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ABSTRACT

Warfarin is one of the most commonly used oral anticoagulants worldwide
and is highly efficacious for the treatment and prevention of thromboembolic
disorders. However, due to its narrow therapeutic index and large interindividual
variability, it remains a challenging drug to prescribe. Genetic factors (CYP2C9 and
VKORCYI), together with clinical factors (age and body weight), account for up to
60% of warfarin dose variance but the remaining ~40% variability remains
unexplained.

A polymorphism rs2108622 in CYP4F?2, a vitamin K oxidase, has previously
been associated with increased warfarin stable dose requirements, accounting for
1-7% dose variability. In our cohort of prospectively recruited patients (n = 311), we
were unable to confirm these results. Interestingly, after fine mapping of the CYP4F2
gene region, we found a SNP rs2189784, which is in LD with 12108622, to be
associated with time to therapeutic INR (P, = 0.03). Further fine mapping of the
CYP4F gene cluster together with the utilisation a bank of well characterized
Caucasian surgical liver samples (n = 149) and data from a genome-wide association
study (n = 714), showed that CYP4F2 rs2108622 and rs2189784 SNPs were found to
be associated with increasing CYP4F2 and decreasing CYP4F11 or CYP4F12 mRNA
expression, respectively. Interestingly, a CYP4F]] variant rs1060467 (in LD with
1s2108622) was associated with reduced CYP4F2 mRNA expression. Furthermore,
151060467 contributes to 2.5% of warfarin dose variability and was associated with
reduced warfarin dose requirement (~1 mg/day, P. = 0.003), an effect in the opposite
direction previously reported with CYP4F2 152108622 by Caldwell e al. (2008) and
other studies.

Warfarin-resistant patients have been reported to harbour VKORCI missense
mutations. Extended regions of VKORC! were sequenced in our patients (n = 65)
with resistance to warfarin, defined by clinical and pharmacodynamic criteria. Seven
novel heterozygous mutations were identified and in silico analyses predicted the
promoter ¢.-160G>C mutation creates a putative Sp1 transcription factor binding site
and that the missense mutation ¢.79C>G to be deleterious. To confirm these
predictions, in vitro functional studies were carried out using EMSA, transient
transfection assays, and DNA methylation. ¢.-160G>C was found to create a weak
binding site for Spl transcription factor, and caused an increase in promoter activity
by ~20% (P = 0.003). The ¢.79C>G mutation reduced levels of PIVKA-II by ~10%.
Associations of VKORCI genotypes with DNA methylation did not remain
significant after correction for multiple testing.

The effect of warfarin on the rate of decline of vitamin K-dependent clotting
factors, and the role of SNPs in the clotting factor genes, is not known. Using a large
prospective cohort of patients (n = 619), SNPs in F7 and F10 genes showed
association with variability in factor VII levels. The rate at which the plasma levels
of factors II, X and protein C decline affect how patients respond to warfarin, in
particular the achievement of warfarin stable dose and time to therapeutic INR.
Furthermore, the change in clotting factor X level accounted for 1.4% of warfarin
dose variability.

In conclusion, the results presented in this thesis demonstrate that multiple
genetic, clinical and biochemical factors account for the variability in warfarin
response. Further understanding of such complex interactions, along with the advent
of genomics technologies and development of new computational and conceptual
tools, will yield insights to the accurate prediction of drug efficacy and toxicity,
which will hopefully translate into improved outcomes for patients.
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CHAPTER 1

1.1  Variability in drug response

It has long been recognized that variability in drug response is observed
across all areas of medicine. The father of modern medicine, Sir William Osler
(1849 — 1919), conceded that “variability is the law of life, and as no two faces are
the same, no two bodies are alike, and no two individuals react alike and behave
alike under the abnormal conditions we know as disease” (Osler 2003; Ginsburg and
Willard 2009).

Patients have varied responses to drugs, both desirable and undesirable.
Adverse drug reactions (ADRs) represent a major public health issue world-wide
(Wiffen 2002), contributing significantly to patient morbidity and in serious cases,
fatalities; and impose a considerable financial burden on the healthcare system. In the
UK, approximately 6.5% of hospital admissions are related to ADRs, with an
associated mortality of 0.15%, costing the National Health Service (NHS) £466
million annually (Pirmohamed e al., 2004). In the USA, adverse drug reactions are
one of the leading causes of death in the population (Lazarou et al., 1998; Moore et
al., 2007). The lack of response to drug therapy, although not uncommon, leads to
inefficient use of health care resources and delay in patients receiving appropriate
alternative therapies (Limdi and Veenstra 2010). Clearly, the ‘one dose fits all’

regime is not ideal for patients and is not cost-effective for the health service.

1.2 Pharmacogenetics and pharmacogenomics

Heterogeneity in drug response can be explained by clinical and
environmental factors such as co-morbidities, concomitant medications, severity of

disease, nutritional status, and environmental exposures. In addition, genetics is
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thought to be a contributor to variation in drug response. The term
“pharmacogenetics” was first coined in 1959 by Friedrich Vogel, a German
Pharmacologist (Vogel 1959) and can be defined as the study of how genetic
differences affect inter-individual variation in response to medication. Interestingly,
the first pharmacogenetic observation dates back to 510 B.C (Table 1.1). in the
village of Croton in southern Italy, where Pythagoras first recognized the “dangers of
some, but not other, individuals who ate the fava beans” (Rowan 1859; Meletis and
Konstantopoulos 2004). The adverse reaction, haemolytic anaemia (favism), is now
known to be caused by glucose-6-phosphate dehydrogenase (G6PD) deficiency, a
prevalent X-linked trait seen in 1 every 3 males in southern Italy and Sardinia
(Schiliro ef al., 1979; Meloni et al., 1983; Calabro et al., 1989). G6PD deficiency is
now known to be the commonest human enzyme deficiency in the world, affecting
approximately 600 million people worldwide, with over 140 variants identified
(Cappellini and Fiorelli 2008; Pirmohamed 2011).

There is considerable overlap between the term “pharmacogenetics” and the
much newer term “pharmacogenomics”, which was introduced in 1997 by Marshall
(Marshall 1997) and describes the knowledge and technology used to evaluate the
effects of multiple genes, at genome-wide level, on drug response; while
pharmacogenetics traditionally focuses on a single gene (Pirmohamed 2001). These
two terms, pharmacogenetics and pharmacogenomics, are often used interchangeably

and in this PhD thesis, the term pharmacogenetics is used throughout.
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CHAPTER 1

1.3  Advances in pharmacogenetics

Phenotype-driven assessment of variation in drug metabolising enzyme genes
was the hallmark of research undertaken from the end of the 1950s to the end of the
1980s (Meyer 2004; Pirmohamed 2011). This usually requires the administration of a
probe drug and the measurement of the ratio between the probe drug and its
metabolite, the ratio being used to depict whether the individual had an absolute or
partial deficiency of an enzyme. There is an advantage to understanding the
phenotype of a particular gene because it enables the identification of many
polymorphisms, even those that have not been discovered, and determination of
phenocopy (where there is no functional polymorphism in the gene, but the function
is decreased because of the co-administration of a drug that inhibits that enzyme).
However, disadvantages include the labour intensive nature of the techniques, the
associated cost, the low throughput and the fact that in some cases, the probe
substance might not be specific for the one enzyme (Pirmohamed 2011).

The advent of molecular biological techniques enabled pharmacogenetics to
enter a new era in the 1990s, where the phenotypic assessments could be directly
related to nucleotide substitutions (and other variants) in the causative genes
(Pirmohamed 2011). Although the wide availability of polymerase chain reaction
(PCR)-based techniques enabled molecular assessment of many genes,
predominantly the drug metabolising enzyme genes, most studies were still largely
limited to single genes, and often single variants within that gene (Pirmohamed
2011).

Advances in pharmacogenetics truly began in the last decade following the
completion of the Human Genome Project (Venter et al., 2001) and the International

HapMap Project (The International HapMap Consortium 2003), along with the rapid
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development of genotyping and sequencing technologies, which have enabled the
assessment of the whole genome and have greatly affected pharmacogenetic
discoveries (Meyer 2004; Pirmohamed 2011). Table 1.1 highlights some of the major
advances that have occurred this century. Pharmacogenetics offers the opportunity to
personalise medicines where inter-individual differences in genetic information can
be used to improve drug efficacy and reduce drug toxicity, optimising patient care

and health outcomes.

1.4 Basic concepts on human genetic variations

The human genome consists of approximately 3.3 billion base pairs and
comprises over 27, 000 genes. Although the human DNA sequence is more than 99%
identical across different people (Lander et al.,, 2001), the 1% difference between 2
individuals’ genomes includes more than 12 million potential variations
(Sachidanandam et al., 2001; The International HapMap Consortium 2005; Frazer et
al., 2007). Genetic variants that occur infrequently at less than 1% in the population
are called “mutations”, whereas variants that occur more frequently at 1% or greater
are called “polymorphisms”. Polymorphisms include insertions or deletions, copy-
number variations, variable numbers of tandem repeats (VNTRs) and single
nucleotide polymorphisms (SNPs). The different forms or variants of a particular
polymorphism are called “alleles”.

SNPs occur every 100 to 300 bases along the human genome and are the
most common polymorphisms, accounting for approximately 90% of all human
genetic variations. SNPs can occur in coding (protein) and non-coding regions of the
genome. SNPs occurring in the coding region include (i) nonsynonymous SNPs

which lead to a change in an amino acid sequence of the resultant protein, and (ii)



CHAPTER 1

synonymous SNPs which do not result in amino acid change. Other SNPs that do not
directly code for protein may still influence cell function through other means, such
as controlling the amount of protein the cell builds, thereby influencing drug
response.

SNPs are also evolutionarily stable, not changing much from generation to
generation. This natural process of non-random association of 2 or more alleles at
two or more physically proximate loci is known as “linkage disequilibrium” (LD).
Alleles that tend to occur together on the same chromosome and which tend to be
inherited together are collectively known as a “haplotype”. The regions of DNA that
are in LD remain unchanged during recombination and thus “travel together” in
transmitting the genomic material from parent to offspring. This efficiently permits
the investigation of only 1 representative SNP that can serve as a “tag” or “marker”
for nearby SNPs and haplotype blocks by decreasing the number of total SNPs that
need to be tested directly, which is utilised in the design of genome-wide association

studies (GWAS).

1.5 Warfarin

Warfarin (3-a-acetylbenzyl-4-hydroxycoumarin; also known as Coumadin) is
the most commonly used oral anticoagulant worldwide. Almost 20 million
prescriptions are written in the US each year (Marketos 2004). In the UK, it has been
estimated that at least 1% of the whole population and 8% of those aged over 80
years are taking warfarin (Pirmohamed 2006). Owing to its narrow therapeutic
window and large inter-individual variability (up to 20-fold difference between
different individuals), warfarin has become an interesting and important case study

for pharmacogenetics.



CHAPTER 1

1.6 History of warfarin

In the 1920s livestock farmers in North Dakota, United States, observed an
outbreak of severe, unexplained bleeding in cattle. This was later linked to their diet
of mouldy sweet clover hay (Melilotus alba and M. officinalis) (Schofield 1924;
Roderick 1929) which was found to contain a haemorrhagic factor that caused a
plasma prothrombin defect (Roderick 1931). However, it was not until 10 years later
that the coumarin dicoumarol, 3,3’-methyllenbis(4-hydroxycoumarin), was identified
as the active agent in sweet clover responsible for the bleeding disorder (Campbell
and Link 1941). This led to the commercialisation of dicoumarol in 1941, and efforts
to develop an effective rodenticide resulted in the synthesis of warfarin in 1948 (Link
1959). The name “warfarin” was derived from the acronym WARF for Wisconsin
Alumni Research Foundation, with the suffix —arin from coumarin (Link 1959). The
survival of a navy recruit after an unsuccessful attempted suicide by the use of a
large amount of warfarin-based rodenticide (estimated to have ingested 567 mg of
warfarin) led to clinical trials of warfarin as an anticoagulant in humans, and in 1954,
warfarin was approved for medical use (Shapiro 1953; Clatanoff et al., 1954; Link

1959).

1.7 Clinical use of warfarin

Warfarin is a highly effective drug for the prevention of thromboembolic
events in patients with atrial fibrillation, deep vein thrombosis, pulmonary embolism
and mechanical heart valves. Therapy is usually started empirically on a fixed dosed
(such as 5 or 10 mg/day) during the first two to three days of warfarin initiation.

However, to achieve safe and effective anticoagulation, warfarin treatment needs to
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be monitored closely via the international normalised ratio (INR), a laboratory test
universally used to measure the clotting ability of blood; and therapeutic doses
subsequently titrated according to the INR response for each patient.

INR can be determined from the prothrombin time (PT) test result by a

standard formula: (PT of the patient/geometric mean of the PT reference range) ISt of

the reagent " wwhere IS1 is the international sensitivity index. The universally adopted INR
standards for the clinical management of warfarin range between 2.0 to 3.0 for most
indications. The exceptions are some types of mechanical prosthetic heart valves and
in certain patients with thrombosis and the antiphospholipid syndrome (see Table
1.2).

Studies in patients with atrial fibrillation taking warfarin showed that patients
were outside the INR target range 30-50% of the time (Jones et al., 2005; Boulanger
et al., 2006). Under dosing can lead to low INR, causing thrombosis while excessive
anticoagulation can lead to high INR, resulting in serious adverse reactions such as
bleeding (Palareti et al., 1996; Stroke Prevention in Atrial Fibrillation Investigators
1996). Indeed, warfarin is often among the top 3 drugs that lead to hospitalisation
from ADRs (Pirmohamed ef al., 2004; Budnitz et al., 2007; Wysowski et al., 2007).
Bleeding is the most common ADR of warfarin and occurs in up to 41% of patients
treated with warfarin, with major bleeding frequencies as high as 10-16% (Gullev et
al, 1999; Petty et al., 1999; Wysowski et al., 2007). The risk of adverse events is
highest during the dose-titration period within the first few weeks to months of
warfarin therapy (Fihn ef al., 1993; Landefeld and Beyth 1993; White et al., 1999;
Beyth et al,, 2000; Hylek et al., 2007). In addition to mortality and morbidity,

substantial hospitalisation costs are also associated with warfarin-related bleeds. An

analysis by Fanikos and colleagues showed that the average cost per patient of a
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bleeding episode was nearly $16, 000 (range $2, 707-$64, 446) with a mean length

of stay of 6 days (Fanikos et al., 2005).

Table 1.2. Optima! INR therapeutic range for warfarin therapy*.

Indication INR

Prophylaxis of venous thrombosis (high-risk surgery)
Treatment of venous thrombosis
Treatment of pulmonary embolism

Prevention of systemic embolism in

Atrial fibrillation 20-30
Valvular heart disease
Acute myocardial infarction (to prevent systemic embolism)**
Tissue heart valves
Mechanical prosthetic heart valves {high risk) 25-35
Bileaflet mechanical heart valve in aortic position 2.0-3.0

*Recommended by the American Coliege of Chest Physicians
** An INR of 2.5 - 3.5 is recommended for recurrent myocardial infarction, consistent
with US Food and Drug Administration recommendations.

Table adapted from Hirsh et al., 2001

Therefore, strategies to individualise the initial warfarin dose have been
sought. Numerous clinical and genetic factors influence warfarin dose response in

individuals. These will be discussed in more detail in subsequent sections.

1.8 The blood coagulation system

The coagulation system is designed to prevent bleeding at the site of vessel
injury through the formation of a blood clot. Clot formation proceeds in two phases:
primary and secondary haemostasis, and involves the interactions among three
components: the blood vessel wall, cellular components within the blood
(predominantly platelets in the arterial circulation), and plasma clotting factors.

Primary haemostasis occurs immediately after blood vessel injury. Vasoconstriction

11
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occurs and glycoproteins in the circulating platelets adhere to the exposed von
Willebrand factor (VWF) on the damaged vessel wall. On contact with collagen
fibres on the vessel surface, the platelets become activated and platelet aggregation
occurs where more platelets and circulating fibrinogen are attracted to the damaged
vessel wall, forming a soft plug. This is followed by secondary haemostasis in which
the initial platelet plug is consolidated in a meshwork of fibrin via the coagulation
pathway.

The blood coagulation pathway is a proteolytic cascade. All of the
coagulation factors involved are serine proteases (enzymes) except factor V and
factor VIII which are glycoproteins (cofactors), and factor XIII which is a
transglutaminase. Each coagulation factor is present in the plasma as a zymogen
(inactive form), which on activation undergoes proteolytic cleavage to release the
active factor from the precursor molecule. The coagulation pathway functions as a
series of positive and negative feedback loops which controls the activation process.
The ultimate goal of the pathway is to produce thrombin, which converts soluble
fibrinogen into insoluble fibrin, forming a clot. The reactions leading to fibrin
formation can be divided into the (i) extrinsic, (ii) intrinsic and (iii) common

pathways (Davie and Ratnoff 1964; Macfarlane 1964), as illustrated in Figure 1.1.

1.8.1 Extrinsic pathway

The extrinsic pathway (Figure 1.1), also known as the tissue factor pathway,
is the primary pathway for the initiation of blood coagulation. Upon vascular injury,
the extrinsic pathway is initiated in response to the exposed tissue factor (TF), a

subendothelial cell-surface glycoprotein that binds calcium ions and phospholipids.

12
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When the circulating factor VII comes into contact with TF, a TF-VIla complex is

formed. This complex rapidly converts factor X to its enzyme form, factor Xa.

1.8.2 Intrinsic pathway

The intrinsic pathway (Figure 1.1) requires the coagulation factors VIII, IX,
X, XI, and XII. Other requirements are the proteins prekallikrein (PK) and high
molecular weight kininogen (HMWK), as well as calcium ions and phospholipids
secreted from platelets. Initiation of the intrinsic pathway occurs when PK, HMWK,
and factor XII forms a complex with the negatively charged phospholipids on the
damaged vessel surface. This is termed the “contact phase”. As such the intrinsic
pathway is also known as the contact activation pathway. The assembly of the
contact phase components results in the conversion of prekallikrein to kallikrein,
which in turn activates factor XII to factor XIla. Factor XIIa then cleaves the factor
XI zymogen to its active form, factor XIa, which then converts factor IX to factor
[Xa. Subsequently, factor IXa cleaves factor X, activating it to factor Xa. In the
presence of minute quantities of thrombin, factor VIII is activated to factor VIlla
(cofactor). Factor VIlla acts as a receptor for factors IXa and X, forming the tenase
complex. This complex in turn activates factor X, and factor Xa catalyses thrombin
formation from prothrombin. As the concentration of thrombin increases, factor
Villa is ultimately cleaved by thrombin and inactivated. This dual action of
thrombin, upon factor VIII, acts to limit the extent of tenase complex formation and

thus the extent of the coagulation cascade.
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1.8.3 Common pathway

The common point (Figure 1.1) in both the extrinsic and intrinsic pathways is
the activation of factor X to factor Xa. Factor Xa activates prothrombin (factor II) to
thrombin (factor Ila). Further activation of thrombin occurs on the surface of
activated platelets via the formation of the prothrombinase complex. The
glycoprotein factor V is activated to factor Va by means of small amounts of
thrombin. Factor Va acts as a cofactor in the formation of the prothrombinase
complex by binding to specific receptors on the surfaces of activated platelets and
forms a complex with prothrombin and factor Xa. Akin to factor VIII activation in
the formation of the tenase complex, factor Va is inactivated by increased levels of
thrombin, limiting the extent of the coagulation cascade.

Finally, thrombin converts fibrinogen (factor I) to fibrin (factor Ia). Thrombin
also activates factor XIII to factor Xlla, a highly specific transglutaminase that
introduces cross-links between the fibrin monomers, solidifying the fibrin clot.

In addition to its role in the activation of fibrin clot formation, thrombin plays an
important regulatory role in coagulation to prevent excessive clotting. Thrombin
combines with thrombomodulin, an endothelial cell surface protein, forming a
complex that converts the major physiological anticoagulant, protein C, to activated
protein C (APC). The cofactor protein S and APC degrade factors Va and Vllla
(Esmon et al, 1982; Comp et al, 1984), thereby limiting their activities in the

coagulation cascade.
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1.8.4 Coagulation pathway regulators

Other regulators of the coagulation pathway include protein Z, tissue factor
pathway inhibitor (TFPI) and anti-thrombin III. Protein Z is a cofactor which forms a
calcium ion-dependent complex with factor Xa at phospholipid surfaces (Han ef al.,
1998) and this protein Z—factor Xa interaction enhances the inhibition of factor Xa
produced by the plasma protein named protein Z-dependent protease inhibitor (ZPI)
(Han er al,, 1998; Broze G.J 2001). TFPI limits the action of tissue factor, thereby
inhibiting excessive TF-mediated activation of factor X. Anti-thrombin III is a serine
protease inhibitor that degrades the serine proteases: thrombin, factors IXa, Xa, XIa,

and Xlla.

1.9  Warfarin pharmacokinetics

Warfarin is manufactured as a racemic mixture of two optically active
isomers, the R- and S-enantiomers, in approximately equal proportions. The left-
handed S-enantiomer accounts for 60 to 70% of the overall anticoagulant activity and
is estimated to be 3 to 5 times more potent than the right-handed R-enantiomer
(Breckenridge et al, 1974, O'Reilly 1974). Although warfarin can be given
intravenously or sublingually, it is almost always administered by mouth. After oral
administration, warfarin is absorbed rapidly and extensively from the stomach and
upper gastrointestinal tract, with a bioavailability of over 90%, and peak plasma
concentration in healthy volunteers is usually attained within 60-90 minutes
(OReilly 1976; Breckenridge 1978; Kelly and O'Malley 1979). In the circulating
blood, racemic warfarin is highly (97-99%) bound to plasma proteins (mainly
albumin). The remaining 1% of free warfarin is taken up by the liver, primarily

microsomes, where it exerts its pharmacological actions (Wilting ef al., 1980; Porter
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and Sawyer 1992). Peak anticoagulant effect occurs 36-72h after drug administration
when clotting factors, especially prothrombin, are cleared from the circulation
(O'Reilly and Aggeler 1968).

The termination of warfarin pharmacological effect and the elimination of
warfarin are dependent on hepatic metabolism, which is catalysed by the cytochrome
P450 (CYP) complex (see Figure 1.2). S-warfarin is metabolised almost exclusively
by CYP2C9 to its major metabolite 7-hydroxywarfarin and to a much lesser extent,
6-hydroxywarfarin (Rettie et al, 1992). Both metabolites are inactive and are
excreted in the bile. R-warfarin is metabolised by CYP1A2 (Zhang et al., 1995),
CYP2C19 (Kaminsky et al., 1993) and CYP3A4 (Brian 1990; Rettie ef al., 1992) to
6-, 7-, and 8-hydroxywarfarin that are excreted in the urine. The metabolic
elimination of S-warfarin is 3 times faster than that of R-warfarin. (Breckenridge er

al., 1974; O'Reilly 1974).

1.10 Warfarin pharmacodynamics

The procoagulant factors 11, VII, IX, X, and anticoagulant proteins C, S and Z
are known to be vitamin K-dependent proteins which require y-carboxylation of their
glutamic acid residues to become fully functional. The conversion of glutamic acid
(Glu) residues on the N-terminal regions of vitamin-K-dependent proteins to y-
carboxyglutamic acid (Gla) residues causes a conformational change which promotes
their binding to cofactors on phospholipid surfaces in the presence of calcium ions
(Stenflo et al., 1974; Nelsestuen 1976). This post-translational modification reaction
is accomplished by the enzyme y-glutamyl carboxylase (GGCX) and requires
reduced vitamin K, (vitamin K; hydroquinone or vitamin K;H;) as a cofactor

(Nelsestuen ef al., 1974). Vitamin K ;H; is formed by the reduction of vitamin K;
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quinone (vitamin K;), which is catalysed by the enzyme vitamin K 2,3-epoxide
reductase (VKOR). Concomitant with the y-carboxylation reaction, vitamin K;H, is
oxidised to vitamin K, 2, 3-epoxide. Due to the limited availability of vitamin K in
tissues in vivo, the epoxide must be rapidly recycled to vitamin K;H,. This is again
catalysed by VKOR. This cyclic inter-conversion is known as the vitamin K cycle
(Suttie 1978) and is depicted in Figure 1.2.

Warfarin exerts its anticoagulant effect by inhibiting VKOR (Figure 1.2),
thereby preventing vitamin K recycling. The decrease in vitamin K;H, availability
leads to diminished y-carboxylation of vitamin K-dependent clotting factors II, VII,
IX and X, thus inhibiting coagulation (Bell et al, 1972; Whitlon et al., 1978;
Choonara et al, 1988). In addition to its anticoagulant effect, warfarin inhibits
carboxylation of the regulatory anticoagulant proteins C and S and therefore has the
potential to exert a procoagulant effect.

When the liver concentration of vitamin K; is elevated, vitamin K; can be
reduced to vitamin K;H, by an alternative enzyme, flavoprotein DT-diaphorase,
which is a nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase
(Hochstein 1983; Wallin and Martin 1987). Warfarin does not inhibit DT-diaphorase
(Wallin and Martin 1987). Therefore, warfarin intoxication can be counteracted by
administering high doses of vitamin K; which drives cofactor vitamin K;H,
production for GGCX, restoring normal functioning of the blood coagulation system

(Figure 1.2).
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1.11 Proposed warfarin binding site on VKOR

The vitamin K 2,3-epoxide reductase enzyme was first identified in 1974
(Zimmermann and Matschiner 1974), but the gene encoding this enzyme, VKORCI,
was only identified in 2004 (Li et al., 2004; Rost et al., 2004a). Biochemical studies
have shown that VKOR is a multicomponent lipid-protein enzyme system located in
the endoplasmic reticulum (ER) membrane (Cain ef al., 1997; Li et al., 2004; Rost ef
al, 2004a). Recent data from in vitro translation/cotranslocation experiments
strongly suggest VKOR has a three-transmembrane topology (Tie et al., 2005) The
suggested structure can be described as follows: ER-lumenal N-terminus (~10 amino
acids), 3 trans-membrane o-helices bracketing one large cytoplasmic loop (~69
amino acids) between the first and second transmembrane helices and a small ER-
lumenal loop (~7 amino acids) between the second and third helices, and a
cytoplasmic C-terminus (~16 amino acids) (Figure 1.3).

Multiple alignments of amino acid sequences of VKOR orthologs (species
analysed include achaea, eubacteria, insects, vertebrates and plants) indicate several
conserved amino acids and functional motifs (Goodstadt and Ponting 2004; Li ef al.,
2004; Rost et al., 2004a). Two completely conserved cysteine residues (Cys43 and
Cys51 in human VKOR) together with a conserved serine/threonine (Ser57) are
located within the cytoplasmic loop (Goodstadt and Ponting 2004; Tie et al., 2005).
Two additional conserved cysteines, Cys132 and Cys135, predicted to be partially
buried in the ER membrane form a possible Cys132-Isoleucine-Valine Cys135
(CIVC) redox motif (Goodstadt and Ponting 2004; Rost et al.,, 2005) (Figure 1.3).
These five conserved polar residues have been proposed to form the active centre of
VKOR (Goodstadt and Ponting 2004). In vitro mutagenesis of Cys132 or Cys135 to

serine completely eliminates VKOR activity, confirming that the CIVC redox motif
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plays a crucial role in vitamin K epoxide reduction (Wajih et al., 2005). In vitro
mutagenesis of tyrosine 139 to phenylalanine (a substitution found in warfarin-
resistant rats) provided indirect evidence for Tyr139 being part of the warfarin
binding site. Although tyrosine and phenylalanine differ by only one hydroxyl group,
substitution led to nearly complete warfarin resistance. Tyr139 is flanked by
threonine and alanine; this hydrophobic sequence motif Thr-Tyr-Ala (TYA) has been

proposed to be the warfarin binding site (Ma et al., 1992).
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Figure 1.3. Proposed membrane topology of VKOR. The model predicts three
transmembrane a-helices. The amino-terminal part (aa 1-10) of the enzyme is located
within the ER-lumen, followed by a-helix 1 (aa 11-30), a large cytoplasmic loop of 69
aa, a-helix 2 (aa 101-120), and a small ER lumenal loop of 7 aa. The third a-helix (aa
128-147) leads over to the cytoplasmic carboxy terminal part of 16 aa. Functional
motifs comprising TYA warfarin binding site (aa 138-140, orange circles), CIVC redox
motif (aa 132-135, green circles), ER retention signal (aa 159-163), and five amino
acids conserved throughout all species (aa Cys43, Cys51, Ser/Thr57, Cys132, Cys135,
blue circles) are highlighted. aa: amino acid; ER: endoplasmic reticulum; CIVC:
Cysteine132-Isoleucine-Valine-Cysteine135; TYA: Threonine-Tyrosine-Alanine. Figure
adapted from Tie et al., 2005.
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1.12 Clinical and environmental factors affecting warfarin

response

Many clinical and environmental factors influence warfarin dose requirement
and response. They include age, ethnicity, weight, height, medications, diet, illness,
smoking and adherence.

Increasing patient age has consistently been associated with a higher
sensitivity to warfarin, which may be caused by the significant negative correlation
between age and warfarin clearance, and by the fall in total hepatic content of VKOR
due to age-related decrease in hepatic mass requirements (Gage et al., 2004; Hillman
et al., 2004; Aquilante et al., 2006; Carlquist ef al., 2006; Herman et al., 2006; Li et
al., 2006; Tham et al., 2006, Caldwell et al, 2007, Wu et al., 2008). Dose
requirements usually decrease with age by ~8-10% per decade of life (Gurwitz et
al., 1992; Loebstein et al., 2001; Gage et al., 2004, Sconce et al., 2005).

Warfarin dose requirements have been found to vary by race. As compared
with Caucasians, African-Americans require higher doses (Gage et al., 2004) and
Asians require lower doses on average (Dang et al., 2005; Voora et al, 2005).
Studies have suggested that this is most probably due to differences in the prevalence
of genetic variants, as race was found to contribute minimally to dose requirements
after adjusting for VKORC! genotype (Gage et al., 2008; Klein ef al., 2009).

Medications can affect the pharmacokinetics of warfarin by reducing its
absorption from the intestine, by altering its clearance, or by competitive protein
binding. Drugs can also influence the pharmacodynamics of warfarin by mechanisms
such as inhibition of the synthesis of vitamin K-dependent coagulation factors or
increased clearance of these factors. A list of major medications that interact with

warfarin is listed in Table 1.3. Studies have reported that patients on amiodarone
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require nearly 30% lower doses of warfarin for stable anticoagulation (Sanoski and

Bauman 2002; Gage ef al., 2008; Klein et al., 2009).

Table 1.3. Some major drug interactions with warfarin.

Clopidogrel, Tirofiban

INCREASED DECREASED
Effect of Warfarin Effect of Warfarin
Anti-Platelet Agents Analgesics
Abciximab (ReoPro), Aspirin, Paracetamol (large doses i.e. 4 to Ascorbic Acid
Dipyridamole, NSAIDs, 7g per week), Tramadol (large doses)
Vitamin K

COX-2 Inhibitors
Celecoxib, Rofecoxib

Anticonvulsants
Phenytoin

Anticonvulsants
Carbamazepine, Phenytoin

Antibiotics
Cephalosporins, Macrolides,
Metronidazole, Sulphonamides,
Quinolones, Vancomycin

Selective Serotonin

Reuptake Inhibitors
Fluoxetine

Antibiotics
Rifampicin, Rifabutin

Antifungals
Itraconazole, Fluconazole,
Ketoconazole

Tricyclic Antidepressants

Sedatives
Barbiturates

Antiarrythmics
Amiodarone, Mexiletine,
Verapamil, Quinidine

Selective Estrogen Receptor
Modulator
Raloxifene, Tamoxifen

Herbal Medicines
Dong Quai, Garlic, Papaya, St.
lohn's Wort, Ginkgo, Ginger and
Garlic (large amounts), Guarana

Herbal Medicines
Ginseng, Slippery Eim Bark,
Green Tea, Co-Enzyme Q10

Warfarin dose requirements may also be affected by dietary factors such as

alcohol consumption or vitamin K intake. Alcohol may affect warfarin metabolism

and high dietary intake of vitamin K (found in green vegetables) can diminish the

action of warfarin. However, there is conflicting evidence on the association between

warfarin maintenance doses and vitamin K intake (Loebstein ef al., 2001; Absher et

al., 2002; Gage et al., 2004; Sconce et al., 2005; Sconce et al., 2007).
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Various illnesses such as liver disease, malnutrition, decompensated heart
failure, hypermetabolic states (e.g. febrile illnesses, hyperthyroidism) can affect
warfarin dose requirements (Ansell ef al., 2001; Gage and Eby 2003; D'Andrea et al.,
2008; Gage et al., 2008).

Cigarette smoking can induce CYPIA2 activity, the major enzyme
responsible for R-warfarin metabolism. With increased smoking, the CYP1A2
increases its metabolism of R-warfarin, which translates into a need for higher
dosages. During longer non-smoking periods, the enzyme activity slows down and
thus less warfarin is needed. Therefore, a change in smoking habit may affect
warfarin coagulation response, for example after smoking cessation, patients need to
be carefully monitored and warfarin doses reduced accordingly (Faber and Fuhr
2004).

Adherence to warfarin also clearly affects the degree of anticoagulant control.
Patients with missed doses would have an increased risk of under-anticoagulation
while patients who had extra doses would be at increased risk of over-

anticoagulation (Kimmel et al., 2007).

1.13 Genetic factors affecting warfarin dose requirements

Over 30 genes have been postulated to alter warfarin response. Figure 1.4
illustrates an overview of their interactive pathways with warfarin and Table 1.4
details their protein functions (see Figure 1.4). However, two genes, CYP2C9 and

VKORCI, have consistently been reported to play a key role in warfarin response.
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Figure 1.4. An overview of warfarin interactive pathways. This figure illustrates the
genes thought to be involved in the action and biotransformation of warfarin and
vitamin K. Adapted from Wadelius et al., 2006.
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CHAPTER 1

1.13.1 CYP2C9

The cytochrome P450 superfamily are the major enzymes involved in drug
metabolism, accounting for approximately 75% of the total metabolism (Ingelman-
Sundberg 2004). CYP2C9 was the first gene documented to affect warfarin dose
requirement (Furuya et al., 1995). The CYP2C9 gene is located on chromosome
10g24.2, spans approximately 55 kb, contains 9 exons, and encodes a 60 kDa
microsomal protein (Goldstein and de Morais 1994).

The frequency of the wild-type allele, designated CYP2C9*1, varies from 81-
96% in different ethnic groups (Table 1.5) (Gage ef al., 2004; Sanderson ef al., 2005,
Voora et al., 2005; D'Andrea ef al., 2008). The most common CYP2C9 functional
variant alleles are CYP2C9*2 (rs1799853) and CYP2C9*3 (151057910). CYP2C9*2
induces an Arg144Cys amino substitution in exon 3 while CYP2C9*3 encodes for an
Ile359Leu amino acid change in exon 7. The allelic frequencies of CYP2C9*2 and
CYP2C9*3 diverge considerably among different ethnic groups. CYP2C9*2 occurs
at a frequency of 6-14% in Caucasians but are less frequent in Asian and African-
American populations (Table 1.5). Indeed, CYP2C9*2 has not been reported in
Asians and only 2-4% of African Americans carry this allele. CYP2C9*3 is present
in 6-10% of Caucasians, 1-4% of Chinese, Korean and Japanese populations, and
1-2% of African-Americans (Stubbins et al., 1996; Takahashi et al., 1998; Higashi et
al., 2002; Lee et al., 2002; Xie et al., 2002; Gage et al., 2004; Aquilante ef al., 2006,
Yin and Miyata 2007; Wu et al., 2008).

In vitro studies have shown that the CYP2C9*2 and *3 polymorphisms are
associated with reduced metabolic efficiency and warfarin clearance (Rettie ef al.,

1994; Haining ef al., 1996; Sullivan-Klose ef al., 1996). Possession of either of these

29



CHAPTER 1
genes, therefore, is associated with lower warfarin dose requirements, compared to
individuals carrying the wild-type CYP2C9*1 allele.

When compared with CYP2C9 homozygous *1*1 wild-type carriers,
individuals heterozygous for the *2 and *3 allele require 15-20% and 30-40% lower
daily maintenance doses, respectively. Individuals homozygous for *2 and *3 require
~35% and ~75% lower daily maintenance doses, respectively, than do homozygous
wild-type individuals (Higashi et al., 2002; Xie et al., 2002; Takahashi and Echizen
2003; Gage et al., 2004; Ingelman-Sundberg 2004; Hillman et al., 2005; Sanderson
et al., 2005; Voora et al., 2005; Aquilante er al., 2006; Lee ef al., 2006; Marsh et al.,
2006; Wu et al., 2008; Lindh et al., 2009).

Using multiple linear regression models, several observational studies have
shown that CYP2C9 polymorphisms account for ~10-15% of the variance in warfarin
maintenance dosage (Gage et al., 2004; Sconce et al., 2005; Aquilante ef al., 2006;
Carlquist ef al., 2006; Anderson ef al., 2007; Caldwell et al., 2007; Wu ef al., 2008;
Wadelius ef al., 2009).

In addition to association with dose requirements, patients with the
CYP2C9*2, *3, or a combination of both *2*3 variant alleles have been associated
with longer times to INR and dose stabilization, supratherapeutic anticoagulation
and a two- to three-fold higher risk of a serious or life-threatening bleeding event,
particularly at the beginning of therapy (Aithal et al., 1999; Margaglione et al., 2000,
Taube et al., 2000; Higashi ez al., 2002; Bodin et al., 2005a; Schwarz et al., 2008;
Wadelius et al., 2009).

Numerous other CYP2C9 polymorphisms with respect to their functional
effects have also been reported (http://www.imm.ki.se/CYPalleles/cyp2¢9.htm). In

particular, CYP2C9 alleles *4 (found in the Japanese), *5 and *6 (identified in
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African-Americans) and *// (rare in both Caucasians and African-Americans) were

all found to lead to a reduction in warfarin dose requirement (Schwarz 2003; Tai ef

al., 2005).

Table 1.5. Frequencies of genetic variants in Caucasians, Asians and African-Americans.

Variant Caucasian (%) Asian (%) African—-American (%)
CYP2C9 *1 80 96 94.7
= CVle;2C9*2> = : 6-147 i ) 0 v e fapl o ;—4
) CYP2f9 *3A I 6—10 i 7 ' 1-4 : a 1-2
VKORCI (groupA) 3537 s8-8 1023
T VKORCI laroup Bl - o . uBBBE, 71 o - eelDAB e i AGHBON, <Ay

Adapted from Stubbins et al., 1996; Takahashi et al., 1998; Higashi et al., 2002; Lee et al., 2002; Xie
et al., 2002; Gage et al., 2004; Sanderson et al., 2005; Voora et al., 2005; Veenstra et al., 2005;
Aquilante et al., 2006; Limdi et al., 2007; Yin and Miyata, 2007; D'Andrea et al., 2008; Limdi et al.,
2008; Wu et al., 2008.

1.13.2 VKORCI

The VKORCI gene is located on chromosome 16p11.2, and is approximately
4 kb long (Li et al., 2004; Rost et al., 2004a). Since its cloning in 2004, a series of
different rare VKORCI mutations have been identified in patients resistant to
warfarin, who required warfarin doses up to 20-fold higher than average to achieve
an anticoagulant effect. Common genetic polymorphisms in the VKORCI have also
been identified in different studies and all showed an association with warfarin dose
variability.

The VKORCI intron 1 polymorphism ¢.1173C>T (rs9934438) was first
identified by D’Andrea and colleagues in 2005, and was associated with ~3 mg/day
lower warfarin dosage requirements (D'Andrea ef al., 2005). Soon after, this intronic
¢.1173C>T polymorphism was shown to be in LD with a new polymorphism
¢.-1639G>A (rs9923231) occurring at the second nucleotide of an E-box (CANNTG)

in the 5° untranslated (UTR) region of the gene (Yuan et al, 2005). This
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polymorphism is associated with low mRNA levels in liver specimens (Rieder ef al.,
2005). Some studies have also reported that this SNP reduces VKORCI gene
promoter activity (Yuan et al., 2005) but this has not been confirmed by others
(Bodin et al., 2005a).

Rieder and colleagues (2005) resequenced the entire VKORCI gene in 186
European-Americans on long-term warfarin maintenance therapy. Using 10 common
non-coding SNPs, five common haplotypes (H1, H2, H7, H8 and H9) with > 5%
frequency were inferred and these haplotypes were segregated into two groups
according to their association with warfarin dose requirement. Group A, comprising
H1 and H2, was associated with low warfarin dosage, and group B, comprising H7,
H8 and H9, was associated with high dosage; and significant differences in warfarin
maintenance dose were observed between the three combinations of haplotype
groups: A/A (2.7 mg/day), A/B (4.9 mg/day), and B/B (6.2 mg/day), explaining 25%
of dose variance (Rieder et al., 2005). Different frequencies of VKORCI allele
distribution have been observed among ethnic groups. The prevalence of the AA
haplotype group is only 10-23% in African-Americans, but slightly higher in
Caucasians (35-37%), and much higher, approximately 83—-89%, in Asian subjects.
On the other hand, the haplotype group B has a higher prevalence in the Caucasian
population, approximately 58—64%, but is only found in 10-13% of Asian subjects
(Table 1.5) (Rieder et al., 2005; Veenstra et al., 2005; Limdi et al., 2008a).

Among the 10 SNPs that constitute the haplotypes, 5 polymorphisms are
strongly correlated and include the intronic ¢.1173C>T and promoter c.-1639G>A
SNPs. Association between warfarin dose requirements and these two SNPs
(c.1173C>T, 1s9934438; c.-1639G>A, rs9923231) have been confirmed in other

studies in populations from around the world (Italy, Sweden, Hong Kong, Japan,
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Singapore, Taiwan, UK, Brazil, US) (Sconce et al., 2005; Wadelius et al., 2005;
Yuan et al., 2005; Carlquist ef al., 2006; Lee et al., 2006; Li et al., 2006; Mushiroda
et al., 2006; Takahashi er al., 2006; Perini ef al., 2008; Klein et al., 2009).

Using multiple linear regression models, VKORCI polymorphisms have been
shown to be strongly predictive of ~20-35% of warfarin dose variability (Sconce et
al., 2005; Aquilante et al., 2006; Carlquist e al., 2006; Herman et al., 2006; Tham et
al., 2006; Perini et al., 2008; Wadelius et al., 2009). In addition to their effects on
dose requirements, variant VKORCI alleles have been associated with shorter period
of time required to achieve therapeutic INR, as well as first out-of-range INR (INR >
4) (Schwarz et al., 2008). Association with an increased risk of bleeding has also
been reported in some studies (Reitsma et al., 2005; Schwarz et al., 2008; Wadelius

et al., 2009) but not in others (Crawford ez al., 2007; Limdi ef al., 2008b).

1.13.3 CYP4F2 and other genetic factors

In addition to VKORCI and CYP2C9, an exon 2 genetic variation
(rs2108622) in the cytochrome P450 4F2 (CYP4F2) gene was recently found to be
associated with increased warfarin dose requirements, accounting for 1-7% of dose
variance (Caldwell et al., 2008; Borgiani et al., 2009; Takeuchi et al., 2009).

Other genes that might have influential effects on warfarin response include
those involved in the biotransformation of vitamin K, warfarin and the vitamin K-
dependent clotting factors (see Figure 1.4 and Table 1.4). Few studies have
investigated the contribution to warfarin dose variability from genes coding for y-
glutamyl carboxylase (GGCX), clotting factors such as factors II, VII, IX and X (F2,
F7, F9 and F10), as well as apolipoprotein E (4ApoE), calumenin (CALU),

microsomal epoxide hydrolase (EPHX1) and P-glycoprotein (ABCBI).
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Two studies have shown that a polymorphism (rs762684) and a microsatellite
(CAA repeat) both located within intron 6 of GGCX have a modest effect on
warfarin dose requirements (Shikata et al., 2004; Wadelius ef al., 2005). In addition,
one study reported an association of a nonsynonymous GGCX Arg325Glu
polymorphism (rs699664) in exon 8 with warfarin dose variability (Kimura et al.,
2007) but two other studies did not show this (Loebstein et al., 2005; Wadelius et al.,
2005).

A nonsynonymous polymorphism in F2 (rs5896) was found to lead to
increased warfarin sensitivity in two independent studies (D'Ambrosio et al., 2004;
Shikata et al., 2004), whereas a third study did not show this (Aquilante ez al., 2006).
It has also been reported that promoter polymorphisms in F7 have an effect on
warfarin sensitivity (D'Ambrosio et al., 2004; Shikata er al., 2004; Aquilante et al.,
2006). Mutations in the propeptide of F'9 which cause an amino acid change from
alanine to valine or threonine at residue -10, lead to a rapid drop in factor IX during
warfarin treatment and have been associated with rare cases of bleeding (Kristensen
2002; van der Heijden et al., 2004).

Apolipoprotein E is a very low-density lipoprotein (VLDL) which facilitates
cellular uptake of chylomicrons, the main vehicle of vitamin K transport to liver
(Lamon-Fava et al., 1998). The ApoE *E4 allele has been found to be associated
with increased warfarin dose requirements, suggesting patients carrying the *E4
allele have enhanced vitamin K uptake into the liver (Kohnke ef al., 2005; Sconce et
al., 2006; Kimmel et al., 2008).

The endoplasmic reticulum chaperone protein, calumenin, can bind to the

vitamin K cycle and inhibit its activity (Wallin ef al., 2001; Wajih et al., 2004). Thus
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far, only one study has shown that a nonsynonymous polymorphism in CALU
(rs2290228) is related to warfarin dose requirements (Vecsler ef al., 2006).

Human microsomal epoxide hydrolase (encoded by EPHXT) is a xenobiotic-
metabolizing enzyme that detoxifies reactive epoxides to more water-soluble
compounds. It resides in the endoplasmic reticulum, and earlier findings have shown
that it harbours a vitamin K 2,3-epoxide binding site (Cain ef al., 1997), suggesting it
may complex with VKOR to produce a multiprotein complex that is responsible for
vitamin K epoxide reduction (Morisseau and Hammock 2005). Interestingly, a
coding EPHXI polymorphism (rs1051740) has been associated with high warfarin
doses in CYP2C9 extensive metabolisers (Loebstein et al., 2005).

Warfarin has been shown to be a substrate for P-glycoprotein, an efflux
membrane transporter, suggesting P-glycoprotein contributes to warfarin disposition
(Sussman et al., 2002). P-glycoprotein is encoded by the adenosine triphosphate
(ATP)-binding cassette transporter Bl (ABCBI) gene. A synonymous variant within
exon 26 of ABCBI, rs1045642, was found to modulate warfarin sensitivity (Wadelius

et al., 2004).

1.14 Warfarin dosing algorithms

Due to the multifactorial nature of warfarin response, the concept of dosing
algorithms utilising clinical variables, such as age, body weight, gender, concurrent
medication and indication of warfarin regimen, to improve anticoagulation
management, reduce complications, and enhance efficacy has existed for decades
(Theofanous and Barile 1973; Williams and Karl 1979; Ovesen et al., 1989).
Computer programs that incorporate clinical variables have been developed and

studies have demonstrated that their usage helps to maintain a more stable INR and
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reduce complication rates in both the induction and maintenance phase (Ageno ef al.,
2000; Manotti et al., 2001).

Since the discovery of CYP2C9 and VKORCI genes, numerous studies have
examined their association with warfarin dose requirements. Patients carrying the
CYP2C9*2, CYP2C9*3 or/and VKORCI -1639 genetic variations have consistently
been found to be “sensitive” to warfarin and require lower warfarin dose (Gage et al.,
2004; Bodin et al., 2005a; D'Andrea et al., 2005; Sconce et al., 2005; Carlquist et al.,
2006; Takahashi ef al., 2006). Noting the importance of these observations, the Food
and Drug Administration (FDA) updated the warfarin prescription label in 2007 to
include the effect of CYP2C9 and VKORCI polymorphisms on warfarin initial
dosing.

Many studies have also developed and tested dosing algorithms that
incorporate both genotype and clinical characteristics with warfarin dosing
requirement. Results from selected studies are summarised in Table 1.6. On average,
SNPs in CYP2C9 and VKORCI contribute approximately 30-40% warfarin dose
variability, and together with clinical variables, they account for nearly up to 60% of
dose variance (Bodin et al., 2005a; Aquilante et al., 2006; Carlquist et al., 2006;
Klein et al., 2009; Wadelius et al., 2009). The largest study to date was published in
2009 by the International Warfarin Pharmacogenetics Consortium (IWPC). They
derived both a clinical and a pharmacogenetic dosing model from a cohort of over
4043 patients from 21 research groups across 9 countries and subsequently validated
the dosing models in a separate group of 1008 patients (Klein et al., 2009). Their
results demonstrated that the addition of genetic information (CYP2C9 and VKORCI
SNPs) provided a dosage prediction that was significantly closer to the actual dosage

required than estimates derived from a clinical algorithm or the fixed-dose approach.
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Based on these findings, the FDA made a second revision to the drug label for

warfarin in January 2010 to include dose ranges based on pharmacogenetic

information on CYP2C9 and VKORCI.

Table 1.6. Contribution of genetic variants and clinical variablest to warfarin dosage.

Study VKORC1 (%) CYP2C9 (%) Gene + clinicalt (%)
Bodin et al., 2005 37 14 54
 sconceetal., 2005 15 17 542
Aquilante etal., 2006 288 114 514
~ Carlquistetal, 2006 151 U ABB i e A8 3 o
IWPC,20094 277 s 314 a
 Wadeliusetal, 20004 293 118 587

tClinical variables include age, gender, drug interaction, ethnicity, body mass index (BMI).
¥Percentage of genetic contribution in univariate analysis.
IWPC: International Warfarin Pharmacogenetics Consortium.

1.15 Thesis aims

Although warfarin is highly effective, it is a challenging drug to prescribe due
to its narrow therapeutic range and wide inter-individual variability. A multitude of
studies have now clearly established that clinical factors such as age, gender, body
weight, height and concomitant medications contribute to ~15-20% warfarin dose
variability; and genetic variations in CYP2C9 and VKORCI account for an even
higher variation in dose requirements, ~30-40%. Despite incorporating both clinical
and genetic factors, the best pharmacogenetic algorithm developed utilising a
prospective cohort of patients explained only ~60% of the variance in dosing
(Wadelius ef al., 2009). Up to 40% of warfarin dose variance still remains poorly
understood, spggesting that other factors might be involved in warfarin’s

pharmacological effect.
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A nonsynonymous polymorphism in CYP4F2 (rs2108622) has recently been
reported to explain some of the variance in warfarin stable dose requirements (2-7%),
but studies published were of retrospective nature and other warfarin-related clinical
outcomes were not investigated (Caldwell et al., 2008; Borgiani et al., 2009;
Takeuchi et al., 2009). Furthermore, the implications of other SNPs in CYP4F2 in
relation to warfarin response have not been investigated.

Although the IWPC pharmacogenetic algorithm was more accurate than a
clinical algorithm, it accurately identified < 50% of patients needing low doses and
< 25% of patients needing high doses (Figure 1.5) (Klein et al., 2009). This suggests
that there remains substantial room for improvement in the understanding of factors
predicting warfarin dose, especially for patients requiring high doses. A handful of
studies have investigated the genetic factors affecting warfarin resistance and have
reported that patients resistant to warfarin carry rare mutations in the VKORC! but
their functional roles have not been explored.

Warfarin acts through vitamin K antagonism and thereby inhibits the
formation of the vitamin K dependent clotting factors (II, VII, IX, X) and
anticoagulants (Protein C, S and Z). However, the rate at which these decline,
whether this is variable between different individuals, and whether such variability is
related to common polymorphisms in the clotting factor genes is not known.

To further improve the clinical management of warfarin, a better
understanding of the factors described above is required. The aims of this PhD study
were therefore (i) to fine map CYP4F2 and assess the SNP-effects on warfarin dose
variability and additional warfarin clinical outcomes in our cohort of prospective
patients; (ii) to elucidate the functionality of CYP4F2 as well as other CYP4F genes

in the CYP4F cluster in human liver, and to characterise their genotype-phenotype
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relationships; (iii) to identify mutations in the VKORCI gene in warfarin resistant
patients via sequencing, and to explore the functions for any novel mutations
identified; and (iv) to evaluate the levels of clotting factors and the rate they decline
in our cohort of prospective patients, and relate this to SNPs in the clotting factor

genes and warfarin clinical outcomes.
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Figure 1.5. Scatter plot showing the accuracy of the pharmacogenetic algorithm
developed by Klein et al., 2009. Predicted versus observed stable therapeutic warfarin
dose for 1008 patients in the validation cohort from the study by Klein et al., 2009 are
shown. Each dot represents one patient. Diagonal solid line indicates perfect
prediction. Dots below and above the solid line indicate patients were over and under
predicted by the pharmacogenetic algorithm, respectively. Patients requiring warfarin
doses of > 70 mg/week are circled in red and the pharmacogenetic algorithm did not
accurately identify these patients. Adapted from Klein et al., 2009.
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CHAPTER 2

2.1 INTRODUCTION

Caldwell and colleagues (2008) recently utilised the Affymetrix drug-
metabolizing enzymes and transporters (DMET) genotyping panel in 429 Caucasian
patients stabilized on warfarin to identify other potential predictors of dose
requirements. Out of the 1228 SNPs genotyped, a non-synonymous SNP in
CYP4F2, 152108622, was associated with stable warfarin dose. This association was
validated in additional patient cohorts, and accounted for approximately 2% of the
variability in therapeutic warfarin dose. The rank order from the lowest to highest
doses was CC>CT>TT amongst the genotype groups (Caldwell et al., 2008). In a
retrospective Italian patient population, Borgiani and colleagues have also shown that
TT patients require a warfarin dose that is approximately 2.5 mg/day higher than
patients with the CC genotype, with rs2108622 explaining about 7% of warfarin
dosing variability (Borgiani et al., 2009). More recently, a genome wide association
study has also shown an association with CYP4F2, but only after adjusting for
CYP2C9 and VKORC1 (Takeuchi et al., 2009).

CYP4F2 is expressed in the kidney, liver, lung and white blood cells, and is
involved in the w-hydroxylation of arachidonic acid and leukotriene B4 (LTBj4)
(Powell et al., 1998; Lasker et al., 2000; Sontag and Parker 2002). A previous study
has shown that variation at the SNP rs2108622 was associated with reduced -
hydroxylation of arachidonic acid, but did not affect LTB4 metabolism (Stec ef al.,
2007). Caldwell and colleagues (2008) postulated that CYP4F2 may be involved in
vitamin K metabolism. Indeed, a recent study has shown that CYP4F2 is capable of
metabolising vitamin K, with patients who have the rs2108622 variant having lower
vitamin K oxidase activity, which would result in higher hepatic vitamin K; levels,

and therefore higher dose requirements for warfarin (McDonald er al., 2009).
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Given the association between CYP4F2 and warfarin dose requirements, and

the emerging evidence that this P450 isoform is involved in the metabolism of
vitamin K;, a comprehensive analysis of CYP4F2 SNPs and haplotypes in a
prospectively recruited cohort of patients from two UK clinics was undertaken in this
chapter. The specific aims were (i) to replicate the association of warfarin stable
dose with CYP4F2 rs2108622 (Caldwell et al., 2008) in our cohort of patients
initiated on warfarin; (i) to fine map the whole CYP4F2 region and define the
haplotype structure of CYP4F2; and (iii) to perform a comprehensive analysis,
including SNP and haplotype-based analyses, to assess for association between
genetic variation within CYP4F2 and several outcomes of warfarin response,

including stable dose.
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2.2 PATIENTS, MATERIALS AND METHODS

2.2.1 Patients and data collection

Between November 2004 and May 2007, patients (n = 1000) starting warfarin
therapy (either while in-patients or from the anticoagulant clinic) were recruited
prospectively from two hospitals in Liverpool, the Royal Liverpool and Broadgreen
University Hospitals Trust and University Hospital Aintree. The main indications for
warfarin therapy in our patients were treatment of venous thromboembolism and
prophylaxis against systemic emboli in patients with atrial fibrillation. All patients
recruited were > 18 years of age. The study was approved by the Birmingham South
research ethics committee and written informed consent was obtained from all
patients.

The study design was observational. Patients received usual clinical care
where the warfarin loading dose and subsequent maintenance doses were determined
according to in-hospital guidelines. Each patient had four scheduled visits: the first
was at the time of warfarin therapy commencement (index visit), then three
subsequent follow-up visits at one week, eight weeks and twenty-six weeks of
warfarin therapy. Patients also attended the anticoagulant clinic between these four
fixed visits as per usual clinical practice, the frequency being determined clinically
by the stability of their anticoagulation control. Throughout the study, any changes in
warfarin doses and INRs were collected.

Data on ethnicity, age, gender, height, weight, indication for warfarin
treatment, concomitant medication, co-morbidities were gathered from all patients,

as were details of smoking history, current medications and alcohol intake. Some
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patients, particularly those with venous thromboembolism, were initially treated with
heparin, in which case dose and duration of treatment were recorded.

All adverse events which occurred during the study period were reported and
assessed for causality. A bleeding event was defined as major or minor according to
the classification by Fihn and colleagues (1996). A bleeding event was classed as
serious if it was lethal, life-threatening, permanently disabling or led to hospital
admission or prolongation of hospital stay (Fihn ef al., 1996). Only haemorrhagic
events considered to be possibly, probably or definitely associated with warfarin

were included in the analyses.

2.2.2 Clinical outcome measures

In order to capture both efficacy and toxicity of warfarin, two primary and
several secondary outcome measures were chosen. The primary outcome measures
were:

e incidence of INR > 4 in the first week on warfarin, and

e warfarin sensitivity (a dose of < 1.5 mg/day on three successive clinic visits).
The secondary outcome measures were:

e warfarin resistance (a dose of > 10 mg/day on three successive clinic visits),

e stable warfarin dose (an unchanged daily dose at three or more consecutive
clinic visits where INR measurements were within the individual’s target
range). As the distribution of stable dose was skewed, the outcome was
transformed by taking its square-root for the purpose of the analyses of

association.
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e time to therapeutic INR (defined as the time to achieving first INR
measurement within the individual’s target range, providing INR remained
within the target range at the subsequent clinic visit),

e time to achieving warfarin stable dose from initiation, and

e bleeding complications associated with warfarin.

2.2.3 Interim analysis

An interim analysis on the first 311 patients recruited between November
2004 and March 2006 has previously been undertaken to evaluate the impact of
genetic (29 genes but specifically CYP2C9 and VKORC1) and clinical factors on
determining the inter-individual variability in warfarin response (Jorgensen ef al.,

2009). In this chapter, analyses were conducted using this cohort of 311 patients.

2.2.4 SNP selection and fine mapping

To replicate the association of rs2108622 with warfarin dose requirements
and to search for other candidate SNPs in CYP4F2, a total of 80 SNPs spanning
52,563 bp across the chromosomal 19p13.11 region were selected. SNPs were a
combination of tagging SNPs and functional variants. Selection was based on the
following criteria: (i) known function from the literature and the National Centre for
Biotechnology Information (NCBI) SNP database (build 126), (ii) SNP coverage in
the CEU population (Utah residents with ancestry from northern and western
Europe) available on HapMap data release 23, NCBI build 36 assembly, (iii) block-
tagging ability using HaploView version 4.1 (r* > 0.8), and (iv) a minor allele

frequency (MAF) 1% or greater.
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2.2.5 CYP4F2 primer design

Amplification and extension primers were designed using the eXTEND suite
(www.realsnp.com/default.asp) in conjunction with the Sequenom Assay Designer
software (version 3.1). The eXTEND suite consists of three functionalities that
increases assay success rate and reduces genotyping errors: (1) ProxSNP — SNP
sequences are mapped to the human genome for proximal SNPs and any SNPs in the
vicinity of the denoted assay SNP will be demarked. (2) PreXTEND - Pairs of PCR
primers are scanned against the human genome to ensure unique binding and
amplification of target regions before SNP assays are designed. (3) PleXTEND —
After assay design, the combination of all the multiplexed primers are screened for
cross-binding possibilities that could lead to false positives. Three different multiplex
PCR assays were developed which included 80 SNPs. All PCR primers had a tag
sequence (ACGTTGGATG) to permit more efficient amplification. Amplification

and extension primer sequences are listed in Appendix 1.1.

2.2.6 CYP4F2 genotyping

Genomic DNA from ethylenediaminetetraacetic acid (EDTA) whole blood
samples (n = 311) was extracted at the Sanger Institute using the standard technique
incorporating proteinase K lysis, phenol-chloroform and ethanol precipitation
methods.

Genotyping was performed on the Sequenom MassARRAY iPLEX platform
(Sequenom, Hamburg, Germany), using Matrix-Assisted Laser Desorption/lonization
Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology (van den Boom
and Ehrich 2007), in accordance with the manufacturer’s instructions. Genotype

determination is based on the mass separation of single base extension (SBE)
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products with the incorporation of mass-modified dideoxynucleotide terminators.

Each multiplex assay consisted of four reaction steps:

(i) pre-amplification by PCR

Multiplex PCRs (performed in a 384 well microtiter plate, final volume 5 ul)
contained 10 ng of DNA, 0.1 uM of primers (Metabion GmbH, Germany),
500 uM of deoxyribonucleotide triphosphate (ANTP) mix, 1.625 mM of
magnesium chloride (MgCl,) 1.25x PCR buffer and 0.5 U of HotStar Taq®
polymerase (PCR reagent set, Sequenom). PCR conditions were: denaturing
step at 94°C for 15 min followed by 45 cycles at 94°C for 20 s, 56°C for 30 s

and 72°C for 1 min, and a final extension at 72°C for 3 min.

(ii) shrimp alkaline phosphatase (SAP) treatment

Any excess or unincorporated dNTPs was dephosphorylated in a final volume
of 7 pul with 0.03 U/ul of SAP in 0.17x SAP buffer (Sequenom), at 37°C for

40 min followed by 5 min at 85°C.

(iii) iPLEX™ primer extension

Following addition of 0.2 pl of iPLEX buffer, 0.2 pl of iPLEX terminator
mix, and 0.04 pl of iPLEX enzyme (iPLEX® Gold reaction kit, Sequenom),
extension primers (Metabion) were sorted into four groups based on mass and
added to final concentration of 7, 9.33, 11.66 or 14 uM (final volume of 9 pl),
with the highest mass group diluted to 14 pM and the lowest mass group to
7 uM. This adjustment in extension primer concentration is to ensure that the
extension primers are as equal in intensity as possible, in order to account for
variable signal-to-noise ratios due to the inverse relationship between peak

intensity and analyte mass. Extension reaction conditions were: 94°C for
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30 s; 40 cycles consisting of a 94°C step for 5 s and five subcycles of 52°C

for 5 s and 80°C for 5 s; and a final extension at 72°C for 3 min.

(iv) a clean resin step
A total of 6 mg of Clean Resin (Sequenom) and 16 ul of water were added to
the reactions followed by incubation for 20 min to remove the salts and a
20 min centrifugation at 3000 rpm. Samples need to be properly desalted to
prevent sodium and potassium adducts from complicating accurate

heterozygote allele discrimination of SNPs.

For MALDI-TOF MS analysis, samples were dispensed onto a 384 SpectroCHIP®
Array (Sequenom) using a nanodispenser, and introduced into a MassARRAY®
Compact mass spectrometer (Sequenom). Automated spectra acquisition was
performed using SpectroAcquire. Data analysis was performed with MassARRAY®
Typer software version 3.4 and some examples of genotype data output are
illustrated in Figure 2.1. To ensure data quality, 10% duplicate DNAs and 8 negative
controls (water) were included per 384-well plate and genotypes for each subject

were also checked manually.
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Figure 2.1. Genotype data output from Sequenom MassARRAY" Typer. (a) Cluster plot
for SNP rs2108622, with the green triangle representing homozygous wild-type TT
genotype, the yellow square representing heterozygous CT genotype and the blue
triangle representing homozygous mutant CC genotype. (b) Spectrum of a sample
homozygous for the rs2108622 minor C allele, where the raw data peak of the C allele is
indicated by the dotted yellow line while the absence of the major T allele is indicated
by the red dotted line.
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2.2.7 CYP2C9 and VKORC]I genotyping

Genotyping of CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910) and
VKORCI -1639 (1s9923231) were performed with Custom TagMan® SNP
Genotyping assays (Applied Biosystems, Warrington, Cheshire, UK) by means of a
procedure based on the 5°-3’ exonuclease activity of Taq DNA polymerase, using
allele-specific TaqgMan® minor groove binding (MGB) probes labelled with VIC®
and FAM™, according to the manufacturer’s instructions. Approximately 10 ng
genomic DNA was amplified in 5 pl reaction mixture in a 384-well plate containing
1x universal TagMan® genotyping master mix and 1x assay mix containing a premix
of the respective primers and fluorescent-labelled MGB probes. After initial
denaturation and enzyme activation at 95°C for 10 min, the reaction mixture was
subjected to 40 cycles of denaturation at 95°C for 15 s and combined annealing and
extension at 60°C for 1 min. The reactions were performed on an ABI 7900HT Fast
Real-Time PCR System (Applied Biosystems). As part of quality control, negative
controls containing water instead of DNA and 10% duplicates were included in every
run. End-point fluorescence and allelic discrimination were determined using the

SDS version 2.2 software (Applied Biosystems).

2.2.8 Statistical analysis

All statistical analyses were performed in the genetics package of R
(http://cran.r-project.org/web/packages/genetics/index.html) or in SPSS version 16.
Deviation from Hardy-Weinberg Equilibrium (HWE) was tested for each SNP using
the Chi-Square test. A P-value < 0.001 was assumed to indicate deviation from

HWE.
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2.2.8.1 Univariate analysis

To evaluate the individual effect of each SNP on each outcome, two
univariate tests of association were conducted and the maximum test statistic referred
to in each case. The first made no assumptions regarding the underlying mode of
inheritance whilst the second assumed an additive mode. For the binary outcomes
(INR > 4, warfarin sensitivity, warfarin resistance and bleeding events), the
Pearson’s chi-square test or Fisher’s exact test and Cochrane-Armitage test for trend
were used. For the time to event outcomes, the log-rank and log-rank test for trend
were used. For the continuous outcome of stable warfarin dose, both analysis of

variance (ANOVA) and univariate linear regression analyses were undertaken.

2.2.8.2 Multiple regression analysis

The purpose of this analysis was to investigate whether there was an
association between the CYP4F2 genetic region as a whole and response to warfarin.
For each outcome, two regression models were fitted and compared using the
likelihood ratio test (LRT). The first model, the ‘baseline model’, included clinical
factors found significant (P < 0.05) in univariate analyses, as reported previously in
the interim analysis (Jorgensen ef al., 2009). A list of clinical covariates included for
each outcome is shown in Table 2.1. The second model, the ‘genetic model’, was the
same but also included covariates to represent all genotyped SNPs, with the
exception of those excluded due to deviation from HWE (n = 10), due to being non-
polymorphic (n = 3) and due to having a call rate below 90% (n = 8). To minimise
the risk of co-linearity, only SNPs with the least missing genotype data from any
group with correlation coefficient r* > 0.9 were included. For each outcome, the

genetic model was fitted twice: first making no assumptions regarding the underlying
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mode of inheritance and second assuming an additive mode of inheritance. The

proportion of variability explained by the clinical and genetic covariates combined

was calculated using Nagelkerke’s R? statistic.

Table 2.1. List of clinical covariates represented in the multiple regression models.

Outcome Clinical factors represented in multiple regression models® R (%)
INR>4 Gender; BMI; clotting factor VII; warfarin loading dose 17.1
Warfarin Sensitivity None N/A
Warfarin Resistance Age; warfarin loading dose 32.6
Time to stable dose Clotting factor IX and indication for warfarin 4
BM; clotting factors VI; i i i
Time to therapeutic INR Al clotting factors warfarin loading dose and ethnic 5.9
origin
Age, BMI, clotting factors Ii, i i 3
stable warfarin dose g ' clotting fac ors‘ warfar'lr'l loading dose, and 151
suffering from a neurological condition
All haemorrhagic None N/A
events
Major haemorrhagic Clotting factor IX, warfarin loading dose and concurrent use 13.5

events

of omeprazole

BMI: Body Mass Index.

?Included on the basis that they were found significant (P-value < 0.05) in previous univariate
analyses (Jorgensen et al., 2009).
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2.2.8.3 Haplotype analysis

The pattern of LD between SNPs included in the multiple regression models
were visualized using the HaploView software version 4.1 (Barrett ef al, 2005).
Haplotype blocks were assigned using the internally developed Solid Spine of LD
method, in which the two end markers are in strong LD with intervening markers but
intervening markers are not necessarily in LD with each other (Barrett er al., 2005).
The most probable haplotype pair at each block was allocated to each patient using
the PHASE software, version 2.1 (Stephens et al, 2001; Stephens and Donnelly
2003). Any patients where the most likely haplotype-pair allocation had a probability
of less than 90% for at least one haplotype block were excluded from the haplotype
analysis (n = 8). For each outcome measure, 4 different regression models were built.
Model 1, or the ‘baseline model’, included only the clinical covariates found
significant (P < 0.05) in the previous univariate analyses. Model 2 included clinical
covariates and covariates representing the different haplotypes observed for block 1.
Model 3 included clinical covariates and covariates representing the different
haplotypes observed for block 2. Model 4 included clinical covariates and covariates
representing the different haplotypes observed both for haplotype block 1 and 2. To
assess for association with the haplotype blocks, each of models 2-4 were compared
to the baseline model using the LRT. In each model, to represent the different
haplotypes within a haplotype block, the most common haplotype was assumed to be
the baseline category and covariates were added to the model to represent each of the

other observed haplotypes.
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2.2.8.4 False discovery rate

To account for multiple testing, the false discovery rate (FDR) (Benjamini et
al., 2001) was calculated in the genetics package of R, version 2.6.2 (http://cran.r-
project.org/web/packages/genetics/index.html). In calculating the FDR, all tests for
association undertaken on the dataset, including those referred to in the interim
analysis (Jorgensen et al., 2009), were taken into account. FDR-corrected P-values

are denoted as P-values.
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2.3 RESULTS

2.3.1 Patient characteristics

Demographics of the 311 patients including underlying co-morbidities are
summarised in Table 2.2. The majority of patients were Caucasians with atrial
fibrillation being the most common indication for warfarin therapy.

Of the 311 patients recruited, 57 (18%) experienced an INR greater than 4
during their first week on warfarin. 204 (66%) patients achieved stable dose during
the course of follow-up, while 274 (88%) achieved therapeutic INR during the
follow-up period. 68 (22%) patients experienced a haemorrhagic complication, of
which 16 (6%) experienced major bleeding. Complete dosage information was
unavailable for 38 patients. Hence, of the remaining 273 patients, 33 (12%) were

sensitive to warfarin while 10 (4%) were warfarin resistant.
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Table 2.2. Clinical profile of 311 warfarin patients.

Characteristic N (%)
Gender - Male 184 (59)
Age in years, mean (range) 66 (19-95)
BMI®, mean {range) 28 (15-61)
Ethnicity
White 305 (98)
Black African 1(0.3)
Black Caribbean 1(0.3)
Black other 4(1.3)
Indication for warfarin
Atrial Fibrillation 165 (53)
Pulmonary Embolism 75 (24)
Deep Vein Thrombosis 43 (14)
Cerebrovascular accident and Transient ischaemic attacks 10 (3)
Myocardial infarction 1(0.3)
Heart Valve Replacement 1(0.3)
Other” 16 (5)
Co-morbidity
Cardiovascular disease 208 (67)
Musculoskeletal problems 142 (46)
Respiratory disease 102 (33)
Gastrointestinal disease 84 (27)
Neurological disease 73 (23)
Urological condition 45 (14)
History of falls 27 (9)
Renal disease 23(7)
Hepatic disease 9 (3)

BMI: Body Mass index.

2 BMI missing for 5 patients.

® Other indications include: prevention of clotting in arm for dialysis; axillary vein thrombosis;
short saphenous vein thrombosis; valvular heart disease; sagittal sinus thrombosis; dilated left
ventricle; occluded graft in ieg; aortic and mitral regurgitation; poor liver function and
pseudoaneurysm; ischaemic leg; brachial artery thrombosis; mitral stenosis; and post-surgery.
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2.3.2 Univariate analysis of association between SNPs and outcomes

Of the 80 SNPs genotyped, 3 were monomorphic, 8 failed to give a call
rate > 90%, and 10 deviated from HWE. Among the remaining 59 SNPs, 17 had
been typed by the International HapMap project (data release 23, March 2008) and
gave similar MAF. The allele frequencies of the SNPs investigated are listed in
Appendix 1.2. Appendix 1.3 summarizes the results of the univariate analyses for
each SNP-outcome combination where a P < 0.05 was obtained. Several SNP-
outcome combinations gave a P-value below 0.05 including INR > 4 in the first week
on warfarin, warfarin sensitivity, warfarin resistance, stable warfarin dose, time to
therapeutic INR, time to achieving warfarin stable dose, and major bleeding
complications. However, after correction for multiple testing using FDR which
accounted for all tests performed in this study and in our analysis of 29 genes
(Jorgensen et al., 2009), only the association of rs2189784 with time to therapeutic
INR remained significant (P, = 0.03). Figure 2.2a shows the Kaplan-Meier curves of
time to therapeutic INR, stratified by rs2189784 genotype. As the curves illustrate,
patients with homozygous wild-type genotype (GG) required less time to achieve
therapeutic INR than heterozygous patients, with patients with the homozygous
mutant genotype (AA) taking the longest to achieve therapeutic INR. rs2189784 is in
linkage disequilibrium with rs2108622 (D’ = 0.98, r* = 0.59) and consistent with this,
rs2108622 also showed an association with time to therapeutic INR (Figure 2.2b),

but this did not remain significant after FDR.
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Figure 2.2. Kaplan-Meier curve showing time to therapeutic INR (days) for (a)
rs2189784 and (b) rs2108622 genotypes. INR indicates international normalized ratio.

The tables beneath the graphs show the number of patients who had not yet achieved
therapeutic INR at respective time points.
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2.3.3 Multiple regression models

Results of the LRT to assess association between CYP4F?2 and each outcome
are summarized in Table 2.3, together with the R? value calculated for the model
including both clinical and genetic covariates. Two outcomes, time to target INR and
major haemorrhagic complications, gave a P < 0.05, but after FDR, this was not

significant.

Table 2.3. Multiple regression models for associations with clinical outcomes.

Outcome P-value LRT R’ (%)
INR>4 0.19 35.7
Warfarin sensitive 0.657 9.7
Warfarin resistant 0.796 47.3
Time to stable dose 0.062 17.8
Time to therapeutic INR 0.006% 18.2
Stable warfarin dose 0.995 19.6
Al haemorrhagic complications 0.098 21.2
Major haemorrhagic complications 0.010° 46.7

2 p-value did not remain significant after FDR.

For the outcome time to target INR, it has been reported previously by
Jorgensen and colleagues (2009) that the addition of CYP2C9*2 genotype
(rs1799853) to clinical factors in this prospective cohort of 311 patients did not
contribute to any variability in the time taken for patients to achieve therapeutic INR
(Jorgensen et al., 2009). Interestingly, the inclusion of CYP4F2 rs2189784 genotype
increased the R’ by approximately 5%. However, this contribution was not
significant after FDR. The variability explained for these models is shown in Table

2.4.
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Table 2.4. Contribution of variables to time to therapeutic INR.

Covariate R’ (%) P-value

Clinical only (BMI, clotting factor Vi, warfarin loading dose,

o 6 0.000001°
ethnic origin)
Clinical plus CYP2C9*2 6 0.137
Clinical plus CYP2C9*2 and CYP4F2 rs2189784 11 0.001*

2 p-value did not remain significant after FDR.

® p_value remained significant after FDR.

2.3.4 Association of rs2108622 with stable dose

An important goal of our study was to try to replicate the association between
SNP rs2108622 and warfarin stable dose (Caldwell et al., 2008; Borgiani et al.,
2009; Takeuchi et al, 2009). However, rs2108622 did not show a significant
association with stable warfarin dose univariately in our study (P = 0.4). The mean
weekly warfarin stable doses per rs2108622 genotype groups are presented in Figure
2.3 for the purpose of comparison with those presented in the paper by
Caldwell et al. (2008). For all genotype groups the median weekly dose was
30 mg/week. In an attempt to reduce the heterogeneity between the patient
populations, non-Caucasian patients (n = 7) were excluded but the association still
remained non-significant (P = 0.34) with no change in warfarin dose across the
genotype groups. Tests for association were also repeated in a subgroup of patients
without congestive heart failure, renal disease, hepatic disease and cancer (n = 53),
which all constitute pre-existing conditions specified as exclusion criteria by
Caldwell et al. (2008). However, the result was again not significant (P = 0.16).

In a further attempt to replicate the analysis undertaken by Caldwell et al.
(2008), the multiple regression model they presented, including covariates to

represent gender, age, body mass index (BMI), target INR, VKORCI and CYP2C9
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SNPs and the CYP4F2 SNP rs2108622, was fitted to our dataset. BMI was used
instead of body surface area (BSA) as the latter was not measured in the current
study. Models using the LRT both including and excluding a covariate to represent
rs2108622 were compared; however, no change to the R? value was observed
suggesting that the SNP had no effect over and above that of the CYP2C9 and
VKORCI SNPs. The R? value also remained unchanged after excluding the 7 non-
Caucasian patients. Restricting the analysis to the subgroup of patients without
congestive heart failure, renal disease, hepatic disease and cancer also showed no

change in the variability. A summary of the R? results is presented in Table 2.5.
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Figure 2.3. Box and whisker plots showing the distribution of warfarin weekly doses
based on CYP4F2 rs2108622 genotype groups in (a) all prospective patients, (b)
Caucasian patients only and, (c) Caucasian patients without congestive heart failure,
renal disease, hepatic disease and cancer. Boxes represent 25th-75th percentiles of
warfarin doses, whiskers represent 5th-95th percentiles, solid lines represent median
dose in each group, and open dots represent outliers.
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CHAPTER 2

2.3.5 Haplotype Associations

Two distinct haplotype blocks were identified using the ‘Solid spine of LD’
method in HaploView as shown in Figure 2.4. Haplotype block 1 consists of 9 SNPs
(rs2189784, rs2079288, rs7252046, rs12610189, rs17756654, rs1272, rs3093204,
rs3093198, rs2108622). Haplotype block 2 consists of 11 markers (rs3093195,
rs12984060, rs2886296, rs3093168, rs3093150, rs3093145, rs3093144, rs3093135,
152016503, rs984692, rs3093097).

P-values from the LRTs are reported in Table 2.6. A P-value < 0.05 was
obtained for the association between haplotype block 2 and the outcomes of time to
therapeutic INR and major haemorrhagic complications, but these associations did

not remain significant after FDR.

CYP4F2
¥ < 5

[ - — vr_,,J 4______—1;)1 S /}J ,1} I ]

rs2189784in LD Y
with rs2108622
D’=0.98, r? = 0.59

Figure 2.4. Linkage disequilibrium (D’) across chromosomal region 19p13.11. Tagging
SNPs (r* > 0.9) encompassing the CYP4F2 gene are represented by 2 distinct haplotype
blocks. Haplotype blocks were defined by the ‘Solid spine of LD’ option in HaploView
version 4.1.
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CHAPTER 2

2.4 DISCUSSION

Recent studies have shown that in patients stabilised on warfarin therapy,
carriers of the variant homozygous TT alleles for the CYP4F2 DNA variant,
rs2108622, require approximately 1-2.5 mg more warfarin per day than those
carrying the wild-type homozygous CC alleles (Caldwell et al., 2008; Borgiani et al.,
2009; Takeuchi er al., 2009). However, in our study, rs2108622 did not show
association with warfarin stable dose. To reduce heterogeneity in patient
characteristics, our analysis of association between rs2108622 and stable dose was
repeated in a subgroup of patients which excluded 7 non-Caucasian patients and 53
patients who had congestive heart failure, renal disease, hepatic disease or cancer, in
an attempt to mirror the study population of Caldwell et al. (2008). However, the
results still remained non-significant, although the subgroup included only 235
patients (only 157 of whom achieved stable warfarin dose during course of study)
and thus there may not have been adequate power to detect an effect. To investigate
how an increased sample size may have influenced our conclusions, confidence
intervals for the differences in means between genotype groups were constructed. As
the distribution of stable dose was skewed, a bootstrapped approach was undertaken.
The 95% confidence interval for the difference in means between the wild-type CC
homozygotes and CT heterozygotes was calculated as -0.9965 to 0.1532, whilst the
difference in means between CT heterozygotes and mutant TT homozygotes was
-0.6591 to 0.7700. Although increasing the sample size would make these confidence
intervals narrower (even if the lower limits increased to above zero), it is unlikely
that the range of differences spanned by them would be clinically significant. It is

also important to note that among the three cohorts tested by Caldwell and colleagues
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(2008), they did not find an association between rs2108622 and stable dose in the
cohort from University of Washington in St Louis (n =269, P = 0.382).

In addition to looking at rs2108622, this study has undertaken the most
comprehensive analysis of the SNPs and haplotypes across the CYP4F2 gene, and
related this to several clinically relevant outcomes. At least 80 SNPs were identified,
of which 59 were finally included in the analyses. Haplotype analysis showed that
there were 2 blocks, with a high degree of linkage disequilibrium across the gene.
While rs2108622 has been shown to be functionally relevant (Stec ef al., 2007), the
function of most of the other SNPs has not been investigated. Although associations
with many of the SNPs and the various outcomes were found in our cohort, none
apart from one SNP rs2189784 near the 3’ end of the CYP4F2 gene, remained
significant after FDR. rs2189784 showed an association with time to achieve
therapeutic INR — patients with two AA variant alleles required a longer period of
time to achieve therapeutic INR compared with patients with two GG wild-type
alleles. The association with time to therapeutic INR with rs2108622 did not
withstand FDR correction despite the fact that rs2108622 and rs2189784 are in
strong LD. Whether rs2189784 is functionally important is not known, and given the
high LD across the gene, it is difficult to be sure whether either of these SNPs are the
causal variants.

The recent demonstration that CYP4F2 metabolises vitamin K (McDonald et
al., 2009) provides biological plausibility for the association between rs2108622 and
stable warfarin dose (Caldwell et al., 2008; Borgiani et al., 2009; Takeuchi et al.,
2009), and indeed with our finding between rs2189784 and time to therapeutic INR.
The reason for the different association in our study is likely to be complex and

related to the patient populations studied. For instance, in comparison with the
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retrospectively recruited patients studied by Caldwell et al. (2008) and Borgiani ef al.
(2009), our patient population was recruited prospectively and followed up for 6
months. The determinants of body stores of vitamin K are complex (Custodio das
Dores et al., 2007; Booth and Al Rajabi 2008; Shea ef al., 2008; Shea et al., 2009),
and may well be different in patients studied soon after starting on warfarin when
they have had an acute clinical event, compared with patients who have been stable
on warfarin for a period of time when they will have been given clinical advice to
have a stable diet (Custodio das Dores et al, 2007). Therefore, in a population
studied soon after the start of warfarin, time to therapeutic INR may be a more
sensitive marker of warfarin response than stable dose in relation to parameters

which can modulate vitamin K levels.
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CHAPTER 3

Genetic variability in the CYP4F2,
CYP4F11 and CYP4F12 genes affects
liver mRINA levels and plays a role in

warfarin response
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3.1 INTRODUCTION

The CYP4F gene subfamily comprises six members, namely CYP4F2 (Kikuta
et al., 1993), CYP4F3 (CYP4F34 and CYP4F3B) (Kikuta et al., 1998), CYP4F8
(Bylund er al,, 2000), CYP4F11 (Cui et al.,, 2000), CYP4F12 (Bylund et al., 2001;
Hashizume et al., 2001) and CYP4F22 (Lefevre et al., 2006). Structurally, these six
CYP4F genes are largely similar, with more than 65% amino acid sequence
homology.

To date, studies have focused on CYP4F2, CYP4F3, CYP4F8, CYP4F11 and
CYP4F12 and little is known about the expression and function of CYP4F22. The
splice sites of CYP4F2, CYP4F3, CYP4F8, CYP4FIl and CYP4FI2 are almost
identical, suggesting that this cluster of five genes may have evolved by gene
duplication (Bylund et al., 1999; Kikuta et al., 1999; Cui et al., 2000; Bylund ef al.,
2001). CYP4F2, CYP4F3, CYP4F8, CYP4F11 and CYP4F12 genes reside together
on chromosome 19pl13.1-2, spanning over 320 kb (Figure 3.1). They are all
expressed in the liver and are known to metabolise xenobiotics, arachidonic acid and
its oxygenated derivatives (eicosanoids) such as leukotrienes, prostaglandins (PGs),
lipoxins, and hydroxyeicosatetraenoic acids (HETEs) (Jin et al., 1998; Powell et al.,
1998; Kikuta et al, 1999; Bylund et al, 2000; Lasker ef al., 2000; Bylund ef al.,
2001; Christmas et al., 2001; Hashizume et al., 2001; Hashizume et al, 2002;
Kalsotra ef al., 2004; Stark et al., 2005a; Stark et al., 2005b). CYP4F2 has also been
implicated in the o-hydroxylation of tocopherol phytyl side chain in the first step of
vitamin E inactivation (Sontag and Parker 2002). As discussed in chapter 2, a
polymorphism in CYP4F2, namely rs2108622 (V433M, +1297 C>T), has been

reported to be associated with the dose requirement of warfarin (Caldwell er al.,
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2008; Borgiani et al., 2009; Perez-Andreu ef al., 2009; Takeuchi et al., 2009; Cha et
al., 2010; Pautas et al., 2010)

In chapter 2, fine mapping of the CYP4F2 region was performed to
determine the influence of CYP4F2 SNPs and haplotypes on various warfarin
response outcomes (Zhang et al., 2009). An association between rs2189784, a SNP
in LD with rs2108622, with time to therapeutic INR, but not with stable dose was
found. Given these differences in association found between CYP4F2 SNPs and
different clinical outcomes that have been utilised to assess the responses with
warfarin (Zhang et al., 2009), and the high degree of homology and LD across the
CYP4F gene cluster (as shown in Figure 3.1), the aims of this chapter were (i) to
undertake a genotype-phenotype assessment of the CYP4F genes utilising a well
characterised liver bank and a prospective patient cohort who were followed up for 6
months from the time of intake of warfarin, and (ii) to perform in silico analysis
using publicly available data repositories to investigate additional SNP-gene

associations and the interaction between the CYP4F genes.
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CHAPTER 3

3.2 PATIENTS, MATERIALS AND METHODS

3.2.1 Patient DNA and liver samples

Blood and liver tissue samples were previously collected from 149 Caucasian
patients undergoing liver surgery at the Department of General, Visceral, and
Transplantation Surgery, Campus Virchow, University Medical Centre Charité,
Humboldt University, Berlin, Germany, as described previously (Gomes et al.,
2009). Normal liver tissues were obtained from adjacent regions of surgically
removed liver tumours or metastases or hepatic tissue resected for other reasons. All
liver tissue samples were certified to be free of malignant cells by pathological
examination. None of these samples were from patients with hepatitis, or cirrhosis, or
from those who had chronic alcohol abuse. Clinical patient documentation for all
samples included age, gender, medical diagnosis, presurgical medication, alcohol
use, and smoking. The study was approved by the ethics committees of the Medical
Faculties of the Charité, Humboldt University, and of the University of Tuebingen.

Written informed consent was obtained from all patients.

3.2.2 SNP selection

Eighty genetic polymorphisms in the CYP4F2 gene have been previously
selected as described in section 2.2.4. SNPs encompassing CYP4F11 and CYP4F12
across the chromosomal 19pl13.11 region were selected using the same criteria
described in section 2.2.4 except that data from HapMap data release 27, NCBI build
36 assembly was used. A total of 130 SNPs in the CYP4F!11 and CYP4F12 region
were successfully designed and subdivided into 6 multiplex assays using

Sequenom’s online Human GenoTyping Tools (www.mysequenom.com/Tools) with
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the same principles and procedures described in section 2.2.5. Primer sequences are

listed in Appendix 2.1.

3.2.3 Genotyping

Genomic DNA of the liver surgery patients (n = 149) was extracted from
whole blood using the QIAamp DNA Mini Kit (QIAGEN GmbH, Hilden, Germany)
according to the manufacturer’s instructions.

All 210 SNPs across CYP4F2, CYP4F11 and CYP4FI12 were genotyped
using the Sequenom MassARRAY iPLEX™ platform (Sequenom) in accordance
with the manufacturer’s instructions as described in section 2.2.6. As summarised in
Appendix 2.2, markers which deviated from HWE (n = 10), those with less than 90%
call rate (n = 27), and those which were monomorphic (n = 26), were excluded from
downstream association analysis. Among the remaining 147 SNPs, 88 had been
typed by the International HapMap project (data release 27, February 2009) and gave

similar MAF.

3.2.4 Haplotype determination

The pattern of pairwise linkage disequilibrium (LD) between the remaining
SNPs was visualised using the program HaploView version 4.2 (Barrett ez al., 2005).
Haplotype blocks were defined using the default algorithm by Gabriel et al. (2002) in
HaploView, where 95% confidence intervals for D' between pairs of SNPs were
calculated. Only groups of SNPs uninterrupted by recombination (i.e. > 95% of
informative comparisons are in strong LD) were considered haplotype blocks. The
MAF cut-off was decreased from 0.05 to 0.01 to allow less common SNPs to be

included. The default algorithm sorts the list of all possible blocks and starts with the
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largest and keeps adding blocks as long as they do not overlap with an already
declared block.

The most probable combinations of haplotype-pairs at each block were
inferred using the program PHASE version 2.1.1 (Stephens er al., 2001; Stephens
and Scheet 2005), which utilizes a Bayesian statistical method for reconstructing
haplotypes from population genotype data. Default iteration settings were used with
the command line: PHASE -n -x10 filenamephase.txt filenamephase.out 10000 1
10000. Any individuals with a haplotype-pair probability of < 90% (n = 11) for at
least one haplotype block were excluded from tests of association. Within a
haplotype block, haplotypes with frequencies < 1% were grouped together as a single
covariate for analysis. The presence or absence of haplotypes was coded as

absent (= 0), present once (= 1) or twice (= 2).

3.2.5 Determination of CYP4F2, CYP4F3, CYP4F8, CYP4Fll and

CYP4F12 mRNA expression levels in human liver

Methods described in sections 3.2.5 to 3.2.8 were carried out by colleagues in
Professor Ulrich Zanger’s lab, at Dr Margarete Fischer-Bosch Institute of Clinical
Pharmacology, Stuttgart, Germany.

RNA was extracted from the human liver tissue (n = 149) using TRIzol®
reagent (Invitrogen, Paisley, UK) with subsequent RNA clean-up using QIAGEN
RNeasy-Mini Kit with on-column DNase treatment. All RNA preparations were of
high quality with RNA integrity number (RIN) > 7, as measured on the Agilent
Bioanalyzer (Nano-Lab Chip Kit, Agilent Technologies, Waldbronn, Germany).
200 ng of total RNA was amplified and labelled using the Illumina TotalPrep RNA

Amplification kit (Ambion Applied Biosystems, Darmstadt, Germany). cRNA
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quality was assessed by capillary electrophoresis on Agilent 2100 Bioanalyzer
(Agilent Technologies). Expression levels of over 48, 000 mRNA transcripts were
assessed by the HumanWG-6 version 2.0 Expression BeadChips (Illumina,
Eindhoven, Netherlands) as described in Schroder et al, 2011 (Schroder et al.,
2011). Hybridization was carried out according to the manufacturer's instructions.

[llumina BeadStudio version 3.0 (lllumina, San Diego, CA) was used for all
low-level pre-processing steps of the Illumina HumanWG-6 version 2.0 Expression
BeadChips, including background estimation and correction, probe set summary, and
normalization. After these low-level pre-processing steps, genes with detection
P-value > 0.1 or more than 10% missing values were filtered out and removed from
the dataset. Missing signal intensities were estimated using the “k nearest neighbour”
algorithm (KNN) implemented in R BioConductor (Troyanskaya et al, 2001;
Gentleman et al, 2004). Finally, after all pre-processing steps, the raw data of
48, 701 probe signal intensities were mapped and reduced to signal intensities
corresponding to 15, 439 unique genes.

Gene expression levels of CYP4F2, CYP4F3, CYP4F8, CYP4FI1l and

CYP4F12 were selected to test our hypotheses in this chapter.

3.2.6 Liver microsome preparation

Human liver microsomes were prepared by differential ultracentrifugation as
described previously (Lang ef al., 2001). Briefly, approximately 1 g of tissue was
homogenized in 1 mm EDTA, 1 mm DTT, 10 mm HEPES pH 7.4, 0.2 mm Pefabloc
(Roth, Karlsruhe, Germany) and 0.15 mm KCIl and differentially centrifuged at

15, 000 g and 105, 000 g. The microsomal pellet was washed once with 0.1 M
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sodium pyrophosphate buffer (pH 7.5) and the final pellet was resuspended in 0.1 M

sodium phosphate buffer (pH 7.4) and immediately frozen at —80 °C in aliquots.

3.2.7 Bradford assay

Total microsomal protein content was determined using the Bradford based
Bio-Rad Protein Assay and bovine serum albumin as a reference (Bio-Rad
Laboratories, Munich, Germany). This assay is based on the formation of a complex
between proteins and the dye, Brilliant Blue G-250, in an acidic solution (Bradford
1976). The hydrophobic and ionic interactions between the proteins and the dye
stabilize the anionic form of the dye, causing a visible colour change from red to
blue, and a consequent shift in absorbance maximum of the dye from 465 to 595 nm.

The amount of absorption is proportional to the protein present.

3.2.8 Analysis of CYP4F2 protein expression

Of the 149 human liver samples, 27 had matching microsomal protein
samples and their expression levels of CYP4F2 protein were determined by western
blotting. In brief, 50 ng of microsomal protein was separated on a 10% Tris-glycine
SDS-polyacrylamide gel and transferred to nitrocellulose membrane, blocked for 1 h
with 5% skimmed milk in TBS-T. The blot was incubated with goat IgG anti-human
CYP4F2 primary antibody (clone N-19; Santa Cruz Biotechnology, Inc., 1:250
dilution) overnight at 4°C. Bound CYP4F2 antibody was detected by secondary IR
Dye 800 anti-goat IgG antibody (1:10, 000 dilution) using the infrared imaging
system Odyssey (LI-COR Biosciences, NE, USA). For quantification a serial dilution
of supersomes with recombinantly expressed human CYP4F2 (BD Biosciences,

Heidelberg, Germany) was included in each run. One of the 27 microsomal protein
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samples analysed had undetectable CYP4F2 protein level and was excluded from the

association analysis.

3.2.9 Genome-wide genotyping and SNPs imputation

For the 1000 patients initiated onto warfarin therapy as described in section
2.2.1, DNA was extracted from patients’ EDTA blood samples using the standard
phenol-chloroform method (as briefly described in section 2.2.6). Of the 1000 DNA
samples, genome-wide genotyping was carried out on 752 DNA samples with the use
of Illumina Human 610k chip, at the Wellcome Trust Sanger Institute. All quality
controls and imputations were performed by Stephane Bourgeois at the Sanger
Institute.

Quality control measures were undertaken using the open-source genome-
wide analysis toolset PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) (Purcell
et al., 2007). All SNPs with a genotyping success rate < 90%, HWE threshold of
P < 0.001 and those with MAF < 2% were excluded from the dataset. Subjects with
genotyping success rate < 95% were also removed. Principal component analysis
was performed to assess genetic markers for ethnicity. Only individuals with
genetically matching ethnicity were included into the association analysis (n = 714).

Imputation of additional SNPs throughout the whole genome in the 714
subjects on warfarin therapy was based on the reference genotype data from the 1000
Genomes project and was performed using the freely available program IMPUTE
version 2 (http://www.stats.ox.ac.uk/~marchini/software/gwas/gwas.html) (Howie et
al., 2009). Using a command line utility program, QCTOOL, imputed variants with

information value (measure of amount of statistical information the genotypes
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provide on allele frequency) below 0.5 and variants with a minor allele frequency
< 1% were excluded.

For the purpose of our analysis, genotype data of specific SNPs (rs1060467,
157248867 and rs2074568) from the genome-wide scan and imputation were

extracted using PLINK.

3.2.10 Statistical analysis

Statistical analyses were conducted with the statistics software packages
SPSS, version 18. A P-value < 0.05 was regarded as statistically significant. HWE
for each SNP was determined using a computationally efficient exact Pywg test
statistic implemented in HaploView (Wigginton et al., 2005). A P-value <0.001 was
assumed to indicate deviation from HWE. The proportion of variability explained by

the genetic covariates was calculated using Nagelkerke’s R? statistic.

3.2.10.1 Liver mRNA and protein analysis

Relationships between each of the phenotypic parameters evaluated were
examined by Spearman correlation analysis. All except CYP4F2 mRNA expression
was skewed. To ensure normal distribution, the expression data were either
square-root transformed (CYP4F3 mRNA, CYP4F12 mRNA and CYP4F2 protein),
natural log transformed (CYP4F8 mRNA), or log transformed (CYP4F11 mRNA).
To evaluate the association of each SNP or haplotype with mRNA and protein
expression levels, two univariate tests of association were performed: (i) one-way
analysis of variance (ANOVA) which makes no assumption on the mode of
inheritance and (ii) univariate linear regression which assumes an additive mode of

inheritance; the minimum P-value was referred to in each analysis. P-values from all
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genotype-phenotype association tests undertaken in the functional study were

adjusted for multiple testing using the FDR (Benjamini et al., 2001). FDR-corrected

P-values are denoted as P.-values.

3.2.10.2 Warfarin outcome analysis

Univariate linear regression and log-rank test for trend (both assuming
additive mode of inheritance) were employed to test for the association of SNPs with

warfarin stable dose and time to therapeutic INR, respectively.

3.2.11 Identification of SNPs associated with mRNA expression in silico

Putative expression quantitative trait loci (€QTLs) in the CYP4F gene cluster
were identified wusing the eQTL browser (http://eqtl.uchicago.edu/cgi-
bin/gbrowser/eqtl/), a database that summarises results from large-scale studies
which identified eQTLs in the liver (Schadt et al., 2008), brain (Myers et al., 2007),
fibroblasts (Dimas et al., 2009), T-cells (Dimas ez al., 2009), monocytes (Zeller et
al., 2010), and lymphoblastoid cell lines (Stranger et al, 2007; Veyrieras et al.,

2008; Dimas et al., 2009; Montgomery et al., 2010; Pickrell et al., 2010).

3.2.12 Network building method

The interactions between CYP4F2, CYP4F11 and CYP4F12 were visualized
in MetaCore™ (GeneGo Inc., St. Joseph, MI, USA), an interactive database derived
from manually curated literature publications on proteins and small molecules of
biological relevance in humans. MetaCore generates an interaction network around

the proteins and finds the clusters of objects directly connected.
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3.3 RESULTS

3.3.1 Effects of CYP4F2 variants on hepatic mRNA expression of the

CYP4F gene cluster

The significant effects of CYP4F2 variants on hepatic mRNA expression of
the CYP4F gene cluster are summarised in Table 3.1. Contrary to a recent report by
McDonald er al., (2009), a significant association between rs2108622 and liver
CYP4F2 mRNA expression was found (Figure 3.2a), with subjects homozygous for
the rs2108622 minor T allele showing greater CYP4F2 expression compared to
subjects homozygous for the major C allele (TT = 1.47 £ 0.29, CC = 0.97 + 0.31, P,
=575 x 104, R? = 12.6%). Moreover, several other CYP4F2 variants were also
associated with significant up-regulation of CYP4F2 expression including rs2189784
(P. = 0.014, R? = 7.9%, Figure 3.2b), a SNP located 29 kb downstream of the
CYP4F2 gene. Interestingly, in addition to being associated with CYP4F2 mRNA
expression, rs2108622 demonstrated significant association with CYP4F/1 mRNA
down-regulation (P, = 2.56 x 10, R? = 13.7%, Figure 3.2c) while rs2189784 was
significantly associated with lower levels of CYP4F]2 mRNA expression (P, =
0.014, R*> = 8.3%, Figure 3.2d). No associations were found between CYP4F2

variants and CYP4F3 or CYP4F8 mRNA expression (data not shown).
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Figure 3.2. Levels of CYP4F2, CYP4F11 and CYP4F12 mRNA in normal liver tissue
donated from 149 patients in relation to CYP4F2 SNPs. CYP4F2 mRNA expression
stratified by (a) rs2108622 and (b) rs2189784 genotypes. CYP4F11 and CYP4F12 mRNA
expression stratified by (c) rs2108622 and (d) rs2189784 genotypes, respectively. P-
values after FDR are shown in the upper left corner. Each dot represents an individual

and the solid lines represent the mean values.
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3.3.2 Effects of CYP4FIl and CYP4FI2 SNPs on hepatic mRNA

expression of the CYP4F gene cluster

It is noteworthy that CYP4F11 and CYP4FI12 mRNA were both correlated
with CYP4F2 mRNA expression (r; = 0.250, P = 0.002; r; = 0.384, P = 1.35 x 104,
respectively, Figures 3.3a & b). These correlations are reflected in the associations of
CYP4F2 variants with CYP4F]] and CYP4F12 mRNA expression.

Looking at the region encompassing the CYP4F gene cluster on HapMap
database (Figure 3.1), high LD is seen in the CYP4F12-CYP4F2-CYP4F11 locus,
suggesting that SNPs across the CYP4F11 and CYP4F 2 regions could influence the
mRNA expression of CYP4F2 and possibly other CYP4F gene cluster members. To
examine the genetic contribution of variants in CYP4F[] and CYP4FI12 on the
hepatic mRNA expression of the CYP4F gene cluster, fine mapping of the CYP4F!]
and CYP4FI2 gene regions was conducted and significant associations are
summarised in Table 3.2.

rs1060467, a genetic variant located in the 3’ untranslated region (UTR) of
CYP4F1] demonstrated a significant association with decreasing CYP4F2 mRNA
expression (P, = 0.016, R? = 7.2%, Figure 3.4a); whilst an opposite trend for
increasing CYP4FI11 mRNA expression was observed which was not statistically
significant (P, = 0.179, Figure 3.4b).

Eight SNPs spanning CYP4F12 were significantly associated with CYP4F12
mRNA expression. No significant association with CYP4F3 or CYP4F8 mRNA

expression was observed with any SNPs in the CYP4F11 or CYP4F12 region.
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Figure 3.3. Phenotypic correlations in Caucasian human liver tissues. (a) Correlation
between CYP4F11 mRNA and CYP4F2 mRNA levels (n = 149); (b) correlation between
CYP4F12 mRNA and CYP4F2 mRNA levels (n = 149). The Spearman’s rho correlation
coefficient (rs) and P-value for each comparison are given.
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Figure 3.4. Levels of CYP4F2 and CYP4F11 mRNA in normal liver tissue donated from
149 patients in relation to CYP4F11 SNP rs1060467 genotype. (a) CYP4F2 mRNA
expression; (b) CYP4F11 mRNA expression. P-values after FDR are shown in the upper
left corner. Each dot represents an individual and the solid lines represent the mean

values.
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3.3.3 Effect of haplotypes in the CYP4F12-CYP4F2-CYP4F11 region on

hepatic mRNA expression of the CYP4F gene cluster

To explore the complex genetic architecture of CYP4F locus containing
CYP4F2, CYP4F1l and CYP4F12, haplotypes across these three genes were
constructed based on the genotype data. 10 haplotype blocks were identified as
shown in Figure 3.5, with details of haplotypes inferred and their estimated
frequencies. Effects of CYP4F2, CYP4F1l and CYP4FI2 haplotypes on hepatic
mRNA expression of the CYP4F gene cluster were evaluated and significant
associations are reported in Table 3.3.

Haplotype 4A harbouring the sequence ‘AT’ with a frequency of 43.3% was
assotiated with significant increase in hepatic CYP4F2 (P. = 0.014, R* = 7.9%,
Figure 3.6a) and reduced CYP4FI12 (P, = 0.014, R? = 8.3%, Figure 3.6b) mRNA
expression, mirroring the effect of rs2189784. Corresponding to the effect of
r52108622, haplotype SA ‘TGCGGTGGG’ (frequency = 28.3%) was significantly
associated with increased CYP4F2 (P, = 0.001, R? = 12.6%, Figure 3.6¢) and
decreased CYP4F11 (P, = 2.74 x 10™*, R? = 13.8%, Figure 3.6d) mRNA expression.
Resembling the effect of rs1060467, haplotype 8B (sequence ‘TGC’, frequency =
33.2%) was associated with down-regulation of CYP4F2 (P, = 0.016, R? = 7.0%,
Figure 3.6¢) and showed a non-significant up-regulating effect on CYP4FII (P, =

0.203, Figure 3.6f) mRNA expression.
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Figure 3.6. Levels of CYP4F2, CYP4F11 and CYP4F12 mRNA in normal liver tissue
donated from 149 patients in relation to corresponding haplotypes across the
CYP4F2-CYP4F11 locus. (a)-(b) Haplotype 4A; (c)-(d) Haplotype 5A; (e)-(f) Haplotype 8B.
P-values after FDR are shown in the upper left corner. Each dot represents an individual
and the solid lines represent the mean values.
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3.3.4 Association of microsomal CYP4F2 protein with SNPs and

haplotypes in the CYP4F2 and CYP4F11 region

The association of rs2108622 with decreasing human hepatic CYP4F2
protein concentration reported by McDonald and colleagues (McDonald et al., 2009)
was confirmed in our cohort of 26 microsomal samples (P. = 0.05, R? = 25.6%,
Figure 3.7a). As summarised in Table 3.4, several other SNPs across the CYP4F2
region demonstrated an overall down-regulation of CYP4F2 protein expression
including rs2189784 (P. = 0.103, Figure 3.7b) while CYP4FI] SNPs were
associated with increasing CYP4F2 protein expression. However, none of these
associations attained statistical significance after correction for multiple testing using
FDR.

It is important to mention that CYP4F 1] mRNA was significantly correlated
with CYP4F2 protein levels (r; = 0.724, P = 2.93 x 107, Figure 3.8a) but neither
CYP4F2 nor CYP4F12 mRNA was significantly correlated with CYP4F2 protein
levels (rs = -0.214, P = 0.293; r;= 0.351, P = 0.079, Figures 3.9b & c).

Table 3.5 summarises the CYP4F2 and CYP4F 11 haplotype associations with
CYP4F2 protein expression. Similar to the SNP analyses, haplotypes in the CYP4F2
region showed an overall down-regulating effect on CYP4F2 protein levels including
haplotype 4A (Figure 3.9a) and haplotype SA (Figure 3.9b) while haplotype 9B in
CYP4F11 exhibited an up-regulating effect on CYP4F2 protein expression.
Unfortunately, none of these associations remained statistically significant after FDR

except haplotype SA containing rs2108622 (P. = 0.05).
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Figure 3.7. Levels of CYP4F2 microsomal protein in normal liver tissue donated from
149 patients in relation to CYP4F2 SNPs. (a) rs2108622; (b) rs2189784. P-values after
FDR are shown in the upper left corner. Each dot represents an individual and the solid

lines represent the mean values.
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CHAPTER 3

Figure 3.8. Phenotypic correlations in Caucasian human liver tissues. (a) Correlation
between CYP4F2 protein levels and CYP4F11 mRNA levels (n = 26); (b) correlation
between CYP4F2 protein levels and CYP4F2 mRNA levels {(n
between CYPAF2 protein levels and CYP4F12 mRNA levels (n = 26). The Spearman’s rho
correlation coefficient (r;) and P-value for each comparison are given.

26); (c) correlation
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Figure 3.9. Levels of CYP4F2 microsomal protein in normal liver tissue donated from
149 patients in relation to CYP4F2 haplotypes. (a) Haplotype 4A; (b) Haplotype 5A. P-
values after FDR are shown in the upper left corner. Each dot represents an individual
and the solid lines represent the mean values.
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3.3.5 Effect of rs1060467 in CYP4F11 on warfarin stable dose and time

to therapeutic INR

LD analysis of genotypes in our cohort of 149 liver tissues revealed that
151060467 in CYP4F11 is in LD with rs2108622 (D’ = 1.0, #* = 0.206) but in low LD
with rs2189784 (D’ = 0.557, P = 0.121). To assess the role of rs1060467 in warfarin
response, data from a previously conducted genome-wide association study (GWAS)
looking at variability in warfarin response (Stephane et al., unpublished) was used to
test the association of rs1060467 with two clinical outcomes: (i) warfarin stable dose
and (ii) time to therapeutic INR. Demographic details of the 714 patients are
summarised in Table 3.6. Of the 714 patients, 352 (49%) achieved warfarin stable
dose, and 592 (83%) achieved therapeutic INR during the follow-up period. Figure
3.10a illustrates warfarin stable dose established in patients, stratified by rs1060467
genotype. Patients with a C allele exhibited reduced stable dose requirements
(mg/week: TT =324 £ 1.5, TC =28.0 = 1.1, CC = 26.2 + 1.7; P = 0.003). The
proportion of warfarin dose variability explained by rs1060467 was 2.5%. No

association between rs1060467 and time to therapeutic INR was observed (P =

0.820).

3.3.6 Insilico genotype-phenotype analysis

In addition to our genotype-phenotype correlation analyses in human liver
tissues, €QTLs in the region encompassing CYP4F2, CYP4F1I and CYP4F12 genes
(chr19: 15635000-16050000) was also assessed using the eQTL database (Imai et al.,
2000)hosted by the Pritchard laboratories at the University of Chicago. Table 3.7
outlines the significant SNP-gene associations available on the eQTL database. Of

particular interest is the positive association of rs7248867, a SNP located between
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CYP4F12 and CYP4F2, with CYP4F11 transcript levels in livers from individuals of
European descent. Using genotype data available on HapMap, LD analysis revealed
that this intergenic SNP is in LD with both rs2189784 (D’ = 1.0, »* = 0.103) and
rs2108622 (D’ = 1.0, P = 0.046). rs7248867 also tags several SNPs (using ¥ > 0.8)
including a CYP4F12 intronic SNP, 152074568 (D’ = 1.0, #* = 0.846) which was
analysed in our cohort of 149 individuals who had donated liver samples. rs2074568
showed significant association with hepatic mRNA expression of CYP4FI2 (P, =

0.003) but not CYP4F11 (P. = 0.251) nor CYP4F2 (P. = 0.779).

3.3.7 Effect of rs7248867 and rs2074568 on warfarin stable dose and

time to therapeutic INR

Genotypes from the 1000 genomes project were imputed to evaluate the
effect of rs7248867 and rs2074568 on warfarin stable dose and time to therapeutic
INR. As depicted in Figure 3.10b, patients carrying the minor rs7248867 T-allele
required lower warfarin doses compared to patients carrying the major C-allele
(mg/week: CC=30.5+1.0, CT =26.5+ 1.3, TT =22.2 £ 2.5; P = 0.007). Similarly,
rs2074568 (Figure 3.10c) showed a recessive effect on warfarin dose requirements
with the minor A-allele (mg/week: TT = 30.1 + 1.0, TA = 278 + 14,
AA =21.7 £ 2.4; P = 0.041). No association with time to therapeutic INR was found

with neither SNPs.
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Table 3.6. Clinical profile of 714 warfarin patients.

Characteristic N (%)
Gender - Male 397 (56)
Age in years, mean (range) 69 (19-95)
BMI®, mean (range) 28 (13-55)
Ethnicity
White 713 (99.9)
Black 1(0.1)
Indication for warfarin
Atrial Fibrillation 474 (66)
Pulmonary Embolism 110 (15)
Deep Vein Thrombosis 76 (11)
Cerebrovascular accident and Transient ischaemic attacks 44 (6)
Mechanical heart valve replacement 9(1.3)
Myocardial infarction 3(0.4)
Dilated left atrium 2(0.3)
Other® 34 (5)
Co-morbidity
Cardiovascular disease 576 (81)
Musculoskeletal problems 427 (60)
Respiratory disease 268 (38)
Gastrointestinal disease 254 (36)
Neurological disease 158 (22)
Urological condition 132 (18)
Renal disease 76 (11)
History of falls 58 (8)
Hepatic disease 34 (5)

BMI: Body Mass Index.
2 BMI missing for 6 patients.

® Other indications include: prevention of clotting in arm for dialysis; systemic lupus
erythematosus; anti-phospholipid syndrome; short saphenous vein thrombosis; valvular heart
disease; sagittal sinus thrombosis; dilated left ventricle; occluded graft in leg; pulmonary
hypertension; apical aneurysm; urticaria with angioedema; femora!l embolectomy; aortic and
mitral regurgitation; ischaemic colitis; mitral stenosis; and post-surgery.
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Figure 3.10. Box and whisker plots showing the distribution of warfarin weekly doses
based on genotype groups. (a) rs1060467; (b) rs7248867; (c) rs2074568. Boxes
represent 25" — 75" percentiles of warfarin doses, whiskers represent 5" — 95"
percentiles, and solid lines represent median dose in each group. Open dots represent
outliers.

103



$01

T3 Jaquiaw ‘¢ Ajjwey J914ied 9In|0s :1ISEDTS

ulaz04d 9y1|-9seyIuAS 212308]0132Y TGATI

¢ u@3o4d Bujuiejuod ulewopowoug (pqyg

‘9219 dNSAP ‘Ajquiasse 9¢g [gDN ‘/Z 9se3jaJ ejeq deindeH Jad se ‘6T swosowouyd Jo 31awo|a}-d ay3 wouy sijed aseq uj uaaid ase suonisod jpuiosowoy)

0TOZ ‘[e 32 49|97 SIAO0UOW  €T-3/9/0Y°9 TT4PdAD TLEGT6ST TT4PdAD jo weddisdn g E8YTYILIS!
0T0TZ ‘1219 AlawoBioly  $31A0UON  §0-325596°6 19AT £90888ST ITdbdAD €0850€Ts!
010T ‘le 12 AawoBjuoly  S3IA0UON S0-3ZS596'6 18A7 £15968ST TT4bdAD 8SE6TZTSI
0TOZ ‘le 12 AlswoBuolN  salhoouoly  S0-3ZSS96'6 18AT ¥6v968ST TT4bdAD 95T9pLES]
0TOZ ‘|2 12 AlsWoOSWO  $3IA00UO  S0-325596°6 T8AT 06€668ST TT40dAD ySTOVLES
0107 ‘le 12 AlswoBuolN  SaAJ0UOI  S0-3Z5596'6 18A PEEE68ST TT4bdAD §/0Z15954
0T0Z ‘1215 AlawoBoly  salhoouoly  §0-325596'6 19AT 9/1988ST ITdtdAD €9t09015/
0T0T ‘je 18 AlswoBluolN  S3MAI0UOIN  G0-3£S008'T rayg 66069851 Z4bdAD Z06vL0Ts!
0TOZ ‘le 312 Alswodol  sa1hdouolN  SO-IES008'T rayg TTr8S8ST Z4bdAD 106YL0ZS!

800¢ ‘|2 12 1peyds Jaan S0-3€7'8 TT4¥dAD P0TTELST Z4vdAD PUB ZTJpdAD Usamiaq Duagiaul  L9881ZLS)
0107 ‘|le 3@ Aldwoduoly  salbdouoly  S0-3ZTOTT9 T3ISED1S SYTTY9ST ZTdPdAD Jo weadsnsdn g 820652Ls!
0107 ‘je 1@ Alawoduopy  saibdouoly  S0-3ZTOTT9 1356015 TYOTH9ST CT4PdAD 40 weadlisdn g ¥80TSTLS!
0107 ‘e 12 Alawosuopy  sajhoouoly  S0-3ZTOTZ9 T3SEDTS £SY0V9ST CT4PdAD Jo weansdn g €£960v0TS4
0107 ‘[e 18 AdwoBuoy  sayoouoly  SS8TT000°0 135€J15 9668€9ST ZT4bdAD Jo weassdn g TSE808YS)
0T0T ‘|e 10 AlawoBuoly  sajhd0uoiy  S0-3ZTOTZ9 13S€D1S T€68€9ST ZT4bdAD Jo wieassdn .§ £96L08vS!
0107 ‘|e 1@ AawoBjuoly  sajbouoly  S0-32ZTOTZ9 I35€71S vTL8E9ST ZT4¥dAD o weansdn g TSEBO8YSI
010¢ ‘le3d AlawoBoly  $aA00UO  SO-I6EVSL'6 135€01S TTSLEIST ZT4bdAD J0 wealisdn ,§ 95S9YT LS

Apnis anssij anjeA-d au3n 113 19818  uone’0] j[ewosowoly) dNS uonesi|exoy dNs dNS

*uoigad 193N 3UdB ITIYdAD-ZIVdAI-ZT4rdAD Y3 Ul 1109 “L°€ djqel

€ Y4 LdVHD



CHAPTER 3

3.3.8 Interaction between CYP4F2, CYP4F11 and CYP4FI12

MetaCore™ was used to put CYP4F2, CYP4F11 and CYP4F12 into a cellular
context to evaluate the significance of gene networks that these three genes
participate in and to identify regulatory cascades that lead to or from these genes.
Figure 3.11 highlights the network interactions of nuclear transcriptional factors
relating to the gene expression of CYP4F2, CYP4F11 and CYP4F12. Several nuclear
transcription factors including pregnane X receptor (PXR), aryl hydrocarbon receptor
(AHR), activator protein 1(AP-1), peroxisome proliferator-activated receptor
(PPAR), sterol regulatory element-binding protein 1 (SREBP-1), retinoid X receptor
(RXR) and retinoic acid receptor (RAR) are known to be involved in the metabolism
and clearance of diverse endogenous and exogenous compounds as well as gene

activation (Pavek and Dvorak 2008; Zhou et al., 2009).
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CHAPTER 3

3.4 DISCUSSION

Members of the CYP4F subfamily are known for their roles in the
metabolism of both endogenous and exogenous compounds. CYP4Fs are involved in
the catabolism of substrates such as fatty acids, prostaglandins, and steroids, and they
also catalyse the metabolism of many drugs. For example, CYP4F2 and CYP4F3B
have been shown to catalyse the initial O-demethylation of the antiparasitic prodrug
pafuramidine by human liver and intestinal microsomes (Wang ef al., 2006, Wang et
al., 2007). In addition, CYP4F?2 has recently been reported to be a vitamin K oxidase
and plays a role in warfarin response (McDonald ef al., 2009). Candidate gene(s) and
GWAS studies have shown that the CYP4F?2 functional variant, rs2108622, accounts
for a small proportion of the variability in warfarin dose requirement (1-7%)
(Caldwell et al., 2008; Borgiani et al., 2009; Takeuchi et al, 2009; Pautas ef al.,
2010). CYP4F11 is known to be active in the metabolism of several drugs which
include erythromycin, benzphetamine, ethylmorphine, chlorpromazine, and
imipramine (Kalsotra et al., 2004). CYP4F12 has also been reported to be involved
in the conversion of the antihistaminic prodrug ebastine to the active drug
carebastine by hydroxylation (Hashizume et al., 2001; Hashizume et al., 2002).

To elucidate whether the association between genotype and gene expression
reflected cis-acting regulatory effects on the CYP4F gene cluster, a comprehensive
investigation has been conducted in this chapter looking at the effects of CYP4F2,
CYP4F11 and CYP4FI2 polymorphisms on the hepatic expression levels of
CYP4F2, CYP4F3, CYP4FS8, CYP4FI11 and CYP4F12 mRNA and CYP4F2 protein
in a Caucasian population. This study reports for the first time that SNPs and

extended haplotypes in CYP4F2, CYP4F1] and CYP4FI2 affect the expression
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levels of CYP4F2, CYP4F11 and CYP4F12 in human liver tissues and that CYP4F11
plays a role in warfarin response.

The association of rs2108622 with reduced level of human microsomal
CYPA4F2 protein concentration (McDonald et al, 2009) were confirmed in 26
genotyped microsomal samples. In addition, haplotype SA harbouring this SNP
showed a borderline association with CYP4F2 protein levels in our study. Several
other SNPs and haplotypes in the CYP4F2-CYP4F11 locus also demonstrated
associations with CYP4F2 protein expression but their statistical significance did not
withstand correction for multiple testing. The small number of available microsomal
samples with detectable CYP4F2 protein content (n = 26) may be underpowered to
detect significant differences for the numerous polymorphisms tested.

Contrary to McDonald et al.’s recent finding (2009), our study observed an
association with rs2108622 which explained over 12% of CYP4F2 mRNA
expression in our 149 human liver samples. Likely reasons for this difference in
results could be due to the differences in sample size (n = 149 in our study versus n =
59 in McDonald ef al.’s study) and differences in liver tissue quality and origin. In
addition, our data demonstrated that rs2108622 accounts for nearly 14% of CYP4F11
hepatic mRNA expression. Comparatively, the haplotype harbouring this CYP4F2
variant also displayed similar associations. Further investigation of SNPs in the
CYP4F11 region revealed a variant in the 3’UTR, rs1060467, to be associated with
decreased CYP4F2 mRNA expression. This SNP explained approximately 7% of
CYP4F2 mRNA expression and the CYP4FI] haplotype comprising the minor
rs1060467 C-allele had a corresponding recessive effect on CYP4F2 mRNA

expression.
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Given the LD between rs1060467 and rs2108622 (D’ = 1.0), it was
hypothesised that rs1060467 may play a role in warfarin stable dose. Using our
GWAS data (unpublished) previously conducted in 714 prospective patients on
warfarin therapy, rs1060467 explained 2.5% of warfarin dose variability and a
difference in mean weekly warfarin dose requirement was observed with the
1s1060467 genotype, where our TT patients required a mean value of 4.63 mg/day
compared to 3.74 mg/day of our CC patients. Interestingly, the association of
rs1060467 with warfarin dose is opposite to that seen with CYP4F2 rs2108622 as
previously reported by other studies (Caldwell et al., 2008; Borgiani ef al., 2009;
Takeuchi et al., 2009). The minor allele of rs1060467 was associated with reduced
warfarin requirements while that of rs2108622 was associated with increased
warfarin requirements, suggesting CYP4F2 and CYP4F1] may have compensatory
effects on each other.

Our results also showed a significant association of rs2189784, a SNP located
30 kb upstream of CYP4F2, with differences in mRNA expression of CYP4F2 and
CYP4F12. Interestingly, this SNP has been previously reported in chapter 2 to play a
role in time taken to achieve therapeutic INR in patients on prospective warfarin
therapy (Zhang et al., 2009). Likewise, the haplotype containing the minor A-allele
of variant rs2189784 (haplotype 4A) was also significantly associated with
increasing CYP4F2 and decreasing CYP4F]2 mRNA expression. These results
suggest that the previously observed association between rs2189784 and time to
therapeutic INR may be mediated through an effect on CYP4F2 and CYP4FI12
mRNA and SNPs in CYP4F12 may affect CYP4F2 mRNA expression. Evaluation of
variants across the CYP4FI2 region however, did not show any SNPs to be

associated with CYP4F2 mRNA expression.
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This study also gained an insight into the gene regulation of the CYP4F
cluster from publicly available data repositories. In silico eQTL analysis revealed the
association of CYP4FI! mRNA expression with an intergenic SNP between
CYP4F12 and CYP4F2, rs7248867. This SNP is tagged by a CYP4F 12 intronic SNP
(rs2074568) genotyped in our study. These two SNPs were however, not present on
the GWAS platform. Imputations were therefore performed and a trend for reduced
warfarin stable dose was observed with these two SNPs.

Using the program MetaCore™ as a bioinformatics network hypothesis
generating tool, interactions between CYP4F2, CYP4F1] and CYP4F12 were shown
to be interlinked via numerous nuclear transcription factors such as AP-1, RXR,
RAR and SREBP. AP-1 and RXR-mediated pathways have been shown to be
involved in the regulation of CYP4F11 expression (Wang et al, 2010) in human
keratinocyte-derived HaCaT cells. Using the human hepatoma (HepG2) cell line,
studies have shown that retinoic acids and peroxisome proliferators can regulate
CYP4F2 activities, where RXR stimulated whilst RAR repressed CYP4F2 expression
(Zhang et al., 2000; Zhang and Hardwick 2000). Additionally, a report by Hsu and
colleagues suggests that SREBP mediates statin induction of CYP4F2 expression in
primary human hepatocytes and HepG2 cells (Hsu et al., 2007). PXR was found to
be involved in the regulation of CYP4F2 expression in healthy human lymphocytes
(Siest et al., 2008) and CYP4FI2 expression in primary human hepatocytes
(Hariparsad et al., 2009). A very recent study reported that R-warfarin interacts with
PXR nuclear receptor and can significantly up-regulate drug-metabolising enzymes
such as CYP3A4 and CYP2C9 in the liver (Rulcova et al., 2010). Further work

should include some of these transcription factors.
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As summarised in Figure 3.12, this study has effectively examined sequence
variations across the three CYP4F genes — CYP4F2, CYP4F1] and CYP4F12 and
their effect on CYP4F gene cluster expression. The expression of these genes in liver
could be a useful tool for future pathological and physiological studies in relation to
drug intake and metabolic pathways. Our work has also shown that fine mapping via
custom design allows greater coverage of SNPs which are not available on the
GWAS platform. Out of the 147 SNPs successfully genotyped in this study, only 26
were present in our GWAS. Due to the high degree of LD across the region
encompassing CYP4F2, CYP4F11 and CYP4F12, it is possible that these three genes
play a synergistic role in warfarin response. The selection of all SNPs included in
this study was dependent on data submitted to public repositories. As SNPs were
selected from the International HapMap project and NCBI Entrez SNP database, it is
possible that additional common variants or important functional polymorphisms
which were not genotyped in the CEU population may be involved. In order to
identify the true causal variant(s), resequencing of these three genes would be

required to exhaustively assess all variants spanning these genes.
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Chapter 4

Novel VKORCI mutations identified

in warfarin resistant patients
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4.1 INTRODUCTION

Currently  available pharmacogenetic ~ warfarin  dosing  algorithms
incorporating the common genetic variations CYP2C9*2 (rs1799853), CYP2C9*3
(rs1057910) and VKORC1 -1639 (rs9923231) as well as clinical variables, such as
age, weight, and body surface area, have shown to provide better dose prediction
compared to clinical algorithms or fixed-dose approaches. (Gage et al., 2008; Klein
et al., 2009; Wadelius ef al., 2009; Lenzini et al., 2010). However, a large difference
in dose requirements between the pharmacogenetic estimation approach and the
actual therapeutic dose is observed in patients who required very high doses of
warfarin (Klein et al., 2009; Lenzini et al., 2010), indicating that the common SNPs
in CYP2C9 and VKORCI! do not explain the extremely high warfarin dose
requirements in rare individuals with warfarin resistance (James et al, 1992;
Oldenburg et al., 2007).

Warfarin resistance has been defined as the inability to prolong INR into the
therapeutic range when the drug is given at doses prescribed to the majority of
patients (Lefrere et al, 1987). The prevalence of warfarin resistance is rare.
Transient causes of acquired resistance to warfarin include poor patient compliance,
high vitamin K consumption and concomitant drugs that induce the metabolism of
warfarin. Warfarin resistance can be broadly classified into two categories,
pharmacokinetic resistance or pharmacodynamic resistance.

Pharmacokinetic resistance can result from diminished absorption or
increased metabolism of warfarin, resulting in a rapid decline in plasma warfarin
levels. Causes of diminished absorption include emesis, diarrhoea, and
malabsorption syndrome, however, since warfarin is absorbed by passive diffusion,

malabsorption is extremely uncommon, even in individuals with significant small
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bowel disease. Enhanced warfarin metabolism would likely arise through the
induction of CYP2C9 and to a lesser extent, CYP1A1, CYP1A2 and CYP3A4. This
is commonly due to the copy number of enzyme inducers. Gene duplication or
multiplication of CYP2C9, CYP1Al, CYPIA2 or CYP3A44 has not been reported,
unlike CYP2D6, where gene duplication and multiplication causes ultra-rapid
metabolism of debrisoquine, tramadol and codeine (Johansson et al., 1993; Gasche et
al., 2004; Kirchheiner et al., 2008).

Pharmacodynamic warfarin resistance is indicated when an elevated
circulatory warfarin concentration beyond that of the upper limit of the therapeutic
range is achieved through high daily doses of warfarin, while the INR remains
consistently sub-therapeutic. The mechanism of pharmacodynamic warfarin
resistance in man has not been delineated but it has been postulated that increased
affinity of VKORC! for vitamin K (O'Reilly et al, 1968; Cain er al, 1998) and
decreased VKORCI sensitivity to warfarin (Cain et al., 1998) may be important.

Since the discovery of the VKORC1 gene in 2004 (Li et al., 2004; Rost et al.,
2004a), 12 rare missense mutations in VKORCI have been reported in patients
resistant to warfarin (Table 4.1). The studies however were either isolated case
reports (Rost e al., 2004a; Harrington et al, 2005; D'Ambrosio et al, 2007,
Loebstein et al, 2007, Ainle ef al, 2008) or in a small number of patients
(Harrington et al., 2008; Watzka et al., 2011).

The aim of this chapter was therefore to determine if rare mutations are
present in the promoter and exon-intron boundaries of the VKORC/ gene in addition
to the exonic regions in our cohort of warfarin resistant patients. In addition,

bioinformatics analyses of the novel mutations identified were also undertaken.
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CHAPTER 4

4.2 PATIENTS, MATERIALS AND METHODS

4.2.1 Patient population

Between November 2004 and September 2007, patients treated with warfarin
at two hospitals in Liverpool, UK, the Royal Liverpool and Broadgreen University
Hospitals Trust and University Hospital Aintree, were recruited prospectively (n =
1000) and retrospectively (n = 69). Demographics and clinical data for all patients
were gathered from their medical notes and clinical records. Written informed
consent was obtained from all patients and the study was approved by the
Birmingham South Research Ethics Committee. The study design of the prospective
cohort has been described in section 2.2.1. The retrospective cohort comprised of
patients who were either currently or previously on warfarin therapy, and had
warfarin sensitivity or resistance (as defined below and in section 2.2.2 in chapter 2).

Patients showing resistance to warfarin were selected from both the
prospective and retrospective cohorts for VKORC] sequence analysis. Among the
1000 patients recruited prospectively, 29 showed resistance to warfarin. Of the 69
retrospectively recruited patients, 36 showed warfarin resistance. Resistance to
warfarin was defined as daily doses of > 10 mg on three successive clinic visits or for
more than three weeks. Patients were excluded from the study if (i) they had
concomitant treatment with drugs classed as CYP inducers (i.e. carbamazepine,
phenytoin, phenobarbitone, and rifampicin) which induce the metabolism of warfarin
and hence patients would require higher doses of warfarin, and/or (ii) were
noncompliant with warfarin therapy as documented in their diaries and
questionnaires. Compliance in the prospectively recruited patients was monitored

using patient diaries and questionnaire. Patients were asked to document their daily
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dose of warfarin consumption between clinic visits. At each follow-up visit, the
patient diaries were assessed by our medical staff for adherence, and the patients
needed to answer a medication questionnaire listing the number of doses taken in the
last 7 days. In addition, plasma warfarin levels were tested for pharmacodynamic
resistance as described in the following sections (sections 4.2.2 and 4.2.3). For
patients recruited retrospectively, plasma samples however were not collected and

warfarin pharmacodynamic resistance could not be determined in these patients.

4.2.2 Warfarin assay

For patients recruited prospectively, heparinised whole blood samples were
taken approximately 16 hours after the last warfarin dose at each of the four
scheduled visits when possible. Plasma was separated and aliquots were stored
at —20°C for determination of plasma warfarin concentrations.

In the first 311 patients recruited prospectively (interim analysis) and
warfarin resistant patients recruited prospectively, unbound levels of both R and S-
warfarin were simultancously measured using the chiral high-performance liquid
chromatography (HPLC) method as previously described (Naidong and Lee 1993;
Lane et al., 2011). Measurements were carried out by Sameh Al-Zubiedi in the
Department of Pharmacology, University of Liverpool, and Ellen Hatch and Jeremy
Palmer, in Professor Farhad Kamali’s lab at the Institute of Cellular Medicine,
Newcastle University. Briefly, separation of the warfarin enantiomers was performed
on a 250 x 4.6 mm B-cyclodextrin column (Cyclobond 1 2000, Advanced Separation
Technologies Ltd®) coupled with a 200 x 4 mm B-cyclodextrin guard column, on a
Dionex HPLC system consisting of a UVD170U variable wavelength detector set at

303 nm. S-naproxen (80 pg/ml; Sigma-Aldrich, Poole, UK) was used as an internal
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standard. The mobile phase used consisted of a mixture of acetonitrile, glacial acetic
acid, and triethylamine at 1000:3:2.5 ratio (v/v/v) at a flow rate of 1 ml/min over a
total run time of 30 min. Intra- and inter-day coefficients of variation for both R- and
S-warfarin were less than 6%. The inter- and intra-assay accuracy (% bias) for all
quality control (QC) concentrations was within 15% for both R- and S-warfarin. The
assay allowed for the quantification of enantiomers of warfarin over a wide
concentration range (100-5000 ng/ml). The limit of quantification was set at
100 ng/ml for each warfarin enantiomer; which is sufficiently low to enable patient

samples to be analysed with good accuracy and precision.

4.2.3 Establishing warfarin reference range

In order to establish diagnostic criteria for pharmacodynamic warfarin
resistance in our cohort of patients, we used a method similar to that previously
published by Harrington an colleagues (2005). 145 prospective patients who
achieved warfarin stable dose (an unchanged daily dose at > 3 consecutive clinic
visits within the individual’s target INR range) (from the interim analysis described
in section 2.2.3) with available plasma warfarin concentration, was used as a
reference population to define the therapeutic plasma warfarin reference range (95%
confidence interval). Prospectively recruited warfarin resistant patients with plasma
warfarin levels beyond this therapeutic reference range were classified as showing

pharmacodynamic resistance.

4.2.4 DNA extraction

Genomic DNA was isolated from EDTA whole blood using the standard

phenol-chloroform method, the E.Z.N.A. kit (Omega Bio-tek Inc., GA, USA), or the
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Chemagen Whole Blood DNA Extraction Kit (magnetic beads technology) on the
Chemagic Magnetic Separation Module 1 (Auto-Q Biosciences, Germany), according
to manufacturer’s instructions. The Chemagic Magnetic Separation Module 1 is
based on the polyvinyl alcohol particles (M-PVA) Magnetic Beads technology. The
M-PVA Magnetic Beads exhibit both a hydrophilic surface and low non-specific
binding properties, resulting in a unique DNA binding matrix which allows for
efficient binding to DNA with high yield and purity. The chemistry of this DNA

isolation process is outlined in Figure 4.1.
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Blood Lysis
M-PVA Magnetic Beads
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Figure 4.1 Chemistry of DNA extraction from whole blood using the Chemagic
Magnetic Separation Module 1. The lysis of the white and red blood cells is performed
in the presence of protease for protein degradation. The isolation of the DNA is
achieved through its capture by M-PVA Magnetic Beads. When applying an
electromagnetic field, these beads, together with the bound DNA, are attracted to the
magnetized metal rods, which can then transfer the DNA from one washing buffer to
another. Each rod is covered by a disposable tip to prevent between-run contamination
of the rod. At the end of each transfer step, the electromagnet is deactivated and the
rotation of the rods is switched on, leading to an efficient and homogeneous
resuspension of the particles. In the final step the beads are transferred into elution
buffer, which inactivates the interaction between the beads and the DNA. The magnetic
beads are then removed, leaving the isolated DNA in suspension.
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4.2.5 Amplification of the VKORCI gene

Primers were designed using the Primer3 program
(http://frodo.wi.mit.edu/primer3/) (Rozen and Skaletsky 2000) to amplify the
promoter, three coding exons and adjoining introns of the VKORCI gene (Figure
4.2). All PCR primers had a 17mer tag sequence (forward primer tag: 5’-
GTAGCGCGACGGCCAGT-3’; reverse primer tag: 5’-
CAGGGCGCAGCGATGAC-3") which acts as a surrogate template target for
downstream sequencing. All primers were ordered from Invitrogen, Paisley, UK,
with cartridge purification quality. PCR reactions were performed in a final volume
of 50 pl, containing 40 ng of genomic DNA, 0.2 mM of dNTPs and 3 U of HotStart

™ bolymerase (QIAGEN). The primer and MgCl, concentrations were

Taq
optimized for each primer pair (Table 4.1). Amplification conditions consisted of an
initial denaturation for 15 min at 95°C, followed by 45 PCR cycles of 45 s
denaturation at 94°C, 45 s annealing at an optimized temperature (Table 4.2), and a 1
min extension at 72°C. The reaction was terminated with a 10 min final extension at
72°C. To check the size and specificity of PCR fragments, the PCR products were

electrophoresed on a 1.5% ethidium bromide-stained agarose gel in 1x Tris-Borate-

EDTA (TBE) buffer for 20 min at 150V, and the gel was visualised under UV light.
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CHAPTER 4

4.2.6 Sequencing of the VKORCI gene

Before identifying the genetic variants in the PCR products by Sanger
sequencing, 5 pl of each PCR was incubated with 4 U of ExoSAP-IT® (USB
Corporation, Cleveland, Ohio, USA) for 30 min at 37°C in 1.5 x reaction buffer to
degrade primers and dephosphorylate dNTPs that were not consumed in the reaction.
The reaction was stopped by a 15 min incubation at 80°C.

Sequencing reactions were performed by Kimberley Jones in the genetics
core facility at the Liverpool Women’s Hospital, Liverpool, UK. PCR products were
bidirectionally sequenced using the *“UNISEQ” sequencing primers (forward:
GTAGCGCGACGGCCAGT; reverse: CAGGGCGCAGCGATGAC). DNA cycle
sequencing reactions were carried out in 8 ul reactions using 10 ng of purified PCR
product, 200 nM forward and reverse primer, 0.25 pl BigDye® Terminator version
1.1 sequencing buffer (Applied Biosystems) and 3.75 ul dilution buffer (Applied
Biosystems) using the following cycling conditions: initial 95°C for 1 min followed
by 25 cycles at 96°C for 10 s, 55°C for 10 s and 60°C for 4 min. Sequencing
products were then cleaned using the Agencourt CleanSEQ bead system (Beckman
Coulter Genomics®, UK) before running on the Applied Biosystems 3730x] DNA
analyzer (50 cm capillary, POP7 buffer).

Sequence traces were base called using the Sequence Analysis software
version 5.2 (Applied Biosystems) and data quality was checked using the Sequence
Scanner freeware version 1.0 (Applied Biosystems). Sequence assembly and analysis
were then performed using Mutation Surveyor® software package version 3.24
(SoftGenetics LLC, PA, USA) and were compared to annotated sequences from the

human VKORCI reference sequence NM_024006.4, as illustrated in Figure 4.3.
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CHAPTER 4

4.2.7 Genotyping of CYP2C9 and VKORCI

Genotyping of CYP2C9*2 (c.430C>T, rs1799853), CYP2C9*3 (c.1075A>C,
rs1057910) and VKORCI -1639 (c.-1639G>A, 1s9923231) were performed as
described in section 2.2.7. As part of quality control, negative controls containing

water instead of DNA and 10% duplicates were included in every run

4.2.8 Bioinformatics analysis
4.2.8.1 Prediction of transcription factor binding site

For novel mutations identified in the promoter and intronic regions, a short
sequence surrounding the mutation was evaluated for the presence of putative-
binding sites of known transcription factors using two established transcription factor
search  databases:  Transcription  Element  Search  System  (TESS,
http://www.cbil.upenn.edu/tess) and Motif (http://www.genome.jp/tools/motif/).
TESS predicts transcription factor binding sites in the DNA sequence using two
different kinds of site models, site or consensus strings and positional weight
matrices. Motif utilises dynamic programming to find the best alignment between a

query sequence and each profile entry in the PROSITE database (Hulo ez al., 2006).

4.2.8.2 Prediction of functional consequences of mutations

The effect of the novel missense variant on protein function was predicted
using Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping
(PolyPhen), Align-Grantham Variation and Grantham Deviation (Align-GVGD) and

I-Mutant2.0.
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SIFT (http://sift.jcvi.org/) uses alignments of query sequences to measure
conservation of each amino acid between species and calculates whether the
biochemical parameters of the exchanged amino acids are similar or disparate (Ng
and Henikoff 2001). A SIFT score of less than 0.05 indicates a deleterious amino
acid substitution.

PolyPhen (http://genetics.bwh.harvard.edu/pph/) uses conservation of
sequences and structural predictions to determine functional consequences of each
variant (Sunyaev et al., 2001). PolyPhen scores of less than 1.5 indicate functionally
normal variants; scores between 1.5 and 2.0 are categorized as possibly deleterious
and greater than 2.0 are categorized as probably deleterious.

Align-GVGD (http://agvgd.iarc.fr/agvgd_input.php) combines the Grantham
Variation and Grantham Deviation Scores for variants, comparing biochemical
characteristics and conservation of amino acids along the protein sequence (Mathe er
al., 2006; Tavtigian er al., 2006). Align-GVGD provides an output score of C(0),
C(15) through C(65). A score of C(0) indicates a neutral change, whereas C(15)
through C(65) indicates progressively more severe variants.

I-Mutant2.0 (http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/1-
Mutant2.0.cgi) is a support vector machine (SVM)-based tool for the prediction of
protein stability changes upon single-site mutations (Capriotti ef al, 2005). It
predicts the direction of protein stability changes by calculating the free energy
change of protein stability (AAG value), which is calculated from the unfolding
Gibbs free energy value of the mutated protein minus the unfolding Gibbs free
energy value of the native type (kcal/mol). I-Mutant2.0 discriminates whether a
mutation increases or decreases the protein stability with either a positive or negative

AAG value, with a reliability index score from 1 to 9.
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4.2.8.3 Potential splicing aberrations

All intronic and coding mutations were analyzed for their potential effect on
splicing (pre-mRNA splicing) using six different splice site prediction algorithms:
MaxEntScan (MES), Gene Splicer (GS), Human Splicing Finder (HSF), Splice Site
Finder (SSF), splice site prediction by Neural Network (NNSplice, version 0.9), and
NetGene2.

MES, GS, HSF, SSF and NNSplice were interrogated simultaneously using
the integrated software interface Alamut version 1.5 (Interactive Biosoftware;
http://www.interactive-biosoftware.com).'Default thresholds were used for all the
analyses. These software tools are built upon various types of probabilistic models of
human splice sites.

MES (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html) is
based on the “maximum entropy principle” and generalises probabilistic models of
sequence motifs such as weight matrix models and inhomogeneous Markov models
(Yeo and Burge 2004). It assigns a log-odds ratio (MaxEntScan score) to a 9-mer at
the 5' splice site and a 23-mer at the 3’ splice site. The higher the MaxEntScan score,
the stronger is the splice site. Use of MaxEntScan requires that the exon—intron
boundary is provided, meaning that it is unable to read through a sequence and find
the splice site.

GS (http://www.tigr.org/tdb/GeneSplicer/gene_spl.html) uses a combination
of Markov modelling techniques and maximal dependence decomposition (MDD)
(Pertea et al., 2001), a decision-tree approach that accentuates the strongest

dependencies in the early branches of the tree.
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HSF (http://splice.uwo.ca) analysis is based on information theory, using
weight matrix derived from the nucleotide frequencies at each position of a splice
site sequence database (Rogan et al., 1998; Nalla and Rogan 2005).

SSF (http://violin.genet.sickkids.on.ca/ali/splicesitefinder.html) (Shapiro and
Senapathy 1987, Senapathy et al., 1990), NNSplice
(http://www fruitfly.org/seq_tools/splice.html) (Reese er al, 1997) and NetGene2
(http://www.cbs.dtu.dk/services/NetGene2) (Brunak ez al., 1991; Hebsgaard et al.,
1996) are computational classifiers that identify the most probable splice site in a
given sequence, and then assign a score of splice site strength. All programs provide
similar type of data output, that is, quantitative scores for wild-type and mutant splice
site sequences that reflect splice site strength.

The score of the mutant splice site should be at least 10% lower than the
score of the corresponding natural splice site for the mutation to be considered
deleterious to normal splicing and conclusions should be based upon consistency of

the results from at least two software programs.
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43 RESULTS

4.3.1 Patient population

A total of 65 warfarin resistant patients requiring daily warfarin doses
of > 10 mg were recruited. 29 (45%) were recruited prospectively and 36 (55%) were
recruited retrospectively. Their demographic details are summarised in Table 4.3.
Patients were all Caucasians (100%), mostly male (58%), mean age of 54 years with
a range of 26-78 years. The most common indication for warfarin was pulmonary
embolism (38.5%), followed by atrial fibrillation (30%) and deep vein thrombosis
(15%). Cardiovascular disease was the most common underlying co-morbidity in the
majority of patients (60%).

The target INR range for most patients (n = 64) was 2-3, with the remaining 1
patient suffering from antithrombin IIl deficiency having a target INR range
of 1.5-2.5. The majority of patients (n = 56) achieved therapeutic INR while 6
patients (9%) failed to achieve therapeutic anticoagulation with high doses of

warfarin.
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Table 4.3. Clinical profile of 65 warfarin resistant patients.

Characteristic N (%)
Gender - Male 38(58)
Age, mean (range) 54 (26-78)
BMI’, mean (range) 31.4 (19-61)
Ethnicity
White 65 (100)
Indication for warfarin
Pulmonary Embolism 25 (38.5)
Atrial Fibrillation 21 (30.4)
Deep Vein Thrombosis 10 (15.4)
Antiphospholipid Syndrome 3{4.3)
Heart Valve Replacement 2(2.9)
Cardiomyopathy 1{(1.4)
Heart Failure 1(1.4)
Other’ 2(29)
Co-morbidity
Cardiovascular disease 39 (60.0)
Respiratory disease 35(53.8)
Musculoskeletal problems 33 (50.8)
Urological conditions 21 (32.3)
Gastrointestinal disease 15(23.1)
Neurological disease 12 (17.4)
Renal disease 9(13.0)
History of falls 9(13.0)
Hepatic Disease 7 (10.8)

BMI: Body Mass Index.
1 BMI missing for 3 patients.
2 Other indications include apical mural thrombus and antithrombin 11l deficiency.
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4.3.2 Reference population and warfarin assay

In our reference population consisting of 145 patients stably anticoagulated
with warfarin, the median plasma total warfarin concentration was 1.27 (+ 0.63)
pg/ml and the 95% confidence interval in this population, 0.62 — 2.29 pg/ml, was
defined as the therapeutic range for plasma warfarin (Figure 4.4). This reference

range is similar to that reported by Harrington er al (2005) which was

0.7 -2.3 pg/ml.
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Figure 4.4. Plasma warfarin concentrations of the reference population. N: number;
Std Dev: standard deviation.
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4.3.3 Pharmacodynamic warfarin resistant patients

Among the 29 prospectively recruited warfarin resistant patients in our study
population, no plasma samples were available for warfarin level measurement in 4
patients. Of the remaining 25 patients, 9 subjects had warfarin concentrations within
the therapeutic range (0.62 — 2.29 pg/ml) and 16 patients had plasma warfarin
concentrations higher than the therapeutic reference range, > 2.29 pg/ml, and were
classified as showing pharmacodynamic resistance (Figure 4.5). The mean prescribed
warfarin dose for these 16 patients was 11.8 mg/day (range 10 - 19) and the mean

plasma warfarin concentration was 3.18 pg/ml (range 2.35 - 5.66).
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Figure 4.5. Scattergram showing the plasma warfarin levels in 25 patients with clinical
warfarin resistance. 9 patients had warfarin levels within the therapeutic reference
range (represented by blue triangles). 16 patients had warfarin levels greater than the
upper therapeutic reference range of 2.29 pg/ml and were classed as showing
pharmacodynamic warfarin resistance (represented by red triangles).
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4.3.4 Novel VKORCI mutations identified

As depicted in Figure 4.6, sequencing analysis of the promoter, coding
regions and exon-intron junctions of the ¥VKORCI gene revealed 3 SNPs and 7
heterozygous mutations in 54 of the 65 patients initially diagnosed as warfarin
resistant. The remaining 9 (14%) patients showed wild-type VKORC]I sequence.

The 7 rare nucleotide substitutions in the VKORC1 sequence were identified
in 8 of the 54 patients, as shown in Table 4.4. c.36G>A (p.Argl2Arg, 1s55894764)
and c.129C>T (p.Cys43Cys, rs61742233) are both synonymous mutations located in
exon 1 of the VKORCI gene, leading to no amino acid substitution. Both of these
silent mutations were each exhibited in 2 patients and have never been reported to be
associated with warfarin resistance in humans. Among the remaining 4 patients, 5
novel heterozygous mutations were detected. One patient was heterozygous for two
novel mutations in VKORCI, a ¢.-160G>C transition within the promoter and a
c.1542G>A transition in intron 2. Each of the other three patients showed single
novel heterozygous mutations for a ¢.79C>G nucleotide change in exon 1 leading to
p.Leu27Val amino acid substitution, a ¢.181C>T base change in intron 1, and a

¢.3342G>A nucleotide transition in intron 2, respectively.
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CHAPTER 4

4.3.5 Characteristics of patients carrying VKORCI mutations

Phenotypic characteristics of the 8 VKORC! mutation patients are detailed in
Table 4.4. Amongst the 8 patients, 3 showed pharmacodynamic resistance to
warfarin with plasma warfarin levels between 2.6 to 3.6 pg/ml. Of the remaining 5
patients, 1 was a prospectively recruited patient but a plasma sample was not
available for warfarin level measurement. The other 4 subjects were retrospectively
recruited with no plasma sample collected.

Therapeutic INR was achieved in 7 out of the 8 patients carrying rare
VKORC! nucleotide substitutions with increased warfarin dosages, whereas one
subject (patient 2) experienced sub-therapeutic anticoagulation at a high warfarin
dose of 15 mg/day for over 3 weeks. This patient later passed away due to heart
failure; it is therefore not known whether this patient would have achieved stable
anticoagulation with higher doses of warfarin. No patients experienced thrombosis,
bleeding or other adverse events during warfarin therapy.

Genotyping of the 3 SNPs known to be responsible for warfarin sensitivity
(CYP2C9*2, CYP2C9*3 and VKORCI c.-1639) in these 8 warfarin resistant patients
indicated predominance of wild-type CYP2C9 haplotypes (5 of 8 patients) and
VKORCI c.-1639 genotype (6 of 8 patients). Only 2 patients were heterozygous for
CYP2C9*2, 1 heterozygote for CYP2C9*3 and 2 were heterozygous carriers for
VKORC1 c.-1639. Incorporating both genetic (CYP2C9 and VKORC1 SNPs) and
clinical factors (gender, weight, height, co-morbidity and co-medications), the
warfarin doses of these 8 warfarin resistant patients were predicted using the
pharmacogenetics dosing algorithm developed by the International Warfarin
Pharmacogenetics Consortium (IWPC) (Klein et al., 2009). Similar to previous

findings, a large difference between the actual and predicted warfarin dose (mean =
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6.3 £2.8 mg/day) was observed, indicating that warfarin resistant patients are less
likely to achieve therapeutic INR if their warfarin doses were predicted using the

pharmacogenetics algorithm.

4.3.6 Putative transcription factor binding site, protein and splice site

analyses

In silico predictive analysis of the novel mutations was performed using
established databases and bioinformatics tools. Sequences surrounding the promoter
¢.-160G>C and intronic ¢.181C>T, ¢.1542G>A and ¢.3342G>A mutations were
searched for potential transcription binding sites. The TESS program revealed that
the mutation of G to C allele at nucleotide position -160 created a potential binding
site for Sp1 transcription factor with a log-likelihood score of 12 (score range 1 to
20). No putative predictions were found with the MOTIF program.

PolyPhen, Align-GVGD and SIFT were used to predict the effect of the
amino acid substitution at position 27 from leucine to valine due to the exonic
¢.79C>G mutation. PolyPhen and Align-GVGD classified this mutation as “benign”
indicating the mutation was predicted to have little deleterious effect on protein
function or structure. SIFT, however predicted this amino acid change to have a
deleterious effect on VKORCI] protein function but with low confidence.

The novel exon mutation ¢.79C>G, rs55894764, rs61742233, and the three
novel intronic mutations c.181C>T, ¢.1542G>A and ¢.3342G>A were evaluated for
possible effects on RNA splicing using six different bioinformatics programs (MES,
GS, HSF, SSF, NNSplice and NetGene2) that predict changes of splice site strength
or generation of new splice site, or activation of cryptic splice sites. None were

predicted to induce splice site changes.
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44 DISCUSSION

Our study cohort consisted of 65 clinically defined warfarin resistant patients
who required daily doses of 10 mg of warfarin or more. Of these, 29 were recruited
prospectively and 36 were recruited retrospectively. Figure 4.7 shows a flow diagram
summarising our cohort of patients with warfarin resistance and the VKORCI
mutations identified.

Despite exposure to large doses of warfarin, no patients experienced any
discernible adverse events such as bleeding complications. Among the 29
prospectively recruited patients, pharmacodynamic resistance to warfarin was
determined in 25 patients whose plasma samples were available for warfarin level
measurements. 16 patients had plasma warfarin level > 2.29 pg/ml, indicating that
the mechanism of warfarin resistance in these patients was a reduction in warfarin’s
anticoagulant effect (pharmacodynamic resistance). Warfarin resistance was
observed clinically in the remaining 9 patients with plasma warfarin levels within the
therapeutic range, possible reasons for this include poor compliance, high dietary
vitamin K intake, diminished warfarin absorption or increased warfarin
metabolism/clearance. These, however, have not been investigated systematically in
our study.

Sequencing of the VKORC]| gene revealed seven heterozygous mutations in 8
of our 65 warfarin resistant patients. None of these mutations have been previously

reported to be associated with warfarin resistance in human.
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CHAPTER 4

The two silent mutations, rs55894764 and rs61742233, were the most
common in our cohort. rs55894764 was found in two patients, one of whom was an
evaluable pharmacodynamic resistant patient who did not reach therapeutic INR at
15 mg/day warfarin for 3 weeks. Similarly, rs61742233 was also present in two
patients, one of whom showed pharmacodynamic resistance. Both patients achieved
effective anticoagulation with warfarin. None of these two silent mutations have
been reported to be associated with warfarin resistance in humans.

A new sequence variation in intron 2 at nucleotide position 1542
(c.1542G>A) was found in addition to the SNP ¢.1542G>C (rs8050894). This
mutation was present together with a promoter mutation, c.-160G>C, in one patient
recruited retrospectively.

A missense mutation ¢.79C>G in exon 1 of VKORC! (p.Leu27Val) was
detected in a patient suffering from systemic lupus erythematosus and
antiphospholipid syndrome who showed pharmacodynamic resistance to warfarin.
Although this mutation has never been identified in patients resistant to warfarin, it
was previously discovered in a Bengali patient with mitral heart valve prosthesis who
was resistant to an indanedione oral anticoagulant, fluindione (Peoc'h et al.,, 2009),
which also functions as a vitamin K antagonist.

Two other novel intronic mutations, ¢.181C>T in intron 1 and ¢.3342G>A in
intron 2, were also identified. ¢.181C>T was found in a patient recruited
retrospectively while c.3342G>A was found in a patient recruited prospectively.

Bioinformatics analysis suggested the c.-160G>C promoter mutation creates
a putative binding site (ACTCGCCCC) for Spl, a ubiquitous transcription factor
which regulates gene expression through binding GC-rich motifs that are common

regulatory elements in promoters of numerous genes (Philipsen and Suske 1999). It
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is possible that Spl binds to VKORCI promoter, leading to enhanced VKORCI
transcription and subsequent increase in active vitamin K dependent clotting factors,
leading to higher warfarin dose requirement. Nevertheless, functional work needs to
be carried out to confirm this hypothesis.

In silico analysis predicted the p.Leu27Val amino acid substitution to be
likely deleterious. This substitution is localized within the putative VKOR protein
first transmembrane domain (TM1) which is approximately 100 residues away from
the putative third transmembrane domain (TM3) (Tie et al., 2005). Although TM3
has been postulated to contain a binding motif for the ring portion of warfarin (Ma et
al., 1992), other regions in the VKOR protein have been proposed to possess
candidate accessory binding sites (Harrington et al., 2008; Watzka et al., 2011) for
the various components at the 3-position (spatial residues) of warfarin which may
also affect the affinity and potency of warfarin (Park 1988). One likely hypothesis
therefore is that the p.Leu27Val amino acid substitution in TM1 disturbs the spatial
constellation of the 3-substituent required for stable warfarin binding, leading to
increased conversion of vitamin K epoxide, hence requiring a higher warfarin dose to
achieve a therapeutic effect. In addition, this p.Leu27Val mutation is localized near
p.Val28Leu, which has been described to cause very severe warfarin resistance in an
experimental cellular model (Rost et al., 2004a). On the other hand, given the
enhanced oxidative status seen in antiphospholipid syndrome (Iuliano er al., 1997;
Ames et al, 1998), a recent report by Ames and colleagues suggests that this
oxidation might increase the generation of y—carboxylated coagulation proteins and
consequently more warfarin will be required to counteract the y—carboxylation

process (Ames et al., 2011) in this patient.
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Mutations in ¥KORCI may be an important, though rare, cause of warfarin
resistance. Further investigation is required to understand the underlying functions of
these VKORC! mutations in relation to warfarin resistance. Of note, among the 16
patients with pharmacodynamic warfarin resistance, only 3 showed mutations in
VKORC1, suggesting that other genes may also play a role in warfarin resistance.

Pharmacogenetic  algorithms incorporating CYP2C9 and VKORCI
polymorphisms are not accurate enough to predict warfarin dose requirements in
warfarin resistant patients. The identification of specific VKORC! mutatioﬁs, via
Sanger sequencing, next generation sequencing, or third generation sequencing
technologies, could potentially lead to successful clinical management and treatment
of warfarin resistant patients. Our patient population and other studies published in
the literature thus far are underpowered to evidently support this hypothesis.
Recruitment of more warfarin resistant patients is currently underway and
genotyping of the whole human exome will be carried out in an attempt to identify
rare causal mutations of warfarin resistance as other genes could also be responsible

for warfarin resistance.
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Chapter 5

Investigation of the functional
consequences of novel VKORC1

mutations identified
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5.1 INTRODUCTION

Recent studies of the enzymatic characteristics of vitamin K epoxide
reductase in rats and mice have provided insights into some important differences in
the function of wild-type and warfarin resistant mutant proteins. Lasseur and
colleagues reported diminished VKOR enzymatic activity for warfarin-resistant rats
in the presence of the VKORCI Tyr139Phe mutation (Lasseur et al., 2005; Rost et
al,, 2005), and for mice with complete warfarin resistance caused by VKORC!
p.Trp59Gly mutation (Lasseur er al, 2006). Reduction in VKORCI kinetic
parameters and mRNA levels were also observed in rats carrying the mutation
Tyr139Phe (Lasseur ef al., 2005).

Using site-directed mutagenesis and heterologous expression of mutant
VKORCI proteins in an embryonic kidney cell line, HEK293 cells, four VKORC!
mutations namely p.Val29Leu (rs104894539), p.Val45Ala (rs104894540),
p.Arg58Gly (rs104894541), and p.Leul28Arg (rs104894542), which caused
warfarin resistance in humans have been reported to show reduced VKOR activity
(Rost et al., 2004a).

In chapter 4, bioinformatics analyses predicted that the novel VKORCI
promoter c.-160G>C mutation creates a putative Spl transcription binding site, and
the exon 1 ¢.79C>G mutation causes a likely deleterious p.Leu27Val amino acid
substitution. Bioinformatics programs however only serve as a prediction tool. The
data obtained in silico need to be interpreted with caution as they may not accurately
reflect whether the sequence variation found in a patient is or is not responsible for
the disease (Tchernitchko ef al,, 2004). As these two mutations have never been
reported to be associated with warfarin resistance, the aim of this chapter was to

confirm the in silico predictions via in vitro functional studies, in an attempt to
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understand the underlying functional activities of the enzyme in the presence of these
mutations.

To gain an insight into the molecular effect of the promoter ¢.-160G>C
mutation on Spl protein DNA binding, electrophoretic mobility shift assay (EMSA)
was carried out. Furthermore, the effect of the promoter ¢.-160G>C mutation on
VKORCI promoter activity was also investigated using luciferase reporter gene
assay.

The inhibition of VKORC1! by warfarin prevents vitamin K recycling (see
Figure 1.2), resulting in an accumulation of inactive vitamin K-dependent
coagulation factors, which are also known as proteins induced by vitamin K
antagonism/absence (PIVKA). Utilising an enzyme-linked immunosorbent assay
(ELISA) which uses the inactive precursor of coagulation factor II (PIVKA-II) or
des-gamma-carboxy prothrombin (DCP) as a biomarker for the anticoagulation effect
of warfarin, the functional effect of exon 1 ¢.79C>G mutation on PIVKA-II
accumulation was evaluated.

Epigenetics refers to the reversible regulation of various genomic functions
mediated through partially stable modifications of DNA and chromatin histones,
which are essential for normal cellular development and differentiation (Docherty et
al, 2010). Of particular interest is DNA methylation occurring at cytosine-
phosphate-guanine (CpG) sites, where a methyl group is attached to a cytosine base
directly followed by a guanine in the DNA sequence. This is an inheritable DNA
modification that does not alter the nucleotide sequence (Holliday and Pugh 1975;
Bird 1986). It has been estimated that 80% of CpG sites in the genome are
methylated, especially within non-coding DNA, repetitive sequences and potentially

active transposable elements, resulting in long-term silencing (Bird 1986; Cross and
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Bird 1995; Jones 1999; Jaenisch and Bird 2003). The CpG dinucleotides tend to
cluster in regions called CpG islands, defined as regions of more than 200 bases with
a G+C content of at least 50% (Portela and Esteller 2010). Approximately 60% of
human gene promoters are associated with CpG islands and are usually unmethylated
in normal cells, although some (~6%) become methylated in a tissue-specific manner
during developmental processes (Straussman er al, 2009). Aberrant methylation
signatures have been implicated in a growing number of human pathologies
(Robertson and Wolffe 2000; Hatchwell and Greally 2007), including cancer (Jones
and Baylin 2007), imprinting disorders (Feinberg 2007), and even complex
neuropsychiatric phenotypes such as schizophrenia and bipolar disorder (Mill et al.,
2008). Several studies have suggested that variation in DNA methylation levels can
significantly contribute to variation in gene expression (Jaenisch and Bird 2003;
Manolio et al., 2009), which may in turn affect drug response (Esteller ef al., 2002;
Shen et al., 2007). The effects of VKORC|1 genetic variants on DNA methylation at
specific CpG sites across the VKORC! CpG island were therefore also explored in

this chapter.
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52 MATERIALS AND METHODS

5.2.1 Synthesis of in vitro Sp1 protein

The ¢cDNA clone of Homo sapiens Specificity Protein 1 (Sp1) was purchased
from OriGene Technologies, Rockville, MD, USA (catalogue no. SC101137) which
encoded the full-length Spl (reference sequence: NM 138473) cloned into the
pCMV6-XL6 vector. The Spl gene was in vitro transcribed and translated using the
TNT® SP6 Quick Coupled Transcription/Translation Systems (Promega,
Southampton, UK). The reaction contained 40 pl of Quick TNT® SP6 master mix,
20 puM of methionine, and 1 pg of Spl plasmid in a 50 ul reaction. The mixture was

incubated at 30°C for 90 min.

5.2.2 Bradford Assay

Estimation of in vitro transcribed/translated Spl protein concentration was
performed using the Bradford Reagent (Sigma-Aldrich). The Bradford assay has
been previously described in section 3.2.7. Absorbance was measured using the DTX
880 Multimode Detector (Beckman Coulter®, UK) at 570 nm. A standard curve,
ranging from 0.0125 — 0.25pg bovine serum albumin (BSA) was used to calculate

the protein content.

5.2.3 Western Blotting

To check that Spl has been successfully transcribed and translated, western
blot analysis of the ir vitro transcribed/translated Sp1 protein was carried out. 5 pl of
the in vitro Spl protein was added to 5 pl laemmli buffer (Sigma-Aldrich) and

denatured by incubating at 99°C for Smin. Alongside a molecular weight marker, the
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PrecisionPlus Protein Kaleidoscope Standards (Bio-Rad Laboratories Ltd.,
Hertfordshire, UK), the denatured sample underwent sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) on an 8% SDS-polyacrylamide gel
under reducing conditions in running buffer (25 mM Tris, pH 8.3, 192 mM glycine,
and 0.1% SDS) at 90 V for 10 min, followed by 60 min at 170 V. Separated proteins
were transferred to Hybond nitrocellulose membrane using Bio-Rad Mini Trans-Blot
cell, in transfer buffer (25 mM Tris, pH 8.3, 192 mM glycine, with 20% methanol
and 0.1% SDS) at 100 V for 60 min. To determine that the transfer process was
successful, the membrane was stained with Ponceau S solution for 10 s. The
membrane was then blocked at room temperature for 1 h with 5% skimmed milk
(Sigma-Aldrich) in tris-buffered saline (TBS; 0.15 M NaCl, 20 mM Trizma base, pH
7.6) containing 0.1% Tween 20. After 3 washes, the membrane was probed with the
primary antibody, rabbit anti-human Spl (PEP2-X, Santa Cruz Biotechnology, Santa
Cruz, CA, USA), at 1 : 5000 dilution in TBS-Tween containing 0.5% skimmed milk,
overnight at 4°C. After 3 washes, the membrane was incubated with the secondary
antibody horseradish peroxidise-conjugated (HRP) goat anti-rabbit IgG (Amersham
Biosciences) in 1: 50 000 dilution (in TBS-Tween containing 0.5% skimmed milk)
for 1 h at room temperature. After several washes, the Western Blot was developed
using the enhanced chemiluminescence detection system (ECL) according to the
instructions of the manufacturer (Amersham Biosciences), and was exposed to
Hyperfilm™ ECL (Amersham Biosciences) under darkroom conditions, using a
Kodak BioMax MS intensifying screen and developed using Kodak developer and

fixer solutions (Sigma-Aldrich).
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52.4 EMSA

The following experiments included the use of annealed oligonucleotides
(Invitrogen) which represent the region between -186 and -147 bp of the human
VKORCI promoter encompassing the wild-type and mutant nucleotide at -160 bp. A
consensus Sp-1 binding sequence (Promega) was used as a positive control. These
oligonucleotide sequences are summarised in Table 5.1.

End labelling of the annealed oligonucleotides with [y->?P]JATP
(PerkinElmer, UK) and subsequent DNA-protein binding reactions were performed
using the Gel Shift Assay System (Promega), following the manufacturer’s
instructions. The phosphorylation reaction was prepared by mixing 20% annealed
probe (1.75 pmol/ul) with 10% T4 Polynucleotide Kinase 10x buffer,
10% [y-P]JATP (250 pCi), 50% water and 10% T4 Polynucleotide
Kinase (5-10 U/pl). After an incubation at 37°C for 10min, 10% 0.25 M EDTA was
added to terminate the reaction. The radiolabelled oligonucleotide was reconstituted
in 90% 1x Tris-EDTA buffer and stored at -20°C until use. The DNA-protein
reaction mixture consisted of 10% [y-**P]JATP-labelled oligonucleotide with 5 pg of
in vitro Spl protein, 20% Gel Shift 5x Binding Buffer (Promega), water and 10%
poly dI.dC (0.1 pg/pl) (Sigma-Aldrich) to block unspecific binding, and was left at
room temperature for 30 min. For the competition assay, the reaction mixture was
incubated in the presence of 50-fold molar excess of unlabelled Spl consensus
oligonucleotide or 50-fold, 500-fold or 1000-fold molar excess of unlabelled
promoter -160 wild-type or mutant annealed oligonucleotides. For the supershift
assay, the reaction mixture was incubated with 1 pl of antibody against human Sp1

(PEP2X, Santa Cruz Biotechnology) for 30 min at 4°C.
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After a 5% polyacrylamide gel was pre-run for 30 min at 160V, the reactions

were loaded and subjected to non-denaturing gel electrophoresis using a Hoefer SE

600 Ruby vertical electrophoresis system for 1.5 h at 230V in 0.5x Tris-Borate-

EDTA buffer. The gel was then fixed in a mixture containing 10% methanol and

10% acetic acid for 30 min. The fixed gel was transferred onto a sheet of filter paper,

covered with Saran wrap and vacuum-dried. Dried gels were subsequently exposed

to a Storage Phosphor Screen overnight, before being scanned by a Phosphor Imager.

The gels were visualised and bands were quantified using ImageQuant software

Table 5.1. Oligonucleotides used in EMSA experiments.

Name Position Direction Primer sequence (5' - 3')

{relative to TSS)
VKORCI promoter .. .. bp F TTTTCCTAACTCGCCCGCTTGACTAGCGCC
-160G Wild-type R GGCGCTAGTCAAGCGGGCGAGTTAGGAAAA
VKORC1 promoter ... .o bp F TTTTCCTAACTCGCCCCCTTGACTAGCGCC
-160C Mutant R GGCGCTAGTCAAGGGGGCGAGTTAGGAAAA

F ATT CGA TCG GGG CGG GGC GAG C

Sp1 consensus None

R

TAA GCT AGCCCCGCCCCG CTCG

F: forward; R: reverse; TSS: translation start site.

Translation start site reference sequence: NM_024006.
The sequences of the VKORC1 promoter probes are the same except for the nucleotide at -160

{(underlined).
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5.2.5 Construction of plasmids

5.2.5.1 Promoter-luciferase reporter plasmid

Genomic DNA from patients with VKORC! promoter wild-type -160 GG and
heterozygous -160 GC genotypes were amplified to generate a 202 bp fragment
encompassing the region from -327 to -126 bp. The forward primer
5’-GCGCCGCTCGAGCCCGGCCAACAGTTTTTA-3* with a Xhol restriction site
(underlined) and the reverse primer containing a HindllI restriction site (underlined)
5-GGGCCCAAGCTTCGACCCAAATGGCTGTTC-3> were used. In a final
volume of 50 pl, PCR was conducted at 95°C for 15 min, followed by 35 cycles at
94°C for 45 s, 63°C for 45 s, and 72°C for 1 min. A final extension was carried out at
72°C for 10 min. The size and specificity of the PCR products were examined in
1.5% ethidium bromide-stained TBE agarose gel under UV light.

The PCR products were purified using the QIAquick® PCR Purification Kit
(QIAGEN) per manufacturer’s protocol. Every 10 pl of purified PCR products was
then double digested with 30 U each of Xhol and Hindlll restriction enzymes (New
England Biolabs, Herts, UK) in 1x NEB buffer 2 for 4 h at 37°C, followed by
enzyme inactivation at 65°C for 20 min. On the other hand, each pg of the
pGL3-basic vector (Promega) was first singly digested with 30 U of Hindlll before
being digested with 30 U of Xhol. Each digestion was incubated for 3 h at 37°C
followed by enzyme inactivation at 65°C for 20 min. The pGL3-basic vector is a
promoterless eukaryotic expression vector and contains the ¢cDNA encoding for
firefly luciferase which when fused with a promoter, can be used to analyze the
inserted promoter activity once transfected into mammalian cells.

The digested pGL3-basic vector and the PCR products were purified

(QIAquick®, QIAGEN). To prevent the linearised pGL3-basic vector from
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self-ligating, dephosphorylation of the 5° phosphate end of the vector was performed
using the enzyme Antarctic Phosphatase (New England Biolabs). In a 50 pl reaction,
1 pg of purified linearised vector was incubated with 5 U of Antarctic Phosphatase in
1x Antarctic Phosphatase Buffer (New England Biolabs) at 37°C for 70 min,
followed by enzyme inactivation at 65°C for 5 min.

The purified PCR products were subsequently ligated between the HindlIl
and Xhol sites upstream of the luciferase gene in the pGL3-basic vector in a 1:3
vector:insert ratio with 20 U T4 DNA ligase (New England Biolabs) and 1x ligase
reaction buffer in a final reaction volume of 20 pl, at 16°C for 16 h, followed by
ligase inactivation at 65°C for 20 min.

The ligation products were analysed on a 1% ethidium bromide-stained TBE
agarose gel and subsequently transformed to E. Coli. Transformed bacteria were
plated onto agar containing 50 pg/ml ampicillin. After 16 h of incubation at 37°C,
five colonies were picked from each ligation and additional colonies were analyzed if
necessary. The plasmids were isolated and purified using the GenElute HP Plasmid
Miniprep (Sigma-Aldrich), according to the manufacturer’s protocol.

A brief depiction of the procedures described above is shown in Figure 5.1
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Figure 5.1. A diagram summarising the steps involved in constructing the recombinant
pGL3 reporter plasmid.
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5.2.5.2 Site-directed mutated plasmid

The human VKORC! c¢DNA clone (catalogue no. SC112318; OriGene
Technologies) was purchased as a transfection ready plasmid where the human
VKORC! c¢DNA (reference sequence: NM_024006) was encoded in the
pCMV6-XL4 vector.

A point mutation was introduced in the human VKORC! cDNA clone at
nucleotide position 79 (relative to translation start site ATG) in exon 1 using the
forward primer 5’-CTCGCTCTACGCGGTGCACGTGAAGGC-3’ and reverse
primer 5’-GCCTTCACGTGCACCGCGTAGAGCGAG-3’, according to the
manufacturer’s protocol for the QuikChange II Site-Directed Mutagenesis Kit
(Stratagene, La Jolla, CA, USA). The mutagenic oligonucleotide primer pairs were
designed using the web-based QuikChange Primer Design Program
(http://www.stratagene.com/qcprimerdesign). Both primers were 27 bp in length and
flanked the mutation located in the middle of both complementary sequences. The
primers were purchased from Invitrogen and were of polyacrylamide gel
electrophoresis (PAGE) purification quality. The site-directed mutagenesis cycling
parameters include a 30 s initial denaturation at 95°C, followed by 18 cycles of
amplification consisting of denaturation at 95°C for 30 s, annealing at 55°C for 60 s
and an extension at 68°C for 6 min. Following temperature cycling, the reaction was
incubated on ice for 2 minutes and the parental (i.e. non-mutated) supercoiled
dsDNA was digested with 10 U of Dpn I restriction enzyme at 37°C for 1 h.

The Dpn I-treated DNA was then transformed to XL1-Blue supercompetent
cells and plated onto agar containing 50 pg/ml ampicillin, 40 mg/ml X-gal solution,
and 100 mM isopropyl-1-thio-B-D-galactopyranoside (IPTG). Colonies were then

picked after 16 h of incubation at 37°C and the plasmids were isolated and purified
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using the GenElute HP Plasmid Miniprep (Sigma-Aldrich), according to the

manufacturer’s protocol.

5.2.6 Sequencing

Sequences in the purified plasmid constructs were confirmed to be free of
random mutation by Sanger sequencing. The plasmid sequencing procedures were
carried out by Kimberley Jones at Liverpool Women’s Hospital, Liverpool, UK,
using the Applied Biosystems 3730x] DNA analyzer, as described in section 4.2.6.
All cycling conditions and procedures were similar except the plasmid DNA cycle
sequencing reactions were carried out in 10 pl reactions using 150 ng of purified
plasmid, 100 nM forward and reverse primer, 0.4 pl BigDye® Terminator version 1.1
sequencing buffer and 3.75 pl dilution buffer. As listed in Table 5.2, the forward
RVprimer3 and reverse GLprimer2 primers were used to obtain bidirectional
sequence information of the cloned inserts within the pGL3-basic vector, while the
forward VP1.5 and XL39 reverse primers were used to obtain bidirectional sequence

information of the site-directed pCMV6-XL4 vector.

Table 5.2. Primers for sequencing plasmid vectors.

Vector Primer name Primer sequence (5' > 3') Primer Direction
RVprimer3 CTAGCAAAATAGGCTGTCCC F
pGL3-basic .
GlLprimer2 CTTTATGTTTTTIGGCGTCTTCCA R
VP1.5 GGACTTTCCAAAATGTCG F
pCMV6-XL4
XL39 ATTAGGACAAGGCTGGTGGG R

F: forward; R: reverse; TSS: translation start site.

All primers were of standard desalted quality.
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The recombinant plasmid containing the wild-type VKORCI
promoter —160 G allele was designated pGL3-G and the vector containing the mutant
VKORC1 promoter —160 C allele was designated pGL3-C. The plasmid containing
the wild-type VKORCI 79 C allele was designated pCMV6-XL4+79C and the
plasmid containing the mutant VKORC! 79 G allele was designated

pCMV6-XL4+79G.

5.2.7 Cell culture

The human hepatoma (HepG2) cell line was cultured in Dulbecco's modified
Eagle medium (DMEM; Lonza, UK), supplemented with 10% foetal calf serum
(Gibco), 100 U/ml Penicillin, 100 pg/ml Streptomycin and 2 mM L-Glutamine (all
from Sigma-Aldrich). The cells were maintained at 37°C in a humidified incubator at

5% CO,. HepG2 cells between passages 11 and 13 were utilized.

5.2.8 Transient transfection of HepG2 cells

24 h prior to transfection, HepG2 cells were seeded onto 1.9 cm? of the
Nunclon® 24-well plate at 1 x 10° cells/well. Transfection was performed using

Lipofectamine™ 2000 (Invitrogen) according to the manufacturer’s protocol.

5.2.8.1 pGL3 constructs

For each well of cells, 2 pul of Lipofectamine™ 2000 was combined with
48 ul of Opti-MEM® I reduced serum (Invitrogen) in a 0.5 ml eppendorf and
incubated at room temperature for no longer than 25 min. In another 0.5 ml
eppendorf, 25 ng of the pRL-TK vector and 750 ng of pGL3-G, pGL3-C or

pGL3-basic (negative control) were mixed with 50 ul of Lipofectamine™ 2000. The
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pRL-TK vector encodes for the Renilla luciferase transcribed by a HSV-TK promoter
which functions as an internal control to normalize the firefly luciferase expression.
The contents from both eppendorfs were mixed and incubated at room temperature
for 20 min. All of the mixture was added to the well in a dropwise manner with
gentle mixing by gently rocking the plate back and forth. Cells were then incubated

at 37°C with 5% CO; in a humidified incubator for 48 h.

5.2.8.2 pCMV6-XL4 constructs

Transfection procedures of pCMV6-XL4 constructs were similar to that of
pGL3 constructs as described in section 5.2.8.1 except 800 ng of either
pCMV6-XLA4+79G or pCMV6-XL4+79C plasmid DNA was mixed with 50 pl of

Lipofectamine™ 2000.

5.2.9 Dual-luciferase reporter assay

The firefly and Renilla luciferase activity was measured with the Dual-
Luciferase® Reporter Assay System (Promega) according to the manufacturer’s
recommendation using a DTX 880 Multimode Detector (Beckman Coulter®). 48 h
after transfection, growth medium was removed from the cultured cells and to each
well, 500 pl of phosphate buffered saline (PBS) was applied gently to wash the cells
from the surface of the culture vessel. After three washes were performed, 100 ul of
1x passive lysis buffer was dispensed into each well to completely cover the cell
monolayer. This was followed by 30 min incubation at room temperature on an
orbital shaker with gentle rocking. To remove cell debris and nuclei, cell lysates were
centrifuged at 14,800 rpm, 4°C for 30 s, and the supernatant was retained and kept at

-80°C until use. To a well in a 96-well LUMITRAC 200 plate (Greiner Bio-One

161



CHAPTER 5
GmbH, Germany), 100 pl of Luciferase Assay Reagent II (LAR II) was added
followed by 20 pl of the cell lysate with gentle mixing and the activity of firefly
luciferase was determined. Then, 100 pl of Stop & Glo Reagent was added into the
well to measure the activity of Renilla luciferase in pRL-TK. Firefly luciferase
activity was normalised relative to the Renilla luciferase activity for each
transfection.
For each construct, 2 clones were selected for transfection. A total of 3
independent transfections and triplicate luciferase assays for each transfection were
performed for each construct. Because there were no differences between different

clones of the same constructs, the results from the 2 clones were combined.

5.2.10 MTT cytotoxicity assay

The cytotoxic concentration of racemic warfarin (Sigma-Aldrich) was
determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay (Sigma-Aldrich) according to the manufacturer’s instructions. HepG2
cells were seeded at ~ 20, 000 cells/well in a 96-well plate. 100% dimethyl
sulphoxide (DMSO) was used as the solvent for warfarin. Final DMSO concentration
in each well was < 0.03%. The cells were incubated with warfarin at concentrations
of 3 uM, 30 pM, 50 pM, 100 uM, and 500 pM in triplicates, at 37°C in an incubator.
Cells without warfarin treatment were included as control. After 24 h of treatment,
the medium was removed and 5 mg/ml of MTT reagent (dissolved in Hanks balanced
salt solution) was added to each well and incubated at 37°C in an incubator for 4 h.
Subsequently, the formazan salts were solubilised in DMSO in the dark, at room
temperature overnight. Finally, absorbance values were measured at a wavelength of

570 nm (DTX 880 Multimode Detector, Beckman Coulter®). Absorbance values that
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are lower than the control cells indicate a reduction in cell proliferation. The percent
viability was calculated as follows: (absorbance of warfarin-treated sample/
absorbance of control) x 100. Our data (Figure 5.2) indicated that no significant
cytotoxicity for warfarin was observed at concentrations below 50 uM, the two
non-toxic warfarin concentrations, 3 uM and 30 pM, were therefore used in our

study.

120 -
¥ 100 -
Y
8 80
o~
2
o 60 -
o
- .
(<)

2 40 4
::._;
S 20 -

0 T L) L L] L) L] L) LI

0 3 10 30 50 100 250 500

Warfarin concentration (uM)

Figure 5.2. Viability of HepG2 cells after treatment with warfarin. Data represent
mean values from three replicate wells, with the error bars representing standard
deviation.

52.11 Cell treatment with warfarin and PIVKA-II ELISA

24 h after transfection of HepG2 cells with pCMV+79C or pCMV+79G,
wells were washed with Hank’s balanced saline solution (Sigma-Aldrich) before the
addition of 500 ul of DMEM with reduced serum (containing 0.5% serum, without

antibiotics) supplemented with racemic warfarin at a concentration of either 3 pM or
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30 uM. A no-treatment control was included in each assay. The stock solutions and
dilutions for warfarin were freshly prepared on the day of the experiment.
At the end of the 24 h treatment period, without disturbing the adherent cells,
300 pl of supernatant was collected from each culture well and stored at -80°C until
use. The levels of PIVKA-II (protein induced in vitamin K absence or antagonism II)
antigen in the supernatant was determined using the PIVKA-II ELISA kit
(Diagnostica Stago, Asniéres-sur-Seine, France) on a LT-4000 Microplate Reader
(Labtech International, UK) at 492 nm. On each ELISA plate, four reference
standards (2, 57, 111, and 223 ng/ml) provided with the test kit were assayed
together with neat experimental samples in duplicate. PIVKA-II production and
hence anticoagulant activity was considered negative if the absorbance observed was
below that produced by the 2 ng/ml standard.
Two clones were transfected for each construct and each experimental
condition was tested in duplicate. A total of 3 independent transfections and

duplicate PIVKA-II ELISA were performed for each construct.

5.2.12 Quantitative analysis of DNA methylation

Genomic DNA extracted from peripheral blood was bisulfite converted using
the EZ DNA Methylation kit (Zymo Research, CA, USA) according to the
manufacturer’s protocol. Bisulfite treatment of genomic DNA converts
non-methylated cytosine into uracil while methylated cytosine remains unchanged.
The CpG island in the VKORCI promoter region (+699 to —371) containing 84 CpG
sites (Figure 5.3) was amplified by PCR using methylation specific primers (Table
5.3) designed using the EpiDesigner program (www.epidesigner.com). All primers

were purchased from Metabion. Each forward primer was tagged with a
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10mer (5°-aggaagagag-3’) to balance the melting temperature, and the reverse
primer had a T7-promoter tag (5’—cagtaatacgactcactatagggagaaggct—3’) for in vitro
transcription.

Quantitative DNA methylation analysis was determined using MALDI-TOF
on the Sequenom platform. PCR amplification of 20 ng bisulfite-treated DNA was
performed using HotStar Taq Polymerase (QIAGEN) in a 5 pl reaction volume using
PCR primers at a 200 nM final concentration. The PCR was performed with a 15 min
initial denaturation at 94°C, followed by 45 cycles of amplification (94°C for 20 s,
63°C for 30 s and 72°C for 1 min) and a final extension at 72°C for 3 min. After SAP
treatment for 45 min at 37°C, 2 ul of the PCR product was used as a template for in
vitro transcription with subsequent T-cleavage reaction using RNase A, at 37°C for
3 h. Both methylated and non-methylated regions are cleaved at every T which
results in a mass difference of 16 Da per CpG site in the cleavage products having
CpG sites. The samples were desalted and spotted on a 384 SpectroCHIP® using a
nanodispenser, followed by spectral acquisition on a MassARRAY® Compact
MALDI-TOF MS. All experiments were performed in triplicate with 0% and 100%
methylated human DNA as control. The resultant methylation calls were performed
by EpiTYPER® software version 1.0 to generate quantitative results for each CpG
site or an aggregate of multiple CpG sites (Figure 5.4). Since MALDIF-TOF mass
methylated peaks do not denote a particular CpG site, but rather correspond to the
number of CpG sites methylated within the cleavage fragment, data were presented
as average percent methylation of all CpG sites in the bisulfite PCR fragment with
standard deviation (Ehrich et al., 2005; Ehrich ez al., 2007). CpG residues with non-

applicable readings were eliminated in calculation.
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chr16: 31106421-31105352, build 37/hg19
Position: =371 to +699, relative to ATG start site

-371 5’-CTCGGCCTCCCAAAGTGCTGGGATTACAAGCGTGAGCCACCGTGCCCGGC

CAACAGTTTTTAAATCTGTGGAGACTTCATTTCCCTTGATGCCTTGCAGC
1 2 3 4 92 06
CGCGCCGACTACAACTCCCATCATGCCTGGCAGCCGCTGGGGCCGCGATT
7 8 9 10 12
CCGCACGTCCCTTACCCGCTTCACTAGTCCCGGCATTCTTCGCTGTTTTC
12 33 14 15
CTAACTCGCCCGCTTGACTAGCGCCCTGGAACAGCCATTTGGGTCGTGGA
16 17 18 19 20 21 22
GTGCGAGCACGGCCGGCCAATCGCCGAGTCAGAGGGCCAGGAGGGGCGCG
23 24 25 26 27 28 29
GCCATTCGCCGCCCGGCCCCTGCTCCGTGGCTGGTTTTCTCCGCGGGCGC
30 31
CTCGGGCGGAACCTGGAGATAATGGGCAGCACCTGGGGGAGCCCTGGCTG
32 33 34 35 36 37
GGTGCGGCTCGCTCTTTGCCTGACGGGCTTAGTGCTCTCGCTCTACGCGC
38 39 40 41 42 43 44 45 46 47 48
TGCACGTGAAGGCGGCGCGCGCCCGGGACCGGGATTACCGCGCGCTCTGC
49 50 51 52 53
GACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGTGC
54 55 56 57
ACGGGAGTGGGAGGCGTGGGGCCTCGGAGCAGGGCGGCCAGGATGCCAGA
58 59 60 61
TGATTATTCTGGAGTCTGGGATCGGTGTGCCCGGGGAACGGACACGGGGC
62 63 64 65
TGGACTGCTCGCGGGGTCGTTGCACAGGGGCTGAGCTACCCAGCGATACT
66 67
GGTGTTCGAAATAAGAGTGCGAGGCAAGGGACCAGACAGTGCTGGGGACT
68 69 70 71
GGGATTATTCCGGGGACTCGCACGTGAATTGGATGCCAAGGAATAACGGT
72 73 74
GACCAGGAAAGGCGGGGAGGCAGGATGGCGGTAGAGATTGACGATGGTCT
75 76 17 78 79
CAAGGACGGCGCGCAGGTGAAGGGGGGTGTTGGCGATGGCTGCGCCCAGG
80 81 82
AACAAGGTGGCCCGGTCTGGCTGTGCGTGATGGCCAGGCGTTAGCATAAT
83 84
GACGGAATACAGAGGAGGCGAGTGAGTGGCCAGGGAGCTGGAGATTCTGG

GGTCCAGGGCAAAGATAATCTGCCCCCGACTCCCAGTCTCTGATGCAAAA

CCGAGTGAACCGTTATACCA-3’

Figure 5.3. Location and sequence of VKORC1 CpG island. (a) The VKORC1 promoter
CpG island is 1069 bp in length and is highlighted in green. (b) VKORC1 CpG island
sequence, Chr16: 31106421-31105352, build 37/hg19, as defined by the UCSC Genome
Browser; position —371 to +699 relative to ATG translation start codon. ATG start site is
highlighted in red font. 84 CpGs present in the region are in bold. Mutations detected in
our study are underlined.
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CHAPTER 5

5.2.13 Statistical Analysis

All statistical analyses were performed using SPSS (version 18) and a

P-value < 0.05 was considered significant.

5.2.13.1 Assessing association with different genotype groups

The non-parametric independent r-test (Mann-Whitney U test), was
performed for comparison of levels among different genotype groups of plasmid
constructs with the continuous variables, relative luciferase activity and relative

PIVKA-II levels. Values were expressed as mean with standard deviation.

5.2.13.2 Assessing conformity with Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium (HWE) was tested for each SNP using the

x2 test. A P-value < 0.001 was assumed to indicate deviation from HWE.

5.2.13.3 Assessing association with methylation levels

To ensure biological relevance of the methylation differences, CpG residues
with methylation signals that could not be reliably observed were excluded from
subsequent analysis (Philibert et al,, 2010). Any methylation levels that were not
normally distributed were transformed. The relationship between age and
methylation levels was evaluated using Pearson correlation. The effects of gender
and genotype on the level of methylation were tested using one-way analysis of
variance (ANOVA). To account for multiple testing in the methylation association
analyses, FDR (Benjamini ef al., 2001) at the 0.05 level was calculated in addition to

the P-value for each test of association.
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5.3 RESULTS

5.3.1 Binding of Sp1 to the VKORCI promoter -160 region

Spl protein was in vitro synthesized using rabbit reticulocyte lysate which
showed a 106 kDa band on SDS-PAGE (Figure 5.5). EMSA was then performed
with the in vitro synthesized Spl protein, using Sp1 consensus probes and VKORC!
probes (Figure 5.6a). The VKORCI probe comprised of a 30 bp sequence flanking
either the VKORC1 promoter mutant -160C allele or the respective wild-type -160G
variant. The EMSA results are shown in Figure 5.6b. As a positive control, the Spl
protein was mixed with the Spl consensus probe and a protein-DNA complex was
observed, as evidenced with a band shift. To unambiguously confirm the identity of
the bound Spl protein in the protein-DNA complex, Spl antibody was included in
the Sp1 protein-Spl consensus probe binding mixture. A supershift with decreased
band mobility was observed as the Spl antibody was bound to the protein-DNA
complex. Sp1 protein, however, did not form a protein-DNA complex with either the
mutant or wild-type VKORCI promoter oligonucleotides, suggesting that the
promoter mutation -160G>C did not create a specific binding site for Spl. To
investigate whether the -160G>C mutation had an effect on the archetypal binding of
Spl protein to Spl consensus oligonucleotide, competition assays were performed
using 50-, 500- or 1000-fold excess amounts of unlabelled mutant or wild-type
double-stranded oligonucleotides. The intensity of the Spl protein/Spl DNA band
shift diminished when the mixture was incubated in the presence of increasing
amounts of mutant competitor but not in the presence of the wild-type competitor,
indicating that the VKORCI promoter mutant sequence out-competes with the Spl

consensus probe for the binding of Sp1 protein.
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3
» ¢——— 106kDa Spil

Figure 5.5. Western blot analysis of in vitro synthesised Sp1 protein expression. The in
vitro synthesised Sp1 protein was detected by Sp1 antibody as shown by the band of
approximately 106 kDa.
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CHAPTER 5
5.3.2 Effect of VKORC1 ¢.-160G>C variant on promoter activity using

reporter gene assay

To study the promoter activities of the VKORC! ¢.-160G>C allelic variants, a
202 bp fragment harbouring either the -160 G or C allele was amplified by PCR from
patients’ DNA and inserted upstream of the luciferase gene in the pGL3-basic vector.
The transcriptional activity was analysed by measuring the luciferase expression
from the lysate of transfected HepG2 cells. Results of the transient transfection assay
are shown in Figure 5.7. The promoterless pGL3-basic vector with negligible amount
of luciferase activity was used as the baseline control and pGL3-G luciferase activity
was used as a reference (100%). The plasmid pGL3-G containing the wild-type
fragment yielded luciferase activity over 100-fold higher than that of the empty
vector pGL3-basic. A significant increase in mean level of luciferase activity in
HepG2 cells (20% = 1.96%; P = 0.003) was observed with the construct pGL3-C

carrying the mutant allele, compared to the wild-type pGL3-G construct.
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Figure 5.7. The VKORC1 c.-160G>C mutation increases promoter activity. pGL3
luciferase reporter containing either the G (pGL3-G) or the C allele (pGL3-C) at the
VKORC1 promoter -160 locus was transfected into HepG2 cells and the promoter
activity was measured by dual-luciferase reporter assay 48 h after transfection. The
results were then expressed as relative luciferase activity (firefly luciferase activity in
the pGL3 plasmid/Renilla luciferase activity in the pRL-TK vector) with the error bars
representing standard deviation. Values represent the mean of 18 measurements
(three independent transfection experiments performed in duplicate and triplicate
luciferase readings were taken for each lysate sample). pGL3-G wild-type luciferase
activity was used as a reference (100%). pGL3-basic was a negative control without any
promoter sequence inserted. ** P = 0.009.
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5.3.3 Effect of exonic mutation on PIVKA-II levels in HepG2 cells

HepG2 cells are known to produce PIVKA-II in response to warfarin
treatment, which can be assayed using ELISA (Wang et al., 1995; Wu et al., 1996;
Lawley et al., 2006). To test whether the exon 1 mutation 79 C>G affects the
inhibition of VKOR activity by warfarin, HepG2 cells were transiently transfected
with VKORC1 cDNA clone containing either the wild-type C or mutant G allele,
followed by treatment with 0, 3 or 30 uM warfarin. The transcriptional VKORC1
activity was analysed by quantifying the levels of PIVKA-II from the supernatant of
transfected HepG2 cells. The results are shown in Figure 5.8. PIVKA-II
concentration was virtually undetectable in the absence of warfarin. Compared to the
wild-type pPCMV6-XL4+79C construct, plasmids containing the mutant G allele in
the presence of 3 uM warfarin exhibited a borderline decrease in PIVKA-II antigen
level (P = 0.058), while the decrease in PIVKA-II level observed in the presence of

30 uM warfarin was not significant (P = 0.247).
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Figure 5.8. Detection of PIVKA-Il in HepG2 supernatants following treatment with
serum-free medium supplemented with warfarin. Supernatants were tested neat
using the PIVKA-II ELISA. Data represent mean values from two replicate wells, with the
error bars representing standard deviation.
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5.3.4 Effect of VKORCI genetic variants on genomic DNA-CpG

methylation

In an attempt to evaluate the effect of VKORC1! genetic variants on DNA
methylation, the extent of methylation in the VKORCI promoter CpG island was
measured. Out of the 84 CpG sites present, 55 sites yielded distinguishable peaks on
the mass array. No association was found between DNA methylation and gender nor
age. Methylation levels at several CpG sites, however, showed correlation with
VKORCI genotypes before FDR correction. The combined methylation status at
CpG sites 12 and 13 (nucleotide positions -164 and -160) demonstrated borderline
association with the novel intron 2 mutation ¢.3342G>A, where the heterozygote
subject showed higher methylation level (P = 0.045, Figure 5.9a). The silent
mutation located in exon 1, ¢.129C>T (rs61742233), was associated with decreasing
methylation level (P = 0.013, Figure 5.9b) at CpG site 49 which was located 3 bp
upstream (nucleotide position +132). 1s55894764, another silent mutation located in
exon 1, and rs7294, an intron 2 SNP, were both associated with lower levels of
methylation (P = 0.016, Figure 5.9¢; P = 0.026, Figure 5.9d, respectively) at CpG
site 44 (nucleotide position +109). However after correction for multiple testing,

none of the above associations remained significant.
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Figure 5.9. Box and whisker plots showing the levels of methylation at CpG sites
based on VKORC1 genotype groups: (a) CpG sites 12.13 by intron 2 ¢.3342G>A, (b) CpG
site 49 by rs61742233, (c) CpG site 44 by rs55894764 and (d) rs7294. Boxes represent
25"_75™ percentiles of warfarin doses, whiskers represent 5"-95" percentiles, and solid
lines represent median methylation level in each group. Open dots represent outliers.
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5.4 DISCUSSION

In this chapter, the predicted roles of the two novel VKORCI mutations,
promoter c.-160G>C and exon 1 ¢.79C>G were investigated using in vitro functional
experiments.

Although in silico analysis predicted the c¢.-160G>C promoter mutation
results in the gain of a putative binding site for the ubiquitous Spl transcription
factor, our in vitro results revealed that no specific protein-DNA complex was
formed between Spl protein and the VKORC! c¢.-160G>C promoter mutant
sequence. The DNA-binding domain of Spl contains 3 contiguous zinc fingers
which recognises the consensus sequence (G/T)GGGCGG(G/A)G/A)C/T) (Song et
al., 2001). Our VKORCI promoter sequence containing the mutant -160 C allele
shares only 60% homology with the Spl consensus sequence. This may not be
specific enough for Spl transcription factor binding. Interestingly, when present at
high concentration, the promoter mutant sequence displaced Spl protein binding to
its consensus sequence, suggesting Spl protein may have a low binding affinity
towards the mutant promoter sequence. It is likely therefore that, through its weak
binding to the VKORC! ¢.-160G>C mutant promoter sequence, Spl itself or via
interaction with co-regulators, may possibly lead to a higher transcriptional activity
of the VKORC1 gene.

The potential functional effect of the VKORC1 promoter ¢.-160G>C mutation
was also evaluated using a transient transfection assay in HepG2 cell line. Compared
to the wild-type promoter -160 G allele, the promoter -160 C mutant allele exhibited
approximately 20% significant increase in promoter activity. This increase in
promoter activity may partly explain why the patient with the VKORCI promoter

heterozygous -160 GC genotype require higher warfarin dose. An elevation in
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VKORCI promoter activity would lead to a rise in VKORCI mRNA expression, and
subsequently an increased translation of the VKOR protein. This increase in VKOR
activity augments the regeneration of reduced vitamin K;, producing more active
vitamin K-dependent clotting factors, resulting in higher warfarin dose requirement
for its desired anticoagulation effect. It is important to point out that recent studies
have suggested that in virro reporter gene assays may not accurately represent gene
regulation and expression in vivo (Cirulli and Goldstein 2007) and must be viewed
with caution. Inconsistent results between chromatin immunoprecipitation (ChIP)
analysis and luciferase reporter gene assays have also been reported (Bodin et al,,
2005a; Yuan er al., 2005; Bu and Gelman 2007; Kato et al, 2007; Wang et al.,
2008), where ChIP is a type of immunoprecipitation method for investigating
interactions between specific proteins and a genomic DNA region in intact cells.
Therefore, further work using ChIP assay will need to be carried out to confirm our
results from the luciferase reporter gene assay.

The missense mutation ¢.79C>G in exon 1 of VKORC! (p.Leu27Val) was
predicted to be likely deleterious. Using site-directed mutagenesis and recombinant
expression in HepG2 cells, this amino acid substitution demonstrated approximately
10% decrease in PIVKA-II level relative to the wild-type sequence at a warfarin
concentration of 3 uM, but this difference in PIVKA-II levels was not statistically
significant at the higher warfarin concentration of 30 uM. Nonetheless, the reduced
level in PIVKA-II suggests there was an increase in the y—carboxylation of vitamin
K-dependent proteins which could be due to either higher functional efficiency of the
VKOR complex or decreased VKOR sensitivity to warfarin.

Inter-individual DNA methylation in relation to age, gender and genotype

effects were also investigated. Differential global or loci-specific DNA methylation
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patterns have been reported to be age- and/or gender-related (Fuke et al., 2004; Fraga
et al. 2005; Martin 2005, El-Maarri er al, 2007, Boks er al, 2009). DNA
methylation at the I'KORC'/ promoter region, however, was not associated with age
or gender in our cohort of warfarin resistant patients. Cis effects of several genetic
variations on DNA methylation levels were observed with a number of CpG sites but
due to the small sample and effect sizes, these associations did not withstand
correction for multiple testing. In the majority (73%) of the CpG sites interrogated,
no substantial DNA methylation variation was present and this is possibly due to
tissue type. Several studies suggest that DNA methylation plays an important role in
the specialization of tissues (Nagase and Ghosh 2008), while other studies suggest
that the role of DNA methylation in tissue-specific gene expression is confined to
tissue-specific differentially methylated regions (T-DMRs) (Song er al, 2005;
Kitamura er al.. 2007). Given that VKORC| is predominantly expressed in the human
liver (Rost ef al., 2004a), quantification of methylation in liver DNA might have
been preferable. However, liver tissues could not be obtained from our patient cohort
and peripheral blood mononuclear cells have been used as a non-invasive surrogate.
In a recent study by Wang and colleagues, the levels of VKORCI DNA methylation
in human autopsy liver DNA were quantified but no correlation with YKORC1 SNPs
was observed (Wang et al., 2008), which was similar to our findings in PBMC DNA.
Nevertheless, further studies that include several tissue types preferably from single
subjects will be essential to provide new insights into the correlation between tissue-
specificity and the epigenetic control of VKORC].

This chapter has investigated the roles of YKORC! nucleotide substitutions in

the pathogenesis of warfarin resistance. Further structural characterization of the
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effects of these informative VKORC substitutions on vitamin K metabolism and the

interaction with warfarin are now required.
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CHAPTER 6

Clotting factors and warfarin
treatment — genetic, biochemical and

clinical variability
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CHAPTER 6

6.1 INTRODUCTION

The formation of thrombi involves several haemostatic factors including
factors I (prothrombin), V, VII, IX and X, proteins C and S, as shown in Figure 1.1
in Chapter 1. Warfarin does not directly antagonise thrombin activity to achieve its
net clinical effect of anticoagulation; instead it acts by reducing the enzymatic
activities of the vitamin K-dependent procoagulant (factors II, VII, IX and X) and
anticoagulant (proteins C and S) proteins, resulting in the suppression of thrombin
generation by non-functional prothrombin and factor X (Furie and Furie 1990).
Factor V circulates with little or no activity but serves as an essential protein in the
coagulation pathway by acting as a cofactor for the conversion of prothrombin to
thrombin.

On initiation of warfarin, the rate of change in the vitamin K-dependent
proteins will be dependent on their half-lives. Functions of clotting factors with short
half-lives is lost acutely while clotting factors with longer half-lives will remain
functional for a longer period of time. Table 6.1 lists the half-lives of the six vitamin
K-dependent clotting factors. The procoagulant factor VII has a relatively short
half-life (4 — 8 h) and high synthesis rate (Dike ef al., 1980), and the INR may be
prolonged within 24 — 36 h after warfarin administration due to a decrease in factor
VII levels. The anticoagulant protein C also has a short half-life (6 — 9 h) (Bertina et
al, 1982), and decline in its activity may counteract the effect of the changes in
factor VII concentrations. By contrast, factors with a longer half-life and lower
synthesis rate (e.g., factor II and protein S) influence the INR later, and may
therefore be more important in determining variability in maintenance doses.
Although factor IX has a half-life of 21 — 30 h, adequate anticoagulation is not

achieved until the levels of biologically active factors II (half-life: 42 — 72 h)
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(Breckenridge 1978) and X (half-life: 27 — 48 h) (Trask et al., 2004) are sufficiently
decreased, which may require 4 to 6 days after the start of warfarin therapy.

There is some evidence that predisposition to thrombosis is associated with
high levels of factors II (Poort ef al, 1996) and IX (Vlieg ef al., 2000) as well as
reduced proteins C and S (Simioni 1999). However, what is unclear is the rate and
extent of falls in these factors individually and in combination. Interestingly, two
missense mutations at Ala-10 of the factor IX propeptide have been implicated with
causing factor IX levels to drop to 3% or less upon warfarinisation and causing
severe bleeding despite therapeutic INRs (Chu et al., 1996; Oldenburg et al., 1997).

The variation in activity levels of the vitamin K-dependent clotting proteins
(factors II, VII, IX and X, proteins C and S) and the clotting cofactor (factor V) in
patients initiated onto warfarin therapy have not been measured in one large cohort
previously. The aims of this chapter were therefore to investigate (i) the extent to
which these seven proteins decline on warfarin therapy, (ii) whether such variability
is related to common polymorphisms in the clotting factors II, V, VII, IX and X,
proteins C and S genes (F2, F5, F7, F9, F10, PROC, and PROSI), and (iii) how
changes in clotting factor levels affect variability in INR, warfarin dose requirements

and bleeding complications.

Table 6.1. Half-lives of vitamin K-dependent clotting factors.

Clotting factor Half-life (h)
Procoagulant:

Factor Il 42-72

Factor VIl 6-8

Factor IX 18-24

Facﬁ?,’)ﬁ SR T g e e 27 -48
~AT'thicoaguIant: A A
Protein C 6-7

Protein S 30-60
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6.2 PATIENTS, MATERIALS AND METHODS

6.2.1 Patients and blood samples

Patients on prospective warfarin therapy (n = 1000) were recruited as
described in section 2.2.1. Sodium citrated blood samples (9 ml) were collected from
all patients before warfarin initiation (baseline visit) and at two of the follow-up
visits (day 7 and day 28). Centrifugation of blood samples was carried out at 2, 600 g
for 20 min and plasma was stored in 1 ml aliquots at -80°C until analysis.

Among the 1000 patients recruited, genotype data for the seven clotting
factor genes (F2, F5, F7, F9, F10, PROC, and PROSI) were available for a total of
745 patients, 31 from a candidate gene approach genotyping and 714 from genome-
wide genotyping (of which 280 were also genotyped by a candidate gene approach
and genotype data from both genotyping methods were 100% concordant). As part of
quality control, patients who missed any warfarin doses the day before blood samples
were taken (n = 57), or patients who did not complete the two follow-up visits (n =

69), were excluded and 619 patients remained for downstream statistical analyses.

6.2.2 Coagulation assays

Plasma activities of circulating procoagulant (factors 11, V, VII, IX and X)
and anticoagulant (proteins C and S) proteins were measured using an automated
analyzer, Multi-Channel Discrete Analyzer (MDA)-180 (bioMérieux®, Inc., Durham,
NC, USA), at the Haematology Laboratory of the Royal Liverpool University
Hospital, under the supervision of Professor Cheng Hock Toh. All plasma samples
were measured in duplicate, at 1:10 and 1:20 dilutions for the clot-based assays, and

at 1:1 and 1:2 dilutions for the protein S immune-turbidimetric assay. Results were
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calculated to percent activity by interpolation from the reference curve, and were
subsequently multiplied by the respective dilution factor and the mean values of the

duplicate readings were reported.

6.2.2.1 Quality control

Immediately before assaying the patient specimens, the MDA-180 system
prepares a reference curve using the reference material plasma, Coagulation
Reference (bioMérieux™). The coagulation reference plasma is a pooled plasma
control prepared from at least 100 Caucasian healthy volunteers, giving the average
presence of all coagulation factors and inhibitors. Using the dilutions specific for
each assay as listed in Table 6.2, the reference curve was constructed by fitting a
regression model, a piecewise function with two subfunctions each of which used a
second order polynomial fit to different subgroups of the reference plasma dilution

series. Only reference curves with correlation coefficients > 0.9 were accepted.

Table 6.2. Dilutions used in constructing coagulation assay reference curve.

Assay Reference curve dilutions
PT (for factors Il, VIl and X) 1:10, 1:20, 1:40, 1:80, 1:160, 1:320
aPTT (for factors V and IX) 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640

Protein C clot-based 1:10, 1:20, 1:40, 1:80, 1:160

Protein S immune-turbidimetric 1:151:2.1:3,1:6

PT: Prothrombin Time; aPTT: Activated Partial Thromboplastin Time

Two levels of controls for each assay were then tested, using a “normal” and
“abnormal” control. The “normal” control has characteristics similar to those of fresh
normal plasma that may be used as a control to monitor thrombosis and haemostasis

assays, while the “abnormal™ control is prepared from citrated plasma of healthy
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donors where all clotting factor levels were reduced, i.e. abnormally low. The
“normal” and “abnormal” controls used for the clot-based assays were MDA
Verify 1 and Coagulation Control A (bioMérieux®), respectively; while that for the
protein S immune-turbidimetric assay were STA®-LIATest® Control N and Control
P (Diagnostica Stago, Asnieres-sur-Seine, France), respectively. Control results had
to be within accepted limits (lot specific target values provided by the manufacturer)

before assaying the patient specimens.

6.2.2.2 Prothrombin Time (PT) assay

Factors II, VII and X levels were determined by a one-stage Prothrombin
Time (PT) based clotting assay using respective factor depleted plasma (Precision
BioLogic Inc., Dartmouth, Canada) and Simplastin® HTF (bioMérieux®) as the
activator of the extrinsic coagulation cascade. Simplastin® HTF is a thromboplastin
reagent which contains the human thromboplastin tissue factor, phospholipids and
calcium ions, and when added to anticoagulated plasma, it triggers the formation of a
fibrin clot. The instrument procedure on the MDA-180 system is described in the
following paragraph and depicted in Figure 6.2a.

For a 1:10 dilution, 10 pl of specimen or control was pipetted into an
optically clear cuvette and was serially diluted with imidazole buffer (bioMérieux®)
to a total volume of 50 pl. The instrument then pipetted 50 pul of factor deficient
plasma into each cuvette and the fluids were warmed to 37 + 1°C. To initiate the clot
reaction, 100 pl of warmed Simplastin® HTF was pipetted into each cuvette. As a
clot forms, the amount of light that passes through a reaction mixture abruptly
decreases, decreasing the output of the photodiode detectors. The time required for

this decrease to occur was measured.
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6.2.2.3 Activated Partial Thromboplastin Time (aPTT) assay

Levels of factors V and IX were quantitated by a one-stage Activated Partial
Thromboplastin Time (aPTT) based clotting assay using factor deficient plasma
(Precision BiolLogic Inc.) and MDA Platelin LS test kit (bioMérieux®). The MDA
Platelin LS test kit consists of the MDA Platelin LS reagent (which contains
phospholipids with micronized silica as particulate contact activators) and MDA
Platelin LS CaCl, required for the activation of the intrinsic coagulation cascade. The
instrument procedure for the aPTT assay (Figure 6.2b) is similar to that described for
PT assay except after the addition of deficient plasma, 50 pl of warmed MDA
Platelin LS reagent was mixed with the sample and incubated at 37 + 1°C for 3 min
40 s. The aPTT activation was then initiated with the addition of 50 pl of warmed

MDA Platelin CaCl, and the timing for clot detection was measured.

6.2.2.4 Protein C Clotting assay

A functional clotting assay based on the prolongation of the aPTT was
utilized to measure protein C activity using Protein C deficient plasma and Protac®
(Technoclone GmbH, Vienna, Austria). Protac® contains phospholipids, calcium ions
and a highly purified extract of the snake venom from Agkistrodon Contortrix which
is a quick-acting, direct activator of protein C, converting it from its zymogen to the
protease. The active enzyme was then determined indirectly by the prolongation of

aPTT (see Figure 6.2¢).
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6.2.2.5 Protein S assay

Free protein S levels were measured with an immune-turbidimetric assay
using the STA®-LIATest® Free Protein S kit (Diagnostica Stago) which consists of
the protein S buffer and latex reagent. The latex reagent is a suspension of latex
microparticles, coated by covalent bonding with monoclonal antibodies specific for
free protein S. When testing the 1:2 dilution, 12 pul of specimen or control was
pipetted by the MDA-180 instrument into an optically clear cuvette. 12 ul of
imidazole buffer was then added and the fluids were heated to 37 + 1°C. Following
this, 50 pl of warmed protein S buffer was pipetted into the cuvette and incubated at
37 £+ 1°C for 3 min 40 s. Finally, 75 pl of warmed latex reagent was added to the
mixture and after a 15 s blank interval, the timing for latex agglutination was
monitored at 540 nm wavelength for 240 s (Figure 6.2d). The antigen-antibody
reaction between the test sample and latex reagent led to an agglutination of the latex
microparticles, which induced an increase in turbidity of the reaction medium. The

increase in turbidity was reflected by an increase in absorbance and is a function of

the free protein S level present in the test sample.
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CHAPTER 6

6.2.3 Genotyping
6.2.3.1 Candidate gene approach

As part of the interim analysis described in section 2.2.3, a total number of
197 SNPs spanning 29 candidate genes involved in the pharmacology of warfarin
were selected and investigated in the first 311 patients on prospective warfarin
therapy. These polymorphisms were a combination of tagging SNPs and functional
variants which were previously identified in a study undertaken in a Swedish cohort
(Wadelius ef al., 2007). These genetic variants explain at least 95% of the genetic
diversity in each candidate gene. Table 6.3 lists the 29 genes investigated.

Genotyping was performed by MALDI-TOF mass spectrometry and by real-
time PCR, both undertaken at the Wellcome Trust Sanger Institute. For the purpose
of the aims of this chapter, genotype data of 48 SNPs spanning the seven clotting
factor genes (F2, F5, F7, F9, F10, PROC, and PROSI) were used for downstream

statistical analyses.

6.2.3.2 Genome-wide scan approach

Genome-wide genotyping of DNA samples from 752 patients on prospective
warfarin therapy has been previously described section 3.2.9. For downstream
statistical analyses, genotype data of 48 SNPs encompassing the seven clotting factor
genes which were previously investigated in the interim analysis (section 6.2.3.1)

were extracted from the GWAS data using PLINK (Purcell et al., 2007).
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Table 6.3. List of 29 genes investigated in the interim analysis.

Gene symbol  Gene name

ABCB1 ATP binding cassette, subfamily B, member 1

APOE Apolipoprotein E

CALU Calumenin

CYP1A1 Cytochrome P450, family 1, subfamily A, polypeptide 1
CYP1A2 Cytochrome P450, family 1, subfamily A, polypeptide 2
CYP3A4 Cytochrome P450, family 3, subfamily A, polypeptide 4
CYP3A5 Cytochrome P450, family 3, subfamily A, polypeptide 5
CYP2C8 Cytochrome P450, family 2, subfamily C, polypeptide 8
CYP2C9 Cytochrome P450, family 2, subfamily C, polypeptide 9
CYP2C18 Cytochrome P450, family 2, subfamily C, polypeptide 18
CYP2C19 Cytochrome P450, family 2, subfamily C, polypeptide 19
EPHX1 Epoxide hydrolase 1

F2 Coagulation factor 2

F5 Coagulation factor 5

F7 Coagulation factor 7

F9 Coagulation factor 9

F10 Coagulation factor 10

GAS6 Growth arrest-specific 6

GGCX Gamma-glutamyl carboxylase

NQo1 NAD(P)H dehydrogenase, quinone 1

NR112 Nuclear receptor subfamily 1, group i, member 2

NR1I3 Nuclear receptor subfamily 1, group |, member 3

ORM1 Orosomucoid 1

ORM2 Orosomucoid 2

PROC Protein C

PROS1 Protein S

PROZ Protein 2

SERPINC1 Serpin peptidase inhibitor, clade C (antithrombin}, member 1
VKORC1 Vitamin K epoxide reductase complex, subunit 1
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6.2.4 Statistical analysis

HWE for each SNP was determined using a computationally efficient exact
Puwe test statistic implemented in HaploView (Wigginton er al, 2005). A
P-value < 0.001 was assumed to indicate deviation from HWE.

All statistical analyses were performed in SPSS version 18. A P-value < 0.05
was regarded as statistically significant. To assess the effect of heparin on baseline
clotting factor levels, the independent samples r-test was performed. For comparisons
of clotting factor levels before and after warfarin commencement, the paired samples
r-test was undertaken. Relationships between INR variability and clotting factor

activity levels were examined by Pearson correlation analysis.

6.2.4.1 Longitudinal data analysis

A repeated measures linear model was used to assess the changes in activity
levels of each clotting factor between patients at each study time point (0, 7 and 28
days after warfarin treatment). To examine the SNP-effect on the variation in clotting
factor levels, patients were stratified according to the different genotype groups for
each SNP and the measurements were compared between strata. Clinical outcomes
evaluated included the achievement of stable warfarin dose, achievement of
therapeutic INR, and bleeding complications. As the timing of warfarin
commencement relative to the index visit could influence the changes in clotting

factor levels, the number of days from warfarin initiation was included as a covariate

in all above models.
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6.2.4.2 Univariate analysis

To evaluate the individual effect of each SNP and the decline in activity level
of each clotting factor (difference between the index visit and the two follow-up time
points at day 7 and 28 after warfarin treatment) on each clinical outcome, univariate
tests of association were conducted. For the time to event outcomes (time to
achieving warfarin stable dose, time to achieving therapeutic INR and time to
bleeding complications), the log-rank test for trend was used. As the distribution of
warfarin stable dose was skewed, square-root transformation was undertaken to
ensure normal distribution. For the continuous outcome of stable warfarin dose,

univariate linear regression analysis was undertaken.

6.2.4.3 Multiple regression analysis

To determine the relative effects of reduction in clotting factors on variability
of warfarin stable dose, stepwise linear regression models were fitted and compared
using the likelihood ratio test (LRT). In addition, clinical and genetic factors which
have been previously reported (D'Andrea et al., 2005; Caldwell et al., 2008; Gage et
al, 2008; Borgiani et al., 2009; Klein et al., 2009; Zhang et al., 2009) to affect
warfarin dose variability, namely age, BMI, gender, CYP2C9*2 (rs1799853),
CYP2C9*3 (rs1057910), VKORC! -1693 (1s9923231) and CYP4F2 rs2108622 and
rs2189784, were assessed univariately in our cohort of patients. Any factors
subsequently found significant (P < 0.05) were included in the multiple regression
analysis. The proportion of variability explained by the covariates was calculated

using Nagelkerke’s R? statistic.
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6.2.4.4 Correction for multiple testing

P-values from all association tests undertaken were adjusted for multiple
testing using the FDR (Benjamini et al., 2001) in the genetics package of R
(http://cran.r-project.org/web/packages/genetics/index.html), version 2.6.2. FDR-

corrected P-values are denoted as P.-values.
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6.3 RESULTS

6.3.1 Patient population

Demographics of the 619 patients are reported in Table 6.4. Most of the
patients were Caucasians (98.5%) and majority were male (57%), with mean age of
69 years. Atrial fibrillation (67%) was the most common indication for warfarin
therapy, followed by pulmonary embolism (15%) and deep vein thrombosis (9%). In
majority of the patients, cardiovascular disease (81%) was a common underlying co-
morbidity, followed by musculoskeletal problems (62%) and gastrointestinal disease
(38%).

Among the 619 patients, 59 were on low molecular weight heparin (LMWH)
therapy when warfarin treatment was initiated. Given that heparin enhances the
adhesion of a serine protease inhibitor, antithrombin III, to serine proteases such as
factors II, VII, IX and X, proteins C and S, their activity levels could be inhibited in
patients on concomitant heparin and warfarin therapies. We however did not find any
significant differences in the mean baseline levels of these clotting factors when
patients on overlapping heparin and warfarin therapy were compared to patients on
warfarin treatment only.

Of the 619 patients, 149 (24%) patients had their index visit between one and
eleven days before they started warfarin, while 378 (61%) patients had their index
visit within 2 days of commencing warfarin. Of the remaining patients, 87 (14%) had
their index visit on the third day, and 5 (1%) had their index visit on the fourth day

after starting warfarin.
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Table 6.4. Clinical profile of 619 warfarin patients.

CHAPTER 6

Characteristic N (%)
Gender - Male ~ 355(57)
Age in years, mean (range) 69 (19-95)
BMI®°, mean (range) 28 (13-61)
Ethnicity -
White 612 (98.9)
Black Other 4 (0.6)
Black African 2(0.3)
Other® i 1(0.2)
Indication for warfarin ’
Atrial Fibrillation 412 (67)
Pulmonary Embolism 94 (15)
Deep Vein Thrombosis 59 (9)
Cerebrovascular accident and Transient ischaemic attacks 36 (6)
Mechanical heart valve replacement 14 (2.3)
Myocardial infarction 2(0.3)
Dilated left atrium 1(0.2)
. Other’ S _2806)
Co-morbidity o
Cardiovascular disease 502 (81)
Musculoskeletal problems 385 (62)
Gastrointestinal disease 236 (38)
Respiratory disease 216 (35)
Neurological disease 136 (22)
Urological condition 113 (18)
Renal disease 56 (9)
History of falls 46 (7)
Hepatic disease 24 (4)

BMI: Body Mass Index.
? BMI missing for 2 patients.
® Other self-reported ethnicities include: Mixed race.

€ Other indications include: systemic lupus erythematosus; anti-phospholipid syndrome; short
saphenous vein thrombosis; valvular heart disease; sagittal sinus thrombosis; dilated left
ventricle; occluded graft in leg; apical aneurysm; urticaria with angioedema; aortic and mitral

regurgitation; ischaemic colitis; mitral stenosis; and post-surgery.
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6.3.2 Plasma levels of clotting factors in patients initiated onto warfarin
therapy

Figure 6.3 displays the variability in plasma levels of clotting factors across
the 3 study time points (0, 7, and 28 days after warfarin initiation) in 619 patients.
The plasma levels of procoagulation factors II, VII, IX and X, and anticoagulation
proteins C and S, were significantly lower at 7 days and 28 days after warfarin
treatment, compared to baseline. Factor II levels decreased by 55% (95% CI: 53% —
57%) at day 7 and 65% (95% CI: 64% — 67%) at day 28 (Figure 6.3a). The activity
level of factor VII was reduced by 53% (95% CI: 50% — 56%) at day 7 and by 41%
(95% CI: 38% — 43%) at day 28 (Figure 6.3c). For factor IX, a 44% (95% CI: 41%
46%) and 32% (95% CI: 30% — 33%) reduction in plasma activity was observed at
day 7 and day 28, respectively (Figure 6.3d). A huge reduction in factor X level
(Figure 6.3¢) was observed at day 7 (mean: 70%, 95% CI: 69% — 72%), and at day
28 (mean: 79%, 95% Cl: 77% — 80%). The activity level of protein C (Figure 6.3f)
decreased by 31% both at day 7 (95% CI: 28% — 35%) and at day 28 (95% CI:
28% — 33%). Protein S level was reduced by 47% (95% CI: 45% — 48%) at day 7 and
by 50% (95% CI: 55% — 57%) at day 28 (Figure 6.3f). However, very little change
was observed with factor V level after warfarin treatment (Figure 6.3b). Only a small
5% increase in activity level was observed at day 7 (95% CI: 3% — 7%) and day 28
(95% CI: 3% — 6%).

After 28 days of warfarin therapy, factor X showed the lowest level at ~17%,
intermediate levels were exhibited by factors II (~28%) and VII (~38%), while factor

IX, proteins C and S showed the highest activity at 64%, 48% and 58%, respectively.
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Figure 6.3. Plasma levels of clotting factors in patients at 0, 7 and 28 days of warfarin
treatment. (a) Factor ll, (b) Factor V, (c) Factor VII, (d) Factor IX, (e) Factor X, (f) Protein
C, and (g) Protein S. Boxes represent 25th-75th percentiles of clotting factor activity
levels, whiskers represent 5th-95th percentiles, solid lines represent median clotting
factor level at respective time points, and open dots represent outliers. NS = not
significant. **P-value < 1x 10"

203



CHAPTER 6

6.3.3 Correlation between INR and activity levels of clotting factors

Individual clotting factor activity levels were plotted against the INR values
in Figures 6.4a through 6.4g. As the INR value increased, the activity levels of the 6
vitamin-K dependent proteins decreased. Strong negative correlations between INR
and factor II (r = -0.59), factor VII (r = -0.67), factor IX (r = -0.69), factor
X (r = -0.58), protein C (r = -0.54), and protein S (r = -0.53) activities were observed.
The decline in activity levels appeared to follow a triphasic pattern. An initial sharp
drop with an increase in INR from 1.0 to 2.0 was followed by a gradual decline with
INR in the range 2.0 to 4.0, ultimately reaching a plateau when the INR was 4.0 or
more. However, factor V, the cofactor for thrombin formation, did not show any

correlation with INR (r = 0.09).
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Figure 6.4. Scatter plots showing correlations between the international normalised
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factor X, (f) protein C, and (g) protein S in 619 patients on warfarin. Values of Pearson
correlation coefficient are shown and all P-values are < 0.001.
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6.3.4 Association of SNPs with variability in clotting factor activity levels

Allele frequencies and details of the 48 SNPs investigated are summarised in
Table 6.5. SNPs that deviated from HWE (3 SNPs in F9 gene) were excluded from
further analysis.

Four polymorphisms in the F7 gene — rs3093229, rs3093230, rs6041 and
rs6047 — showed significant association with variability in factor VII activity levels.
rs3093229 and rs3093230 are both located near the 5° end of F7 and are in strong LD
with each other (D' = 1, 1° = 0.995). rs6041 is located in intron 7 while rs6046 is a
nonsynonymous polymorphism (causing a amino acid change from arginine to
glutamine at codon 413) located in exon 8, both of which are in complete LD with
each other (D' =1, 1" = 1). Since rs3093229 tags for rs3093230 and rs6046 tags for
rs6041, their association results are very similar. Therefore, only results for the two
tagging SNPs, rs3093230 and rs6046, are reported. Figure 6.5a shows the changes in
plasma factor VII activity levels, stratified by rs3093230 genotype. As the line
graphs illustrate, at time points 0 and 7 days after warfarin initiation, patients with
homozygous wild-type genotype (GG) had lower factor VII activity than
heterozygous patients, and patients with the homozygous mutant genotype (AA) had
the highest level of factor VII activity (P, = 0.02). In contrast, for the rs6046
genotype (Figure 6.5b), patients with the homozygous wild-type genotype (GG) had
higher factor VII activity than heterozygous patients, and patients with the
homozygous mutant genotype (AA) had the lowest level of factor VII activity, at
baseline and at 7 and 28 days after warfarin treatment (P, = 0.003).

Given that genes F7 and F/0 are located in close proximity (~ 2000 bp) with
each other on chromosome 13q34, and some degree of LD is observed between these

2 genes (see Figure 6.6), the effect of F7 SNPs on factor X level changes and vice
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versa were investigated. No significant association was observed between F7 SNPs
and factor X level but interestingly, an intron 1 genetic variant within F/0, rs776905,
exhibited a borderline association with changes in factor VII activity levels (P, =
0.04). As shown in Figure 6.7, patients with homozygous wild-type genotype (AA)
had higher factor VII activity than heterozygous patients, and patients with the
homozygous mutant genotype (CC) had the lowest level of factor VII activity, at
baseline and at 7 and 28 days after warfarin commencement.

Interestingly, when compared to baseline, the relative reduction in factor VII
activity was not significantly different among the 3 different genotype groups for F7
SNPs rs3093230 and rs6046 and F10 rs776905 after warfarin treatment, suggesting
that these 3 SNPs do not play a role in the rate of decline in factor VII level during
early warfarin treatment.

No significant association was found with variability in activity levels of

factors II, V, protein C and protein S, in relation to SNPs in F2, F5, PROC and

PROSI.
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Figure 6.5. Line graph showing change in factor VIl activity level for (a) rs3093230, and
(b) rs6046 genotypes. The tables beneath the graphs show the number of patients in
each genotype group and their mean factor VIl level at respective time points.
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Figure 6.6. LD among polymorphisms in F7 and F10 genes in 619 patients on
prospective warfarin therapy. LD pattern was generated using HaploView version 4.2
and strength of LD (D" measure) is shown in increasing shades of pink, as depicted by
the bars on the bottom right.
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Figure 6.7. Line graph showing the effect of F10 rs776905 genotype on factor VIl
activity level. The table beneath the graph shows the number of patients in each
genotype group and their mean factor VI level at respective time points.
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6.3.5 Association of changes in clotting factor activity levels with clinical

outcomes

During the course of follow-up, of the 619 patients included in this study, 362
(58%) achieved warfarin dose stability while 558 (90%) achieved therapeutic INR.
Bleeding complication occurred in 179 (29%) patients, of which 15 (2.4%) patients
experienced a major haemorrhage, as defined by Fihn et al (1996). The effects of
changes in activity levels of clotting factors on these warfarin clinical outcomes were
examined.

The activity level changes in clotting factors II and X and protein C were
associated with the achievement of warfarin stable dose. At time points 7 and 28
days after warfarin initiation, the levels of factors II (P. = 0.01) and X (P = 0.02),
and protein C (P, = 0.003) were significantly lower in patients who achieved
warfarin stable dose, compared to patients who did not achieve warfarin stable dose
(Figure 6.8). After 7 and 28 days of warfarin treatment, the relative reduction in
factors I and X were both ~5% greater among patients who achieved warfarin stable
dose compared to those who did not achieve stable dose (Figures 6.8a and 6.8b),
while that for protein C was nearly 10% greater (Figure 6.8¢).

In patients who achieved therapeutic INR, the levels of factors 1I (P = 0.01)
and X (P. = 0.01) were significantly lower after 7 and 28 days of warfarin treatment
(Figure 6.9), and the plasma activity levels of factors I and X both decreased ~10%
faster in comparison with patients who did not achieve therapeutic INR (Figures 6.9a
and 6.9b).

There was no significant association with any changes in clotting activity

levels and bleeding complications.
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Given that the assessment performed in section 6.3.4 showed that the plasma
levels of factors VII and X were different in patients with different genotype groups
for F7 and FI10 SNPs (rs3093230, rs6046 and rs776905), their relationships with
clinical outcomes and clotting factor levels were examined. When patients were
stratified according to their genotypes for the F7 and F/0 SNPs, no association with
changes in clotting factor levels was observed in the 3 clinical outcomes tested:

achievement of warfarin stable dose, achievement of therapeutic INR and bleeding

complications.
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Figure 6.7. Line graph showing changes in (a) factor Il, (b) factor X, and (c) protein C
activity levels in relation to the achievement of stable dose in patients on prospective
warfarin therapy. The tables beneath the graphs show the number of patients in each
group and their mean clotting factor levels at respective time points.
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Figure 6.8. Line graph showing changes in (a) factor Il and (b) factor X activity levels in
relation to the achievement of therapeutic INR in patients on prospective warfarin
therapy. The tables beneath the graphs show the number of patients in each group and
their mean clotting factor levels at respective time points.
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6.3.6 Univariate analysis of association between SNPs, reduction in

clotting factor levels and clinical outcomes

For the 3 time to event outcomes investigated (time to achieving warfarin
stable dose, time to achieving therapeutic INR and time to bleeding complications),
no significant association was observed with clotting factor levels and SNPs in the
clotting factor genes.

Interestingly, the decline in clotting factors II, VII, IX, and X, and protein S,
between 0 and 28 days of warfarin treatment, were significantly associated with the
clinical outcome of warfarin stable dose. Table 6.6 details the P-values after FDR
(P.) and the variability explained by each variable. No clotting factor SNPs,

however, showed significant association with the variability in warfarin stable dose.

Table 6.6. Significant univariate associations with warfarin stable dose.

Variable P-value R? (%)

Difference in clotting factor between 0
and 28 days after warfarin treatment

Factor Il 0.02 2.2

~ Factor VIl 0.003 4.0

Factor IX 0.004 33

y Factor X 0.003 3.7
Protein S T e e R

Only those with a P.-value < 0.05 are shown here.
362 patients achieved warfarin stable dose.
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6.3.7 Multivariate model for warfarin stable dose

Table 6.7 outlines the clinical variables (age, BMI and gender) and genetic
factors (CYP2C9*2, CYP2C9*3, VKORCI! -1693 and CYP4F2 rs2189784) which
showed significant univariate association with warfarin stable dose requirement. A
multiple regression model including these clinical and genetic covariates was built to
assess their association with warfarin stable dose (Table 6.8). Models using the LRT
both including and excluding covariates to represent the decline in clotting factors II,
VII, IX, X and protein S were compared. Among these 5 covariates tested, the
inclusion of a covariate representing the decline in clotting factor X explained the
largest variability in warfarin stable dose requirement, increasing the R value by

1.4% from 49.5% t0 50.9%. A summary of the R? results is presented in Table 6.8.
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CHAPTER 6

6.4 DISCUSSION

A clear advantage of our study is that this is the largest prospective study that
has evaluated the coagulation profiles in patients on warfarin therapy to date.

In keeping with previous reports (Paul et al., 1987; Kumar et al., 1990;
Jerkeman er al., 2000), we found that the levels of the vitamin K-dependent
procoagulation factors 11, VII, IX and X, and anticoagulation proteins C and S, all
declined in our cohort of patients in response to warfarin therapy, while that for
factor V did not change significantly. Although the pattern of decline was similar
among all 6 vitamin K-dependent clotting factors, the rate and magnitude of decrease
was different, with factor X activity showing the greatest rate and magnitude of
decline.

Also in agreement with previous studies (Kumar et al, 1990; Lind et al,
1997, Jerkeman ef al., 2000; Gulati e al., 2011), our results showed that the levels of
all 6 vitamin K-dependent clotting factors declined with increasing INR but again,
not the rate and magnitude of decrease. Our observation of an apparent plateau effect
at INR values greater than 4.0 is akin to findings of Sarode et al. (2006) and Gulati et
al. (2011), who reported a poor correlation between supratherapeutic INR (> 5.0 or
3.6) and the levels of vitamin K-dependent clotting factors (Sarode et al., 2006;
Gulati ef al., 2011).

The effects of 48 candidate polymorphisms across the 7 clotting factor genes
on the variability as well as the rate and magnitude of decline in clotting factor
activity levels were investigated in our cohort of patients on prospective warfarin
therapy. Several SNPs were found to contribute to the variability in factor VII
plasma activity. The minor allele of the promoter SNP rs3093230 in the F7 gene was

associated with higher factor VII levels before and 7 days after warfarin treatment,
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This promoter SNP has been reported to tag for a haplotype in the 7 gene (Taylor et
al., 2011) and showed a similar association in previous studies conducted in healthy
populations of European descent (Reiner et al., 2007; Ken-Dror et al., 2010; Taylor
et al., 2011), suggesting that rs3093230 constitutes a major determinant of factor VII
activity. In addition, we found an association between lower factor VII levels and the
minor allele of a nonsynonymous genetic polymorphism in exon 8 of F7 gene,
rs6046, which causes a p.Argl43GlIn amino acid substitution. A recently reported
meta-analysis in 1781 Caucasians found an association between warfarin dose
variability and a synonymous SNP in exon 5 of F7, rs6042; this association was
further replicated in an independent cohort of 693 Caucasian subjects, accounting for
0.7% of warfarin dose variance (Bourgeois et al., unpublished). Interestingly, rs6042
which is approximately 3 kb upstream of rs6046, is in strong LD with rs6046 (D’ =
1.0, ¥ = 0.92), suggesting that rs6046 could be the causal variant given its function.
Further in vitro functional analysis on rs6046 should be carried out to confirm this
hypothesis.

A genetic variation within intron 1 of FI0 gene (rs776905) also showed
association with factor VII levels in our study, where patients carrying the minor
allele had lower factor VII levels. Our results, together with a recent finding by
Taylor and colleagues (2011) who discovered an association between factor VII
levels and another intron 1 SNP in F/0 (rs3093268) in a healthy European American
population (Taylor er al., 2011), suggest that SNPs in FI0 play a role in the
variability of factor VII levels.

Our findings indicate that patients who achieved stable dose experienced a
faster decline in the anticoagulation factors Il and X, and anticoagulant protein C

levels, compared to patients who did not achieve stable dose. Additionally, in
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patients who achieved therapeutic INR during the study period, a higher reduction
rate in the procoagulation factors II and X was observed, when compared to patients
who did not achieve therapeutic INR. Although the difference in clotting factor
levels between patients who achieved stable dose or therapeutic INR and those who
failed to achieve effective anticoagulation was only 5 to 10%, this small difference in
levels appears to have a great impact on patients’ response to warfarin. Although, the
concomitant measurement of INR and factors II and X, and protein C levels, may
improve warfarin control, the expense would be prohibitive.

The decline in clotting factors 11, VII, IX, X and protein S after 28 days of
warfarin treatment were found to be predictors of warfarin maintenance dose. A
multiple regression model using the decrease in clotting factor X in addition to the
predictors CYP2C9*2, CYP2C9*3, VKORCI -1639, CYP4F2 rs2189784, age, BMI
and gender explained almost 51% of variance in warfarin stable dose, with the
decline in clotting factor X accounting for 1.4% of dose variability.

A limitation of our study is that SNPs were selected by candidate gene
approach. It is possible that genetic polymorphisms in other genes influence changes
in clotting factor levels, as demonstrated in recent studies which reported the
associations of hepatocyte nuclear factor 4 (HNF4) and protein C receptor (PROCR)
genes with factor VII levels in healthy European populations (Smith ef al., 2010;
Taylor et al., 2011). Furthermore, none of the F9 SNPs selected in our study were
included in the association tests due to deviation from HWE (which could reflect
genotyping errors or suggest a genuine genetic association). We therefore could not
determine if genetic variations in F'9 affect factor IX levels or if they are related to

bleeding complications. To further characterise the genotype-phenotype relationships
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for all clotting factors investigated in this study, genome-wide scan data should be

explored and fine-mapping of any discovered associations should be conducted.
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CHAPTER 7

Final discussion
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CHAPTER 7
7.1  Progress of warfarin pharmacogenetics

Warfarin was approved for medical use as early as the 1950s (Clatanoff ef al.,
1954), but it was not until more than 4 decades later that experimental evidence of
the cffects of CYP2C9 genetic polymorphisms on warfarin dose requirement and
warfarin-related bleeding incidence were published (Furuya et al., 1995; Steward et
al., 1997; Aithal er al.. 1999). These observations were confirmed by many studies
but it quickly became clear that the presence of CYP2C9 polymorphisms did not
explain most of the variation in warfarin dosage.

In 2004, the gene coding for the target enzyme of warfarin, VKORCI, was
discovered (Li er al., 2004; Rost et al., 2004a) and soon after, SNPs in VKORCI
were shown to be associated with warfarin dose variance (Rieder et al, 2005).
Taken together with the completion of the human genome project in 2001 and the
advent of genomic technologies, warfarin has been the “poster child” for integrating
pharmacogenetics into clinical practice. A summary of the progress in warfarin
pharmacogenetics is illustrated in Figure 7.1.

Many observational studies reported that the combination of both CYP2C9
and VKORC! genotypes explain 30-40% of total variation in warfarin dose. In
August 2007, the FDA updated the label of warfarin to include the statement that
“lower initiation doses should be considered for patients with certain genetic
variations in CYP2C9 and VKORCI enzymes”, and in 2010, introduced dosing
tables into the drug label.

A functional SNP, rs2108622, in CYP4F2 was first reported to affect warfarin
dose requirement in 2008 (Caldwell e al., 2008) and CYP4F2 was subsequently

shown to catalyse vitamin K oxidation (McDonald et al., 2009).
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In 2009, the IWPC developed a pharmacogenetic algorithm incorporating
CYP2C9 and VKORCI genotypes and clinical variables from over 5000 patients of
various ethnicities (which included patients from our prospective cohort) and
compared it to a standard clinical algorithm. They concluded that the addition of
genotype information enhanced outcomes, but not for patients who required
unusually high or low warfarin doses (Klein er al., 2009).

Despite the fact that results from many multiple regression analyses have
shown that genetic information from CYP2C9 and VKORCI provides good
predictive power with regards to warfarin dosage, there is currently no general
recommendation for genetic screening of patients starting warfarin therapy due to the
lack of randomised clinical trials data. A handful of randomised controlled trials have
indeed attempted to evaluate whether applying pharmacogenetics dosing algorithms
to clinical practice translates into better clinical outcomes, such as more rapid
attainment of therapeutic INR or a reduction in percentage of out-of-range INR, but
their results remain inconclusive. Reasons for this include the following: studies
were not fully blinded (prescribing clinicians knew the treatment arm), had limited
power due to small sample sizes, demonstrated imbalances in the study arms
suggesting randomisation of patients have not been completely successful (Hillman
et al., 2005; Anderson et al., 2007; Caraco et al., 2008), and the use of historical
control groups which might have introduced bias either in the vigilance of the
treating clinician or the kinds of patients who agreed to participate (Epstein et al,,
2010). Carefully designed and rigorous trials are critical to determining whether
pharmacogenetic-based prescribing is ready for clinical practice. At least five large-
scale, multicentre clinical trials are currently underway to determine if knowledge of

genetic information will improve the efficacy and safety of warfarin therapy. They
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include a single-blinded and randomized controlled trial, the European
Pharmacogenetics of Anticoagulant Therapy (EU-PACT) study (in which our
research team is taking part) (van Schie et al.,, 2009), the Classification of Optimal
Anticoagulation through Genetics (COAG) study (French et al., 2010), and the
Genetics Informatics Trial (GIFT) of warfarin to prevent deep vein thrombosis study
(Do et al., 2011). Even then, the cost-effectiveness of pharmacogenetic-based
prescribing needs to be determined. Some estimates are that genetic-based dosing
will be cost-effective, but this needs to be evaluated formally within a randomized
trial (You et al., 2004; McWilliam et al., 2006) rather than many of the suppositions
that have been made using retrospective data to construct the economic models that
have been published. There are also arguments that clinical-based algorithms that do
not require genetic information may need to be compared with genetic-based
algorithms because, if the former work as well as the latter, they will be much more

(You et al., 2004; Kimmel 2008) cost-effective.
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7.2 Our findings and future directions

Many studies have shown that other genetic and clinical factors play a role in
warfarin response, albeit with small effects. Our findings demonstrated that the
variability in warfarin response involves a complex interplay of genetic, clinical and

biochemical factors (as depicted in Figure 7.2).

Novel VKORC1 mutations

L iver identified in warfarin
resistant patients:
Warfarin *Promoter c.-160G>C
\, *Exon 1 ¢.79C>G
\&R—/
CYP4F11? / \
o] OH
I =y CH,
na ; [ ol
CYP4F2 0 OH
Hydroxyvitamin K, ¢————  VitaminK, Vitamin K,H,
(GEOX
Carboxylated Uncarboxylated
Factors ||I v"r le xr Factors ", V", IX, X,
Proteins Cand S Proteins Cand S
Factor VIl level -------- F7rs3093230 & rs6046, F10 rs776905
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Figure 7.2. Summary of our findings.
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7.2.1 Effect of genes in the CYP4F cluster on warfarin response

Although we found an association between a SNP, rs2189784, which is in LD
with CYP4F2 rs2108622 to be associated with time to therapeutic INR, our results in
chapters 2 and 3 highlighted that inadequate genetic assessment, which unfortunately
is common in the pharmacogenetic literature, can lead to false positive finding, and
inability to replicate. In chapter 2, our attempt to replicate the association of CYP4F2
rs2108622 with warfarin dose requirement in our cohort of prospectively recruited
patients was unsuccessful. Similar to our finding, a research group in Brazil did not
find any significant changes in warfarin dose requirements when they stratified their
cohort of admixed population (n = 370) according to CYP4F2 rs2108622 genotype
(Perini et al., 2010).

Irrespective of the differences of which SNP in the CYP4F2 gene shows an
association with warfarin response, the most important question is whether this is
important clinically? CYP4F2 accounts for about 1-2% of the variation in warfarin
dose requirements (Caldwell et al., 2008; Takeuchi ef al., 2009; Pautas et al., 2010).
The highest impact of 7% was only seen in Italian patients (Borgiani ef al., 2009). In
a recent dosing algorithm developed by Zambon and colleagues (2011), the addition
of CYP4F2 to CYP2C9 and VKORC! only increased the variability by 2-5%
(Zambon er al., 2011), which may not be adequate for it to be considered clinically
significant.

The work presented in chapter 3 shows the complexity of gene-gene
interactions, where competing effects of different SNPs within the same gene cluster
can cancel out the level of CYP4F2 mRNA and warfarin daily doses required to
maintain anticoagulation. Through an international collaboration with a Professor Uli

Zanger’s research team in Stuttgart, Germany, we observed significant association
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between CYP4F2 SNPs and CYP4F2 mRNA expression in human liver, a finding
which was not previously found by McDonald and colleagues (2009). Our sample
size is at least 2.5 times bigger than that by McDonald ef al. (2009), highlighting the
importance of sample size in detecting an effect size. Interestingly, in addition to
increasing CYP4F2 mRNA expression, the rs2108622 T allele was also associated
with decreasing CYP4FI1 mRNA expression. Moreover, an association between
CYP4F11 131060467 (a SNP in LD with rs2108622) and down-regulation of
CYP4F2 mRNA expression was also observed. By segregating the patients according
to their haplotypes for CYP4F2 rs2108622 and CYP4F11! rs1060467 as illustrated in
Table 7.1, it can be clearly seen that there was minimal dose changes in patients
carrying the haplotype consisting of CYP4F2 rs2108622 homozygous wild-type
genotype and CYP4F1] rs1060467 homozygous mutant genotype and vice versa.
Taken together, given the low level of dose variability attributable to SNPs in
CYP4F2 and CYP4Fl11, and their competing effects, the CYP4F cluster is highly
unlikely to have a significant effect on the actual warfarin dose required by patients.
Indeed, unless several of the SNPs in the CYP4F cluster are measured

simultaneously, there may be errors in the calculation of warfarin dose requirement.

Table 7.1. Effects of CYP4F2 and CYP4F11 SNPs on stable warfarin dose requirement®.

Warfarin dose (mg/day)
CYP4F2 rs2108622 genotype CYP4F11 rs1060467 genotype
TT (n) CTand TT (n)
CC(n) 3.7 (166) 3.9(18) 3.7 (148)
CTand TT (n) 4.5 (186) 4.7(92) 4.2 (94)

* Out of 714 patients we recruited prospectively, 352 achieved warfarin stable dose.
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7.2.2 Warfarin resistance and VKORCI mutations

In chapter 4, although we could not determine the status of pharmacodynamic
resistance for all the 65 clinically defined warfarin resistant patients in our cohort, 7
novel heterozygous VKORCI mutations were identified via Sanger sequencing. Of
these, c.-160G>C and ¢.79C>G were predicted to have potential functional effects.
In vitro studies carried out in chapter 5 showed that the promoter c.-160G>C
mutation led to 20% increase in promoter activity, which could possibly explain the
higher warfarin dose required by the patient to achieve therapeutic anticoagulation.
Our EMSA results, however, could not confirm if this promoter mutation creates a
binding site for Spl transcription factor. Whether this promoter mutation introduces
binding sites for other transcription factors remains to be elucidated. Using the
PIVKA-II ELISA kit, we were unable to clearly define the functional role of the
exon 1 missense mutation ¢.79C>G. Further experiments will be required and
assessment of the VKOR enzymatic activity by HPLC (Wallin and Martin 1985)
may be an alternative to clarify the functional implication of this missense mutation.

We have also investigated the role of epigenetics in warfarin resistance. To
date, we are the first group who have explored the effect of DNA methylation at
VKORC] CpG sites in relation to warfarin resistance. Although we are aware of the
limitations of our study and that our interpretation of the results is conservative, we -
can speculate that mutations and SNPs in VKORC! down-regulate methylation
expression at several CpG sites. It is important to mention that due to the rarity of the
VKORCI mutations evaluated in chapter 5, the number of patients carrying the
heterozygous genotype was very small (n = 1 or 2), making it difficult to explore

their association with methylation levels.
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Studies on warfarin resistance pharmacogenetics have largely concentrated
on the 'KORC/ gene except one recent report which found a coding polymorphism
(rs2290228) in the gene CALU to be related to exceptionally high warfarin dose (up
to 20 mg/day) (Vecsler er al., 2006). CALU codes for the endoplasmic reticulum
chaperone protein calumenin, and results from rat studies suggest that calumenin
binds to the VKOR enzyme complex and inhibits the vitamin K cycle (Wallin et al.,
2001; Wajih er al, 2004). It is therefore likely that CALU may confer warfarin
resistance. Further studies will be required to confirm this. In addition, the relation of
other genes in the human genome to warfarin resistance should also be explored.

As none of the previously reported missense mutations were present in our
cohort of patients and given the mutations identified in our population appear to be
“private” mutations, a larger study will be required to determine the prevalence of
these mutations before the clinical utility of these mutations in warfarin resistant
patients could be evaluated.

Although we have only focussed on patients resistant to warfarin in this
study, it is equally important to investigate patients who are sensitive to warfarin as
over-dosing in these patients could lead to bleeding complications. We are currently
actively recruiting patients with discordant phenotypes, those who are sensitive and
resistant to warfarin. Our initial plan is to perform exome genotyping in search of
novel genetic markers associated with warfarin resistance and sensitivity. Further
work will include either exome or whole genome sequencing to identify underlying
rare mutations, which could hopefully improve the clinical management of patients

who require unusually high or low doses of warfarin.
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7.2.3 Changes in clotting factor levels during warfarin treatment

Our work presented in chapter 6 demonstrated that the interactions between
clotting factor genes and their plasma activity levels play a role in warfarin response,
where we showed for the first time that SNPs in clotting factor genes F7 and F10
affect the variability in factor VII levels in patients on warfarin therapy. It is
plausible that rs6046, which is in strong LD with rs6042, could be the true causal
variant accounting for the 0.7% variability in warfarin dose requirements reported by
a recent meta-analysis (Bourgeois et al., unpublished).

Our findings also highlighted that small biochemical changes have an impact
on warfarin response where the change in clotting factor X plasma levels contributed
to 1.4% of warfarin dose variance and changes in factor II and X levels affect the
achievements of warfarin stable dose and therapeutic INR. Future studies of gene-
gene interactions and gene-clinical/biochemical interactions might be the key to
improving our ability to accurately predict warfarin doses.

One caveat of our study is that we have only concentrated on selected SNPs
in the clotting factor genes. Fine mapping of the clotting factor genes and their
haplotype structures may expand our understanding on the genotype-phenotype
relationships of variability in clotting factor levels and warfarin clinical outcomes.
Further work at the genome-wide level will help in elucidating the relationships of
other genes with variability in clotting factor levels before and after warfarin
treatment.

One aspect which we did not explore in chapter 6 is whether patients with
extremely low clotting factor levels are prone to bleeding complications. The risk of
bleeding is higher when INR is over 3, and high INR values are usually associated

with extremely low levels of clotting factors. However, bleeding can also occur when

237



CHAPTER 7

the INR is within the therapeutic range (Fanikos ef al., 2005) and we do not know if
this is reflected in the levels of clotting factors. With the wealth of clinical and
biochemical data we have collected, we will be able to investigate this and determine
if the levels of clotting factors can serve as biomarkers to prevent bleeding

complications.

One also must not forget that adherence remains, perhaps, the “elephant in
the room”. Innovative, sustainable, and cost-effective strategies to improve
adherence could make warfarin safer and more effective for existing patients and
expand the number of patients who could benefit but who do not currently receive
the medication due to concerns about adherence. The potential public health impact
of a successful intervention to improve warfarin adherence among the millions of
patients who require preventive therapy for thromboembolism is enormous.

New oral anticoagulants such as the thrombin inhibitor dabigatran (Connolly
et al., 2009) and the factor Xa inhibitor rivaroxaban (Cleland ef al., 2011) have been
shown to be equally or more effective than warfarin and because their anticoagulant
effects are much more predictable, there is no need for monitoring. However, they
are much more costly compared to warfarin and there is no available
pharmacodynamic biomarker and nor is there an antidote. The latter in particular has
led to concerns with dabigatran about bleeding risks (Eikelboom er al, 2011).
Whether these new anticoagulants will supersede warfarin is unclear. Perhaps a
stratified prescription approach for warfarin, factor Xa inhibitor, thrombin inhibitor,

and heparin, may maximise the clinical effectiveness of anticoagulation.

238



CHAPTER 7
7.4 Conclusions

Warfarin, being one of the most widely prescribed drugs and having a narrow
therapeutic window, seems to be an ideal candidate for the application of the concept
of personalised medicine in which an individual can be prescribed with a specific
regimen matching their particular genetic makeup so that the benefit of treatment can
be maximised while minimising complications. Better understanding of the
individual genetic polymorphisms contributing to the variations in response of
warfarin has enabled us to see beyond the mere biochemical aspects of warfarin
dosing by trial and error. However, a multitude of factors affect warfarin dosing,
some of which still elude our knowledge.

In conclusion, this thesis demonstrates that the control of daily warfarin dose
and its anticoagulant effect is complex, and many factors including common and rare
genetic variants, together with clinical covariates, will be responsible for the missing
heritability. Whether such complexity can ever be incorporated into clinical practice
is unclear, and will depend on the advances that are made in sequencing, other —
omics technologies, integrative biology and decision support systems. Because there
is relatively robust phenotype by which variability in response to warfarin can be
assessed, further work on warfarin is still worthwhile, as it will provide valuable

lessons for other drugs that are widely used in patients.
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