some property is not FO+DTC-definable over 1'c then it is not definable over 1'. 

The encoding of Gauss paragraphs is defined in a similar way except for the relation 

8 which is defined as a set of oriented cycles 8 = 81, ... , 8n . 
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7.1.5 Hanf locality 

Hanf locality is used to show that a certain class of structures is not FO-definable using 

sufficient conditions based on the idea of locality. 

Before we formulate Hanf locality criterion we will explain first the notion of neigh

bourhood. 

Given a relational structure M = (A,p},'" ,Pn), we define the binary relation: 

E(al' a2) if, and only if, there is some relation R and some tuple a containing both al 

and a2 with R(a). In this way we obtain a graph GM = (A, E) called the Gaifman 

graph of M. We denote by d( a, b) the distance of the shortest path from a to b in GM· 

The neighbourhood of a point a in M denoted by Nbd~ (a) is defined as a substructure 

of M given by the set {bld(a, b) ~ r}. 

Two structures A and Bare HanJ equivalent with radius r and threshold q denoted 

by A C:::r,q B if for every a E A the two sets {a' E AINbd~(a) ~ Nbd~(a')} and 

{b E BINbd~(a) ~ Nbd~(b)} either have the same size or both have size greater than 

q and similarly for every b E B. 

Next we formulate the Hanf locality criterion. Here the symbol =p denotes elemen

tary equivalence 

Theorem 7.1.1. [27} For every vocabulary a and every p there are r ~ JP and q ~ p 

such that Jor any a-structures A and B iJ A C:::r,q B then A =p B. 

7.1.6 Duplicated Gauss words 

In this subsection we introduce a specific class of Gauss words which will be referred 

to as duplicated Gauss words. Consideration of such class of structures is useful for 

proving some lower bounds for planarity problem as well as unknottedness. 

Definition 7.1.3. Let w = (aI, bl ),'" ,(alwl' b1wl) be a Gauss word, a shadow projec

tion sh oJ w is defined as sh( w) = bl , ... , blwl (i. e. a sequence oJ elements oJ the second 

component oJ w). 
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Definition 7.1.4. A duplicated-Gauss word is a Gauss word w such that sh(w) = u·u 

where u = il,' .. ,in' 

Example Given a duplicated-Gauss word w = UI U2U3U4U501 020 30 40 5, then 

sh( w) = 1234512345. The elements of the shadow projection of w can be seen as a 

shadow Gauss word (Le a sequence of natural numbers). The corresponding duplicated

Gauss diagram for the shadow projection of w is shown in Figure 7.1. 

Figure 7.1: Example: - A duplicated-Gauss diagram representing the word 1234512345 

7.2 Planarity 

In this section we investigate the complexity of planarity problem of Gauss words and 

Gauss paragraphs in terms of their definability in Logic. We show as a lower bound that 

planarity property of Gauss words (signed and unsigned) is not definable in first-order 
.J 

predicate logic, while extensions of first-order logic with deterministic transitive closure 

operators allow to define planarity property of signed and unsigned Gauss words. 

7.2.1 Gauss words 

Proposition 7.2.1. Given a duplicated-Gauss word w representing a knot diagram k 

where I w I = 2n and n ~ 1, n is even iff k is a non-planar diagram. 

Proof. Suppose that k is a planar knot diagram and n is even. Let Qi(W) denote the 

number of labels that appeared between two occurrences of i E w where i = {I, ... , n}. 
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1.2 Planarity 

If w represents a planar knot diagram then for every label i of w, Oi(W) == 0 (mod 2) 

(Gauss's necessary condition for planarity [23]). Since w = i} ... ini} ... in and n is 

even then for any i E W, Oi(W) = n - 1 == 1 (mod 2). Therefore W does not represent 

a planar knot diagram, hence k must be a non-planar knot diagram. Similarly, if k is 

non-planar then n is even holds following the same idea. o 

Theorem 1.2.1. The planarity property of signed/unsigned Gauss words is not defin

able by FO over Gauss diagram structures. 

Proof. Let A denote a class of all planar duplicated Gauss diagrams and 13 denote a 

class of all non-planar duplicated Gauss diagrams. We are going to show that for all r 

and q there are A E A and B E 13 such that A ':::::.r,q B. This and Theorem 7.1.1 would 

........................................... 

b 

...................................... 

Figure 7.2: Border edges - Border edges on the circle are labelled by b1 and b2 

imply that for all p there are A E A and B E 13 such that A ==p B, which in turn would 

imply that planarity property of signed/unsigned Gauss words is not definable by FO 

over Gauss diagram structures. 

Fix rand q, we show that for A E A of size 2(2r + 3q + 1) and a Gauss diagram 

BE 13 of size 2(2r + 3q ) we have A ':::::.r,q B. 

To distinguish between the different types of neighbourhoods, we consider two 

groups C} and C2 where Cl include the set of points that can reach the border edges l by 

radius r and C2 includes the set of points that cannot reach the border edges within ra

dius r. So we divide the points of A and B into six parts where ct = Al U A3 U A4 U A6 

1 a border edge is an edge on the circle whose points are connected by an incoming chord and an 
outgoing chord, for illustration see Figure 7.2. Notice all other edges on the circle are either connected 
to two incoming chords or two outgoing chords 
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b 

Figure 7.3: duplicated-Gauss diagrams - A represents a planar knot diagram and B 
represents a non-planar knot diagram 

and et = A2 U A5 and likewise er = Bl U B3 U B4 U B6 and B - Bl,'" ,B6 

ef = AB U B5, (see Figure 7.3 for an illustration). 

We will show that for each a E et, the number of isomorphic neighbourhoods of 

each type in et within A is the same as the number isomorphic neighbourhoods in er 
within B. 

To capture all neighbourhoods of the set of points in et and in er respectively, we 

expand the set of points close to the border by considering all points within radius 2r. 

Now if we consider the two substructures on both diagrams, we get the same number 

of points and the substructures containing such points are also identical. From this it 

follows that if you take any point of radius r the number of isomorphic neighbourhoods 

of radius r within A is the same as the number of isomorphic neighbourhoods ~f radius 

r within B. 

For all other points not et (or er respectively), we will show that their number 

of isomorphic neighbourhoods is greater than q. This is true because the number of 

points in et (or in ef respectively) is exponential with respect to q and the set of 

points in et (or in ef respectively) generate the same type of neighbourhood due to 

the regular structure maintained by both diagrams. 

o 

In Chapter 4 Proposition 4.2.2 we showed that if a language is recognisable by reg-
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ister automata then the same language under some natural encoding can be recognised 

by a Turing machine with log-space memory. Then in Chapters 5 and 6 we showed 

that the language of planar (signed and unsigned) Gauss words is recognisable by a de

terministic register automata. As a consequence it follows that the languages of planar 

Gauss words are definable by FO+DTC. 

Theorem 7.2.2. The language of planar (signed and unsigned) Gauss words is defin

able in first order logic plus deterministic transitive closure (FO+DTC). 

Proof. The language of planar signed Gauss words is in DRA Theorem 5.1.1. The 

language of planar unsigned Gauss words is in DRA Corollary. By Proposition 4.2.2 

DRA ~ L. Since L=FO+DTC (over ordered structures) [33] then the languages of 

planar signed and unsigned Gauss words are definable in FO+DTC. 0 

7.2.2 Gauss paragraphs 

The question of definability of planarity of Gauss paragraph has already been addressed 

in the recent work by B. Courcelle [11]. 

Before we formulate the result from [11] and discuss· its relation to our work, we 

would like to recall the main results on relationships between the computational mod

els we consider in this chapter and definability in logic. The computational power of 

classical finite automata over finite alphabets is characterised precisely in terms of defin

ability in Monadic Second Order Logic (MSO), the extoosion of First-Order Logic (FO) 

with quantification over sets. The classical theorem of Trakhtenbrot and Elgot at al. 

from 1950s states that the languages recognisable by finite state automata (regular lan

guages) are exactly those definable in MSO. The languages definable in FO constitute 

an important class of star-free regular languages. For the case of automata over infinite 

alphabets the situation is much more intricate, and in general, register automata are 

orthogonal to logically defined classes. In [55] authors compared definability in M SO* , 

suitably defined variant of MSO which allows to define the properties of data words, 

with recognisability by register and pebble automata. In particular they have shown 
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that .M 80* is as least as powerful as one-way non-deterministic register automata, but 

incomparable with two-way deterministic and non-deterministic automata. Pebble au

tomata behave much better and recognisability by all their natural variants is covered 

by definability in !If 80*. 

In [11] B. Courcelle proves the following theorem, which we reformulate in the terms 

we have adopted in the thesis. 

A genus of a surface is a topologic ally invariant property of a surface defined as 

the largest number of nonintersecting simple closed curves that can be drawn on the 

surface without separating it [65]. 

Theorem 7.2.3. [11] For every genus g, it is definable by an M80 formula the property 

of a Gauss paragraph to be a code of the self-intersecting closing curve, embeddable in 

a surface of the genus g. 

Corollary 7.2.1. The planarity of unsigned Gauss paragraphs is definable in MSO. 

The encoding of Gauss paragraph by relational structures and logic MSO used in 

[11] are different from the encoding of data words and logic M 80* from [55], but 

insignificantly. It is straightforward to show that over Gauss paragraphs the notion of 

definability is the same for both cases. 

For the planarity case of signed Gauss paragraphs our result on DRA recognisability 

is incomparable with the above MSO-definability result on unsigned Gauss paragraphs . 
. 1 

In fact we will show that planarity of signed Gauss paragraphs is definable in FO+DTC. 

Theorem 7.2.4. The language of planar signed Gauss paragraphs is definable in first 

order logic plus deterministic transitive closure (FO+ DTC). 

Proof. The language of planar unsigned Gauss paragraphs is recognisable by a DRA by 

Theorem 5.2.1. By Proposition 4.2.2 DRA ~ .c. Since.c = FO + DTC (over ordered 

structures) [33] then it follows that the language of planar signed Gauss paragraphs is 

definable in FO+ DTC. 0 
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7.3 Unknottedness 

7.3 Unknottedness 

Before we can show that the property of unknottedness is not definable in FO, we need 

to consider two classes of structures A and B such that A represents a non-trivial knot 

and B represents a trivial knot. We will construct non-trivial knot diagrams that belong 

to A by starting with a simple non-trivial knot diagram (trefoil) and then adding even 

number of crossings in such a way so that the original structure of the trefoil becomes 

hidden (see Figure 7.4). For trivial knot diagrams that belong to B, we do the same 

but we start with a trivial knot diagram with triple-point crossings that has similar 

order of crossings as trefoil (see Figure 7.5). 

Definition 7.3.1. Let C be a class of duplicated-Gauss words such that for any wED, 

Iwl = 6k where kEN and k == I(M od2). 

Proposition 7.3.1. Given wEe and an odd integer k 2:: 1, if the projection of the first 

component (i.e. sequence of Os and Us) ofw is OkUkOkUkOkUk then w is non-trivial. 

Proof. Consider the knot diagram encoded by w for k = 1, clearly this is a projection 

of the trefoil knot (illustrated on the left-hand side picture of Figure 7.4), which is of 

course a non-trivial knot diagram. For any odd integer k where k > 1, the number of 

crossings added correspond to k applications of Reidemeister moves of type lIt. Since 

the knot type is invariant under Reidemeister moves, it will not be changed. 0 

!~ ............ ~~\ 

. >&K. . ,. 
\. '" ./ ..... /p ..... 

Figure 7.4: - A class of non-trivial knot diagrams 

Proposition 7.3.2. Given wEe and an odd integer k 2: 1, if the projection of the 

first component of w is Ok+lUk-lokUk+lOk-lUk then w is trivial. 
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7.3 Unknottedness 

Proof. The arguments are similar to those in the proof of Proposition 7.3.1 but the 

knot diagram encoded by w is trivial, see Figure 7.5. o 

Figure 7.5: - A class of trivial knot diagrams 

Theorem 7.3.1. The property of unknottedness i8 not definable by FO over Gauss 

diagram structures. 

Proof. Let A denote a class of all non-trivial duplicated Gauss diagrams and 'B denote 

a class of all trivial duplicated Gauss diagrams. We are going to show that for all r 

and q there are A E A and B E 'B such that A ~r,q B. 

Figure 7.6: duplicated-Gauss diagrams - A represents a non-trivial knot diagram and 
B represents a trivial knot diagram 

This and Theorem 7.1.1 would imply that for all p there are A E A and B E 'B such 

that A =p B, which in turn would imply the property of unknottedness is not definable 

by FO over Gauss diagram structure. 

Fix r and q, we show that for A E A of size 6(2r + 2(3q )) + 2 and a Gauss diagram 

B E 'B of the same size we have A ::!r,q B. 
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7.4 Summary 

To distinguish between the different types of neighbourhoods, we use an argument 

similar to that in the proof of Theorem 7.2.1 (that is by categorising the points of 

the diagram into two groups; one group contain the set of points whose neighbourhood 

include border edges and the other group contain the set of points whose neighbourhood 

does not include border edges). There are six border edges in each diagram labelled 

by bl ... ,b6, all r-points close to the border will satisfy the first disjunct condition of 

Hanf-equivalent by generating a bounded number of isomorphic neighbourhoods of the 

same size and all other points that cannot reach any of the border edges will satisfy 

the second disjunct condition of Hanf-equivalent by generating an exponential number 

of isomorphic neighbourhoods of the same type with respect to q. o 

From the computational complexity side, the unknotting problem had being shown 

to be in NP [30] and in AM n Co - AId [28]. As a results of this, we obtain an upper 

bound for the unknotting problem in terms of definability in existential second order 

logic. 

Proposition 7.3.3. The unknotting problem is definable in existential second order 

logic (ESO) 

Proof. The unknotting problem was shown to be in NP [30]. Since NP = ESO [21] 

then the unknotting problem is in ESO. 0 

7.4 Summary 

We have investigated the descriptive complexity of some knot properties and demon

strated new lower and upper bound for the planarity problem of Gauss words and the 

unknotting problem. We have shown that planarity of both signed and unsigned Gauss 

words cannot be expressed by a formula of first-order predicate logic, while extensions 

of first-order logic with deterministic transitive closure operator allow to define pla

narity of both signed and unsigned Gauss words. Similarly for Gauss paragraphs we 

have shown that planarity of signed Gauss paragraphs is definable in FO+ DTC while 

planarity of unsigned Gauss paragraphs is definable in MSO [11]. 

153 



1.4 Summary 

Referring to the classical Fagin's results [21 J we have shown that unknottedness 

is definable in ESO. Explicit definitions of planarity and unknottedness are of some 

interest and are left for future work. 
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Chapter 8 

Conclusion and Further work 

In this thesis we explored a wide range of computational problems and properties 

of knots. We were primarily concerned with algorithmic, computational and logical 

aspects of knots, and analysis of knot theoretic properties by theoretical computer 

science methods. In the introductory chapter we showed that many knot theoretic 

problems have decision algorithms but have not been investigated in terms of their 

complexity status. In this work we partially cover unexplored aspects of these problems 

and provide a number of new results related to reachability problems for Reidemeister 

moves, relation of Gauss diagrams to Eulerian maps, descriptional and descriptive 

complexity of classical knot problems. 

In Chapter 2 we described various finite representations of knots as discrete struc-
J 

tures and provided a formal definition for the encoding of knots by Gauss words. We 

described how problems about knots can be reduced to the questions about Gauss 

words and described a list of knot problems to be investigated in this thesis. 

In Chapter 3 we considered knot transformations in terms of string rewriting sys

tems and provided a refined classification of Reidemeister moves formulated as string 

rewriting rules for Gauss words. Then we analysed the reachability properties for each 

type and presented some lower and upper bounds on the complexity of the paths be

tween two knot diagrams reachable by a sequence of moves of the same type while 

for a combination set of moves of different type we provided some plausible classes of 
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structures that can be used for proving lower bounds. 

Further we considered a class of non-isomorphic knot diagrams generated by type I 

moves from the unknot and discovered that the sequence corresponding to the number of 

non-isomorphic diagrams with respect to the number of crossings is equal to a sequence 

related to a class of unrooted Eulerian maps with respect to the number of edges. We 

investigated the bijective mapping between the two classes of objects and presented two 

explicit algorithms to demonstrate the transformations from one object to the other. 

Furthermore we considered the question of knot transformations by reduction and 

introduced a new set moves which can be used to substitute one of the rules of type 

II that increases the number of crossings. We demonstrated that our new moves cou

pled with Reidemeister moves can unknot all known examples of complex trivial knot 

diagrams without increasing number of crossings. Finally we formulated some open 

questions left as conjectures for future work. 

In Chapter 4 we considered different models of automata over infinite alphabets for 

studying complexity of problems related to knots. In particular, we considered register 

automata which is one of the weakest models of automata over infinite alphabets. Al

though register automata is considered weak, we showed that over a class of bounded 

languages it can effectively simulate counters and pebbles and log-space bounded com

putations under some proper encoding. Then we demonstrated that over a class of 

languages with bounded variability the computation done by register automata can be 

mimicked by a Turing machine using log-space memory,,) Further we considered .different 

variants of register automata and presented lower and upper bounds for the recognition 

problem of Gauss words, particularly we showed that the language of Gauss words can

not be recognised by a I-way non-deterministic register automaton but it is recognisable 

by using a 2-way deterministic register automaton. Additionally we showed that regis

ter automaton can even recognise non-trivial properties, specifically we have shown that 

the isomorphic Gauss words problem is recognisable by a 2-way deterministic register 

automaton. 

More generally, the automata based approach opens perspectives for studying more 
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complex knot problems, like unknotedness or equivalence. Non-trivial lower bounds for 

such problems are unknown and weak automata models are plausible candidates here 

to try. In opposite direction, knot theory provides a rich supply of natural problems 

formulated in terms of languages over infinite alphabets, and that, one may expect, will 

influence the development of the theory of such languages and related computational 

models. 

In chapter 5 we have applied automata over infinite alphabets for studying com

plexity of planarity problem for signed Gauss words and signed Gauss paragraphs. We 

considered the implementation of two different algorithms and shown that the lan

guages of planar signed Gauss words and signed Gauss paragraphs can be recognised 

by deterministic two-way register automata. Then in terms of classical computational 

models we showed that planarity of signed Gauss words and signed Gauss paragraphs 

can be recognised in deterministic 'lUring machine using logarithmic space memory. 

The result is final in the sense that the power of non-deterministic one-way register 

automata is not even enough to recognise whether an input is a Gauss word. 

In chapter 6 we investigated the complexity of the planarity problem for unsigned 

Gauss words and unsigned Gauss paragraphs. We have shown that planarity of un

signed Gauss words can be recognised in deterministic logarithmic space on classical 

computational models and by deterministic two-way register automata over infinite al

phabets while for the planarity problem of unsigned Gauss paragraphs we demonstrated 

an upper bounds in terms automata with linearly bounded memory. To dem,onstrate 

these results we have used generic mutual simulation between both computations mod

els for the languages of bounded variability. Notice that unlike the case of signed 

Gauss words discussed in Chapter 5 we did not provide explicit deterministic log-space 

bounded decision procedure for planarity of unsigned Gauss words and rather refer to 

the general reduction of S'(' to ,(, [59]. An explicit deterministic log-space algorithm 

for the later case as well as the comparison of its complexity with the algorithm(s) for 

signed case is a topic for further work. 

In Chapter 7 we have investigated the complexity of some knot properties in terms 
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of their logical expressions and demonstrated new lower and upper bound for the pla

narity problem of signed and unsigned Gauss words as well as the unknotting problem. 

We have shown that planarity of both signed and unsigned Gauss words cannot be ex

pressed by a formula of first-order predicate logic, while extensions of first-order logic 

with deterministic transitive closure operator allow to define planarity of both signed 

unsigned Gauss words. Similarly for Gauss paragraphs we demonstrated an upper 

bound and shown that planarity of signed Gauss paragraphs is definable in FO+ DTC 

while planarity of unsigned Gauss paragraphs is definable in MSO [11]. Referring to 

the classical Fagin's results [21] we have shown that unknottedness is definable in ESO. 

Explicit definitions of planarity and unknottedness are of some interest and a potential 

area for further study in the future. 

There is much more work to be carried out in relation to computational problems 

for knots and links. Clearly determining better complexity bounds for equivalence and 

unknottedness are central open problems in this field. We expect that new approaches 

and methods presented in this thesis will later help with further investigations of the 

above mentioned problems. 
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