
Computational aspects of knots

and knot transformations

Thesis submitted in accordance with the requirements of the University of

Liverpool for the degree of Doctor in Philosophy

by

Rafiq Asad Muthanna Saleh

August, 2011

Abstract

In this thesis we study the computational aspects of knots and knot trans

formations. Most of the problems of recognising knot properties (such as

planarity, unknottedness, equivalence) are known to be decidable, however

for many problems their precise time or space complexity is still unknown.

On the other hand, their complexity in terms of computational power of

devices needed to recognise the knot properties was not studied yet. In this

thesis we address this problem and provide first known bounds for some

knot problems within this context. In order to estimate and characterise

complexity of knot problems represented by Gauss words, we consider vari

ous tools and mathematical models including automata models over infinite

alphabets, standard computational models and definability in logic.

In particular we show that the planarity problem of signed and unsigned

Gauss words can be recognised by a two-way deterministic register au

tomata. Then we translate this result in terms of classical computational

models to show that these problems belong to the log-space complexity class

£. Further we consider definability questions in terms of first order logic and

its extensions and show that planarity of both signed and unsigned Gauss

words cannot be expressed by a formula of first-order predicate logic, while

extensions of first-order logic with deterministic transitive closure operator

allow to define planarity of both signed unsigned Gauss words. Follow

ing the same line of research we provide lower and upper bounds for the

planarity problem of Gauss paragraphs and unknottedness.

In addition we consider knot transformations in terms of string rewriting

systems and provide a refined classification of Reidemeister moves formu

lated as string rewriting rules for Gauss words. Then we analyse the reach

ability properties for each type and present some bounds on the complexity

of the paths between two knot diagrams reachable by a sequence of moves of

the same type. Further we consider a class of non-isomorphic knot diagrams

generated by type I moves from the unknot and discover that the sequence

corresponding to the number of diagrams with respect to the number of

crossings is equal to a sequence related to a class of Eulerian maps with

respect to the number of edges. We then investigate the bijective mapping

between the two classes of objects and as a result we present two algo

rithms to demonstrate the transformations from one object to the other.

It is known that unknotting a knot may lead to a significant increase in

number of crossings during the transformations. We consider the question

of designing a set of rules that would not lead to the increase in the number

of crossings during knot transformations. In particular we introduce a new

set moves in this regard which can be used to substitute one of the rules

of type II that increases the number of crossings. We show that such new

moves coupled with Reidemeister moves can unknot all known examples of

complex trivial knot diagrams without increasing number of crossings.

Acknowledgements

The Department of Computer Science at the University of Liverpool has

been an excellent place to conduct research and all members of staff have

been friendly and helpful. I would like to kindly thank the Department of

Computer Science for funding my postgraduate studies and providing me

with sufficient financial assistance to attend a number of conferences

I would like to acknowledge the contribution of my supervisors, Dr. Alexei

Lisitsa and Dr. Igor Potapov, to the development of this thesis and for

their continual support and guidance throughout the past four years. Their

enthusiasm, constructive feedback, research ideas and always making time

for discussions have made the completion of my PhD. possible and quite

enjoyable.

I would like to express my gratitude to my thesis adviser, Prof. Michael

Fisher, for his invaluable advice throughout my PhD. study. Also I would

like to thank both of my thesis examiners, Dr. Boris Konev, and Dr.

Stephane Demri for their constructive comments and attention to my work.

Last but not least, many thanks go to all of my family and friends for their

encouragement and moral support.

Contents

1 Introduction 1

1.1 Background 1

1.2 Overview of the thesis 4

2 Knots and their representations 8

2.1 Knots representations 8

2.1.1 Knot diagrams 8

2.1.2 Gauss words 10

2.1.3 Gauss diagrams . 12

2.2 Reidemeister moves . 13

2.3 Knot problems 14

2.3.1 Planarity 16

2.3.2 Equivalence 17

2.3.3 U nknottedness 18

2.4 Summary 19

3 Knot rewriting and algorithmic problems for knots 20

3.1 Definitions and notation 21

3.2 Classification of Reidemeister moves as rewriting rules 23

3.2.1 Type I .. 23

3.2.2 Type Il 25
3.2.3 Type III . 27

3.3 Reachability properties of Reidemeister moves . 34
3.3.1 Basic definitions 35

ii

3.3.2

3.3.3

3.3.4

3.3.5

Reachability by type I .

Reachability by type 11

Reachability by type III

Combination of Reidemeister moves types

3.3.5.1 Reachability by types I and 11 .

CONTENTS

36

40

45

48

48

3.3.5.2 Reachability by types I and III . 51

3.3.5.3 Reachability by types 11 and III 52

3.4 Non-isomorphic knot diagrams generated by applications of type I 54

3.5

3.6

3.4.1 Gauss diagrams to maps.

3.4.1.1 Algorithm 1 ..

3.4.2 Maps to Gauss diagrams.

3.4.2.1 Algorithm 2 ..

Generalised Reidemeister moves .

3.5.1 Generalised Reidemeister moves as rewriting rules

Summary

4 Computational models

4.1 Automata over infinite alphabets

4.1.1 Words and data words

4.1.2 Register automata . .

4.1.3 Pebble automata . . .

4.1.4 Linearly bounded memory automata

4.1.5 Turing Machine

4.2 Register automata and classical complexity

4.2.1 Simulation of counters by register automata.

4.2.2 Simulation of pebble automata by register automata

4.2.3 RA to £, .

4.2.4 £, to RA .

4.3 Automata and Gauss words

4.3.1 The language of Gauss words

4.3.2 Isomorphic Gauss words .

4.4 Summary

iii

56

57

64

65

70

80

83

84

85

85

86

91

92

95

95

95

96

100

102

104

104

106

108

CONTENTS

5 Signed Planarity

5.1 Planarity of signed Gauss words

5.1.1 Cairns-Elton algorithm .

5.1.1.1 Notation

5.1.1.2 Implementation

5.2 Planarity of signed Gauss paragraphs.

5.2.1 Kurlin algorithm

5.2.1.1 Notation ...

5.2.1.2 Traversal rules

5.3 Complexity bounds of signed planarity .

5.4 Summary

6 Unsigned Planarity

6.1 Planarity of unsigned Gauss words

6.1.1 Extended version of Cairns-Elton algorithm

6.1.1.1 Notation

6.1.1. 2 Implementation

6.2 Planarity of unsigned Gauss paragraphs

6.2.1 Gauss paragraphs to Gauss words

6.2.2 Kauffman algorithm . . .

6.3

6.4

6.2.2.1 Notation

6.2.2.2 Implementation

Complexity bounds of unsigned planarity

Summary

7 Definability of knot properties

7.1 Preliminaries

7.1.1 FO ..

7.1.1.1

7.1.1.2

7.1.1.3

7.1.1.4

7.1.1.5

Syntax

Semantics.

Quantifier rank .

Elementary equivalence (up to quantifier rank n) .

Definability of a class of structures in FO

iv

109

110

110

111

111

113

114

115

116

119

119

121

122

123

123

125

128

129

130

131

132

134

136

137

138

138

138

139

140

140

141

CONTENTS

7.1.2 FO+TC. 141

7.1.3 FO+DTC 142

7.1.4 Gauss structure . 142

7.1.5 Hanf locality .. 145

7.1.6 Duplicated Gauss words 145

7.2 Planarity 146

7.2.1 Gauss words ... 146

7.2.2 Gauss paragraphs 149

7.3 U nknottedness 151

7.4 Summary ... 153

8 Conclusion and Further work 155

References 160

v

Chapter 1

Introduction

1.1 Background

Knot theory is the area of mathematics that studies mathematical knots and links. A

knot (a link) is an embedding of a circle (several circles) in 3-dimensional Euclidean

space,]R3, considered up to a smooth deformation of the ambient 1 space. It is a well

established and active area of research with strong connections to topology [44], algebra

[4] and combinatorics [52].

Major problems in knot theory have algorithmic or computational nature: equiv

alence problem (how to recognise that two knots are equivalent), or unknottedness

problem (how to recognise that a knot is a trivial one). Consideration of such problems

led to fruitful interactions between knot theory and computer science. In particular,

the questions of computational complexity of knot problems have been addressed in

[30]. Examples of other interactions include works on formal language theory [36] and

quantum computing [1; 22; 45].

Algorithmic and computational topology is a new growing branch of modern topol

ogy. Much of the recent effort has focused on classifying the inherent complexity of

topological problems.

One of the founding theorems of knot theory states that any two diagrams of a given

knot may be changed from one into the other by a sequence of local moves referred

to as Reidemeister moves [58]. This result is crucial as it allows one to define a knot

1 An ambient space is the space surrounding a mathematical knot(or link respectively).

1

1.1 Background

invariant as an invariant of a diagram which is unchanged under Reidemeister moves.

In this thesis we formalise Reidemeister moves in terms of string rewriting rules for

words encoding knot diagrams and analyse the minimal number of distinct rules for

each type.

Decidablity of Knot Equivalence and Unknottedness problems was demonstrated

more than 40 years ago [26], but the first results on the complexity of these problems

only appeared much later. Hass, Lagarias and Pippenger in [30] have shown that Un

knotedness and some related problems on links can be decided in Non-deterministic

Polynomial Time (NP). As an upper bound, the number of Reidemeister moves suffi

cient to transform a knot diagram with n crossings to a trivial knot is 2= where c=1011

[29] and later improved to c = 154 [64]. For the general case of equivalence of knots,

a new recent upper bound based on the number of Reidemeister moves for knots and

links was shown to be 2cn [13] where c = 106 . As to the lower bound for unknottedness,

the number of Reidemeister moves required is quadratic with respect to the number

of crossings [31; 32]. Furthermore, a result on a normal form was obtained where it

was shown that two knots are equivalent iff one can be obtained from the other by a

sequence of type Itl moves, followed by a sequence of type lIt moves, followed by a

sequence of type III moves, followed by sequence of type 1I-t.2 moves [12]. This result

raises a number of questions regarding the complexity bounds of such a sequence by in

vestigating the complexity of each move as well as the complexity of a subset of moves.

In this thesis we address such questions by evaluating the length of the path between

two reachable knot diagrams by each type of Reidemeister moves separately as well as

by a combination of moves.

Perhaps one of the reasons the number of Reidemeister moves is exponential can be

due to the existence of some knot diagrams which require an increase in their crossings

number before they can be simplified into the unknot3 . One may ask whether introduc

ing new moves in addition to ordinary Reidemeister moves may help with simplifying

trivial knot diagrams without increasing their number of crossings during the trans

formation (Le. by avoiding Reidemeister moves of types It and lIt). Such a question

was investigated in [24] where some generalised version of Reidemeister moves of types

1 A rule with an t involves increasing the number of crossings
2 A rule with an .!. involves decreasing the number of crossings
3 An unknot is a trivial diagram with no crossings usually represented by a standard circle

2

1.1 Background

I and II (referred to as pass moves [14]) were presented. However, a counter example

was presented in the same paper where it still required an increase in the number of

crossings even after considering the new added moves.

In this context we will introduce a set of moves which are more general than the

moves proposed in [24] but can be seen as a restrictive case of pass moves for links

described in ([14], page 67). Although these moves are restrictive, we will show that all

known examples of classical complex trivial knot diagrams (including Goretiz's coun

terexample) can be simplified using our new moves coupled with ordinary Reidemeister

moves without increasing their number of crossings.

In addition, we consider a class of knot diagrams obtained by application of Rei

demeister moves of type I. Starting from an unknot we generate all possible diagrams

and count the number of non-isomorphic knot diagrams with respect to the number

of crossings. Surprisingly, we discover that our sequence matches the sequence corre

sponding to a class of unrooted Eulerian n-edge planar maps with a distinguished outer

face (see the On-Line Encyclopedia of Integer Sequences [63]). Then we investigate the

correspondence between the two classes of objects and present explicit algorithms for

the construction of knot diagrams represented by Gauss diagrams and vice versa.

One of the earliest questions of an algorithmic nature related to knots was the

question of characterisation of Gauss words [23]. With every knot one can associate a

word, called a Gauss word, which is a sequence of labels for the crossings read off directly

from the projection of the knot on a plane. Depending on whether the information on

the orientation is present, the word can be signed or unsigned. The simple property

of any Gauss word is that every label (index) in it appears twice. The converse is not

true, there are the words with every label appearing twice which do not correspond

to any classical planar knot diagram. The question of characterisation of "true", or

planar Gauss words was posed by Gauss himself [23] and was eventually resolved by

Nagy in [53]. Since then many criteria and algorithms have been proposed both for

recognition of signed [7; 38] and unsigned [8; 16; 17; 37; 46; 48; 57; 60; 60; 61; 62]

Gauss words. The questions of computational complexity of the proposed algorithms

were rarely explicitly addressed with notable exceptions being [38] where linear time

algorithm for the signed case is proposed, and in [61] where a linear time complexity

for unsigned case is established and compared with earlier quadratic bounds in [57].

3

1.2 Overview of the thesis

Most of the problems of recognising knot properties (such as planarity, unknotted

ness, equivalence) are known to be decidable, with different time complexity. However

their complexity in terms of computational power of devices needed to recognise the

knot properties was not studied yet. In this thesis we will address this problem and

provide first known bounds for recognisability of knot properties in terms of various

automata models over infinite alphabets. The infinite alphabet appeared naturally due

to the fact that the number of crossings in knots is unbounded.

As an alternative and complementary approach to address the complexity of knot

problems, we consider definability questions about expressibility of knot properties in

terms of logic and show lower and upper bounds for the planarity and unknottedness

properties.

The main goal of the proposed approach is to give a new insight on knot problems

and characterise knot problems according to their computational complexity.

The results presented in this thesis were achieved by a combination of methods from

knot theory, automata theory and logic. Part of these results has been published in

[41; 42]

1.2 Overview of the thesis

In Chapter 2 we give an introduction to knots and their representations, adopting some

notions from knot theory. We begin by showing how knots can be combinatorially en

coded by finite structures, such as graphs or words. We then present a set of local

diagrammatic moves known as Reidemeister moves used to show if two of knot dia

grams are of the same type and finally describe some problems related to knots that

will be studied in this thesis.

In Chapter 3 we consider the formulation of Reidemeister moves in terms of string

rewriting rules and analyse their reachability properties. In Section 3.2 we formalise

Reidemeister moves in terms of string rewriting rules for Gauss words and analyse the

minimal number of distinct rules for each type of Reidemeister moves with respect to

cyclic order and renaming of labels. As a result we show that there are two minimal

rules for type I, two minimal rules for type II and eight minimal rules for type Ill.

In Section 3.3 we analyse the reachability properties of Reidemeister moves. We

evaluate the lower and upper bounds on the number of transformations for the equiva-

4

1.2 Overview of the thesis

lence problem of two reachable knot diagrams by type I, type 11 and type III individually

as well as a combination of rules of types {I,Il}, {I,IIl} and {Il,Ilf}. We show

linear lower and upper bounds for types I and Il, and a quadratic lower bound for type

III with respect to the number of crossings in a knot diagram while for the set of rules

of types {I, Il}, {f, Ill} and {Il, fIl} we provide some plausible classes of diagrams

that can be used to establish some lower bounds.

In section 3.4 we consider oriented knot diagrams (represented by Gauss diagrams)

generated by application of Reidemeister moves using type I moves only. Starting from

an unknot (the simplest trivial diagram) we generate all possible diagrams and count

the number of non-isomorphic knot diagrams with respect to the number of crossings.

We show that the number of non-isomorphic knots with n-crossings is equal to the

number of unrooted Eulerian n-edge maps with a distinguished outer face in the plane.

Then we investigate the bijective mappings between the two classes of objects and

provide two explicit algorithms to demonstrate the construction of Gauss diagrams

from maps and vice versa.

In Section 3.5 we introduce a new set of moves referred to as generalised Reidemeis

ter moves to be used in companion with classical Reidemeister moves for the purpose

of simplifying complex trivial knot diagrams into the unknot without increasing their

number of crossings during the transformation. Considering all known classical exam

ples of complex trivial knot diagrams we show that each diagram can be transformed

into the unknot without exceeding number of crossings of the original diagram.

In Chapter 4 we consider several computational models to be used for the purpose

of evaluating the complexity of some knot theoretic problems represented by Gauss

words. In section 4.1 we describe and extend the models of automata over infinite

alphabet that will be used for establishing the lower and upper bounds on recognition

of knot properties.

In Section 4.2 we show the simulation of counters and pebbles by register automata

and demonstrate generic results on the mutual simulations between logspace bounded

classical computations (over finite alphabets) and register automata working over infi

nite alphabets.

In Section 4.3 we apply register automata to establish some lower and upper bounds

for the recognisability of some knot properties. We show that the languages of Gauss

words (signed and unsigned) are not recognisable by a non-deterministic I-way register

5

1.2 Overview of the thesis

automata while the same languages are recognisable by a deterministic 2-way register

automata. Although register automata is one of the weakest models of automata over

infinite alphabet, we show that it can recognise non-trivial properties, specifically we

show that a deterministic 2-way register automaton can recognise whether two Gauss

words are isomorphic (Le. two Gauss words are isomorphic if they are equivalent upto

cyclic shift and renaming of labels).

In Chapter 5 we investigate the descriptional complexity of knot theoretic problems

and show upper bounds for planarity problems of signed knot diagrams represented by

Gauss words and signed link diagrams represented by Gauss Paragraph (to determine

whether a given signed Gauss word (paragraph) is planar, Le. encodes a plane diagram

of a classical knot (link) in R 3.)

In Section 5.1 we show that the language of planar signed Gauss words can be

recognised by deterministic two-way register automata by simulating the algorithm

presented in [7] and in Section 5.2 we show that the language of planar signed Gauss

paragraphs (a set of Gauss words representing links) can be recognised by deterministic

two-way register automata simulating the recently discovered linear time algorithm

in [38]. Furthermore in Section 5.3 we translate this result in the classical settings

and show that the languages of planar signed Gauss words and planar signed Gauss

paragraphs belong to the deterministic log-space complexity class .c.

In Chapter 6 we continue the same line of research as in the previous chapter

but focussing mainly on the unsigned case. In Section 6.1 we provide an analysis of

Cairns-Elton algorithm for planarity of unsigned Gauss words and show that it is im

plementable by co-non-deterministic register automata and in Section 6.2 we show that

planarity of unsigned Gauss paragraph is recognisable by a linearly bounded memory

automata simulating Kauffman algorithm [37]. Further we refine our results to demon

strate that the Cairns-Elt on algorithm can be implemented in S.c (symmetric logspace)

and therefore in .c . As a consequence we show that planarity of unsigned Gauss words

is recognisable by deterministic register automata.

An alternative and to some extent a complementary approach to the study of de

scriptional complexity of recognisability problems is that based on definability in some

logic. In Chapter 7 we pose the questions of definability of the knot properties by their

expressibility in first order logic and its extensions. We show lower and upper bounds

6

1.2 Overview of the thesis

for definability of planarity of Gauss words and Gauss paragraphs, and the unknot

tedness encoded by logical structures. In Section 7.1 we introduce first-order predicate

logic and its inductive extensions. Then we define two encodings for Gauss words as

logical structures and describe the conditions for Hanf locality that is widely used to

prove undefinability in first-order predicate logic

In Section 7.2 we show that planarity of both signed and unsigned Gauss words

can not be defined by a formula of first-order predicate logic, while extensions of first

order logic with deterministic transitive closure operators allow to define planarity of

signed and unsigned Gauss words and in Section 7.3 we show that the property of

unknottedness can not be defined in FO and demonstrate an implicit upper bound by

showing that it is definable in existential second order logic relying on the fact that

NP = ESO [21J.

7

Chapter 2

Knots and their representations

In this chapter we give an introduction to knots and their representations adopting

some notions from knot theory. We begin by showing how knots can be combinatori

ally encoded by finite structures, such as graphs or words. Then we present a set of

local diagrammatic moves known as Reidemeister moves used to show if two of knot

diagrams are of the same type and finally describe some problems related to knots that

will be studied in this thesis.

2.1 Knots representations

A knot is defined as a simple closed curve in three-dimensional Euclidean space. There

are various discrete representations for knots. One of such discrete representations is

a Gauss word consisting of a sequence of symbols (labels 0 ("over") and U ("under")

with indices and signs), which can be read off directly from a projection of the knot on

a plane.

2.1.1 Knot diagrams

A knot diagram is a picture of a projection or a shadow of a knot onto a plane with the

restriction that each point on the diagram is the shadow of no more than two points

called a crossing.

At each crossing we create small breaks in the strand that passes underneath (as

depicted in the left-hand side of Figure 2.1) to distinguish between the over-strand and

8

x
><

2.1 Knots representations

Figure 2.1: Trefoil - An example of a knot diagram

the under-strand so that the original knot can be reconstructed. The knot diagram of

the trefoil knot is illustrated on the right-hand side of Figure 2.1.

Figure 2.2: - Faces of a trefoil knot diagram

It's clear that in addition to crossings, a knot diagram contains faces (cycles)

bounded by arcs (edges connecting the crossings). For example in Figure 2.2, the

trefoil knot diagram contains 5 faces labelled /1, . . . ,15. The face 15 will be referred to

as an outer face and the faces /1, ... ,14 will be referred to as inner faces.

Oriented knots. A choice of a direction to travel around a knot is called an

orientation of the knot. An oriented knot is a knot together with a specific choice of

orientation as shown in Figure 2.3. In this thesis we consider oriented knot diagrams

only.

Fixing an orientation of a knot, one needs to distinguish between the two types

of crossings corresponding to right-handed twists and left-handed twists depicted in

Figure 2.4. To represent the difference, two opposite signs will be assigned; a + sign

(for a right-handed twist) and a - sign (for a left-handed twist). One type of crossing

will be called positive and the other type will be called negative. The crossing is positive

if one can rotate the under-strand in a clock-wise direction so that its arrow-head is in

line with the arrow head of the top-strand.

9

2.1 Knots representations

Figure 2.3: Trefoil - An example of oriented knot diagrams

)(~ -.. ~
••••••• • ••••••

Figure 2.4: Types of crossings - positive and negative crossings

Although knot diagrams provide a clear visual impression of knots, another discrete

representation in terms of strings or words would be more suitable for analysing their

computational properties. One such representations is Gauss words. Gauss words

considered as finite sequences of letters representing crossings for which every letter in

the Gauss word appears exactly twice [23].

2.1.2 Gauss words

The Gauss word is obtained from an oriented knot diagram by first labelling each

crossing with a number and indicating the sign of a crossing as in Figure 2.4. Then we

choose a starting point (at any place other than a crossing) on the knot diagram and

walk along the diagram following the chosen orientation. At each crossing encountered

we record the name of the crossings and whether the walk takes us over it or under

it until we arrive back at our starting point. For signed Gauss words, we also record

whether the sign of the crossing is positive or negative (see Figure 2.5).

As to shadow Gauss words, only the labels for the crossings are recorded. The signs

and information about over-crossing and under-crossing are not considered.

A Gauss word w can be described as a sequence of pairs (aI, bl),'" ,(alwl' b1wl)

10

2.1 Knots representations

o,U,o,U,o,U, o;U;o;U;o;U; X
Figure 2.5: - Trefoil with its corresponding Gauss words (unsigned and signed)

where the first component consists of the labels aI, ... ,alwl which is from a finite set

({U, O}) and the second component consists of the data values bI , .. , ,b1wl taken from

an infinite set (N). This description is known as data words [5; 54].

In this dissertation, Gauss words (signed, unsigned and shadow) will be considered

by default as cyclic words except in the context of automata where Gauss words are

considered to be linear words as inputs for automata.

For a word wand a symbol d denote by I w Id the number of occurrences of din w.

As usual I w I denotes the length of the word w.

Formal definitions for signed, unsigned and shadow Gauss words are given below.

Definition 2.1.1. A signed Gauss word w is a data word over the alphabet ~ x N

where E = {U+, 0+ , U- , O-}, such that for every neither

• Iwl(u+,n) = Iwl(o+,n) = Iwl(u- ,n) = Iwl(o- ,n) = 0, or

• Iwl(u+,n) = Iwl(o+,n) = 1 and Iwl(u- ,n) = Iwl(o- ,n) = 0, or

• Iwl(U-,n) = Iwl(O-,n) = 1 and Iwl(u+,n) = Iwl(o+,n) = 0.

The language of all signed Gauss words is denoted by LSGw.

Definition 2.1.2. An unsigned Gauss word w is a data word over the alphabet

~ x N where E = {U, O}, such that for every n E Neither

• Iwl(U,n) = Iwl(O,n) = 0, or

• Iwl(U,n) = Iwl(O,n) = 1.

11

2.1 Knots representations

The language of all unsigned Gauss words is denoted by LUGw.

Definition 2.1.3. A shadow Gauss word w is a word over the alphabet N (i. e. jin'ite

sequence of natural numbers) such that for every n E Neither Iwln = 0 or Iwln = 2

(i.e. every label in w should appear exactly twice).

The language of shadow Gauss words is denoted by LShGW.

Throughout this dissertation we will use the notion of interlacement graph which

is a graph associated with a shadow Gauss word, defined as follows:

Definition 2.1.4. Given a shadow Gauss word w, the vertices of the interlacement

graph G(w) correspond to the labels in wand the edges ofG(w) are the pairs of labels

(i, j) such that i and j are interlaced in w if i occurs once between the two occurrences

of j and vice versa.

For an example see Figure 2.6.

r-?\\
12312344

"----.-/ V

Figure 2.6: - An interlacement graph G(w) for w = 12312344

Another useful discrete representation of knots is known as Gauss diagrams.

2.1.3 Gauss diagrams

A Gauss diagram is a diagrammatic representation of a Gauss word of the knot depicted

in Figure 2.7. We form a Gauss diagram by taking an oriented circle with a basepoint

chosen on the circle.

Walk along the circle marking it with the labels for the crossings in the order of

Gauss word. Now connect two points of the same label by an edge from the inside of

12

2.2 Reidemeister moves

1

U1 +02 +U
3
+0

1
+U2 +03 +

Figure 2.7: - Gauss words with its corresponding Gauss diagrams (signed and unsignd)

the circle (such an edge is referred to as a chord). Orient each chord from overcrossing

site to undercrossing site. Mark each chord with a + or a - according to the sign of

the corresponding crossing label in the Gauss word.

2.2 Reidemeister moves

Two knots are isotopic if one can be continuously manipulated in 3-space until it looks

like the other. Reidemeister in [58] demonstrated that knot diagrams of isotopic knots

can be connected by a sequence of operations. These operations are referred to as

Reidemeister moves. A Reidemeister move refers to one of the following local moves

on a knot diagram:

Move I. Twist and untwist in either direction as illustrated in Figure 2.8.

Figure 2.8: Type I - Type I Reidemeister moves

Move 11. Move one loop completely over another as depicted in Figure 2.9.

Figure 2.9: Type 11 - Type II Reidemeister moves

13

2.3 Knot problems

Move Ill. Move a strand completely over or under a crossing as indicated in Figure

2.8.

\ I)(-}-- \ .-.......: ~

\ I \

\ I X/ ->\--1: ~

/ I \

Figure 2.10: Type III - Type III Reidemeister moves

Theorem 2.2.1. ([58J) Two knot diagrams are equivalent if and only if one can be

obtained from the other by a sequence of Reidemeister moves.

Example Given two knot diagrams Kl and K2 illustrated in Figure 2.11, we will

show that Kt = K 2 by transforming K 1 into K 2 using a sequence of Reidemeister

moves.

8 --
K1 K2

Figure 2.11: Example - Kl and K2 are both trivial knot diagrams

The moves shown in Figures 2.8 to 2.10 are intended to indicate local changes that

are made in a larger diagram. Figure 2.12 shows a sequence of Reidemeister moves

used for transforming Kt to K2.

2.3 Knot problems

Planarity, equivalence and unknottedness are three main computational problems in

knot theory. In this section we introduce and formulate these problems.

14

2.3 Knot problems

Figure 2.12: Knot transformation - Transforming Kl into K2 by Reidemeister moves

15

2.3 Knot problems

2.3.1 Planarity

The construction of a Gauss word is quite straightforward as it can be obtained by

starting from a non-crossing point on the curve and writing down the labels of the

crossings and their types of strand that occur as the curve is traversed according to

the orientation of the knot until the same starting point is met for the second time.

However, the inverse problem of reconstructing a knot diagram from a Gauss word is

harder because the construction does not always results in a planar diagram. So if an

arbitrary Gauss word does not encode a classical diagram then such Gauss word will

correspond to a non-classical knot diagram, i.e. a diagram that will contain additional

crossings which do not appear in the Gauss word (see Figure 2.13). Such crossings are

known as virtual crossings. This observation was one of the motivations for introducing

virtual knot theory [37J. A Gauss word representing a knot diagram on a plane without

virtual crossings is called classical or planar. The problem of recognising planar Gauss

words have been formulated by Gauss himself and recently several algorithmic solutions

for both signed and unsigned cases have been proposed.

Planar signed Gauss words. The planarity problem of signed Gauss words has

been studied first in [9J. Two different algorithms has been proposed by [7; 38] based

on the work of Carter in [9]. These two algorithms are described in details in Chapter

5.

The planarity question for signed Gauss words can be formulated as follows:

Problem 1. (Planarity of signed Gauss words)

Instance: Given a signed Gauss word w.

Question: Does w represents a planar knot diagram?

In Section 2.1.2 we described that for every knot, one can produce a corresponding

Gauss word w. However, not every Gauss word correspond to a classical knot (Le a knot

is classical if its projection can be embedded in the plane without self-intersections).

For example the Gauss word w = 01" 02" U1 ot Vi ut, does not correspond to any

classical knot and may only correspond to a virtual knot (a non-planar diagram) pre

sented in Figure 2.13 (to distinguish between classical crossing and virtual crossings,

the virtual crossing are marked by a circle on the diagram).

16

2.3 Knot problems

Figure 2.13: Non-planar knot diagram - An example of a non-planar knot diagram
with 2 virtual crossings

There are many criteria for characterising the planarity property for knots, in partic

ular Cairns-Elton algorithm in [7] can be applied to check the Gauss word w. Therefore

it can be determined that w is non-planar because the first condition of algorithm does

not hold. The algorithm presented by Cairns and Elton in [7] is discussed in details in

Chapter 5, Section 5.1.1.

Planar unsigned Gauss words. The planarity problem of unsigned Gauss words

has generated a lot of interest since it was posed by Gauss in [23]. As a result, several

algorithmic solutions have been proposed, e.g. in [8; 16; 37; 46; 48; 57; 61; 62].

The planarity question for unsigned Gauss words is formulated as follows:

Problem 2. (Planarity of unsigned Gauss words)

Instance: Given an unsigned Gauss word w.

Question: Does there exist a choice of signs that can be assigned to w so that w

represents a planar knot diagram?

2.3.2 Equivalence

The equivalence problem is a central problem in knot theory. The problem has shown to

be decidable [26] and recently a new upper bound based on the number of Reidemeister

moves was shown to be highly exponential with respect to the number of crossings [13].

Problem 3. (Equivalence)

Instance: Given two knot diagrams Kt and K2.

Question: Can Kl be transformed into K2 by a sequence of Reidemeister moves?

17

2.3 Knot problems

--
K2

Figure 2.14: non-trivial knot diagrams - an example of two equivalent non-trivial
knot diagrams

2.3.3 Unknottedness

Unknottedness (also referred to as the unknotting problem) can be seen as a special

case of equivalence. The problem has been shown to be in the class NP [30J and in

the same paper the authors conjectured that the unknottedness problem is contained

in NP n co.NP. Recently it was shown that the unknottedness problem is contained in

AM nco-AM [28J (Le. this is the class of decision problems for which both "yes" and

"no" answers can be verified by an Arthur-Merlin protocol). The first algorithm for

the unknottedness problem was presented in [26J based on normal surface theory and

since then a new algorithm based on arc-presentation theory was presented in [19J. As

an upper bound for the Reidemeister moves sequence, it was shown in [29; 64] that the

number of Reidemeister moves sufficient to transform a knot diagram with n-crossings

to the unknot is exponential with respect to the number of crossings and as a lower

bound, the number of Reidemeister moves required is quadratic with respect to the

number of crossings [31; 32]. The unknottedness problem is formulated as follows:

Problem 4. (Unknottedness)

Instance: Given a knot diagram K

Question: Can K be transformed into an unknot by a sequence of Reidemeister

moves?

A knot diagram is called trivial if it can be transformed by a sequence of Reidemeister

moves into the unknot otherwise it is called non - trivial. For an example of trivial

18

2.4 Summary

knot diagrams see Figure 2.11.

2.4 Summary

In this chapter we gave an introduction about knots and their representations. We have

described how knots can be encoded by Gauss words and similarly by Gauss diagrams

in a discrete way so that problems about knots can be reduced to the questions about

Gauss words or diagrams. In order to estimate and characterise complexity of knot

problems represented by Gauss words or Gauss diagrams, we will use different tools

and mathematical models including automata models, computational complexity and

definability in logic.

19

Chapter 3

Knot rewriting and algorithmic

problems for knots

In this chapter we consider knot transformations in terms of string rewriting systems.

We begin with Section 3.5.1 where we introduce some definitions and notation to for

mulate the concept of knot transformations in the context of Gauss word rewriting.

Then we move to Section 3.2 to consider some local diagrammatic moves presented in

[58] known as Reidemeister moves which are used for the transformations between two

knots of the same type. We formulate the Reidemeister moves in terms of string rewrit

ing rules for Gauss words and analyse the minimal set of rules sufficient for rewriting.

Then in Section 3.3 we investigate the reachability properties of each type and pro

vide some lower and upper bounds on the complexity of the paths between two knot

diagrams reachable by a sequence of moves of the same type.

Further in Section 3.4 we consider a class of oriented knot diagrams (represented

by Gauss diagrams) generated by application of Reidemeister moves of type I only.

Starting from an unknot (a diagram with no crossings) we generate all possible dia

grams. We are interested in the question of how many non-isomorphic diagrams can be

obtained from the unknot for a fixed number of crossings and discover that the number

of non-isomorphic knot diagrams with n-crossings (where n 2: 1) is equal to the number

of unrooted Eulerian n-edge maps in the plane. Then we investigate the bijective map

between the two classes of objects and as a result we present two explicit algorithms

to describe the transformations from Gauss diagrams to maps and vice versa.

20

3.1 Definitions and notation

Furthermore in Section 3,5 we consider the question of knot transformations by

means of reduction and introduce a new set of moves that can be seen as a more

generalised version of Reidemeister moves of types II and III formulated also in terms

of string rewriting rules for Gauss words, It's known that transforming a knot into

an un knot can lead to a significant increase in the number of crossings during the

transformations, we demonstrate that our moves coupled with Reidemeister moves can

unknot all known examples of complex trivial knot diagrams presented in the literature

[24; 32; 47] without increasing number of crossings,

3.1 Definitions and notation

In this section we introduce some definitions needed to formulate knot rewriting,

Definition 3.1.1. Let ~ be an alphabet, a cyclic shift Sk with kEN is a function

Sk : ~* -+ ~. such that for a word w E ~. where w = Wl, ,." wn , the cyclic shift of w is

defined as Sk(Wl, .. " wn) = wL .. " w~ where W(i+k) (mod n) = w~ for some i = 1, .. " n,

Definition 3.1.2. Let wand w' be some Gauss words, w =e W' (w is equivalent to w'

up to cyclic shift) iff Iwl = Iw'l = n such that 3k : 0 :S k < nand w = Sk(w'),

By [w]e, we denote a c-equivalence classes of w,

Example. Let w = OlU203Ul02U3, the following words are equivalent words to w up

to cyclic shift:

21

3.1 Definitions and notation

Definition 3.1.3. Let w = (aI,b l),(a2,b2)' ... ,(an,bn) where a E {O,U} and bEN,

w =r w' (w is equivalent to w' up to renaming of labels) iff there exists a bijective

mapping r: N -t N such that w' = (aI, r(bl)), (a2' r(b2)), ... , (an, r(bn)).

By [wl r , we denote an r-equivalence classes of w.

Example. Let w = 0lU203UI02U3 and w' = 02U301U203UI. To show that w =r w'.

We check that the symbols of the first component ofw (OUOUOU) have the same order

the same as those in the first component of w' and there is a bijective mapping between

the elements of the second component of w (123123) and the elements of the second

component of w'. That is 1 -t 2, 2 -t 3 and 3 -t 1.

Definition 3.1.4. Let wand w' be two Gauss words, w =er W' (w is equivalent to w'

up to cyclic shift and renaming of labels) iff =er = (=c u =r) *. By [w 1 er, we denote a

cr-equivalence classes of w.

Example. Let w = 01 0203Ul U2U3 and w' = 02 U3 UI U20301' To illustrate that

w =er w'. First we apply cyclic shift to w' to obtain S4(W') = 030102U3UIU2 and

then determine the bijective mapping between the elements of the second component of

w (123123) and the elements of the second component of w' . That is 1 -t 3, 2 -t 1

and 3 -t 2.

In the next definitions, we define the string rewriting rules system.

Definition 3.1.5. Let X denote a finite set of variables and E denote an alphabet such

that E = {(O, i) liE I} U {(U, i) liE I} where I is a finite set.

For an alphabet E, the language of all cyclic words over E is defined as E~ =

We define a Gauss string rewriting system T as a tuple (X, Ec, R), where R is a

set of rewriting rules of the form I ++ r such that I, r E (E U X)~ and var(l) = var(r)

where var(l) (or var{r)) denotes the set of variables of in l (or in r respectively).

Let (J denote a ground substitution defined as a function (J : X -t E* which can

be extended homomorphically (and preserving the name) to (J : (E U X)* -t E*. In

22

3.2 Classification of Reidemeister moves as rewriting rules

here, we will use a to denote a quotient mapping a : (~ U X)~ -+ ~~. Application of a

substitution a to a word w is denoted by wO'.

Definition 3.1.6. Let R = {tI, t2, .'" t n } denote the set of rewriting rules and let

t E R, a one-step rewriting relation =>t~ ~~ X ~~ where t = l +-7 r is defined as follows:

w =>t w' ifJ:la from (~ U X)~ -+ ~~ and [W]e = lO' and [w'le = ra or [w]e = ra and

[w'le = la.

=>R= UtER =>t· The reflexive transitive closure of =>R is denoted by =>R'

3.2 Classification of Reidemeister moves as rewriting rules

In this section, we consider Reidemeister moves as rewriting rules for Gauss words.

We analyse the minimal number of distinct rules for each type of Reidemeister moves.

Because the symbols on a Gauss word follow some cyclic order, the Reidemeister moves

will take into account orientation of the strands. So for each type, we will consider all

possible orientations of the strands involved and the order in which they are visited

during the traversal of the knot diagram. We will show that there are two distinct

rewriting rules for type I, two distinct rewriting rules for type Il and eight distinct

rewriting rules for type Ill.

In this section our goal is to define Reidemeister moves as Gauss string rewriting

rules to make the following diagram in Figure 3.1 commutative. We demonstrate that

if a knot diagram Kl is transformed into K2 by a Reidemeister move of type i where

i E {I,II,III} then similarly the Gauss word corresponding to Kl (Gw(Kt)) can be

transformed into Gw{K2) by a rewriting rule of type i.

3.2.1 Type I

Type I move involves a single strand and can be applied to any part of the knot by either

introducing a "kink" (a simple loop) which in turn increases the number of crossings by

one or removing the kink, thereby decreasing the number of crossings by one. The rule

corresponding to type I moves which increases (or decreases respectively) the number

of crossings will be denoted by I t (or I .J.. respectively). We illustrate all possible

variants of type I shown in Figure 3.2 that can be obtained by twisting a kink in two

23

3.2 Classification of Reidemeister moves as rewriting rules

Figure 3.1: - Reidemeister moves on knot diagrams correspond to rewriting rules on
Gauss words

different directions (clockwise and anti-clockwise) and assigning to a kink two opposite

orientations.

a b c d

Figure 3.2: - All variants of type I

Let the set rh = {a, b, c, d} denote all variants of type I pictured in Figure 3.2

such that x is a subword which corresponds to the curve with dashed lines. Then

a = XOiUi t-t x, b = XUiOi t-t X, C = OiUiX t-t x and d = UiOiX t-t x.

In the following proposition, we will show that for the purpose of rewriting Gauss

words!, the following set of rules {a,b} is equivalent to the set nl. Diagrammatic

representations of the two rules are shown in Figure 3.3.

Proposition 3.2.1. =>* - =>* fh - {1.1,1.2}

lRecall from Section 2.1.2 that Gauss words are considered by default as cyclic words

24

3.2 Classification of Reidemeister moves as rewriting rules

Proof. Consider cyclic permutations of each element in fh. As a result of cyclic shift

a = XOiUi, b = XUiOi, c = XOiUi and d = XUiOi. Hence a and c are equivalent to 1.1

and band d are equivalent 1.2 o

' ..

Figure 3.3: Type I - Minimal classes of type I

3.2.2 Type 11

Type II moves involve the interaction between two strands such that either one strand

is placed on top of the other creating two new crossings or the two strands are pulled

apart removing two crossings. The rule corresponding to type II moves which increases

(or decreases respectively) the number of crossings will be denoted by lIt (or lIj.. re

spectively). We observe that moves of Type lIt can only be applied to two strands

Figure 3.4: - Application of type lIt to two strands in Kl that do not share a common
face

which share the same face in a knot diagram otherwise there will be some intersec

tions with other intermediate strands that may result in creating additional crossings

(known as virtual crossings [37]) which will not be present in the corresponding Gauss

25

3.2 Classification of Reidemeister moves as rewriting rules

word. For an example, let K1 be a knot diagram (with labelled faces from A to F)

representing the Gauss word w = U1U203U4020104U3 and let K2 represents the new

word w' obtained from w by applying type IIt move to U1U2 and U3U1 in w. Now

considering the two diagrams K1 and K2 illustrated in Figure 3.4, it's clear that the

strands in K1 corresponding to U1 U2 and U3Ul do not share a common face between

them and in order to connect them we had to cross an intermediate strand (resulting

in two additional crossings) which are not taken into account in w'.
For the purpose of rewriting we only need to consider variants that correspond to

oriented knot diagrams. In Figure 3.5 we present all possible variants for type II rules

obtained by considering all possible orientations of the strands involved and the order

in which they are visited during the traversal of the knot diagram. , vi 'V .. Y..--_ ") '. " (" Q" i -'
I \ ' \
I I I I
I , I I
I , I I

\ I " \ I,' I
\ ,\ I

X \ (' 'y y', ' X I . ..' -..'-,' .. _ : ... ' "'x--'"
a b c

Figure 3.5: Type 11 - All variants of type II

Let the set O2 = {a, b, c, d} denote all variants of type II pictured in Figure 3.5

such that x and y are subwords corresponding to the two curves with dashed lines.

Then a = XOiOjyUiUj ++ xy, b = XOiOjyUiUj ++ xy, c = XOiOjyUjUi ++ xy and

d = XOiOjyUjUi ++ xy.

In the following proposition, we will show that for the purpose of rewriting Gauss

words, the following set of rules {a,c} is equivalent to 02. Diagrammatic representations

of the two rules are shown in Figure 3.6.

Proposition 3.2.2. =>02 = =>{2.1,2.2}

Proof. The proof is similar to that in type 1. Here, a and in b are equivalent to 2.1 and

c and d are equivalent to 2.2. o

26

3.2 Classification of Reidemeister moves as rewriting rules

Q~)(
/ , /

'--- -----
Figure 3.6: Type 11 - Minimal classes of type 11

3.2.3 Type III

Type III moves involve the interaction between three strands with triple crossing points

which share the same face; a top strand (going over two crossings), a middle strand

(going over one crossing and under the other) and a bottom strand (going under two

crossings). A type III move does not change the number of crossings in a knot but

rather it rearranges the order of crossings.

Variants of type III If one considers all possible orientations of the involved strands

and their order in which they appear in the knot. Then as shown in Figure 3.7, there

are 8 possible ways in which the three strands can be oriented, plus 4 different forms

in which the three strands may appear in the knot in a legal type III move and 2

different ways in which the strands can be ordered in the knot. So in total there are 64

variants corresponding to a particular move and another 64 variants corresponding to

the inverse move. These are listed below in terms of rewriting rules.

27

" ./

'a11

3.2 Classification of Reidemeister moves as rewriting rules

a12

Figure 3.7: - a set of variants of type III

28

35 XOiOjyOkUjZUkUi H XOjOkyUjOiZUkUi

36 XOiOjyUjOkZUiUk H XOiOjyOkUiZUkUj

37 XOiOjyOkUjZUiUk H XOjOkyUjOiZUiUk

38 XOiOjyUiOkZUjUk H XOiOjyOkUjZUkUi

39 XOiOjyUiUkZOkUj H XOjOkyU;UkZUjOi

40 XOiOjyUjUkZUiOk H XOiOjyUkUiZOkUj

41 XOiOjyOkUjZUiUk H XOjOkyUjOiZUiUk

46 XOiOjyUiUkZUjOk H XOiOjyUkUjZOkUi

47 XOiOjyOkUjZUkUi H XOjOkyUjOizUkUi

48 XOiOjyUjOkZUiUk H XOiOjyOkUiZUkUj

49 XOiOjyUjOkZUkU; H XOjOkyOiUjZUkUi

3.2 Classification of Reidemeister moves as rewriting rules

\
Figure 3.8: Type III - Two types of moves

In Figure 3.8, we show that there are two possible outcomes for application of type

III where the first outcome corresponds to sliding the top strand from one side of a

crossing to other side (denoted by 3a) and the second outcome corresponds to sliding

the bottom strand to the other side of a crossing (denoted by 3b). In terms of rewriting

on a Gauss words; we will consider the following example:

Example. Let w = XOiOjyUkUjZOkUi, w' denote the word obtained after applying 3a

to wand w" be the word obtained after applying 3b to w.

Application of type III results in two outcomes depending on whether the move

3a or 3b is applied (See Figure 3.8). The effect of this on a word is as follows: If 3a

is applied to a word w, then the positions of the symbols OiOj remain unchanged in

29

3.2 Classification of Reidemeister moves as rewriting rules

w' and likewise the positions of UkUj in w" (after 3b is applied) but the positions of

the remaining symbols are altered. We notice that the rearrangement of the remaining

symbols depends on whether the symbol k E {Uk, Ok} appears before or after the

counterpart symbols of OiOj (if 3a is applied). Application of 3a rearranges the symbols

associated with k in the following way: If Ui (or Uj respectively) is a predecessor of

k then application of a rule make Uj (or Ui respectively) to become a successor of

k. For instance, consider the word w = XOiOjyUiUkZOkUj where Ui is a predecessor

of Uk and Uj is a successor of Ok. After application of 3a to w, we obtain a new

word w' = XOiOjyUkUjZUiOk where Uj becomes a successor of Uk and Ui becomes a

predecessor of Ok.

Alternatively the rewriting procedure for type III rules can be described in terms

of the interlacement of the symbols involved. Recall in Definition 2.1.4 we defined the

notion of interlacement of symbols where two labels i and j are said to be interlaced in w

iff the label j appears once between the two labels of i and vice versa, e.g i, ... , j, ... , i, j

The rewriting procedure can be described as follows: Let w' be the resultant word

obtained from wafter application of type Ill.

1. If 3a is applied then

• Fix the positions of OiOj and rearrange the remaining symbols in such away

that for all ij, i and j interlace in w' iff i and j do not interlace in w.

2. If 3b is applied then

• Fix the positions of UiUj and rearrange the remaining symbols in such away

that for all ij, i and j interlace in w' iff i and j do not interlace in w.

We notice that the interlacement of symbols in a Gauss word relates to the intersection

of chords in a Gauss diagram (see Figure 3.9). That is, for any labels i and j in a Gauss

word w, i and j interlace in w iff chord i intersects with chord j in the corresponding

Gauss diagram.

30

3.2 Classification of Reidemeister moves as rewriting rules

UI ...l!....

UI ~

Figure 3.9: Gauss diagram - Interlacement of symbols appear in a Gauss diagram as
intersection of chords

Let fh denote the set of all variants of type Ill. In the following proposition we will

show that fh is equivalent to the following set of rules.

Proposition 3.2.3. =>03 = =>{3.1, ... ,3.8}' where

Proof. Determine all possible equivalent classes in terms of cyclic shift and renaming

of labels. As a result, one will obtain the following:

• 3.1 = 1,13,18,24,39,43,60,62

• 3.2 = 2,7,11,14,33,40,44,45

31

3.2 Classification of Reidemeister moves as rewriting rules

• 3.3 = 3, 15,20,22,37,41,58,64

• 3.4 = 4,5,9, 16,35,38,42,47

• 3.5 = 6,10,19,21,36,48,57,63

• 3.6 = 8,12,17,23,34,46,59,61

• 3.7 = 25,26,31,32,51,52,53,54

• 3.8 = 27,28,29,30,49,50,55,56

o

The claim below follows from Propositions 3.2.1 to 3.2.3.

Claim 1. Reidmeister moves on a knot diagram can be formalised as the following set

of rewriting rules on a Gauss word:

32

3.2 Classification of Reidemeister moves as rewriting rules

(3.8)

Figure 3.10: Type III - Minimal classes of type III

33

3.3 Reachability properties of Reidemeister moves

The above claim means that if you take a knot diagram Kl and perform some knot

transformations in some order to obtain another diagram K2 then it can be presented

as follows: Take a corresponding Gauss word of Kl and apply the above set of rewriting

rules in some order to obtain another Gauss word corresponding to K2.

3.3 Reachability properties of Reidemeister moves

According to the Reidemeister theorem, if two knot diagrams are equivalent then there

exists a finite sequence of moves of types I, 11 and III that can transform one knot

diagram into the other. There has been some research devoted towards the estimation

of the length of such sequence and in particular an initial upper bound on the length

of the sequence which leads to the unknot was demonstrated to be that 2cn [29] where

c=1011 and n is the number of crossings and later improved to 2cn where c = 154 [64].

The only lower bounds presented for the unknotting problem based on the sequence of

transformations involving I, 11 and III were shown to be quadratic with respect to the

number of crossings [31; 32]. For the general case of equivalence of knots as well as links

a new recent upper bound was shown to be to 2cn [13] where c = 106 . Furthermore,

two knot diagrams are equivalent iff one can be obtained from the other by a sequence

of type I t moves (increase), followed by a sequence of type II t moves (increase),

followed by a sequence of type III moves, followed by sequence of type I I ..t. moves

(decrease) [12]. This is denoted by

It, II t,III, II ..t.

This result raises some questions about the complexity bounds for the equivalence

problem based on the number of transformations, particularly for a subset of rules.

In this section we analyse the reachability properties of Reidemeister moves and

provide lower and upper bound on the number of transformations for the equivalence

34

3.3 Reachability properties of Reidemeister moves

problem of two knot diagrams reachable by a sequence of moves of the same type. We

show linear lower and upper bounds for types I and 11, and a quadratic lower bound

for type III with respect to the number of crossings while for a subset of rules of type

{ I, Il}, {I, Il I} and {Il, Il I} we provide some classes of structures useful for proving

lower bounds.

3.3.1 Basic definitions

For definitions on string rewriting systems we refer the reader to Section 3.5.1.

Because application of types I and 11 rules can either increase or decrease the size

of a Gauss word, we need to distinguish between the two different operations. So

applications of type it can increase the size of w whereas applications of type 'i -I..

decreases the size of w, where i E {I, Il}.

For a set of rewriting rules R over a finite set E, we define some properties on the

relation =}R induced by R. For an illustration see Figure 3.11.

Definition 3.3.1. A relation =}R is said to be locally confluent iff for all w, w' and w"

in E~, if w => R w' and w => R w" then there exist Will in E~ such that w' => R Will and

w" =>jz w'" (3j.

Definition 3.3.2. A relation =>R is said to be (globally) confluent iff for all w,w'and

w" in E~, if w => jz w' and w => jz w" then there exist Will in E~ such that w' => R Will

and w" => jz Will. This is also known as Church-Rosser property /3).

Lemma 3.3.1.1 ([56]). If a relation =>R is locally confluent and has no infinite rewrit

ing sequences (wo => R Wl => R ... => R Wi => R ... => R) then => R is globally confluent.

Definition 3.3.3. Let w be a Gauss word and R = {I ,J..}, {Il -I..}, {I ,J.., Il ,J..}, then w is

reducible iff there exists a word w' such that w =>jz w'. The word w' is called R-reduct

of w (denoted by reduct R (w)) if w' is not reducible by => R respectively.

35

3.3 Reachability properties of Reidemeister moves

Will Will

Locally Confluent Confluent

Figure 3.11: - Properties of rewriting systems

3.3.2 Reachability by type I

In this subsection, we investigate the complexity of the path between two equivalent

knot diagrams represented by Gauss words which are reachable by a sequence of Rei

demeister moves of type I and present lower and upper bounds on the number of

transformations for transforming one diagram into the other.

In the following proposition we will state that the relation => Rover E where

R = {I .!-} is confluent and then demonstrate an upper bound on the number of

transformations between two Gauss words reachable by {I}.

Proposition 3.3.1. Let R = {I .!-}, the relation => Rover E is confluent.

Proof. To prove that => R is confluent, we will need to show that => R is locally confluent

and that all reduction sequences of => R terminate.

To show that =>R is locally confluent, assume that W =>R w' and W =>R w" for

some word w. Let w = xaybz where a, b E {OiUi, UjOj} for some i,j ~ 1. Then

w = xaybz =>R xybz = w' and W = xaybz =>R xybz = w". Now we have w' =>R xyz

and w" =>R xyz (see Figure 3.12 for an illustration). Thus local confluence holds for

the relation =>R· Now it remains to show that all sequences of =>R terminate. Let us

consider any sequence Wl => R W2, ... , => R W n , since at each step we decrease the size

of resulting word, that is for any two words Wi, Wj in the sequence if Wi => R Wj, then

IWjl < IWil; so the sequence will terminate after finite number of steps. Therefore by

36

3.3 Reachability properties of Reidemeister moves

xayz a

Figure 3.12: - D('monstratin~ th(' local confluence property of the relation =>{I.\.}

Lemma 3.3.1.1 ::::} R is a confluent. o

Proposition 3.3.2. Let w, w' E 1:~ and R = {I -l.}, if W ::::}{I} w' then ReductR{W) =

Reduct R (11/)

Proof. Suppose that W ::::}R w'. Then W ::::}R ReductR{W) and w' ::::}'R ReductR{w'). It

follows that U' =>R Rc:ductR(W'). By Proposition 3.3.1 ReductR{W) = ReductR{w'}. 0

Corollary 3.3.1. If tl'::::}jll,l then w=>h.nReduct(w')::::}{It} w'

In the above Corollary we show that given two Gauss words w and w', if there

exists a path reaching w' from W via the sequence I* then there exists another path

from which w' is reachable using the sequence I ..1.* and I t*.

To compute the upper bound we count the number of steps taken to transform W

into w' via the sequence I..\. *It"·

Proposition 3.3.3. Given two Gauss words wand w' where Iwl = 2n and Iw'l = 2m,

if w ::::}j tv' then the total number of transformations sufficient to rewrite w to w' is at

most n +m

Proof. This is the total number of transformations in the sequence

obtained from Corollary 3.3.2. Since type I can increase or decrease the size of a Gauss

by ±2. then the number of transformations sufficient to reach Reduct{I.n{w') from w

is no more than n and no more than m to reach w' from Reduct{I.n{w'). o

37

3.3 Reachability properties of Reidemeister moves

For computing the lower bound, we consider two classes of diagrams A and B in Fig

ure 3.13. Let w represent An and w' represent Bm where w = UiOj, ... , OnUn, ... , UjOi

and w' = UjOj, ... , UmOm · For the purpose of proving the lower bound, we associate

(·~9 ·-p
Figure 3.13: - Reachability by Reidemeister move of Type I

--JJ
Figure 3.14: - Diagrams An and Bm for n = 4 and m = 3

an integer vector with a Gauss word defined below.

Definition 3.3.4. Given a Gauss word w, we associate a non-negative integer vector

5(w) = (x, y) with w where x denote the number of adjacent pairs of OU and UO in

wand y denote the number of adjacent pairs of UU and 00 in w.

Example Given w = UIU2U3U404030201 and w' = UI0IU202U303U404 (note

that wand w' are assumed to be cyclic words). Let SI and S2 be two vectors associated

with wand w' respectively. Then SI = (2,6) and 52 = (8,0).

Since the ,'alues of a vector are defined in terms of the first component of w (a

sequence of Os and Us) then application of type I i move will correspond to the

addition of two symbols of the form UO or OU and type I ..l. will correspond to the

deletion of the symbols UO or QU. In the next proposition we will show how of

application of type I can affect the values of a vector 5(w).

38

3.3 Reachability properties of Reidemeister moves

Proposition 3.3.4. For Gauss words wand w' the following holds:

1. If w =>It w' then either S(w') = S(w) + (2,0) or S(w') = S(w) + (0,2)

2. If u: => n. w' then either S(w') = S(w) - (2,0) or S(w') = S(w) - (0,2)

Proof. Suppose that w =>/t w'. The values of S(w') depend on where the symbols UO

or DU are inserted in w. There are eight cases below one needs to consider:

• w = OOx. w' = OUOOx and S(w') = S(w) + (2,0).

• w = UUx, w' = UUOUx and S(w') = S(w) + (2,0).

• w = UOx, w' = UUOOx and S(w') = S(w) + (0,2).

• w = OUx, w' = OUOUx and S(w') = S(w) + (2,0).

• w = Oar, w' = OOUOx and S(w') = S(w) + (2,0).

• w = UUx, w' = UOUUx and S(w') = S(w) + (2,0).

• w = UO.1.·, W' = UOUOx and S(w') = S(w) + (2,0).

• w = OU.1.·, w' = OOUUx and S(w') = S(w) + (0,2).

Now suppose that w =>n. w'. There are also eight cases to be considered for application

of type I .!. moves.

• w = OUOOx, w' = OOx and S(w') = S(w) - (2,0).

• w = UUOUx, w' = UUx and S(w') = S(w) - (2,0).

• w = UUOOx, w' = UOx and S(w') = S(w) - (0,2).

• w = OUOUx, w' = OUx and S(w') = S(w) - (2,0).

• w = OOUOr, w' = OOx and S(w') = S(w) - (2,0).

• w = UOUUx, w' = UUx and S(w') = S(w) - (2,0).

39

3.3 Reachability properties of Reidemeister moves

• w = UOUOx, w' = UOx and S(w') = S(w) - (2,0) .

• w = OOUUx, w' = OUx and S(w') = S(w) - (0,2).

o

Next we will show that the number of transformations required to rewrite w to w'

is at least linear with respect to the number of crossing labels in w.

Theorem 3.3.1. Let w = Ui,···, UnOn, ... , Oi and w' = UiOi, .. " UmOm where Iwl =

2n and Iw'l = 2m, then w =}j w' and the total number of transformations required to

rewrite w to w' is at least n+m-2

Proof. Let S(w) and S(w') be the vectors associated with wand w' respectively. By

Definition 3.3.4. S(w) = (2,2(n - 1)) and S(w') = (2m,0). By Proposition 3.3.4

application of type I i moves to w can only reduce either the value of first component

or the value of the second component of S(w) by 2 and application of type I t moves can

only increase either the value of first component or the value of the second component

of S(w) by 2. Therefore to transform w to w', we will need to use at least n - 1

applications of type I i moves to reduce the value of first component of S(w) from

2(n - 1) to ° and at least m-I applications of type I t moves to increase the value of

second component of S(w) from 1 to 2m. 0

3.3.3 Reachability by type II

In this subsection, we investigate the complexity of the path between two equivalent

knot diagrams (encoded by Gauss words) which are reachable by a sequence of Rei

demeister moves of type II and present some upper and lower bounds based on the

number of transformations for transforming one diagram into the other with respect to

the number of crossings. In the following proposition we show that the relation =} {II.!.}

is confluent and then use this property to derive the reachability path between two

Gauss words reachable by a sequence of type II moves.

Proposition 3.3.5. Let R = {IJ i}, the relation =}R over ~ is confluent.

40

3.3 Reachability properties of Reidemeister moves

Proof. To prove that ~R is confluent, we will need to show that ~R is locally confluent

and that all reduction sequences of ::::} R terminate.

Assume that W ~R w' and W ~R w" for some word w. Let w = xabycdz where

a = OiOj, b = UkUm, c = UiUj or c = UjUi and d = OkOm or d = OmOk for

some i, j, k, m 2: 1 and i < j < k < m. Then w = xabyc-ilz ::::}R xbydz = w' and

w = xabycdz ~R xaycz = w". Now we have w' ~R xyz and w" ~R xyz. Thus local

confluence holds.

To show that ~R terminate. Let us consider a sequence WI ~R W2, ... ,::::}R wn ,

notice that is for any two words Wi, Wj in the sequence if Wi ~R Wj, then IWjl < IWili so

thc scqIlCIH'{' does terminatc after finite number of steps. Therefore by Lemma 3.3.1.1

~R is a confluent. o

Proposition 3.3.6. Letw,w' E I:~ and R = {If -l-}, ifw ::::}{II} w' then RedudR{w) =

RedudR{w')

Proof. The proof uses an argument similar to the argument in the proof of Proposition

3.3.2. o

Corollary 3.3.2. Ifw~ilw' then w::::}{II.j.}Reduct{w')~{lIt}w'

In the above Corollary we show that given two Gauss words wand w', if there exists

a path reaching w' from w via the sequence f f* then there exists another path from

which w' is reachable without exceeding the number of crossings using the sequence

11-1-*1It*

To compute the upper bound we count the number of steps taken to transform w

into w' via the sequence I I .,J.. * I I t*·

Proposition 3.3.7. Given two Gauss words wand w' where Iwl = 2n and Iw'l = 2m,

if w ~iJ U" then the total number of transformations sufficient to rewrite w to w' is

at most n1m.
Proof. This is the total number of transformations in the sequence

41

3.3 Reachability properties of Reidemeister moves

obtained from Corollary 3.3.2. o

For computing the lower bound, we consider two classes of diagrams A and B

illustrated in Figure 3.15. Let w represents diagram An and w' represents Bn where

w = Ui, ... , UnOi.··· ,On and w' = Ui , ... , UmOm, ... ,Oi such that n = m == 0 mod 1.

r····· .. ········· '\
I~J ••••••••••••••. ~

Figure 3.15: - Reachability by Reidemeister move of Type II

We consider second component of a Gauss word only (a sequence of natural numbers

for the crossing labels referred to as a shadow word) and associate an interlacement

graph with a shadow word in the following way: Create a node for each label i E

{I ... n} in wand connect two nodes i, j by an edge iff i occurs only once between the

two appearances of j in w. For an example see Figure 2.6 in Chapter 2.

To estimate the lower bound, we define a vector based on the number of edges and

nodes of the interlacment graph associated with a shadow word.

Definition 3.3.5. Let w be a Gauss word and G(w) be an interlacement graph associ

ated with w, then S(Gw) = (x, y) is a vector associated with G(w) where x denotes the

number of nodes of G(w) and y denotes the number of edges of G(w).

Proposition 3.3.8. For Gauss words wand w', the following hold:

1. If w =>lIt w' then S(GW') = S(Gw) + (2, y) for y = 0, ... , 2n + 1

2. If'lL' =>1I.!. u/ then S(GWI) = S(Gw) - (2, y) for y = 0, ... , 2n - 3

Proof. Suppose that w => It w'. Then application of type I t move to w can increase

the number of nodes of S(GWI) by 2 and the number of edges of S(GWI) can change

depending on where the labels ij and ii or ij and ij are inserted in w. So we have the

following cases to consider:

42

3.3 Reachability properties of Reidemeister moves

• w = 1···n1···n w' = ij1···n1·. ·nji and S(Gw') = S(Gw) + (2,0).

• w = 1···n1···k···n w' = ij1···kij···n1···k···n and S(Gw') = S(Gw) +

(2, 2k + 1).

• w = 1···n1···n w' = ij1···nij1···n and S(Gw') = S(Gw) + (2,2n+ 1).

Now suppose that w =} n w'. Then the number of nodes can decrease by 2 and the

number of edges can decrease as follows:

• w = ij1···n1·· ·nji w' = 1·· ·n1···n and S(Gw') = S(Gw) - (2,0).

• w = ij1···kij···n1···k···n w' = 1···n1···k···n and S(Gw') = S(Gw) +

(2,2k - 3).

• w = ij1··· nij1···n w' = 1·· ·n1···n and S(Gw') = S(Gw) + (2,2n - 3).

o

Theorem 3.3.2. Let w = Ui· .. UnOi ... On and w' = Ui ... UnOn .. ·Oi where n, m =
1 mod 2, then w =}j[w' and the total number of transformations of type II required to

rewrite w to w' is at least ~ - 1

Proof. Let S(Gw) and S(Gw') be the vectors associated with wand w' respectively

as defined in Definition 3.3.5. Then S(Gw) = (n, n(n2-1)) and S(Gw') = (m,O). By

Proposition 3.3.8 application of type I I ..\.. moves to w can reduce either the number of

nodes in S(Gw) by 2 or the number of nodes by 2 and the number of edges by at most

2n - 3 while application of type I I t moves can increase either the number of nodes by

2 or the number of nodes by 2 and the number of edges by at most 2n + 1.

To calculate the minimal number of steps required to reduce number of edges in

S(Gw) from n(n2-1) to 0, we do the following computations. Let k denote the number

of steps where for each step i = 0, ... , k - 1, the number of nodes is reduced by n - 2i

and the number of edges is reduced by a maximal number 2(n - 2i) - 3. Then we have

the following equation.

n(n - 1)
2 = 2(n - 0) - 3 - 2(n - 2) - 3 ... - 2(n - (k - 1)) - 3

43

3.3 Reachability properties of Reidemeister moves

To find the minimal number of such steps we compute k by rewriting the equation in

a closed form and using the quadratic formula to solve it.

n(n
2
- 1) = 2(n - 0) - 3 - 2(n - 2) - 3 ... - 2(n - (k - 1)) - 3

n(n - 1) = k(2n _ 3) _ 2k(k - 1)
2

n(n - 1) = 2(k(2n - 3) - 2k(k -1))

n(n - 1) = (4n - 2)k - 4k2

4k2 - (4n - 2)k + n(n - 1) = 0

k _ 4n - 2 - J(-4n - 2)2 - 4 x 4 x (n2 - n) _ n - 1
- 2x4 - 2

4n - 2 + J(-4n - 2)2 - 4 x 4 x (n2 - n) n
k= 2x4 =2"

Next we will show that no matter how type II ..!.. is applied we still need to have at

least n;-l applications. To do this we define some local property to demonstrate that

applications of I I ..!.. I I t is no better than applications of I I t I I ..L..

Let I I ..L. max denote the maximal number of edges that can be removed by I I ..!.. and

let w ==?Il~",a;r w' and w ==?Il~ w" then the value of y' in S(GWI) is less or equal to the

value of y" in S(GW") and similarly if W ==?Il~ma", W' ==?lIt w" and w ==?lIt Will =>1I~max

W"" then the value of y" in S(GW") is less or equal to the value of y"" in S(GW"")' Now

we can use this property globally to rearrange the sequence of applications of types 11

by sorting all applications of type I I ..!.. followed by all applications of type I I t.

So far we have computed the minimal number of applications of type I I ..!.. moves

required to reduce the number of edges of S(Gw) from n(n2-1) to O. Now it remains to

compute the number of applications of type I I t moves needed to increase the number

of nodes of S(Gw) from 1 to m. Let l ~ (n;l) denote the number of applications of

type I I ..L., and p denote the number of applications of type I I t, to compute p we need

44

3.3 Reachability properties of Reidemeister moves

to solve the following equation:

n+ 2p- 21 = m

n-1
n+2p-2(-2-)~m

2p+ 1 ~ m

m-I
P>-- 2

Therefore to transform w to w', we need to use at least n2"l applications of type

I ..j.. moves to reduce the number of edges of S(Gw) from n(~-l) to 0 and at least m21

applications of type I t moves to increase the number of nodes of S(Gw) from 1 to

rn. o

«(n-1/2) 11-1-)

Figure 3.16: - Diagrams An and Bm for n = 5 and m = 5

3.3.4 Reachability by type III

In this subsection, we investigate the complexity of the path between two equivalent

knot diagrams which are reachable by a sequence of Reidemeister moves of type III and

present a quadratic lower bound on the number of transformation needed to transform

one diagram into the other with respect to the number of crossings. The complexity

of Reidemeister moves of type III has been studied in [10] where some constant lower

bound for the number of moves of type III was presented by using extended n-colorings

of knot diagrams in the plane.

As to the upper bound, one can obtain a trivial exponential upper bound with

respect to the number of symbols of a Gauss word by computing its permutation. This

because transformations involving type III does neither increase of decrease the number

45

3.3 Reachability properties of Reidemeister moves

of crossings. However, a precise upper bound is still to be studied.

It is a known fact in knot theory that the writhe is a signed knot diagram invariant

[14] under Reidemeister moves of types Il and Ill. The writhe is defined as the sum of

signs of all crossings in a signed knot diagram. The value assigned to each crossing is

1 if a crossing is positive and -1 if a crossing is negative. So from this fact we derive

the following proposition:

Proposition 3.3.9. [141 Let wand w' be signed Gauss words representing two knot

diagrams and Wr(w) denote the writhe of a Gauss word w, ifw ~iII w' then lVr(w) =

Wr(w')

The fact that the converse does not hold can be shown by providing two knot

diagrams that are not reachable from each other by type III but have the same writhe.

This is illustrated in Figure 3.17. It is easy to see that type III is not applicable to any

of the diagrams.

Figure 3.17: - Two different knots with the same writhe (Wr(Kl) = Wr(K2) = -1)

To estimate the lower bounds for type Ill, we consider two classes A and B of knot

diagrams where for any knot diagram Ak E A, the number of crossings of Ak and Bk is

3k for some k ~ 1 such that Ak and Bk are constructed in the same form as in Figure

46

3.18.

k-twists

k

3.3 Reachability properties of Reidemeister moves

. .. k

..1, k-strands

III *
()

Figure 3.18: - Diagrams Ak and Bk with 3k crossings

A
2

Figure 3.19: - Diagrams Ak and Bk for k = 2

Proposition 3.3.10. Given two knot diagrams Ak and Bk with n crossings where

n = 3k and k 2: 1, if Bk is reachable from Ak by a sequence of Reidemeister moves of

type III then the number of moves required to transform Ak to Bk is at least G)2

Proof. Ak consists of k twists and k horizontal strands. Application of Type III moves

to diagram Ak is limited as it can only be applied to the k-strands by moving them

47

3.3 Reachability properties of Reidemeister moves

down (or down and then up) through the crossings corresponding to the k twists. To

have the minimal steps we need to move the k-strands down through each twist. Since

application of type III corresponds to moving one strand through a single crossing,

then we would require at least k2 steps to move k strands through k crossings. Hence

D

3.3.5 Combination of Reidemeister moves types

In this section we analyse the reachability properties of Reidemeister moves for a com

bination set of rules and present linear upper bounds on the number of moves of type

{I, Il} and quadratic lower bounds on the number of moves of type {I, Ill} to reach

one diagram from the other. In addition we provide some plausible classes of structures

which can be used to prove lower bounds for types {I, Il} and {Il, Ill}.

3.3.5.1 Reachability by types I and 11

In this subsection, we investigate the complexity of the path between two equivalent

knot diagrams which are reachable by a sequence of Reidemeister moves of type {I, I I}

and demonstrate a linear upper on the number of transformations between two Gauss

words reachable by {I, Il}. Then we present two classes of structures which can be

used to prove the lower bound and we expect that the number of moves of types {I, I I}

required to transform one diagram into the other is linear with respect to the number

of crossings.

In the following proposition we will show that ~ R is confluent where R = {I .!-, I I .!-}

and then use this property to derive the reachability path between two Gauss words

reachable by a sequence of type {I, Il}.

Proposition 3.3.11. Let R = {I .!-, I I .!-}, the relation ~ R over ~ is confluent.

Proof. Assume that w ~R w' and w ~R w" for some word w. There are three

cases to be considered for R; R = {I H, R = {Il .!-} and R = {I .!-, Il .!-}. By

Proposition 3.3.1 the relation =*{I.j.} is confluent and by Proposition 3.3.5 the relation

48

3.3 Reachability properties of Reidemeister moves

=> {I I.j..} is confluent. Now it remains to show for R = {I ~,II H, the relation => R is

confluent. Let U' = xabycz where a = OiOj, c = UiUj or c = UjUi and b = OkUk or

b = UkOk for some i, j, k ~ 1 and i < j < k. Then W = xabycz => R xaycz = w' and

W = xabycz =>R xbyz = w". Now we have w' =>R xyz and w" =>R xyz. Thus local

confluence holds.

To show that => R terminate. Let us consider a sequence Wl => R W2, ... , => R Wn ,

notice that is for any two words Wi, Wj in the sequence if Wi =>R Wj, then !Wj! < !Wi!j so

the sequence does terminate after finite number of steps. Therefore by Lemma 3.3.1.1

=> R is a confluent. o

Proposition 3.3.12. Let w, w' E r:~ and R

ReductR(w) = ReductR{w')

{I ~,II ~}, if W =>{I,II} w' then

Proof. The proof uses the same argument as in the proof of Proposition 3.3.2. 0

Corollary 3.3.3. If W =>{I,II} w' then W =>{J.j..,IIH Reduct(w') =>{Jt,lIt} w'

To compute the upper bound we count the number of steps taken to transform W

into w' via the sequence =>{J.j..,II.j..}' =>{It,IIt}·

Proposition 3.3.13. Given two Gauss words wand w' where !wl = 2n and Iw'! = 2m,

if w =>j,I[w' then the number of moves sufficient to rewrite w as w' is at most n+m-1.

Proof. This is the total number of transformations in the sequence

w =>{I.j..,II.j..} Wi,"" =>{I.j..,II.j..} ReductR{w') =>{It,IIt} Wj, ... , =>{It,IIt} w'

obtained from Corollary 3.3.3. Here, we assume that type II is applied once. 0

For computing the lower bound, we consider two classes of diagrams A and B

(where B can be seen as mirror images of diagrams in A) for which Reidemeister moves

of type I and II are applicable. The sequence of diagrams of A and B follow the form

illustrated in Figure 3.20 where both Ak and Bk have 3k crossings for some k ~ 1. For

an example where k = 2, see Figure 3.21.

49

3.3 Reachability properties of Reidemeister moves

Figure 3.20: - An instance of two knot diagrams Ak and Bk with 3k-crossings reachable
by rules of type I and 11

Figure 3.21: - Transformation of Ak into Bk by types I and 11 where k = 2

50

3.3 Reachability properties of Reidemeister moves

Conjecture 3.3.1. Given two knot diagrams Ak E A and Bk E B with n-crossings

where n = 3k for some k ~ 1, if Bk is reachable from Ak by a sequence of Reidemeister

moves of types {l, Il} then the number of moves required to transform Ak to Bk is at

I t 4(n+m) 2 eas -3- - .

Comment. Notice that Ak is a mirror image of Bk obtained by inverting the

crossings of Ak from over-crossing to under-crossing and vice versa. We believe that

the minimal way is to reduce Ak and Bk is to a common diagram. So the only common

diagram reachable from Ak and Bk by Reidemeister moves of types I I ,J.. and I ,J.. is

a diagram with one crossing. Since Ak has 3k crossings we will require at least k

applications of type I I ,J.. moves and k - I-applications of type I ,J.. moves to reduce the

number of crossing Ak to 1 and then to reach Bk will need at least k applications of

type I I t and k - I applications of type I t to increase the number of crossings from 1

to 3k. So in total the number of steps required is at least 2(k -1) + 2k = 4k - 2. Now

b · . k b n h 4(n+m) 2 su stltutmg y 3' we ave 3 -.

Essentially to make it a full proof we need to show that any other way will lead to

a longer sequence. We believe it's true but we don't have the full proof at the moment.

3.3.5.2 Reachability by types I and III

In this subsection we present two classes of diagrams A and B illustrated in Figure 3.22

such that for any diagram Ak E A, Ak has 3k crossings and any diagram Bk E B Bk

has 2k crossings for k ~ 1. Using the proposed classes of diagrams we will show that

the number Reidemeister moves of types I and III required to transform Ak into Bk is

at least quadratic with respect to the number of crossings.

Proposition 3.3.14. Given a knot diagram Ak E A and Bk E B where k ~ 1, if Bk

is reachable from Ak by a sequence of Reidemeister moves of types {l, I I I} then the

number of moves required to transform Ak to Bk is at least k2 + k

Proof. To transform Ak to Bk, we need to undo all twists in Ak to reduce the number

of crossings from 3k to 2k. Application of type III move does not affect the number of

51

3.3 Reachability properties of Reidemeister moves

k-twists ({I,III})

k

Figure 3.22: - Diagram Ak with 3k crossings and Diagram Bk with 2k

crossings and application of type I move can either increase of decrease the number of

crossings by 1.

Notice that any sequence involving type It moves does not help in reducing ap

plications of type III to move the k-strands down through the crossings and allow us

undo the k- twists in Ak. This is because application of type It moves only creates new

loops on a single strand and as a result of this it will increase the number of crossings

in which in turn increases the number of transformations.

Therefore the shortest way to reduce the number of crossings in Ak is to apply

type I .!-. The only way to make type I .!- applicable is by moving the k-strands down

through the crossing. Since there are k-twists and k-horizontal strands, to move the

k-strands down through each crossing, we would require at least k 2 moves of type III

and k moves of type I .!- to undo the twists. 0

3.3.5.3 Reachability by types 11 and III

In this section, we consider a class of diagrams presented in [31] which were used to

demonstrate lower bound on the number of Reidemeister moves of types {I, I I, I I I}

for the unknottedness problem. We modify such class of diagrams as depicted in Figure

52

3.3 Reachability properties of Reidemeister moves

(~(l11))

A
k

Figure 3.23: - Transformation of Ak into Bk by types I and III where k = 2

3.24 to make it more complex and propose to use it for proving the lower bound on

the number of Reidemeister moves of types II and III required for the equivalence of

two knot problems. We expect that the number of moves is quadratic with respect to

the number of crossings. Let A and B be two classes of diagrams such that for any

diagram Ak E A, the number of crossings of Ak is 19k - 5 and for any diagram Bk E B

the number of crossings of Bk is k + 3 for some k ~ 1 and Ak has the same form as

Figure 3.24 and Bk has the same form as Figure 3.25.

k

Figure 3.24: - Diagram Ak for k = 4

Conjecture 3.3.2. Given two knot diagrams Ak and Bk where n=19k-5 k ~ 1, if Bk

53

3.4 Non-isomorphic knot diagrams generated by applications of type I

Figure 3.25: - Diagram Bk for k = 4

is reachable from Ak by a sequence of Reidemeister moves of types {I I, I I} then the

number of moves required to transform Ak to Bk is at least 6k2 + 4k

Comment. To transform Ak to Bk, we need reduce the number of crossings of Ak

from 19k - 5 to k + 3. Applications of type III does not affect the number of crossings

whereas type I I can affect the number of crossings by ±2. Before type I I .!- move can

applied we need to apply type III move a number of times, so we expect that at least

k(6k - 4) moves of type III and 8k moves of type II .!- are needed. For an example

consider Figure 3.26 for the transformations of A4 to B4. We believe this is the minimal

way because type I I .!- is applied here while applications of type I I t moves will only

make it worse.

3.4 Non-isomorphic knot diagrams generated by applica

tions of type I

In this section we demonstrate the connection between knot diagrams generated by

Reidemeister moves of type I and unrooted Eulerian n-edge maps. Let us consider

oriented knot diagrams in the plane represented by Gauss diagrams. Starting from an

unknot (a diagram with no crossings) we apply type I moves to generate all possible

diagrams. We are interested in the question of how many non-isomorphic diagrams

54

3.4 Non-isomorphic knot diagrams generated by applications of type I

(3k(II»

(61<-4k(lII))
+6k-k{ii)

Bk

Figure 3.26: - Transformation of Ak into Bk by types II and III where k = 2

can be obtained from the unknot. To conduct this experimentation we developed a

Java program and discovered that the sequence of non-isomorphic knot diagrams with

n-crossings we obtained matches the sequence of unrooted Eulerian n-edge maps in

the plane with a distinguished outer face (see the On-Line Encyclopedia of Integer Se

quences [63]). Further we were looking for the bijective map between the two classes of

objects and as a result we found two explicit algorithms to describe the transformations

from Gauss diagrams to maps and vice versa.

A 2-cell embedding is an embedding in which every face is homeomorphic to an

open disk (i.e. if each of the faces is a simply connected region).

Definition 3.4.1. /43} A map is a 2-cell embedding of undirected connected graph,

loops and parallel edges allowed, on an unbounded surface. If the surface is a sphere

then the map is a planar map; if the surface is an infinite plane then the map is a plane

map and one of its faces is distinguished as an outside face.

Definition 3.4.2. [43} A homeomorphism between two maps on orientable surfaces is

a bicontinuous bijection between their embedding surfaces that takes the vertices, edges

and faces of one map into the vertices, edges and faces of the other; in the case of plane

55

3.4 Non-isomorphic knot diagrams generated by applications of type I

maps, it also takes the outside face of one map into the outside face of the other.

An unrooted map is an equivalence class of maps under orientation-preserving home

omorphism.

Definition 3.4.3. A Gauss diagram is an oriented circle with oriented chords. The

orientation of the circle corresponds to the orientation of the knot diagram and the

orientation of a chord denotes over-crossing to under-crossing passes. The region inside

the circle will be called an inner face and the region in the outside of the circle will be

called an outer face.

3.4.1 Gauss diagrams to maps

In this subsection we will describe the first part of the correspondence by presenting

an algorithm for the transformation of a Gauss diagram to a map. There are two main

parts of the algorithm. The first part is to construct a set of cycles by adding new

edges from outside the circle and the second part is to join all cycles together to make

the corresponding map.

Let Ui denote a point in the Gauss diagram with an incoming chord and Oi denote

a point with an outgoing chord where i denotes the label of the chord.

First we add a new edge from the outer face to connect two points on the circle if

either there are two consecutive (in counter-clock wise direction) points on the circle of

the form UiOi and UiOj or Ui . S· Oi and Ui . S· OJ where S denote a set of connected

points that separates Ui from Oi or Ui from OJ. Then we join two cycles together if

there are two consecutive points of the form UiUj or OiUj such that the first point

belong to the first cycle and the second points belong to the second cycle. Further we

merge two points that belong to the same cycle if there are two consecutive points of

form UiOi or OiUi. Finally we merge the points of any two cycles that were joined by

an edge from the inner face.

At every step of this algorithm there are many choices of how connections are

created. However the outcome of any choice is equivalent up to orientation-preserving

homeomorphism as defined in Definition 3.4.2. This means the algorithm will produce

56

3.4 Non-isomorphic knot diagrams generated by applications of type I

a unique outcome up to this equivalence.

3.4.1.1 Algorithm 1

1. For all non-connected points U followed by 0 in a Gauss diagram

(a) Connect in anti-clock wise direction from an outer face a non-connected U

with the nearest non-connected 0 separated by connected vertices only.

@
;<.~.-.--.-.

i ~

\ \
q'\.:

,
\\ \. --'L..-"'
\" ,

' .. "~-"'-'~

Figure 3.27: Step 1 - Connecting new edges between points on the circle from the outer
face

2. For any two consecutive points (in counter-clock wise direction) of the form UiUj

or OiUj, if the first point belong to cycle Ci and the second point belong to cycle

Cj then create a new edge from the inner face to join the two points together.

Figure 3.28: Step 2 - Connecting new edges between cycles from the inner face

3. For each cycle, if there are two adjacent points of form UiOi or OiUi then merge

the two points into one.

4. For any two cycles Ci and Cj, if Ci is connected to Cj then remove the edge

joining the points of Ci and Cj and glue the two points together.

57

3.4 Non-isomorphic knot diagrams generated by applications of type I

.,.-: .. -,,,--,~-.,,.,,
I ! .. , '
; --.

q\,,' •. ,
'., .---. .- ; ,

'. " '. \

'.'. +"", i·'
...... -... -:~;.~~.'

Figure 3.29: Step 3 - Merging two points in a cycle

Figure 3.30: Step 4 - Removing edges between two cycles created in step 2 and gluing
the two points joining the cycles

Proposition 3.4.1. Algorithm 1 transforms a Gauss diagram with n non-crossing

chords into an unrooted Eulerian map with n-edges where n > O.

Proof. Application of Reidemeister moves of type It correspond to adding a chord

(with two different possible directions) only to a free segment on the oriented circle

(intersection of chords is not allowed). This is illustrated in Figure 3.31.

D~)~D
Figure 3.31: - Application of type It move on a Gauss diagram

We will consider the proof by induction. To show that the base step holds, we

consider all possible Gauss diagrams with one chord and apply the steps of algorithm

1 to each Gauss diagram in a sequential way to show that the corresponding map has

only one edge. Since there are two variants of type It moves, we consider each case

separately. After applying algorithm 1, it is clear that each case results in a map with

one edge as illustrated in Figure 3.32.

58

3.4 Non-isomorphic knot diagrams generated by applications of type I

Figure 3.32: Base step - Possible Gauss diagrams with one chord

Let us assume that a Gauss diagram G with n chords can be transformed by algo

rithm 1 into a map with n edges. We will show that if we add a new chord to G, the

number of edges of the corresponding map should also increase by one. The segment

of the circle with dotted lines is assumed to contain n - 1 non-crossing chords. To

add a chord, we need to consider the two different directions of the new added chord,

two different directions of the existing adjacent chord and two different possibilities of

placing a chord either in a sequential order (after another existing chord) or in parallel

(between the two end of an existing chord). Such consideration give rise to the following

eight cases:

1. Adding a new chord (~) immediately after another chord with the same direction

(see Figure 3.34).

2. Adding a new chord (~) immediately after another chord with opposite direction

(see Figure 3.35).

3. Adding a new chord (~) between the end-points of another chord with the same

direction (see Figure 3.36).

4. Adding a new chord (~) between the end-points of another chord with opposite

direction (see Figure 3.37).

5. Adding a new chord (+-) immediately after another chord with opposite direction

(see Figure 3.38).

59

3.4 Non-isomorphic knot diagrams generated by applications of type I

11n, It
\ /

3)A, It
\i

>n \ .

~ > \. j

••.•.•..........•.....•....•..•

nit ~
2) \ : 1 >\ i

\ / l

41 A, It >~
\ / l

5)nl It
\ /

>n
\ /

61n, It >n
\ I \ ;

...............................

71 A, It
\ , /

>~ ... l

\
81 A, It >A

\., / \l

Figure 3.33: - all possible cases for adding a new chord

O~, >c:?
nAdd,ns a

~eWChOrd

~,Stepl
'.... /

> ~, Step> >~Step3
~..~ .~. ~[................... -......... .

,~ '? Step4 ~ ,......./'1
." I1 :>~

\.. ; ,J

Figure 3.34: case 1 - Adding a new chord (""""*) immediately after another chord with
the same direction

60

3.4 Non-isomorphic knot diagrams generated by applications of type I

n~, ~>
);;::.
n,SteP1

.............................

>CI Step2 >CI IStep3 >~l I, I Step4> ~,. I
.. '\. . .. \

........................... C ..•.•. ••••

Figure 3.35: case 2 - Adding a new chord (-t) immediately after another chord with
opposite direction

A
\ l

~>Q
()

n~inc. ., /
.Ll new chord

~, St.P1~, SteP2~St.P3© SteP4~
\,/ >~ / \.) \.1

............... '............... .. •... 1

Figure 3.36: case 3 - Adding a new chord (-t) between the end-points of another chord
with the same direction

A C::=I ::=:;> ~
\.... / \"

Addln, a
new chord

Figure 3.37: case 4 - Adding a new chord (-t) between the end-points of another chord
with opposite direction

61

3.4 Non-isomorphic knot diagrams generated by applications of type I

o C::=! ~~ 9
.....• / \\ n Adding a

~ new chord

~,StePl

...........................

~

,.......=Ste=p4~
'---) ,'\ \

~ ,

Figure 3.38: case 5 - Adding a new chord (f-) immediately after another chord with
opposite direction

6. Adding a new chord (f-) immediately after another chord with the same direction

(see Figure 3.39)

new chord

~IStePl
, ~ ...• /

Figure 3.39: case 6 - Adding a new chord (f-) immediately after another chord with
the same direction

7. Adding a new chord (+-) between the end-points of another chord with the same

direction (see Figure 3.40)

8. Adding a new chord (+-) between the end-points of another chord with opposite

direction (see Figure 3.41).

In each case, we add a chord to a Gauss diagram G with n chords and apply the

steps of algorithm 1 sequentially to transform G into a map. The number of edges

of the map obtained coincide to the number of chords of G. The transformation as

62

3.4 Non-isomorphic knot diagrams generated by applications of type I

~.i C::=:::::::;I > (')) \J ~

il
Add,nsa
new chord

~ISteel
,

I '-../ I I I} \. ! Step2 ~Q' } Step3 >~\ ... "1 Step4 : 0.···· "\
............ \ ~I \ i·

Figure 3.40: case 7 - Adding a new chord (+-) between the end-points of another chord
with the same direction

A <:;)
Cl ===::> / '1

. \ -./ / -........... _

nAddlnlla
~neWChord

~IStepl
\7 >~ Step2 ~, • .>rSt=ep:::3 :::::>9:;> Step4 ,<::;) -'\J I 1>\ j 1- _()1 "'(...)

•••••• ••••• H ••• ••• .. "

, ,,1; ~. • ,,1

Figure 3.41: case 8 - Adding a new chord (+-) between the end-points of another chord
with opposite direction

63

3.4 Non-isomorphic knot diagrams generated by applications of type I

illustrated in Figures 3.36 to 3.38 does not change the whole map except for a local

part where the new edge is added. Thus the statement is true for n + 1.

o

For a Gauss diagram x, by x -+ fm(x) we will denote the correspondence map of x

constructed using Algorithm 1.

3.4.2 Maps to Gauss diagrams

In this subsection, we present an algorithm to describe the second part of the corre

spondence concerning the transformation of an Eulerian map in the plane into a Gauss

diagram. The first part of the algorithm is to construct an oriented circle and the

second part is to construct oriented chords.

Definition 3.4.4. Let G denote an Eulerian map, E denote a set of edges of G and

V denotes a set of points of G. A cycle is a sequence of edges S ~ E connecting a set

of points such that the starting point and the ending point are the same. An inner face

of a cycle Ci is a region in the plane that is surrounded by Ci. An outer face of Ci is a

region that surrounds the boundary of Ci·

We begin by partitioning the map into disjoint set of oriented cycles such that if

two cycles share the same point then we make a copy of that point and attach one copy

for each cycle then connect the two points by a new edge with a dashed line to join the

two cycles together. Here, we assume that all points have distinct labels (i, il, ... , in)

and denote by D the set of directed edges with dashed lines. The number of edges

with dashed lines incident to a point in any cycle is at most four (Le. two edges (an

incoming and an outgoing) from inside the cycle and two other edges from outside the

cycle).

For example, ifthere are a set of cycles C = {Cl, ... , en} where n ;::: 1 glued to point i

then we separate the cycles and arrange them in the plane from right to left with respect

to the same order in which they appear in the map. We connect the points il, ... , in

which were previously glued to point i E Ci by edges in D as follows: If the cycles are

64

3.4 Non-isomorphic knot diagrams generated by applications of type I

glued to point i from the inner face of cycle Ci and either no cycles linked to point j

from inner face or the cycles linked to point j from the inner face are disjoint from those

linked to point i from the inner face then connect d(i,1),d(1,2), ... ,d(n -l,n),d(n,j)

where d E D and i, j E Ci. Otherwise connect d(i, 1), d(l, 2), ... , d(n-1, n), d(n, i) where

d E D and i E ('~ such that point 1 belongs to the first cycle Cl which is located on

right-hand side of point i and point n belongs to the last cycle which is located on the

left-hand side of point i.

The cycles are arranged in this way to allow us obtain the order of chords on the

circle.

We obtain an oriented circle by marking a starting point in the outer face and

visiting each edge twice according to a set of rules formulated in step 3 of the algorithm.

Once each edge has been visited twice then we return to our starting point. Finally we

obtain the chords by removing all edges that were connected from the outside of the

circle and all edges with dashed lines.

3.4.2.1 Algorithm 2

1. Orient all cycles in counter-clock wise direction.

Figure 3.42: Step 1 - Orient all cycles in counter-clock wise direction

2. Partition the map into disjoint set of cycles such that if there are a set of cycles

C = {Cl, ... , en} where n ~ 1 glued to point i then

(a) If the cycles Cl. ... , en are glued to a point i from the inner face of cycle

Ci where i E Ci AND If either there are no cycles glued to point j from the

inner face of Ci where i, j E Ci OR there exists a set of cycles d,l ... c' , , m

65

3.4 Non-isomorphic knot diagrams generated by applications of type I

where m ~ 1 glued to points j from the inner face of Ci AND ~, ... ,c'm are

disjoint from the cycles glued to point i then

i. Attach a new point k E {il,' .. , in} to each cycle Ck E C

ii. Arrange the cycles Cb ... ,en in the plane inducing the same cyclic order

imposed on the edges incident to point i in the map such that Cl is the

first cycle attached to point i and en is the last cycle attached to point

i.

iii. Connect d(i,it},d(iI,i2),'" ,d(in-l,i),d(in,j) where d E D and i,j E

q.

(b) Else

• Apply steps 2(a)i and 2(a)ii

• Connect d(i, id, d(il, i2),'" ,d(in-I. in), d(in, i) where d E D

Figure 3.43: Step 2 - Partitioning the map into disjoint set of oriented cycles joined by
dashed line edges

3. Mark an arbitrary point in the outer face and walk along each edge twice until

the same initial point is reached for the second time according to the following

rules:

Figure 3.44: Step 3 - Traversing along edges to obtain a Gauss diagram

66

3.4 Non-isomorphic knot diagrams generated by applications of type I

(a) If one crosses an edge eij from an outer face of cycle Ci where eij E Ci then

1. If there exists an edge dik E D such that k is connected to i from the

inner face of Ci, then

• Move to the edge ekm where ekm E E

ii. Else move to ejn.

(b) If one crosses an edge eij from an inner face of some cycle Ci where eij E Ci

then

i. If there exists an edge dik E D such that k is connected to i from the

outer face of Ci, then

• Move to the edge ekm where ekm E E

ii. Else move to eij'

4. Orient the circle in counter-clock direction and remove all edges in the outer face

of the circle and all other edges with dashed lines.

Proposition 3.4.2. Algorithm 2 transforms an unrooted Eulerian map with n-edges

into a Gauss diagram with n non-crossing chords where n > O.

Proof. The proof is by induction on the number of edges of a map. For the base case, we

consider an Eulerian map with one edge and show that the outcome is a corresponding

Gauss diagram with one chord. In Figure 3.45 we apply algorithm 2 to a map with one

edge and illustrate the transformations involved in each step to produce the expected

Gauss diagram with one chord.

Figure 3.45: Base step - Transforming A Gauss diagram into a map

For the inductive step, we will assume that it holds for any map with n edges and

demonstrate that if we add a new edge, the number of chords of the corresponding Gauss

67

3.4 Non-isomorphic knot diagrams generated by applications of type I

diagram increases by one. To add a new edge, we either place a point on an existing

edge (to split it into two edges) or add a new loop to an existing point. There are only

two possibilities of where the new loop can be appear on the diagram (either attached

to a point from an inner face or an outer face). We consider all possible cases below.

In each case, we consider a map with n edges and its corresponding Gauss diagram

(the bottom part of the map with dotted lines is assumed to contain n - 1 edges).

After adding a point or a loop, we follow the steps of the algorithm by partitioning the

map into disjoint set of oriented cycles and then introducing new directed edges (with

dashed lines) to join the cycles. Finally, we obtain a Gauss diagram by walking along

all edges according to the rules formulated in step 3:

1. Adding a loop to an existing point from an inner face as illustrated in Figure

3.46.

Q=A
\ 0';:

\

~H
......................

Figure 3.46: case 1 - Adding a new loop to a point from an inner face

2. Adding a loop to an existing point from an outer face as illustrated in Figure

3.47.

3. Adding a point to an existing edge

The transformation as illustrated in Figures 3.46 to 3.48 is done locally and does not

68

3.4 Non-isomorphic knot diagrams generated by applications of type I

X==>A
\ / /

n Adding an edge

Q~~~ \) Q ...-+\-..... -.... -.. -+---'

s~n
...........................

Figure 3.47: case 2 - Adding a new loop to a point from an outer face

Q==>A
\\ /J /

n Adding a point

O~Q~
~) 6 c~~~

,step !. t==i
\ ..-....................

Figure 3.48: case 3 - Adding a point to an existing edge

69

3.5 Generalised Reidemeister moves

change other parts of the Gauss diagram. The number of chords of the corresponding

Gauss diagram is also increased by one when either we add a loop or a point. 0

For a map]j, by y -+ h(y) we will denote the correspondence Gauss diagram of Y

obtained by algorithm 2.

Conjecture 3.4.1. For any Gauss diagmm x and any map y, if x -+ fm(x) and

Y -+ fk(Y) then x = h((fm(x)) and Y = fm(h(Y))·

Comment. Because both algorithms are deterministic and produce a unique out

put for each distinct input we believe that this conjecture is true but still needs some

formal proof.

3.5 Generalised Reidemeister moves

In general the upper bound for transforming a trivial knot diagram into the unknot

diagram based on Reidemeister moves has shown to be exponential with respect to

the number of crossings [31]. One of the reasons the number of Reidemeister moves is

exponential is possibly due to the existence of some knots which require an increase

in their crossings number before they can be simplified into the unknot. One may

ask whether introducing new moves in addition to ordinary Reidemeister moves may

help with simplifying trivial knots without increasing their number of crossings during

the transformation (Le. by avoiding Reidemeister moves of types It and lIt). Such

a question was investigated in [24] where some generalised version of Reidemeister

moves (illustrated in Figure 3.49 taken from [25]) also referred to as pass moves [14])

particularly for types I and II were presented. However, a counter example (see Figure

3.57) was presented in the same paper where it still required an increase in number of

crossings even after considering the new added moves in Figure 3.49.

In this section, we introduce a new set of moves depicted in Figure 3.51 that will

be referred to as generalised Reidemeister moves (GR). Our proposed moves are more

general than [24] but can be seen as a restrictive case of pass moves for links shown

70

3.5 Generalised Reidemeister moves

"'n···.(IV /V··'

Figure 3.49: - types IV and V pass moves [25]

in [[14], page 67]. Although these moves are restrictive, we will show in Proposition

3.5.1 that all known examples of classical complex trivial knot diagrams that we found

in the literature can be simplified using our new set of moves coupled with ordinary

Reidemeister moves without increasing their number of crossings. In particular, our

>0 .. , ORI "{5;-. .. '. " .. (.
" i-' .. ' '-....J .'

-~
~) : :. ~··c ~ ..

Figure 3.50: - Transformation of Goeritz moves by Generalised Reidemeister moves of
type I

generalisation as demonstrated in Figure 3.50 captures the two moves presented by

Goeritz by CRI. Extending GRI (with two strands entering the circle and two other

strands emanating out of the circle), we obtain GRIll which is a more generalised

form of an ordinary type III move. Similarly Reidemeister move of type II is extended

by GRII. The dotted circle denotes a local fragment of the knot.

The introduction of generalised moves can lead to an improvement in the overall

complexity bounds for the unknotting problem if the transformation is restricted to knot

diagram simplification. This in turn reduces the overall number of Reidemeister moves

required for the transformation by avoiding types It and IIt (increase) particularly

71

3.5 Generalised Reidemeister moves

I ~ I --.... :-~-.... :--

I···· ~,L , - -·····1

Figure 3.51: - Generalised Reidemeister moves

when either types I.J.. and lI.J.. (decrease) or type III become unavailable. The difficulty

with application of type lIt as we noted in Section 3.2.2 is that it can not be applied

arbitrarily for Gauss words because information about faces of the knot diagram is

required to maintain the planarity of the resultant diagram. In addition to faces, we

need to determine which of the strands if selected would result in decreasing number of

crossings of the diagram. In both case such information is not available for Gauss words

(with an exception to signed Gauss word where there is a procedure for determining

faces [38]).

Let RAf = {RAf I, RAf I I, RAf I I I} denote a set of Reidemeister moves and G R =

{ G RI, G RI I, G RI I I} denote a set of generalised Reidemeister moves, we will show in

the next proposition that if a given knot diagram Kl can be transformed by GR into

another knot diagram K2 then likewise the same knot diagram can be transformed via

RAf.

Proof. The proof consists of showing that each move in G R can be replaced by a

sequence of RAf. In each G R move we require to pass a strand consisting of either one

crossing (for the case of GRI) or two crossings with the same type (either two-over

crossings or two-under-crossings for the case of GRIl and GRIll) through a sequence

of crossings belonging to a fragment (or a partition) of the knot diagram (marked by a

dotted circle in Figure 3.51) to reach some position located outside the dotted circle.

We will show that the sequence of RM of types lIt III and II.J.. can be used to substitute

any GR move.

72

3.5 Generalised Reidemeister moves

Figure 3.52: - Moving a strand over a fragment of a knot diagram

Let us consider the diagram in Figure 3.52 for which the configuration on the left

denote the precondition of the rule and the configuration on the right denote the post

condition of the rule and let F denote the set of outer faces of fragment S where a face

f of a fragment S is called an inner face iff all of the arcs (edges) surrounding f belong

to S and otherwise it is called an outer face iff some of the arcs (edges) surrounding f

belong to S.

Starting with Figure 3.53 we show how a strand can passed through a single crossing

using a sequence of RM of types lIt, III and II.J...

~ ...
i i

Figure 3.53: - Passing a strand through a single crossing using a sequence of Reidemeister
moves of types II and III

More generally for the cases of GRI and GRII where it's required to pass a strand

through a sequence of crossings we apply the same sequence to move through each

crossing in a breadth first search manner by visiting neighbouring faces as follows:

1. For each face belonging to the fragment

(a) Mark all edges with lIt as illustrated in Figure 3.54.

(b) Encircle the crossing points by applying moves of type I I I and II.J..

73

3.5 Generalised Reidemeister moves

(c) Move to the next neighbouring faces until one of the outer faces of the

fragment is reached.

Step 1(bj

Figure 3.54: - Passing a strand through a face il of some fragment subsuming all edges
and crossing points of !1 using steps l(a) and l(b)

2. If the outer face is reached then apply II.J...

Since the fragment of a knot contains finitely many faces and crossings therefore

the procedure is guaranteed to terminate.

o

In the next proposition, we consider all known classical examples of complex trivial

knot diagrams which can be unknotted using classical Reidemeister moves only by first

increasing number of crossings of the original diagram (Le. where the original diagram

does neither admit types It and I1.J.. nor type III and therefore the only applicable move

is type lIt). We will show that each diagram can be transformed into the unknot

without exceeding number of crossing of original diagram by substituting types IIt

with generalised Reidemeister moves.

Proposition 3.5.2. The following knot diagrams in Figure 3.55 can be transformed

into the unknot diagram without increasing number of crossings.

Proof. Apply a generalised move when either types I1.J.. and 1.J.. or type III are not

available. To avoid increasing number of crossings during transformation we substitute

Reidemeister moves of type lIt with a more generalised move depicted in Figure 3.51.

See Figures 3.56 to 3.61 for an illustration of the transformations of diagrams

A .. , D to the unknot respectively. , , o

74

3.5 Generalised Reidemeister moves

A B c o E F

Figure 3.55: Complex trivial diagrams - A and B([24]); C ([32]); D and E ([47]); F
(KnotPlot)

~~~~~:;;?~ 
V~" ~ ~f'\~ 

~a~ ~ft~ 
~~~~ 
~~

o
Figure 3.56: A - taken from [24) - Transformation of diagram A into the unknot
without increasing number of crossings

75

3.5 Generalised Reidemeister moves

Figure 3.57: B- taken from [24] - Transformation of diagram B into the unknot
without increasing number of crossings

76

3.5 Generalised Reidemeister moves

Figure 3.58: C- taken from [32] - Transformation of diagram C into the unknot
without increasing number of crossings

77

3.5 Generalised Reidemeister moves

(GR 11)

r--

-~ - _J
~-[

~_,~ (RM 117 ~
[;~~

Figure 3.59: D- taken from [47] - Transformation of diagram D into the unknot without
increasing number of crossings

78

3.5 Generalised Reidemeister moves

(RM I)

Figure 3.60: E- taken from [47] - Transformation of diagram E into the unknot without
increasing number of crossings

Figure 3.61: F- taken from KnotPlot - Transformation of diagram F into the unknot
without increasing number of crossings

79

3.5 Generalised Reidemeister moves

3.5.1 Generalised Reidemeister moves as rewriting rules

In this subsection, we consider formalising generalised Reidemeister moves in terms

of string rewriting rules for Gauss words. In a similar way to classical Reidemeister

moves, we take into account all possible orient at ions of the strands involved and all

possible ways in which they can be connected (or ordered) on the knot diagram. We

present one rule for CRI, two rules for GRII and 14 rules for type Ill. The rules are

formulated as conditional rewriting rules and not in the form as defined in Section and

also we use abbreviations like i to denote either Oi or Ui .

Definition 3.5.1. A Gauss word s is self-contained word if for every symbol Oi in s

there exists a corresponding symbol Ui in s and vice versa.

Type I

A Gauss words admit GR I, if it contains a subword s that is a self-contained word

and one of the symbols Ui or Oi adjacent to s for some i E N. For the purpose of

simplification the adjacent symbol to s will be denoted by i to capture both cases (Ui

and Oi) since it will not affect the definition of a self-contained word.

Definition 3.5.2. Let w be a Gauss word, w admits GR I i./J W = xis or w = xsi

where 8 is self-contained.

Let w be a Gauss word that admits GR of type I, application of GR I allows us to

move a symbol i adjacent to a self-contained subword s from the beginning of s to the

end of s and vice versa. To capture this effect we formulate the following rule for GR

I.

GR1.1 xi.'1 f-tx.'1i

Type 11

Definition 3.5.3. Let w be a Gauss word and s = p . q be a self-contained subword

of w, w admits GR 11 i./J either w = xIPWaq] or w = x]pwaqI where Wa = OiOj or

Wa = UiUj and I,] denote the counterpart symbols of Wa.

80

3.5 Generalised Reidemeister moves

Unlike GR I and GR In, application of GR II can affect the size of W by ±4. In

the following rules the concatenation of p and q denoted by p' q forms a self-contained

word.

GR2.1 xlPWaq) t-txpq

GR2.2 X)pwaql t-txpq

Type III

In the following definition we introduce some notation to describe the relation between

two symbols in a Gauss word for the purpose of simplifying the various cases used in

Definition 3.5.5.

Definition 3.5.4. Let x, y be some symbols in a Gauss word w

• We denote by Px,y = {(x, y)lxy E w} the set of pairs (x, y) where x is a predecessor

of y (i.e. x appears to be the first symbol on the left-hand side of y). The set

Sx,y = Py,x denotes the set of pairs (x, y) where x is a successor of y and the set

Ax,y is defined as either Ax,y = PX,y or Ax,y = Py,x

• The symbol x denotes the counterpart of x where x = Oi iff x = Ui and vice versa.

Definition 3.5.5. Let w be a Gauss word and s = p . q be a self-contained sub word of

w, W admits GR III iff w = XWayWbZWc where

- Wb E AI,p and Wc E A.1,q or Wc E Ai,p and Wb E A.1,q or

- Wb E A],p and Wc E Ai,q or Wc E A],p and Wb E AI,q or

- Wb = lp] and Wc = q or Wc = LP) and Wb = q or

- Wb =]pI and Wc = q or Wc =]pI and Wb = q

Let W be a Gauss word admitting GR Ill, we denote by PI and Pn (and ql and qn

respectively) the first symbol and last symbol of p (and q respectively). The rewriting

81

3.5 Generalised Reidemeister moves

of W by GR III depends on whether the pair (PI, Pn) interlace with the pair (qI, qn) in

W or not such that either PI = (/1 (the first symbol in P is equal to the counterpart of

the first symbol in q) and Pn = q~ or PI = qn and Pn = iiI. The third case captures the

case when either PI =f: tii and Pn =f: q~ or PI 1:- q~ and Pn =f: qI·

The rules 3.1 to 3.4 correspond to the first case where the symbols connecting to the

counterpart symbols of Wa holds and the rules 3.5 to 3.8 correspond to the second case

where the interlacement property does not hold. The rules 3.9 and 3.14 correspond to

the third case

GR3.1 waxlpyqJz H waxpJYlqz

GR3.2 waxpiyjqz H waxjpyqiz

GR3.3 waxpyjqiz H waxjpiyqz

GR3.4 waxpyiqjz H waxipjyqz

GR3.5 waxipyjqz H waxpjyqiz

GR3.6 Waxpiyqjz H waxjpyiqz

GR3.7 waxPYlqJz H waxJplyqz

GR3.8 waxpyjqlz H waxlp]yqz

GR3.9 waXpty]qz H wax1pyq]z

GR3.10 waxpiyqjz H waxipyjqz

GR3.1l waxpjyiqz H waxjpyqiz

GR3.12 waxpjyqiz H waxjpyiqz

GR3.13 waxipjyqz H waxpyjqiz

GR3.14 waxjpiyqz H waxpyiqjz

82

3.6 Summary

3.6 Summary

In this chapter we considered local diagrammatic moves called Reidemeister moves

used for the transformations between two knots of the same type. We provided a

formalisation of Reidemeister moves in terms of string rewriting systems and analysed

the minimal set of rules sufficient for rewriting. Then we analysed the reach ability

problem of Gauss words in terms of string rewriting rules and provided some lower and

upper bounds based on the number of transformations needed to reach one word from

the other by considering a set of rules of the same type as well as using a combination

set of rules of different types.

Further we considered oriented knot diagrams (represented by Gauss diagrams)

generated by application of Reidemeister moves of type I only and counted the number

of non-isomorphic knot diagrams with n-crossings (where n ~ 1). We discovered that

our sequence corresponds to the number of unrooted Eulerian n.-edge maps in the plane

and provided explicit algorithms to describe the construction between maps and Gauss

diagrams.

Furthermore we introduced a new set of moves that can be seen as a more generalised

version of Reidemeister moves of types 11 and III formulated also in terms of string

rewriting rules for Gauss words. We considered all known examples of complex trivial

knot diagrams that can only be reduced to the trivial knot diagram by first increasing

the number of crossings of the original diagram and shown that our generalised moves

can be used to substitute application of Reidemeister moves of type lIt and therefore

simplifying the transformational process into a reduction one. Finally we formulated

some open questions left as conjectures for future work.

83

Chapter 4

Computational models

In this chapter we introduce and analyse some computational models over infinite

alphabets for the purpose of evaluating the complexity of some knot theoretic problems

represented by Gauss words.

Since knots can have arbitrarily many crossings then Gauss words will be considered

as strings over an infinite (unbounded) alphabet. In section 4.1, we describe and extend

the models of automata over infinite alphabet that will be used for establishing the lower

and upper bounds on recognition of knot properties.

In Section 4.2 we examine the capability of a register automata to handle some

useful operations required for checking knot properties and show that over a class of

all languages of our interest register automata can simulate the behaviour of a counter

machine and that of a pebble automata. Then we demonstrate generic results on

the mutual simulations between logspace bounded classical computations (over finite

alphabets) and register automata working over infinite alphabets.

In Section 4.3 we apply register automata to establish some lower and upper bounds

for the recognisability of some knot properties. We show that the languages of Gauss

words (signed and unsigned) are not recognisable by non-deterministic I-way register

automata but they are recognisable by deterministic 2-way register automata. We also

show that non-trivial properties such as checking the equivalence of two Gauss words

in terms of cyclic shift and renaming of labels referred to as isomorphic Gauss words

84

4.1 Automata over infinite alphabets

problem can be recognised by a deterministic 2-way register automata.

4.1 Automata over infinite alphabets

Let D be an infinite set called an alphabet. A word, or a string over D, or shortly,

D-word or D-string, is a finite sequence db .. . , dn , where di E D, i = 1, ... , n. A

language over D (a D-language) is a set of D-words. For a word w and a symbol d,

denote by I w Id the number of occurrences of din w. As usual I w I denotes the length

of the word w. A language L over an infinite alphabet D is called n-bounded if there

is a constant nE N such that for any w ELand for any d E D one has I w Id~ n. All

languages considered in this thesis are bounded.

The language of shadow Gauss words Lover D is 2-bounded due to the double

occurrence of the symbols of din w, i.e. I w Id= 2. The language of nested words [2]

can also be viewed as a language of 2 - bounded data words.

4.1.1 Words and data words

In previous works on the computational models on infinite alphabets it has been ac

knowledged that in many situations it is natural to consider infinite alphabets as the

subsets of E x ~ where E is a finite set and ~ is an infinite set. Thus, the symbol

here is an ordered pair (a, b). The words over such alphabets are called data words.

In the definition of automata over data words, it is sensible to assume that when an

automaton reads a symbol (a, b) it has a direct access to both components of the pair.

For this purpose, the form of transition rules in automata can be adapted to include

one extra argument on the left-hand sides as defined in Definition 4.1.3.

For the language of Gauss words, we consider one of the weakest models of automata

over infinite alphabet called register automata, introduced in [35] and studied further

in [55]. This model is quite restrictive in a way that it can only store unique values

from the infinite alphabet in registers. This restriction was inconvenient for designing

automata to check Gauss word properties.

85

4.1 Automata over infinite alphabets

In the next section, we describe how to overcome this restriction.

4.1.2 Register automata

Register automata are finite state machines equipped with a finite number of memory

cells called registers which may hold values from an infinite alphabet. There are several

variants of register automata which have different computational power. These are

deterministic, nondeterministic, one-way and two-way register automata. Below, we

describe the formal definition of a two-way k-register automaton taken from [55].

Definition 4.1.1 ([55]). A (non-deterministic) two-way k-register automaton over an

infinite alphabet D is a tuple (Q,qo,F,TO ,P) where Q is a finite set of states, qo E Q

is the initial state,F ~ Q is the set of final states, To : {l, ... ,k}~ DU {C>,<J lis the

initial1'egister a:;signment and P is a finite set of transitions of the forms:

1) (i, q) ~ (q', d) (If a current state is q and the observed symbol on the tape

equals to a value in register i then enter the state q' and move along the string

according to the specified direction d where i E {1, .. , k}, q, q' E Q and d E

{stay, left, right}).

2) q ~ (q', i, d) (If a current state is q and the observed symbol on the tape does

not equal to any value held in registers then enter the state q', copy the current

symbol to a specified register i and move along the string according to the specified

direction d where i E {1, .. ,k},q,q' E Q and d E {stay, left, right}).

Given aD-word w delimited by symbols C>,<J on the input tape, an automaton starts

in a state qo and in the position of the first letter of w and applies non-deterministically

any applicable rules. A configuration of an automaton on w is a tuple [.7, q, r] where

j denote a position of a letter of w or the position of either C> or <J, q E Q and

T: {1, ... , k} ~ DU {C>, <J}. As usual, if automaton is able ever to reach a state q E F,

it accepts the word, otherwise the word is rejected. The set of all accepted words forms

a language recognisable by an automaton.

86

4.1 Automata over infinite alphabets

An automaton is deterministic if for all rules there are no two rules with the same

left-hand-side and different right-hand-side so that for any configuration at most one

transition applies.

We modify the above definition by allowing more general transition rules which

will accept replication of the same value in different registers. This does not affect the

computational power of the model (see Lemma 4.1.2.1 below) but makes the design of

such automata for various recognition problems much more natural and easier. Similar

modifications (in more general setting) have appeared in [15; 18].

We define modified two-way k-register automata by adding to the definition above

two extra types of transition rules:

Definition 4.1.2. (41; 55] A non-deterministic two-way k-register automaton over an

infinite alphabet D is a tuple (Q,qo,F,To ,P) where Q is a finite set of states, qo E Q is

the initial state, F ~ Q is the set of final states, To " {l,,,.,k}~ D U {e>,<l } is the

initial register assignment and P is a finite set of transitions:

1) (i,q) ~ (q',d) (If a current state is q and the observed symbol on the tape

equals to a value in the register i then enter the state q' and move along the

string according to the specified direction d where -i E {I, '" k}, q, q' E Q and

dE {stay,left,right})

2) q ~ (q', i, d) (If a current state is q and the observed symbol on the tape does

not equal to any value held in registers then enter the state q', copy the current

symbol to a specified register i and move along the string according to the specified

direction d where i E {I, '" k}, q, q' E Q and d E {stay, left, right}).

3) (i,q) ~ (q',j,d) (If a current state is q and the observed symbol equals to a

value in the register i then enter the state q', copy the current symbol to a

register j and move along the string according to the specified direction d where

i,j E {l,,,,k},q,q' E Q and d E {stay, left, right}).

4) q -+ (q', d) (If a current state is q and the observed symbol does not equal to any

87

4.1 Automata over infinite alphabets

value held in registers then enter the state q' and move along the string according

to the specified direction d where q, q' E Q and dE {stay, left, right}).

Deterministic and co-non-deterministic register automata as well as the language

accepted by automata are defined in the standard way.

In the following lemma we show that the new added rules does not affect the com

putational power of original model.

Lemma 4.1.2.1. The models of original register automaton and modified register

automaton over an infinite alphabet aTe equivalent.

Proof. Let MI be a register automaton over an infinite alphabet and M2 be a modified

model of register automaton over an infinite alphabet. Since A12 contains all rules of

Afl (Le. M2 is a generalisation of Mt). Then any computations on MI can be simulated

by M2 in a straight forward way. That is the rules of MI coincide with the first two

rules of M2' Now to prove that the converse statement holds we will show that the two

extra types of rules of M2 can be simulated by Mt.

The rule (-i, q) ~ (q', j, d) of type 3 of M2 can be simulated in MI by using the

following construction.

The state of the registers of M2, that is a sequence of not necessarily different values

R = [Tt, r2, ... ,rk] is represented in the simulating automaton as a pair:

• the set of unique values U = {rI, r2,···, rk+t} , and

• the surjective mapping lP : {I, ... ,k} ~ U

The content of U is kept in the registers and since the mapping 1J is finite, it can be

kept in the finite state control. Now it is straightforward to simulate the effects of type

3, in terms of pairs U, lP as follows:

The rule (i, q) ~ (q', j, d) of type 3 is replaced by (lP(i), [q, 1Jx]) ~ ([q', lPy], lPy(j), d)

where x and y correspond to the current index of a mapping at states q and q' respec

tively. We update lPx by changing lP(j) to be equal to 4>(i).

88

4.1 Automata over infinite alphabets

R u

Figure 4.1: - Simulation ofrule 3 in M2 by Ml

The rule q ~ (q', d) of type 4 in M2 can be simulated by adding one extra dummy

register k + 1 and replacement of rules of M2 of the form q ~ (q', d) by either (k + 1, q) ~

(q', d) or q ~ (q', k + 1, d). If a value of the register k + 1 is equal to the observed symbol

then the rule (k + 1,q) ~ (q',d) is applicable otherwise the rule q ~ (q',k + I,d) is

applicable.

In terms of the data structure proposed for the simulation of rule 3, the rule of type

4 can implemented in the following way:

Let I be a register in M2 where I E {I, ... , k} such that cj:>(l) = k+ 1, if a value of the

register k + 1 is equal to the observed symbol then the rule (4)x(l), [q, cPx]) ~ ([q', cPy], d)

is applicable otherwise the rule [q, cPxl ~ ([q', cPy], cPy(l) , d) is applicable.

o

In Definition 4.1.2 we defined register automata as a model of computation for

languages over an infinite alphabet. Another option is to define register automata as a

model of computation for data words. A data word is a finite sequence of ~ x N, where

~ is a finite set of labels and N is an infinite set data values.

In t he context of Gauss words, the following definition is more convenient and thus

it will be used throughout this thesis.

89

4.1 Automata over infinite alphabets

Definition 4.1.3. A non-deterministic two-way k-register automaton A over an alpha

bet D where D = ~ x N is a tuple (Q,qo,F,TO ,P) where Q is a finite set of states, qo E

Q is the initial state, F ~ Q is the set of final states, To : {l, ... ,k}-+ DU {[>,<J } is

the initial register assignment and P is a finite set of transitions:

1) (s, i, q) -+ (q', d) (If a current state is q and first component of the observed symbol

on the tape is .'i and second component of the observed symbol equals to a value

in the register i then enter the state q' and move along the string according to

the specified direction d where i E {I, .. ,k},q,q' E Q and dE {stay, left, right})

2) (s, q) -+ (q', i, d) (If a current state is q and first component of the observed symbol

on the tape is s and second component of the observed symbol does not equal to

any value held in registers then enter the state q', copy the current symbol to a

specified register i and move along the string according to the specified direction

d, where i E {l, .. , k}, q, q' E Q and d E {stay, left, right}).

3) (s, i, q) -+ (q', j, d) (If a current state is q and first component of the observed

symbol on the tape is s and second component of the observed symbol equals

to a value in the register i then enter the state q', copy the current symbol to a

register j and move along the string according to the specified direction d where

i, j E {I, .. , k}, q, q' E Q and d E {stay, left, right}).

4) (s, q) --t (q', d) (If a current state is q and first component of the observed symbol

on the tape is s and second component of the observed symbol does not equal

to any value held in registers then enter the state q' and move along the string

according to the specified direction d, where q, q' E Q and d E {stay, left, right}).

Given a data word w = Wi··· Wn where Wi = (ai, bi) with ai E E and bi E N, a

configuration of A on [> W <l is a tuple [j, q, T] where 0 ~ j ~ n + 1 is a current position

of the head in the word, q E Q is the current state, and T : {I, ... , k} -+ Du {[>, <l} is

the current register assignment. The initial configuration is [1, qo, TO]. A configuration

[j, q, T] with q E F is accepting. As usual, if automaton is able ever to reach a state

90

4.1 Automata over infinite alphabets

q E F, it accepts the word, otherwise the word is rejected. The set of all accepted

words forms a language recognisable by an automaton.

4.1.3 Pebble automata

As an alternative model of automata over infinite alphabet, pebble automata(PA) were

introduced in [50] and further studied in [55]. We follow the definitions in [55]. In

this model, instead of registers, finite state machines are equipped with the finite set

of pebbles which can be placed on the input string and later lifted following the stack

discipline. That means pebbles are numbered from I to k and pebble i + 1 can only be

placed when pebble i has already been placed on the string and vice-versa, pebble i can

only be lifted if i + 1 is not on the string. Further assumption is that the pebble with

the highest number acts as a head, so an automaton has an access to the symbol of the

string under such a pebble and to the information on which other pebbles are located

at the same position. The transition of pebble automata depends on the following: the

current state, the pebbles placed on the current position of the head, and the equality

type of the data values under the placed pebbles. The effect of the transition is the

change of a state, movement of the head and, possibly, removal of the head pebble, or

placement of the new pebble. A new pebble is placed at the position of the most recent

pebble and pebble i-I becomes the current head when pebble i is removed.

As usual acceptance of a word is defined as reachability of one of the final states.

Definition 4.1.4 ([55]). A nondeterministic two-way k-pebble automaton A over an

infinite alphabet D is a tuple (Q, qo, F, T) where

• Q, qo E Q and F c Q are a finite set of states, the initial state, and the set of

final states, respectively; and

• T is a finite set of transitions of the form Q ~ f3

- 0: is of the form (i,s,P, V,q) or (i,P, V,q), where i E {I,··· ,k}, sE DU{!>

<J} PVC {I ... i-I} and , , , - , ,

91

4.1 Automata over infinite alphabets

- f3 is of the form (q, d) with q E Q and dE {stay, left, right, place-new-pebble,

lift-current-pebble} .

Given a word w = dl ... dn E D*, a configuration of A on [> w <l is a triple [i, q, 0]

where i E {I,··· ,k}, 0 : {I,··· ,i} -+ {Q,l,· .. ,n,n + I}. The function e defines

the position of the pebbles and is called pebble assignment. The initial configuration

[1, qo, eo], with eo(l) = 1. A configuration [i, q, 0] with q E F is called an accepting

configuration.

Let do =[>, dn+l =<l and di = ai E w. A transition (i, s, P, V,p) -+ f3 applies to a

configuration [j, q, 0] if

1. i = j and p = q,

2. V = {l < ild(J(I) = d(J(i)}'

3. P = {l < ile(l) = O(i)}, and

4. d(J(i) = s.

A transition (i, P, V, q) -+ f3 applies to a configuration [j, q, 0] if the first three conditions

hold and no transition of the form (i, s, P, V, q) -+ f3 applies to [j, q, e].

Intuitively, a transition (i, s, P, V, p) -+ f3 applies to a configuration if pebble i is the

current head, p is the current state, V is the set of pebbles that see the same symbol as

the top pebble, P is the set of pebbles that sit at the same position as the top pebble,

and the current symbol seen by the top pebble is s.

4.1.4 Linearly bounded memory automata

In all models above the input can be thought of as given on the input tape which can

only be read, but not written on. Linearly bounded memory automata (LBMA) are

an extension of register automata with the input tape. The automaton can read and

write in the tape cells symbols of an infinite alphabet. The input is given on the initial

part of the tape and for the input size n, the size of the tape is assumed to be O(n),

92

4.1 Automata over infinite alphabets

i.e. linearly bounded. Types of rules of LBMA include all types of rules of (modified)

RA and additional rules allowing us to write on the tape. For every form L ~ (...) of

rules of the (modified) RA model the following is a form of rule for LBA: L ~ (... ,I),

where I E {I, ... k}. The effect of application of the latter is the same as of the former,

plus the automaton writes the content of the register I in the current position on the

tape before possible head movement.

Definition 4.1.5. A deterministic linearly bounded memory automaton over an infinite

alphabet D is a tuple (Q,qo,F,To ,P) where Q is a finite set of states, qo E Q is the initial

state, F ~ Q is the set of final states, To : {l, ... ,k}~ DU {!>,<J } is the initial register

assignment and P is a finite set of transitions:

1) (i, q) ~ (q', d) (If a current state is q and the observed symbol on the tape

equals to a value in the register 'i then enter the state q' and move along the

string according to the specified direction d where i E {I, .. , k}, q, q' E Q and

dE {stay,left,right})

2) q ~ (q', i, d) (If a current state is q and the observed symbol on the tape does

not equal to any value held in registers then enter the state q', copy the current

symbol to a specified register i and move along the string according to the specified

direction d, where i E {l, .. ,k},q,q' E Q and d E {stay, left, right}).

3) (i,q) ~ (q',j,d) (If a current state is q and the observed symbol equals to a

value in the register i then enter the state q', copy the current symbol to a

register j and move along the string according to the specified direction d where

i, j E {I, .. , k}, q, q' E Q and dE {stay, left, right}).

4) q -7 (q', d) (If a current state is q and the observed symbol does not equal to any

value held in registers then enter the state q' and move along the string according

to the specified direction d, where q, q' E Q and d E {stay, left, right}).

5) (i, q) -7 (q', d, I) (If a current state is q and the observed symbol on the tape equals

to a value in the register i then enter the state q', move along the string according

93

4.1 Automata over infinite alphabets

to the specified direction d where i E {I, .. , k}, q, q' E Q and dE {stay, left, right}

and write the content of register I in the current position on the tape).

6) q 4 (q', i, d, I) (If a current state is q and the observed symbol on the tape does

not equal to any value held in registers then enter the state q', copy the current

symbol to a specified register i, move along the string according to the specified

direction d, where i E {1, .. ,k},q,q' E Q and d E {stay, left, right} and write the

content of register 1 in the current position on the tape).

7) (i,q) 4 (q',j,d,l) (If a current state is q and the observed symbol equals to

a value in the register i then enter the state q', copy the current symbol to a

register j, move along the string according to the specified direction d where

i,j E {1, .. ,k},q,q' E Q and d E {stay,left,right} and write the content of

register I in the current position on the tape).

8) q 4 (q', d, l) (If a current state is q and the observed symbol does not equal to

any value held in registers then enter the state q', move along the string according

to the specified direction d, where q, q' E Q and d E {stay, left, right} and write

the content of register I in the current position on the tape).

Given a word w delimited by symbols t>, <J on the input tape, A configuration of

an automaton on w is a tuple [j, q, T, p] where j denote a position of a letter of w or the

position of either t> or <J, q E Q, T : {I, ... , k} 4 DU{t>, <J} and p is the current content

of the tape. The function p : N H DU {t>, <J} is a partial function with domain of p

being a fragment [1, ... ,m] of N. The initial configuration [0, qo, TO, Po] with po(O) =t>,

po(I) = wl(1 ~ i ~ 11.) and Po(n+ 1) =<J. A configuration [i, q, T, p] with q E F is called

an accepting configuration.

As usual, if automaton is able ever to reach a state q E F, it accepts the word, oth

erwise the word is rejected. The set of all accepted words forms a language recognisable

by an automaton.

94

4.2 Register automata and classical complexity

4.1.5 Turing Machine

A deterministic Turing machine is a 7-tuple (Q,E,r,TO,qO,#,F) where Q is a set of

states, E is the input alphabet, r is the tape alphabet, TO is the partial transition

function, # E r is a symbol called blank, qo E Q is the initial state and F ~ Q is a set

of final states.

The transition function for the Turing machine is given by TO: Q ---? Q x r x {L, R}.

This means when the machine is in a given state (Q) and reads a given symbol (r)

from the tape, it replaces the symbol on the tape with some other symbol (r), goes to

some other state (Q), and moves the tape head one square left (L) or right (R).

A configuration of a Turing machine requires the state the Turing machine is in,

the contents of the tape, and the position of the tape head on the tape. This is written

as a string of the form Xi ... XjqmXk .•• Xl where the x's are the symbols on the tape, qm

is the current state, and the tape head is on the square containing Xk (the symbol

immediately following qm).

4.2 Register automata and classical complexity

In this section we examine the capability of a register automata to handle some useful

operations required for checking knot properties. We show that over a class of bounded

languages including all languages of our interest register automata can simulate the

behaviour of a counter machine and that of a pebble automata. Further in Sections 4.2.3

and 4.2.4 we demonstrate generic results on the mutual simulations between logspace

bounded classical computations (over finite alphabets) and register automata working

over infinite alphabets.

4.2.1 Simulation of counters by register automata

In this Subsection we explain how a two-way register automata with k registers on

the input with t distinct symbols can simulate k counters bounded by t.

95

4.2 Register automata and classical complexity

w I a a b c b a

Registers: Counters:

RI Q--GCI

Rz @---0CZ

R3 rr-G C3

Figure 4.2: - Modelling of counters by registers in a register automaton model

Let us assume that a word on an input tape has at least t distinct symbols. The

value of a counter stored in a register i will corresponds to the number of distinct

symbols from the beginning of the word till the position of the first appearance of

symbol stored in the register (for for an illustration, see Figure 4.2). Then we can

increase (decrease) the value by updating the register with the next (previous) symbol

on the string that will appear for the first time. Counter i is equal to zero if the value

stored in the register i is the first symbol on the input tape. If we use k registers then

we can store k counters bounded by t, where t is a number of distinct symbols on the

input tape.

4.2.2 Simulation of pebble automata by register automata

As expressive power concerned, in general pebble automata are incomparable with

register automata [55]. We will show, however, in the following proposition that over a

class of bounded languages, including all languages of our interest, PA can be effectively

simulated by RA.

Proposition 4.2.1. If an n-bounded language over infinite alphabet D can be recognised

by a k-pebble automaton, then it is also recognised by a k + 2-register automaton.

Proof. Let PA = (Q, qO, F, T) be a pebble automaton, we will first show how to repre

sent the configuration ri, q, 9] of PA where i E {l, ... ,k}, q E Q and () : {l, ... ,i} ---7-

96

4.2 Register automata and classical complexity

{O, 1, ... , I w I + 1}, on the input word w = d1 , ... ,d1wl by a configuration of a register

automaton. Then we will show how to simulate the transition rules of P A on RA.

For the purpose of modelling P A, we define a register automaton RA = (Q, qO, P, TO, 1')

where its finite set of states Q = Qaux X Q x Q~ where Qaux is a finite set of auxiliary

states (for controlling the executions of general subroutines needed to check certain

conditions on the transition rules), Q~ = {O, 1,··· , n} (for keeping a reference to the

number of previous occurrences of the symbol stored in register i) and n is a constant

of the bounded language. The number of registers of RA is the number of pebbles of

PA. Before we complete the definition of RA, let us explain the representation of the

configuration of PAin a configuration of RA.

Let, = [i, q, 0] be a configuration of PA on the input word w. Then the configura

tion [j, q' , T] of RA encodes , if:

• T(l) = dOll)' J01' 1 ::; I ::; 'i

• tl = I{rlr < 0(1) and dr = dO(I)}1 + 1, Jor 1 ::; I ::; i

• tl = 0, Jor i < I ::; k

It easy to see that the definition of the notion of the encoding does not depend on j.

To explain the above encoding the position of pebble i is determined as follows:

Suppose that pebble i is placed on the symbol x E D from the word u . x . v, where

u, v E D*. Then the position of this pebble can be uniquely represented by a pair

(x, tx), where x is a symbol marked by pebble i and tx = lulx , i.e. the number of

occurrences of a symbol x in a word u (that is to the left of x). Thus, in order to

simulate a pebble we need one register (for storing x) and a finite number of states

0, .. , ,n (for keeping tx in a state space) since tx is bounded by a constant n.

If RA is in state ij where ij = (8, q, tt.· .. , tk) E Q then placing a pebble i on

a symbol x will correspond to storing x in register i and updating the states of ti

accordingly and lifting a pebble i will correspond to updating the state ti to O. Under

97

4.2 Register automata and classical complexity

this encoding the top most pebble on a input correspond to the right most state among

tl, ... , tk with a non-zero value.

The initial configuration ,0 = [1, qo, 90l with 90 (1) = 1 of P A on the input word

w is represented by the configuration [1, tio, ro] of RA where ro(l) = d l , ro(k + 1) =C>,

ro(k + 2) =<3 and qO = (s, qo, 1,0" .. ,0). F is the set of accepting states of RA where

F= {(S,q,tl,'" ,tk)l(s,q,tl,'" ,tk) E Q and q E F}.

Next we will explain how a transition rule of P A can modelled by the transition

rules t of RA. To model the effect of transitions rule transition rule (i, P, V, p) ~ (q, d)

of PA (meaning, if pebble i is the current head, p is the current state, P is the set of

pebbles that sit at the same position as the top pebble, V is the set of pebbles that

see the same symbol as the top pebble, and the current symbol seen by the top pebble

is x), RA should be able to execute the transition rules t by checking the conditions

of the rule described in first four steps and perform the updates in steps 5 and 6 as

follows:

1. i is the current head, that is tl = 0, for i < I ~ k and for 1 ~ I ~ i where

0< tl ~ n.

2. P = {Ill < i and r(l} = rO) and tl = ti}, for 1 ~ l < i

3. V = {lll < i and r(l) = r(i)}, for 1 ~ I < i

4. P = (s, p, iI, ... ,tk) E Q p is a state of the modelled P A, that is a current state

of RA (so,p, t},'" ,tk) E Q for some So, tl'" ,tk

5. ij = (so, q, ti," . ,t~) E Q, the state of RA should become (s' q, ti," . ,tU for

some ti,'" ,t~

6. d = {stay, left, right, place-new-pebble, lift-current-pebble} can be modelled

as follows

(a) d = left then r(i) = dO(i-I)'

(b) if d = right then r(i) = dO(i+l)

98

4.2 Register automata and classical complexity

(c) if d = stay then r(i) = dO(i)

(d) if d = place - new - pebble then tHI = t/ where t/ = 0, for i < 1 :S k and

0< tl :S n for 1 :S 1 :S i.

(e) if d = lift - current - pebble then ti-I = tl where tl = 0, for i < 1 :S k and

0< tl :S n for 1 :S 1 :S i.

So far we have shown that how to model a configuration and transition rules of

P A by RA. Now to show that RA accepts the same language as P A, we model an

accepting run for P A by RA depicted in Figure 4.3 as follows:

w PA

models models models

w -0- RA

Figure 4.3: - Modelling an accepting run for P A by RA

Starting from an initial configuration, we launch a sequence of intermediate subrou

tines to obtain a new configuration that models the configuration in P A which resulted

from application of onc transition rule to initial configuration. We do the same as in

the previous step for each other transition until the final configuration to modelled is

reached, and if the sequence is an accepting run for P A then there is an acceptance

sequence for RA and vice versa.

o

In the next section we will show that if a language L over an infinite alphabet is

recognisable by register automata then the encoding of L over a finite alphabet can be

recognised by a 'lUring machine with log-space memory. This results is quite interesting

as it will allows to translate our results on recognisability by automata in the classical

settings.

99

4.2 Register automata and classical complexity

Definition 4.2.1. We define the following classes of languages in terms of their recog

nisability by the appropriate computational device.

• DRA is the class of languages over an infinite alphabet recognisable by a deter-

minis tic register automata.

• Co-NRA is the class of languages over an infinite alphabet recognisable by a Co

non-deterministic register automata.

• [, is the class of languages recognisable by a deterministic Turing machine in

log-space memory.

• N[' is the class of languages recognisable by a non-deterministic Turing machine

in log-space memory

• Co - N£ is the class of languages whose complements are in N£.

4.2.3 RA to ,c

We will show that if a language L over the alphabet E x D is acceptable by two-way

register automata then the encoding of L over a finite alphabet can be accepted by a

Turing machine in log space memory. Let us first define the encoding of L over a finite

alphabet as follows.

Let L be a language over the alphabet E x D. For any pair of symbols (x, y) of a

word w E L we denote by ordw(y) (or ord(y) if w is understood) the number of distinct

symbols of the second component in w to the left of the first occurrence of y in w. So,

for example, if w = (0, a)(O, c)(U, c)(U, b)(U, a)(O, b) then ordw(a) = 0, ordw(c) = 1

and ordw(b) = 3. Let r xl: JR* ...-+ N where x is rounded up to the nearest natural

number, we define T : E ...-+ {0,1}k as a mapping from the letters of finite alphabet to

their binary encoding where k = rlog(IEl)l

If <P is a mapping from natural numbers into their binary encoding, <p(i) : N ...-+

{0,1}"', then for any word w = (al,b1)···(an,bn) EL where ai E E and bi E D for

each i E {1,··· , n}, the mapping 1jJ(w) : (E x D)* ...-+ {O, 1, #}* is an encoding of a

100

4.2 Register automata and classical complexity

word w, where each binary encoding of (ai, bd is separated by a special symbol #:

Thus a language Lfinite = {1jI(w)lw E L} is an encoding of L over the finite alphabet

{O, 1, #} and Ltnnary is a natural encoding of Lfinite over {O, I} alphabet, where 0 ~ 00,

1 ~ 01 and # ~ 11.

Proposition 4.2.2. If L is recognisable by a finite register automata then Lfinite is

recognisable by a Turing machine in log space memory.

Proof. Let L denotes the language accepted by a finite register automaton A with r

registers. Let us show that the language Lfinite is recognisable by a Turing machine At

in log space memory. Let w = (ab b1) ... (an, bn) ELand Iwl = n, then w consists of

no more then n different symbols, so the length of the binary encoding of ai is no more

than flog (I El) 1 and the length of the binary encoding of bi is no more than log n, i.e.

IT(ai)1 ::; k where k = rlog(IEI)l and Ict>(ord(bd) I :::; log n. We design a Turing machine

Al that can mimic all the computations of A by keeping the value of registers of A on its

working memory tape. The operation of storing a symbol x from the infinite alphabet

in a register in A can be simulated in At by storing the finite encoding of ord(x) on

the working memory. The storing procedure in M is organised by fixing the length of

the binary encoding of each symbol to log n and adding a # at the end of each binary

word to distinguish between the values held in the registers. The finite state control in

M will correspond to t he finite state control in A and the content of r registers in A

will be stored on the working memory tape in M, which require r log(n + k) cells and r

is a constant. The only two operation of register automaton are: to store a symbol in

a register and to compare the register value with a symbol on a tape will not require

any extra space apart from r log(n + k) cells. 0

101

4.2 Register automata and classical complexity

4.2.4 [, to RA

For a data word w = (a 1, bI), ... ,(alwl' blwl) over the alphabet E x D , we define its

variability 1'{W) as the number of distinct symbols of the second component (from D)

in w. For a language L and an integer function !(n) we say that variability of L is of

the order !(n) iff minWEL,lwl=nv(w) 2: !(n), i.e. !(n) is a lower bound of variabilities

of words of length n in L.

Lemma 4.2.4.1. Computations of a Turing Machine on a work tape T o! size c·Zog(k)

over a binary alphabet can be simulated by Register Automata model on an input string

S, where v(S)=k.

Stack operations

S1·Push(O)
S1·Push(1)
S1· POP(O)
S1· Pop(1)

Content of stack
w1 7 w1·O
w1 ~ w1·1
w1·O ~Wl
w1.1 7 w1

Integer representation
x=2x
x=2x+l
x=x/2
x=(x-l)/2

Figure 4.4: The schema for simulating the operations of a Turing machine
(TM) by a two pushdown stacks and representing a binary word on a stack by
a counter machine (CM) as an integer-

Proof Assume that a head H is on a work tape T at the position T(i). First all

operations under the tape head such as rewriting, checking current symbol on a tape

and head moves can be simulated by operations on two pushdown stacks, where first

stack keeps the front part of T: T(O) ... T(i) and the second part of T, is stored in the

second pushdown stack with T{i+l} on the top [51J. Also it is easy to see that a binary

word on a stack can be represented by an integer x, where empty stack corresponds

to 1 value, push a 0 onto the top of a stack corresponds to x I--i- 2x and pushing

a 1 corresponds to x I--i- 2x + 1; checking the top symbol can be done by checking

102

4.2 Register automata and classical complexity

divisibility by 2 and popping off a 1 or 0 can be done by operations x I--t (x - 1)/2

or x I--t x/2 respectively(see Figure4.4 for an illustration). Further we notice that the

register automata on an input with k distinct symbols can simulate any finite number

of counters of size F for any constant c with the following main operations: increment,

decrement, multiplication by 2, division by 2 and zero testing. Storing a symbol x in a

register represents a value ord(x) + 1 of a counter. The implementation of all required

operations is straightforward albeit tedious. The operation of increment (decrement) by

one can be implemented by moving forward to the first occurrence of the next (previous)

distinct symbol on an input string [41]. Testing of a counter to be equal to 1 corresponds

to dlCckillg whether a stored symbol appear as a first symbol of an input. Also it is

well known that operation of multiplication (or division) by 2 can be implemented by

a finite number of extra counters with increment and decrement operations and zero

testing (or testing to be equal to 1) [51]. Thus, all operations for integer representations

of pushdown stacks can be implemented by a register automaton. So since the virtual

counters can store a value of size kC and simulate two pushdown stacks of size log(kC)

we have that the length of a work tape T which is simulated by register automaton on

an input with k distinct symbols is bounded by log(kC
). 0

Theorem 4.2.1. Given a language L with a variability of the order f(n), if a finite

projection Lbinary of L belongs to SPACE(log(f(n))) then L can be recognised by a

register automata.

Proof. The binary code of each symbol in w E L is of a logarithmic size from the

number of distinct symbols in w. So for any word of size n over an infinite alphabet, the

length of the binary code for each symbol is no more than log(n). Since the number of

distinct symbols in any word w E L is at least f(n), thus by the construction described

above in Subsection 4.2.4.1 we can simulate virtual tape over a binary alphabet of a

length c .10g(J(n)) for any integer constant c. Therefore register automaton can take

any symbol y from an infinite alphabet on an input string and convert it into a finite

binary representation in the virtual work tape over a binary alphabet, by counting the

103

4.3 Automata and Gauss words

number of previously appeared distinct symbols from the beginning of an input string

and storing it on a virtual tape, i.e. converting y into a binary representation of ord(y).

Also by the same construction described in Subsection 4.2.4.1 we have that any extra

memory of size O(log(f(n)) can be implemented by a finite number of registers on a

language L with a variability of the order f(n). So any computations over language

Lbinary that requires SPACE(log(J(n))) can be implemented by a register automaton

on a language L with a variability of the order f(n). 0

4.3 Automata and Gauss words

In this section we will show that for the purpose of Gauss words, a l-way register

automaton even when equipped with the power of non-determinism is weak as it fails

to recognise the characteristic property of a Gauss word (that is, for every symbol Oi

in an input word there exists a corresponding symbol Ui and vice versa). However,

considering a stronger variant we show that the languages of Gauss words whether

signed or unsigned as well as non-trivial properties related to Gauss words such as

the equivalence of two Gauss words in terms of cyclic shift and renaming of labels are

recognisable by a 2-way deterministic register automata.

4.3.1 The language of Gauss words

In the following propositions we show that the languages of signed and unsigned Gauss

words are not recognisable by a non-deterministic I-way register automata but they

can be recognised by a deterministic 2-way register automata.

Proposition 4.3.1. The languages of unsigned Gauss words (LuGw) and signed Gauss

words (LsGw) are not recognisable by non-deterministic one-way register automata.

Proof. We show the argument only for the case of LUGw. With obvious modifications

it works for LSGW as well. The argument is not new and was used e.g. in [5] to show

non-recognisability of some data languages by one-way register automata. Assume that

104

4.3 Automata and Gauss words

language L is recognisable by some one-way register automaton A with n registers.

Consider the word

w = (U, 1)(U, 2) ... (U, n + 1) (0, 1) (0, 2) ... (0, n + 1) E L.

The automaton A accepts this word. After reading first n+ 1 positions, there is at least

one index value i E {L ... , n + I} which does not appear in any register of A. That

means that automaton A also accepts a word w' (j. L obtained from w by replacing

(U, 'i) with (U, i + 1). This contradicts the assumption on A. o

Proposition 4.3.2. The languages LUGW and LSGW are recognisable by deterministic

2-way register automata.

Proof. We explain only the construction of a 2-way deterministic register automaton

A which recognises LUGw· With obvious modifications the automaton can be adapted

to the case of LSGw. Let w be a data word (aI, bl) ... (an , bn) such that a E L = {U, O}

and bEN. The automaton A reads the first symbol bi and stores the value of bi in some

register, then it moves right then left along the word to compare the current symbol

(aj, bj) with the value of bi held in some register. If the symbol (aj, bj) where bi = bj

and ai # aj is found and there are no further occurrences of bi, then the automaton A

moves right along the word and checks the next symbol. If the next symbol is equal to

the end symbol then A moves to an accepting state. o

The main property of Gauss words that we checked in Proposition 4.3.2 is that for

each Ui in w there is a unique corresponding Oi such that i occurs twice in w. To

determine if a Gauss paragraph I is correct, we check the same property. Since Gauss

paragraphs posses the same property as Gauss words, then by Proposition 4.3.2 the

language of Gauss paragraphs (signed and unsigned) can also be recognised by a 2-way

deterministic register automaton.

1 A Gauss paragraph is disjoint set of Gauss words representing a link diagram, a formal definition
is given in Definition 5.2.2 and Definition 6.2.1 for the cases of signed and unsigned respectively

105

4.3 Automata and Gauss words

4.3.2 Isomorphic Gauss words

In this section, we investigate the recognition problem of isomorphic Gauss words. That

is Gauss words which are equivalent up to cyclic shift and renaming of labels.

The definitions for the equivalence of Gauss words in terms of cyclic shift and

renaming of labels are described in Chapter 3, Section 3.5.1. Let u and v be two Gauss

words, u and v are called isomorphic Gauss words iff u =CT v (Le. u and v are equivalent

up to cyclic shift and renaming of labels).

Definition 4.3.1. Let E# = {U, O} U {# }, the language of isomorphic Gauss words L

is defined as L = {u(#, a)vlu =CT v, (#, 0.) E E# x N}.

In the following proposition we show that the recognisability problem of isomorphic

Gauss words is implementable by a two-way deterministic register automaton.

Proposition 4.3.3. The language of isomorphic Gauss words can be recognised by

2-way deterministic register automata.

Proof. Let 'U' = u#a v where 1t and v are Gauss words separated by a 0. character. To

check that the words u and v are equivalent up to cyclic shift and renaming of labels.

The automaton required will need first to find all cyclic words of u and then compare

each word with the word 1'. To check all cyclic words of u, the automaton will go

through each symbol in u until the symbol 0. is found. It will record the first symbol

of each cyclic word in a register and then move right until 0. is found. Once it reaches

the symbol 0. the automaton will move back to the start symbol and then right until

it reaches the symbol which marks the beginning of that cyclic word. Now to check

the next cyclic word the automaton moves a step to the right, stores the new symbol

in the register and then traverses the word u in the same way. If the next symbol is 0.

then the automaton will terminate (uses the fact that no symbol repeats). To compare

the symbols of each cyclic word in tt with the word v, the automaton will check two

conditions: it will check that the first component (0 or U) of each symbol of the cyclic

word is in the same order as that in v and that the number of symbols between each

pair of the same labels is also the same.

106

4.3 Automata and Gauss words

To check the order of first component of each symbol of the cyclic word, the au

tomaton starts at the beginning of each cyclic word and keeps information about the

first component of the symbol and its label (data value) in some specified registers.

The same information about the word v will be kept in other specified registers. The

information about first component of each symbol will be used for comparison and the

information about labels will be used to identify the position in which to return to later

before checking next symbol.

For each cyclic word in u, if the first component of the symbol is matched with its

corresponding symbol in v then the automaton checks next symbol and the information

about the previous symbol that were held in the registers will be overwritten with new

information about current symbol. This process is continued until all symbols of the

cyclic word have been checked. However if there is a mismatch then the automaton

will check next cyclic word otherwise it will move back to the beginning of the current

cyclic word and then check the number of symbols between each pair of the same label.

To check the number of symbols between each pair of the same label, the automaton

will require the use of counters. The counters can be implemented as described in Sec

tion 4.2.1. The first counter will be used to identify the position of the first occurrence

of each label. The value of this counter will be set to 0 at the beginning and it will

be increased by 1 for each new label encountered for the first time whilst moving right

along the word and decrease by 1 otherwise. The second counter will be used to count

the number of symbols between a pair of the same label. The value of this counter will

be set to 0 at the position of the first occurrence of each label and it will be increased by

one for each encountered symbol in between the pair of the two labels. The automaton

will go through each label i in the cyclic word and each label j in v by moving to the

first occurrence of each label and then it will move right incrementing the value of the

second counter by 1 for each encountered symbol until the second occurrence of the

same label is reached. If the values of the counter for each label i in the cyclic word

corresponds to that in v then the automaton moves to an accepting state otherwise it

will check the next cyclic shift.

107

4.4 Summary

o

4.4 Summary

In this chapter we considered automata over infinite alphabets for the purpose of study

ing complexity of problems related to knots and demonstrated generic results on the

mutual sillllllatiolls betweell log-space bounded classical computations (over finite al

phabets) and register automata working over infinite alphabets. our characterisation of

languages recognisable by register automata is more general than one proposed in [55].

Non-trivial lower bounds for some knot problems are unknown and weak automata

models are plausible candidates here to try. In opposite direction, knot theory provides

a rich supply of natural problems formulated in terms of languages over infinite alpha

bets, and that, one may expect, will influence the development of the theory of such

languages and related computational models.

In the next chapter we will apply automata over infinite alphabet to investigate the

computational complexity for the recognition problem of planar signed Gauss words

and Gauss paragraphs.

108

Chapter 5

Signed Planarity

In this chapter we investigate the descriptional complexity of knot theoretic problems

and show upper bounds for the planarity problems of signed knot diagrams represented

by signed Gauss words and signed link diagrams represented by signed Gauss Para

graph. For establishing the upper and lower bounds on recognition of knot properties,

we study these problems in a context of automata models over an infinite alphabet.

The central problem that we study in this chapter is to determine whether a given

signed Gauss word (paragraph) is planar, i.e. encodes a plane diagram of a classical

knot (link) in Jlt3.

In Section 5.1 we investigate the complexity of planarity problem of signed knot dia

grams represented by signed Gauss words and demonstrate an upper bound by showing

that it can be recognised by a deterministic two-way register automata simulating the

algorithm presented in [7] and in Section 5.2 we consider the planarity problem of

signed link diagrams represented by Gauss paragraphs and show that the language of

planar signed Gauss paragraphs can be recognised by deterministic two-way register

automata simulating the recently discovered linear time algorithm in [38].

Further in Section 5.3 we translate our results obtained in Sections 5.1 and 5.2 in

terms of classical complexity and show that languages of planar signed Gauss words

and planar signed Gauss paragraphs belong to the complexity log-space class ,c.

109

5.1 Planarity of signed Gauss words

5.1 Planarity of signed Gauss words

Every knot can be represented by a signed Gauss word, but not every signed Gauss

word represents a classical knot in 1R3. For example, any attempt to reconstruct a knot

diagram from the Gauss word 0lOiuIOtUiUt inevitably leads to new (virtual)

crossings which are not present in the Gauss word, see Figure 5.1.

Figure 5.1: Virtual knot diagram - An example of a virtual (non-planar) knot diagram
with 2 virtual crossings

The ambiguity in reconstructing the curve from the Gauss word depends on the

choice of whether one curve crosses the other from right-to-left or left-to-right at a

crossing. Such problem was resolved in [9] by labelling the letters in the Gauss word

with signs leading to signed Gauss words. Based on the work of Carter in [9], Elton

and Cairn presented an algorithm in [7] that deals with the planarity problem of signed

Gauss words.

5.1.1 Cairns-Elt on algorithm

The algorithm was presented in [7] to deal with the planarity problem of signed Gauss

words. The encoding used to describe knots is different from the standard Gauss words,

i.e. information about under-crossing and over-crossing is omitted and two opposite

signs are associated with the pair of labels representing the same crossing. However,

this encoding can be converted into standard Gauss words and vice versa.

To describe the implementation of the algorithm, we use the modified version of the

algorithm presented in [8, Theorem 1 '] and adopt the same notation.

110

5.1 Planarity of signed Gauss words

5.1.1.1 Notation

Given a set S = {aI, ... , ab all, ... , a;l}, an abstract Gauss word w is defined as a

permutation of S. An abstract Gauss word can encode a knot diagram in the following

way: label the crossings with letters ab ... , ak. Choose an orientation for the curve and

start traversing the curve from an arbitrary point x until the same point is reached

for the second time. At each crossing ai record ail if one passes through the crossing

point ai and the curve that one crosses is travelling from right to left or record atl

otherwise. The positive superscripts are omitted.

Definition 5.1.1. The value Ui(W) is a sum of the values of the superscripts (signs)

of the set Si (where Si denote the letters appeared between the two occurrences of the

letters ai and ail) (mod 2).

Definition 5.1.2. Let Si = Si U {ai, ail} and set S;l denote set Sj but with signs

reversed. The value of i3i,j (w) is a sum of the values of the superscripts of the letters

in the intersection of Si and S;1 taken modulo 2, for all i,j E {l, ... , k}.

Notice that the value attributed to each sign is ±1. So the contribution it makes to

the sum of values of D:i(W) or f3ij(W) is 1 (mod 2) which is in fact similar to counting

the number of letters, i.e. if the total number of letters between any pair ai and ail is

o (mod 2) then the sum of signs of the letters is also 0 (mod 2) and vice versa.

5.1.1.2 Implementation

Given the word w with 2k labels, the algorithm proceeds in two stages.

1. For all i E w, check if D:i(W) = 0 (mod 2) where i = {l, ... , k}.

2. For all i,j E w, check if f3i,j(W) = 0 (mod 2) where i,j = {l, ... , k}.

If conditions 1 and 2 are satisfied then the algorithm returns "the word W is planar",

otherwise if any of the conditions is not satisfied, the algorithm returns "the word W is

I " non-p anar .

111

5.1 Planarity of signed Gauss words

The complexity of the algorithm has not been established neither in terms of time

nor space. However, In terms of computational power of devices, we will demonstrate an

upper bound by showing that the property expressed in this algorithm is recognisable

by a deterministic two-way register automata.

Theorem 5.1.1. The language of planar signed Gauss woms can be recognised by a

2-way deterministic register automata.

Proof. To check the value of Q!i(W), the automaton keeps in the register the current

index i of each positive letter ai and goes through each element between ai and ail. It

will keep a count of the number of letters (mod 2) between ai and ail in finite state

control by alternating between odd and even states. If ail is reached and state is odd

then the automaton halts, otherwise it moves to the right and checks the value of Q!i (w)

for the next positive letter ai· If for all ai the parity of Q!i (w) is even the automaton

proceeds to check the second condition.

To check the value of f3ij (w), the automaton needs two registers to store the current

indices of each ai and aj. Again the counting is done in finite state control by alternating

between odd and even states iff for each symbol ak E Si, the inverse of ak (a;l) belongs

to the set Sj (Le this is equivalent to checking elements of the set Sjl). If the automaton

reaches ail and state is odd then it terminates, otherwise it will continue to the check

the next value. If for all ai, aj E w, the parity of f3ij(W) is even then the automaton

moves to an accepting state.

o

Due to the fact that a knot diagram is defined as a link with one component, the

planarity problem of signed Gauss words can be seen in general as a restriction case

of the planarity problem of signed Gauss paragraphs. The above algorithm therefore

is not applicable for links represented by Gauss paragraphs due to the fact that the

algorithm was designed to deal with single Gauss words rather than with a set of Gauss

words (for the case of links). However in the next section, we will consider a different

algorithm designed for checking the planarity of signed Gauss paragraphs presented in

112

5.2 Planarity of signed Gauss paragraphs

[38].

5.2 Planarity of signed Gauss paragraphs

The planarity problem of links represented by Gauss paragraphs is formulated in a

similar way to the planarity problem of knot diagrams represented by Gauss words.

The only difference is that for links the input is a set of cyclic words usually known as

Gauss paragraph. Before we discuss the algorithm, we will begin with some definitions

to define links and their encodings.

Definition 5.2.1. A link is a smooth embedding (image) of several disjoint circles in

lR3 . Each knot representing the image of one of these circles is called a link component.

Figure 5.2: - An oriented link diagram with its corresponding Gauss paragraph

A link can be represented by a Gauss paragraph by encoding a link diagram in a

combinatorial way. We associate a word to each component circle in the diagram. We

record the crossing points with signs according to their order in the circle by travelling

around the circle exactly once. The set of resulting words form a Gauss paragraph (see

Figure 5.2). Any link diagram can be encoded by several Gauss paragraphs since there

are five choices that can be made:

• Choosing a base point of each circle.

113

5.2 Planarity of signed Gauss paragraphs

• Choosing an orientation of each circle.

• Relabelling of the crossings.

• Changing the signs for crossings.

• Permuting the order of the component circles.

To define signed Gauss paragraphs formally, we use the same notations as for the

definitions of Gauss words.

Definition 5.2.2. A signed Gauss paragraph Waver the alphabet E = {O+, 0- , U+, U-} x

N is a set of data words {w}, ... , Wk} where k ;::: 1 such that IWll + IW21 ... + IWkl is even

and for every i E Neither

• IWI(u+,i) = IWI(o+,i) = IWI(u-,i) = IWI(O-,i) = 0, or

• IWI(U+,i) = IWI(o+,i) = 1 and IWI(u- ,i) = IWI(o- ,i) = 0, or

• IWI(U-,i) = IWI(O-,i) = 1 and IWI(u+,i) = IWI(o+,i) = 0.

5.2.1 Kurlin algorithm

The main idea of the algorithm is to find the least genus1 of the surface containing

a knot diagram without virtual crossings encoded by a given Gauss paragraph. For

this purpose the Euler characteristic X [49] of the combinatorial Carter surface (a 2-

cell complex2 constructed from a Gauss paragraph where vertices correspond to the

crossing labels, edges correspond to two consecutive labels and faces are found by

successive left turns on each crossing as illustrated in Figure 5.4) [9] associated to the

Gauss paragraph is computed as the number of faces (cycles) minus the number of edges

plus the number of vertices. The Gauss paragraph includes the information required

to reconstruct the Carter surface. We first derive a diagram (a 4-regular graph) in the

lThis is the minimum number of handles that must be added to the sphere in order to embed the
knot on the surface. The genus 9 is related to the Euler characteristics X by the formula X = 2 - 29.

2This is a topological space with cell structure consisting of O-cells corresponding to vertices, 1-cells
corresponding to edges and 2-cells corresponding to faces.

114

5.2 Planarity of signed Gauss paragraphs

plane (not necessary embeddable in the plane) where the number of edges is the length

of the Gauss paragraph, the number of vertices is the number of crossings (half the

length of the Gauss paragraph) and the number of faces can be found by implementing

traversal rules described in Definition 5.2.3. The Carter surface is obtained by gluing

all faces of the diagram together.

5.2.1.1 Notation

Let W = {WI' ... , Wk} be a Gauss paragraph of length 2n. That is IWll + ... + IWkl =

2n. We associate a Carter surface M {w}, ... , Wk} with W as follows: Take n vertices

labelled by 1, ... , n and connect vertices i, j by an edge with a mark (a,b) or (b,a)

if one of the cyclic words WI, ... , Wk contains the ordered pair ab or ba of successive

letters respectively, for some a E {O;, Ui+, 0;, Ui-,}, b E {ot, ut, OJ, UT,} where

i,j E {I, ... , n}. We traverse a face in the resulting graph by travelling along an edge

(a, b) encoding the direction of the path by (a, b)R if the letter a precedes b in the

Gauss paragraph and by (a, b)L otherwise. After passing an edge we choose the next

edge based on a set of traversal rules defined in Definition 5.2.3.

Example. Let W = {0Iut,u1-ot} be a Gauss paragraph representing the link dia

gram in Figure 5.3. Then W generates the graph with 2 vertices connected by -4 edges

(Olut), (utO)) , (U10t), (otUl) and 2 faces bounded by the edges

(Olut)R(otul)R(Olut)L(otul)L and

(OIUih(OtUl)R(OIUi)R(otul-)L.

Figure 5.3: - A non-planar link diagram with two virtual crossings

115

5.2 Planarity of signed Gauss paragraphs

5.2.1.2 Traversal rules

The traversal of a face containing a crossing i in the link diagram can be done by

choosing an initial direction and turning left at each consecutive visited crossing starting

from i. This global property of "turning left" can be defined by a deterministic set of

traversal rules that take into account only local property of the current crossing and

some finite information about the previously visited one. In general we have 8 cases

since there are 2 types of crossings (positive and negative) and 4 directions from which

we can approach each crossing, see Figure 5.4. From a topological point of view, we

~ ~ /.~ •..•..• ".
.... ~~~ /

1") (3
...... ~ /·/2··········· :.t

.~. \ •...

\ (J'~ . ~. \ .. ~// .. /.,

~\ ;;. (~
;g /
.. ' ... ". ;,. .. ' ... 6\ ~

~... \ ..•...

Figure 5.4: - Geometric interpretation of traversal rules for selecting faces

take the graph G defined by a Gauss paragraph and associate faces to cycles always

turning left at every vertex, which leads to a surface. If the resulting surface is a 2-

dimensional sphere whose Euler characteristic is 2 then the given Gauss paragraph is

planar since we have embedded the graph into the plane. We follow the interpretation

of the local rules for selecting cycles defined in [38], but present them here in slightly

different notation, which is more appropriate for the design of a register automaton.

A register automaton that is observing a current symbol S, needs to choose a correct

symbol corresponding to the next crossing after turning (geometrically) to the left on a

link diagram. In fact on the Gauss paragraph, it will correspond to finding S' that is the

counterpart of S and then choosing a symbol which is either a left or right neighbour

of S'.

For example, if S is Oi (Ui' respectively) with any sign e = ± then we choose a

neighbour of Ui (Oi, respectively) with same sign e in the Gauss paragraph. Geomet

rically, taking the right neighbour in the Gauss paragraph is equivalent to going in the

116

5.2 Planarity of signed Gauss paragraphs

direction of the orientation of the corresponding link diagram, while taking the left

neighbour means moving in the direction opposite to the orientation. In order to define

whether we need a neighbour from the left or from the right side we need to know the

current type of the crossing which is 8 and the information about the previous choice

of direction, i.e. whether 8 was chosen as a left or a right symbol.

Definition 5.2.3. We define eight rules in the form (D,8) => (8', D'), where D, D' E

{R, L} and 8, 8' E {U, O} x N x {+, -}. Each rule can be read as follows: if the current

symbol 8 is reached via direction D then find S' (counterpart of 8) and move one step

in the specified direction.

5. (R, Ui-)=> (Oi-, R)

6. (R, Oi-)=> (Ui-, L)

7. (L, Ui-)=> (Oi-, L)

8. (L, Oi-)=> (Ui-, R)

The first rule (R, On ~ (Ui+, R) correspond to a curved dashed line labelled with

a 1 in the first left-hand-side picture of Figure 5.4. The remaining 7 rules correspond to

other 7 curved dashed lines with arrows showing 'the left turn'. The sign of a crossing

does not change, while any overcrossing is replaced by an undercrossing and vice versa.

To make the rules reflect the geometric interpretation for traversing a face on a

diagram by always turning left at each visited crossing, we need to draw a distinction

between the search for locating the counterpart of some symbol and the move to the

right (or to the left respectively) after locating the counterpart. That is, to locate

the counterpart of a symbol, one can go through all symbols in the Gauss paragraph

whereas for the second part, one can only move within the word that the counterpart

symbol belongs to. So to identify the right-symbol of the last symbol or the left-symbol

of the first symbol of some particular word, we need associate some extra symbols to

mark the beginning and end of each word and two other symbols to mark the beginning

and end of the Gauss paragraph.

117

5.2 Planarity of signed Gauss paragraphs

Definition 5.2.4. Let r = {C>, <I, #, *} and W = {Wl, W2, ... , wn } be a Gauss paragraph

where n ~ 1. We obtain a new word W = # C> Wl <lC> W2 <I, ... , C> Wn <J * by

concatenating the set of words in W such that each word Wi E W is associated with the

symbols C>, <I Er.

Lemma 5.2.1.1. A two-way deterministic register automaton can traverse all faces

containing a crossing i in the Carter surface associated with a link diagram.

Proof. We follow the rules defined in Definition 5.2.3. We can design a register automa

ton that keeps the finite information about its previous choice of direction (Right or

Left) in its state space and chooses the Right or Left symbol of Sf after observing the

symbol S. It can also keep records on which rule was applied to the starting symbol S

and will terminate the traversal of a face if the same rule will be applied for S again.

The fact of the repetition corresponds to the completion of a cyclic path. In order to

traverse all faces which are adjacent to a crossing i, we need to start from two different

initial conditions associated with labels (Oi or Ui) and two different initial direction

(Left or Right). o

Lemma 5.2.1.2. Two-way deterministic register automata can compute the Euler

characteristic of the Carter surface associated to a signed Gauss paragraph according

to the construction described in Section 4·2.1.

Proof. To compute the Euler characteristic we count the numbers of edges and vertices

in the graph G represented by a signed Gauss paragraph. Geometrically G is the

underlying graph of the link diagram encoded by the Gauss paragraph and all its

vertices (crossings of the diagram) have degree 4 only. The number of vertices in G

is the number of distinct symbols, while the number of edges is twice as much. Both

values can be counted in a straightforward way. The number of faces attached to

the graph in the combinatorial Carter surface can be counted by traversing G in the

following way. The automaton goes sequentially through the list of vertices. For each

vertex i it traverses (as described in Lemma 5.2.1.1) all adjacent faces and increases the

counter by one for every face F not containing vertices with indices less than i. Also

118

5.3 Complexity bounds of signed planarity

the automaton counts how many times the crossing i is met during the traversal of faces

adjacent to i. As soon as the value reaches 4 the automaton starts the traversal for

the next crossing. The computation of the Euler characteristic X is done by counting

the values for edges, vertices and faces in individual counters and then by subtracting

number of edges from the sum of the numbers of vertices and faces. Since the number of

each value in counters is bounded by the number of distinct symbols, the computation

can be done by the two-way deterministic register automaton. o

Theorem 5.2.1. The language of planar signed Gauss paragraphs can be recognised by

two-way deterministic register automata.

Proof. Compute the Euler characteristics by the two-way deterministic register au

tomaton. If the Euler characteristics X is equal to 2, i.e. the combinatorial Carter

surface is a sphere, then a signed Gauss word is planar [9; 38]. 0

5.3 Complexity bounds of signed planarity

We have shown that in Chapter 4 Lemma 4.2.2 that if a language L over the infinite

alphabet D is acceptable by two-way register automata then the encoding of Lover

a finite alphabet can be accepted by a Turing machine in log-space memory. As a

consequence we have the following corollaries providing first known results in terms of

classical space complexity for the planarity problems of signed Gauss words and signed

Gauss paragraphs.

Corollary 5.3.1. The language of planar signed Gauss words is in .c.

Corollary 5.3.2. The language of planar signed Gauss paragraphs is in .c.

5.4 Summary

We have applied automata over infinite alphabets for studying complexity of problems

related to knots. We have shown that the languages of planar signed Gauss words and

119

5.4 Summary

signed Gauss paragraphs can be recognised by deterministic two-way register automata.

Therefore this result is final in the sense that the power of non-deterministic one-way

register automata is not even enough to recognise whether an input is a Gauss word.

We have also shown that planarity of signed Gauss words and signed Gauss para

graphs can be recognised in deterministic logarithmic space on classical computational

models. In the next chapter, we consider the languages of planar unsigned Gauss words

and unsigned Gauss paragraphs.

120

Chapter 6

Unsigned Planarity

In this chapter we investigate the complexity of knot theoretic problems and show

upper bounds for planarity problem of unsigned knot and link diagrams.

A knot can be encoded by a string of symbols Oi'S (over-crossing i) and Ui'S (under

crossing i) where i is a label for some crossing such that each crossing has a unique

label. The double occurrence sequence of labels was first described by Gauss in [23]

and this string of symbols is known as a Gauss word.

The question of characterisation of "true", or planar Gauss words was posed by

Gauss himself [23] and was eventually resolved by Nagy in [53]. Since then there has

been proposed many criteria and algorithms both for recognition of signed [7; 38] and

unsigned [8; 16; 17; 37; 46; 48; 57; 60; 60; 61; 62] Gauss words. The questions of

computational complexity of the proposed algorithms were rarely explicitly addressed

with notable exceptions being [38] where linear time algorithm for the signed case is

proposed, and in [61] where a linear time complexity for unsigned case is established

and compared with earlier quadratic bounds in [57].

In Chapter 5 we proposed to evaluate the complexity of problems of recognising

knot properties in terms of the computational power of devices needed to recognise

the properties. Following the proposal we demonstrated lower and upper bounds for

recognisability of knot properties in terms of various automata models over infinite

alphabets. The infinite alphabet appeared naturally due to the fact that the num-

121

6.1 Planarity of unsigned Gauss words

ber of crossings in knots is unbounded. The main property addressed was planarity

problem for signed Gauss words and signed Gauss paragraphs. We have shown that

languages of planar signed Gauss words and signed Gauss paragraphs can be recognised

by deterministic register automata working over infinite alphabets.

In this chapter, we continue this line of research focussing mainly on the unsigned

case. Our contribution is as follows:

1. In Section 6.1 we provide an analysis of Cairns-Elton algorithm for planarity of

unsigned Gauss words and show that it is implementable by co-non-deterministic

register automata.

2. In Section 6.2 we show that planarity of unsigned Gauss paragraph is recognisable

by a linearly bounded memory automata simulating Kauffman algorithm [37].

3. In Section 6.3 we further show that Cairns-Elton algorithm is implementable

in S£ (symmetric logspace) and therefore in £ [59]. It follows that planarity of

unsigned Gauss words is recognisable by deterministic register automata, refuting

the conjecture from [41].

6.1 Planarity of unsigned Gauss words

In this section we address the question of recognising planarity of Gauss words by sim

ulating an algorithm presented by Cairns and Elton in [8] and present an upper bound

for the planarity problem of unsigned Gauss words by showing that it is recognisable

by a co-non-deterministic register automata.

The fact that every knot can be represented by a Gauss word follows directly from

the constructive definition of a Gauss word and the fact that the converse does not

hold is illustrated in Figure 6.1. Such an observation was one of the motivations for

introducing virtual knot theory [37]. A Gauss word which represents a classical knot

diagram, that is a diagram embeddable into a plane without virtual crossings, is called

classical or planar.

122

6.1 Planarity of unsigned Gauss words

Figure 6.1: Non-planar knot diagram

6.1.1 Extended version of Cairns-Elton algorithm

Cairns and Elton provided a combinatorial algorithm in [8] which is an extension of the

previous algorithm presented in [7] for signed planarity which we considered in Section

5.1. An extra condition is added to check that the parity of the sum of values (assigned

to edges) is even for every closed path in the interlacement graph constructed from the

Gauss word.

6.1.1.1 Notation

We will begin with some definitions to describe the main steps of the algorithm.

Definition 6.1.1. For a Gauss word w, denote by Qi(W) the number of symbols that

occur in w in cyclic order between the symbols Ui and Oi, taken modulo 2.

Notice that, due to the fact that every label appears twice in a Gauss word, in the

above definition one can swap Ui and Oi, so the definition of Qi(W) will not be affected.

Definition 6.1.2. A signing s is a mapping s : N -+ {+, -}.

Definition 6.1.3. For an unsigned Gauss word wand a signing s, a signed word WS is

obtained from w by replacing all symbols (U,i) with (Us(i),i) and (O,i) with (os(i),i).

Let Si denote the subset of symbols that occur in WS in cyclic order between, either

the symbols ut and ot, or 0; and Ui-· Let Si denote {U:(i), O:(i)} U Si and Si!

denote the set Si after swapping Us with Os, that is Si-1 = {(us(j),j)l(os(j),j) E Si}

123

6.1 Planarity of unsigned Gauss words

u{(OS(j),j)I(US(j),j) E Sd. Then r3ij(WS) is the number of elements in the intersection

of Si and Sj-l taken modulo 2 (i.e. r3ij(WS) = ISi n 5;11 (mod 2)).

Notice that r3ij(1l'S) depends on signs s(i) and s(j) but not on s(k) for k # i,j.
Given an unsigned Gauss word w, we associate an interlacement graph G(w) as

defined in Definition 2.1.4 where the vertices of G(w) are labels in a shadow projection

sp(w) (natural numbers) and the edges of G(w) are the pairs of labels (i,j) such that

i and j are interlaced in sp(w).

Example. Given w = UI03U4U201U502U30504, the interlacement graph G(w) ofw

is shown in figure 4. Let i = 1, j = 2, s(1) = + and s(2) = +. Then fr1(W) =

I{03, U4, U2}1 = 3 == 1 (mod 2), and r312(WS
) = IS1 n Sill =

I{U:(l) , 0;(3), U:(4), U;(2) , 0:(1)} n{u:(1),O~(5)}1 = I{U:(l)}1 == 1 (mod 2)

3

I I 2 I I
U103U4U201US02U30S04

I 1 I I I 5 I I
4

(a) (b)

Fig. 4. Non-planar Gauss word wand its corresponding interlacement graph G(w) with edges

(i, j) labelled by i3ij (w B
)

For a signed word WS and for each edge eij in G (w), we assign the number f3ij (WS
) E

Z2. According to [8] that assignment defines a Z2 1-cochain1 B(wS
) and the property

that the Cairns-Elton algorithm checks is whether this co-chain is closed. For the pur

pose of this paper we need only characterisation of the closedness of B(W S
) in terms

of notions we have already introduced: B(wB
) is closed if and only if for every closed

path P in G(w), the sum of the numbers f3ij(W B
) = 0 (mod 2) for each edge (ij) E P.

1 This is an algebraic means of representing the relationship between the cocycles and coboundaries
in various dimensions of some space.

124

6.1 Planarity of unsigned Gauss words

The closed path is in fact a simple cycle with no repeated vertices other than starting

and ending vertices.

The Propositions 6.1.1 and 6.1.2 provide with the properties crucial for the efficient im

plementation of the Cairns-Elton algorithm. Also as an easy consequence of Proposition

6.1.1, we formulate Lemma 6.1.1.1.

Proposition 6.1.1. [8, page 139} f3ij(W 8
) does not depend on s whenever i and j do

not interlace.

Lemma 6.1.1.1. Let G(w) denote the interlacement graph of the Gauss word wand

N(Vi) denote the set of vertices connected to Vi, then f3ij(W) = IN(Vi) nN(vj)1 (mod 2)

whenever i and j do not interlace in w.

Proposition 6.1.2. [8, Lemma 1} The condition B(w8
) to be closed depends on w but

not on s.

For all positive signing s, that is s(i) = + for all i E N, we denote B{w8
) by B(w)

and f3ij{W 8
) by f3ij(W).

6.1.1.2 Implementation

Given an unsigned Gauss word w, the algorithm proceeds by checking that

1. For all i E w, Cti(W) = O.

2. For all i,j E w, f3i,j{W) = 0 whenever i and j do not interlace.

3. B{w) is closed.

If conditions 1,2 and 3 are satisfied then the algorithm returns "the word W is

planar", otherwise if any of the conditions is not satisfied, the algorithm returns "the

word W is non-planar".

We will show in this subsection that the checking of first two conditions of the

above algorithm is implement able by a deterministic register automata whereas the

checking of the third condition is implement able by a co-non-deterministic register

125

6.1 Planarity of unsigned Gauss words

automata (that is the negation of this condition is checkable by a non-deterministic

register automata).

First, we refine the above description of the algorithm and present it in more details.

Given an unsigned Gauss word w, the algorithm proceeds in three stages.

I The input word is checked on whether the number of neighbours of Vi is odd for

some Vi in G(w). If "yes", the algorithm stops with the result "the input word is

non-planar", otherwise the algorithm proceeds to the second stage.

11 The input word is checked on whether i3ij (w) is odd for some pair of vertices

(Vi, Vj) in G(w) that are not connected by an edge. If "yes" , the algorithm stops

with the result "the input word is non-planar", otherwise the algorithm proceeds

to the third stage.

III For all positive signing s, the input word is checked on whether there exists a cycle

in G(w) such that the sum of i3ij(WB
) assigned to its edges eij is odd. If "yes",

the algorithm stops with the result "the input word is non-planar", otherwise the

algorithm stops with the result "the input word is planar" .

Theorem 6.1.1. The language of non-planar unsigned Gauss words (UNSIGNED

NONPLANARITY) can be recognised by a two-way non-deterministic register automa-

ton.

Proof. The proof is divided into two parts. In the first part we show that the first two

conditions can be implemented by a deterministic register automata and in the second

part we show the third condition can be implemented by a non-deterministic register

automata. Let w be an unsigned Gauss word and G{w) be the interlacement graph of

w. Denote by N(lIi) the set of all neighbours of a vertex Vi E G(w).

w-U,U.U,o.o,o.

H 1 ~ I p GCwI

Figure 6.2: Example - N(vd = {3}, N(V2) = {3} and N(V3) = {I, 2}

126

6.1 Planarity of unsigned Gauss words

Part! For the first condition, the automaton checks the parity of the number of neigh

bours of each vertex Vi E G(w). It will store in the register the first occurrence of the

label i in w which corresponds to vertex Vi and store the parity of IN(Vi)1 in finite

state control of the automaton. Checking the parity of IN(Vi)1 corresponds to checking

the parity of the number of symbols between the two occurrences of i in w. So the

automaton goes through each symbol j in between the pair of the labels i and i-I in w

(where i-I represents the second occurrence of i in w) and on the first occurrence of j

it moves first to an odd state and then alternates between odd and even states for any

further occurrences. If i-I is reached and the current state is odd then it moves to an

accepting state. Otherwise if, for all vertices Vi E G(w), the parity of IN(Vi)1 is even

then it checks condition (2).

For the second condition, we use Lemma 6.1.1.1 where the automaton is required

to check the number of common neighbours (IN(Vi) n N(vj)l) for any pair of vertices

(Vi, Vj) that are not connected by an edge in G(w). Two vertices (Vi, Vj) are connected

by an edge in G(w) if the label i appears between the two occurrence of j in w only

once and vice versa. Otherwise the two vertices (Vi, Vj) are not connected by an edge

in G(w) if j appears twice between the two occurrences of i in w or does not appear at

all between the two occurrences of i in w .

To verify that a vertex Vi is not connected to any vertex Vj, the automaton stores

in the registers the first occurrence of i and the first occurrence of each j and then

it checks whether there is an even number (either 2 or 0) of occurrences of each j in

between i and i-I. If the number of occurrences of j in between i and i-I is even

then it stores the symbol k in the register (which occurs in between i and i-I) and

compares it with the symbols in between j and j-I. The parity of IN(Vi) n N(vj)1 is

stored in finite state control of the automaton. If there is a match, it will move first to

an odd state and then alternate between odd and even states for any further matches.

If i-I is reached and current state is odd, the automaton moves to an accepting state.

Otherwise if, for all pairs of vertices Vi, Vj E G(w) that are not connected by an edge,

the parity of IN(Vi) n N(vj)1 is even then it checks condition 3.

127

6.2 Planarity of unsigned Gauss paragraphs

Part2 For checking Condition 3, we assume that s is all positive signing. First, we show

how to check if two vertices Vi and Vj are connected by an edge and how to compute

their !3ij(WS
) value. Then we show how to sum up the !3ij(W8) values online during the

traversal of a cycle. To verify that two vertices Vi and Vj are connected by an edge in

G(w), the automaton keeps a copy of i and j in the registers and checks that there is

only one occurrence of j in between Ui and Oi' Now to calculate the value of !3ij(W8
)

for all positive signing ~, the automaton moves its head to find the symbol Uj then

compares the counterpart of each symbol k in between Uj and OJ (notice that all such

counterparts form the set S;I) with the symbols in the set Si(Ui, ... , Oi). If there is

a match it will move first to an odd state and then alternate between odd and even

states for any further matches until OJ is reached. Finally to traverse a cycle in G(w),

the automaton non-deterministically chooses a vertex Vi and moves along chosen edge.

During the traversal, it sums up the !3ij(W8
) values of each visited edge by incrementing

the counter by 1 (mod 2) only if the value of f3ij(W 8
) is odd, and continue updating the

counter until the same vertex Vi is met for the second time. If Vi is met for the second

time and the value of the counter is odd then the automaton moves to an accepting

state. o

Corollary 6.1.1. The language of planar unsigned Gauss words can be recognised by

two-way co-non-deterministic register automata.

In the next section we investigate the complexity of the planarity problem of links

encoded by unsigned Gauss paragraphs.

6.2 Planarity of unsigned Gauss paragraphs

The algorithms in [] designed for recognising planarity of unsigned Gauss paragraphs

have quite non-trivial properties in contrast with properties for recognising planarity

of unsigned Gauss words. One may ask whether we can reduce the planarity question

of unsigned Gauss paragraphs to the planarity question of unsigned Gauss words. The

Cairns-Elton algorithm described in previous section works only for knot diagrams rep-

128

6.2 Planarity of unsigned Gauss paragraphs

resented by Gauss words and in general does not work for links. To make it applicable

for links, one has to transform a link diagram into a knot diagram while preserving the

planarity of the link diagram. For such transformation, a method was presented in [38]

designed for transforming signed Gauss paragraphs into signed Gauss words. In this

section we will modify this method to make it applicable for the unsigned Gauss para

graphs with the aim of applying the Cairns-Elt on algorithm. However will show that

such transformational method requires more than finite memory and as an alternative

we consider the implementation of Kauffman algorithm introduced in [37] designed for

checking the planarity of Gauss paragraphs.

Before we discuss the transformation procedure we will first give a definition of

unsigned Gauss paragraphs. We use a similar notation to the signed case in previous

chapter.

Definition 6.2.1. An unsigned Gauss paragraph W over the alphabet L = {D, U} X N

is a set of data words {Wl' ... , Wk} where k ~ 1 such that IWll + IW21· .. + IWkl is even

and for every i E Neither

• IWI(U,i) = IWI(o,i) = 0 or

• IWI(U,i) = IWI(o,i) = 1

6.2.1 Gauss paragraphs to Gauss words

In this section we present a modified version of the method presented in [38] for trans

forming a signed Gauss paragraph into a signed Gauss word adapted for the unsigned

case with the aim of applying the Cairns-Elton algorithm for checking the planarity

problem of unsigned Gauss words. The reason for considering such transformation

method is because the recognisability problem of planar unsigned Gauss paragraphs

does not seem to be implement able with finite memory as oppose to the planarity

problem of unsigned Gauss words.

The main idea of the transformation is to add a new crossing each time to two

different components of a link diagram and to merge the two different components in

129

6.2 Planarity of unsigned Gauss paragraphs

a way that preserves the planarity property of the link diagram until we have a single

component (Le. a knot diagram).

Given a Gauss paragraph W! = {WI, ... , Wk} of length 2n (2n = IWll + ... + IWkl)
with k words, we associate a Gauss word of length 2n + 2k - 2. The transformation

procedure is done as follows:

• Take two words Wi and Wj where Wi, Wj E Wand i, j E {1, ... , k} such that either

Ol E Wi and Ul E Wj where I E {1, ... , n}.

• Rewrite Wj cyclically so that the letter Ul in Wj is the last letter of Wj. We insert

a new crossing m (where m ~ {1, ... , n}) by using the following rules:

• merge the two words together by inserting Wj directly after alUm in Wi.

• Repeat this process until we have a single component Gauss paragraph

Since the above transformation involves rewriting and merging several words before

deriving the final Gauss word, the size of the final Gauss paragraph is increased by

2k - 1 compared to the size of the original Gauss paragraph with k words. It will

obviously require more than constant memory and therefore can not be transformed

by a two-way deterministic register automaton with finite memory.

As an alternative, we will consider an algorithm presented by Kauffman in [37]
.1

designed to deal with the planarity problem of unsigned Gauss paragraphs also based on

rewriting of a Gauss paragraph but without increasing the size of the Gauss paragraph.

6.2.2 Kauffman algorithm

We consider an algorithm for recognition of planar unsigned Gauss paragraphs proposed

by Kauffman in [37]. In fact, planarity here does not depend on first components of

Gauss data words, i.e. on information whether particular crossing is under- or over

crossing. Because of that the input for the algorithm is a shadow Gauss paragraph,

Le a sequence of labels (=natural numbers), where each label in the sequence occurs

130

6.2 Planarity of unsigned Gauss paragraphs

twice. We assume the labels in the input word ware 1,2, ... ,n and they first occur in

w in that order. The idea of the algorithm is to rewrite the shadow Gauss paragraph

as single shadow word and then check the duality property (defined below) on the

final word. The geometric intuition behind this rewriting is the conversion of the link

diagram into a single Jordan curve (Le a simple closed curve which divides the plane

into two partitions) by smoothing each crossings [37].

Before we describe the algorithm in details, we will need to introduce the following

notations:

6.2.2.1 Notation

For the definition of a shadow Gauss word refer to Definition 2.1.3 in Chapter 2.

Definition 6.2.2. A shadow Gauss word w is called dually paired iff the set of all labels

of w can be partitioned into two subsets such that no two labels in the same subset are

interlaced.

The algorithm proceeds in three stages:

Figure 6.3: An interlacement graph of a non-planar Gauss word-

Let the set W = {Wl,"" Wk} be a Gauss paragraph where k ~ 1 and let IWI = 2n

131

6.2 Planarity of unsigned Gauss paragraphs

such that n 2: 1.

1. If W is a single component Gauss paragraph (k = 1) then

(a) For each i = 1, ... , nEW

i. check if the parity of the number of labels that occurred between the

two appearances of i is even

2. For each -i = 1,2, ... , n.

(a) If i E Wj and i E Wk where Wj #- Wk the two words are

1. Cyclically permute Wj and Wk to make i be the first label in each word.

11. Attach Wk to the end of Wj

Ill. Rewrite the labels between the two occurrences of i in reverse the order.

(b) Else rewrite the labels between the two occurrences of i in reverse order.

3. Let W* be the resulting word. W* is checked on whether it is a dually paired word.

6.2.2.2 Implementation

Let the set W = {WI, ... , Wk} be a Gauss paragraph where k 2: 1 and let IWI = 2n

such that n 2: 1. The three stages of the algorithm are described below in more details.

1. If k = 1, then the input word is checked on whether there is even nu;mber of

labels in between two appearances of any label. If" yes" the algorithm proceeds

to the second stage, if "no" the algorithm stops with the result "no, the input

word is non-planar" .

2. Starting with i = 1, the order of labels occurrence between two occurrences of i is

reversed if the pair of label belongs to the same word. Otherwise we permute the

two words to make i the first label in each word then we join them together and

rewrite the labels between the two occurrences of i in reverse order. The process

is repeated successively using i = 1,2, ... , n. Let w* is a resulting word.

132

6.2 Planarity of unsigned Gauss paragraphs

3. w* is checked on whether it is a dually paired word. If "yes" the algorithm stops

with the result "yes, the input word is planar". If "no" the algorithm stops with

the result "no, the input word is non-planar".

Returning to the question on lower and upper bounds for the planarity of unsigned

Gauss paragraphs problem one may notice that the first stage of the Kauffman algo

rithm is obviously implement able on the deterministic register automata. The second

stage looks problematic, for to implement reversing, the finite memory appears to be

insufficient while the third stage is implementable by a non-deterministic two-way reg

ister automata as shown in Proposition 6.2.1.

The next proposition will be used later to show upper bound for planarity of un

signed Gauss paragraphs problem.

Proposition 6.2.1. The shadow Gauss language of not dually paired words is recog

nisable by a non-deterministic two-ways register automaton.

Proof. Consider an interlacement graph Gw associated with a shadow Gauss word w .

It is straightforward to verify that w is dually paired iff Gw is a bipartite graph. The

graph is bipartite iff it does not contain the cycle of the odd size. Required register

automaton given a word w simulates non-deterministic traversal of the graph Gw . At

the beginning it picks up non-deterministically a vertex i of Gw by moving its head

to the first occurrence of the label i in w, stores the label i in the register and starts

the traversal of the graph moving along the edges of Gw . The parity of the l~ngth of

the path is stored in the finite state control of the automaton. If during traversal the

automaton arrives at the vertex stored in the register it checks the parity of the path

covered so far and if it is odd the word is accepted. o

In order to get a better upper bound one may try to extend the register automata

with pebbles. However, in Chapter 4 Proposition 4.2.1, we showed that over Gauss

words register automata are capable to model effects of adding any finite number of

pebbles.

133

6.3 Complexity bounds of unsigned planarity

Theorem 6.2.1. Planarity of unsigned Gauss paragraphs is recognisable by determin

istic linearly bounded memory automata (LEMA).

Proof. The proof consists in showing that the Kauffman algorithm is implement able

on LBMA.

Indeed, the first stage of the algorithm is implement able with the finite memory.

Also, it is straightforward to implement the second stage (reversing) on the linear

memory. Proposition 6.2.1 states that the third stage of the algorithm, that is the

search for the cycles of odd size on the graph associated with the Gauss word, can be

done non-deterministically using only the finite memory. Notice, that if the cycle of

odd size exists in the graph, then necessarily the odd cycle of the size no more than

n also exists, where n is the length of the input word. Deterministic automaton may

iterate then over all paths of the length up to n and check the odd cycle condition. The

linear order on the input Gauss word induces the linear order on the vertices of the

associated graph. It is clear that this order as well as the relation "next" with respect

to the order are computable using only finitely many registers. The linear order on

vertices is extended lexicoraphically on paths in the graph. Deterministic automaton

iterates over paths along this order. No more than O(n) memory is needed. 0

6.3 Complexity bounds of unsigned planarity

In this section we refine the complexity bounds of plamirity recognition and show that

the language of planar unsigned Gauss words is in the complexity class £.

In Corollary 6.1.1 we showed that the language of planar unsigned Gauss words can

be recognised by a co-non-deterministic register automata and in Chapter 4 Proposition

4.2.2 we showed that if a language is recognisable by register automata then the same

language can be recognised by a Turing machine with log space memory. As a result

of this we have the following corollary.

Corollary 6.3.1. The language of planar Gauss words is in co-N£ and therefore is in

N£ [34}.

134

6.3 Complexity bounds of unsigned planarity

Next we refine the complexity bounds of planarity recognition by showing that the

language of planar unsigned Gauss words is in £ .

We have shown in Theorem 6.1.1 that planarity of Gauss words is recognisable by co

nondeterministic register automata and therefore belongs to the complexity class co-N£

(= N£). Using simple arguments one can show that in terms of classical complexity

classes, the result can be refined further, that is the language of planar unsigned Gauss

words belongs to £ (deterministic logspace). Indeed, the only place when one needs

nondeterminism in the proof of Theorem 6.1.1 is in checking condition 3 where the

search for the cycles in the interlacement graph bearing odd sum of labels. It is routine

to check that the rest of the algorithm can be easily implemented in £. It follows

then that the language of non-planar unsigned Gauss words is logspace reducible to the

problem from the following proposition and therefore is in £.

Proposition 6.3.1. The following problem is in £ (deterministic logspace)

GIVEN: An undirected graph G with every edge labelled by 0 or 1

QUESTION: Is there any cycle C in G that the sum of labels of all edges in C is

odd?

Proof. The search for the required cycle can be done nondeterministically in logspace

by guessing next edge in the cycle and computing the Pl}rity of the sum of label.s online.

Since the graph is undirected, the search can be implemented in symmetric logspace

[39]. By [59] S£ = £. Since £ is closed under complementation, it follows that the

language of planar unsigned Gauss words is in £. o

Corollary 6.3.2. . The language of planar Gauss words can be recognised by a two-way

deterministic register automata.

The above corollary follows from Proposition 6.3.1 and Theorem 4.2.1 in Chapter

4.1.

135

6.4 Summary

6.4 Summary

In this chapter we have investigated the complexity of planarity of knot diagrams rep

resented by unsigned Gauss words and planarity of link diagrams represented unsigned

Gauss paragraphs. We have shown that planarity of unsigned Gauss words can be

recognised in deterministic logarithmic space on classical computational models and

by deterministic register automata over infinite alphabets while planarity of unsigned

Gauss paragraphs is recognisable by a linearly bounded memory automata. To demon

strate the results for planarity of unsigned Gauss words we have used generic mutual

simulation between both computations models for the languages of bounded variabil

ity. Notice that unlike the case of signed Gauss words discussed in Chapter 5 we do

not provide explicit deterministic logspace bounded decision procedure for planarity of

unsigned Gauss words and rather refer to the general reduction of S.c to .c [59]. An

explicit deterministic logspace algorithm for the later case as well as the comparison of

its complexity with the algorithm(s) for signp-d case is a topic for further work.

136

Chapter 7

Definability of knot properties

In Chapters 5 and 6 we proposed to evaluate the complexity of problems of recognising

knot properties in terms of the computational power of devices needed to recognise

the properties. Following the proposal we demonstrated lower and upper bounds for

recognisability of knot properties in terms of various automata models over infinite

alphabets. The main property addressed was planarity of knot diagrams.

An alternative and to some extent a complementary approach to the study of de

scriptional complexity of recognisability problems is that based on definability in some

logic.

In general the expressive power of register automata over infinite alphabets and

definability in logics are incomparable, in particular, it was shown in [55] that expres-
J

siveness of register automata indeed is incomparable with First Order logic (FO) and

Monadic Second Order logic (MSO) on words over an infinite alphabet. There are some

languages that are recognisable by register automata but not even definable in MSO,

on the other hand there FO properties not expressible in register automata.

In this chapter we investigate the complexity of knot properties by their definability

in first order logic and its extensions. We show lower and upper bounds for the planarity

and the unknotting problems encoded by logical structures.

In Section 7.1 we define the syntax and semantics of first-order predicate logic and

its extension with a transitive closure operator. Then we define two encodings for Gauss

137

7.1 Preliminaries

words as logical structures and prove that both encodings are uniformally translatable

to each other. Further we describe the conditions for Hanf locality that will be used

later to prove un definability in first-order predicate logic.

In Section 7.2, we show that planarity of both signed and unsigned Gauss words

can not be defined by a formula of first-order predicate logic, while extensions of first

order logic with deterministic transitive closure operators allow to define planarity of

signed and unsigned Gauss words and in Section 7.3 we show that the property of

unknottedness can not be defined in FO and demonstrate an implicit upper bound by

showing that it is definable in existential second order logic.

7.1 Preliminaries

In this section we define the syntax and semantics of first-order predicate logic and first

order predicate logic plus the transitive closure operator. We provide two encodings for

the definition of Gauss words as first-order structures and show that the encoding of

the two structures are translatable to each other using first-order predicate logic plus

deterministic transitive closure operator (FO+DTC). Then we describe the conditions

for Hallf locality widely used to prove undefinability in FO.

7.1.1 FO

First order logic (also known as predicate logic) allows ~xpressibility of declara~ive sen

tences with quantification and predicates to express properties of objects and relations.

There are two key parts of first order logic: The syntax determines which collections of

symbols are legal expressions in first-order logic, and the semantics which determines

the meanings behind these expressions.

7.1.1.1 Syntax

A vocabulary in first-order logic consists of three sets:

1. A set of predicate symbols P of positive arities.

138

1.1 Preliminaries

2. A set of function symbols F of positive arities.

3. A set of constant symbols C (function symbols of zero arity).

There are two key types of legal expressions: terms, which intuitively represent

objects, and formulas, which intuitively express statements that can be true or false.

A term t can be defined as t ::= xlclf(tl, ... , tn) where x denote any variable, c

denote a constant and f E F is a function with an arity n such that n > O.

A formula ~ can be defined as

~ ::= p(tl, "" tn)l(--'~)I(~ 1\ ~)I(~ V ~)I(~ ~ ~)I'v'x~13x~

where pEP denote a set of predicate symbols with n terms such that n 2 1.

A formula in FO is called a sentence (closed or bounded formula) if it has no free

variables (Le, each variable is in the scope of a corresponding quantifier). In contrast,

a formula has free variables if it is not a sentence. For example 'v'x p(x, y) is not a

sentence because it has a variable y which is not bounded by a quantifier and the

formula P(x) 1\ 'v'xQ(x) has two occurrences of the variable x with the first occurrence

being free and the second occurrence is bounded by a quantifier whereas the formula

'v'x3y p(x, y) is a sentence as each variable is within the scope of a corresponding

quantifier.

1.1.1.2 Semantics

An interpretation or a structure At is: M = (U, f tt, f ~ , , .. , c~l, efl, , .. " pr, P2M, ...)

where

• U is a non-empty set called the universe.

• fr : Uni -+ U, where ni is the arity of the function symbol fi

• Pi
M of an arity ni is a subset of Uni

139

7.1 Preliminaries

Each term t(x) where Ixl = n is assigned an element tM(a) E U, where a E un is

defined by the corresponding object assignment.

If ~ is a sentence, then one can define the satisfaction relation (f=) between struc

tures on one hand and sentences on the other hand. For a formula cp, M f= cp, meaning

M satisfies cp (under some object assignment) is defined by:

1. M f= tl (a) = t2(a) iff ttt (a) = tr (a)

2. M f= P(tl(a),··· ,tk(a)) iff (tl(a),··· ,tk(a)) E pM

3. M f= .~ iff M ~ ~

4. M F ~ /\ w iff M F ~ and M F W

5. M F ~ V w iff M F ~ or M F W

6. M f= 3x'lf'(a, x) iff M F ~(a, b) for some bE U

7. M f= VX'lf'(a, x) iff M F ~(a, b) for every bE U

7.1.1.3 Quantifier rank

The quantifier rank of a formula cp, written qr(cp) is defined inductively as follows:

• if cp is atomic formula then qr(cp) = 0

• if cp = .'If' then qr(cp) = qr('If').

• if cp = 'If'l V 'If'2 or cp = 'If'l /\ 'If'2 then qr(cp) = max(qr('If'd, qr('If')).

• if cp = 3x'lf' or cp = VX'lf' then qr(cp) = qr('If') + 1.

7.1.1.4 Elementary equivalence (up to quantifier rank n)

For two structures A and B, we say that A =n B if for any sentence cp with qr(cp) $ n,

A F cp if, and only if B F cp.

140

7.1 Preliminaries

7.1.1.5 Definability of a class of structures in FO

Let 1: be some vocabulary and K a class of ~-structures (that is structures which can be

used to interpret any formula over vocabulary ~). We say that the class K is definable

over ~ if there is a closed ~-formula cjJ such that for every ~-structure S, S F cjJ iff

SEK.

It is well-known that first-order logic has limited expressive power. In particular

it lacks recursion and counting mechanism. For instance, the transitive closure (TC1)

operator can not be expressed in FO [40] (Le. there is no such an FO-formula cjJR(X, y)

on any structure whose vocabulary is R that would define the transitive closure of R).

In other words, the transitive closure operator can not be precisely characterised within

the framework of FO. By adding transitive closure operators to FO, we obtain a natural

family of logics with a recursion mechanism.

We adopt the following definitions of FO+TC and FO+DTC from [20].

7.1.2 FO+TC

Transitive closure logic is closed under the usual first-order operations. It's obtained by

augmenting the syntax of first order logic by the following rule for building formulae:

Let cjJ(x, y) be a formula with variables x = Xl,'" ,Xk and y = Yl,'" ,Yk, and let u
and ii be two k-tuples of terms. Then [TCx,ycjJ(x, y)](u, ii) is a formula which says that

the pair (u, ii) is contained in the transitive closure of the binary relation on k-tuples

that is defined by cjJ. In other words, A F [TCu,vcjJ(x, Y)](a, b) if and only if, there exist

an n 2: 1 and tuples CO, ... ,~ in A such that CO = u, ~ = ii and A F cjJ(q, Ci+l), for

all i < n.

The transitive closure logic is defined by the following BNF:

cjJ ::= p(tl ... ,tn)(·<1»I(<I> 1\ <1»\(<1> V <1»1(<1> ~ <1» \'v'x<I> l:lx<I>\TCx,ycjJ(x, y)](tl' t"2)

where the variables in xy are pairwise distinct and where the tuples x, y, ii. and t"2 are

lThe transitive closure of a relation R is defined as the smallest relation extending R that is
transitive.

141

7.1 Preliminaries

all of the same length, tl and t-; being tuples of terms.

7.1.3 FO+DTC

Deterministic transitive closure logic is an interesting variant of FO+TC which defines

the transitive closure of any deterministic definable relation. The syntax of FO+DTC

is analogous to FO+TC, allowing us to build formulae of the form [DTCx,y</J(x, y)](u, v)

for any formula </J(x, y). The semantics can be defined by the equivalence

[DTCx,y</J(x, Y)](u, v) == [TCx,y</J(x, y) /\ VZ</J(x, z) -t y = z](u, v)

FO+ TC has shown to be more expressive than FO+ DTC and likewise FO+ DTC

is more expressive than FO [20].

7.1.4 Gauss structure

In order to address definability questions of knot properties, we will use the two variants

of knot encodings, namely representations of Gauss diagrams and Gauss words by finite

FO relational structures.

Definition 7.1.1. A Gauss diagram can be described as a finite relational structure F,

where F = (V, R, S) and Rand S are binary relations.

• V = VoUVu where Vis a finite set of points such that vonVu = 0 and VouVu = V.
)

• (V, S) is an oriented cycle

• R is a bijection relation between Va and Vu.

We will also use a variant of the above definition called a pointed Gauss diagram

defined as Fe = (V, R, S, c) where c is constant denoting a distinct point in V. When we

consider definability of properties of diagrams in the extensions of first-order logic by

transitive closure operators, we may assume that pointed diagrams are linearly ordered,

for linear order is definable over pointed diagrams in obvious way.

142

7.1 Preliminaries

Definition 7.1.2. A Gauss word w over the alphabet E x N can be described as a finite

structure Gw = (1\1, <, "', Po) where:

• M = {I, ... , n} where Iwl = n,

• < is a binary relation "less than" on M

• '" is an equivalence relation where two positions are equivalent if they have the

same data value (elements of the second component).

• Po is a predicate symbol satisfying the label (the element of first component) 0

at some position.

Definition 7.1.2 above can be seen as a special case of the encoding of general data

words considered in [6] without the successor relation +1. The successor relation +1

was needed in [6] because the logic used was a fragment of FO which was restricted

to quantification over only two variables (F02) whereas in the above definition we

don't consider such restriction and hence the relation +1 can be defined in terms of

the relation <. Another difference is the structures we consider in Definition 7.1.2

correspond to bounded Gauss words where every equivalent class of the relation '"

contains two elements.

It easy to see that the encoding of the two structures are uniformly translatable

to each other using FO+ DTC and DTC is only heeded to define linear order for the

encoding of Gauss words using the relation S on the ellcoding of Gauss diagrams.

Let :Y denote a class of structures of all Gauss diagrams F, :Ye denote a class of

structures of all pointed Gauss diagrams Fe and 9 denote a class of structures of all

Gauss words Gw .

Proposition 7.1.1. :Ye is uniformly FO-translatable to 9 (i.e. there are FO-formulae

<ps(x, y), <PR(X, y) and <Pe(x) in vocabulary «, "', Po) such that given a Gauss word

structure Ggd = (V, $, "', Po) corresponding to the Gauss diagram gd, then Fgd =

(V, R, S, c) is a pointed Gauss diagram structure corresponding to the Gauss diagram

143

7.1 Preliminaries

gd. Here 8 = {(a, b) E VIGgd F cPs(a, b)} and R = {(a, b) E VIGgd F cPR(a, b)}) and

c E V such that Ggd F cPc(c).

Proof. To define Fgd in terms of Ggd, we consider the following FO-formulae:

• cPs(x,y) = [x < y 1\ -'~z(x < z 1\ z < y 1\ x t- z 1\ Y t- z)] V ['v'u(u t- x => u <

x) 1\ 'v'v(v t- y => y < v)],

• cPR(X, y) = Po(x) 1\ -'Po(y) 1\ x f'V y and

• cPc(x) = 'v'z(z t- x => z < x).

Now it's straight forward to check that these two formulae define what we need. 0

From the above proposition, it follows that if some property of Gauss diagram/words

is FO-definable over ~c then is definable over 9. By contraposition, if some property is

not FO-definable over 9 then it is not definable over ~c.

Proposition 7.1.2. 9 is uniformly FO+DTC-translatable to l' (i.e. there are FO+DTC

formulae cPdx, y), cP~(x, y) and <PPo in vocabulary (R, 8, c) such that given a Gauss dia

gram structure Fw = (V, R, 8, c) corresponding to the Gauss 'Word w then Gw = (V, <, f"V

,Po) is a Gauss word structure corresponding to the Gauss word w. Here <= {(a, b) E

VlFw F cP< (a, b)}, "'= {(a, b) E VlFw F cP",(a, b)} and Po = {a E VlFw F cPpo(a)}).

Proof. Let cPdx, y) = DTCu ,v(8(u, v) 1\ v t- c)(x, y), cP",(x, y) = R(x, y) V R(y, x) and
J

cPPo(x) = ~yR(x, y)

Now it's straight forward to check that these two formulae define what we need. 0

From this proposition, it follows that if some property of Gauss diagram/words is

FO+DTC-definable over 9 then it is FO+DTC-definable over ~c. By contraposition,

if some property is not FO+DTC-definable over 1'c then it is not definable over 1'.

The encoding of Gauss paragraphs is defined in a similar way except for the relation

8 which is defined as a set of oriented cycles 8 = 81, ... , 8n .

144

7.1 Preliminaries

7.1.5 Hanf locality

Hanf locality is used to show that a certain class of structures is not FO-definable using

sufficient conditions based on the idea of locality.

Before we formulate Hanf locality criterion we will explain first the notion of neigh

bourhood.

Given a relational structure M = (A,p},'" ,Pn), we define the binary relation:

E(al' a2) if, and only if, there is some relation R and some tuple a containing both al

and a2 with R(a). In this way we obtain a graph GM = (A, E) called the Gaifman

graph of M. We denote by d(a, b) the distance of the shortest path from a to b in GM·

The neighbourhood of a point a in M denoted by Nbd~ (a) is defined as a substructure

of M given by the set {bld(a, b) ~ r}.

Two structures A and Bare HanJ equivalent with radius r and threshold q denoted

by A C:::r,q B if for every a E A the two sets {a' E AINbd~(a) ~ Nbd~(a')} and

{b E BINbd~(a) ~ Nbd~(b)} either have the same size or both have size greater than

q and similarly for every b E B.

Next we formulate the Hanf locality criterion. Here the symbol =p denotes elemen

tary equivalence

Theorem 7.1.1. [27} For every vocabulary a and every p there are r ~ JP and q ~ p

such that Jor any a-structures A and B iJ A C:::r,q B then A =p B.

7.1.6 Duplicated Gauss words

In this subsection we introduce a specific class of Gauss words which will be referred

to as duplicated Gauss words. Consideration of such class of structures is useful for

proving some lower bounds for planarity problem as well as unknottedness.

Definition 7.1.3. Let w = (aI, bl),'" ,(alwl' b1wl) be a Gauss word, a shadow projec

tion sh oJ w is defined as sh(w) = bl , ... , blwl (i. e. a sequence oJ elements oJ the second

component oJ w).

145

7.2 Planarity

Definition 7.1.4. A duplicated-Gauss word is a Gauss word w such that sh(w) = u·u

where u = il,' .. ,in'

Example Given a duplicated-Gauss word w = UI U2U3U4U501 020 30 40 5, then

sh(w) = 1234512345. The elements of the shadow projection of w can be seen as a

shadow Gauss word (Le a sequence of natural numbers). The corresponding duplicated

Gauss diagram for the shadow projection of w is shown in Figure 7.1.

Figure 7.1: Example: - A duplicated-Gauss diagram representing the word 1234512345

7.2 Planarity

In this section we investigate the complexity of planarity problem of Gauss words and

Gauss paragraphs in terms of their definability in Logic. We show as a lower bound that

planarity property of Gauss words (signed and unsigned) is not definable in first-order
.J

predicate logic, while extensions of first-order logic with deterministic transitive closure

operators allow to define planarity property of signed and unsigned Gauss words.

7.2.1 Gauss words

Proposition 7.2.1. Given a duplicated-Gauss word w representing a knot diagram k

where I w I = 2n and n ~ 1, n is even iff k is a non-planar diagram.

Proof. Suppose that k is a planar knot diagram and n is even. Let Qi(W) denote the

number of labels that appeared between two occurrences of i E w where i = {I, ... , n}.

146

1.2 Planarity

If w represents a planar knot diagram then for every label i of w, Oi(W) == 0 (mod 2)

(Gauss's necessary condition for planarity [23]). Since w = i} ... ini} ... in and n is

even then for any i E W, Oi(W) = n - 1 == 1 (mod 2). Therefore W does not represent

a planar knot diagram, hence k must be a non-planar knot diagram. Similarly, if k is

non-planar then n is even holds following the same idea. o

Theorem 1.2.1. The planarity property of signed/unsigned Gauss words is not defin

able by FO over Gauss diagram structures.

Proof. Let A denote a class of all planar duplicated Gauss diagrams and 13 denote a

class of all non-planar duplicated Gauss diagrams. We are going to show that for all r

and q there are A E A and B E 13 such that A ':::::.r,q B. This and Theorem 7.1.1 would

...

b

......................................

Figure 7.2: Border edges - Border edges on the circle are labelled by b1 and b2

imply that for all p there are A E A and B E 13 such that A ==p B, which in turn would

imply that planarity property of signed/unsigned Gauss words is not definable by FO

over Gauss diagram structures.

Fix rand q, we show that for A E A of size 2(2r + 3q + 1) and a Gauss diagram

BE 13 of size 2(2r + 3q) we have A ':::::.r,q B.

To distinguish between the different types of neighbourhoods, we consider two

groups C} and C2 where Cl include the set of points that can reach the border edges l by

radius r and C2 includes the set of points that cannot reach the border edges within ra

dius r. So we divide the points of A and B into six parts where ct = Al U A3 U A4 U A6

1 a border edge is an edge on the circle whose points are connected by an incoming chord and an
outgoing chord, for illustration see Figure 7.2. Notice all other edges on the circle are either connected
to two incoming chords or two outgoing chords

147

7.2 Planarity

b

Figure 7.3: duplicated-Gauss diagrams - A represents a planar knot diagram and B
represents a non-planar knot diagram

and et = A2 U A5 and likewise er = Bl U B3 U B4 U B6 and B - Bl,'" ,B6

ef = AB U B5, (see Figure 7.3 for an illustration).

We will show that for each a E et, the number of isomorphic neighbourhoods of

each type in et within A is the same as the number isomorphic neighbourhoods in er
within B.

To capture all neighbourhoods of the set of points in et and in er respectively, we

expand the set of points close to the border by considering all points within radius 2r.

Now if we consider the two substructures on both diagrams, we get the same number

of points and the substructures containing such points are also identical. From this it

follows that if you take any point of radius r the number of isomorphic neighbourhoods

of radius r within A is the same as the number of isomorphic neighbourhoods ~f radius

r within B.

For all other points not et (or er respectively), we will show that their number

of isomorphic neighbourhoods is greater than q. This is true because the number of

points in et (or in ef respectively) is exponential with respect to q and the set of

points in et (or in ef respectively) generate the same type of neighbourhood due to

the regular structure maintained by both diagrams.

o

In Chapter 4 Proposition 4.2.2 we showed that if a language is recognisable by reg-

148

7.2 Planarity

ister automata then the same language under some natural encoding can be recognised

by a Turing machine with log-space memory. Then in Chapters 5 and 6 we showed

that the language of planar (signed and unsigned) Gauss words is recognisable by a de

terministic register automata. As a consequence it follows that the languages of planar

Gauss words are definable by FO+DTC.

Theorem 7.2.2. The language of planar (signed and unsigned) Gauss words is defin

able in first order logic plus deterministic transitive closure (FO+DTC).

Proof. The language of planar signed Gauss words is in DRA Theorem 5.1.1. The

language of planar unsigned Gauss words is in DRA Corollary. By Proposition 4.2.2

DRA ~ L. Since L=FO+DTC (over ordered structures) [33] then the languages of

planar signed and unsigned Gauss words are definable in FO+DTC. 0

7.2.2 Gauss paragraphs

The question of definability of planarity of Gauss paragraph has already been addressed

in the recent work by B. Courcelle [11].

Before we formulate the result from [11] and discuss· its relation to our work, we

would like to recall the main results on relationships between the computational mod

els we consider in this chapter and definability in logic. The computational power of

classical finite automata over finite alphabets is characterised precisely in terms of defin

ability in Monadic Second Order Logic (MSO), the extoosion of First-Order Logic (FO)

with quantification over sets. The classical theorem of Trakhtenbrot and Elgot at al.

from 1950s states that the languages recognisable by finite state automata (regular lan

guages) are exactly those definable in MSO. The languages definable in FO constitute

an important class of star-free regular languages. For the case of automata over infinite

alphabets the situation is much more intricate, and in general, register automata are

orthogonal to logically defined classes. In [55] authors compared definability in M SO* ,

suitably defined variant of MSO which allows to define the properties of data words,

with recognisability by register and pebble automata. In particular they have shown

149

7.2 Planarity

that .M 80* is as least as powerful as one-way non-deterministic register automata, but

incomparable with two-way deterministic and non-deterministic automata. Pebble au

tomata behave much better and recognisability by all their natural variants is covered

by definability in !If 80*.

In [11] B. Courcelle proves the following theorem, which we reformulate in the terms

we have adopted in the thesis.

A genus of a surface is a topologic ally invariant property of a surface defined as

the largest number of nonintersecting simple closed curves that can be drawn on the

surface without separating it [65].

Theorem 7.2.3. [11] For every genus g, it is definable by an M80 formula the property

of a Gauss paragraph to be a code of the self-intersecting closing curve, embeddable in

a surface of the genus g.

Corollary 7.2.1. The planarity of unsigned Gauss paragraphs is definable in MSO.

The encoding of Gauss paragraph by relational structures and logic MSO used in

[11] are different from the encoding of data words and logic M 80* from [55], but

insignificantly. It is straightforward to show that over Gauss paragraphs the notion of

definability is the same for both cases.

For the planarity case of signed Gauss paragraphs our result on DRA recognisability

is incomparable with the above MSO-definability result on unsigned Gauss paragraphs .
. 1

In fact we will show that planarity of signed Gauss paragraphs is definable in FO+DTC.

Theorem 7.2.4. The language of planar signed Gauss paragraphs is definable in first

order logic plus deterministic transitive closure (FO+ DTC).

Proof. The language of planar unsigned Gauss paragraphs is recognisable by a DRA by

Theorem 5.2.1. By Proposition 4.2.2 DRA ~ .c. Since.c = FO + DTC (over ordered

structures) [33] then it follows that the language of planar signed Gauss paragraphs is

definable in FO+ DTC. 0

150

7.3 Unknottedness

7.3 Unknottedness

Before we can show that the property of unknottedness is not definable in FO, we need

to consider two classes of structures A and B such that A represents a non-trivial knot

and B represents a trivial knot. We will construct non-trivial knot diagrams that belong

to A by starting with a simple non-trivial knot diagram (trefoil) and then adding even

number of crossings in such a way so that the original structure of the trefoil becomes

hidden (see Figure 7.4). For trivial knot diagrams that belong to B, we do the same

but we start with a trivial knot diagram with triple-point crossings that has similar

order of crossings as trefoil (see Figure 7.5).

Definition 7.3.1. Let C be a class of duplicated-Gauss words such that for any wED,

Iwl = 6k where kEN and k == I(M od2).

Proposition 7.3.1. Given wEe and an odd integer k 2:: 1, if the projection of the first

component (i.e. sequence of Os and Us) ofw is OkUkOkUkOkUk then w is non-trivial.

Proof. Consider the knot diagram encoded by w for k = 1, clearly this is a projection

of the trefoil knot (illustrated on the left-hand side picture of Figure 7.4), which is of

course a non-trivial knot diagram. For any odd integer k where k > 1, the number of

crossings added correspond to k applications of Reidemeister moves of type lIt. Since

the knot type is invariant under Reidemeister moves, it will not be changed. 0

!~ ~~\

. >&K. . ,.
\. '" ./ /p

Figure 7.4: - A class of non-trivial knot diagrams

Proposition 7.3.2. Given wEe and an odd integer k 2: 1, if the projection of the

first component of w is Ok+lUk-lokUk+lOk-lUk then w is trivial.

151

7.3 Unknottedness

Proof. The arguments are similar to those in the proof of Proposition 7.3.1 but the

knot diagram encoded by w is trivial, see Figure 7.5. o

Figure 7.5: - A class of trivial knot diagrams

Theorem 7.3.1. The property of unknottedness i8 not definable by FO over Gauss

diagram structures.

Proof. Let A denote a class of all non-trivial duplicated Gauss diagrams and 'B denote

a class of all trivial duplicated Gauss diagrams. We are going to show that for all r

and q there are A E A and B E 'B such that A ~r,q B.

Figure 7.6: duplicated-Gauss diagrams - A represents a non-trivial knot diagram and
B represents a trivial knot diagram

This and Theorem 7.1.1 would imply that for all p there are A E A and B E 'B such

that A =p B, which in turn would imply the property of unknottedness is not definable

by FO over Gauss diagram structure.

Fix r and q, we show that for A E A of size 6(2r + 2(3q)) + 2 and a Gauss diagram

B E 'B of the same size we have A ::!r,q B.

152

7.4 Summary

To distinguish between the different types of neighbourhoods, we use an argument

similar to that in the proof of Theorem 7.2.1 (that is by categorising the points of

the diagram into two groups; one group contain the set of points whose neighbourhood

include border edges and the other group contain the set of points whose neighbourhood

does not include border edges). There are six border edges in each diagram labelled

by bl ... ,b6, all r-points close to the border will satisfy the first disjunct condition of

Hanf-equivalent by generating a bounded number of isomorphic neighbourhoods of the

same size and all other points that cannot reach any of the border edges will satisfy

the second disjunct condition of Hanf-equivalent by generating an exponential number

of isomorphic neighbourhoods of the same type with respect to q. o

From the computational complexity side, the unknotting problem had being shown

to be in NP [30] and in AM n Co - AId [28]. As a results of this, we obtain an upper

bound for the unknotting problem in terms of definability in existential second order

logic.

Proposition 7.3.3. The unknotting problem is definable in existential second order

logic (ESO)

Proof. The unknotting problem was shown to be in NP [30]. Since NP = ESO [21]

then the unknotting problem is in ESO. 0

7.4 Summary

We have investigated the descriptive complexity of some knot properties and demon

strated new lower and upper bound for the planarity problem of Gauss words and the

unknotting problem. We have shown that planarity of both signed and unsigned Gauss

words cannot be expressed by a formula of first-order predicate logic, while extensions

of first-order logic with deterministic transitive closure operator allow to define pla

narity of both signed and unsigned Gauss words. Similarly for Gauss paragraphs we

have shown that planarity of signed Gauss paragraphs is definable in FO+ DTC while

planarity of unsigned Gauss paragraphs is definable in MSO [11].

153

1.4 Summary

Referring to the classical Fagin's results [21 J we have shown that unknottedness

is definable in ESO. Explicit definitions of planarity and unknottedness are of some

interest and are left for future work.

154

Chapter 8

Conclusion and Further work

In this thesis we explored a wide range of computational problems and properties

of knots. We were primarily concerned with algorithmic, computational and logical

aspects of knots, and analysis of knot theoretic properties by theoretical computer

science methods. In the introductory chapter we showed that many knot theoretic

problems have decision algorithms but have not been investigated in terms of their

complexity status. In this work we partially cover unexplored aspects of these problems

and provide a number of new results related to reachability problems for Reidemeister

moves, relation of Gauss diagrams to Eulerian maps, descriptional and descriptive

complexity of classical knot problems.

In Chapter 2 we described various finite representations of knots as discrete struc-
J

tures and provided a formal definition for the encoding of knots by Gauss words. We

described how problems about knots can be reduced to the questions about Gauss

words and described a list of knot problems to be investigated in this thesis.

In Chapter 3 we considered knot transformations in terms of string rewriting sys

tems and provided a refined classification of Reidemeister moves formulated as string

rewriting rules for Gauss words. Then we analysed the reachability properties for each

type and presented some lower and upper bounds on the complexity of the paths be

tween two knot diagrams reachable by a sequence of moves of the same type while

for a combination set of moves of different type we provided some plausible classes of

155

structures that can be used for proving lower bounds.

Further we considered a class of non-isomorphic knot diagrams generated by type I

moves from the unknot and discovered that the sequence corresponding to the number of

non-isomorphic diagrams with respect to the number of crossings is equal to a sequence

related to a class of unrooted Eulerian maps with respect to the number of edges. We

investigated the bijective mapping between the two classes of objects and presented two

explicit algorithms to demonstrate the transformations from one object to the other.

Furthermore we considered the question of knot transformations by reduction and

introduced a new set moves which can be used to substitute one of the rules of type

II that increases the number of crossings. We demonstrated that our new moves cou

pled with Reidemeister moves can unknot all known examples of complex trivial knot

diagrams without increasing number of crossings. Finally we formulated some open

questions left as conjectures for future work.

In Chapter 4 we considered different models of automata over infinite alphabets for

studying complexity of problems related to knots. In particular, we considered register

automata which is one of the weakest models of automata over infinite alphabets. Al

though register automata is considered weak, we showed that over a class of bounded

languages it can effectively simulate counters and pebbles and log-space bounded com

putations under some proper encoding. Then we demonstrated that over a class of

languages with bounded variability the computation done by register automata can be

mimicked by a Turing machine using log-space memory,,) Further we considered .different

variants of register automata and presented lower and upper bounds for the recognition

problem of Gauss words, particularly we showed that the language of Gauss words can

not be recognised by a I-way non-deterministic register automaton but it is recognisable

by using a 2-way deterministic register automaton. Additionally we showed that regis

ter automaton can even recognise non-trivial properties, specifically we have shown that

the isomorphic Gauss words problem is recognisable by a 2-way deterministic register

automaton.

More generally, the automata based approach opens perspectives for studying more

156

complex knot problems, like unknotedness or equivalence. Non-trivial lower bounds for

such problems are unknown and weak automata models are plausible candidates here

to try. In opposite direction, knot theory provides a rich supply of natural problems

formulated in terms of languages over infinite alphabets, and that, one may expect, will

influence the development of the theory of such languages and related computational

models.

In chapter 5 we have applied automata over infinite alphabets for studying com

plexity of planarity problem for signed Gauss words and signed Gauss paragraphs. We

considered the implementation of two different algorithms and shown that the lan

guages of planar signed Gauss words and signed Gauss paragraphs can be recognised

by deterministic two-way register automata. Then in terms of classical computational

models we showed that planarity of signed Gauss words and signed Gauss paragraphs

can be recognised in deterministic 'lUring machine using logarithmic space memory.

The result is final in the sense that the power of non-deterministic one-way register

automata is not even enough to recognise whether an input is a Gauss word.

In chapter 6 we investigated the complexity of the planarity problem for unsigned

Gauss words and unsigned Gauss paragraphs. We have shown that planarity of un

signed Gauss words can be recognised in deterministic logarithmic space on classical

computational models and by deterministic two-way register automata over infinite al

phabets while for the planarity problem of unsigned Gauss paragraphs we demonstrated

an upper bounds in terms automata with linearly bounded memory. To dem,onstrate

these results we have used generic mutual simulation between both computations mod

els for the languages of bounded variability. Notice that unlike the case of signed

Gauss words discussed in Chapter 5 we did not provide explicit deterministic log-space

bounded decision procedure for planarity of unsigned Gauss words and rather refer to

the general reduction of S'(' to ,(, [59]. An explicit deterministic log-space algorithm

for the later case as well as the comparison of its complexity with the algorithm(s) for

signed case is a topic for further work.

In Chapter 7 we have investigated the complexity of some knot properties in terms

157

of their logical expressions and demonstrated new lower and upper bound for the pla

narity problem of signed and unsigned Gauss words as well as the unknotting problem.

We have shown that planarity of both signed and unsigned Gauss words cannot be ex

pressed by a formula of first-order predicate logic, while extensions of first-order logic

with deterministic transitive closure operator allow to define planarity of both signed

unsigned Gauss words. Similarly for Gauss paragraphs we demonstrated an upper

bound and shown that planarity of signed Gauss paragraphs is definable in FO+ DTC

while planarity of unsigned Gauss paragraphs is definable in MSO [11]. Referring to

the classical Fagin's results [21] we have shown that unknottedness is definable in ESO.

Explicit definitions of planarity and unknottedness are of some interest and a potential

area for further study in the future.

There is much more work to be carried out in relation to computational problems

for knots and links. Clearly determining better complexity bounds for equivalence and

unknottedness are central open problems in this field. We expect that new approaches

and methods presented in this thesis will later help with further investigations of the

above mentioned problems.

158

159

References

[1] S. Abramsky. Temperley-Lieb Algebra: From Knot Theory to Logic and Com

putation via Quantum Mechanics. Mathematics of Quantum Computation and

Quantum Technology, 2007. 1

[2] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of nested

calls and returns. In Tools and Algorithms for the Construction and Analysis

of Systems, volume 2988 of Lecture Notes in Computer Science, pages 467-481.

Springer Berlin / Heidelberg, 2004. 85

[3] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Univ Pr, 1999.

35

[4] D. Bar-Natan, T.T.Q. Le, D.P. Thurston, et al. Two applications of elementary

knot theory to lie algebras and vassiliev invariants. Geometry and Topology, 7(1):1-

31, 2003. 1

[5] H. Bjorklund and T. Schwentick. On Notions of Regularity for Data Languages.

Lectures Notes in Computer Science, 4639:88, 2007. 11, 104

[6] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire

David. Two-variable logic on words with data. Logic in Computer Science, Sym

posium on, pages 7-16, 2006. 143

[7] G. Cairns and D.M. Elton. The planarity problem for signed Gauss words. Journal

160

REFERENCES

of Knot Theory and its Ramifications, 2(4):359-367, 1993. 3, 6, 16, 17, 109, 110,

121, 123

[8] G. Cairns and D.M. Elton. The Planarity Problem H. Journal of Knot Theory

and its Ramifications, 5:137-144, 1996. 3, 17, 110, 121, 122, 123, 124, 125

[9] J.S. Carter. Classifying immersed curves. In Proc. Amer. Math. Soc, volume 111,

pages 281-287, 1991. 16, 110, 114, 119

[10] J.S. Carter, M. Elhamdadi, M. Saito, and S. Satoh. A lower bound for the number

of Reidemeister moves of type Ill. Topology and its Applications, 153(15):2788-

2794, 2006. 45

[11] B Courcelle. Diagonal walks on plane graphs and local duality. Avail-

able at http://www.labrLu-bordeaux.fr/perso/courcell/Textes/DiagonaIWalks

Submitted(2006).pdf, March 2006. 149, 150, 153, 158

[12] A. Coward. Ordering the Reidemeister moves of a classical knot. Algebraic fj

Geometric Topology, 6:659-671, 2006. 2,34

[13] A. Coward and M. Lackenby. An upper bound on reidemeister moves. Arxiv

preprint arXiv:ll04.1882, 2011. 2, 17,34

[14] P.R. Cromwell. Knots and links. Cambridge Univ Pr, 2004. 3, 46, 70, 71

[15] C. David. Mots et donnees infinies. Master's thesi,9, LIAFA, 2004. 87

[16] H. De Fraysseix and P. Ossona de Mendez. On a characterization of Gauss codes.

Discrete and Computational Geometry, 22(2):287-295, 1999. 3, 17, 121

[17] M. Dehn. Uber kombinatorische topologie. Acta Math, 67:123-168, 1936. 3,121

[18] S. Demri and R. Lazic. LTL with the freeze quantifier and register automata.

ACM Transactions on Computational Logic (TOCL), 10(3):1-30, 2009. 87

[19] lA Dynnikov. Arc-presentations of links: monotonic simplification. Fund. Math,

190(29-76) :89, 2006. 18

161

REFERENCES

[20] H.D. Ebbinghaus and J. Flum. Finite model theory. Springer Verlag, 2005. 141,

142

[21] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.

American Mathematical Society, pages 43-74, 1974. 7, 153, 154, 158

[22] R. Freivalds. Knot Theory, Jones Polynomial and Quantum Computing. Lectures

Notes in Computer Science, 3618:15, 2005. 1

[23] C.F. Gauss. Werke. Band 8. Teubner, 1900. 3, 10, 17, 121, 147

[24] L. Goeritz. Bemerkungen zur knotentheorie. In Abhandlungen aus dem Mathe

matischen Seminar der Universitiit Hamburg, volume 10, pages 201-210. Springer,

1934. 2, 3, 21, 70, 75, 76

[25] L. Goeritz. Bemerkungen zur knotentheorie (remarks on knot theory), 1934.

Partial English translation available at http://f2.org/maths/kt/goeritz1934.html,

lastchecked on 28 Feb 2011. 70, 71

[26] W. Haken. Theorie der Normalfachen, ein Isotopiekriterium fur den Kreisknoten.

Journal of Acta Mathematica, 105, 1961. 2, 17, 18

[27] W. Hanf. Model-theoretic methods in the study of elementary logic. The Theory

of Models, pages 132-145, 1965. 145

[28] M. Hara, S. Tani, and M. Yamamoto. Unknotting is)n am n co-am. In Proceedings

of the sixteenth annual A CM-SIAM symposium on Discrete algorithms, pages 359-

364. Society for Industrial and Applied Mathematics, 2005. 18, 153

[29] J. Hass and J.C. Lagarias. The number of Reidemeister moves needed for unknot

ting. Journal of the American Mathematical Society, 14(2):399-428, 2001. 2, 18,

34

[30] J. Hass, J.C. Lagarias, and N. Pippenger. The computational complexity of knot

and link problems. Journal of the ACM (JACM), 46(2):185-211, 1999. 1, 2, 18,

153

162

REFERENCES

[31] J. Hass and T. Nowik. Unknot diagrams requiring a quadratic number of Reide

meister moves to untangle. Discrete and Computational Geometry, 44(1):91-95,

2010. 2, 18, 34, 52, 70

[32] C. Hayashi. A lower bound for the number of Reidemeister moves for unknotting.

Journal of Knot Theory and its Ramifications, 15(3):313, 2006. 2, 18, 21, 34, 75,

77

[33] N. Immerman. Expressibility as a complexity measure: results and directions. In

Second Structure in Complexity Conference, pages 194-202, 1987. 149, 150

[34] N. Immerman. Nondeterministic space is closed under complement at ion. In Struc

ture in Complexity Theory Conference, 1988. Proceedings., Third Annual, pages

112-115, 1988. 134

[35] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer

Science, 134(2):329-363, 1994. 85

[36] J. Kari and V. Niemi. Morphic Images of Gauss Codes. In Developments in

Language Theory, pages 144-156, 1993. 1

[37] L.H. Kauffman. Virtual knot theory. Arxiv Preprint Math. GTj, 9811028, 1998.

3, 6, 16, 17, 25, 121, 122, 129, 130, 131

[38] V. Kurlin. Gauss paragraphs of classical links and a characterization of virtual
J

link groups. Mathematical Proceedings Cambridge Phil. Soc., 145:129-140; 2008.

3, 6, 16, 72, 109, 113, 116, 119, 121, 129

[39] H. Lewis and C. Papadimitriou. Symmetric space-bounded computation (extended

abstract). Automata, Languages and Programming, pages 374-384, 1980. 135

[40] L. Libkin. Elements of finite model theory. Springer Verlag, 2004. 141

[41] A. Lisitsa, 1. Potapov, and R. Saleh. Automata on Gauss Words. In Proceed

ings of the 3rd International Conference on Language and Automata Theory and

Applications, pages 505-517. Springer, 2009. 4,87, 103, 122

163

REFERENCES

[42] A. Lisitsa, 1. Potapov, and R. Saleh. Planarity of knots, register automata and

logspace computability. Language and Automata Theory and Applications, pages

366-377, 2011. 4

[43] V.A. Liskovets and T.R. Walsh. Counting unrooted maps on the plane. Advances

in Applied Mathematics, 36(4):364-387, 2006. 55

[44] C. Livingston. Knot theory, volume 24. The Mathematical Association of America,

1993. 1

[45] S.J. Lomonaco Jr and L.H. Kauffman. Topological Quantum Computing and the

Jones Polynomial. Arxiv Preprint Quant-ph/, 0605004, 2006. 1

[46] L. Lovasz and M.L. Marx. A forbidden substructure characterization of Gauss

codes. Bull. Amer. Math. Soc., 82(1), 1976. 3, 17, 121

[47] V. Manturov. Knot theory. CRC Press, 2004. 21, 75, 78, 79

[48] V.O. Manturov. A proof of Vassiliev's conjecture on the planarity of singular links.

Izvestiya: Mathematics, 69(5):1025-1033, 2005. 3, 17, 121

[49] W.S. Massey. A basic course in algebraic topology. Springer, 1991. 114

[50] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. Journal

of Computer and System Sciences, 66(1):66-9i, 2003. 91

[51] M.L. Minsky. Computation: finite and infinite machines. 1967. 102, 103

[52] Kunio Murasugi. Knot theory and its applications. Birkhauser, 1996. 1

[53] J.5. Nagy. Uber ein topologisches Problem von Gauss. Mathematische Zeitschrijt,

26(1):579-592, 1927. 3, 121

[54] F. Neven, T. Schwentick, and V. Vianu. Towards regular languages over infinite

alphabets. Mathematical Foundations of Computer Science 2001, pages 560-572,

2001. 11

164

REFERENCES

[55] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over

infinite alphabets. ACM Transactions on Computational Logic (TOCL), 5(3):403-

435, 2004. 85, 86, 87, 91, 96, 108, 137, 149, 150

[56] M.H.A. Newman. On theories with a combinatorial definition of' equivalence".

The Annals of Mathematics, 43(2):223-243, 1942. 35

[57] RC Read and P. Rosenstiehl. On the Gauss crossing problem. In Colloq. Math.

Soc. Janos Bolyai, volume 18, pages 843-876, 1976. 3, 17, 121

[58] K. Reidemeister. Elementare Begriindung der Knotentheorie. In Abhandlungen aus

dem Mathematischen Seminar der Universitiit Hamburg, volume 5, pages 24-32.

Springer, 1927. 1, 13, 14, 20

[59] O. Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),

55(4):17, 2008. 122, 135, 136, 157

[60] P. Rosenstiehl. Solution algebrique du probleme de Gauss sur la permutation des

points dintersection dune ou plusieurs courbes fermees du plan. CR Acad. Sci.

Paris Ser. AB, 283, 1976. 3, 121

[61] P. Rosenstiehl and R.E. Tarjan. Gauss codes, planar Hamiltonian graphs, and

stack-sort able permutations. Journal of algorithms, 5(3):375-390, 1984. 3, 17, 121

[62] B. Shtylla, L. Traldi, and L. Zulli. On the realization of double occurrence .words.

Discrete Mathematics, 309(6):1769-1773,2009. 3,17,121

[63] N.J.A. Sloane et al. The on-line encyclopedia ofinteger sequences, 2011. Published

electronically at http://oeis.org/Al03939, 8. 3, 55

[64] C.H.O. Suh. A short proof of the hass-Iagarias theorem. 2008. 2, 18, 34

[65] E.W. Weisstein. CRC concise encyclopedia of mathematics. CRe Pr I LIe, 2003.

150

165

