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Abstract 

Schistosomiasis is one of the most prevalent diseases in the world and a major 

cause of morbidity in Africa. Accurate determination of the geographical distribution of 

schistosomiasis in Africa along with the number of people affected is difficult, since 

reliable prevalence data are often not available for most of the African continent. 

Effective schistosomiasis control programmes rely on accurate statistics regarding the 

geographical distribution of disease, the population at risk, and the intensity of disease 

transmission. These estimates can be obtained using a number of statistical methods 

which relate prevalence and intensity of disease to risk factors, measured at the 

individual level and at the population level. Schistosoma mansoni is largely a climate- 

driven parasite, which relies on the availability of a suitable snail host. The survival of 

parasitic infection depends on climatic variables, such as temperature, rainfall and 

vegetation. Statistical models which incorporate spatial or individual heterogeneity are 

highly complex and require large numbers of parameters. Until recently, the most 

common approach was to use regression modelling to identify risk factors for disease 

transmission. However, this method has a number of limitations. In particular, it gives no 

information on the dynamics of transmission, e. g. will the disease reach an endemic state 

under a certain set of conditions or be subject to a periodic cycle? 

The aim of this thesis was to a) develop mechanistic transmission models to 

study how schistosomiasis disease dynamics change with water temperature change and 

to parameterise these models to provide better estimates for a specific host-parasite 

combination; b) explore how the efficacy of control programmes changes with changing 

water temperature; c) produce continent-wide maps of schistosomiasis prevalence in 

Africa, using a combination of geospatial models and environmental data; d) to quantify 
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the impact of climate change over the next 50 years on the prevalence and intensity of 

disease. 

A mechanistic model describing the transmission dynamics of schistosomiasis at 

a range of water temperatures was developed and showed that as the long-term mean 

temperature increases up to 29°C, the mean worm burden increases. At 34°C, the mean 

worm burden starts to taper, as the thermal limits of both the snail and the parasite are 

reached. Adding complexity to the models, such as snail density-dependence and adult 

parasite density-dependence, had no significant impact on the overall transmission 

patterns. However, a sensitivity analysis revealed subtle changes in the relative 

importance of certain parameters. The most detailed model showed that the parameters 

describing the transmission of schistosomes from snail to man were the most sensitive 

to change and therefore, provided a useful target point for control strategies. The effects 

of various control programmes were modelled using discrete time series models and 

manipulation of the individual parameters. The most effective control programme was 

repeated mass chemotherapy, although reducing contact with contaminated water also 

proved highly effective. 

Producing maps of geo-referenced point prevalence data highlighted the areas in 

which no data currently exist. This provides an invaluable tool for determining which 

regions need further study. Four separate geospatial models were developed to predict 

the distribution of schistosomiasis over Africa, and each was validated using existing 

data. The ordinary kriging model provided the best estimates for prevalence data and 

the indicator kriging model provided the best estimates for the probability of infection 

within a population. These models are useful for determining high-risk populations and 

locating areas in which control efforts should be focussed. Two types of regression 

models were used to investigate associations between climatic variables and prevalence 

of disease. Monthly rainfall and mean annual temperature were shown to have 
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important roles in defining the limits of schistosomiasis transmission. Using these data, it 

is possible to define a threshold, outside which schistosomiasis transmission is unlikely 

to occur. These models were used to predict how the distribution of schistosomiasis 

would change with climate change. It was shown that over the next 50 years, there will 

be an increase in the number of areas able to support the intermediate vector. Without 

socio-economic development or intervention strategies, this will almost certainly be 

followed by an increase in disease transmission. The use of mathematical and geospatial 

models can greatly enhance our understanding of schistosome epidemiology and are an 

essential tool in the planning stages of any intervention strategy. 
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1.1 Biology and epidemiology of human schistosomiasis 

Schistosomiasis is a parasitic disease caused by digenetic trematodes, belonging 

to the Schistosomatidae family. It is currently endemic in 74 developing countries, 

infecting an estimated 200 million people (Mascie-Taylor and Karim 2003; Vennervald 

and Dunne 2004). Schistosomiasis is a major public health problem, causing debilitating 

disease, including dysentery, fever, intestinal obstruction, widespread granulomas and 

bladder cancer (Mascie-Taylor and Karim 2003). It is primarily found in rural areas in 

tropical and subtropical countries and infects humans and other vertebrates, using 

freshwater snails of the genera Biomphalaria, Bulinus and Oncomelania as intermediate 

hosts. Transmission relies upon natural water polluted with human excreta, often found 

in areas of poverty or low income, where a lack of facilities forces people to use natural 

water bodies for domestic, recreational, occupational, or religious purposes. 

The three species responsible for the majority of human infections are 

Schistosoma mansoni, S. haematobium and S. japonicum, which can give rise to heavy 

infections and severe pathology. Schistosoma intercalatum and S. mekongi are less well 

distributed but are also capable of causing significant morbidity in humans. Schistosoma 

mansoni infections are found in most countries in Sub-Saharan Africa, extending from 

the Nile Valley down to coastal regions of Mozambique, and spreading westwards to 

Gambia and Senegal. A range of mammals can be infected, although humans are the main 

reservoir of infection. The distribution of each species of schistosome depends upon the 

availability of susceptible intermediate snail hosts, resulting in an irregular distribution 

pattern, varying between communities even in endemic countries. 

A number of control programmes have been implemented throughout Africa, 

including wide-scale applications of molluscicides and chemotherapy, but none so far 



have achieved long-term control. Several promising schistosome antigens have been 

identified as candidates for vaccines but to date, high success rates in the field have not 

been documented (Gryseels 2000). Control programmes have reduced the incidence of 

schistosomiasis in some areas by limiting human contact with infected water, removing 

snail habitats by environmental, chemical or biological means, or by chemotherapy. 

However, the recent construction of water development projects for agricultural 

purposes and hydroelectric power has created new habitats for snails and attracted 

large numbers of people, forced there by lack of work, natural disasters, or civil disorder. 

This, combined with a lack of adequate sanitation and health education, has increased 

the transmission of schistosomiasis in developing countries as well as introducing it to 

previous unaffected areas (Hunter 1993). 

1.2 Transmission of schistosomiasis 

1.2.1 The schistosome life-cycle 

Schistosome eggs are released in the faeces or urine of infected animals and 

humans (Fig. 1). If they are deposited in warm, fresh water, the egg will hatch to produce 

a motile, ciliated miracidium that has an average life span of 8-12 hours (Carter et al. 

1982). Miracidia contain finite energy reserves, and their rate of activity determines the 

rate at which their food stores are exhausted. This is dependent upon external 

conditions and factors which influence their behaviour, including temperature, light, 

water currents, turbidity, and chemical stimuli (El Hassan 1974; Prah and James 1978). 

Miracidia are attracted to macromolecules emitted by Biomphalaria and other species of 

snails and alter their behaviour in a manner which suggests chemokinesis rather than 



chemotaxis (Chernin 1970; Haas etal. 1994; Haas et al. 1995). The ability of miracidia to 

locate and penetrate compatible hosts is influenced by a number of variables, including 

light, gravity, and temperature, and is density-dependent, age-dependent and 

time/space-dependent (Sturrock and Upatham 1973; Carter et a1.1982). 

Successfully infecting miracidia penetrate the soft tissue of the snail body and 

transform into primary sporocysts. Each sporocyst undergoes several cycles of asexual 

reproduction and produces thousands of secondary sporocysts, which migrate through 

the host tissue and develop into cercariae. These are released from the snail in vast 

numbers displaying diurnal periodicity, stimulated by light and temperature (Sturrock 

and Sturrock 1970; Theron 1984). The shedding pattern is related to the activity periods 

of the definitive hosts and can vary depending on the site of transmission and the most 

common definitive host (Theron 1984; Mouchet et al. 1992; Favre et a!. 1995). For 

example, in sites where a murine host is common, cercariae are released late in the 

evenings, to coincide with the crepuscular / nocturnal activity of their hosts (Theron 

1984). This adaptation favours transmission of the parasite and the chronobiology of 

cercarial emergence can be used as a marker for selection (Pages and Theron 1990). The 

prepatent period, from penetration to cercarial shedding, varies between 17-18 days to 

several months depending on temperature (Pfluger 1980; Lewis et al. 1986). Over 

several months, one miracidia is capable of producing hundreds of thousands of cloned 

cercariae under optimal conditions. 

Cercariae have limited resources and their swimming behaviour is stimulated by 

changes in light intensity and vibrations in the water. They tend to swim in intermittent 

bursts, followed by periods of slow falling, often remaining passive to conserve energy 

until stimulated by a potential host. Some species of schistosome exhibit different 

swimming behaviour; S. mansoni and S. japonicum cercariae usually stay near the 

surface of the water whereas S. haematobium cercariae tend to accumulate near the 
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riverbed (Mahmoud 2001). The cercariae die within 48-72 hours, although infectivity 

drops after 24 hours (Purnell 1966). Their exact life span depends upon the rate at 

which they use up their glycogen stores, which in turn is dependent upon the frequency 

of stimulation and the ambient temperature (Lawson and Wilson 1980). 

As cercariae penetrate the skin of the definitive mammalian host, they lose their 

tails and enter the blood stream as a schistosomulum. The immature flukes use the 

host's vascular system to migrate towards the liver where they develop in the hepatic 

sinusoids (Jordan 1993). There they mature to dioecious adults and mate for life, 

producing between 100 and 300 non-operculated eggs per day (Loker 1983). The 

miracidium develops within the egg as it moves through the tissues and the lumen of the 

intestines or urinary tract and out of the host. Most of the associated pathology caused 

by schistosomiasis is due to the immune response mounted against the trapped eggs 

(Cheever 1968; Jordan 1993). 
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Figure 1.1. Schistosoma mansonilife-cycle. 



1.2.1 Intermediate host snail ecology 

Biomphalaria spp. snails are found throughout Africa, the Middle East and 

South/Central America, and all are susceptible to S. mansoni to varying degrees. These 

pulmonate snails are hermaphroditic and are capable of self-fertilisation, although cross 

fertilisation is more common (Jordan 1993). The rate of egg production is directly 

related to the size of the snail (Loker 1983). Egg masses are usually 1cm in length, 

containing an average of 15 eggs per mass. Hatching and development is temperature- 

dependent, and usually occurs within 5-10 days, producing snails of 0.5-1.0mm 

diameter. The snails reach sexual maturity in 4-12 weeks when they are approximately 

5mm in diameter and they continue to grow throughout their lives. 

Freshwater snails are able to thrive in a wide range of physiochemical conditions 

and a colony can become established in almost any body of water. The optimum water 

temperature for snails infected with schistosomiasis is 23-25°C and snails are adversely 

affected by temperature extremes either way (Stirewalt 1954; Loreau and Baluku 1987). 

As the temperature falls, growth rate and reproduction begin to slow, and mortality is 

increased when the temperature falls below 5°C (El Hassan 1974; Pimentel-Souza et al. 

1990). Increasing temperature favours growth and development but fecundity is 

reduced as the temperature rises above 30°C. Snail mortality is also affected by high 

temperatures (>35°C), although they can survive short exposures to extreme 

temperatures (Foster 1964; El Hassan 1974; Appleton 1977). 

Biomphalaria snails adapt to less stable environments by increasing their 

reproductive efforts earlier in life (Blair and Webster 2007). They are capable of 

surviving extreme conditions using behavioural changes such as aestivating during 

droughts, and due to their hermaphroditic nature, one surviving snail can repopulate an 

area. The snails can, therefore, tolerate most intervention programmes, such as drainage 

of irrigation canals and molluscicide treatment. 



1.3 Impact of environmental variables on snail and parasite life- 

history traits 

1.3.1 Temperature 

Maintenance temperatures affect every stage of the S. mansoni and Biompha/aria 

life-cycle, and increases in temperature generally increase fitness up to a critical 

threshold, at which the fitness levels decline rapidly and death quickly follows (Kuntz 

1947; Stirewalt 1954; Purnell 1966; Upatham 1973; El Hassan 1974; Woolhouse and 

Chandiwana 1990a). The optimal water temperature range for Biomphalaria spp. lies 

between 20-30°C (Sturrock 1993). Below 15°C, parasitic development is inhibited and 

they are unable to spread disease further. Above 30°C, reproductive activity is also 

reduced and mortality rates increase up to the thermal death point (approx. 40°C) 

(Pfluger 1980). High water temperatures may explain the absence of Biomphalaria spp. 

and consequently, schistosomiasis, from the East African coast (Sturrock 1966b). The 

effect of an increase in temperature is to accelerate development rates of the parasite 

and snail host, and consequently, increase transmission rate. The relationship between 

the infection rate of miracidia and temperature is linear up to the thermal death point of 

the snails (Martens et al. 1997). The change in miracidial infection rate due to 

temperature also influences the snail mortality rate, as parasitic infection reduces the 

life-expectancy of the snail. Higher temperatures reduce the survival rate of the 

intermediate host, so fewer of them will survive the pre-patent period of infection and 

release infective cercariae. Therefore, there are upper and lower temperature thresholds 

outside which schistosomiasis transmission is not viable. 



1.3.2 Rainfall and vegetation 

Rainfall is one of the most important factors affecting snail populations in 

tropical areas (Sturrock 1993). Seasonal variations in snail populations have been well 

documented throughout Africa (Shiff 1964; Webbe 1964; McCullough 1972) with the 

most pronounced effects seen in temporary breeding habitats (Sturrock 1993). During 

prolonged periods of low rainfall, snail populations temporarily diminish and only 

return when rainfall exceeds 4-8 inches per month (Sturrock 1973b). Low rainfall can 

cause small, standing water bodies to dry out, which will result in high snail mortality, 

although studies have shown that some species of snails can survive during prolonged 

dry periods. (Barbosa and Coelho 1955; Sturrock 1993). Reducing the water volume in 

larger water bodies will reduce the flow of water and may create new, favourable 

habitats for snails. These newly formed pools of standing water are also prone to drying 

out following a long period of drought. During episodes of high rainfall, snails can be 

washed out from their existing habitats and standing water bodies can become fast- 

flowing streams, unsuitable for habitation (Sturrock 1993). Conversely, rainfall can 

create new standing pools of water, ideal for snail populations. Increased levels of 

rainfall can increase the density of vegetation in water bodies, which will provide 

sheltered breeding sites and a food source for snails (Klumpp and Chu 1977). 

1.4 Control programmes 

As recently as 1970, most efforts to control schistosomiasis transmission were 

centred on the intermediate snail vector, with the belief that reducing the density of 

vectors would cause a substantial reduction in the prevalence and intensity of infection 

in the community (Hairston 1961; Webbe 1964; Webbe and Sturrock 1964). This 

targeted approach towards snail control was subsequently changed for two reasons. 

Firstly, reducing the density of snail intermediate hosts had only a transient effect on 



disease transmission as the snails rapidly repopulated the area and so continued 

transmitting disease (Thomas 1987; Jordan 1993). Secondly, the high cure rates and low 

cost of chemotherapy changed the emphasis from snail host control to targeting the 

definitive human host (Asaolu and Ofoezie 2003). One of the main reasons for this 

change in control efforts stems from the availability of cheap, safe and effective drugs, 

principally praziquantel and oxamniquine (Magnussen 2003). Large-scale 

schistosomiasis control programmes depend heavily on external donor support. Even 

though drug costs have decreased over the past decade, many governments are still 

unable to meet the costs of a mass treatment programme. The current lack of an effective 

vaccine means that control of schistosomiasis is almost completely dependent on the 

availability and efficacy of cheap drugs. Initially, control programmes often show high 

success rates in reducing disease prevalence, but this success rate often decreases with 

successive assessments (Shuval eta],. 1981). The early period of success gradually slows 

towards a saturation point, at which point investments in control programmes no longer 

deliver commensurate benefits. 

1.4.1 Chemotherapy 

Currently, large-scale chemotherapy programmes are the most commonly used 

intervention strategy for controlling schistosomiasis. The cost of a single dose of 600mg 

praziquantel has fallen to U$0.07 and causes a 60-90% reduction in egg numbers 

excreted in the faeces (Magnussen 2003; Scherrer et a!. 2009) and so provides an 

affordable and cost-effective tool. Recently, concerns of resistance/tolerance to 

praziquantel have emerged following a number of low cure rates documented in high 

transmission areas (e. g. Egypt and Senegal) (Gryseels eta] 2001; Danso-Appiah and De 

Vlas 2002; Botros et al. 2005), leading to a renewed effort to develop new drugs for 

schistosomiasis. Artemether and artesunate are both highly effective against juvenile S. 



japonicum (Utzinger et al. 2001) and may be successful in controlling S. mansoni and S. 

haematobium (Cioli 1998; Utzinger et al. 2000), although the widespread use of these 

artemisinine derivatives cannot be recommended in malaria endemic regions as it may 

induce drug resistance in malaria parasites (TDR 2000). 

1.4.2 Molluscicide 

The use of molluscicides in the control of schistosomiasis transmission is now 

less common than 30 years ago, when it was the control programme of choice. This is 

due to the relatively high costs of molluscicides coupled with the low long-term efficacy 

and the advent of cheaper, effective drugs. The use of molluscicides is generally limited 

to areas with focal transmission. Only one organic molluscicide, Niclosamide, is currently 

used in control programmes and results in 100% snail mortality when applied to small 

water bodies (Greer et al. 1996). Initial concentrations of 0.3 p. p. m. of Niclosamide are 

sufficient to kill 100% of Bulinus coulboisis, Biomphalaria pfeitleri, and Limnaea 

natalensis in ponds, and the treatment remains stable in the water for a considerable 

time, dropping between 5-10% within 24 hours (Sturrock et al. 1974). This treatment 

has no impact on snail eggs, and the reappearance of snails 10 weeks after Niclosamide 

application suggests that repeated treatment is necessary for sustained control of the 

snailpopulation. However, costs for the chemical and its application come to around 

$0.23 per person per year for a single treatment and so repeated application is neither 

practical nor affordable in many endemic regions. One application would suppress the 

snail population and would undoubtedly cause a transient but unsustainable reduction 

in transmission levels. Another disadvantage of using Niclosamide is its toxicity to fish 

and other aquatic animals. In a community dependent on fishing for their livelihood and 

sustenance, this method cannot be advocated. 



1.4.3 Health education and sanitation 

Programmes that improve sanitation in a community usually combine provision 

of clean water supplies along with health education. It is, therefore, difficult to directly 

quantify the impact of improvements in sanitation alone. Huttly (1990) proposed that 

sanitation has an inverse relationship with environmental contamination and disease 

transmission, both of which are directly related to each other. A lack of adequate 

sanitary facilities means that infective human faecal matter may remain in open, 

communal areas. It therefore follows that low income communities with little or no 

sanitation may be continually exposed to faecal-borne pathogens, such as Ascaris, 

Trichuris and Schistosoma species. In areas without adequate sanitation, water bodies 

may easily become contaminated with parasites. This is supported by several studies, 

which show an association between use of bucket and pit latrines with high prevalence 

and intensity of helminth infections (Elkins et al. 1986; Asaolu and Ofoezie 2003). When 

sanitation and improvements in water supply have been introduced into a community, 

schistosomiasis prevalence dropped by 25.6-69.9% (Asaolu and Ofoezie 2003). Although 

the increased availability of flush toilets should have a positive impact of the rate of 

helminth infection in a community, this is not always the case (Holland et al. 1988; 

Huttly 1990). This is because local attitudes to western-style toilets differ, many 

communities do not have sufficient water available for the latrines to function properly 

and some prefer not to use the newer facilities. Health education alone has resulted in an 

86% reduction in the prevalence of schistosomiasis in Mauritius (Dhunputh 1994). The 

role of sanitation combined with health education cannot be underestimated as it is a 

feasible and low-cost approach with a sustainable outcome. It should, therefore, be 

recommended as the first option in disease control and will additionally facilitate the use 

of alternative control strategies, such as chemotherapy. 



1.5 Global warming and schistosomiasis 

There is evidence of temperature-related shifts in the distribution of 

schistosomiasis in China (Confalonieri 2007). China is experiencing an increase in S. 

japonicum infections despite 50 years of control programmes against the snail vector, 

Oncolmelania hupensis, and against the parasite using mass praziquantel administration 

(Mas-Coma 2009). This resurgence could be due to anthropogenic changes, such as the 

construction of the Three Gorges Dam, or environmental changes, e. g. flooding. The 

impact of climate change has also been considered (Zhou et at. 2005). The effects of 

flooding on snail distribution in the Lower Yangtze River basin were studied using 

remote sensing (Seto et al. 2002; Zhou eta], 2002). However, predictive spatial models 

were complicated by the presence of O. hupensis subspecies that varied in their habitat 

preferences. Predicting the distribution of O. hupensis in China using remote sensing 

proved difficult, as seasonal flooding complicated identification of snail habitats. 

Currently, it is thought that an increase in annual water temperature will 

increase the extent and intensity of schistosomiasis transmission (Yang et al. 2006). 

There will be an expansion in regions able to support the snail hosts, and the number of 

parasite generations will increase as development rates increase (Brooker et al. 2000; 

Yang et al. 2005b). To date, there have been no attempts to quantify the impact of 

temperature increases on the distribution of Schistosoma mansoni throughout Africa. 

This is made particularly difficult by the lack of comprehensive prevalence data 

throughout this continent and the inconsistent availability of accurate climate data. 

Clearly, global warming will directly affect aquatic environments and the 

presence of suitable water bodies for the intermediate host of schistosomiasis. 

Increasing the number of suitable habitats could increase the risk of infection to humans 



and expand the current distribution of disease (Bergquist 2001a; Bergquist 2001b). 

Temperature, rainfall, vegetation density, and altitude can significantly alter both the 

parasite and the intermediate host life-cycle (Bavia et al. 2001; Kristensen et al. 2001; 

Zhou et al. 2001). Changes in the suitability of habitats able to support the intermediate 

host and parasite are becoming increasingly important as increased temperatures 

brought about through anthropogenic climate change may allow the spread of this 

parasite into previously uninfected areas. 

Schistosomiasis population dynamics and the impact of disease burden have 

been well studied and extensively documented (Anderson and May 1979a; Anderson 

and Crombie 1984; Woolhouse and Chandiwana 1990b; Anderson 1991; Woolhouse 

1991; Woolhouse 1992; Woolhouse 1994), but these models focus only on the temporal 

changes in transmission. These models are invaluable to understanding the 

epidemiology of disease and the impact of control programmes. However, an 

understanding of the spatial distribution is fundamental to understanding the 

epidemiology of disease. 

1.6 General transmission models of schistosomiasis 

Modelling the transmission of an infectious disease requires a balance between 

including enough detail to model the complex dynamics of the system in question and 

obtaining enough relevant data to accurately determine the key parameters. The value of 

the model lies both in its ability to accurately predict scenarios given a defined set of 

parameter values and its ease of use to field workers. One of the most difficult choices in 

developing a model is determining how much detail to include, making the model user- 



friendly but still as accurate as possible. The first transmission model of schistosomiasis 

was developed by MacDonald (1965) and was used to provide predictions for 

schistosomiasis control. Since then, numerous schistosomiasis models have been 

developed, with varying degrees of complexity (Cohen 1977; Griffin 1988; Woolhouse 

1991; Woolhouse 1992; Feng etal. 2002; Yang 2003; Das etal. 2006). Woolhouse (1991) 

reviewed existing schistosome transmission models and added a number of 

modifications, including reservoir hosts, population dynamics of miracidia and cercariae, 

seasonality and heterogeneous transmission. The importance of including snail 

dynamics was noted in this paper. Density-dependence within the snail population was 

modelled by Feng et al. (2002), and differences between this model and existing models 

have important implications for establishing effective treatment programmes. The 

stabilising effect of acquired immunity in the human population and age-structured 

water contact patterns have been discussed by Yang and Yang (1998; 2003). 

Predicting the effects of control programmes in a community setting is extremely 

complex and involves a large number of parameters. Using a model, these parameters 

can be repeatedly manipulated to explore the various control approaches and determine 

the level of coverage needed for a significant reduction in morbidity. One issue in this 

type of modelling is the validity of the model in relation to the specific ecology of the area 

(Williams et a/. 2002). The effects of various control programmes and the criteria for 

eradication of disease have been discussed previously (Woolhouse 1992; Allen and 

Victory 2003; Das et al. 2006; Zhao 2008). These models highlight important features of 

the schistosome transmission model but draw different conclusions. Models of control 

programmes for S. japonicum in China have simulated the effects of vaccines, mass 

treatment programmes and improvements in sanitation (Williams et al. 2002; Ishikawa 

et a/. 2006). These models were based on field observations and include seasonal 

variations and heterogeneity in transmission to humans. Many of the countries with 
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endemic schistosomiasis have limited funds for healthcare resources, so it is essential 

that only the most effective and cost-efficient programmes are used. The complex nature 

of these decisions necessitates the use of mathematical models in exploring the various 

choices of control programmes. Each model has limitations and decisions must be made 

on which parameters are important in determining the trends in transmission dynamics 

and which have a relatively small impact. 

1.7 Spatial epidemiology of schistosomiasis 

Spatial epidemiology is the study of the geographical distribution of a disease and 

its relationship to potential risk factors. The origins of spatial epidemiology date back to 

1855, with the seminal work of Snow on cholera transmission in London (Snow 1856). 

Modern methods make use of data derived from satellite sensors along with statistical 

modelling to provide an integrated approach to risk mapping. These methods allow us to 

establish risk factors for disease transmission, determine the spatial auto-correlation in 

disease occurrence, and predict prevalence at new locations. Spatial epidemiology can 

identify areas at high risk of infection and ascertain which potential environmental and 

socio-behavioural risk factors explain spatial heterogeneity. Defining the relationship 

between environmental variables and schistosomiasis risk allows prediction of the 

effects of environmental changes on disease, including the impact of human 

interventions (irrigation schemes, urbanisation, etc. ) and global warming. 

Understanding the significance of environmental variables is important for successful 

control efforts, which are targeted at both the parasite within the human host and the 



snail hostand the snail habitat. Maps of disease distribution and burden are essential in 

planning intervention programmes. 

1.71 G/Sand remote sensing 

A geographic information system (GIS) is a tool for capture, analysis, and display of 

georeferenced datasets. Data from different sources are georeferenced and stored as 

layers within a geodatabase. The spatial relationship between data in each dataset can be 

analysed and used to produce maps highlighting the feature of interest. Geographic 

information systems can be used to study both natural and human factors affecting the 

spatial distribution of schistosomiasis and analyse them along with co-infections and 

changes in environmental variables. GIS-based mapping is particularly useful in 

highlighting areas in which little or no data exist. Previous studies have investigated 

statistical correlations between environmental variables and the spatial distribution of 

diseases to identify significant relationships (Rogers and Randolph 1991; Rogers and 

Williams 1993; Hay et al. 1998). The most significant variables may vary from place to 

place (Rogers and Randolph 1993), so it becomes difficult to generalise predictions on 

disease dynamics. Schistosome parasites have a more focal spatial distribution than 

infectious diseases passed from person to person due to the need for intermediate hosts 

and the narrow range of temperatures which support the external parasite life-stages. 

The climatic effects on schistosomiasis, and other vector-borne diseases, are likely to be 

more significant than on direct life-cycle helminths. The first use of GIS in 

schistosomiasis epidemiology was attempted by Cross et al. (Cross and Bailey 1984; 

1984) in the Philippines and the Caribbean using data from the Landsat Multispectral 

Spectral Scanner and local weather to predict the risk of disease. This study predicted 

the absence or presence of disease with 87.1% accuracy in the Caribbean and 93.2% 

accuracy in the Philippines (Cross and Bailey 1984). A disease distribution map was then 



produced that estimated the probability of schistosomiasis infection. Further 

schistosomiasis risk models have been developed using climate and satellite-derived 

data on temperature and vegetation coverage, respectively, in China (Zhou et al. 2001; 

Seto et al. 2002; Yang et a/. 2005a), Ethiopia (Kristensen et a1.2001; Malone et al. 

2001b), Egypt (Malone et al. 1997; Abdel-Rahman et al. 2001), Uganda (Kabatereine et 

al. 2004), Tanzania (Clements et al. 2006) and Brazil (Bavia et a/. 1999). Kazibwe et a/ 

(2006) identified associations in field data between air temperature, rainfall, water 

temperature, and snail density dynamics. Kristensen et al. (2001) found a relationship 

between vegetation density, land surface temperature, and disease prevalence. Distance 

to water bodies and annual minimum temperature were significantly correlated with 

prevalence in Tanzania (Clements et al. 2006). The thresholds for schistosomiasis 

transmission in Uganda were elevation >1400m and annual rainfall <900mm 

(Kabatereine et al. 2004). These findings show the importance of environmental factors 

on the transmission of schistosomiasis. To date, no studies have correlated continent- 

wide environmental variables with the risk of schistosomiasis over the African continent. 

Furthermore, few studies have quantified the impact of climate change on Schistosoma 

mansoni transmission dynamics. Those studies to date that examine the effect of climate 

change on schistosomiasis, describe either general trends of temperature on 

Schistosoma spp. or focus only on S. japonicum in China (Martens et a1.1995; Martens et 

a1.1997; Zhou et al. 2008). 



1.8 Objectives of this thesis 

The main objectives of this thesis were to a) develop parameterised 

mathematical models to analyse the effects of temperature change on schistosomiasis 

prevalence and intensity and b) to use spatial modelling techniques to assess 

associations between prevalence and climate variables and produce smoothed maps of 

schistosomiasis transmission in Africa with climate change. 

The specific objectives were: 

" development of a schistosome transmission model that explicitly incorporates 

snail population dynamics over a range of temperatures and analysis of this 

model to evaluate the efficacy of control programmes over a range of 

temperatures. This model is described in Chapter 2. 

0 accurate determination of the effects of temperature change on Schistosome 

mansoni and Biomphalaria alexandrina life-history traits to parameterise the 

transmission model. This is addressed in Chapter 3. 

" experimental investigation of the density-dependent constraints within the B. 

alexandrina population. This is examined in Chapter 4. 

" development of further models that incorporate density-dependence in the snail 

and adult parasite populations and comparison of these models with the original 

model developed in Chapter 2. This forms the first part of Chapter 5. 

" evaluation of the efficacy of three control programmes, chemotherapy, 

molluscicide, and sanitation, at different temperatures using the models 

described above. This forms the second part of Chapter 5. 
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9 geostatistical modelling of point-prevalence data to produce smoothed maps of 

schistosomiasis risk in Africa. These maps are presented in Chapter 6. 

0 identification of the climatic factors associated with schistosomiasis prevalence 

in Africa and use of these climatic data to predict the prevalence in areas where 

no prevalence data are available. This analysis is described in Chapter 6. 

9 predictions of the change in distribution of schistosomiasis with climate change 

and production of smoothed maps for future schistosomiasis risk in Africa. These 

maps are presented in Chapter 6. 



CHAPTER 2 

Predicting the Impact of Long-Term 

Temperature Changes on the Epidemiology and 

Control of Schistosomiasis: A Mechanistic Model 

This paper has been published in PLoS ONE 3(1): e1438,2008 
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2.1 Introduction 

Global climatic changes alter the equilibrium of many ecosystems and the 

distribution of species they support (Ottersen et at. 2001; Stenseth et a/. 2002). In 

particular, the potential effects of climate change on the distribution and severity of 

human diseases are of major interest (Martens eta]. 1995; Martens eta].. 1997; Patz etal. 

2000; Hales et al. 2002; Patz eta]. 2005). These changes can arise through both direct 

effects of climate change, e. g. alterations in the geographic areas able to support disease 

vectors, and indirect effects, such as changes in human migration patterns affecting 

disease distribution. Furthermore, the impacts of climate change may occur over several 

time scales, ranging from increasing the amplitude and stochasticity of diurnal or 

seasonal fluctuations in temperature and precipitation, particularly in temperate 

regions, to more stable increases in mean ambient temperatures over longer periods, 

particularly in tropical regions where many of the more concerning human diseases are 

endemic. The regions most vulnerable to the disease-related impacts of climate change 

are the temperate latitudes and the countries in the Indian and Pacific Oceans and sub- 

Saharan Africa, which will be disproportionately affected by extremes in temperature, 

and where public health programmes may be unable to cope with the changes in disease 

transmission (WHO 2003). 

Of particular concern is the impact climate change will have on the prevalence of 

vector borne infectious diseases, including malaria, schistosomiasis, and dengue. The 

prevalence and abundance of these vector-borne diseases are particularly sensitive to 

changes in mean ambient temperature since their transmission relies principally on the 

survival and reproduction of their invertebrate vector or intermediate host, and the 



parasite's incubation and survival rates therein. Since these vectors and intermediate 

hosts are incapable of thermoregulation, and their reproduction and survival rates are 

strongly influenced by temperature, small changes in temperature could greatly alter 

their distribution and abundance, resulting in a shift in disease patterns. Predicting how 

the long-term distribution and prevalence of such important human diseases will change 

in the face of global warming is a key challenge facing humans in the near future. 

There are three main methods of examining the relationship between mean 

ambient temperature and infectious diseases. The first is to study current variations in 

climate and monitor the short-term effects on disease transmission. The second -a 

phenomenological approach - is to analyse past and current disease patterns and 

extrapolate these patterns into the future. The third method, which will form the focus of 

this chapter, is to use mechanistic models to predict the changes in prevalence and the 

burden of infectious diseases in response to forecasted global warming scenarios. This 

mechanistic approach has the advantage that it allows greater confidence in 

extrapolating beyond current conditions into a range of possible future climate 

scenarios. Here, such an approach is adopted to predict the impact of long-term 

temperature changes on the prevalence and abundance of human schistosomiasis, 

caused by the trematode Schistosoma mansoni. Currently, 600 million people are at risk 

of infection by schistosome species and current research predicts that vector-borne 

diseases such as schistosomiasis will be particularly affected by changes in temperature 

(Martens et at. 1995; Chitsulo et at. 2000). The model specifically focuses on long-term 

changes in mean ambient temperature, rather than short-term diurnal or seasonal 

temperature fluctuations, and concentrates on the impact of increasing mean ambient 

temperatures on the snail-schistosome interaction within a region in which 

schistosomiasis is already endemic, rather than the spread of the disease into new areas. 

Ultimately, however, this approach can be extended to include geographical and 



ecological factors using a geographic information systems (GIS) approach to predict how 

the distribution of schistosomiasis will change in response to increased temperatures. 

Similar approaches have been developed for malaria, showing that increasing the 

average global temperature by 2-3°C, would increase the number of people at risk of 

infection worldwide by several hundred million (WHO 2003). 

A number of mathematical models have been developed to understand the 

epidemiology, transmission dynamics and impact of control strategies on schistosomiasis 

(Cohen 1977; May and Anderson 1979; Woolhouse 1991; Woolhouse 1992; Williams etal. 

2002; Allen and Victory 2003). The life-cycle of schistosomes is complex, involving two 

free-living stages and two host populations (Fig. 1.1). Briefly, paired male and female 

adults in the (human) definitive hosts produce eggs which pass into the environment in 

the host's faeces. These eggs hatch into miracidia, which seek out and infect the snail 

intermediate host where they undergo asexual reproduction. After a period of 

development, thousands of free-swimming infective cercariae are released, which actively 

seek out and penetrate a new human host, where they develop into adults. There are a 

number of stages of the schistosome and snail life cycles that will be highly dependent on 

ambient temperatures, affecting the distribution and prevalence of schistosomiasis and the 

likely response to global warming. A recent review of the effects of temperature on 

cercarial emergence found that a 10°C temperature increase resulted in an average 8-fold 

increase in cercarial output (Poulin 2006). From this, a large increase in the number of 

humans infected following a large increase in cercarial production is expected. However, 

Poulin focussed on only one stage of the parasite life-cycle (cercarial emergence) and 

ignored other key stages and potential sources of density dependent regulation within the 

parasite life-cycle. It is likely that different stages will respond in different ways to 

temperature increases, making it necessary to develop an explicit epidemiological model 
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to predict how these factors combine to affect the overall impact of temperature changes 

on the host-parasite system. 

This chapter addresses three important questions regarding the impact of 

temperature on schistosomiasis: What effect does temperature have on the prevalence of 

schistosomiasis in a population? How do long-term temperature increases affect the mean 

worm burden in the population? What are the implications of long-term temperature 

increases on the optimal control strategy of schistosomiasis in the field? 

2.2 Methods 

The schistosomiasis epidemiological model is modified from those developed by 

Woolhouse (1991; 1992) and Anderson and May (1979b) and is shown schematically 

(Fig. 2.1). Mated adult schistosomes within infected human hosts produce eggs which 

hatch and develop to free-swimming miracidia at a net rate AM These miracidia either 

die at rate 5M or infect uninfected snails (U) at rate /iss Due to the intense density 

dependence acting on schistosome development within snails, I follow previous models 

of schistosome epidemiology (Woolhouse 1991; Woolhouse 1992) by ignoring the 

burden of infection within snails, and simply class snails as uninfected (0, latently (pre- 

patent) infected snails (L) and patent infected snails (1). Pre-patent infections develop to 

patency at rate a, after which they release cercariae (6) at a constant rate Ac which 

either die at rate 5c or infect human hosts (1) at rate ßii Successfully infecting 

schistosomes are assumed to mature immediately to adult parasites (P), which die at 

rate oP and produce new eggs throughout their life to begin the life-cycle again. Based on 

empirical data from the literature, this basic model is modified to incorporate more 



details on the snail life-cycle. Specifically, the density of snail eggs (h) and the density of 

juvenile snail stages (/ in the environment are considered. All adult snails may lay eggs, 

although infected snails may lay eggs at a different rate (a') from uninfected snails 

(which lay at rate a), but overall egg production of the population is limited by density 

dependent regulation by a carrying capacity, K Snail eggs die at rate ce and hatch at rate 

6s and juvenile snails die at rate 61 and mature to adult, uninfected snails at rate 6sß All 

adult snails die at background rate Ss and infected adult snails also die due to parasite- 

induced mortality at additional rate a. All parameters are defined in Table 2.1. 

This detailed model is simplified by recognising that the dynamics of external 

stages of the schistosome life-cycle tend to be far quicker than those of the infecting 

stages, or their hosts (Woolhouse 1994). Therefore, it is assumed that the miracidia and 

cercariae are at 'pseudo-equilibrium' and are not modelled explicitly. Similarly, the 

dynamics of the egg and juvenile stages of the snail life-cycle are relatively fast and are 

not modelled explicitly. The snail population is modelled at three levels, uninfected, 

latently and patently infected which implies that the level of infection has no effect on 

the resulting number of cercariae produced. This assumption is supported by 

experimental evidence (Christie 1978 ; Touassem 1989). Finally, the important 

assumption that the size of the definitive host population (humans) is constant is made, 

allowing us to consider the risk of infection to a static host population of a given size. 
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This results in the final model comprising four state variables describing the adult size of 

the adult parasite population within humans (f), the density of uninfected snails (0, the 

density of latently infected snails (L) and the density of patently infected snails ()): 

dP 
_ 

IHHACI 
dt Sc + ßHH - PaP 

(2. i) 

dU U+L+I ßSAMPU 
dt K öM+ßs(U+L+I) 

(2.2) 

dL 
_ 

ßSAMPU 
dt 3M+ßs(U+L+I)-L(6s+a+Q) 

(2.3) 

dl 
_ dt-QL-I(ds+a) 

(2.4) 

This model was parameterised at different temperatures using data from the 

literature that explored the effects of temperature on various life-history traits of both 

parasites and hosts (see Appendix Al). These values were used to generate predictions 

of how the mean number of parasites per human host (m = P/f) and the prevalence of 

infection (p) change with temperature. For this latter measure, it is assumed that adult 

parasites are distributed among hosts in an aggregated manner, according to a negative 

binomial distribution with aggregation parameter k 



Given the predicted mean burden of parasites per host, m, the predicted prevalence is 

given by: 

p=1-ýl+k) 
-k 

(2.5) 

The data from the literature were not consistent for all life-history traits and may 

have been collected for different species under different conditions, but they are used as 

a first approximation of parameter values. To explore how robust the predictions are to 

variations in parameter values, a sensitivity analysis was conducted, where the value of 

each parameter in turn was increased and decreased up to 10 times from the baseline 

value and the relative impact on the predicted mean parasite burden and prevalence was 

calculated. This allows us to qualitatively determine the key parameters that need to be 

estimated accurately to obtain reasonable predictions of the impact of temperature on 

schistosomiasis. Furthermore, this process reveals 'leverage points' in the epidemiology, 

highlighting traits that may be targeted by control measures to bring about the greatest 

reduction in disease. Once again, it is emphasised that a broad brush approach is taken, 

concentrating on the impact of changes in long-term mean ambient temperature on the 

abundance and control of schistosomiasis, rather than the impact of short-term diurnal 

or seasonal fluctuations in temperature. Hence, in what follows, the ambient 

temperature was assumed to remain constant throughout each simulation. 
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Figure 2.1. Schematic diagram of the schistosome disease model. The dashed boxes show 

stages of the life-cycle that are not modelled explicitly. 



Table 2.1. Estimates of each parameter at baseline temperatures of 20,25,30 and 35°C. 

Parameter Definition 20°C (d-1) 25°C (d-1) 30°C (d-1) 35°C (d-1) 

AC Cercarial 2476 4128 6103 8400 

production rate 
& Cercarial mortality 1 1 1 1 

rate 

ßH Cercarial infection 0.028 0.059 0.091 0.122 

rate 
Sv Adult 0.0309 0.02 0.01 0.008 

schistosomes 
death rate 

AM Net miracidlal 500 500 500 500 

production rate 
SM Miracidia death 2 2.526 4.364 4.444 

rate 
ßs Miracidia infection 1.27x10.4 9.1 x10.5 1.4 x10-3 1.2 x10.3 

rate 

Cr Within-snail 0.0216 0.036 0.05 0.065 

schistosome 
maturation rate 

as Snail egg laying 0.663 0.849 0.057 0.010 

rate 

a' Infected snail egg 
laying rate 

8e Snail hatching rate 0.08 0.1 0.118 0.128 

8s Snail maturation 0.02 0.029 0.012 0.0075 

rate 

Se Snail egg mortality 0.001 0.001 0.001 0.001 

rate 

Si Snail juvenile 0.002 0.0038 0.0071 0.0207 

mortality rate 

Ss Snail adult 0.004 0.003 0.008 0.0182 

mortality rate 

a Additional snail 0.002 0.0145 0.0295 0.05 

mortality due to 
infection 

K Snail carrying 100 L-1 100 L-1 100 L-1 100 L"1 

capacity 
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2.3 Results 

2.3.1 The impact ofambient temperature on schistosome dynamics 

The model predicts that mean worm burdens in humans are affected by ambient 

temperature, rising to a peak at 30°C and then falling sharply at 35°C (Fig. 2.2). This 

decline in worm burdens at 35°C may be explained by the increasing mortality of both 

the intermediate hosts and the parasite at higher temperatures (see Appendix Al). 

However, the disease prevalence in humans remains almost constant over the 

temperature range of 20 - 35°C (Fig. 2.2), suggesting that although increases in long- 

term mean ambient temperature may lead to an increase in mean worm burdens and 

associated increases in morbidity and even mortality of infected hosts, the number of 

infected people is unlikely to change greatly. 
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Figure 2.2. Variations in mean worm burden (bars) and prevalence (lines) of 

Schistosoma mansonias a function of temperature. 
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Interestingly, increased temperatures also lead to changes in disease dynamics 

(Fig. 2.3). At 20°C, disease dynamics are stable, with mean burdens and prevalence 

remaining constant over time. However, at 35°C the dynamics switch from endemic to 

epidemic, with repeated oscillations in worm burdens and disease prevalence over time. 

A previous model of schistosome dynamics showed that density-dependent regulation of 

the intermediate host (snail) population could allow such cyclical dynamics (Feng et al. 

2002) and this parameterised model shows that the interaction between such regulation 

and the increased snail birth rates at higher temperatures make such dynamics more 

likely. 

A sensitivity analysis was conducted where each parameter at each temperature 

was increased and decreased by up to a factor of 10 and the impact on mean worm 

burden per individual and prevalence measured. The results for prevalence are 

qualitatively similar to those of the mean worm burden, so only the results for mean 

worm burden are presented here. Similarly, the results for decreasing parameters were 

qualitatively similar to those of increasing the parameters, so only the increases in 

parameters are presented here. By subjecting each parameter at each temperature to the 

same perturbation in turn this analysis allows parameters to be ranked in terms of their 

relative sensitivities in the model, and provides insight into the impact of uncertainties 

in our estimation of the temperature-dependent relationships in the model. The most 

sensitive parameters at 20°C were the mortality rates of the adult snails (ös), miracidia 

(5M) and adult parasites (bp) (Fig. 2.4a). Interestingly, however, the ranking of 

parameters varied with temperature; at 35°C the most sensitive parameters were the 

mortality rate of juvenile snails (5, ), the infection rate of snails ('Gs) and the birth rate of 

snails (a) (Fig. 2.4b). All of these parameters involve snail life stages, highlighting the 

importance of the intermediate host in determining the dynamics and abundance of 

schistosomes, suggesting that control methods that target the snails will prove highly 



Chapter 2 Predicting the impact of climate change on schistosome dynamics 33 

effective at increased ambient temperatures. Overall, these results show that the optimal 

control approach will vary depending on the ambient temperature and the degree of 

temperature change. 



Chapter 2 Predicting the impact of climate change on schistosome dynamics 34 

(a) 

7000 

6000 
c 
0 
ä 5000 

a 
c 

4000 
Lam' 

3000 

c 
2000 

1000 

(b) 

0.8 

0.7 

0.6 

0.5 1 

0.4 

O 03 

0.2 

0.1 

0 500 1000 1500 2000 2500 

Time (days) 

30 'C 

25 "C 

35 'C 

20 °C 

30 °C 
25 °C 

35 °C 

20 'C 

Figure 2.3. Dynamics of mean worm burden per individual (a) and prevalence of 

infection (b) over time at 20°C, 25°C, 30°C and 35°C. 
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Z. 3.2 The impact ofambient temperature on the optimal control strategy 

The mathematical modelling of S. mansoni transmission can greatly aid in the 

development of control strategies both at the local and national level. Five separate 

control programmes were explored; targeting the adults parasites using mass 

chemotherapy of the population (increasing OP), targeting the snail intermediate hosts 

using molluscicides (increasing Ot and Os), increasing sanitation (reducing Au), and two 

combined approaches (chemotherapy combined with intermediate snail hostcontrol), 

and a three-tiered approach combining chemotherapy and molluscicide use along with 

improved sanitation at four temperatures, 20,25,30 and 35°C. Control applications were 

assumed to be applied continuously, where the appropriate parameter in the model was 

altered by a factor of 2 (i. e., OP O and Ss were doubled and AM was halved). The model 

was run for 3000 days and the mean prevalence and mean parasite burdens in humans 

were recorded over this time. 

As before, the responses to control of disease prevalence were qualitatively 

similar to those of mean worm burden, so only the latter results are presented here. At 

20°C, all control programmes showed a decrease in mean worm burden, which fall from 

an average of 504 worms per person in the absence of control to 217 for mass 

chemotherapy alone and to 1.2 for a programme combining chemotherapy, sanitation 

and intermediate snail control (equivalent to a 99% reduction in worm abundance, Fig. 

2.5). However, the efficacy of each programme varied according to the ambient 

temperature; a combined chemotherapy and snail control programme became the 

optimal strategy at 25-35°C, whereas targeting adult parasites alone had a negligible 

effect at 35°C. Surprisingly, sanitation appeared to have a detrimental effect, almost 

doubling the burden of disease at 35°C. Overall, these results show a clear advantage to 

targeting both intermediate vectors and the human population over treating humans 

alone; indeed, it appears adopting a human-only treatment is very unlikely to be 
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effective in reducing either the regional prevalence or mean worm burden of 

schistosomiasis at increased temperatures. 
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Figure 2.5. Impact of temperature on the efficacy of different control programmes. The 

efficacy of control was measured as the Logio of the mean parasite abundance during the 

control phase divided by the mean abundance in the absence of control. 



2.4 Discussion 

Predicting the impact of climate change on the epidemiology of infectious disease 

is a pressing challenge. However, extrapolating from current scenarios into the future is 

unlikely to be straightforward. Due to the differential impact of temperature on each of 

the life-history stages of a parasite there is unlikely to be a simple relationship between 

ambient temperature and disease prevalence (Martens et al. 1997). Here a mechanistic 

epidemiological model is developed, parameterised from the literature, to predict how 

increases in long-term mean ambient temperature will impact the prevalence and 

abundance of Schistosoma mansoni, the primary causative agent of human 

schistosomiasis, within an endemic area. Increasing ambient temperatures from 20°C to 

30°C resulted in a more than tenfold increase in the mean burden of infection. However, 

temperatures above 30°C are predicted to result in a decrease in the burden of disease, 

primarily through increased mortality rates of the snail intermediate hosts. 

Furthermore, the model showed that the prevalence of infection is unlikely to vary 

greatly regardless of the ambient temperature. Therefore, although the burden of 

infection will increase substantially within infected people, the number of people 

infected is unlikely to change. This is consistent with earlier models which predict large 

increases in worm burdens with little change in prevalence levels (Anderson 1982). 

Nevertheless, the increased morbidity will have severe consequences, ranging from 

reduced birth rates, neurological complications and high economic costs through lost 

work days and the need for medical care. 

The model quantifies human disease burden by predicting the mean number of 

worms harboured in an individual in the population. It would be interesting to validate 

the model's predictions by comparing existing worm burdens from regions with 



different ambient temperatures. However, this is not possible at present for two reasons. 

Firstly, patterns of worm burden from different regions will be influenced by a range of 

factors such as differences in human, snail and parasite genotypes, variations in 

microclimate and other environmental variables, and differences in human behaviour 

and exposure (Jones etal. 1989; Malone etal. 2001b; Yang 2003). Secondly, it is accepted 

that direct quantification of worm loads is impossible and so many studies use faecal egg 

counts to estimate the intensity of infection. While this is a very useful measure, the 

relationship between eggs per gram of faeces and worm load is continually disputed 

(Gryseels and deVlas 1996). It is therefore extremely difficult to directly validate the 

model's predictions of worm load but rather the data are used as an indication of disease 

burden. The only available data containing actual measurements of worm pairs in 

individuals shows that counts of over 1000 may be rare, although this study includes 

only older age groups in a low transmission area, and so generalising to other 

populations or regions is not feasible (Cheever 1968). 

Current estimates state that a global temperature increase of 2-3°C over the next 

100 years is likely (WHO 2003). However, exploring a wider range of temperature 

values (20-35°C) shows that the impact of even a small rise in temperature on both 

prevalence and burden of infection will depend greatly on the initial, baseline 

temperature. In particular, an important result to emerge from the sensitivity analyses is 

that changes in mean ambient temperature will alter the relative sensitivities of the 

parameters in the model. Therefore, the optimal disease control strategy will change as 

temperatures increase. In particular, at 20°C increasing adult parasite mortality rates, for 

example through chemotherapy, may have a large impact on the prevalence and 

abundance of disease, whereas at 35°C parameters relating to the snail stages become 

more important, suggesting that snail eradication programmes may be more successful. 

Indeed, the model showed that a combined approach integrating chemotherapy 



treatment with snail control had a larger impact on schistosome prevalence and 

abundance than chemotherapy alone. Macdonald (1965) suggested that very high 

sanitation levels (i. e. reducing the number of eggs reaching water), has a negligible effect 

on mean worm load compared to the combined effects of treating infected people and 

keeping them out of infected water. This was because the water that the snails live in is 

typically saturated with miracidia and nearly all snails are infected. This is supported by 

the model, which predicts that prevalence in the snails typically approaches 100%, and 

so reducing human contact with the water is crucial for breaking the transmission cycle. 

The increase in mean worm burden following sanitation improvements at 35°C arises 

due to the complex interaction between the strong density dependent constraints acting 

on cercarial production and the negative impact of schistosome infection on the snail 

population. Reducing the input of miracidia into environment has little impact on the 

total number of cercariae released, since the same number are released per infected 

snail regardless of the number of infecting miracidia. However, reducing the number of 

miracidia also reduces the number of snails dying due to infection, allowing the snail 

population to build up to large numbers. This provides more susceptible snails for 

infection, resulting in an overall increase in the total number of cercariae being released 

into the environment and a subsequent increase in human infections. 

A number of control programmes, such as mass chemotherapy, molluscicide 

applications and improvements in sanitation and water supplies have been used in a 

combined effort to control schistosomiasis worldwide. These programmes have been 

successful in Brazil, the Middle East, and parts of the Far East, but the disease has 

remained endemic in many regions of sub-Saharan Africa (Chitsulo et al. 2000). Many 

countries with endemic levels of schistosomiasis did not implement control 

programmes, believing the costs required for control would be disproportionately high 

compared with the health benefits. A number of control programmes were initiated in 



sub-Saharan Africa but local and national health authorities were unable to maintain the 

high costs involved. These programmes enjoyed short-term success but infection levels 

soon returned to pre-intervention states. In particular, Sturrock noted that 

chemotherapy alone does not have a lasting effect on transmission, and suggested that 

re-infection rates largely depend on ecological factors affecting the snail population 

(Sturrock et al. 1994). The model supports this suggestion, particularly in regions with 

high ambient temperatures. 

Clearly, the design of any control programme needs to take into account a wide 

range of social, medical, and environmental factors beyond the scope of this model (for 

example, the occurrence of adverse side effects to chemotherapy or the knock-on effects 

of mass molluscicide treatment on the wider ecological community). Furthermore, the 

model omits a number of biological complications, such as heterogeneous transmissions 

rates, the presence of alternative reservoir hosts and the build-up of acquired immunity 

(Woolhouse 1991; Woolhouse 1992; Yang and Yang 1998). One important simplification 

is that the model is restricted to considering the impact of long-term changes in mean 

ambient temperature on schistosome abundance and control. However, climate change 

is likely to have a number of impacts on the environment, including increased 

fluctuations in temperature over shorter time scales (e. g., diurnal or seasonal), and will 

impact on the distribution and longevity of suitable water bodies for the snails. Such 

complications will modify the finer predictions of the model, but this approach is 

appropriate for providing an initial insight into the broader consequences of climate 

change. Further studies, building on this existing framework and incorporating some of 

these factors would be invaluable. In particular, to improve the accuracy of the model, it 

is essential to conduct a series of experiments using one specific host-parasite 

combination over a range of temperatures. These could then be compared with field 

studies conducted in different regions with different ambient temperatures to validate 
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the model. A fascinating next step would be to place this mechanistic model within a 

spatially explicit GIS framework with realistic migration patterns and predicted 

temperature regimes. This could further extend the work of Malone et al. (Malone et al. 

1997; Malone et al. 2001a; Malone et al. 2001b) who have used satellite imagery and 

geographic information system to develop area suitability maps and environmental risk 

models for schistosomiasis. It would then be possible to predict with greater confidence 

than current, extrapolation-based approaches how the spatial distribution of 

schistosomiasis will change under global warming. However, the current model provides 

an important mechanistic insight into how the complex interactions between the various 

life-history stages and ambient temperature will determine the impact of 

schistosomiasis and the success of future control programmes in the face of global 

climate change. 
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3.1 Introduction 

The geographic distribution of the human parasite Schistosoma mansoni is 

bounded by the range of the intermediate host, freshwater snails of the genera 

Biomphalaria. The development of S. mansoni within its intermediate host is directly 

affected by environmental and endogenous factors, with temperature being one of the 

most important (Stirewalt 1954; Anderson and May 1979a; Anderson et al. 1982). Given 

concerns over global climate change and the relationship between temperature and host 

distribution, climate changes are likely to influence the prevalence of schistosomiasis 

and the epidemiology of human disease (Woolhouse 1991). The model presented in 

Chapter 2 highlights the importance of temperature in determining the prevalence and 

burden of disease. The most influential parameters related to the stages most susceptible 

to changes in environmental conditions, the intermediate and free-living stages. The aim 

of this study was to quantify how the impact of the parasite on the life-history of its snail 

intermediate host changes with ambient temperature. 

Various aspects of the impact of ambient temperature on snail-schistosome life- 

histories have been described for a variety of host and parasite species. Snail 

development and survival are restricted to well-defined thermal limits of 12.5°C - 

37.0°C, with temperature affecting all stages of the snail life-cycle (Etges and Gresso 

1965; El Hassan 1974). In particular, above 30°C, snail mortality increases and fecundity 

decreases due to inhibition of gametogenesis and gonad development and below 15°C, 

snails hibernate, or die (Appleton and Eriksson 1984). Therefore, the distribution of 

suitable snail host species can be limited by local temperatures. 



Temperature can also alter the impact that schistosomes have on their snail 

hosts, with epidemiological consequences. Schistosomes have detrimental impacts on 

their snail hosts, and depending on how the parasite sequesters the host's resources, and 

how the host responds to these demands, the consequences of parasite infection can 

differ widely. Schistosomes can be pathogenic, raising snail mortality rates compared to 

uninfected controls (Woolhouse 1989; Webster and Woolhouse 1999; Davies etal. 2001; 

Webster et al. 2004). Furthermore, both stunting of growth (Pan 1965; Sturrock and 

Sturrock 1970; Fernandez and Esch 1991) and gigantism have been documented in 

infected snails (Ballabeni 1995). 

Aspects of the thermal responses of snails and schistosomes have been 

quantified (El Hassan 1974; Pfluger 1980; Anderson et al. 1982; Appleton and Eriksson 

1984; Coelho and Bezerra 2006). However, these studies have tended to be conducted 

on several combinations of host and parasite species and strains over a range of 

temperatures, making it difficult to determine how they may respond to changes in 

ambient temperature. In Chapter 2,1 combined these studies to obtain a standardised set 

of temperature responses for a 'generic' snail host-schistosome interaction. These data 

were then used to parameterise an epidemiological model to predict the impact of 

temperature changes on schistosomiasis transmission dynamics. Chapter 2 showed that 

the dynamics, intensity and prevalence of infection in humans are unlikely to change in a 

simple way with increases in ambient temperature, due to different stages of the snail 

and schistosome life-cycles responding to temperature in different ways. These different 

thermal responses result in fundamentally different outcomes of imposed management 

programmes, suggesting that the optimal control strategy is likely to vary as 

temperatures change. However, due to the diverse species and conditions under which 

the data used for this model were based, it is difficult to determine the reliability of these 
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predictions. Current estimates for global temperature changes range from 0.8 - 2.6°C by 

2050, and 1.4 - 5.8°C by 2100, so a realistic model must identify the impact of 

temperature changes up to at least 5°C from the baseline (Carter 2007). 

The impact of climate change on the distribution of vector-borne diseases 

requires the use of quantitative modelling techniques. These models depend on accurate 

estimates of every contributing parameter and variable. When no estimates exist for a 

parameter, it is given an arbitrary value. The importance of the parameter can then be 

explored using a sensitivity analysis. In the previous chapter, some parameter estimates 

were derived from different host-parasite combinations and the methods varied 

between studies. To directly quantify the effects of temperature change on 

schistosomiasis transmission, it is necessary to accurately determine every parameter 

using the same host-parasite combination under the same conditions. In this chapter, I 

have experimentally quantified the complete set of temperature responses for a single 

host-parasite pair, Schistosoma mansoni and its invertebrate host, Biomphalaria 

alexandrina, under controlled conditions. 

3.2 Methods 

3.2.1 Study system 

Stock colonies of Biomphalaria alexandrina (originating from Egypt), were 

maintained in the laboratory for approximately 20 generations without parasite 

pressure. The parasite was a mixed strain Schistosoma mansoni line, developed over 10 

generations using isolates from Brazil, Egypt and Puerto Rico and routinely passaged 



through Biomphalaria alexandrina and CBA/CA mice (supplied by Professor Mike 

Doenhoff, University of Bangor / University of Nottingham). This combination of host 

and parasite ensured a high degree of compatibility (>85%) whilst minimising potential 

heterosis effects, which may occur with novel parasite-host combinations (Blair and 

Webster 2007). All snails were kept in plastic, 5L tanks in a 12L: 12D photoperiod room 

(using 6W fluorescent bulbs) at 23-25°C with <10 snails L"1 water. The snails were fed 

high protein rabbit food pellets daily (Pascoe's Bunny Balance, Driffield, UK), and water 

was supplemented with 1g calcium carbonate once every two weeks (see Lewis et al. 

(1986) for cultivation methods). 

3.2.2 Experimental design 

Temperatures within the thermal limits of B. alexandrina were investigated, 18, 

23,29, and 34°C. These temperatures lie within the thermal limits of the snail and 

parasite and have not been thoroughly explored by existing studies (see Appendix Al). 

Two tanks of infected snails and one tank of uninfected snails were incubated at each 

temperature and each tank contained 20 snails. Two weeks before exposure juvenile 

snails (4 - 7mm) were size introduced into their tanks at their optimum temperature 

(24°C). The incubator temperature was altered by 1°C every day until the desired 

temperatures were reached. 

Schistosoma mansoni were maintained in a murine host, and the infected liver 

was removed 49 days post-infection. The liver was homogenised, forced through a wire 

mesh, sedimented in 1.8% NaCl for one hour, and washed repeatedly to isolate the 

parasite eggs. These eggs were left to hatch into miracidia under an artificial lamp for 

one hour at 25°C. Uninfected snails were individually exposed to five freshly hatched 

miracidia each for 2 hours, sufficient time for maximal miracidial infection success 

(Lewis et al. 1986). The snails were examined weekly from one week post-exposure to 



12 weeks post-exposure, to determine growth rate (measured as wet weight -a 

biologically relevant indicator of snail fitness in terms of its relationship to snail survival 

and reproduction), net reproductive rate (measured as the number of eggs produced per 

snail over the duration of the experimental period), and mortality. The experiment was 

ended after 12 weeks. After 21 days, all snails exposed to miracidia were individually 

isolated in 6-well plates and examining aliquots of the water stained with Lugol's 

solution to check for cercarial production. Lugol's solution consists of 5g iodine (12), 109 

potassium iodide (KI) in 85ml distilled water, which produces a 130mg/mL solution. 

Each week cercarial samples were taken individually from snails every two hours over 8 

hours to produce a profile of cercarial shedding at every temperature, over the life span 

of the snail. Control snails were isolated in an identical manner and kept in temperature- 

controlled incubators alongside the infected snails. 

3.2.3 Statistical analysis 

Repeated measure and survival analyses were performed using the statistical 

package R (http: //www. r-project. org). Linear mixed effects models (LME) were used to 

analyse snail weight and fecundity, using the lme4 package in R. The LME models were 

appropriate in this study due to temporal pseudoreplication, as observations were 

grouped on each tank. Time, temperature, infection status, and the interactions between 

these terms were modelled as fixed effects and the tanks were fitted as random effects to 

control for pseudoreplication, as the repeated measures were temporally correlated with 

one another. The maximum likelihood method was used to fit the models containing all 

variables, and then a stepwise deletion process using AIC methods was used to eliminate 

the highest order interactions first. For the survival analysis model, a Weibull error 

distribution (aA (At) , -') was used, which allows for non-constant hazard with age along 



with censoring as some individuals outlived the length of the experiment (Crawley 

2007). 

3.3 Results 

3.3.1 Biomphalaria alexandrina survival analysis 

The minimal survival model contained significant terms for temperature and 

infection status (Table 3.1). Biomphalaria alexandrina survivorship was associated with 

temperature (P <0.001), and temperature*infection status (P <0.05). Time post- 

infection (p. i. ) was included as an explanatory variable in the full model but remained 

non-significant as the effects of time on snail survival rates are accounted for with the 

Weibull error distribution. There was a noticeable reduction in survival of infected snails 

around day 49 p. i. at all temperatures (Fig. 3.1). This coincided with the start of cercarial 

shedding (section 3.3.5), whereas survival for uninfected snails declined at a constant 

rate throughout the experiment consistent with earlier studies (El Hassan 1974; El- 

Emam and Madsen 1982). The survival rates of uninfected snails at 12 weeks (the end of 

the experiment) peaked at 29°C and began to decline at 34°C, which approached the 

reported thermal limit for Biomphalaria sp (El Hassan 1974). However, as suggested by 

the significant interaction between temperature and infection status (Table 3.1), infected 

snails showed a different response to temperature with survival rates decreasing as the 

temperature reached 29°C and then increasing slightly at 34°C. 
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Figure 3.1. Percentage observed survival for infected (a) and uninfected B. alexandrina 

(b) over four temperatures. 



Table 3.1. Coefficients and significance for estimated effects in the survival 

analysis of B. alexandrina. The model was fitted using the Weibull error 

distribution. 

Fixed terms Coefficient z-value P-value 

Intercept 5.0576 18.32 < 0.001 

Temperature -0.0272 -2.70 < 0.001 

Infection status a -0.6330 -1.28 0.202 

Temp*Infection 0.0376 2.02 0.0438 

Log likelihood=-899.7 

Response variable = time to death; random variable = tank. 

a Infection status is included as an explanatory variable because it was involved in 

an interaction term, but was not significant as a main effect in the minimal model. 

3.3.2 Biomphalaria alexandrina fecundity 

Maximal models containing all candidate explanatory variables, i. e. temperature, 

time, snail weight, and infection status and the interactions between these terms, were 

refined by deletion testing until only significant terms remained (Table 3.2). Significant 

effects of time, temperature, and weight were found on snail fecundity (P < 0.05) as well 

as a number of second-order interactions, including infection status. The model provides 

evidence that heavier snails showed significantly higher reproductive activity in the 

uninfected groups but not in the infected groups. 

By week 7, there was a decrease in reproductive activity by infected snails at 

every temperature that was not observed in uninfected snails (Fig. 3.2). Egg-laying did 

not resume throughout the period of cercarial shedding, which may be due to the hosts 

resources being continually used by the parasite. Infected snails at 18°C and 23°C 



stopped laying after week 7, whereas snails at 29°C and 34°C laid between 14 and 30 

eggs per snail per week. Uninfected snails maintained at 18°C stopped laying eggs at 

week 7, whereas uninfected snails at the other three temperatures produced between 10 

and 120 eggs per week. This value fluctuated but showed no strong trend for either 

temperature or time. All eggs were removed from tanks after counting to prevent 

crowding, preventing any further study on hatching rates. 



Table 3.2. Coefficients and significance for estimated effects in the minimal adequate 

model for fecundity of B. alexandrina using the maximum likelihood method. 

Fixed terms Coefficient (SE) t-value P-value 

Intercept 3.338 (1.592) 2.097 0.0381 

Time 0.028 (0.014) 2.047 0.0427 

Temperature -0.126 (0.050) -2.530 0.0353 

Weight 4.339 (0.669) 6.489 <0.0001 

Infection status a -0.436 (2.840) -0.154 0.8818 

Time*Weight -0.151 (0.029) -5.245 <0.0001 

Time*Infected 0.349 (0.067) 5.205 <0.0001 

Temp*Infected 0.237 (0.094) 2.513 0.0362 

Weight*Infected -5.636 (1.179) -4.782 <0.0001 

Log-likelihood = -252.8187 

Time is measured in days post-infection. 

a Infection status was involved in significant higher-order interactions and so was 

retained as an explanatory variable despite being non-significant as a main effect. 
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3.3.3 Biomphalaria alexandrina weight 

Significant effects on snail weight were observed for time (P < 0.0001), infection 

status (P < 0.01) and the interaction between time and infection status (Table 3). The 

weight of uninfected snails increased steadily until week 8 and then remained constant, 

with no clear effect of temperature (Fig. 3). The infected snails showed similar growth 

rates up to week 7, followed by a drastic reduction in weight, coinciding with the notable 

decline in snail survival (Fig. 1) and the onset of cercarial production. The model results 

show that infection status has a larger impact on snail weight than temperature. 

Table 3.3. Results of mixed-effects model for weight of B. alexandrina fitted using 

maximum likelihood. 

Fixed terms Coefficient (SE) t-value P-value 

Intercept 1.618 (0.105) 15.400 < 0.0001 

Time -0.011 (0.002) -5.958 < 0.0001 

Infection status -0.580 (0.182) -3.187 0.0097 

Time*Infection 0.024 (0.003) 7.316 < 0.0001 

Log likelihood=-106.5554 

Time is measured in days post-infection. 
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Figure 3.3. Mean weight per snail for infected (a) and uninfected B. alexandrina (b) over 

fourteen weeks at each temperature. 



3.3.4 Schistosoma mansoni development within Biomphalaria alexandrina 

From the 160 snails exposed to S. manson/ miracidia, 113 were still alive when 

cercarial shedding was recorded at day 49. Every infected snail produced cercariae on 

day 49 (the first day that shedding was observed) and there was no significant effect of 

temperature on the development success of S. mansoni(P>0.05). 

3.3.5 Cercarial shedding patterns 

After two weeks of patency, during which there was no clear pattern of cercarial 

shedding, the snails developed periodicity in their shedding pattern (Fig. 4), somewhat 

comparable to the regular shedding patterns known to occur in the field. The daily 

numbers of cercariae produced at each temperature did not vary significantly over the 

course of the experiment (P>0.05). 
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3.4 Discussion 

Mathematical models examining the epidemiological significance of the 

temperature relationship of Schistosoma mansoni have been developed to predict how 

the effects of temperature on each life-stage of both S. mansoni and its invertebrate host 

will affect the overall transmission dynamics (Anderson et al. 1982; Woolhouse and 

Chandiwana 1992; Coelho and Bezerra 2006; Mangal et al. 2008). This study shows the 

effects of temperature on a number of parameters known to be important in the overall 

transmission dynamics of schistosomiasis infections. Estimating these parameters more 

precisely for a single host-parasite combination is essential for developing an accurate 

schistosomiasis transmission model. 

The survival data from this experiment supports earlier studies (Foster 1964; 

Lewis et al. 1986); the lowest survival rates of B. alexandrina occur at the two 

temperature extremes, 18°C and 34°C, with an optimum around 29°C. However, snails 

infected with S. mansoni exhibit a different trend, with survival rates dropping as 

temperature rises. This may be explained by the increases in fitness of the parasite at 

warmer temperatures, which would have a detrimental effect on the host's fitness. 

Furthermore, the drop in survival of infected snails but not uninfected snails at day 49, 

coinciding with the start of cercarial shedding, suggests that the onset of schistosome 

patency may be detrimental to the survival of infected snails. Indeed, the mortality rate 

of snails infected with schistosomes may not be directly dependent on the miracidial 

exposure dose but on the development and reproduction of the parasite within the host 

(Woolhouse 1989; Dekock 1993; Blair and Webster 2007). These values are similar to 

the previous model estimates (in Chapter 2) which show the lowest mortality rates for 

uninfected snails and the highest additional mortality due to parasitic infection at 30°C. 



The most marked effect of infection on fecundity also occurred at day 49, 

coinciding with the first emergence of cercariae. This is consistent with the reduction in 

fecundity known to occur in parasitized snail hosts (Etges and Gresso 1965). At every 

temperature, the numbers of egg masses produced per snail dropped to almost zero at 

patency and did not return to pre-patency levels. The early stages of infection had no 

significant effect on fecundity, agreeing with an earlier study which showed that snails 

that became patent before or just after maturity did still produce a small number of eggs 

(Sturrock 1966a). In this study, nearly all snails with mature infections became sterile 

after the onset of patency, differing slightly from previous work that saw almost 

complete cessation of egg-laying between 14 and 21 days following exposure (Crews and 

Yoshino 1989). One explanation for the small numbers of eggs still seen with infection 

may be due to lower levels of infection in some snails. There was no fecundity 

compensation during the pre-patent period which has been previously documented 

(Thornhill eta!. 1986); the rates of egg-laying among pre-patent snails paralleled those 

of uninfected control snails. It is possible that the differences in reproductive strategies 

seen here compared to those previously reported are due to differences in host or 

parasite strains. These data will have a definite impact on the outcome of the model as 

the egg-laying term (as) is influential in disease transmission. Hence, differential 

fecundity values for uninfected and infected snails at each temperature will be added to 

the model (Chapter 5). 

Stressors such as starvation and low oxygen levels are known to affect the weight 

of snails (Ishak 1970; Ohlweiler and Kawano 2002), and I was interested to see if 

parasitism would have a similar effect. A large number of studies have documented the 

effects of S. mansoni infection on growth rates of snails and some conflicting results have 

arisen. Some papers describe a significant increase in growth rate of infected snails 

known as gigantism (Sturrock 1966a), whilst others have found that digenean infection 



had no effect on snail growth rates (Crews and Yoshino 1989). The data presented here 

show no significant difference in weight between infected and control snails until 

patency, where a reduction in the weight of infected snails coincided with the onset of 

cercarial shedding. The discrepancies between some studies may be due to the different 

methods of measuring growth. In this experiment, growth was measured as wet weight 

whereas some studies use shell diameter as an indicator of growth. Wet weight was used 

as it is a more biologically relevant measure, representing the actual volume of snail 

tissue, with direct implications for its reproductive capacity. 

The peak cercarial shedding times occurred at 8-10am daily, earlier than 

previous studies which have documented a peak at 11am, thought to coincide with 

human water contact patterns (Theron 1984). This is most likely to be due to the 

continued maintenance of parasite strains in the lab for a number of generations, which 

may have lead to the chronobiological variation noted here. Daily cercarial counts were 

performed once a week and under these experimental conditions. They do not directly 

indicate the mean number of cercariae that would be shed daily at these temperatures in 

natural conditions. The results of the patency at different temperatures showed a lack of 

variation. These results differ from studies by Lewis (1986) that state that the majority 

of snails shed cercariae within 32-35 days and snails kept up to 33°C may shed as early 

as 18 days. However, this value is still within the normal range of a 31-52 day patency 

previously documented in NMRI and PR-i strains and may be due to differences in lab 

strains (Lewis et al. 1986). Nevertheless, there was a trend in the data, with total 

cercariae production peaking around 23°C and declining at higher temperatures. Poulin 

(2006) suggested that, on average, cercarial output from a range of trematode species 

increases almost 8-fold when the temperature rises by 10°C. However, the data 

presented here show a different trend, concurrent with the study by Pfluger et al. 

(1980), where the geometric mean number of cercariae produced increased up to 25°C, 



and then decreased as the temperatures rose to 32°C with infected snails failing to shed 

cercariae at temperatures above 35°C. The discrepancy may also be due to authors using 

light or heat to stimulate cercarial production (Pfluger 1980), which would invariably 

lead to higher counts. As high mortality rates were seen at 34°C, these results seem 

consistent with this being the upper threshold for both development and survival of the 

parasite and host. Cercarial production was not an influential parameter in the 

transmission model (Chapter 2) and it is expected that changing the cercariae numbers 

will not have a significant impact on the outcome of the model. 

As transmission is a function of the number of cercariae in the water frequented 

by humans, continuous periods of low temperatures may affect transmission due to 

alterations in human behaviour along with physiological changes in the intermediate 

host or parasite (Pfluger 1980). However, the relationship between cercarial shedding 

rates and exposure risk is not straightforward since changes in cercarial numbers may 

only have a minimal effect on the overall transmission dynamics of schistosomiasis as a 

single infecting miracidium can give rise to a large number of cercariae through a 

succession of asexual divisions. 

These experiments were performed under controlled temperatures, and snails 

were maintained at a constant water temperature. In the natural environment, diurnal 

and seasonal temperatures can vary dramatically. This may affect both the parasite and 

the snail host life history traits and would result in small changes in the data, although 

this is unlikely to significantly alter the long-term patterns determined here. The validity 

of these laboratory data for other strains or species of schistosomes and snails needs 

further substantiation. Likewise, the reliability of lab strains when compared with field 

isolates would require additional studies. Nevertheless, this study highlights the 

importance and potential implications of long-term temperature change on snail and 

schistosome fitness and dynamics. 



Overall these results support the previous suggestion that the various key 

biological processes determining snail and schistosome fitness (snail survival and 

reproduction, and parasite fecundity) are affected differentially by environmental 

temperature. Therefore, predicting the consequences of temperature changes on the 

prevalence, severity and distribution of schistosomiasis is unlikely to be straightforward, 

and requires a mechanistic framework such as the one presented in Chapter 2 and 

further developed in Chapter S. By using a single species of both host and parasite, it is 

hoped that these parameter estimates will determine a more accurate picture of the 

potential effects of climate change. 



CHAPTER 4 

Estimating parameters for density-dependent 

constraints on the snail Biomphalaria- 

alexandrina 



4.1 Introduction 

Density-dependence affects the behaviour and fitness of every organism, which 

in turn alters the life-history of that organism and the dynamics of the whole population 

(Thomas and Benjamin 1974; Brown et al. 1994; Lande 2002). Such factors become 

important for controlling host-parasite systems where the presence and magnitude of 

population regulatory factors are crucial for disease dynamics and the design of effective 

long-term control strategies (Feng et al. 2002). In particular, control efforts may be 

negated if there is strong density-dependence acting within the host-parasite system 

(Feng et al. 2002). For example, one proposed method of controlling schistosomiasis is 

to treat water bodies with a molluscicide to reduce the number of snail intermediate 

hosts, thereby breaking the disease transmission cycle (McCullough 1980; Greer et a1. 

1996). However, such control efforts may prove ineffective if the snail population is 

regulated by density dependent constraints that buffer it against the additional imposed 

mortality. 

Both laboratory and in situ studies have shown that snail density can greatly 

affect population growth, by reducing either snail survival or fecundity at high densities 

(Sturrock 1973a; Thomas and Benjamin 1974). These studies show that these fitness 

reductions are likely to arise through resource competition (either through exploitation 

or possibly, interference competition) rather than the increase of water-borne 

excretory/secretory products at high densities (Brown et al. 1994). However, few 

studies have quantified the form of these density-dependent relationships to inform 

mathematical models to predict their consequences for schistosome epidemiology. Few 

schistosome models have explicitly included density-dependence acting on the snail 

intermediate host population, despite the likely importance of such factors for the 
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spread and control of this parasite (Anderson 1978; Woolhouse 1991; Feng eta].. 2002). 

Furthermore, those models that have incorporated density-dependence in the snail 

population are uninformed by empirical studies. 

Here the density-fitness relationships for the schistosome intermediate host 

Biomphalaria alexandrina are quantified, for both naive (unexposed) snails and snails 

exposed to miracidia of Schistosoma mansoni. Data on survival, fecundity, and weight 

were recorded and used to determine whether density-dependence affects fitness of 

snails. These data will be incorporated into a mathematical model (see Chapter 5) to 

explore the impact of temperature on the epidemiology and control of Schistosoma 

mansoni. 

4.2 Methods 

4.2.1 Study system 

Biomphalaria alexandrina is a freshwater snail that is an intermediate host for 

Schistosoma mansoni in shallow parts of the Nile, Egypt. The strains used in this study 

were from Egypt and maintained in laboratories for approximately 20 generations. None 

of the experimental snails had been exposed to S. mansoni miracidia. Before the 

experiment, snails were kept in aerated 5L tanks at <10 snails L-1, as detailed in Chapter 

3. 



4.2.2 Experimental design 

One hundred and sixty juvenile snails (4-7mm) were randomly assigned to 8 

experimental tanks containing water at 25°C. The tanks were equally divided into four 

density treatments, 5,15,25 and 35 snails in 2L water, and each treatment was 

replicated twice. An additional 80 juvenile snails were individually exposed to 5 freshly 

hatched S, mansoni miracidia in 2ml water for 2h and assigned to one of the four 

treatments. These snails were monitored weekly for development of infection. 

All snails were transferred to incubators with a fluorescent low-light system 

(6W) set to 12L: 12D. Water temperature stayed at 25°C ± 1°C throughout the 

experiment and was changed weekly. Before the experiment, all snails had received 

rabbit food (Pascoe's Bunny Balance, Driffield, UK) ad libitum, and any excesses of food 

were removed daily. They were all, therefore, in similar states of health before 

introduction to the experimental tanks. During the experiment, each tank received 2 

pellets of food at 6am, daily. Fecundity, measured as the number of eggs produced per 

week was recorded weekly, and eggs were removed from the tanks after counting. This 

was to control for any possible effects associated with a reduced surface area available 

for the snails to lay eggs. Growth, measured as wet weight, and weekly mortality rates 

were also recorded throughout the study. All dead snails were removed from tanks. After 

ten weeks, all snails were removed, weighed, and final mortality rates were recorded. 

4.2.3 Statistical analysis 

Survival rates were modelled using two-way ANOVA using the "aov" function in R 

(http: //www. r-project. org) to detect any significant differences between treatment 

groups. Linear mixed effects (LME) models were used to analyse the effects of exposure 

to miracidia and density on the weight and fecundity of snails using the lme4 package in 

R. LME models were used as the variance was not constant and the errors were not 
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normally distributed; this allows the specification of different error structures, e. g. 

poisson, binomial or Gaussian. This technique also controlled for pseudoreplication by 

adding a random factor. The model fit was assessed using the deviance, which is defined 

as -2 times the difference in log-likelihood between the current model and a saturated 

model and using ANOVA. 

4.3 Results 

4.3.1 Development of infection 

Eighty snails were exposed to Schistosoma mansoni miracidia at the start of the 

experiment, but none developed full infections. The impact of exposure to infecting 

miracidia was studied as an additional stressor, and the responses were measured as 

stated previously. 

4.3.2 Survivorship 

The survival rates for the unexposed snails were higher in the low density tanks; 

no snails in the lowest density group died until day 60, whereas the other three 

treatment groups had lower survival rates from week 1 (Fig. 4.1). The snails exposed to 

S. mansoni miracidia showed lower survival rates than the control snails: 17% of 

exposed snails survived the ten week study period whereas 60% of control snails 

survived. Survival was significantly affected by exposure to infection (two-way ANOVA; 

P<0.0001). In contrast, the differences between density groups did not produce a 

statistically significant result (two-way ANOVA; P=0.072 for density group). However, 

there was a significant interaction between exposure and density group (P <0.05) 



suggesting that the survival of snails exposed to miracidia responded to population 

density in a different manner to unexposed snails. 

4.3.3 Weight ofsnails 

The initial mean weights of both the unexposed and exposed snails did not 

significantly differ (Fig. 4.2). When the density of snails in each tank was increased, the 

relative growth rate slowed in both treatment groups. The minimal adequate model 

developed by deletion testing using linear mixed effects models included all the variables 

measured throughout the experiment; treatment group, time and exposure to parasitic 

infection (Table 4.1). Over time, snails exposed to S. mansoni in the higher density 

groups increased their growth to eventually approach that of the lowest density group, 

although the average weight in the highest density group remained lower (Fig. 4.2b). 

Exposure to parasite did not have a significant effect on snail weight but became 

significant when combined with time. 
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Table 4.1. Minimal adequate model for weight of snails containing all significant terms. 

Insignificant first-order terms were retained only if a second-order interaction 

containing that term was significant. 

Fixed terms Coefficient t-value p-value 

Day 0.6015 8.6795 <0.0001 

Density -0.0083 16.3684 0.0088 

Exposure to -0.1192 -3.3267 0.0742 

parasite 

Day: density -0.0003 -2.0193 <0.0001 

Day: exposure -0.0027 -3.0038 0.0033 

4.3.4 Fecundity ofsnails 

In both the exposed and unexposed tanks there was a reduction in the number of 

eggs laid per snail with increasing density (Fig. 4.3). Furthermore, the reduction of snail 

fecundity with density was non-linear, following a negative exponential relationship. 

Snails in the unexposed tanks at the lowest density produced on average around 4 times 

as many eggs per week as those in the highest density. The rates of egg-laying for the 

snails exposed to infection followed the same pattern throughout the study period, 

although the unexposed snails consistently laid higher numbers of eggs (20-69% 

higher). Day, density and exposure to parasitic infection all reduced the number of eggs 

produced by snails (Table 4.2). 
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Figure 4.3. Regression analyses of the mean number of egg masses produced by each 

snail per week over the 10 week study period. Regression analysis was performed using 

an exponential decay model; 

y=208.7*exp(-0.0797*x); 

**, y=231.03*exp(-0.0524*x). 



Table 4.2. Minimal adequate model for snail fecundity, determined using deletion testing 

as before. 

Fixed terms Coefficient t- value p-value 

Day -0.1666 8.8414 <0.0001 

Density -0.4885 -6.2137 <0.001 

Exposure to -2.8598 3.2336 0.0103 

parasite 

Day: density 0.005 2.9615 0.0038 

3.4 Discussion 

Exposing juvenile snails to S. mansoni miracidia had a negative impact on 

Biomphalaria alexandrina survival, which became more pronounced as density 

increased, reducing the survival rates in every group by 20-60%. Although the miracidia 

did not mature within many of the snail hosts, the impact of exposure alone on host 

survival was significant. The lowest density group showed the highest rate of growth and 

achieved the highest rates of oviposition per week, contradicting other studies where the 

highest density groups showed the highest rates of growth and reproduction (Thomas 

and Benjamin 1974). The snails exposed to miracidia were the same weight in each 

treatment group at the end of the study. This is likely to be due to the higher mortality 

rates within the exposed groups reducing the density of snails throughout the 

experiment. Therefore, although snail growth was initially inhibited in the high density 



treatments, the snails retained the potential for growth and, as densities reduced over 

time, were able to compensate for deficiencies early in life to catch up with their maximal 

attainable size as observed in the lowest density treatments. 

The biological explanations for the effects of density dependence were not 

investigated in this study. However, there are three plausible explanations for the 

negative feedback effects seen in the highest density groups; competition for food 

resources, depletion of oxygen and/or calcium, and the production of growth inhibitory 

or toxic factors. By giving each tank the same amount of food daily, competitive pressure 

may have forced some individuals to experience a food shortage. This could be explored 

further to determine whether food would be a limiting factor. The tanks were continually 

aerated to provide sufficient oxygen for snail growth and calcium carbonate was added 

weekly. Biomphalaria glabrata remove calcium from the water at a rate proportional to 

the absolute growth of the snails; it can, therefore, become a limiting factor if the 

concentration drops below 40-80µg ml-i (Thomas et al. 1974). However, 80% of the 

calcium required by the snails is taken directly from the water (Thomas and Benjamin 

1974). Under these circumstances, it may be possible that calcium was limited in the 

higher density tanks and growth was restricted. The third factor that may affect growth 

is the production of various factors by the snails themselves. Waste products or specific 

growth inhibitory factors may be released by snails and concentrated in the high density 

tanks. As these inhibitory factors in the tanks become more concentrated, the limiting 

effect would increase. Consequently, the water in each tank was replaced weekly to 

reduce any adverse effects of waste product. Further study is necessary to determine the 

mechanisms which drive these responses. 

The density-dependent reduction of snail fecundity observed in both the exposed 

and unexposed groups of snails followed a non-linear, negative exponential relationship. 

This pattern is different from the traditional linear relationship indicative of logistic 



growth assumed by the majority of population models. A recent review of a wide range 

of taxa, spanning mammals, birds, fish and insects, showed that such non-linear, 

decelerating density-dependent relationships are likely to be the norm (Sibly 2005). 

Furthermore, these relationships are likely to have important implications for 

population dynamics, potentially slowing population growth, driving large fluctuations 

in population size and altering the population's response to perturbations. From an 

applied perspective, such non-linear density dependent relationships are likely to have 

important implications for parasite control; the response of the parasite population to 

the additional mortality imposed through a control programme will greatly depend on 

the functional form of such density-dependent regulating processes. 

The diversity of potential effects of density-dependence on vectors of human 

disease makes it difficult to predict how the overall transmission of infection within a 

host population will be affected. If the density-dependence succeeds in reducing a 

population of disease vectors, the disease may not be able to persist. It is, therefore, clear 

that the effects of density-dependence on infectious disease dynamics are not as 

straightforward as expected. The implications of non-linear density-dependent 

relationships have yet to be examined using mathematical models. It may be that by 

incorporating these empirically derived relationships into an existing model framework, 

the responses of schistosomes to a range of imposed control methods can be better 

predicted. 



CHAPTER 5 

Modelling schistosome dynamics with a 

comparison of control strategies 



5.1 Introduction 

Several studies have modelled the dynamics of schistosomiasis infections in 

humans (May and Anderson 1979; Anderson 1991; Woolhouse 1991) using a similar 

framework to the model described in Chapter 2. This model focussed on one host- 

parasite combination, Schistosoma mansoni and its invertebrate host Biomphalaria 

alexandrina. The model describes the key features of the host-parasite system using 

parameter values derived from an extensive literature search. As far as possible, the 

model was parameterised using the host-parasite combination B. alexandrina - S. 

mansoni. However, the paucity of data on specific host-parasite combinations resulted in 

a model that used data from a number of different species. To address this shortcoming, 

data on temperature (Chapter 3) and density-dependent effects on the snail 

intermediate host (Chapter 4) were collected in the laboratory and used to refine this 

earlier model. 

In this chapter, I present a series of more comprehensive models incorporating 

the data collected in Chapters 3 and 4, with the addition of density-dependence in the 

adult parasite population. These models will each be subjected to a sensitivity analysis to 

determine whether each modification to the model changes the relative sensitivities of 

each parameter. By comparing these models, I will develop an improved model that will 

capture biologically important features of this system based on the sensitivity analysis 

and provide more accurate predictions on the impacts of temperature on human disease. 

The second part of this chapter uses this final model to assess the impact of various 

control strategies on an endemic community. This chapter is organised as follows. 

Section 5.2.1 presents a modification of the initial model, developed in Chapter 2 and 

parameterised in Chapter 3 (and Appendix A2). From this, two further models are 



derived (Sections 5.2.2 and 5.2.3); in Section 5.3 the results of each of these models along 

with the sensitivity analyses are presented. Section 5.4 contains the discussion of these 

analyses and presents the definitive schistosomiasis model, which will be used for 

examining the control programmes. Section 5.5 deals with the various control 

approaches and examines each in turn to determine how the optimal control programme 

may change with temperature change. 

5.2.1 Model 1- the baseline model 

The basic structure of this epidemiological model is slightly modified from that 

described previously (Chapter 2) and is based on earlier models of schistosome 

population dynamics by Anderson and May (1979b) and Woolhouse (1991; 1992). Key 

aspects of this basic model are: (i) the size of the human host population is assumed to 

be constant and hence the risk of infection to a static host population of a given size is 

modelled; (ii) due to the intense density-dependence acting on schistosome 

development within snails, previous models are followed (Woolhouse 1991; Woolhouse 

1992) by ignoring the burden of infection within snails and simply classing snails as 

uninfected (to, latently (pre-patent) infected (L) and patently infected (n; (iii) all 

infected snails shed cercariae at a constant rate Ar, regardless of the number of miracidia 

they were challenged with; (iv) based on the results in Chapters 3 and 4, latently and 

patently infected snails may lay eggs at different rates (ac and a,, respectively) from 

uninfected snails (which lay at rate as); (v) overall egg production of the snail population 

is limited through density-dependent competition of strength (q). The probability of the 

snail eggs hatching (v) rather than an explicit death rate is included in the model; hence 

the model effectively describes the number of viable eggs laid, rather than the total 

number. This eliminates the need for the egg mortality term Ss from the model in 



Chapter 2, which is set to 0. The model describes the rate of spread of infection into a 

previously uninfected area and is run until both prevalence and mean worm burden 

reach equilibrium. 

All parameters are defined in Table A2.10, together with their baseline values, as 

obtained from the literature and the experiments in Chapter 3 (see Appendix A2 for 

details). The final model comprises four differential equations, describing the adult 

parasite population within humans (P), and the density of uninfected (LO, latently 

infected (L) and patently infected (1) snails: 

dP 
= 

QHHAc. I 
_P8,, dt S(. +fixH 

5.1 

dU 
=E(1 -qN)(aSU+aLL+all) -ö5UQs'1MU(P/2) dt sM + QsN 

5.2 

dL ßc2MU(P/2) 
dt 8M+ßcN 

5.3 

dr 
_QL-I(5 ) 

dt 
5.4 

where N=U+L+ land e=v 
(aý +9v) 5.5 and 5.6 



The parameter e describes the maturation of snails from eggs to adulthood. The 

derivation of the mean worm burden per human host and the prevalence of infection in 

the population are explained in Chapter 2 (Equation 2.5). 

For a dioecious, monogamous parasite like schistosomes, it is important to 

consider the probability of each infecting parasite to find a mate within the host (May 

1977). This probability will be influenced by the mean worm burden per person and the 

degree of aggregation of the parasites. The relationship between the mean number of 

worms in an individual host and the probability of finding a mate assuming monogamous 

pairing is described by May (1977) as: 

O(m, k)=1-(t-a)_+k fy (1-coso) 
d9 

2, r (1+cosG)'+k 5.7 

where V is the probability that a female will mate and produce eggs, m is the mean 

number of worms per person, kis the clumping parameter and a =m/(m+k). 

The mating probability is affected by changes in k and m (Fig. 5.1). Clearly, at 

moderate to high worm burdens (>30 worms per person), the mating probability 

approaches 1, with little difference between the four kvalues. Almost all worms found in 

individuals harbouring over 100 worms are expected to be mated (mating probability of 

0.95 when k=1, and 0.99 when k=0.01). The mating probability only becomes important 

with mean worm burdens (m)<10. Therefore, the mating probability for these models is 

assumed to be 1 and the aggregation parameter is kept at 0.1 (Gryseels and deVlas 

1996). 
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5.2.2 Model 2- incorporating realistic density-dependent effects within the snail 

host 

In the absence of empirical data, Model 1, described above, assumed that all 

snails were subject to a linear density-dependent constraint on fecundity, of arbitrary 

strength q=0.01. However, the results in Chapter 4 show that density-dependence 

differentially affects infected and uninfected snails, so this term is now divided into qu, qL 

and q,, denoting the strength of density-dependence in uninfected, latently and patently 

infected snails, respectively. Furthermore, it was shown that the shape of this density- 

dependent function followed a non-linear, exponential relationship, with the impact on 

snail fecundity reducing as snail densities increased from low to high. 

Equation 5.2 is now replaced by: 

dU 
= e(uasUe-y`'" +"OLLe-9LN +m, Ie-Q°V )-SOU- 

ß`AmPU 
5.8 

dt 5m+ß., N 

52.3 Model 3- density-dependent effects on the adult parasite 

Density-dependent effects on the adult parasites within a heavily infected human 

host may arise as a result of limitations in space or nutrients or as a consequence of 

acquired immunity. These effects can manifest themselves as changes in parasite 

mortality or fecundity and will be sensitive to the worm burden in each individual. These 

mechanisms can limit schistosome growth and may decrease the sensitivity of the model 

to perturbations in the other parameter values (Griffin 1988; Woolhouse 1991). 



Medley and Anderson (1985) presented an analysis of autopsy data (Cheever 

1968) showing significant density-dependent fecundity in S. mansoni worms. This paper 

developed a number of models to describe the decrease in per capita fecundity of the 

schistosomes at high density within the human host. A subsequent paper that used a 

murine host model also concluded that there was significant evidence for a density- 

dependent reduction in parasite fecundity in animals with high levels of infection (Jones 

et al. 1989). Estimating the fecundity of mated pairs of schistosomes is biologically 

important and may have significant effects on the transmission of disease. However, 

there are a number of complications involved in experimentally determining the 

relationship between parasite density and fecundity, including the difficulty of retrieving 

all worms and eggs present in the body and faeces and the assumption that the number 

of eggs in a single faecal sample will be indicative of the average number of eggs excreted 

per day. The impact of host immune responses and the effect of parasite age on fecundity 

are unknown, further complicating the picture. Despite these limitations, the influence of 

parasite density-dependence in the model is investigated and its impact on the dynamics 

of disease is discussed. Furthermore, a sensitivity analysis will be conducted as before 

and the results are compared to the two models above. 

This model does not explicitly model schistosome egg production, rather the 

term Am is used to denote the number of miracidia produced per mated schistosome pair, 

per day. This assumes that all excreted eggs are viable and develop into miracidia and 

ignores eggs trapped within the host tissue, as they will not contribute to the next 

generation. Medley and Anderson (1985) consider the negative exponential model to be 

the most reliable and robust method of parameter estimation for the data presented by 

Cheever (1968), although the power function provided the best fit. Hence, I use the 

parameterised negative exponential function to describe this relationship. This gives the 

equation: 



e-, '-" M=" 
a_o 5.9 

Where Aois the maximum possible fecundity and y is a constant that determines 

the strength of constraint on egg production. However, it is not viable to simply replace 

AM in the previous equations with Eq. 5.9, since the degree of density-dependence will 

depend on the distribution of parasites across the host population. Smith (1993) showed 

how this relationship may be used to describe the rate of parasite egg production, within 

a similar modelling framework to the one presented here, assuming a negative binomial 

distribution in the number of worms per host. Here I follow his approach, replacing the 

AMterm in equations 5.2,5.3 and 5.8 by: 

P(1- e-r) 
u+i) 

5.3 - Results 

5.10 

In this section I present the mean worm burden per person and the overall 

prevalence in a population as predicted by each model. The main goal here is to 

determine whether there is any advantage in adding the extra complexities of density- 

dependence within the snail and parasite population. The behaviour of the models was 

explored over a 104 days, allowing the dynamics to stabilise. The model was run with a 

constant human population size (H) of 104 and an initial parasite population (P9) of 20. 

This allows us to see the early behaviour of the model as the disease spreads throughout 



an uninfected population. The long-term model output is insensitive to the initial 

parameter values. 

The results for Model 1 show a stable, endemic state for all four temperatures 

(Fig. 5.2). There is a clear effect of temperature on the mean worm burden per person 

(Fig. 5.2a) with the highest mean worm burden of 150 worms per person at 34°C, 

decreasing to 53 worms as the temperature decreases to 18°C. The model predicts that 

prevalence will quickly reach a steady-state at which approximately half of the 

population is infected in the absence of any interventions (Fig. 5.2b). Long-term 

variations in the temperature do not significantly affect the overall prevalence level 

although they do influence the initial rate of spread of the disease. This model supports 

earlier models which use an aggregated negative binomial distribution and show large 

increases in worm burdens can be accompanied by relatively small changes in 

prevalence (Anderson 1982). Uninfected human hosts remain uninfected but those 

human hosts that are infected have higher worm burdens. 
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Figure 5.3 shows the steady-state mean worm burdens (Fig. 5.3a) and 

prevalences (Fig. 5.3b) for each of the models at four temperatures. Clearly, there is a 

strong effect of temperature on the final mean worm burden. This trend is similar for all 

models, increasing up to 29°C, although Model 1 shows a continues increase up to 34°C 

(which would be at the upper threshold for survival for both the parasite and the snail 

host) whereas the other two models show a reduction at 34°C. The prevalence is 

unaffected by temperature in all models (Fig. 5.3b) and remains at approximately 0.5 at 

each temperature. Interestingly, the results show that the three models predict similar 

steady-state values at a given temperature. The apparent similarities of these initial 

results would suggest that the simplest model (Model 1) might be sufficient. However, 

the simplicity of these results hides the subtle differences in each of the model's 

behaviour. This will be investigated further in the next section. 
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5.3.1 Sensitivity analysis 

A sensitivity analysis was conducted where each parameter was increased by 

multiplying the baseline value by a factor ranging from 1 to 10. The sensitivity of each 

parameter was calculated as Logio relative change, i. e. the change in mean worm burden 

or prevalence relative to the baseline value. The sensitivity analysis conducted in 

Chapter 2 shows that decreasing the parameters by the same values will give a 

qualitatively similar result, so decreasing parameter values for sensitivity analysis was 

not repeated in this study. A sensitivity analysis allows us to rank the parameters in 

order of their relative importance and determine their influence on the overall 

transmission of schistosomiasis (Logio (relative change) values were deemed to be 

important if they deviated by more than 0.5 from the baseline). This process is 

invaluable for investigating the success of a control programme. By clarifying which 

parameters have the greatest influence on the prevalence and burden of disease, an 

effective approach towards control strategies can be developed. Initial examination 

showed that the results were not sensitive to temperature change (the relative 

sensitivities for each model were the same regardless of the temperature used) and so I 

just show the results for 18°C. 

(i) Model 1 

Figure 5.4 shows the sensitivity analysis conducted for Model 1 at 18°C. This 

model assumes there is a linear relationship between the density of snails and their 

relative egg output and does not include the effects of density-dependence on the adult 

parasite population. The most sensitive parameters in this case are the production and 

transmission rates of cercariae (Ac and By respectively), death rates of the uninfected 

and infected snails (ösand 5, ), and the death rates of the three stages of the parasite (ö,, 

Sp and Sc). This suggests that a control strategy which targets the snail population and 



the free-living parasite population will have a significant effect on the overall disease 

transmission. The adult stages of the parasite also appear to be important in the 

transmission dynamics, suggesting chemotherapy would also be a very effective tool in 

controlling disease. 

In addition, the parameter q emerged as important, highlighting the importance 

of snail density-dependence in this model. This parameter was assumed to be equal for 

all three groups of snails, such that there was no effect of infection status on the strength 

of density-dependence in these populations. As detailed in Chapter 4, this is not the case, 

so, given the apparent importance of this term in this analysis, modelling this aspect 

more carefully will provide a more accurate model. 

(ii) Model 2 

The results of the sensitivity analysis on Model 2 show similar results (Fig. 5.5); 

the death rates of the three stages of parasite (S Sp and Sc) and the production and 

infection rates of cercariae (Ac and flit respectively) strongly influenced disease 

transmission. The death rate of uninfected snails (ös) has become less important, whilst 

the death rate of infected snails (ö, ) remained significant. Models 1 and 2 were expected 

to produce similar results as they both contain a parameter for density-dependence 

within snails, the only difference being that in model 1 the trend is linear, and in Model 2 

it is a negative exponential trend. As the negative exponential trend mimics what is 

actually seen in the snail population, Model 2 is the more biologically realistic of the two 

models. 

(iii) Model 3 

Once density-dependence is introduced into the adult parasite population 

(Model 3), the results of the sensitivity analysis change (Fig. 5.6). The most influential 



parameters on the transmission of schistosomiasis are now the four parameters that 

describe the transmission of parasites from snail to man, i. e. f,,, Sc, öß and Ac, together 

with the parameter describing the strength of density-dependence acting on infected 

snail reproduction (q, ). These results provide recommendations for reducing the burden 

and prevalence of schistosomiasis. Both ßy and Ac determine the probability of an 

individual being infected by a cercaria, which can be blocked by changing people's 

attitudes and behaviour towards water contact through health education and improved 

sanitation. Reducing the probability of contact with an infective cercaria will have a 

considerable impact on the overall prevalence in a population. Furthermore, parameters 

relating to the production of miracidia and transmission to the snails are less important. 

Consequently, the focus of control efforts should be blocking transmission to humans 

(e. g., improved sanitation), rather than preventing contamination of water bodies (i. e., 

the provision of latrines) or targeting the snail population. The death rate of the adult 

worm population is also of importance in this model, so a wide-spread chemotherapy 

campaign may be highly effective. 

Overall the differences in these results for the different models highlight subtle 

changes in the dynamics of each model that were hidden in the initial, steady-state 

results (Figs. 5.2 and 5.3). 
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5.5 - Evaluating the impact of different control programmes 

The two general aims of control programmes are to eliminate the infection from 

an area or, if this is not feasible, to reduce the morbidity caused by heavy infections. A 

sustained reduction in the prevalence and intensity of infection may eventually lead to 

the infection dying out. Predicting the outcome of interventions is not straightforward, 

as the relationship between the individual parameters targeted by control programmes 

and the prevalence and intensity of infection is non-linear. Accurately evaluating the 

efficacy of various control programmes in the field is difficult and often impractical for 

the following reasons: (i) conducting clinical trials within a community is both expensive 

and time-consuming, long-term studies (5-10 years) of interventions are rarely feasible 

and ethical considerations can be limiting; (ii) measuring the impact of an intervention is 

dependent on the time-point at which the outcome is measured (Scherrer et al. 2009), so 

it is often necessary to conduct outcome assessments at several time-points; (iii) the 

efficacy of any control programme can be affected by many factors, including compliance 

(with chemotherapy) and external factors, e. g. climate can alter the outcome of a 

molluscicide application (Greer etal. 1996); (iv) the application of various combinations 

of control programmes can often produce the most favourable outcomes (Williams et al 

2002; Ishikawa et al. 2006), but conducting field studies to analyse every possible 

combination is unrealistic. It is possible to examine various levels of coverage of each 

control programme and monitor the effects over a long time-period using mathematical 

models. These models can be used to predict whether re-treatment is necessary, 

whether treatment should be mass or selective and to assess the economic value of each 

programme. 



In this section, I model the effects of three control programmes, chemotherapy, 

sanitation / health education, and molluscicides using Model 3 developed above to 

predict the long-term impact of each intervention strategy as the infected is introduced 

into an uninfected population. 

4.5.1 Chemotherapy 

The effects of mass chemotherapy have previously been modelled by Anderson 

and Medley (1985) and Woolhouse (1992) amongst others, but few have modelled the 

control programmes using empirical data (Williams etal. 2002; Hisakane eta!. 2008) or 

evaluated their impact at different temperatures. Chemotherapy can be modelled as an 

instantaneous reduction in the size of the parasite population (P) and is described by: 

AP=-log[l-gh] 5.11 

where g is the proportion of the population (chosen at random) that receive treatment 

("coverage") and his the efficacy of the drug, i. e. the proportion of schistosomes killed by 

one treatment (Anderson and May 1982). Usually, the efficacy of a drug is determined by 

the reduction in egg output per person. The analysis presented here is based on the use 

of praziquantel, randomly administered to a population within an endemic area. Here 

the efficacy (h) has been set at 80%, a conservative estimate based on field studies 

(Gryseels et al. 1987; Magnussen 2003; Scherrer et a!. 2009). This value incorporates 

treatment failure, i. e. cases where treatments with the standard dose of praziquantel 

fails to kill the parasite (Hagan et al. 2004). Treatment failure occurs due to the stage- 

specificity of praziquantel, where immature parasites tolerate usually therapeutic doses, 

or where drug-resistant parasites exist. In this case, the parameter h is assumed to be 

independent of the number of worms in an individual and APis equally sensitive to both 



gand h (Woolhouse 1992). Firstly, simulations exploring an annual mass chemotherapy 

programme with three coverage rates: 30%, 50%, and 70% were conducted. Secondly, 

the effects of a repeated 6-month programme were compared at each coverage rate. All 

programmes were run for 10 years until a stable state had been reached. All control 

programmes were modelled at both 18°C and 34°C to explore whether temperature had 

a significant impact on the success of each control strategy. 

At 18°C, the implementation of chemotherapy at each coverage level immediately 

reduced the mean worm burden per person and the prevalence of infection (Fig. 5.7). 

The efficacy of the treatment was set to 80%, so some positive cases remained after each 

treatment. There is a rise in worm burden and prevalence following each treatment, 

which is due to the remaining cases not cured by the drug and reinfection from the 

environment. Assuming regular, repeated administrations of praziquantel, the saw-tooth 

behaviour of the model gradually falls to very low levels. With 70% coverage, the final 

prevalence is 0.01 after 10 years. This model shows that running a control programme 

for 5 years, as is often the case, will not result in elimination of the disease, with around 

5% of the population remaining infected, even with 70% coverage. Once treatment is 

withdrawn, the parasite may recover to pre-treatment levels as the population would 

not have developed immunity. 
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Running the same model at 34°C produced strikingly different results (Fig. 5.8). 

Instead of the gradual decline in worm burden and prevalence, there is a marked 

increase in both outcomes at all coverage levels. The model predicts an endemic 

outcome, with mean worm burden rising to approximately 650 worms per person at the 

lowest coverage level (30%) and 40-50% of the population remaining infected, greater 

than that in the absence of control. 

Mass chemotherapy repeated at 6-month intervals resulted in a much faster 

decline in the worm burden and prevalence at 18°C (Fig. 5.9). If a chemotherapy 

programme was run bi-annually for 5 years achieving 70% coverage, the disease would 

almost certainly be eliminated. At 34°C, the model again predicted an endemic state, but 

with lower worm burdens and prevalence than the annual treatment programme (Fig. 

5.10). 
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S. S. 2 Sanitation and health education 

Macdonald (1965) was one of the first to theoretically model the effects of 

sanitation on the mean worm load in the population. His findings show that a sizeable 

reduction in the number of miracidia reaching a water body had almost no effect on the 

worm load. This was contradicted by Nasell (1977) and Woolhouse (1992) and the 

importance of improvements in sanitation was emphasised. Huttly (1990) demonstrated 

that sanitation has an inverse relationship with environmental contamination and 

consequently disease transmission. Therefore, in areas of high environmental 

contamination, a high rate of disease transmission is expected. However, research has 

shown that increasing and improving the sanitation in a community does not always 

reduce the environmental contamination and rate of infection (Huttly 1990; Asaolu and 

Ofoezie 2003). 

The aims of sanitation or health education programmes are to reduce the 

contamination of water with infected faeces and to reduce the contact rate with infected 

water bodies. The contamination of water with infected faeces can be modelled using the 

parameter ß. s the miracidial infection rate. This can be thought of as a composite term 

that encompasses the rate of production of miracidia, the proportion of those miracidia 

that reach the water and their subsequent infection of susceptible snails. Health 

education programmes would reduce the cercarial infection rate (ßy) by minimising 

human contact with infected water. If sanitation and health education can sufficiently 

reduce ßs and ßf,, the disease can be eliminated. The changes in the transmission of 

disease that follow health education programmes and improvements in sanitation are 

difficult to quantify, as the outcome is dependent on human behaviour, which is both 

unpredictable and highly variable. To explore the effects of sanitation, the transmission 

parameter Qs was reduced by 30%, 50%, 70%, and 90% over 55 years. This end-point 

was chosen due to the stable states of worm burden and prevalence at this point. It is 



assumed that this control programme represents a permanent change in infrastructure 

or behaviour and is applied continuously through time. 

The results presented below refer to the programmes running at 18°C. The 

results for 34°C are very similar and are not presented here (Fig. 5.11). The effect of 

control on the worm burden is most pronounced with a 90% reduction in ßsas expected. 

This level of control slowed the rate of increase in mean worm burden, but each 

intervention level eventually reached a similar end-point. There was little change in the 

overall prevalence with 30-70% reductions, and even at 90% the prevalence reached the 

same final end-point. This finding supports those of the sensitivity analysis, that showed 

that changes in the miracidial infection rate have little impact on the transmission of 

disease. 

Alternatively, health education and behavioural changes could cause a constant 

reduction in the exposure to cercariae. Reducing the human contact rate with infected 

water was modelled by decreasing the cercarial infection rate (Qy) by 30,50,70 and 

90% (Fig. 5.12). Again, I assumed this control programme represents a permanent 

change in behaviour and was run continuously over 55 years. This approach proved 

more effective than preventing contamination of water by miracidia. Reducing the rate of 

cercarial infection reduced the mean worm burden in the population by between 30 - 

90% although the prevalence of infection was only significantly reduced with a 90% 

reduction in ßy This was consistent with the sensitivity analysis, indicating that reducing 

the rate of infection of cercariae would be more effective in controlling disease than 

reducing the miracidial infection rate. 
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Figure 5.11. The mean worm burden (a) and prevalence (b) over 55 years at 18°C with 

reductions in the miracidial infection rate (6s). 
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5.5.3 Molluscicides 

Molluscicides are a relatively easy way to control schistosomiasis transmission 

although the high costs and toxicity to fish have limited their use to and regions with 

small, seasonal transmission sites (Greer et al. 1996). The effects of a mollusciciding 

programme depend on the level of coverage in a water body and the efficacy of the 

chemical. Niclosamide causes 100% mortality even at low concentrations of 0.5 p. p. m. 

(Greer et al. 1996), so the model has assumed that following an application of 

molluscicide, all snails are killed. The chemical does not affect the snail eggs, so repeated 

applications are necessary. The simplest way of modelling snail control by molluscicides 

is to model the treatment as a sustained effect (Woolhouse 1992), i. e. to assume that the 

number of snails in the population is continually reduced over time. The effects of 

molluscicide application on the snail population were modelled continuously over time 

by adjusting the mortality rates. Two treatment programmes were considered: a 3- 

monthly repeated application and a monthly-repeated application. The model assumed 

that 100% of snails died at each treatment and so the life-span of each group of snails (ö/, 

&, , &, and Si) was reduced to 3 months or 1 month. Applying the treatments at yearly or 

6-monthly intervals had no impact on the mean worm burden or the prevalence of 

disease. All models were run at both 18°C and 34°C. 

The application of molluscicides once a month has an effect on the worm burden 

and prevalence of schistosomiasis (Fig. 5.13). However, applying molluscicides regularly 

every three months only slows the rate of infection, the mean worm burden is only 

reduced by approximately 10 worms per person and the final prevalence is almost equal 

to that of no control. However, monthly applications appear able to greatly reduce the 

mean worm burden and prevalence of disease, although the feasibility or cost- 

effectiveness of such regular treatments may greatly limit the achievability of this 

approach. At 34°C, both treatment plans slow the rate of infection and the mean worm 



burden is significantly reduced using monthly applications. The prevalence of infection is 

not affected by 3-monthly applications and, although it is reduced by monthly 

mollusciciding, the prevalence rates eventually reach near pre -intervention levels (Fig. 

5.14). These results support those of the sensitivity analyses above (section 5.3.1, Fig. 

5.6) that treatment of snails is unlikely to be a feasible way of control schistosomiasis. 
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Figure 5.13 Variations in the mean worm burden (a) and prevalence (h) of disease with 

molluscicide application at 18°C. The levels of infection without control (solid line) and 

with molluscicide applications every 3 months (black dashed line) and one month (grey 

dashed line) are presented. 
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Figure 5.14 Variations in the mean worm burden (a) and prevalence (b) of disease with 

molluscicide application at 34°C. The levels of infection without control (solid line) and 

with molluscicide applications every 3 months (black dashed line) and one month (grey 

dashed line) are presented. 
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5.6 Discussion 

The analyses of the new models developed in this chapter highlight the 

epidemiological consequences of including density-dependent snail fecundity and 

survival, and density-dependent survival of adult schistosomes. The role of this chapter 

was (i) to develop the simpler model presented in Chapter 2 to incorporate more 

realistic features and parameter values, and quantitatively analyse the behaviour of the 

models over time, and (ii) to investigate the efficacy of several control programmes. 

All three models showed qualitatively similar endpoints for the intensity of 

infection (measured as mean worm burden per person) and prevalence of disease in the 

population. The worm burden increased up to 29°C and then tapered at 34°C for Models 

2 and 3. This is consistent with both laboratory and field data showing that this 

temperature is approaching the thermal limit for both intermediate host snails and the 

parasite (Stirewalt 1954; El Hassan 1974). This is explained by the increases in 

intermediate host development and fecundity along with an increase in the development 

rate of the parasite within the snail host with temperature. The prevalence of infection 

did not change with temperature for any of the models, including the original model 

described in Chapter 2. This may be accounted for by the relatively similar values over 

the four temperatures for the most sensitive parameters involved in transmission, e. g. 

the parameters describing the transmission from snail to humans and the death rates of 

adult parasites. As shown in the sensitivity analyses, these parameters are very 

influential in the overall outcome of the models. 

The inclusion of density-dependence in snails and adult parasites is clearly 

important in modelling the overall transmission dynamics of schistosomiasis and 

evaluating the potential of various control programmes. The absence of these 



biologically important parameters leads to false estimations of the sensitivities of some 

parameters. Although overall the models produced similar results in terms of their 

steady-state behaviour, this disguised the finer, dynamical details within each model that 

have important consequences for control success. For example, Model 3 highlighted the 

overriding importance of the parameters depicting the transmission of infection from 

snail to humans, contrary to the previous two models and the model developed in 

Chapter 2. 

Direct comparison of the outcomes of the chemotherapy programmes shows the 

clear superiority of the bi-annual treatment programme over the annual programme (for 

the same coverage levels). This finding is substantiated by findings in Zaire where the 

effects of mass treatment disappeared within 20 months even when supplemented with 

focal molluscicide (Polderman 1984). At 50% coverage levels, the bi-annual treatment 

programme is successful in eliminating disease after 8 years at 18°C. However, if some 

individuals remain infected after the treatment programme has ended, the disease may 

re-establish and return to pre-treatment levels. At 34°C, both annual and bi-annual 

chemotherapy programmes caused an increase in worm burden. The sensitivity analysis 

demonstrates that the production rate of miracidia (AM) does not strongly influence 

transmission dynamics as snails produce the same number of cercariae regardless of the 

number of miracidia that infected them (Fig. 5.6). The complex density-dependent 

mechanisms that explain this are discussed in Chapter 2. 

Improvements in sanitation, modelled as a reduction in the miracidial infection 

rate, slowed the transmission of disease, although long-term, these levels eventually 

reached those with no control. This was not surprising, as the miracidial infection rate 

(ßs) did not influence mean worm burdens or prevalence in the sensitivity analysis (Fig. 

5.6). This is explained by the intense density-dependence at the intermediate host stage. 

Decreasing the number of miracidia infecting each snail does not reduce the number of 



cercariae produced. With improvements in sanitation usually comes provision of safe 

water for drinking and washing which would reduce the contact rate of humans with 

cercariae. Therefore, a general improvement in living standards would impact the 

transmission of disease more substantially than described here. Monthly molluscicide 

treatment constantly reduced the prevalence of infection over the duration of the study 

period and reduced the mean worm burden to <2 worms per person. However, if the 

treatment is applied every 3 months, there is no significant impact on transmission. 

Niclosamide, the most commonly used molluscicide, only kills snail eggs when it is 

present at 0.01mg/L for a period of two weeks (McCullough 1980). Therefore, the snail 

population can build up following an application of molluscicide and continue to 

transmit the disease. The costs of repeated administration of molluscicide make this a 

prohibitively expensive programme to recommend (Greer etal. 1996). This is consistent 

with previous findings in the Philippines, which showed a snail control programme alone 

was insufficient to maintain long-term control (Ishikawa eta/. 2006). 

Overall, the most effective strategy is mass chemotherapy, but a combination of 

two or more control programmes may have better success in eliminating the disease. 

Further study on combinations of control programmes would be useful and has 

previously been done for S. japonica (Williams et a1.2002). This showed that the most 

effective strategy in reducing prevalence of disease was a combination of a vaccination 

targeting the reservoir host, selective chemotherapy and a reduction in water contact. 

These results are not directly applicable to S. mansoni but indicate where future work 

can be directed. Many other refinements can be made to these models, including age- 

dependent acquired immunity, seasonal heterogeneity, age-structure contact rates, and 

animal reservoir hosts. One of the main advantages of theoretical modelling is that it 

highlights areas in which comprehensive data are lacking. It is clear from this study that 



a more detailed model is critical to understanding the complex nature of schistosomiasis 

transmission and for determining the efficacy of control programmes. 



CHAPTER 6 

A spatial statistical approach to schistosomiasis 

mapping 



6.1 Introduction 

Schistosomiasis is found across the African continent in highly variable 

geographic surroundings and its distribution is influenced by climatic and human 

characteristics. The distribution of disease is limited by conditions which support the 

survival of both the snail intermediate host and parasite. Predicting the risk of 

schistosomiasis depends on an understanding of the environmental and sociological risk 

factors that affect transmission. However, these predictions are often complicated by the 

complex nature of the interactions between variables and the unpredictable nature of 

human behaviour. Two important climatic determinants of the snail population are 

temperature and rainfall (Brooker 2007). Schistosomes are more sensitive to lower 

temperatures than snails, so uninfected snails can be found at high altitudes in endemic 

countries, where larval development is inhibited (Brooker 2007). It is difficult to 

quantify the relationship between rainfall and schistosome transmission dynamics as the 

effects of rainfall on the snail population can vary. High rainfall in some areas can create 

additional habitats for snails, whilst other areas may be prone to flooding, thereby 

destroying habitats. It is unclear how important seasonal fluctuations in snail population 

dynamics may be in the overall transmission of disease, as these fluctuations are 

typically of a much shorter duration than the adult parasite life-span (Anderson 1987). 

The distribution of snail habitats is also influenced by numerous other factors, including 

the presence of temporary water bodies, water velocity, and pH (Sturrock 1993). 

However, these small-scale heterogeneities are impossible to include in a large-scale 

spatial model. 

The first comprehensive maps of the distribution of schistosomiasis were created 

by WHO twenty years ago (Doumenge 1987). The WHO Global Atlas of Schistosomiasis 



collated every known source of data on schistosomiasis to that date and produced a 

series of maps to be used as tools in the control of disease. This now outdated resource 

remains the only comprehensive survey of schistosomiasis on a continent-wide scale. 

This report documents the presence of S. mansoni in 39 countries in continental Africa. 

In many endemic African countries, comprehensive data showing the prevalence and 

intensity of infection are not available. The limited data available often do not define the 

intensity of disease or identify the true 'foci' of disease, which are blurred by population 

movement. The prevalence of infection, based on the presence of S. mansonieggs in stool 

samples, is the most widely used indicator of infection status, although the mean worm 

burden per person is more indicative of morbidity (Sukwa 1986; Wilkins 1989). The 

heterogeneity of the data may be explained by the data collection techniques, some 

studies use parasitological data, whilst others present only immunodiagnostic results. 

Furthermore, many surveys present results from samples of the population that may not 

be representative of the entire population. A more current atlas is being developed with 

aims to produce prevalence maps at the second administrative level for the whole of sub- 

Saharan Africa using geographic information systems (GIS) (Brooker et al. 2000). 

Accurately mapping the distribution of disease relies on modelling to predict the risk of 

infection for the whole population, as prevalence studies usually only exist at a limited 

number of locations. Furthermore, studies of schistosomiasis are often clustered in areas 

of high transmission and focus on high-risk sub-sections of the community, e. g. 

schoolchildren or hospital admissions. Consequently, data are often highly spatially 

correlated (Clements et al. 2006). Finally, the current literature on the epidemiology of 

schistosomiasis is strongly biased towards positive findings; there is a considerable lack 

of negative data, which confounds our understanding of the diversity of transmission. 

The implications of spatial heterogeneity to the overall spread and intensity of 

disease are poorly understood. Likewise, the significance of spatial heterogeneity in 



predicting the efficacy of control programmes needs further study (Gurarie 2005). A 

number of studies have mapped schistosomiasis over large areas of Africa but few have 

considered the effects of spatial autocorrelation between foci (Brooker and Michael 

2000; Malone etal. 2001b; Moodley etal. 2003). An infectious disease that is correlated 

with environmental variables is likely to be spatially clustered even when the human 

population is not clustered (Kleinschmidt et a!. 2000). GIS and remote sensing (RS), 

along with geostatistical techniques, allow the quantification of such spatial 

heterogeneity in distribution patterns. Geostatistics can establish whether the patterns 

in prevalence are caused by specific environmental conditions, or due to random 

stochastic variability. At the community-level, semi-variograms can be used to reveal 

spatial correlation between study sites by measuring the mean-squared difference of 

pairs of observations separated by the same distance (Chiles 1999). 

The purpose of this study was twofold. Firstly, predictions of schistosomiasis risk 

in regions where data are not available were generated by measuring the degree of 

spatial autocorrelation between existing data sets. Smoothed risk maps of 

schistosomiasis distribution for Africa were then produced using Bayesian kriging. 

Secondly, statistical models were developed using a number of environmental and 

ecological variables obtained from RS and GIS. These models were used to create both 

current risk maps and future risk maps given a defined temperature change using an 

IPCC climate change scenario (IPCC 2001). 



6.2 Methods 

6.2.1 Data Collection and Preparation 

(i) Disease data 

The data used in this study were obtained from the WHO Atlas of the global 

distribution of schistosomiasis (Doumenge 1987) which includes all published 

prevalence data available from 1930 - 1985. Altogether 1639 surveys were documented 

with suitable estimates of schistosomiasis prevalence due to S. mansoni. If two or more 

values existed for one location, the value pertaining to the most representative sample of 

the population was used, i. e. surveys of schoolchildren were excluded in favour of 

surveys from the general population. If both surveys represented the general population, 

the average value was calculated. If the region only was specified, the mid-point was 

taken as the survey focus. Each location was georeferenced using Google Earth which 

uses the Simple Cylindrical projection with a WGS84 datum. The longitude and latitude 

in decimal degrees, along with the elevation at the mid-point of each location was 

recorded. 

60 Environmental variables 

The lack of environmental data recorded at a fine spatial scale can be overcome 

by using remotely sensed satellite data. To reduce the effects of cloud contamination in 

satellite imagery, composite images are produced from which we can derive long-term 

mean values or select the data from the most cloud-free day (Hay 2000). Environmental 

data can be also estimated at locations for which no observations are available using 

spatial interpolation. Environmental variables were initially chosen for inclusion in the 

model based on biological plausibility. Low levels of precipitation may reduce the 



availability of snail habitats whilst high precipitation levels may washout snail 

populations. Consequently, precipitation levels are a conceivable factor in the 

transmission of disease and were included as both a linear and a quadratic term. The 

level of vegetation can be used as an indicator of rainfall or humidity, so normalised 

difference vegetation index (NDVI) was also included in the model. The host snail and 

the free-living parasite stages have optimal temperature ranges outside which survival is 

inhibited. Land surface temperature (LST) and water temperature were, therefore, 

included in the model as both linear and quadratic terms. Transmission intensity is 

thought to be restricted by high altitude (Ostfeld 2009), so elevation was included after 

being checked for colinearity with LST and precipitation (Clements et al. 2008). The 

initial model variables included elevation, water temperature, mean LST, minimum and 

maximum LST, NDVI, precipitation, and human population density. 

The minimum, maximum and mean LST along with the average monthly 

precipitation were obtained from the Climate Impact on Agriculture (CLIMPAG) division 

of the Food and Agriculture Organization (FAO) of the United Nations and georeferenced 

using ArcGIS Version 9 (ESRI, Redlands, CA) to match the projection of the prevalence 

data. Prevalence data were collected over many decades, so it was not possible to 

accurately match each survey with the corresponding climate data. Long-term average 

climate values (over a 12-month period) were used where possible to compensate for 

this. The paucity of accurate historical climate data for most African countries meant that 

the choice of data was restricted. Water temperature estimates were obtained from the 

FAO's Geonetwork (http: //www. fao. org/geonetwork/srv/en/main. home) and averaged 

for the period of 1920 to 1980. NDVI was used as a numerical indicator of the type of 

land cover and was derived from the VGT sensor aboard the SPOT-4 satellite. These data 

consist of 10-day composites aggregated into 0.5 degree grid-cells where values lie 

between -1 (barren areas) and +1 (rainforest cover). Estimated figures for the 



population density in Africa during 1980 were obtained from the United Nations 

Environment Programme / Global Resource Information Database (UNEP/GRID) and the 

Center for International Earth Science Information Network (CIESIN) World Data Center 

(http: //na. unep. net/globalpop/africa/partl. html#pop). The full methods concerning 

the derivation of population density values and a detailed description of each of the data 

sources mentioned here are presented in Appendix A3. Climate and population data 

were linked to the prevalence data using the Spatial Analysis tool in ArcMap. 

ON The Koeppen classification system 

Due to the amount of data needed from different sources for the previous 

analysis, a more practical approach may be to characterise a location according to a 

simple, discrete classification system. Hence, an alternative approach to using the 

climate variables listed above is to use one indicator of climate as a predictor variable for 

schistosomiasis. The associations between climate and disease were separately analysed 

using the Koeppen climate classification system, one of the most widely used 

classification systems (Peel et al. 2007). This system is based on the concept that 

vegetation is the best indicator of climate and so categorises climate boundaries based 

upon vegetation distribution. It combines average monthly and annual temperatures and 

precipitation, along with the seasonality of precipitation (Table 6.1). Data were obtained 

from CLIMPAG, projected in ArcGIS and re-coded using R v2.8.1 (http: //www. r- 

project. org/). Each code was assigned a unique numerical value for analysis. 



Table 6.1 A definition of the Koeppen classification system. 

Tcorresponds to the long term monthly mean temperature in °C and Pis the long term 

monthly precipitation in mm. The subscripts min and max represent the lowest and 

highest monthly values of the year, and the subscript ann represents the annual sum. 

Subscripts Sand Wstand for the summer and winter. Pth is the threshold precipitation 

for aridity which is defined as 2(Tann) if PW >_ 2PS; 2(Tann) + 28 if PS >_ 2PW, or 

2(Tann) + 14 otherwise. 

Code Numerical Description Criterion 

code 
A 1-50 Equatorial climates Twn z 18°C 
Af 13 Equatorial full humid Pmin > 60mm 

rainforest 
Am 23 Equatorial monsoon Pann Z 25 (100mm - Pm, n) 
As 33 Equatorial savannah with dry PmIn < 60mm in summer 

summer 
Aw 43 Equatorial savannah with dry Pmin < 60mm in winter 

winter 
B 51-100 Arid climate Pann < 10 Pth 
Bw 83 Desert climate Pann <_ 5 (Pt, ) 
Bs 63 Steppe climate Pann >5 (Ptn) 
C 101-150 Warm temperate climates -3°C < TmIn < 18°C 
Cf 112 Warm temperate fully humid Neither Cs nor Cw 

climate 
Cw 122 Warm temperate climate, dry Pwmin < Psmin, Psmax > 10 (Pwmin) 

winter 
Cs 132 Warm temperate climate, dry Psmin < Pwmin, Pwmax >3 (Psmin), 

summer Psmin < 40mm 

D 151-200 Snow climate Tmin <_ -3°C 
Df 162 Snow climate, fully humid Neither Ds nor Dw 
Dw 172 Snow climate with dry winter Pwmin < Psmin, Psmax > 10 (Pwmin) 
Ds 182 Snow climate with dry Psmin < Pwmin, Pwmax > 3(Psmin), 

summer Psmin < 40mm 
E 201-230 Polar climates Tmax <_ 10°C 
Et 213 Frost climate Tmax 5 0°C 

Ef 223 Tundra climate 0°C < Tmax < 10°C 
Source: (Grieser 2006) 



6.2.2 Testing spatial autocorrelation usingkriging 

First, I describe the procedure used to determine the spatial distribution of 

schistosomiasis across Africa, and quantify the spatial autocorrelation in prevalence. 

This is important because the prevalence data documented by the WHO highlight many 

areas of Africa where data are limited or non-existent. In order to predict prevalences for 

these undocumented locations it is important to establish whether the data display any 

spatial autocorrelation, i. e. do study sites that are close together have similar values of 

schistosomiasis prevalence, in contrast to study sites that are far apart. Data that are 

highly spatially correlated cannot be classified as independent observations. Hence, to 

examine the spatial distribution of disease and create a continuous distribution map 

over the African continent, it is necessary to use spatial interpolation methods to 

describe the spatial behaviour between locations. First, a semivariogram was established 

to measure the degree of spatial dependence between the data points. The value of the 

semivariance (yh) for a separation distance h (known as the lag) is the average squared 

difference in Z-value (prevalence) between a pair of data points, h distance apart, as 

described below: 

n 

Yh - 2n 
E(Z(xi) 

- Z(xi + h))2 
t=i 

6.1 

where n is the number of pairs of data points separated by h and Z(x) is the prevalence 

value at location x. Larger distances between two points will yield a larger value of 

semivariance, and the magnitude of yn describes how different the prevalences are 

between locations of distance h apart; high values indicate locations that differ greatly in 

their prevalences. This value increases as the distance between data points increases 

until it reaches a critical value (known as the sill, C), at which the semivariance will equal 



the variance of the whole data set. The distance to this point is the effective range (r) and 

within this range, it is assumed that all data points are related to each other. The 

semivariogram plots the variance between points (y,, ) against the distance (h) at which 

the variance was calculated. Depending on the type of semivariogram selected, a model 

formula is then fitted to the data. The most common models include spherical, 

exponential, Gaussian, and power, and model choice depends on which model curve best 

represents the variance in the data. There is no significance test associated with the 

semivariogram, so model selection is done by eye. The spherical model was determined 

as the most appropriate model for this data set. This model rises to the sill more quickly 

than the exponential and Gaussian models, showing a shorter effective range which fits 

the data well. The spherical semivariogram model is described in Equations 6.2-6.4: 

yh{0}ifh=0 6.2 

Yh{CO+C 
[()_()3}}if 

0<h<r6.3 

yh{Co+C}ifh>_r 6.4 

The intercept (Co - also known as the nugget) represents the variance due to 

data variation at a fine scale and/or spatial dependence which has not been explicitly 

modelled. This occurs when sampling locations are very close together but show 

different prevalence levels. It is not possible to detect variation at such a fine-scale and 

discontinuity at the origin arises; Cis the value of semivariance at the sill and Ct Co 

denotes the error variance at the sill, i. e. when the data points are no longer spatially 

correlated. 



The semivariogram assigns a weight to each data point that determines its 

relative influence in predicting the unknown values. Ordinary kriging uses these 

weighted values to predict unknown values within the calculated effective range (r) 

assuming no directional trends in the data. This method assumes that the data have a 

stationary variance but a non-stationary mean value within the effective range. Outside 

the effective range, the model will make predictions based on the nearest 5 neighbours, 

but these predictions may be less accurate than those within range. However, one of the 

main assumptions in spatial modelling is that the spatial dependency is isotropic, that is, 

the spatial structure is not influenced by direction (Deng 2006). This assumption 

reduces the complexity of spatial models but disregards the reality that effects of spatial 

dependency may vary between study sites and in different directions. To examine the 

effects of directional trends in the data set, anisotropic modelling is used. This creates a 

separate model for each directional trend identified using trend analysis. When 

predicting values in one direction the kriging weights can be influenced to use the 

parameters of one model, whilst values positioned in another direction will be 

differentially influenced by a separate model. Both models, with and without directional 

influences, were compared and cross-validated with the existing data set. 

Two types of kriging are investigated here, each using two different approaches. 

Firstly, ordinary kriging with and without directionality are used to estimate the 

prevalence of disease. Secondly, ordinary probability and indicator kriging are used to 

estimate the probability that the disease is present in an area. Indicator kriging uses an 

indicator function in order to estimate the probability of the unknown value exceeding a 

pre-defined threshold. This converts the existing data into a binary variable (see 

Equation 6.5) and calculates the probability of the unknown variable being above the 

threshold. 



IX = I(Zx < threshold) = 
(O, Zx < threshold 
1, ZX > threshold 6.5 

The indicator value is set to 0 if the prevalence value is less than the threshold, 

defined as 0.1. This is an arbitrarily low threshold, used to separate the disease data into 

two categories, present and absent. All prevalence values over 0.1 are coded as 1. This 

model follows the same method as ordinary kriging and produces a continuous surface 

output containing probability values that the prevalence at location x exceeds the 

threshold level. Predictions made by kriging are more accurate if the data follow a 

Gaussian distribution. To normalize the data and make the variance more constant, 

lognormal kriging is often used. As the prevalence data contain zeros, the data were 

transformed using log (prevalence + 1). 

To summarise the procedures carried out to describe the distribution of 

schistosomiasis prevalence across Africa, four maps were produced using the methods 

described, two predictive maps using ordinary and directional kriging and two 

probability maps using ordinary and indicator kriging. 

6.2.3 Climate model development 

Here I describe the procedures to relate the observed distribution of schistosome 

to local climatic variables. All statistical models were developed and validated using R. 

Colinearity was explored amongst all pairs of predictor variables (temperature, rainfall, 

elevation, NDVI, water temperature and population density), and if any pair had a 

correlation coefficient > 0.9, the least biologically relevant variable of that pair was 

excluded. Two separate models were developed using the variables described above; (1) 

a binomial logistic regression model (or generalised linear model - GLM) using the MASS 



package and (2) a proportional odds ordinal logistic regression model (LRM). These two 

modelling approaches were compared using Akaike's information criterion (AIC) to 

determine which model provided the most accurate predictions of prevalence. The GLM 

model (Model 1) uses a continuous response variable and can produce actual 

predictions of prevalence whereas the LRM model (Model 2) divides the prevalence into 

categories and produces a series of probabilities of the predicted prevalence lying within 

one of those categories. 

Non-linear relationships were explored univariately and polynomial terms up to 

second order were included for any variables which exhibited non-linear behaviour. 

Model 1 included the predictor variables above as fixed effects with a binomial error 

structure using iteratively reweighted least squares (IWLS) to fit the model. A 

backwards stepwise progression procedure simplified the model based on deletion 

testing (using Chi-squared tests) until the minimal adequate model was achieved which 

contained only significant terms (P < 0.05). Model 2 was developed using the Design 

package with the prevalence classified into 4 categories (0, <20%, 20 - 70% and >70%). 

The model was fitted using maximum likelihood estimation and a stepwise deletion 

process was done as before. The minimum adequate model for both Model 1 and Model 

2 were used to create a current risk map, which was compared to the observed data, and 

a future risk map using the climate change scenario described in Section 6.2.5. 

The Koeppen climate data were analysed using ANOVA. Each location was 

designated a two-letter code describing the climatic conditions (Table 6.1). For the 

analysis, the first letter of each code was used because the two-letter code resulted in 

some categories having insufficient data. Therefore, the analysis examined the influence 

of three Koeppen classes (A - C) on the prevalence of disease. 



6.2.4 Climate model validation 

Both models were validated by dividing the data into two random sets, 

containing 1% and 3/4 of the original data respectively. The 3/4 dataset was used to run the 

model and the output was validated using the '/a dataset. The accuracy of the predictions 

of Model 1 was determined in terms of the ability to discriminate between a true 

prevalence of 0 versus >0 (i. e. absence versus presence), and two thresholds of 0.2 and 

0.7. Model 2 was validated using optimal threshold analysis, which calculates the 

probability that the predicted value (x) is present above a defined threshold (x") 

(Robinson 2000). 

6.25 Climate change scenario and future disease risk predictions 

The climate change model used was the SRA1B model with projections from 

2040-2069, which predicts an average global temperature increase of 2.9°C by 2100 

(Carter 2007). This climate change scenario assumes very rapid economic growth, with a 

global population that peaks at 2050. This model also incorporates rapid introduction of 

new and more efficient technologies balanced across energy sources. The model data 

were acquired from the National Center for Atmospheric Research's (NCAR) Community 

Climate System Model 3.0. This model was chosen as a worst-case scenario model, with 

rapid population growth and high estimates for future C02 concentrations. The climate 

change data were obtained from the IPCC Data Distribution Centre (DDC) and projected 

in ArcMap at 0.5 degree cell resolution using the WGS84 datum as before. The study sites 

described previously were overlaid onto this map and the predicted temperatures were 

extracted at each location. These data were then input into the GLM and LRM models and 

the predicted prevalence values were modelled using the "predict" function in R. The 

predicted prevalence values were imported back into ArcMap and ordinary kriging was 

used to produce a smoothed map over Africa. 



6.3 Results 

The first part of this analysis involved examining the spatial pattern in 

prevalence using kriging and producing smoothed prediction maps for the whole 

continent. Secondly, the ecological predictors of schistosomiasis were extracted at each 

of the study sites and analysed using generalised and ordered logistic regression. Once a 

minimal adequate model had been obtained, this was then used to produce another map 

of predicted prevalence using the model output and compared with the original data. 

The statistical models were used to produce risk maps predicting future distribution of 

schistosomiasis given the current estimates of global warming. 

6.3.1 Summary y of pre valence data 

The location and prevalence values at each of the study sites show large areas in 

the north, central and south-west of Africa which have no data available (Fig. 6.1). There 

was a high concentration of points along the eastern side of the continent, particularly in 

Ethiopia (222 sites) and Tanzania (114 sites). Highest prevalence rates were seen in the 

eastern region (Ethiopia, Uganda, Tanzania) and in the far western region (Sierra Leone, 

Guinea, Mali). The high prevalence rates appeared to be clustered in these areas, with 

the exception of one study site in Angola. The prevalence data were examined for 

normality using a Q-Q plot, which showed significant deviation from normality (Fig. 

6.2a). Log-transformation of the data improved the normality although at high 

prevalence levels, the data did still deviate from the plot (Fig. 6.2b). 

A trend analysis was conducted to check for directionality in the dataset. Each 

data point was projected onto two perpendicular planes, an east-west plane and a north- 

south plane. The line of best fit was drawn through the points on each plane and the 



shape of this line indicates trends in specific directions (a flat line suggests that there is 

no directional trend in the data). Initially, the trend analysis showed a small increase in 

prevalence values in the east-west direction as the trend line increased linearly as it 

moved east (Fig. 6.3). The trend line running north-south was flat, indicating no trend in 

this direction. Rotating the graph shows the east-west plane more clearly, the graph now 

shows that the trend on the east-west projection plane actually runs northwest to 

southeast. The reasons for this trend are unknown, it may be due to the large amount of 

data available for southeast Africa that has skewed the trend analysis, but this can be 

statistically quantified and removed using anisotropy. Once the trend was removed from 

the data, the model used the residuals to analyse the variation in the data. 
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Figure 6.1 Location of the study sites with prevalence values colour-coded. 
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Figure 6.2 Q-Q plot of prevalence data without transformation (a) and subjected to a log- 

normal transformation (b). 
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Figure 6.3 Trend analysis showing a three-dimensional perspective of the prevalence 

data. Each data point is raised to the height of the prevalence value (Z-axis) and 

projected onto two directional planes, north (y-axis) and east (x-axis). A polynomial 

curve is fitted to each plane which highlights trends in each projected plane. By rotating 

the surface (b), the direction of the trend can be identified. 



6.3.2 Spatial auto correlation models 

Spherical models were fitted to the semivariograms to quantify the level and 

scale of autocorrelation (Fig. 6.4). Both semivariograms showed the same general 

patterns, with negligible Co values, rising quickly to the sill (C) at approximately 10 

miles, and evidence of spatial correlation over short distances (<10 miles). 

Following the results of the trend analysis a directional kriging model was 

developed which incorporated the trend identified in the northwest to southeast 

direction (Fig. 6.3). The directional kriging semivariogram, which had removed the 

large-scale directional influence, showed a longer range than the ordinary model, with 

locations further apart displaying spatial autocorrelation (Fig. 6.4b). Both ordinary and 

directional kriging models were used to predict the prevalence in unknown locations 

across Africa, producing a smoothed continuous map. The directional model used second 

order trend removal to remove the directional trend from the data before analysis. This 

trend was then added back into the model before the predictions were made, allowing 

the directional influence to be included. The two predictive maps show relatively similar 

predictions, with higher prevalence values in the Northeast and Central regions (Fig. 

6.5a, b). The directional model indicated no disease in parts of South Africa and the 

Ethiopian highlands. The disease prevalence can be seen to change rapidly along the 

northeast to southwest axis. This coincides with well-defined changes in the ecology of 

the region, from the and deserts in Sudan to the equatorial forests of the Democratic 

Republic of the Congo. 

The predicted prevalence against the observed values shows that both models 

perform equally well although neither model predicts prevalence values >0.25 (Fig. 6.6). 

Both models under-predict large values and over-predict small values which is a 

common feature of kriging. Comparison of the models showed that the ordinary kriging 

model gives the best overall predictive model for these data (Table 6.2). The mean 



prediction error is smaller for the ordinary kriging model, indicating smaller differences 

between the fitted and observed values than the directional kriging model. The 

standardised root mean squared prediction error is closer to 1, proving a better model 

fit. 

The probability maps show the likelihood of the prevalence exceeding a 

threshold of 0.1 using the ordinary kriging method and the indicator kriging method 

(Fig. 6.5). Both models show similar results for high probability of disease in central 

regions of Africa and a lower probability in eastern and southern coastal areas. The 

indicator model predicts areas where schistosomiasis is unlikely to occur, e. g. Namibia, 

Gabon, Mauritania and Senegal. Data are not available for many of these locations and so 

it is not possible to confirm these findings. The ordinary probability model is likely to 

over-estimate the probability of disease, it predicts that every region has z 50% chance 

of having a prevalence >0.1. 
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Figure 6.4 Semivariogram for ordinary (a) and directional kriging (b). 
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Figure 6.5 Predicted prevalence maps using ordinary (top left) and directional kriging 

(top right) and probability maps using ordinary (bottom left) and indicator kriging 

(bottom right). 
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Figure 6.6 Predicted logio (prevalence) against observed logo (prevalence) for ordinary 

(a) and directional kriging (b). Ordinary kriging model R2 = 0.29, directional kriging 

model R2 = 0.252. 



Table 6.2 Comparison of kriging methods. 

The mean prediction error gives an estimate of the deviation of the predicted values 

from the observed values, therefore a lower value denotes a better fitted model. The root 

mean squared prediction error gives the expected sum of squared deviations of the fitted 

values from the observed values. Standardised root mean squared values close to 1 

indicate a good-fitting model. 

Predictive models Probability models 

Prediction Ordinary Directional Ordinary Indicator 

errors 

Mean 0.000883 0.00745 0.121 0.00144 

Root mean sq. 0.516 0.507 0.431 0.394 

Average SE 0.543 0.547 NA 0.432 

Standardised 0.00154 0.0137 NA 0.00331 

mean 

Root mean sq. 0.951 0.926 NA 0.913 

standardised 



6.3.3 Predicting the distribution ofschistosomiasis using climate models 

The values for the climate variables were extracted from the maps for each of the 

study sites. Examination of the climate maps demonstrates a clear relationship between 

the climate predictors and prevalence of schistosomiasis. The lack of available 

prevalence data for the northern regions of Africa means that no definite associations 

can be drawn from these areas. The data show that the approximate mean monthly 

temperature cut-off point for schistosomiasis transmission is around 28-30°C, whilst the 

precipitation data show that schistosomiasis is unlikely to occur in regions with a very 

low monthly rainfall (Fig. 6.7a, b). Low temperature may be a limiting factor in 

schistosomiasis distribution, the disease is absent in large areas of southern Africa and 

the eastern highlands. In areas with an NDVI value of <0 (i. e. barren areas), very little 

schistosomiasis has been reported (Fig. 6.7c). 
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6.3.5 Climate model selection 

The relationship between schistosomiasis prevalence and each potential 

explanatory variable was examined first using scatter plots. Each explanatory variable 

was tested for correlation with all of the others and the results are presented in Table 

6.3. As no correlation coefficients over 0.9 were recorded, every variable was included in 

the preliminary model. The importance of each term was assessed before removal using 

Aikake's Information Criterion (AIC), with lower values suggesting that the excluded 

term was unimportant. The final parsimonious GLM (Model 1) contained nine significant 

explanatory variables for the prediction of schistosomiasis prevalence (Table 6.4). These 

were elevation, elevation2, minimum temperature, minimum temperature2, maximum 

temperature, maximum temperature2, rainfall, water temperature and mean 

temperaturez. This model indicates that these ecological factors are strongly associated 

with the presence of schistosomiasis. Population density was not significantly associated 

with disease prevalence. Model 2 (LRM) was developed in the same way and showed a 

significant association between schistosomiasis prevalence and mean temperature, 

elevation and rainfall (Table 6.5). 



Table 6.3 Correlation coefficients for environmental variables. 

Mean 

temp 

Min 

temp 

Max 

temp 

Rainfall Water 

temp 

NDVI 

Elevation -0.717 -0.523 -0.616 -0.119 -0.0312 -0.077 

Mean 0.771 0.851 0.0523 -0.0202 0.0954 

temp 

Min 0.411 0.0754 0.0992 0.0433 

temp 

Max 0.0248 -0.092 0.128 

temp 

Rainfall 0.165 0.584 

Water -0.0322 

temp 



Table 6.4 Minimum adequate Generalised linear model (Model 1) for schistosomiasis 

prevalence. 

Variable Coefficient SE Z-value P 

(Intercept) -3.169e+00 5.754e-01 -5.508 < 0.0001 

Elevation -2.200e-04 4.335e-05 -5.075 < 0.0001 

Min. temp -5.075e-01 1.532e-02 -33.131 < 0.0001 

Max. temp 4.253e-01 3.273e-02 12.996 < 0.0001 

Rainfall 9.028e-04 1.909e-04 4.728 < 0.0001 

Elevation A2 2.746e-07 1.847e-08 14.867 < 0.0001 

Min. temp ^2 1.837e-02 5.571e-04 32.969 < 0.0001 

Mean temp ^2 2.517e-03 2.237e-04 11.251 < 0.0001 

Max. temp ^2 -6.293e-03 4.835e-04 -13.016 < 0.0001 

Water temp ^2 -2.924e-04 5.464e-05 -5.352 < 0.0001 

Table 6.5 Minimum adequate ordinal logistic regression model (Model 2) for 

schistosomiasis prevalence. 

Variable Coefficient SE Z-value P 

Mean temp -0.1402092 0.0204967 -6.84 < 0.0001 

Rainfall -0.0022741 0.0011433 -1.99 0.0467 

Elevation -0.0004076 0.0001026 -3.97 0.0001 



The GLM (Model 1) and LRM (Model 2) were used to predict prevalence and 

probability of schistosomiasis in locations in Africa where data were not observed (Fig. 

6.8). Model 1 predicts actual prevalence of schistosomiasis at each location whereas 

Model 2 gives a predicted probability that the prevalence level will fall into one of four 

categories. These maps reveal the differences in predictive outputs between the two 

modelling techniques. A threshold prevalence of 0.7 was used for the output of Model 2 

to highlight the areas that were most at risk of infection, therefore the map shows the 

probability of each area experiencing a prevalence of >0.7 (Fig. 6.8b). The most obvious 

differences between the two models are found in the regions that are predicted to have a 

very low probability of schistosomiasis (South Africa, Botswana and Zimbabwe). This 

may have occurred due to differences in the method of predictions although both models 

over-estimate the level of infection compared with the empirical data. Model 2 predicts 

that northern Egypt, parts of Uganda and Kenya, and most of southern Africa will 

experience a low probability of disease. Both models predict that northern regions of 

Africa will experience high prevalence / probability of infection. This is likely to be an 

over-estimation as very dry regions will not be able to support the snail host. 

The association between Koeppen classes and prevalence levels was analysed 

using ANOVA (P = 0.07) (Table 6.6). Although the overall test was non-significant, it 

indicated differences in prevalence between the equatorial climate (class A) and the 

warm temperate climate (C) (P = 0.029). No differences were found between the and 

climate (B) and classes A and C (P = 0.96). The differences in coefficient values for A and 

C show that prevalence in temperate climates was on average 2% lower than in 

equatorial climates. As the overall result was non-significant, this model was not used to 

create a predictive map of prevalence. 



Table 6.6. Analysis of Koeppen classification using ANOVA 

Coefficients SE t-value Pr(>Itl) 

(Intercept) 12.46251 0.60312 20.664 <2e-16 

Class B -0.05474 1.22594 -0.045 0.9644 

Class C -2.37777 1.08637 -2.189 0.0288 

6.3.6 Climate model validation 

Model 1 was validated using three threshold values, 0 versus >0, then thresholds 

of 0.2 and 0.7 were used. Model 1 failed to identify any areas with a prevalence <0.2. 

Validation of Model 1 using an observed prevalence threshold of 0.7 gave an accuracy 

rate of 55% although it performed less well in predicting sites with prevalence <0.7 

(21%). Model 2 gave the probability that the prevalence values lay within four 

categories, 0,0-0.2,0.2-0.7 and >0.7. This model correctly predicted the prevalence 

category for 51% of study sites and correctly identified study sites using a threshold of 

0.2 in 100% of cases, indicating highly accurate predictive performance. 

A sub-set of data which comprised Ethiopia, Kenya and Tanzania only, was used 

to create and validate a GLM. This was done to determine whether the predictive power 

of the model would increase with a smaller, more localised data set. The minimal 

adequate model was identical to the initial GLM containing all study sites and the 

predictive power of the model remained at 50%. 
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Figure 6.8 Spatial predictions of the GLM (Model 1) showing predicted prevalence (a) 

and the LRM (Model 2) showing probability of prevalence ? 0.7 (b). 

6.3.7 Predicting future risk of disease using climate models 

Model 1 (GLM) and Model 2 (LRM) were used to make predictions of disease risk 

using the climate data obtained from IPCC. The climate change model predicted a global 

temperature increase of 1.6°C by 2050 and 2.9°C by 2100 (Carter 2007). Model 1 

predicted an average prevalence of 0.88 over the continent compared with the observed 

current data average of 0.12 (Fig. 6.9a). No regions were predicted to have prevalence 

<0.5, indicating that no area would be completely free from the disease. Model 2 shows 

the predicted probability of prevalence >0.7 (Fig. 6.9b). This map shows that the 

probability of a high prevalence is between 0.4-0.5 for most areas. Both maps show a 

high prevalence of disease in areas currently unaffected by schistosomiasis, e. g. the 

Sahara, Niger and Chad. The relative change in disease distribution predicted by Models 

1 and 2 is shown in Fig. 6.10. Model 1 predicts increases in prevalence between 0.05 and 

0.25 throughout Africa, with the highest increases seen in Namibia and Angola (Fig. 



6.10a). Model 2 predicts that the probability of high prevalence will decrease in the 

Sahara (Niger, Mali, Algeria, etc. ). The region surrounding Lake Malawi shows the 

highest increase in probability (Fig. 6.10b). 
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Fig. 6.9 The predicted distribution of schistosomiasis by 2040-2069 given the SRA1B 

climate change scenario using Model 1 which predicts future prevalence (a) and Model 2 

which predicts the probability of prevalence >0.7 (b). 
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Figure 6.10 The relative change in schistosomiasis distribution from baseline (Fig. 6.8) 

to future estimates with temperature change (Fig. 6.9). This shows the change in 

prevalence predicted by Model 1 (a) and the change in probability of prevalence >0.7 

predicted by Model 2 (b). 



6.4 Discussion 

The ability to predict spatial distribution of disease is a valuable tool in 

understanding the epidemiology of transmission and can provide a basis for introducing 

targeted control programmes. This chapter shows that it is possible to predict the 

prevalence of schistosomiasis over a large-scale using a range of spatial and statistical 

models. Previous smaller-scale models have shown the considerable heterogeneity in 

schistosomiasis distribution, even within endemic communities (Raso et al.. 2005; 

Clennon et at. 2006; Brooker 2007). This study shows that the distribution of 

schistosomiasis shows marked spatial correlation and is correlated with long-term 

environmental variables. 

6.4.1 Spatial interpolation ofpoint-prevalence data 

In this study, maps showing the spatial variation of schistosomiasis risk in Africa 

were produced using point-referenced prevalence data. The maps are based on the 

spatial correlation between study sites, i. e. sites with high prevalence tend to be near to 

other high prevalence sites. This was tested using semivariograms with and without 

directionality, which showed that sites over 10 miles apart were not spatially correlated. 

Therefore, it is unlikely that prevalence in locations far away from known study sites can 

be accurately estimated. This suggests that prevalence is driven by highly localised (< 10 

mile) factors, which may explain the relatively poor performance of the large-scale 

spatial models. Spatial clustering in human disease data is inevitable, as human 

populations generally live in spatial clusters rather than a random distribution 

(Kleinschmidt eta/. 2000). 



Kriging is a useful method for predicting schistosomiasis risk in areas with a high 

density of study sites. However, given that the data used for obtaining the model are not 

homogeneously distributed, caution must be taken in extrapolating predicted risk 

outside the effective range. The ordinary and directional kriging maps show that the 

distribution of schistosomiasis is highly variable, with high prevalence in Kenya and 

Ethiopia (Fig. 6.5a, b). The directional kriging model showed a strong trend in the 

Southeast - Northwest direction, consistent with the data observed. However, this trend 

may have been due to the distribution of study sites, which has the potential to bias the 

model predictions. Both risk maps predicted high prevalence of disease in central and 

eastern parts of Africa with the highest prevalence values clustered around Lake Victoria 

and Lake Albert, two regions known to experience high levels of schistosomiasis (Dunne 

et al. 2006; Malenganisho et al. 2008). The ordinary kriging model provided the best 

estimates for prevalence based on the analyses. 

The two probability kriging maps showed differences in their predictions of low 

risk areas, the indicator kriging model predicted that areas of the Eastern coast, Algeria 

and Niger have a very low probability of disease whereas the ordinary probability 

kriging map predicted that these had a probability of 0.5-0.6 (Fig. 6.5c, d). It is not 

possible to statistically compare the two probability models, as they use different 

techniques to predict the risk of infection. Generally, the indicator kriging agreed with 

the observed data more than the ordinary probability model, which over-estimated the 

risk of infection throughout Africa. Both of these maps over-estimate the probability of 

disease in Africa, showing high risk of infection in regions known to be unaffected by 

schistosomiasis, e. g. South Africa and the Sahara. The current absence of disease in South 

Africa is likely to be due to the high socio-economic status and availability of high-quality 

healthcare. They also show a high risk of infection in countries with little or no 

schistosomiasis prevalence data, such as Libya and Algeria. These countries may be at 



risk of disease as neighbouring countries Egypt, Mali and Chad have previously 

documented the presence of infection (Doumenge 1987). 

One problem with this method is that some of the predicted values are outside 

the effective range for the spatial model to provide accurate predictions. There are 

insufficient data points with which to estimate some locations, particularly in the 

northern parts of Africa. The frequency of surveys tends to be higher in areas which 

experience high levels of infection, and so a paucity of data may indicate absence or low 

levels of infection. Therefore, the maps are likely to be most accurate where it matters 

most, e. g. in areas of high schistosomiasis prevalence. These maps are useful for 

focussing schistosomiasis control efforts. They highlight areas that are most likely to 

experience high disease burden and identify gaps where our knowledge is limited. 

6.4 .2 Predicting risk of disease using climate models 

These models are based on statistical methods that incorporate the impact of 

climatic variables on the prevalence of disease. Some say this may be a better approach 

than using GIS and spatial statistical methods although both methods are subject to 

limitations (Diggle et al. 1998; Kleinschmidt et al. 2000; Diggle et al.. 2002; Boyd et a/. 

2005; Kazembe et al. 2006). Predicting prevalence based on climatic variables reflects 

the ecology of the intermediate and definitive host population. The advantages of using 

either spatially interpolated or remotely-sensed climate values has been discussed 

previously (Hay and Lennon 1999). Following their analysis, the land surface 

temperatures used in the climate models were derived using spatial interpolation of data 

recorded at meteorological stations. Precipitation levels were derived using RS, which 

provides a more accurate measure of this spatially stochastic variable. 

An important finding in this study is that large-scale environmental factors 

influence large-scale infection patterns. This is similar to other studies documenting 



spatial distribution of helminth infections in general (Brooker et al. 2004) and 

schistosomiasis in particular (Malone etal. 2001b). Temperature plays an important role 

in establishing the boundaries of disease distribution. The biological explanation for this 

is provided in Chapters 2 and 3, which show the thermal limits to schistosome and snail 

populations. In addition to temperature, rainfall and elevation influence the transmission 

of disease. There is a correlation between elevation and mean land surface temperature, 

although the correlation coefficient was not high enough to justify removing it from the 

model. Areas with low monthly rainfall (<50mm) are not able to support snail habitats. 

In these areas, alternate habitats may be created by irrigation dams or water projects. 

Human population density was not correlated with prevalence of schistosomiasis. This is 

likely to be due to the presence of disease in both highly and sparsely populated 

communities. 

Predicting schistosomiasis prevalence using only generalised linear regression 

tends to produce predicted values that are pulled towards the mean (Kleinschmidt et al. 

2000). For example, different levels of prevalence may be seen in two distinct locations 

in Africa with similar climatic conditions. Generalised regression modelling would 

predict similar values for these two locations based on the climate data alone, which 

would produce large residuals. Including a spatial factor in the model may adjust these 

values to better reflect the actual prevalence observed. Spatial correlation between the 

data points may arise due to unknown factors, and so incorporating a spatial random 

effect in the model would account for these and may provide a better model fit. 

Using the Koeppen classification system as an alternative measure of climate did 

not produce a statistically significant model. There was a significant difference between 

the prevalence recorded in the tropical climates (Class A) and the temperate climate 

(Class C), possible due to the cooler winter temperatures in these climates. This 

alternative climate model may become more effective in predicting disease risk as more 



disease data are collected. Indeed the distribution of data in this case may have biased 

the model. The majority of study sites were recorded in Class A (928) compared with 

Class B (296) and Class C (412). Taking an equal, random sample from each class may 

improve the model fit and would be an interesting next step. If a larger dataset were 

available, the more detailed Koeppen classification system could be used, which divides 

the data into more categories. This finer resolution may detect differences in 

schistosomiasis prevalence not identified by the coarse-scale system. 

6.4.3 Using climate data to predict future risk of disease 

Predicting the future risk of disease is difficult, as the transmission of disease is 

dependent on numerous factors other than climate. However, it is interesting to see how 

long-term climatic changes may change the distribution of disease in the absence of any 

intervention programmes. Using a climate change scenario which incorporates high 

rates of C02 increase gives a "worst-case scenario" of future climate conditions. Model 1 

predicted a prevalence of 0.5-1.0 for the whole continent, with no areas left unaffected. 

Model 2 predicted that the probability of a high prevalence of disease (>0.7) would be 

approximately 0.4 for most of Africa. The only area with a low probability was found 

around Lake Victoria, which currently experiences high prevalence. As these maps are 

based on climate models, they provide good indicators for which areas may experience a 

change in temperature suitability over the next 50 years. As cool areas become warmer, 

and dry areas become wetter, there may be an increase in the number of areas able to 

support the intermediate host snail. An expansion in intermediate host distribution is 

likely to be followed by an expansion in parasite distribution (Kristensen eta!. 2001). 



6.4.4 Conclusions and further study 

This study shows the importance of integrating spatial correlation with climate 

factors in the prediction of schistosomiasis risk. Generally, the climate models showed 

that temperature, rainfall and elevation have an important role in defining 

schistosomiasis risk in Africa. The results presented here have some limitations. Firstly, 

the data points used for the analysis were irregularly distributed over Africa and tended 

to be clustered in more politically stable countries. Some countries such as Algeria and 

Libya, had no data available. It is not known whether this is due to an absence of the 

disease, as studies are often biased towards positive findings. This has the potential to 

bias the data. Using a climate model may have reduced this bias as disease prevalence is 

correlated with environmental predictors. Without any empirical data at these sites, it is 

not possible to validate the predictions for these areas. Secondly, the data used here have 

been compiled over 30 years and the prevalence of disease may not have been constant 

over this time. For example, shifts in populations, changes in socio-economic 

development and advances in irrigation may all have changed the distribution of disease. 

These effects are more likely to be important in previously unaffected areas in which the 

disease is introduced, or areas with low prevalence, in which the disease may be able to 

die out with effective interventions. The new atlas of human helminth infection currently 

being developed will provide a useful tool in defining the risk of disease in Africa 

(Brooker et al. 2000). This database will provide an up-to-date resource collating all 

known sources of disease data throughout Africa, along with the study methods and 

study population. 

Schistosomiasis transmission is complex and is determined by more than large- 

scale topographical and climatic factors. Socio-demographic factors, economic 

development and micro-variations in climate will all affect transmission. Adding these 



data to a model is very complicated, but it would be worthwhile exploring how the 

addition of independent covariates improves the model fit. 

Another useful approach to modelling distribution of disease is universal kriging. 

This is an extension of ordinary kriging and incorporates regression modelling along 

with spatial modelling (Diggle eta] 1998). This method would be appropriate for any 

infectious disease known to be associated with climate variables as it incorporates the 

climate covariables with the position of the location and its relation to other study sites. 

Essentially, this technique combines the two separate modelling approaches described 

earlier into one comprehensive model. This approach would avoid breaching the 

assumptions of the ordinary kriging model, which assumes the data have a constant 

mean. In universal kriging, the mean is a function of the covariates, rather than a 

constant. Currently, universal kriging applied to a generalised linear model is not 

available, but will provide an invaluable tool in the future (Kleinschmidt etal.. 2000). 

Despite the limitations, the maps of predicted current and future risk of 

schistosomiasis in Africa provide an indispensable portrayal of geographical variation of 

disease risk. This is the only study which examines the predictions of both spatial and 

climate models on the risk of schistosomiasis over the whole continent and, as such, 

provides a baseline model which can be continually updated. This work can be extended 

to include precipitation and snail distribution as a limiting factor. 



CHAPTER 7 

Conclusions 



7.1 Conclusions 

The main aim of this thesis was to develop models to describe schistosomiasis 

transmission and the impact of climate change on the distribution and intensity of 

disease. New mechanistic models have been developed in this thesis to incorporate snail 

population dynamics and density-dependence in the parasite and snail populations into 

the models. Parameter estimates for these models were obtained for a number of key 

parameters in the model using a single host-parasite combination, Biomphalaria 

alexandrina - Schistosoma mansoni. Geospatial models were then developed to predict 

risk of disease in areas where no data are available and risk of disease in the future, 

given current concerns for global warming. These methods have been applied to address 

several important epidemiological questions, such as 1) will schistosomiasis 

transmission dynamics change with changing temperature?; 2) what is the most effective 

intervention strategy and how is this affected by temperature?; 3) can the risk of disease 

be estimated for unknown locations using data from known study sites?; and 4) how will 

the distribution of schistosomiasis in Africa change with climate change? A detailed 

discussion of the findings was provided in each chapter. Here I present a summary of the 

key findings along with their epidemiological significance. Recommendations for future 

research are also discussed. 

7.2 Development ofschistosomiasis models 

In this thesis, three principal modelling techniques were used. A series of 

increasingly complex mechanistic models were developed to describe the biological 

processes of schistosomiasis transmission. Generalised linear models (GLM) and 

ordered regression models (LRM) were used to relate climate data to schistosomiasis 



prevalence data over the African continent. Finally, geospatial (kriging) models were 

developed to study the spatial correlation between study sites and predict the risk at 

other locations. 

The sensitivity analysis performed in Chapter 2 highlighted the importance of 

snail population dynamics in the transmission of schistosomiasis. This provided the 

impetus for accurate estimation of these parameters in a controlled set of experiments, 

using one host-parasite combination. Clearly, controlled laboratory experiments cannot 

mimic the conditions in the field, but these results provided a baseline set of parameter 

values. Seasonal dynamics and diurnal temperature fluctuations may affect the life- 

history traits measured in these experiments, but the temporal scale of the models was 

years, rather than weeks or days. The paucity of data concerning the effects of density- 

dependence in the snail population prompted the studies detailed in Chapter 3. Inclusion 

of the density-dependent relationships described in Chapter 3 emphasised the 

importance of transmission from snail to man. This has important epidemiological 

significance; an intervention strategy that targets the most sensitive parameters will 

have the most successful outcome. This model showed that stopping cercarial infection, 

by reducing contact with contaminated water, would have the greatest impact on 

reducing morbidity (Chapter 5). If the disease can be controlled by improving access to 

safe water and changing behavioural patterns, this would eliminate the need for mass 

treatment campaigns and mollusciciding programmes. The high sanitation levels in 

South Africa may explain the absence of disease from an area which has a suitable 

climate for transmission (Chapter 6). Similarly, low prevalence rates in Botswana may 

reflect the high socio-economic standards of this country compared with its neighbours 

(Doumenge 1987). 

Many existing models make unrealistic assumptions which alter the behaviour of 

the model. Firstly, the common assumption of identical mortality and fecundity rates for 



uninfected, latently and patently infected snails. This assumption will lead to false 

estimates of snail population dynamics, which were among the most sensitive 

parameters in the models presented here. Inclusion of additional mortality due to 

infection has been done by Zhao and Milner (2008), however the model was not 

parameterised using empirical data. Previous models, which lack this feature, are likely 

to overestimate the abundance of snail hosts and therefore, the prevalence and intensity 

of disease. Including snail population dynamics in a transmission model can change the 

behaviour of the model from an endemic equilibrium state to a cyclical periodic state 

(Feng et al. 2002). Secondly, the absence of density-dependence in the snail population 

and the adult parasite population cannot be justified. Parasitic regulation of snail host 

mortality and fecundity is well documented and the addition of this feature in the model 

significantly changes the dynamics of the system (Chernin and Michelson 1957; Baudoin 

1975; Anderson 1978; Feng etal. 2002). 

Further parameters that could be incorporated into a transmission model 

include heterogeneous water contact patterns, acquired immunity and seasonality. 

Modelling water contact patterns is complex; it relies on an understanding of the 

availability and accessibility of water sources for each household, along with the 

variability in water use in space and time (Watts et al. 1998). Heterogeneity in water 

contact patterns do not significantly alter the behaviour of a model (Yang 2003) and so 

were not considered in this thesis. However, when acquired immunity was added, this 

partly explained the robust transmission of schistosomiasis, showing that a very low 

worm burden per person is sufficient to maintain the disease in a community (Yang 

2003). Seasonal dynamics of environmental risk factors will certainly affect short-term 

schistosomiasis transmission and this approach has previously been studied for malaria 

transmission (Mabaso et al. 2007). Further study on seasonality in schistosomiasis is 



required and would prove useful in non-endemic areas which experience seasonal peaks 

in transmission. 

The effects of temperature on schistosome transmission dynamics have been 

explored in Chapters 2,3, and 5. Clearly, ambient temperature will be an important 

regulatory factor in transmission, a point reinforced by the climate models presented in 

Chapter 6 and previous studies (Pfluger 1980; Malone et al. 2001b; Brooker 2002; 

Stensgaard etal. 2005). Other potential ecological risk factors were monthly rainfall and 

elevation. One interesting question arises: why is schistosomiasis transmission currently 

limited to defined foci, when the suitable climate range extends the full length of Africa? 

This study shows that the predominant ecological factors go some way to defining the 

distribution of disease, but there exists an unexplained amount of variability, which 

cannot be attributed to climate (Ostfeld 2009). This will be dependent on socio- 

economic factors, human behaviour, treatment programmes, etc., which are beyond the 

scope of this modelling approach. "Environmental niche"-based models fail to take into 

account other potential drivers of species abundance / distribution. Localised variation 

in socio-economic status and other risk factors need to be considered when predicting 

schistosomiasis distribution. These factors may explain some of the limitations in my 

predictive models. 

To accurately predict future disease distribution, it is necessary to consider each 

of these factors in turn and its relative importance in transmission. The maps showing 

how the distribution of disease may change with climate change in Chapter 6, consider 

the worst-case scenario, i. e. what would happen in the absence of control interventions. 

Clearly, schistosomiasis has the potential to spread throughout Africa and increase in 

intensity in current endemic areas. 

A review paper summarising the current uses of GIS in schistosomiasis 

epidemiology found that in East Africa, schistosomiasis transmission rarely occurs 



where annual maximum land surface temperatures exceed 33°C (Malone eta]. 2001b). 

In Cameroon, West Africa, the upper threshold value for transmission was >45°C. This 

discrepancy could be attributed to the different snail species, Bulinus senegalensis, 

present in West Africa (Greer et al. 1990). In addition, the and conditions of West Africa 

concentrates communities around the few water bodies available, increasing the risk of 

transmission (Brooker 2002). There is a need for a multi-faceted modelling approach 

which characterises the changing ecology of snail hosts in different regions of Africa. For 

vector-borne diseases such as schistosomiasis with relatively weak spatial patterns, 

models that include a spatial component will improve predictions by capturing 

geographical shifts in the principal ecological risk factors. 

The fundamental objective of these models was to provide information on the 

risk of infection so effective prevention and control programmes could be designed. 

Although large-scale models cannot identify foci of high transmission, they are useful in 

identifying at-risk populations, and, conversely, populations that are unlikely to be 

infected. Smaller-scale national or sub-national studies can identify risk factors in local 

populations, such as irrigation schemes and distance to nearest water body (Brooker et 

a/. 2001; Leonardo eta] 2005). These models can also estimate the burden of infection 

within a community and therefore provide policy-makers with essential information to 

guide their decision on targeted intervention strategies. Simulations of control measures 

(in Chapter 5) predicted that the optimal control strategy would be to reduce human 

contact with infective cercariae, either through health education or through 

improvements in sanitation. The highest rates of infection are usually found in children 

aged 5-15 (WHO 2002). Using risk models combined with population data enables us to 

quantify the target population and direct resources towards the highest risk group. Using 

this approach also allows direct estimation of the costs involved in each intervention 

strategy. 



73 Summary offindings 

" Three specific population processes were shown to be particularly important in 

determining the dynamical behaviour of the schistosomiasis transmission model; 

the differing mortality and fecundity rates of infected snails, the non-linear 

density-dependent constraints on snail populations, and the density-dependent 

fecundity of adult parasites. 

" Temperature significantly alters the dynamics of the transmission model and the 

efficacy of control programmes through variations in both host and parasite life- 

history traits. 

" The distribution of schistosomiasis is directly influenced by climatic factors. 

Temperature, rainfall and elevation provide defined thresholds for transmission, 

outside which, schistosomiasis is unlikely to occur. 

7.4 Future work 

Studies using GIS and remote sensing of schistosomiasis in Africa are remarkably 

lagging behind those of malaria studies (Craig et al. 1999; Kleinschmidt et a/. 2000; 

Diggle etal. 2002; Rogers eta!. 2002; Tanser eta!. 2003; Kazembe etal. 2006; Mabaso et 

al. 2007; Abellana et al. 2008). Although progress has been made in developing 

predictive risk models, there remain some important issues which need to be 

investigated. Firstly, the paucity of data in many regions of Africa hinders progress in 

developing accurate models over a large-scale. Current attempts to combine all recorded 

sources of infection data to date will provide an invaluable tool for future research 

(Brooker etal. 2000). Gaps in our knowledge often result from political instability within 



an endemic region and without these data, future risk of disease must be interpolated 

from neighbouring countries. Secondly, the use of the basic reproductive ratio, Ra as a 

measure of the potential of a disease to spread would be a logical next step (Dobson 

2009). This mechanistic approach can incorporate explicit relationships between 

environmental variables (predominantly temperature) and key host-parasite life-history 

parameters. This has previously been used for malaria (Rogers et al. 2002) and a similar 

approach would provide further insight into the important parameters involved in 

schistosomiasis transmission. Thirdly, further study needs to be done on the socio- 

economic and behavioural traits which determine transmission. Inclusion of these 

factors in a transmission model will improve the accuracy of predictions. These factors 

may be parameterised for each ecological zone, or for each endemic community, to 

provide distinct models based on the ecology of each particular area. A final point to note 

is that few studies explicitly quantify the impact of health education and sanitation on 

schistosomiasis prevalence and intensity. This was the most effective intervention 

strategy in the models, and as this would prove a more cost-effective strategy than mass 

chemotherapy and mollusiciding, the efficacy of this type of intervention programme 

should be thoroughly tested in the field. 



Appendix Al 

Estimating the parameters for the schistosomiasis transmission 

model 

The model in Chapter 2 was parameterised using all available data from the 

literature, where laboratory experiments were conducted at a range of temperatures 

(described below). The parameter estimates were then extrapolated at the range of 

temperatures shown to obtain estimates of parameter values at the baseline 

temperatures of 20,25,30 and 35°C. Clearly, these studies were conducted under a 

range of conditions, sometimes using different snail or parasite species. It would 

therefore be invaluable to conduct comprehensive experiments using specific host- 

parasite species combinations at the full range of temperatures to obtain more accurate 

parameter estimates. However, the present data is used as a baseline with which to 

parameterise the model, fully acknowledging their limitations. 

A1.1 ESTIMATING MORTALITY RATES 

1) Snail mortality rates (ö, and Ss) 

El-Hassan (1974) presented mortality rates for juvenile and adult snails at a 

range of temperatures over a two-week period. These can be converted into mortality 

rates per day using the following equation: 



ý_- 
In(N, /No) 

t 

where Nt is the number alive at time t This resulted in the following estimates: 

A1.1 

Table AM Adult and juvenile snail mortality rates over 10-35°C. 

Temperature (°C) Juvenile mortality rate day-' (8, ) Adult mortality rate day-' 

(as) 

10 0.0080 0.0038 

15 0.0046 0.0062 

20 0.0022 0.0038 

25 0.0038 0.0030 

30 0.0071 0.0080 

35 0.0207 day-1 0.0182 day-' 

2) Additional snail mortality due to infection (a) 

Foster (Foster 1964) also produced similar data to that of El-Hassan (El Hassan 

1974), showing percentage mortality after 60 days for both infected and uninfected 

snails. Using equation A1.1, ös and the additional mortality due to infection (a) were 

calculated, producing the following data: 



Table A1.2 Additional mortality of snails due to parasitic infection. 

Temperature Uninfected mortality Infected mortality Additional mortality 

(°C) day' (ös) day-l (61) day-' (a = öi -ds) 

22.85 0.0031 0.0067 0.0036 

24.01 0.0033 0.0116 0.0082 

26.26 0.0039 0.0260 0.0221 

28.07 0.0085 0.0368 0.0283 

3) Miracidial mortality rate (6M) 

Anderson etal (1982) presented data on the mean miracidial life expectancy (in 

hours) over a range of temperatures. These were converted to daily mortality rates 

(1/life expectancy) to give the following values: 

Table A1.3 Miracidial mortality rates over 10-40°C. 

Temperature (°C) Miracidial mortality rate day-' (ÖM) 

5 4.90 

10 2.18 

15 1.50 

20 2.00 

25 2.53 

30 4.36 

35 4.44 

40 4.80 



4) Adultparasite mortalityrate (AP) 

Stirewalt (1954) presented data on the proportion of mice containing a varying 

initial number of worms seven weeks post-infection, which can be used to calculate the 

mean number of worms per mouse at the end of the seven weeks. In addition, Stirewalt 

also presented the average number of cercariae that penetrated each mouse at time t= 

0. Using equation Al, with t= 49 days, No the initial number of cercariae infecting and NN 

the mean number of worms per mouse at the end of the seven weeks gives the following 

estimates of adult parasite mortality (ör): 

Table A1.4 Adult schistosome mortality rates. 

Temperature (°C) Adult schistosome mortality rate day-' (Sp) 

23-25 0.022 

26-28 0.015 

A1.2 ESTIMATING DEVELOPMENTAL RATES 

1) Schistosome maturation rate (patency, a) 

Foster (1964) presented data on the time of development to cercarial shedding 

for Schistosoma mansoni in Biomphalaria pfeifen Based on the minimum and 

maximum periods to shedding presented, the mean maturation rates are: 



Table A1.5 The maturation rates of Schistosoma mansoni in B! omphalaria pfeifen. 

Temperature (°C) Average days to shedding Maturation rate day-' (o) 

18 57 0.018 

21 37 0.027 

23 34 0.029 

24 32 0.031 

26 24.5 0.041 

28 21.5 0.047 

30 20 0.050 

32 17.5 0.057 

2) Snail maturation rate (Bs) 

El-Hassan (El Hassan 1974) determined the minimum and maximum incubation 

periods of Biomphalaria alexandrina eggs between 15°C and 30°C. Based on the average 

number of days to hatching the mean hatching rate for each temperature is: 

Table A1.6 Maturation rates of Biomphalaria alexandrina. 

Temperature (°C) Incubation period (days) Hatching rate day-' (Ai) 

15 23.5 0.042 

20 12.5 0.080 

25 10 0.100 

30 8.5 0.118 



A1.3 ESTIMATING BIRTH (PRODUCTION) RATES 

1) Snail egg-laying rates (a) 

El-Hassan (1974) measured the number of eggs laid per snail per day for B. 

alexandrina over 60 days, resulting in daily per capita egg production rates of: 

Table A1.7 The egg-laying rates of Biomphalaria alexandrina per day. 

Temperature (°C) Eggs per snail day-' (as) 

10 0 

12.5 0.06 

15 0.16 

20 0.66 

25 0.85 

28 0.23 

30 0.57 

35 0 

Infected snails were assumed to be castrated following miracidial infection, i. e. a '--O 

(Crews and Yoshino 1989). 

2) Cercaria/production (Ac) 

Fried eta! (2002) presented data on the number of cercariae released during one 

hour under various conditions. Based on their standard (incandescent light) conditions, 

at different temperatures, the daily cercarial production rates (per infected snail) are: 



Table A1.8 The number of S. mansonicercariae produced per day at 12-35°C. 

Temperature (°C) Number of cercariae (Ac) 

12 504 day-' 

25 4128 day' 

35 8400 day' 

A1.4 ESTIMATING INFECTION RATES 

1) Miracidial infect on ofsnails (As) 

Stirewalt (Stirewalt 1954) presented data on the percentage of snails becoming 

infected following exposure to 1 miracidium in 1 ml water for 24 hours. The dynamics of 

this experiment can be described by the equations: 

dU_ 
_MUß` A1.2 dt 

W 
=MUAV A1.3 dt 

dM 
_ _MNßs A1.4 dt 

where Uare the number of uninfected snails, Ithe number of infected snails, Nthe total 

number of snails (U+/) and Mthe number of miracidia. Solving these equations provides 

the following expression for the number of infected snails at time t 



Mp 1-e ßSNC 

1r=1-e N A1.5 

which can be rearranged to provide an expression for ßs 

in[Mo+N in(1-1t)] 
fl 

S-- MoNt 
A1.6 

Given Mo (the initial number of miracidia) = 1, t=1 day and It is the final number of 

infected snails at the end of the experiment, this equation provides the following 

estimates of miracidial infections rates: 

Table A1.9 The infection rates of miracidia from 23-33°C. 

Temperature (°C) Miracidial infection rate (fas) 

23-25 0.487 day' ml-' 

26-28 1.498 day-' ml-' 

31-33 1.324 day-' ml-1 

2) Cercarial infection of definitive host (ßy) 

Stirewalt (Stirewalt 1954) presented data on the number of worms infecting 

mice following exposure to 50 cercariae for 1 hour. As before, this experiment can be 

described by the equation: 

dC 
= _ßHCM A1.7 dt 



where C is the number of cercariae in the water and M the number of mice (which 

remained constant at 1). This equation can be solved to give the expression: 

In( c 
'ICj A1.8 ßH-- 
t 

where Cr is the number of cercariae that did not infect and Co is the initial number of 

cercariae. Applying this equation to Stirewalt's data provides the following estimates of 

miracidial infections rates: 

Table A1.10 The S. mansoni cercarial transmission rate over 23-28°C. 

Temperature (°C) Cercarial transmission rate ((3H) 

23-25 52.97 day-' ml-1 

26-28 71.90 days ml-' 



Appendix A2 

Determining the parameter estimates used in Chapter 5 

Parameters that were not experimentally obtained in Chapters 3 and 4 were 

determined using data from the literature. Values for 18,23,29 and 34°C were 

extrapolated from the data and converted to a volume of 2L to correspond with the 

density experiment (Chapter 4) where necessary. Extrapolation was performed by 

fitting a number of relationships (linear, quadratic, logarithmic) to the reported data and 

selecting the relationship with the highest R2 value. These studies from the literature 

were conducted under different conditions, sometimes using different snail species. It 

would, therefore, be beneficial to obtain these parameter values using one host-parasite 

combination at a range of temperatures to achieve more accurate parameter estimates. 

However, these data are used to parameterise the model where necessary, although their 

limitations are recognised. 

A2.1 MORTALITY RATES 

1) Adult schistosome death rate (8P) 

The adult schistosome is not subjected to significant variations in temperature as 

it remains within the human body for the duration of its life-span. The average life-span 

of the adult parasite is 5 years (Feng etal. 2004), which was converted to a daily rate for 

the model (Eq. A2.1). 



1/ (life-span in years*365) = 5.47x10-4 day-' A2.1 

2) Miracidia death rate (6M) 

Data on the effects of temperature on miracidial survival were obtained from 

Anderson et al (1982). The daily mortality rates were derived from the mean life- 

expectancy (Table A2.1) and the values needed for the model were extrapolated from a 

quadratic equation fitted to the data (Fig. A2.1). 
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Figure A2.1 The relationship between temperature and miracidial mortality rate. 



Table A2.1 Data on miracidial mortality. 

The extrapolated values were obtained using the fitted quadratic relationship shown in 

Figure A2.1 (marked with an asterisk). 

Temperature Miracidial mortality rate 

(°C) 

5 4.9 

10 2.18 

15 1.5 

20 2 

25 2.53 

30 4.36 

35 4.44 

40 4.8 

-- ------------ 18 -------------------------------------------- 2.23* 

23 2.31* 

29 2.95* 

34 3.93* 

3) Juvenile snail mortality rate (5) 

El-Hassan presented mortality rates for juvenile snails at a range of temperatures 

over a two-week period (El Hassan 1974). These were converted into mortality rates per 

day using the following equation: 



In(N, /No) 

t 
A2.2 

where Nr is the number alive at timet The values at the four temperatures used in the 

model were then extrapolated from the data using the fitted quadratic relationship 

shown in Fig. A2.2. 
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Figure A2.2 Relationship between temperature and juvenile snail mortality rate. 

Table A2.2 Data on juvenile snail mortality rates. 

The values were extrapolated (*) from Fig. A2.2. 

Temperature 

(°C) 

Mortality rate 

10 0.008 

15 0.0046 

20 0.0022 

25 0.0038 

Y= 8E-05x2 - 0.0031x+ 0.0318 
R2=0.9516 x 



30 0.0071 

35 0.0207 

----------------------------------------------------------- 18 0.002* 

23 0.003* 

29 0.009* 

34 0.019* 

4) Snail mortalityrates(bs, ö4, ö, ) 

These data were obtained in Chapter 3 and were calculated as the mean 

mortality rate per snail per day at each temperature. The values were averaged over the 

study period for the uninfected snails, and over the latent and patent periods for the 

latently and patently infected snails respectively. The parameter estimates are presented 

in Table A2.10. 

5) Cercarial mortality rate (Sc) 

The mortality rates of cercariae at various temperatures were derived using data 

from Lawson and Wilson (1980) using Equation A2.2. The mortality rates obtained from 

the literature along with the extrapolated values for the model are presented below 

(Table A2.3) 
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Figure A2.3 The relationship between temperature and cercarial survival. 

Table A2.3 Mortality rates of cercariae and the extrapolated values (*). 

Temperature Mortality rate 

(°C) 

15 0.026 

20 0.086 

25 0.11 

30 0.22 

35 0.21 

40 0.77 

"------------- 18 --------------------------------------------- 0.063* 

23 0.12* 

29 0.18* 

34 0.21* 

y= 0.23611n(x)-0.6198 



A2.2 DEVELOPMENT RATES 

1) Within-snail schistosome maturation rate (Q) 

The time to patency for Schistosoma mansoni in Biomphalaria pfeitleri is presented by 

Foster (Foster 1964). The mean maturation rate was based on the minimum and 

maximum times to cercarial shedding (Table A2.4), and model parameters were 

calculated from the fitted linear relationship shown in Fig. A2.4. 
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Figure A2.4 Relationship between temperature and maturation rate of Schistosorna 

mansoni within Biomphalaria pfeitl eri. 



Table A2.4 Maturation rate of schistosomes within a snail host. 

The values were extrapolated for the model parameters (*). 

Temperature Average days to shedding Maturation rate (per day) 

(°C) 

18 57 0.017 

21 37 0.027 

22.85 34 0.029 

24.01 32 0.031 

26.26 24.5 0.041 

28.07 21.5 0.047 

30.04 20 0.05 

31.75 17.5 0.057 

18 0.016* 

23 0.03* 

29 0.047* 

34 0.061* 

2) Snail maturation rate (Bs) 

The minimum and maximum times to egg-laying were used to estimate the average 

maturation rate of Biomphalaria alexandrina (Table A2.5) (El Hassan 1974). The model 

parameters were calculated from the fitted quadratic relationship shown in Fig. A2.5. 
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Figure A2.5 The relationship between temperature and maturation rate of snails, marked 

by the onset of egg-laying. 

Table A2.5 The average time to the onset of egg-laying for Biomphalaria alexandrina. 

The extrapolated values for maturation rates (*). 

Temperature (°C) Average onset of egg-laying Maturation rate day-' 

15 90 

20 49 

25 35 

28 70 

30 84 

------------ 18 -------------------------------- 58 ----------------- 017* ........................ 0.. 017 

23 38 0.026* 

29 74 0.014* 

34 90 0.011* 

5 10 15 20 25 30 35 

Temperature (°C) 



A2.3 BIRTH (PRODUCTION) RATES 

1) Miracidial production rate (Au) 

Estimates for the average number of eggs produced per female adult schistosome per 

day range from 70 to 495 (Cheever and Anderson 1971; Cheever and Powers 1971; 

Powers and Cheever 1972; Damian et al. 1976). As a conservative estimate, a value of 

250 miracidia per day per female was chosen, which takes into consideration the rate of 

destruction of eggs within the human host. This parameter is assumed to be independent 

of temperature, since schistosome reproduction will be buffered from variations in 

temperature within the human body. 

2) Snail egg-laying rates(as. a,. a, ) 

The egg-laying rates for the uninfected, latently infected and patently infected snails 

were derived from the values obtained in Chapter 3. The mean numbers of eggs 

produced per snail per day were calculated for each temperature and are presented in 

table A2.10. 

3) Snail hatchingrate (9E) 

The hatching rates for Biomphalarfa alexandrina eggs were measured by El-Hassan 

(1974) over 10-37°C. These values were used to determine the values at the four 

temperatures used in the model by extrapolation from a fitted logarithmic function (Fig. 

A2.6). 
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Figure A2.6 Relationship between temperature and average hatching rate of 

Biomphalaria alexandrina eggs. 

Table A2.6 Average hatching rate for Biomphalaria alexandrina eggs. 

The model parameter values derived from these data (*). 

Temperature Incubation period (days) Hatching rate day-' 

(°C) 

15 23.5 0.042 

20 12.5 0.08 

25 10 0.1 

30 8.5 0.118 

--1--------- - -- --- - ---------------- 8 ----------------- 0. -06644-* -----------.. ----.... _-.... 

23 0.091* 

29 0.116* 

34 0.133* 



4) Probability ofhatching (v) 

The probability of Biomphalaria alexandrina eggs hatching was added to the model in 

Chapter 5 as a measure of snail egg death. The data were taken from El-Hassan (1974) 

and plotted as a piecewise, 3 segment linear regression using SigmaPlot v. 11.1 (Fig. 

A2.7). This method allowed the probability of hatching (y-values) to be constrained to 

between 0 and 1 and gave the most accurate representation of the data. 
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Figure A2.7 Piecewise 3 segment linear relationship between temperature and the 

probability of Biomphalaria alexandrina eggs hatching (R2 = 1). 
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This produced a series of three equations, describing the three linear regression lines: 

regionl(t)= 
(1.48E-024 *(15.2-t)+0.97 *(t -tl)) 

15.2-tl A2.3 

region2(t)= 
(0.97*(29.9 - t) + (t - 15.2)) 

29.9-15.2 

region3(t)= 
((t3 -t) - 2.01E - 26 *(t - 29.9)) 

0- 29.9 

If t <= 15.2079, use regionl(t) 

If t <= 29.8886, use region2(t) 

Otherwise use region3(t) 

where t1= min(t) and t3 = max(t). 

A2.4 

A2.5 



Table A2.7 Relationship between temperature and the hatching probability of 

Biomphalaria alexandrlna eggs. 

Temperature % not hatching Probability of hatching 

(°C) 

12.5 100 0 

15 10.5 0.9 

20 2.1 0.98 

25 1.2 0.99 

30 2.3 0.98 

35 100 0 

--- ------------------------------------------------------------------------------------------- 18 0.93* 

23 1* 

29 0.91* 

34 0.24* 

A2.4 INFECTION RATES 

1) Miracidia infection rate (, ßs) 

The infection rate of miracidia kept at different temperatures was documented by 

Anderson et al. (Anderson et al. 1982). This study exposed snails to miracidia in 5ml 

water and so these values were first converted to rates per 2L to correspond with the 

data obtained in Chapter 4. The parameter estimates for the model were then 

extrapolated from the quadratic relationship shown in Fig. A2.8. 
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Figure A2.8. The relationship between temperature and the daily miracidia infection 

rate. 

Table A2.8 Daily miracidia infection rates and the extrapolated values denoted by an 

asterisk. 

Temperature Infection rate 5m1-1 Infection rate 2L-1 

(°C) 

15 0.16 0.0004 

20 0.18 0.00045 

25 0.495 0.0012 

30 0.41 0.0010 

35 0.27 0.00068 

-18 -------------- ------------------------------- --------------- 0.000'0 00--57-* -------------------- 

23 0.00089* 

29 0.00094* 

34 0.00068* 



Z) Cercarial infection rate (#H) 

The cercarial infection rates were described in Appendix Al and were used in the same 

way to determine the values for the model parameters (Table A2.9 and Fig. A2.9). These 

data represent the best estimate available although they do not incorporate water 

contact patterns. 
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Figure A2.9 Relationship between temperature and the infection rate of cercariae. 

Table A2.9 The infection rate of cercariae determined for 2L water. 

Temperature Infection rate 2L-1 day-1 

(°C) 

24 0.0002435 

27 0.000749 

32 0.000662 

18 

23 

0.0000275 

0.0001025 

29 0.0001925 

34 0.0002675 

5 10 15 20 25 30 35 

Temperature (°C) 



Table A2.10 Summary of the parameter estimates for the models used in Chapter 5. 

Parameter Definition 18°C 23°C 29°C 34°C Source 

ör Adult schistosomes 0.00055 0.00055 0.00055 0.00055 (Feng eta!. 
death rate 2004) 

Ay Net miracidial 250 250 250 250 (Cheever and 
production rate Anderson 

1971; Cheever 
and Powers 
1971; Powers 
and Cheever 
1972) 

ßs Miracidia infection 0.00057 0.00089 0.00094 0.00068 (Anderson et 
rate aL 1982) 

6M Miracidia death 2.23 2.31 2.95 3.93 (Anderson et 
rate a!. 1982) 

a. Within-snail 0.016 0.030 0.047 0.061 (Foster 1964) 
schistosome 
maturation rate 

as Uninfected snail 3.38 12.56 6.48 2.52 Chapter 3 
egg laying rate 

as Latent snail egg- 11.18 10.18 8.71 2.12 Chapter 3 
laying rate 

al Infected snail egg- 3.83 2.22 0.093 0.009 Chapter 3 
laying rate 

Bs Snail hatching rate 0.064 0.091 0.12 0.13 (El Hassan 
1974) 

ös Snail egg mortality 0 0 0 0 
rate 

v Probability of 0.93 1 0.91 0.24 (EI Hassan 
hatching 1974) 

Os Snail maturation 0.017 0.026 0.014 0.011 (El Hassan 
rate 1974) 

öj Snail juvenile 0.0019 0.0028 0.0092 0.019 (El Hassan 
mortality rate 1974) 

8s Uninfected snail 0.01 0.0095 0.0071 0.0071 Chapter 3 
adult mortality rate 

& Latent snail 0.01 0.0067 0.011 0.013 Chapter 3 
mortality 

Si Infected snail 0.0026 0.02 0.0038 0.006 Chapter 3 
mortality 

q Strength of density 0.01 0.01 0.01 0.01 
dependence acting 
on the snail 
population (for 
Model 1, Chapter 5) 

qU Strength of density 0.045 0.045 0.045 0.045 Chapter 4 
dependence on 
uninfected snail 
population (for 
Model 2, Chapter 5) 

qI Strength of density 0.07 0.07 0.07 0.07 Chapter 4 
dependence on 
infected snail 
population (for 
Model 2, Chapter 5) 



Ac Cercarial 416.33 540.13 378.61 410.83 Chapter 3 
production rate 

Qy Cercarial infection 0.000028 0.0001 0.00019 0.00027 (Stirewalt 
rate 1954) 

ac Cercarial mortality 0.063 0.12 0.18 0.21 (Lawson and 
rate Wilson 1980) 

k Parasite 0.1 0.1 0.1 0.1 (Anderson and 
aggregation May 1982) 



Appendix A3 

Databases used for the models developed in Chapter 6 

A3.1 Temperature and rainfall data 

Temperature and rainfall data were acquired from the Food and Agriculture 

Organisation of the United Nation's CLIMPAG programme 

(http: //www. fao. org/nr/climpag/data-l-en. asp). The FAO provides a global database 

using national meterological services, published databases and the FAO's own 

calculations using time-series data. This database, known as FAOCLIM, contains monthly 

data for up to 14 climatic parameters, including a range of daytime and night-time 

temperature parameters, rainfall and sunshine hours (Climatic Research Unit, CRU; 

Global Precipitation Climatology Center, GPCC) over the period 1960-1990. The data 

used in Chapter 6 were minimum, maximum and mean daytime temperatures and 

monthly precipitation. The table below shows the availability of data and the effective 

maximum distance, which is the maximum distance between recording stations: 



Variable Number of stations Effective Maximum 

Distance (km2) 

Mean temperature 20828 48.36 

Minimum temperature 11550 64.94 

Maximum temperature 11544 64.96 

Rainfall (mm) 27375 41.71 

The database includes 30941 individual series of monthly data for 8 variables, with 60% 

of these data series relating to temperature and rainfall (Gommes 2004). The datasets 

are gridded with 0.5 degree resolution and are georeferenced by the FAO. 

A3.2 Water temperature data 

The annual predicted water temperature values were obtained using estimates 

by the Center for Resource and Environmental Studies (CRES) and can be interpreted as 

estimates of standard means for the period of 1920 to 1980 

(http: //www. fao. org/geonetwork/srv/en/metadata. show? id=24&currTab=simple). 

The data formed a grid layer comprising 1450x1380 derivative raster water 

temperature features with 0.05 degree resolution. The time-series data were translated 

from the source material in flat ASCII format and translated into Arc-Grid format for 

analysis and visualisation. The base grid was then translated into a shape file format in 

decimal degrees and this format was used for the analysis in Chapter 6. The layers 

available include: 

Majority Monthly Water Temperature (Annual) 

Maximum Monthly Water Temperature (Annual) 



Median Monthly Water Temperature (Annual) 

Minimum Monthly Water Temperature (Annual) 

Minority Monthly Water Temperature (Annual) 

Range of Monthly Water Temperature (Annual) 

Monthly Water Temperature from January to December 

A3.3 Estimating the Normalised Difference Vegetation Index (ND VI) 

The SPOT-4 satellite was launched in March 1998 and contains a VEGETATION 

(VGT) sensor onboard, which is a space-borne optical sensory designed to observe 

vegetation and land surfaces (Xiao 2004). The VGT sensor has four spectral bands: 

Band Band Range (nm) Band Energy 

B1 430 - 470 Blue 

B2 610-680 Red 

B3 780 - 890 NIRa 

SWIR 1580 -1750 MIRb 

a NIR = near-infrared 

b MIR = medium infrared/short wave infrared 

The blue band is used for atmospheric correction and the SWIR band records vegetation 

cover and leaf moisture content. Three products are produced by the VGT sensor: VGT-P 

(physical product), VGT-S1 (daily product) and VGT-S10 (10-day combined product). 

The daily product (VGT-S1) estimates the ground surface reflectance following 

correction for ozone, aerosols and water vapour using the Simplified Method for 

Atmospheric Correction (SMAC) algorithm (Rahman and Dedieu 1994). The ten-day 



product, which was used in the analysis presented in Chapter 6, was produced by 

selecting the VGT-S1 pixels with the maximum Normalised Difference Vegetation Index 

(NDVI) within the defined time-period. This composite approach minimises the effects of 

cloud cover and atmospheric contamination. 

The Global Vegetation Indices collection from University of New Hampshire, EOS- 

WEBSTER Earth Science Information Partner (http: //eos-webster. sr. unh. edu/home. jsp) 

comprises three global gridded vegetation data products, normalised difference 

vegetation index (NDVI), enhanced vegetation index (EVI) and land surface water index 

(LSWI) derived from the VGT sensor onboard the SPOT-4 satellite. The data are derived 

from tkm data and are 10-day composites of the surface reflectance product (VGT-S10) 

aggregated into 0.5 degree grid cells. Each data point is an average of the daily cloud-free 

data over the ten-day period. The extent of the original data range from 75 degrees 

North to 56 degrees South latitude, and from -180 West to 180 East longitude. Mean 

value, standard deviation, area (km2) and total pixel number are given for each half 

degree data point for all three products. The VGT-S10 data used in the model were 

collected during April 1998, which is the earliest date available for this dataset. 

The NDVI was calculated using the near-infrared and red surface reflectance 

bands from the VGT-S10 data using the normalized ratio between red and near-infrared 

(NIR) bands as shown below: 

NDVI= (NIR - Red) / (NIR + Red) 

The details of the processing and calculations of vegetation indices are described 

by Xiao et al (2003). The production and distribution of the NDVI data is provided by Dr 

Xiangming Xiao, Complex Systems Research Center, Institute for the Study of Earth, 

Oceans, and Space, Morse Hall, University of New Hampshire, Durham, New Hampshire, 



USA. The data are provided free of charge without copyright restrictions, however it is 

obligatory to acknowledge the provider for publications. 

A3.4 Population data 

The African Population Database contains data on administrative units in Africa 

with the associated population figures (http: //na. unep. net/globalpop/africa/). The 

fourth version of the database was used in this study which contains decadal data on 

109,000 administrative units from 1960 onwards (Center for International Earth Science 

Information Network, Columbia University; and Centro Internacional de Agricultura 

Tropical, 2004). The national boundaries and coastlines were defined by the political 

boundaries template of the Digital Chart of the World (DCW). The boundaries and data 

are correct to within 1-2km. The population figures for each administrative district 

represent estimated totals for the standardized years 1960,70,80,90 and 2000. As 

historical population data are not readily available for all African countries at the same 

time-points, values were interpolated from published figures using the growth rate: 

In 
p2 

r= 
t 

where ris the average annual rate of growth, Pl and P2 are the population totals for two 

different time periods, and tis the number of years between the two time-points (see, for 

example, Rogers 1985). The growth rates are then used to calculate an estimate for the 

standardized year, e. g. 



P. 
970 -' 

3r 
1967 e 

The population data were checked against the estimates provided by the Population 

Division of the United Nations (2002) and national official census figures. If estimates 

were considerably different from the UN estimates, the growth rates were uniformly 

adjusted to match the UN estimates. The UN population figures were exclusively used in 

some instances, e. g. if no subnational data are available, or if data were only available at 

one time-point. The population estimates are subject to numerous sources of error, 

including misreporting during census, sudden population movements and government 

failure to disclose data. The timing of the census will also affect the population estimates 

in areas which experience large migration, war or famine. 

The mean resolution of population data in Africa is 16km and the mean 

population per administrative unit is 7000. However, when you exclude data from south 

Africa, which comprise 77%of the total dataset, the resolution decreases to 32km and 

the mean population increases to 28000 people per administrative unit. This example 

demonstrates the uncertainty in this kind of data and the bias of data towards the more 

developed countries. However, this database provides the most accurate and 

comprehensive data on population density to date and are used with full 

acknowledgement of the limitations. 
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