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Abstract 

Data from dental caries clinical trials has a naturally hierarchical structure, with surfaces 

clustered within teeth, clustered within individuals and individuals potentially also 

clustered within social or administrative units. Multilevel modelling allows analysis of 

clustered data using individual observations without aggregating data, but has been litde 

used in the field of dental caries. The aim of the work in this thesis is to investigate the 

use of multilevel modelling in the analysis of data from clinical trials of agents designed 

to prevent dental caries. 

The statistical methodology of recent caries clinical trials is assessed, with particular 

emphasis on appropriate analysis of clustered data. Multilevel models are fitted to a 

clinical trial data set, with various model specifications. The use of multilevel models of 

clinical trial data to predict tooth and surface specific caries incidence is explored. A 

simulation study investigates the power of multilevel modelling compared to traditional 

analysis methods. 

Several cluster randomised caries trials have been published with analysis which 

incorrecdy ignores the clustering. The hierarchical nature of caries data was rarely 

considered in trial analysis. 

Multilevel modelling has the advantage over traditional analyses of allowing greater 

understanding of the patterns of caries development within the mouth. 

Multilevel modelling of caries clinical trial data can also provide clinically useful . 

methods of predicting tooth and surface specific caries incidence, based on baseline 

caries patterns. In the data set analysed, caries on the contralateral surface (the 

corresponding surface on the opposite side of the mouth), was a stronger predictor than 

caries in the corresponding surface on the opposing jaw, or caries on an adjacent tooth. 

Multilevel modelling using the natural hierarchy of surfaces and teeth clustered within 

individuals may not allow significant reductions in the number of participants required 

in a caries clinical trial, compared to the use of traditional analyses, but investigators 

interested in exploring the effect of their intervention in more detail should consider the 

application of multilevel modelling to their clinical trial data. 
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1. Introduction 

The overall aim of the work undertaken for this thesis is to investigate the use of 

multilevel modelling in the analysis of data from clinical trials of agents designed to 

prevent dental caries. Specific research questions which will be addressed in this thesis 

are: 

• Is multilevel modelling an appropriate method Of analysis in dental caries clinical 

trials? 

• Does the use of multilevel modelling have the potential to increase efficiency in 

clinical trials of caries preventive agents? 

• Can multilevel analysis of data from caries clinical trials be used to develop 

models of tooth and surface specific caries incidence? 

Dental caries, commonly known as tooth decay, has been identified by the World 

Health Organisation as a major oral health problem in industrialised countries, affecting 

60-90% of schoolchildren, and the vast majority of adults (petersen, 2003). Survey data 

from the USA has shown caries to be the most prevalent chronic childhood disease, 

despite being largely preventable (Dye et al., 2007). 

If caries is left untreated, there can be an increased likelihood of sepsis, in the form of 

dental abscesses extending into the gingival tissue adjacent to the carious lesion. In 
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addition to pain and discomfort, these infections can, in very rare acute cases, result in 

serious problems such as orbital cellulitis and brain abscesses (pine et al., 2006). 

Dental caries data is collected during a clinical examination, where each surface on each 

tooth is assessed by the examiner as to whether it is sound, decayed or filled, or if the 

tooth is missing as a result of extraction due to caries. These data are traditionally 

aggregated into a single measure for each individual, known as the DMF (decayed, 

missing or filled) index. This approach means that the tooth and surface specific 

information is lost. 

If these data are to be analysed by tooth or surface, appropriate statistical methods must 

be used to correcdy adjust for the clustered nature of the data. Another level of 

clustering can be introduced where studies are randomised by allocating groups of 

participants, such as schools or general practices, to an intervention. Failure 'to use 

appropriate statistical methods to analyse clustered data can lead to incorrect 

conclusions. 

Multilevel modelling is a statistical method which allows analysis of clustered data using 

the individual observations, without having to aggregate the data. This technique is 

common in many areas, but has been litde used in the analysis of dental caries data. 

The remainder of this thesis is structured as follows. 

In Chapter 2 background on the disease process of dental caries is presented, and the 

main approaches to prevention of the disease are discussed. The'use of caries as an 

outcome variable in statistical analysis, represented by the DMF index is described. The 

remainder of the chapter discusses the literature on statistical analysis of caries clinical 

trials, and considers suggestions which have been made to improve the efficiency of 

caries clinical trials. 
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In Chapter 3, the concept of clustered data is introduced, and the particular issue of 

clustering in caries data is described. Published work on methods suggested to analyse 

caries data at tooth and surface level are considered. The multilevel modelling method is 

discussed, with a review of how this has been used with periodontal data, which has a 

similar multilevel structure to caries data. 

In Chapter 4, recent publications from clinical trials of caries preventive agents are 

considered, to assess whether the trials were cluster randomised, and if so, whether an 

appropriate method of analysis was used. Analysis is undertaken to estimate the degree 

of clustering which would be required to result in inaccurate conclusions being drawn 

from the incorrectly analysed trials. This chapter also assesses the quality of reporting of 

trials according to the CONSORT guidelines. 

In Chapter 5, multilevel modelling is applied to a data set from a caries clinical trial of a 

caries preventive agent in 12-16 year olds. Different methods of estimation in multilevel 

modelling with binary outcome variables are described and compared. Methods of 

modelling the effect of tooth position within the mouth are investigated. 

In Chapter 6, multilevel modelling is used on a caries clinical trial data set to investigate 

the prediction of caries incidence on specific teeth and surfaces based on the baseline 

caries experience of other related surfaces, such as the contralateral surface, the 

corresponding surface in the opposing jaw, and surfaces on adjacent teeth. 

In Chapter 7, the model fit of the multilevel models is investigated. Methods of 

assessing model fit are considered, and the model fit of various model specifications is 

compared. 

In Chapter 8, a simulation study is conducted to investigate the performance of 

multilevel modelling methods and standard analysis using caries increment. Data sets 
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are simulated from a three level binomial distribution with vanous sample SlZes, 

treatment effects and random tooth level effects, to investigate robustness of two-level 

analysis and comparative power of multilevel models and traditional analysis. 

In Chapter 9, the main findings of the thesis are discussed, and recommendations are 

made to investigators on the use of multilevel modelling for the statistical analysis of 

caries clinical trial data. Finally, some opportunities for further work are discussed. 
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2. Statistical analysis of dental 

caries data 

2.1. Introduction 

One of the research questions which will be addressed in this thesis is whether the use 

of multilevel modelling techniques has the potential to increase efficiency in clinical 

trials of caries preventive agents. In addition, the thesis considers how m~tilevel 

analysis of data from caries clinical trials can be used to model patterns of caries 

incidence. 

This chapter first reviews the literature to provide a brief description of the disease 

process of dental caries, and considers the main approaches to prevention of the 

disease. This is followed by a review of literature on how caries is measured as an 

outcome variable using the DMF (decayed, missing or filled) index, and on the statistical 

analysis of this index. The literature on methods of analysis of clinical trials with caries 

outcome variables is also reviewed. The effect of changes over time in the prevalence 

of dental caries on the design and analysis of clinical trials is considered, with 

suggestions from the literature on improving efficiency of caries clinical trials. This leads 

into Chapter 3, which will discuss issues relating to clustered data. 
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2.2.Dental Caries 

Dental caries is a process in which the structure of a tooth is attacked by acid generated 

by micro-organisms as a by-product of metabolism (Kidd, 2005). Over time, micro­

organisms form a deposit, known as plaque, which adheres to the surfaces of the teeth. 

The presence of plaque alone is not sufficient to cause the disease. The caries process 

also requires a substrate, in the form of a suitable dietary carbohydrate such as sucrose 

or glucose. Some of the micro-organisms in the plaque can ferment this carbohydrate to 

produce acid, resulting in a rapid drop in the pH of the plaque. Repeated exposUre to 

this acidic environment can cause demineralisation of the enamel on the tooth surface, 

producing a carious lesion. Caries is a continuous process, beginning with the 

demineralisation of a small area in the outer enamel layer of the tooth, which can 

progress into the dentine below, potentially resulting finally in the destruction .of the 

tooth. In the early stages of the caries process, neutralisation of the acid by saliva can 

result in mineral being regained, and the progress of the lesion can reverse, a process 

known as remineralisation. 

The process of development of a caries lesion has been described as a balance between 

protective and pathological factors (Featherstone, 2004). The pathological factors are 

cariogenic bacteria, salivary dysfunction, and frequency of ingestion of fermentable 

carbohydrates. The protective factors include salivary flow rate, many of the 

COmponents of saliva, substances that stimulate salivary function, and fluoride. For 

caries to progress, the pathological factors need to outweigh the protective factors. 

Interventions seeking to reduce caries attempt to tip the balance in the other direction 

either by reducing the effect of the pathological factors, or by increasing the effect of 

the protective factors. 
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2.3. Prevention 

Caries is a largely preventable disease, as a combination of reducing the frequency of 

ingestion of fermentable carbohydrates, particularly sugar, and increasing fluoride intake 

will in most cases be enough to weigh the balance in favour of the protective factors. 

There is much evidence that fluoride has a preventive effect on dental caries. The 

association between fluoride and decreased caries prevalence was first observed in 1931 

(Churchill, 1931), in a study comparing regions with different levels of fluoride content 

in the water supply. Today, by far the most common method of delivery of fluoride is in 

toothpastes. Since the early 1970s, caries prevalence has fallen markedly in most 

developed countries (Renson, 1986), and many experts believe this to be largely due to 

the widespread introduction of fluoride toothpaste in this period (Bratthall et al., 1996). 

A Cochrane review of the effectiveness of fluoride toothpastes for preventing' dental 

caries in children and adolescents showed a pooled prevented fraction (PF) of 24% in 

number of decayed, missing of filled tooth surfaces when fluoride toothpastes are 

compared with placebos (Marinho et al., 2003b). Other approaches to the topical 

delivery of fluoride include mouthrinses (PF of 26%, (Marinho et al., 2003c)), gels (PF 

of 28%, (Marinho et al., 2002a)), and varnishes (PF of 33%, (Marinho et al., 2002b)). A 

Cochrane review combining these four delivery methods showed an overall prevented 

fraction of 26% for topical fluoride therapy compared to placebo or no treatment. 

Studies of the use of fluoride gels, mouthrinses, or varnishes in addition to toothpaste 

showed a small advantage over the use of toothpaste alone, with an additional 

prevented fraction of 10% (Marinho et al., 2004b). A review of trials comparing the 

different methods of delivery to each other proved inconclusive on whether anyone 

method was superior to the others (Marinho et al., 2004a). 
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Another common approach to caries prevention is the pit and fissure sealant. These are 

coatings applied to the pit and fissure surfaces of the molar teeth of children, with the 

intention of preventing the growth of bacteria on these surfaces, which are the most 

susceptible to caries. A Cochrane review of trials of fissure sealants found a significant 

difference in favour of specific types of resin-based sealants compared to control, with a 

pooled relative risk of 0.13 for increased caries in the occlusal surfaces of first 

permanent molars at 12 months follow up (Ahovuo-Saloranta et al., 2008). 

Other approaches to caries prevention include the use of antibacterials such as 

chlorhexidine, which has been shown to kill caries-associated bacteria, although there is 

litde evidence for its efficacy in preventing caries (Forgie et al., 2000). 

Many approaches to prevention focus on changing behaviour, particularly using oral 

health education to promote increased toothbrushing frequency, and the reduction of 

the frequency of sugar intake in the diet (Adair and Ashcroft, 2007). 

Although levels of dental caries have declined since the widespread introduction of 

fluoride toothpaste in the early 1970s (Renson, 1986), the disease is still a significant 

public health problem in most of the developed world, with 60-90% of schoolchildren 

in industrialised countries affected (petersen, 2003). Several studies have shown that 

caries risk is higher in more deprived areas (Ellwood and O'Mullane, 1996; Jain et aI., 

2007; Provart and Carmichael, 1995) 

2.4. Measurement of caries 

The traditional way to record caries is from a visual clinical examination by a trained 

dental examiner. Many guidelines and criteria systems have been published, and a 

review article compares 29 sets of criteria for caries detection (Ismail, 2004). Common 
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guidelines for epidemiological surveys recommend the use of a mirror and blunt-ended 

probe (pitts et al., 1997). 

On each tooth in the mouth, there are either four or five surfaces which can be assessed 

for caries (four on the anterior teeth, which have sharp incisal edges, and five on the 

posterior teeth). These surfaces can be classified into smooth surfaces, and surfaces 

which have pit and fissure systems. A clinical examination for dental caries entails the 

examiner inspecting each surface on each tooth individually and classifying it according 

to whether it is sound, has caries, is filled, has been extracted, etc. Epidemiological 

surveys usually score a surface as having caries if the caries is judged to have extended 

into the dentine. For example the World Health Organisation criteria for recording 

caries state that "Caries is recorded as present when a lesion in a pit or fissure, or on a 

smooth tooth surface, has an unmistakable cavity, undermined enamel, or a det~ctably 

softened floor or wall" (WHO, 1997). 

In clinical trials, caries is often also recorded for non-cavitated lesions, which are 

confined to the enamel, and do not extend into the dentine. These early carious lesions 

can give a more sensitive measure of the onset of the disease (pitts, 2004). 

The clinical visual examination forms the basis of most caries assessments, but has been 

supplemented by several other techniques. 

The traditional caries clinical trial has often used bitewing radiographs to supplement 

the visual assessment (Wenzel, 2004). These radiographs can detect demineralisation 

that may not be visible to the naked eye. 

Another method which has been used ill several clinical trials is fibre-optic 

transillumination (FOT!) (Mitropoulos, 1985). FOTI is a non-invasive procedure where 

a narrow beam of bright light is directed to the surfaces of teeth which contact each 
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other (the approximal surfaces). Areas of demineralisation will deflect the light beam 

and cause shadows, allowing diagnosis of lesions which would be difficult to detect 

visually without this aid. 

Other diagnostic methods have been used to detect early caries, including 

DIAGNOdent, a laser examination tool (Lussi et al., 1999), and Quantitative Ught­

Induced Fluorescence (QLF), a tool which assesses the change in auto-fluorescence of 

teeth to detect caries (Stookey, 2004). 

2.5. Analysis of caries data 

2.5.1. The DMF Index 

The degree to which an individual is affected by caries is commonly measured using the 

DMF index, which has been in use since the 1930s (Klein and Palmer, 1937). DMF 

stands for decayed, missing or filled, and the index counts either the number of teeth 

which are decayed missing, or filled (DMFI), or the number of surfaces (DMFS). The 

missing and filled components of the index should only include those teeth or surfaces 

which are missing or filled due to the effects of caries. The decayed, missing and filled 

components of the index can be considered separately, but together are referred to as 

caries experience, as the missing and filled teeth or surfaces, though not affected by 

caries at the present time, have experienced the disease in the past. 

Epidemiological surveys around the world use estimates of the mean DMFT in a 

population as a measure of dental health. The World Health Organisation publishes 

mean DMFT estimates for 12-year-olds as a comparison of dental health between 

countries (petersen, 2003). 
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2.5.2. Subjectivity of measurement 

The measure is dependent on the examiner, who must make judgments on the status of 

each tooth or surface. Caries is a continuous process, with the structure of the tooth 

gradually decaying, although lesions in the early stages, sometimes presenting as white 

spots in the enamel, can reverse, a process known as remineralisation, or remain static 

without further progression. For an examiner to decide whether to classify a tooth or 

surface as decayed, a threshold must be set beyond which a classification of decayed is 

given. A common threshold is where caries extends into the dentine (often known as 

the D3 threshold). This can encompass caries where a cavity is present in the tooth, and 

also where caries in dentine can be seen as a shadow below the enamel. If the earlier 

stages of the disease are to be included, the threshold can be set to include caries only in 

enamel, which has not yet extended into the dentine. This is often known as the D t 

threshold (WHO, 1997). 

As these classifications are based on examiner judgement, there can be variation in how 

teeth and surfaces are classified both between and within examiners. Clinical studies 

involving several examiners will usually incorporate examiner training in an attempt to 

minimise this variation (pine et al., 1997). The strength of agreement between 

examiners is usually measured using kappa statistics, which measure the observed 

proportion of agreement, corrected for the proportion of agreement which is expected 

by chance alone (Fleiss et al., 1979). This method is also used to assess intra-examiner 

agreement, where an examiner has re-examined a proportion of participants. 

2.5.3. Distribution of DMF data 

The analysis of dental caries data has mosdy used parametric methods, assuming that 

the distribution of the DMF index approximates a normal distribution (although as 
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DMF data is count data, and not continuous, it cannot truly follow a normal 

distribution). However, the distribution of DMF within many populations has high 

degrees of skewness, as shown in a typical data set in Figure 2.1. As caries prevalence 

has decreased over time, many more people remain caries free, resulting in the large 

peaks at dmft=O. The skewed nature of the data has been recognised as an issue for 

many years. In the 1970s a study used simulation to investigate whether Analysis of 

Variance was appropriate for the analysis of dental clinical trials and found that 

ANOVA gave slightly conservative tests of significance on the simulated data, and that 

conclusions from ANOV A could be accepted with no increase in probabilities of type I 

or type II errors (Glass et al., 1972). 
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Figure 2.1 : Typical distribution of dmft in, a 5-year-old population 

Since this time, as caries prevalence has reduced further, there have been many 

suggestions in the literature that analysis of caries data should not use normal 
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distribution based methods. In particular, researchers have investigated the suitability of 

the Poisson and negative binomial distributions (Fabien et al., 1999; Worthington, 

1984). These distributions are not always accurate fits to caries data sets, and some 

modifications have been suggested. One study considered DMFT data from a Brazilian 

caries prevention study (Bohning et al., 1999). The standard Poisson model did not 

adequately fit the data due to an excess of zeroes in the data set, so the authors used the 

zero-inflated Poisson distribution. This distribution essentially models the population as 

two sub-populations, one following a Poisson distribution, and one with all zero values. 

Another similar approach was taken in a study analysing a data set of UK children 

(Lewsey et al., 2000) which recommended employing a Poisson or negative binomial 

model for those children with caries, and modelling the caries freel caries present 

outcome using the binomial distribution. 

2.6. Clinical trials 

Clinical trials with caries as an outcome variable have been conducted since the 1950s, 

and have provided much of the evidence for the efficacy of caries preventive agents 

such as fluoride. Caries clinical trials tend to be two to four years in length, and the 

participants are usually children (Chesters et al., 2004). The reasons for the recruitment 

of children include ease of access, as if schools are willing, children can be recruited, 

and interventions and examinations can take place at the school. Also, the teeth which 

are the most susceptible to caries, the first and second permanent molars, will erupt 

while the child is school age. These teeth are most at risk of developing caries within the 

first few years after eruption. The length of study will usually be at least two years, to 

give carious lesions sufficient time to develop. 
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2.6.1. Analysis of caries data in clinical trials 

In clinical trials with caries as an outcome, the interest is in the comparative number of 

carious lesions which have developed during the course of the trial. Therefore, rather 

than DMFT or DMFS, the outcome variable will be the number of teeth or surfaces 

which were sound at the baseline examination, and affected by caries at follow-up. This 

is equivalent to the change in DMF index, and is known as caries increment. Caries 

increment was first suggested as a measure of caries incidence in a study of 

schoolchildren in 1946 (Boyd and Cheyne, 1946). 

As caries clinical trials tend to be two to four years in length, this represents the number 

of new lesions which have developed over a two to four year period. Therefore the 

skewed distributions found in DMF prevalence data will also apply to caries increment, 

often to a greater degree, as the number of zeroes is likely to be even higher than for 

prevalence data, as surfaces already decayed, which would contribute to the DMF score, 

will have a zero value for caries increment. 

As with DMF prevalence data, the Poisson distribution has been suggested for 

modelling increment data. An article on current knowledge on statistical methodology 

for caries clinical trials published in 1984 observed that if caries increment levels were 

low, the Poisson distribution may provide a good fit to incremental data (Worthington, 

1984). A reanalysis of a clinical trial data set using Poisson regression models (Hujoel et 

al., 1994a) confirmed the original result of the trial, and concluded that these models 

may have advantages over standard ANOVA based analyses as they include the concept 

of time at risk, using data from intermediate examinations. 
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2.6.2. Efficiency of clinical trials 

There has been much discussion in the literature around ways to improve efficiency in 

caries clinical trials. Efficiency has many specific definitions in the literature, but in 

general refers to the principle of the effect achieved in relation to the resources 

expended (Hausen, 2004). As the prevalence of caries has declined, studies have shown 

that the number of participants required in a clinical trial to show the same relative 

treatment difference have gready increased (Whelton, 2004). Reduction in the number 

of required participants is therefore a priority for efficiency of caries trials. Some studies 

have attempted to reduce the number of participants required by pre-selecting 

participants based on certain criteria. One study has looked at improving efficiency by 

identifying certain tooth surfaces which were most likely to show treatment effects, and 

suggesting including only participants with a high proportion of these surfaces 

unaffected by caries at baseline (Downer et al., 1977). A later study suggested only 

selecting participants with high levels of caries at baseline, as these participants had 

already demonstrated susceptibility to caries (Burchell et al., 1991). 

Other approaches have included making adjustments to the DMFS index to make 

separate measurements of lesion initiation and progression (Kingman and Selwitz, 

1997). Several other suggestions for improving efficiency relate to the issue of clustered 

data, and will be considered in the next chapter. 
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3. Analysis of clustered data 

3.1. Introduction 

This chapter gives an introduction to cluster randomisation, and describes how the 

effects of clustering can be quantified using the intra-cluster correlation coefficient and 

design effect. The natural clustering in caries data is described, and methods which have 

been suggested to analyse caries data at tooth and surface level are reviewed. 

An introduction to multilevel modelling is given, and as this method has rarely been 

used for dental caries data, the literature on multilevel modelling with periodontal 

outcomes is reviewed, as the structure of periodontal data has many similarities to that 

of caries data. 

Finally, this chapter will review the literature on the modelling of within-mouth patterns 

of caries, such as symmetry with respect to the midline, and caries aggregation. 

3.2. Clustered data 

Robert Fisher's classical principles of experimental design (Fisher, 1935) make the 

assumption that the unit of analysis should always be the same as the unit of 

randomisation. Statistical methods such as analysis of variance, assume independence 

between individuals, and randomisation at the same level as the unit of analysis ensures 

that this assumption is held. However, in many cases it is desirable to design a trial 
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which is randomised not at the individual level, but at a higher level, such as school, or 

medical practice. This is known as cluster randomisation and the unit of randomisation 

is known as the cluster (Donner and Klar, 2000). The effect of cluster randomisation is 

to introduce an additional source of variation into the data, as well as varying between 

individuals, outcomes can also vary between clusters, as individuals within a cluster may 

be more alike than individuals in different clusters. If the analysis is performed at the 

cluster level, the effective sample size will be decreased, the standard error will be 

increased, and therefore confidence intervals will be wider and p-values higher. If the 

clustering is ignored in the analysis of a cluster randomised trial, for example by 

randomly assigning schools to experimental groups, and then analysing using the pupil 

as the unit of analysis, the lower standard errors, narrower confidence intervals, and 

lower p-values obtained from the individual analysis will be incorrect, and may result in 

incorrect conclusions being drawn from the analysis, as there will be an increased 

probability of type I error (a false positive result, or finding a statistically significant 

difference when no difference exists in the underlying populations). 

The effect of clustering on a data set can be quantified using the intracluster correlation 

coefficient (ICC), also known as the intraclass correlation coefficient, or the variance 

partition coefficient (VPC). This quantity represents the proportion of the variation in 

observations which can be attributed to variation between clusters, rather than to 

variation between individuals. The ICC can take any value from 0 to 1. The ICC can be 

characterised as the Pearson correlation coefficient between any two observations in the 

same cluster. An ICC of 0 would occur where there is no correlation between 

observations within a cluster, and an ICC of 1 would occur where every observation in 

a cluster is identical. 
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The definition of clustered data can be extended to more than one level of clustering. 

The example of pupils clustered within schools could be extended to consider the class 

within the school. If pupils in the same class are more similar than pupils in different 

classes in the same school, then we have an additional cluster effect. In addition we 

could have schools clustered in different towns. This is an example of a multilevel or 

hierarchical structure, illustrated in Figure 3.1. 

Figure 3.1 : Example of multilevel data structure 

3.3. Clustered data in caries cUnical trials 

An important distinction to make in clinical trials is between explanatory and pragmatic 

trials. Explanatory trials aim to measure the efficacy of an agent, by recruiting as 

homogeneous a sample as possible, and tightly controlling the conditions of delivery. 

Pragmatic trials aim to measure the effectiveness of a preventive programme using the 

agent under real-life conditions, in a sample representative of the population where the 

agent would be used in practice (Schwartz and Lellouch, 1967). A study published in 

1976 discussed the distinctions between these types in trials of caries-preventive agents 

(O'Mullane, 1976). As the efficacy of many caries preventive agents containing fluoride 

has been well established, it is likely to be more useful today to establish effectiveness in 

pragmatic trials (Hausen, 2004). Explanatory studies will normally be randomised by 
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individual participant. Pragmatic studies, however, to replicate real life conditions, are 

often conducted in multiple sites, e.g., schools or general practices. Interventions in 

these trials are sometimes allocated by site rather than by individual participant. This 

may be done for logistical reasons such as ease of delivery, or to avoid contamination 

between the intervention groups (Donner and KIar, 2000). These cluster randomised 

trials must be appropriately analysed to avoid the potential for incorrect conclusions. 

Caries data is often collected from individuals who come from a multilevel structure as 

shown in Figure 3.1. However, if caries is assessed on each surface on each tooth, then 

the data collected will have a naturally multilevel structure as shown in Figure 3.2. 

Figure 3.2 : Multilevel structure of caries data 

Most clinical trials with caries as an outcome variable will collect data in this form, but 

as the randomisation will generally be performed at the individual level, it is 

inappropriate to analyse the data at tooth or surface level, assuming independence of 

observations. The traditional method of analysis has been to aggregate the data into the 

DMFT or DMFS index. This technique is appropriate, and does not suffer from the 

problem of dependent observations. However, by aggregating the data, it means that 

the detail of the data at tooth and surface level is lost. 
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This issue has been considered in the dental literature. A 1999 article observes that 

many dental studies collect hierarchical, or multilevel data, and highlights the need for 

correct analysis of this data, pointing out the availability of software to perform these 

analyses (Macfarlane and Worthington, 1999). The multilevel structure of caries data 

was also pointed out in another article (Gilthorpe et al., 2000). The issue was 

highlighted again in a paper on efficiency issues in statistical methods used in caries 

trials (Mancl et al., 2004). 

3.3.1. Analysts of cartes data at tooth and surface level 

Methods have been suggested for the analysis of caries data using tooth or surface as 

the unit of analysis. An adjustment to the chi-square test (Ahn et al., 2002) can allow 

for the clustering within participant with tooth as the unit of analysis. This method can 

be used where a binary outcome variable is observed for each tooth, and subjects 

belong to two or more experimental or observational groups. The standard Pearson chi­

squared test is inappropriate for the analysis of this design, as the observations are not 

independent. The method proposed by Ahn uses the intracluster correlation coefficient, 

as defined in section 3.1, to calculate a chi-squared statistic which is adjusted for 

clustering. 

A limitation of this approach is that it only allows straightforward comparisons of 

proportions, and not more complex models, with adjustment for covariates. Work has 

been published on the analysis of caries data with more complex models. 

Another approach which has been investigated is the use of survival analysis at surface 

level (Hannigan et al., 2001) This study uses a clinical trial data set where participants 

were examined at yearly intervals for three years. The authors discuss the over­

simplified nature of analysis using DMF indices, and argue that the standard analyses 
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make litde use of the vast quantities of data which are collected in a caries clinical trial. 

The authors point out that time has always been identified as one of the most important 

variables in the caries process. Therefore, as caries trials usually include clinical 

examinations at intermediate points between baseline and final examinations, it is 

proposed that these data are used to calculate the survival time of a tooth surface, 

defined by the time of the first examination where the surface is observed to have caries 

experience. As examinations in this data set are only at yearly intervals, the data is 

interval-censored, as the survival time can only be determined to somewhere within the 

12-month period. The parameter estimates are calculated using standard survival 

analysis techniques, with the estimates of variance recalculated using jackknife 

estimators, adjusting for the clustering in the data. This is an example of a marginal 

model. These models allow for the dependence withlfl subjects in calculating the 

variability of the regression coefficients. Marginal approaches treat the dependence 

structure as nuisance parameters, rather than explicidy modelling the variance at each 

level of the hierarchy. An alternative approach to modelling clustered data is multilevel 

modelling, which is discussed in the next section. 

3.4. Multilevel modelling 

Another method of analysis for clustered data is multilevel modelling. This method 

allows the analysis of data within a hierarchical or multilevel structure. Caries data 

naturally falls into a three-level structure, with individual participant as the top, or level 

3 unit, tooth as the level 2 unit, and surface as the level 1 unit, as shown in Figure 3.2. 

In contrast to the marginal modelling methods, such as those used in the time-to-event 

analyses of caries data, this approach allows the random structure to be explicidy 

modelled, in addition to the fixed effects. In a single-level model the variance of the 

error term can be measured, and represents the amount of variation in the data which is 
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unexplained by the model. Multilevel models work by splitting the variance in outcome 

into components for each level of the model, so random effects at tooth and participant 

level are estimated in the modelling process. These random effects at the higher levels 

are assumed to follow a normal distribution with mean 0, and variance which is 

estimated in the modelling process (Goldstein, 2003). Simulation studies have shown 

that parameter estimates are fairly robust to violations of this assumption (Maas and 

Hox, 2004). In multilevel models, the intracluster correlation coefficient (ICC) can then 

be calculated to measure the proportion of variance which is attributable to each level 

of the model. This quantity is also known as the variance partition coefficient (VPC). In 

a three-level model, separate ICCs can be calculated measuring the proportion of total 

variance attributable to level 2 and level 3. 

Multilevel modelling of the hierarchy shown in Figure 3.2 would treat the tooth level as 

a random effect, where teeth within an individual are treated as having random variation 

with respect to the outcome variable. However, in caries data, it has been shown that 

different teeth and surfaces have different susceptibilities to caries (Batchelor and 

Sheiham, 2004; Hannigan et al., 2000). Therefore, it may be of interest to use fixed 

effects to model the susceptibilities of particular teeth and surfaces. 

3.5. Multilevel modelling of periodontal disease outcomes 

The majority of analyses using multilevel modelling techniques that have been published 

in the dental literature are on periodontal disease outcomes. Periodontal data has a 

similar multilevel structure to caries data, with measurements taken at several sites 

around each tooth, giving a three level structure similar to that shown in Figure 3.2 

(Gilthorpe et al., 2000). 
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Periodontal disease, as with dental caries, is associated with bacteria in the plaque which 

collects on teeth. The gingiva, or gums, become infected and inflamed, and the tissue 

which connects the gingiva to the tooth recedes, leaving pockets between the tooth and 

gingiva, where bacteria and food debris can collect. This can lead to loss of the alveolar 

bone which supports the tooth, and in extreme cases, the tooth can be lost (Armitage, 

2004). 

The severity of periodontal disease at a given point on a tooth can be measured using 

several outcome variables (page and Eke, 2007). The distance from the cementoenatpel 

junction (the point where the enamel of the tooth meets the root) to the gingival margin 

(the edge of the gum) gives a measure of gingival recession. The distance from the gingival 

margin to the bottom of the periodontal pocket is known as pocket probing depth. The 

sum of these two measurements is known as lifetime cumulative attachment loss, or 

sometimes just attachment loss. 

Measurements of the height of the alveolar bone can also be assessed using radiographs. 

The alveolar bone height at the interproximal areas of teeth (the areas where two teeth 

meet) can be measured, and in longitudinal studies can be used to assess the level of 

bone loss. Bone defects can also be measured on radiographs, these are areas where bone 

has been lost which are surrounded by unaffected bone, thus allowing measurement of 

the extent of the defect (Needleman et al., 2006). 

Data on these outcomes tend to follow a similar hierarchy to caries data, with sites 

nested within teeth, nested within individuals (individual- tooth - site). 

This section reviews the published multilevel models of periodontal outcomes, 

concentrating on how tooth and site are modelled within individuals, and whether the 
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authors approach the modelling of tooth and surface level with random effects, fixed 

effects, or a combination of both. 

The studies considered here all use as their outcome variable either one of the above 

measurements, or longitudinal change in one of the measurements between two 

examinations. 

The effects of explanatory variables on these dependent variables are modelled within 

the hierarchical structure of the data set. It should be noted that many of the analyses 

discussed here were performed at a time when software availability is likely to have 

limited the complexity of the models fitted. 

3.5.1. Two-level models 

The simplest multilevel model encountered in the periodontal literature is the random 

intercept 2-level (individual - site) model. This model is fitted to a data set of 29 

individuals with chronic periodontal disease, with pocket depth as the outcome variable 

(Sterne et al., 1988). The data came from a placebo-controlled clinical trial of the use of 

the antibiotic metronidazole in patients with chronic periodontal disease. The 

measurements have been taken on 4 sites per tooth (buccal, lingual, mesial and distal), 

and only 6 teeth are included (the first permanent molars in the upper right and lower 

left quadrants, and the central incisors and first premolars in the upper left and lower 

right quadrants). This gives a maximum of 24 site measurements per individual. These 

measurements were taken before and after the intervention. The actual number of sites 

measured per individual varies between 12 and 24, due to missing teeth. In total 936 

observations were made. 

The outcome variable is pocket depth measure after the intervention. Tooth and site 

type are included as covariates at site level in the fixed part of the model, using dummy 
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variables. The upper right first permanent molar is used as the reference category for 

the tooth variables, with each of the other 5 teeth examined assigned to a dummy 

variable. The buccal site is used as the reference category for the site types, with 3 

dummy variables for mesial, lingual and distal. 

The authors discuss some of the assumptions made in their model. They point out that 

the "tooth level" factors are assumed to have an effect only at their site. This is due to 

the lack of a tooth level in the multilevel structure. They do not discuss the possibility 

of fitting a 3-level model with tooth level included. Also, the covariance between sites is 

assumed to be explained completely by the individual level effect. This means that this 

model does not take account of potential relationships between particular sites within a 

tooth, other than to model the variation between individual. The authors discuss the 

possibility of overcoming this by allowing a different site level variance for each type of 

site, although do not present results on these models. 

This model is also used in a study on 142 factory employees, with an outcome variable 

of alveolar bone height measured at the interproximal areas of teeth for a total of 5579 

sites (Albandar and Goldstein, 1992). It is not clearly stated in the paper which sites or 

teeth are measured, but an average of 39 sites per individual was measured. The study 

looked at predictors of periodontal disease progression. Tooth was not included as a 

site level variable in the fixed part of the model. The paper describes recent advances in 

software for multilevel modelling techniques, and suggests how they could be used in 

periodontal research. The issue of random effects is discussed, reproduced below. 

"We also note that in this model the sites are assumed to be sampled at random within 

individuals, independendy. That is, the identification, i, of a site simply indexes a sample 

position. In reality, of course, we can identify the same sites for individuals, and this 

information can be used to improve the analysis. The appropriate multilevel model in 
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this case, however, is complicated and we do not consider it further. An alternative 

formulation is to fit a separate dummy variable for each site. This would then yield a 

standard unilevel analysis of covariance model. But since the number of sites is usually 

large this alternative approach would be cumbersome." 

Another study fits a model with this specification, to data from three samples, 89 

individuals under age 30, with juvenile periodontitis, 139 individuals under age 35 with 

severe periodontitis, and 309 individuals aged over 35 with chronic periodontitis 

(Guns olley et al., 1994). The dependent variable in the analyses is attachment loss, and 

is measured at four sites for each tooth (mesial, distal, buccal and lingual). All teeth were 

included. Tooth positions are included in the fixed part of the model as explanatory 

variables at site level, categorised into incisors, canines, premolars, first molars and 

second molars, and separated into upper and lower, giving a total of ten tooth position 

categories. Site is also included as a covariate in the fixed part of the model, separated 

into three categories, with mesial and distal grouped together as one category. 

3.5.2. Three level models 

The above model can be extended to 3 levels, using the hierarchy individual - tooth -

site. 

One of the studies listed above (Guns olley et al., 1994) extend their two-level model 

described above, to include the tooth level in the hierarchy. They state that "the 

purpose of this study is to investigate factors which influence the within individual 

correlation structure of attachment level measurements. Specifically, should the 

correlation structure take into account the tooth from which site specific measurements 

are made?" They conclude that including the tooth level is important in their data set, as 

the standard errors they find for the fixed effects of tooth position are smaller in the 2-
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level model than the 3-level model, sinte in their analysis using the two-level model, the 

correlation structure of sites within teeth is not being modelled. This suggests that the 

standard errors in the two-level model are too narrow, potentially leading to falsely 

significant results. 

This model is also used in a study on 22 patients aged 35-55 with periodontal disease 

(Axtelius et al., 1999). The dependent variables here are pocket probing depth, and 

change in pocket probing depth between two examinations. Four sites per tooth are 

measured on all teeth. The authors include dummy covariates for tooth type (incisors, 

canines, premolars and molars) in the fixed part of the model. 

Another study models lifetime continuous attachment loss, and pocket probing depth 

using model 2, with measurements taken on 4 sites per tooth, on all teeth excluding the 

third molars (fu et al., 2004b). The population is 100 white males aged 16-20, 

examined at 3 timepoints. This paper uses fixed effects for each tooth position within a 

quadrant as covariates. The central incisor is taken as the reference category, and a 

dummy variable is created for each position from lateral incisor to second permanent 

molar, a total of 6 dummy variables. 

The authors conclude from their results that tooth level is an important part of the 

hierarchy, stating that ''Variances at the tooth level were generally greater than those at 

the subject level, indicating that variation in LeAL (lifetime cumulative attachment loss) 

and PD (pocket depth) across different tooth positions in the mouth was more 

prominent than individual variability across subjects. Therefore, both tooth and subject 

levels need to be taken into account when specifying the periodontal data structure. 

Either due to the incorrect assumption that the tooth level has no pre-eminent role in 

the full hierarchy, or because the accepted methodology has limitations, studies that take 
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account of the clustering of sites in the mouth while ignoring the tooth-level structure 

might lead to erroneous results." 

The same data set is also modelled using a longitudinal outcome variable (Tu et al., 

2004a). The multilevel techniques used are the same. The outcome variable here is the 

change in measurement between baseline and final examination. 

3.S.3. Summary 

These periodontal studies have shown a variety of approaches to modelling the tooth 

level, both by including and excluding random effects at tooth level, and by including 

various tooth position indicator variables. In Chapter 5, the application of these 

methods to a caries data set will be investigated. 

3.6. Within mouth patterns of caries incidence 

One of the aims of this thesis is to investigate how multilevel analysis of data from 

caries clinical trials can be used to predict tooth and surface specific caries incidence 

using baseline caries status. 

It has long been a commonly held view by clinical observation that caries develops 

symmetrically in similar teeth on the right and left sides of the mouth. This apparent 

symmetry with respect to the midline was interpreted in the early part of the last 

century, as evidence that caries was not an infective disease (Eckermann, 1919). A study 

of 300 bitewing radiographs (Scott, 1944) found that 73% of posterior decayed, missing 

or filled teeth (DMFI) were involved bilaterally (i.e. the corresponding tooth on the 

opposite side of the mouth was also decayed, missing or filled). A longitudinal study of 

dental caries in 666 English schoolchildren (Berman and Slack, 1972) found 'bilateral 

symmetry of caries attack at all ages'. Some more recent reports have challenged this 
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Vlew. A study of 510 children aged 12 years (Wood, 1985) demonstrated, from a 

retrospective dental record analysis, that 44% of maxillary and 33% of mandibular pairs 

of occlusal surfaces of flrst permanent molars showed caries experience unilaterally, i.e. 

only on 1 side of the mouth. A trial of 15,132 adults, using data from the 1985-1986 

National Survey of Oral Health in the USA (Hujoel et al., 1994b) found that 94% of 

adults with 2 or more decayed or fllled surfaces had 2 or more 'discordant pairs', where 

a decayed surface on 1 side of the mouth had a sound contralateral counterpart (on the 

corresponding laterally opposite side of the mouth). The study showed that the 

distribution of these pairs was not random with respect to the midline and that the 

caries tended to be aggregated on 1 side of the mouth. An investigation using data from 

20,000 UK children aged 5-16 years (Batchelor and Sheiham, 2004) used probit analysis 

to rank surfaces by their susceptibility to caries. The study did not show precise 

symmetry between equivalent surfaces on the left and right sides of the mouth "but 

found that symmetry existed within groups of sites with similar susceptibility to caries. 

A recent evaluation of deciduous teeth in 7,074 children aged 3-7 years (Vanobbergen 

et al., 2007) concluded that associations of caries experience at the population level 

appeared to follow a symmetrical pattern, but at an individual level, when using the 

same method as the study from the 1985-86 US National Survey (Hujoel et al., 1994b), 

the study found similar results, i.e. that caries lesions tend to cluster on one side of the 

mouth. 

3.7. Conclusions 

This chapter, and the previous one, have demonstrated that the changing patterns of 

caries experience have impacted on the design of caries clinical trials, resulting in higher 

required sample sizes and concern over the statistical validity of the standard analyses 

using the DMF index. Also, clustered data is an important issue in caries trials. Studies 
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conducted in the community are often cluster randomised, and in addition the issue of 

aggregating caries data to an individual level variable has been raised, with many 

researchers suggesting the use of analysis at tooth and surface level. This thesis will first 

consider recent clinical trials of topical fluoride interventions in children, with particular 

attention to issues related to clustered data. Multilevel modelling is a common statistical 

technique for clustered data in many clinical areas, but has been little used in the caries 

literature. Therefore, the primary aim of the thesis is to investigate the potential use of 

multilevel modelling in caries clinical trials. There has also been considerable interest in 

modelling within-mouth patterns of caries, such as symmetry and caries aggregation. 

However, the literature is based on analysis of cross-sectional data sets, and has not 

used longitudinal data sets such as those from clinical trials. This thesis will also 

consider whether these within-mouth patterns can be us~d to predict caries incidence 

over the period covered by a clinical trial, using multilevel modelling techniques. 
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4. Statistical aspects of the design 

and analysis of clinical trials for the 

prevention of caries 

4.1. Introduction 

In Chapter 3, the issue of correctly analysing data from cluster randomised trials was 

raised. This chapter will consider in detail recent publications from caries clinical trials, 

and examine the design and analysis, and standard of reporting, of these publications, 

with particular reference to issues related to clustering. 

An important distinction to make in clinical trials is between explanatory trials of the 

efficacy of an agent, and pragmatic trials of the effectiveness of a preventive programme 

using the agent in real-life conditions (O'Mullane, 1976). Explanatory studies will 

nOrmally be randomised by individual participant. Pragmatic studies, however, are often 

conducted in multiple sites, e.g. schools. For logistical reasons, interventions in these 

trials are sometimes allocated by site rather than by individual participant. 

Clinical studies where groups of participants rather than individuals are randomised to 

treatment groups are known as cluster randomised studies. These studies can be 

analysed taking the cluster as the unit of analysis, although this approach loses the 

information from the individual participants. If analysis is to be performed at the 
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individual level, the clustering must be accounted for, as failure to do so will result in a 

confidence interval for the relative treatment effect which is too narrow, and therefore 

possibly an incorrect conclusion. The effect of clustering can be quantified by 

calculating the intracluster correlation coefficient (ICC), defined as the proportion of 

the total variation which can be attributed to the variation between clusters. The value 

of the ICC can range from 0 to 1. An ICC of 0 would mean that all observations within 

a cluster were independent, i.e. there is no cluster effect. An ICC of 1 would arise when 

all observations within a cluster are identical, i.e. there is no variation within clusters. 

This can be used to calculate the effective sample size, which is defined as the number 

of participants in an individually randomised trial which would give the same power as 

the cluster randomised trial. The clustering can be taken into account without losing the 

information at the individual level using various methods,such as multilevel modelling 

(Goldstein, 2003). 

Clinical studies examining dental caries experience generate multiple outcome data for 

each participant. Within each participant there are data for multiple teeth, and for 

multiple surfaces on each tooth. This type of clustering is usually handled by taking 

caries increment, the number of teeth or surfaces which have become affected by caries 

during the course of the trial, as the outcome variable. However, as the data have been 

summarised, tooth and surface specific information is lost. These data could provide 

important clinical information, as interventions may be more effective on particular 

teeth or surfaces within the mouth, depending on the method of application. 

Therefore, if analysis is to be performed at tooth or surface level, the clustering within 

participants should be accounted for to ensure accurate conclusions. 
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Studies have been published reviewing the issues of clustering in clinical trials in other 

fields (Eldridge et al., 2004; Varnell et al., 2004), however, a study of this type has not 

been previously published for trials in dental caries. 

4.1.1. Reporting of randomised controlled trials 

The CONSORT statement (CONsolidated Standards Of Reporting Trials), originally 

published in 1996, was revised in 2003 (Moher et al., 2003). This set of guidelines for 

the reporting of randomised controlled trials has been adopted by many medical 

journals. An extension to the CONSORT statement covering the reporting of cluster 

randomised trials has recently been proposed (Campbell et al., 2004). This extension 

requires reporting of the rationale for adopting a cluster design, how the effects of 

clustering were incorporated into the sample size calculations, and how the effects of 

clustering were incorporated into the analysis. The guidelines state that ICCs should· be 

reported. 

The aim of this study is to assess the design and analysis of recent randomised 

controlled trials in which dental caries is the outcome of interest, with particular 

emphasis on the potential impact of clustering on the assessment of relative treatment 

effects in cluster randomised trials. 

4.2. Methods 

Trials of topical fluoride interventions in children have been examined in this 

methodological study, as these interventions are likely to have been evaluated in both 

explanatory and pragmatic trials. Seven Cochrane reviews evaluating the efficacy of 

topical fluoride vehicles as caries preventive agents have been published (Marinho et al., 

2003a; Marinho et al., 2003b; Marinho et al., 2002a; b; 2003c; Marinho et al., 2004a; b), 
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and have been used to identify trials for this methodological study. These reviews have 

been chosen as they examine the four main methods of topical fluoride intervention, 

gels, toothpastes, varnishes and mouthrinses. 

The lists of both the included and excluded studies in the seven Cochrane reviews were 

scrutinised. Trials excluded from the reviews were considered for inclusion here, as the 

exclusion criteria for the Cochrane reviews were stricter than is necessary for this study. 

For example, trials with unblinded outcome assessment and additional non-fluoride 

interventions were excluded from the Cochrane reviews, but included here since design 

and analysis issues apply equally to these trials. Non-randomised trials excluded from 

the Cochrane reviews were also excluded from this study. In the case of a trial where 

randomisation was not reported in the paper, attempts were made to contact the 

authors to establish whether the trial was randomised. If the authors did not reply with 

this information, the trial was excluded. In addition, trials which were reported in 

theses and not published in peer-reviewed journals were excluded, as were trials only 

published in abstract form. Trials published before 1990 were excluded, since the aim of 

this review was to examine reasonably current practice. Since the Cochrane reviews 

identified studies up to 2000, this work covers the ten-year period 1990-2000. 

The seven Cochrane reviews identified 303 trials, 29 of which had published results 

since 1990. Eleven were non-randomised and were thus excluded, one was excluded as 

it was only available in abstract form, and two were excluded as they were only 

published in theses. This left 15 trials for consideration in this study. 

All published papers relating to eligible trials were obtained and studied. Papers not 

published in English were translated. Information was extracted from the papers on the 

type of trial, and the characteristics of the participants. The articles were studied to 
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establish the units of randomisation and analysis, and to assess whether cluster 

randomised trials were appropriately analysed. 

Where clustering was not accounted for in the analysis, and a statistically significant 

difference between groups was reported, an analysis was undertaken as follows to assess 

how robust this result would be to various degrees of clustering. This analysis tests how 

robust the calculation performed by the authors of the papers would be to clustering in 

the data, and can be calculated using the summary data reported in the papers. For 

example, consider a hypothetical trial conducted in 10 schools, with 30 children in each 

school, and each school randomly assigned to either the intervention group or control. 

Ignoring the clustering, the control group have a caries increment of 1.5 (s.d. 0.9), and 

the intervention group 1.2 (s.d. 0.9). Analysing at the child level, ignoring the clustering, 

using a t-test gives a significant difference (t statistic= 2.89, S.E. = 0.104, d.f. = 298, 

p<0.01). To examine the effect of clustering, we use an adjusted t-test method (Donner 

and Kiar, 2000), first estimating the variance inflation factor, or design effect for each group, 

_ _ m2 

given by Ci =1+(mAi -1),0, for the ith group, where mAl is defined as L:' ' 1ll;j is 
J I 

the size of the jth cluster in the ith .group, M; is the total number of individuals in the ith 

group, and ,0 is the intracluster correlation coefficient (ICC). The design effect can be 

interpreted as the ratio of the number of individuals in the trial to the effective sample size, 

which is the number of participants in an individually randomised trial which would 

give the same power as the cluster randomised trial. If the individual cluster sizes are 

not published, the cluster sizes are assumed to be equal, and m AI is replaced by the 

mean cluster size for the group. In our example, as the cluster sizes are equal, mAl is 

equivalent to the mean cluster size m, and is equal to 30. Substituting various 

hypothetical values for the ICC into the formula 1 + (m Ai -I) P gives a design effect for 
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each ICC which can be used to adjust the standard error of the difference in means 

(S.E. = S p C) + C2 
), where S p is the pooled standard deviation over the two 

[ ]

112 

M) M2 

groups. The test statistic is then recalculated for each value of the ICC, by replacing the 

original standard error with the adjusted standard error calculated above. The degrees of 

freedom under the null hypothesis for this statistic are K-2, where K is the total number 

of clusters in the trial. 

The smallest value of the ICC which results in p>0.05, or equivalendy the 95% 

confidence interval just including zero, can be found. In this case, an ICC of 0.02 gives 

a design effect of 1.58 assumed to be equal in each group, and an adjusted standard 

error of 0.131. Substituting this standard error gives a new t-statistic of 2.297, which is 

lower than the critical value of the t-distribution with 8 degrees of freedom (2.306), 

resulting in a p-value of greater than 0.05, and the null hypothesis no longer being 

rejected. 

In the case of binary outcomes, where the data have been analysed using the chi-square 

statistic, a similar method is used, where the design effect for each group is calculated 

exacdy as above, and the adjusted chi-square statistic, with one degree of freedom is 

t M;~P; -~) , where P is the overall event rate observed in the study, and P; is the 
1-) CIP(1-P) 

event rate in the ith group (Donner and KIar, 2000). 

The trials identified to be cluster randomised were also studied to identify whether they 

could be affected by consent bias. This is a potential source of bias in cluster 

randomised trials, and can occur when the participants are consented into the trial after 

the randomisation has been performed. The participants may know into which group 

they have been randomised before they decide whether to take part, and their decision 
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may be influenced by this knowledge (puffer et al., 2003). The CONSORT guidelines 

recommend including a flow diagram of both clusters and participants in a trial, which if 

included, would allow the reader to judge the potential for consent bias. 

The CONSORT guidelines state that papers should report how the sample size was 

determined, since if no sample size calculation is reported, the reader cannot judge 

whether studies with non-statistically significant results were sufficiendy powered to 

detect a difference. The reports of the trials included in this study were examined to 

establish if a sample size calculation was reported. 

4.3. Results 

A description of the principal study design features is presented for each of the fifteen 

trials (fable 4.1). One of the trials (Brodeur et al., 1988) although first published prior 

to 1990, has been included, as an additional paper was published from the trial after the 

1990 cut-off (Brodeur et al., 1990). From the character of the study design, and purpose 

and conduct of the trial, the trials were classified as either explanatory or pragmatic. 

Five trials were randomised at a higher level than the participant. Four of these were 

judged to be pragmatic trials, and were randomised by school, or by school class. The 

remaining cluster randomised trial (Ran et al., 1991) was classified as an explanatory 

trial, as it aimed to measure the efficacy of an agent, rather than the effectiveness of a 

programme, and was placebo controlled. This trial was randomised by school class. 

Three of the trials included in this study were excluded from the original Cochrane 

reviews. One was excluded due to open outcome assessment, i.e. the examiner was not 

blinded to group allocation (Brodeur et al., 1988). Another was excluded due to it being 

unclear whether the study was randomised (Chikte et al., 1996). The author has been 
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Brodeur et al., 1988 Canada 1983 M S 9-11 4 955 22 
Borutta et ai, 1991 Germany 1988 V P 12-14 4 400 
Frostell et ai, 1991 Sweden 1977 V P 4 2 NR 
Ran et al., 1991 Israel 1989 G S 13 4 140 4 
Spets-Happonen et al., 1991 Finland 1985 M S 11 4 243 
Tewari et al., 1991 India 1982 V P 6-12 4 1335 
Heidmann et ai, 1992 Denmark 1983 M S 6-12 2 1306 
Olivier et al., 1992 Canada 1985 G P 6-7 2 488 
Karjalainen et al., 1994 Finland NR MT S 7-8 2 313 16 
Seppa et ai, 1995 Finland 1991 VG P 10-12 2 289 
Bravo et ai, 1996 Spain 1990 V P 6-8 3 362 15 
Chikte et ai, 1996 S. Africa 1990 M S 6-12 2 2041 4 
Kleber et ai, 1996 USA 1994 MT S 10-11 3 260 
Petersson et ai, 1998 Sweden 1994 M S 13 2 NR 
Gisselsson et ai, 1999 Sweden 1993 G P 13 3 317 

- -

NR - Not reported 

1 G - gel, M - mouthrinse, T - toothpaste, V - varnish 2 P - professionally applied, S - self applied 

Table 4.1 : Description of the clinical trials of caries-preventive agents included in this study 
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699 No School Child P 
360 No Child Child E 
206 Yes Child Child P I 

112 No School class Child E 
201 No Child Child E I 

1251 No Child Child E • 

1083 No Child Child P 
431 No Child Child P I 

206 No School class Child P 
254 No Child Child E 
314 No School class Child, tooth P 
1245 No School Child P 
156 No Child Child E 
139 No Child Child P 
280 No Child Child E 
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contacted, and confinued that the trial was randomised. A third was excluded because 

the intervention included a non-fluoride component (Karjalainen et al., 1994). 

4.3.1. Analysis of cluster randomised trials 

Only one of these five trials (Bravo et al., 1996) reported that clustering was accounted 

for in the analysis. This trial had a randomisation unit of school class, and the authors 

included school, although not school class, as a variable in their logistic regression 

analysis. No statistically significant school effect was detected, and so the clustering was 

ignored. In addition, the authors perfonued an analysis with tooth as the unit of 

analysis. Here, they adjust the analysis to account for the lack of independence of the 

teeth in the mouth using an appropriate method (Donner and Banting, 1989). 

The four remaining cluster randomised trials were not analysed using methods 

appropriate to cluster randomised data. Table 4.2 summarises the statistically significant 

results reported in these four trials, and gives details of the adjusted statistical tests 

which have been used to identify the critical values of the ICC which, if present in the 

data, would result in the loss of the statistically significant results. For one study (Ran et 

al., 1991) the adjusted t-test cannot be calculated as there is only one cluster per group, 

which results in 0 degrees of freedom. Any cluster related variation in this data would 

result in the loss of the statistically significant result. 

4.3.2. Consent bias 

One cluster randomised trial (Ran et al., 1991) did not mention consent, but the four 

groups all received supervised toothbrushing in class, with different gels, so consent 

bias was unlikely. Another trial (Brodeur et al., 1988) included a participant flow chart 

which clearly stated that parental consent for children to take part took place before 

randomisation, so no bias coUld be present. 
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Trial Outcome Statistical Test Groups Original data Original Clustering Critical Design Adjusted Adjusted Degrees 
variable p-value details value of Effects standard test of 

ICC error statistic freedom 
Brodeur et DMFS t-test on Test Mean 0.44 0.026 10 dusters 0.02 Test 0.264 t=2.28 18 
al.,1988* fluoridated (n=157) s.d. 1.89 (estimated) * 1.03 

communities 
only Control Mean 1.04 10 dusters Control 

(n=;131) s.d. 2.52 (estimated) * 1.02 

Ran et al., DMFS t-test, one Group I Mean 2.3 <0.02 1 dusters See text 
1991 pattwlSe (n=29) no s.d. 

significant reported 
result Group Mean 0.0 1 dusters 

I 

IV no s.d. 
(n=27) rej>orted 

Karjalainen Number of Chi-squared Test 42 of 112 0.001 8 clusters 0.08 Test NA X2=3.341 
I et al., 1994 caries free test (n=112) caries free 2.04 

individuals Control 53 of 94 8 dusters Control 
(n=94) caries free 1.86 ! 

Chikte et at, DMFT t-test Test Mean 0.720 <0.001 2 dusters 0.002 Test 0.082 3.958 3 
1996 adjusted for (n=603) s.d. 1.137 1.6 I 

baseline Control Mean 1.045 2 dusters Control 
values (n=642) 1.6 , 

s.d. 1.138 
------ -- ------ '--

* The number of clusters in fluoridated communities is not specifically stated in the paper. The maximum possible munber of clusters for this 
comparison is 20 (there are 22 clusters total, but the unfluoridated communities must have at least one cluster per group). For this analysis, it is 
assumed 10 schools were in the mouthrinse group and lOin the control group. This scenario minimises the effect of clustering for this result 

Table 4.2: Details of adjusted statistical tests for cluster-randomised trials originally analysed without adjustment for clustering 



In the other three cluster randomised trials, it was not clear whether consent bias could 

be present. The fIrst (Bravo et al., 1996) did not report when consent took place, but 

did state that there were different consent rates in the 3 groups, ranging from 75% in 

the varnish group, to 87% in the sealant group. The other two trials, (Chikte et al., 1996; 

Karjalainen et al., 1994) do not report whether the random allocation of schools took 

place prior to the consent process. 

4.3.3. Sample size calculation 

None of the cluster randomised trials presented a sample size calculation. Only one of 

the individually randomised trials (Frostell et al., 1991) included this information, but 

did not do so in enough detail to allow the calculation to be replicated. 

4.4. Discussion 

Since ICCs have not routinely been published for caries increment in schools, it is 

diffIcult to estimate how likely it is that the critical values found in this study could be 

present in the data. Data held by the authors on a clinical trial conducted in schools 

showed an ICC of 0.01 for caries increment between schools. This value would result in 

~ two of the trials considered here losing their statistically signifIcant results. Since the 

actual ICCs from these trials have not been reported, there is no evidence that the 

conclusions drawn from the analyses without adjustment for clustering are accurate. 

One trial had only one cluster per group, and so could not be analysed using the cluster­

adjusted method. 

There is also an argument that school or class effect may be an issue in clinical trials 

which are randomised at the participant level. This is usually tackled by stratifying by 

school at randomisation. However, unequal dropout rates between schools can remove 
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this balance, resulting in some schools having a bias towards a particular treatment 

group. This could introduce bias in the overall results since different schools may have 

different caries levels. Applying multilevel modelling techniques to these trials would be 

one way of addressing this potential source of bias by accounting for the school effect 

in the analysis. Other appropriate methods of analysis for clustered data include 

generalised estimating equations, bootstrap or jackknife methods to estimate the 

standard error, and Poisson regression models. 

Three of the five cluster randomised trials did not report the consent procedure in 

sufficient detail to establish whether there was potential for consent bias. Inclusion of a 

participant flow diagram as recommended by CONSORT would allow a consideration 

of this design feature to be made. This review suggests that sample size calculations 

have not been routinely detailed in reports of clinical trials of caries preventive agents. 

When the work in this chapter was originally accepted for publication, the use of the 

CONSORT statement was not yet widespread in the dental literature, although two of 

the ten highest impact dental journals Oournal of Dental Research and Caries Research) 

required reports of randomised controlled trials to conform to these guidelines. The 

~ adoption of the CONSORT guidelines by other dental journals has increased, with 

several other high impact journals requiring the guidelines. This should help reduce the 

problems identified in this methodological study. This review may be considered a 

baseline study and it will be of interest to assess whether design, analysis and reporting 

practices improve in the future. 

In summary, the majority of trials identified in this study found to be cluster 

randomised were analysed without accounting for the clustering in the analysis. This 

could result in the significance of the group differences being exaggerated. These issues 

are unlikely to be specific to the trials of topical fluorides considered here, and could 
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apply equally to all trials in dentistry which may be cluster randomised. In addition, the 

CONSORT guidelines were not followed in the reporting of the majority of these trials. 

This results in the reader being unable to assess whether non-significant results may 

have been due to underpowering. These methodological considerations mean that 

inaccurate conclusions may have been drawn about the clinical benefit of some 

interventions. 
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5. The application of multilevel 

modelling to dental caries data 

5.1. Introduction 

As discussed in Chapter 3, clinical studies examining dental caries experience generate 

multiple outcome data for each participant. The caries status of each tooth surface is 

diagnosed separately. Caries is a continuous and gradual process, and certain thresholds 

exist beyond which a surface is defined as having caries. The two common thresholds 

used are known as D t , where the surface has a carious lesion affecting the outer layer of 

enamel, and D3• where the lesion has affected the both the enamel and the dentine layer 

below the enamel (Forgie et al., 2000). Within each participant there are data for 

multiple teeth, and for multiple surfaces on each tooth. This clustering of data within an 

individual is usually handled by taking the caries increment, that is the number of 

surfaces which have become affected by caries during the course of the trial, as the 

outcome variable (Worthington, 1984). However, as the data have been summarised, 

tooth and surface specific information is lost. These data could provide important 

clinical information, as interventions may be more effective on particular teeth or 

surfaces within the mouth, depending on the method of application. However, if 

analysis is to be performed at the tooth or surface level, the clustering within 

participants should be accounted for to ensure accurate conclusions. Failure to account 
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for clustering will result in a confidence interval for a relative effect which is too 

narrow, and therefore possibly an incorrect conclusion. 

Methods have been suggested previously for the analysis of caries data using tooth or 

surface as the unit of analysis. An adjustment to the chi-square test (Ahn et al., 2002) 

can allow for the clustering within participant with tooth as the unit of analysis. 

However, this approach is limited to straightforward comparisons of proportions, and 

does not allow for more complex models. Clustered survival analysis has been used 

(Hannigan, 2004), defining the survival time of a surface as the time from the start of 

the trial until the tooth becomes affected by caries. These data are then analysed using a 

marginal model, which allows for the dependence within subjects in calculating the 

variability of the regression coefficients. Marginal approaches treat the dependence 

structure as nuisance parameters, rather than explicidy modelling the variance at each 

level of the hierarchy. 

Another method of analysis for clustered data is multilevel modelling. This method 

allows the analysis of data within a hierarchical structure. Caries data would naturally fall 

into a three-level structure, with individual participant as the top, or level 3 unit, tooth 

,_ as the level 2 unit, and surface as the level 1 unit. In contrast to the marginal modelling 

methods, this approach allows the random structure to be explicidy modelled, in 

addition to the fixed effects. In a single level model the variance of the error term can 

be measured, and represents the amount of variation in the data which is unexplained 

by the model. Multilevel models work by splitting the variance in outcome into 

components for each level of the model, so random effects at tooth and participant 

level are estimated in the modelling process. These random effects at the higher levels 

are assumed to follow a normal distribution with mean 0, and variance which is 

estimated in the modelling process. Simulation studies have shown that parameter 
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estimates are fairly robust to violations of this assumption (Maas and Hox, 2004). In 

multilevel models, the intracluster correlation coefficient (ICC) can then be calculated to 

measure the proportion of variance which is attributable to each level of the model. 

This quantity is also known as the variance partition coefficient (VPC). In a three level 

model, separate ICCs can be calculated measuring the proportion of total variance 

attributable to level 2 and level 3. 

Most of the work on the analysis of clustered dental data has come from the field of 

periodontology. Periodontology data sets tend to have a similar hierarchical structure to 

caries data sets, with measurements on various sites around each tooth, for each tooth 

in the mouth. In particular, multilevel modelling techniques have been applied to several 

periodontal data sets (Axtelius et al., 1999; Gilthorpe et al., 2001; Gunsolley et al., 1994; 

Nieri et al., 2002; Sterne et al., 1988; Tu et al., 2004a; b). These have been considered in 

detail in Chapter 3. 

The earliest use of multilevel techniques for periodontal data (Sterne et al., 1988) fitted a 

two-level model, with observations on sites nested within individual participants. This 

model was subsequently extended to a three-level model, with measurement sites nested 

~ within individual teeth, which are nested within individual participants (Guns olley et al., 

1994). 

Several of the periodontal models have used a covariate to investigate the effect of 

tooth position within the mouth. This issue is of interest in caries, as the disease tends 

to affect certain teeth more than others. One paper (Axtelius et al., 1999) uses four 

tooth position categories, namely incisors, canines, premolars and molars (referred to as 

Classification A here), whilst another (fu et al., 2004a; b) uses seven categories, central 

incisor, lateral incisor, canine, first premolar, second premolar, first molar and second 

molar (Classification B). These two classifications assume that the effect of tooth 
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position in each of the four quadrants is equal. A third paper (Guns olley et al., 1994) 

categorises teeth into five types, incisors, canines, premolars, flrst molars, and second 

molars, and treats upper and lower teeth separately, resulting in 10 categories for tooth 

position (Classification C). 

N one of these multilevel models or tooth position classifications has been previously 

used for the analysis of data from caries clinical trials and thus the potential of 

multilevel modelling to enhance efficiency and understanding of the therapeutic benefit 

of caries prophylactic agents is unknown. Therefore, the aim of this chapter is to 

explore the utility of multilevel modelling of data from a clinical trial with caries as the 

outcome variable, by investigating the effect of different level structures on the 

interpretation of the results. In addition, the implications of tooth groupings to model 

the fixed effects of tooth position are explored. 

5.2. Methods 

The dataset analysed in this chapter comes from a randomised controlled trial 

examining the caries preventive efficacy of a chlorhexidine varnish on the teeth of 

adolescents aged 12 at baseline, and followed up over 3 years (Forgie et al., 2000). 

Chlorhexidine is an anti-bacterial agent, and the varnish is intended to reduce the 

development of caries by reducing the level of caries-associated micro flora (Emilson, 

1994). The intervention groups received applications of the varnish a minimum of once 

per year, with additional applications if they were found to have high levels of bacteria. 

The 1240 participants in the trial were randomised to one of four groups. Group A 

received chlorhexidine varnish and dental health advice, group B received a placebo 

varnish and dental health advice, group C received only dental health advice, and group 

D received no intervention. The original paper used caries increment as the outcome 
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variable, and compared the four groups via an analysis of variance. The results showed 

no significant difference in caries increment between the four groups. 

The analysis here will use data from participants randomised to group A, the 

chlorhexidine varnish, and group C, the control group who received dental health 

advice only. The group sizes were 268 in the varnish group, and 324 in the control 

group at randomisation. Only participants who were examined both at baseline and at 

the 3-year follow up examination are included in this analysis, with group sizes of 222 in 

the varnish group, and 243 in the control group. 

The outcome variable is caries increment by individual surface (rather than the 

aggregated measure commonly used). This is calculated for each surface, taking the 

value 1 if it was unaffected by caries at baseline (including surfaces on unerupted teeth), 

and had become affected by caries by the end of the study. Otherwise, the increment 

takes the value O. If the surface is affected by caries at baseline, and is therefore 

unavailable for increment, it has been excluded from the analysis. This excluded 3158 of 

28416 surfaces (11%) in the varnish group, and 3216 of 31104 surfaces (10%) in the 

control group. Children in the control group had a mean of 13.2 surfaces excluded, and 

~" those in the varnish group had a mean of 14.2 surfaces excluded. The threshold for 

detennining whether a surface was affected by caries was the D J level, which includes 

any visible caries, whether only in the enamel of the tooth, or extending into the 

dentine. The data were also analysed using the D3 threshold, but as the conclusions 

were similar, these results have not been presented here. 

The {irst model fitted, model 0, is a simple logistic regression on the surface outcomes, 

with no multilevel structure. This model is fitted only as a baseline for comparison with 

later models. 
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logit (n') = Po + PIXI + P2 X2 + ... + PnXn +eOi 

Yi -- Bin(l, tri ) (Model 0) 

var(Yi Itr;) = tri (l-tri ) 

The outcome variable for a specific surface i, Yj, which takes the value 0 if the surface 

does not develop caries and 1 if it does develop caries, is assumed to follow a binomial 

distribution with probability of success ffj • The model uses tr; as the dependent 

variable, which represents the probability that the ith surface becomes affected by caries 

during the course of the study. The logistic model uses the logit transformation on the 

left hand side of the equation, where logit( 1(;) = log( ~) . The right hand side of the 
1-1(; 

equation includes covariates Xl to Xn with associated coefficients PI to Pn and the 

error term eOi • 

This model makes the assumption that the canes status of a tooth surface is 

independent of the status of the other surfaces on that tooth, and that caries status of a 

tooth is independent of the status of other teeth of that individual. These assumptions 

are unlikely to hold in reality. 

The next model fitted, modell, is the two-level modeL allowing for correlation between 

the results from multiple surfaces within the same individual, similar to that proposed 

by Sterne et al (Sterne et al., 1988) for a periodontal outcome. 

logit (tr ik) = Po + PIX} + P2 X2 + ... + PnXn + VOk + eOik 

Yik -- Bin(l,trik ) 

var( VOk ) = O'~O 

var(Yik Itr ik ) = tr ik (l-tr ik ) 
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The quantity 0';0 is the variance of the error term at the participant level, and 1S 
estimated in the modelling process. 

Model 2 includes the tooth level in the random part of the model and has a three-level 

structure, allowing for surfaces within a tooth within an individual, as in Gunsolley et al 

(Guns olley et al., 1994). 

logit (nUk ) = Po + PtXt + P2 X2 + ... + PnXn + VOk + UOjk + eOUk 

Y Uk ~ Bin(1, n Uk) 

var( VOk ) = 0';0 
var(uOjk ) = 0';0 
var(Yik I n Uk ) = n Uk (1- n Uk ) 

(Model 2) 

Here, 0';0 is the variance of the error term at the participant level, and 0';0 is the 

variance of the error term at the tooth level. Both quantities are estimated in the 

modelling process. 

Each model was fitted with one explanatory variable denoting the treatment group. In 

addition, Model 2 was fitted using in turn each of the different classifications for tooth 

position as sets of indicator variables. Model 2 was also fitted with a set of indicator 

variables for each individual tooth, for companson with the previously suggested 

classifications. 

The ICCs for logistic models are not as straightforward to calculate as for models with 

continuous outcomes. Various approaches are possible, but the one chosen here is the 

threshold model (Snijders and Bosker, 1999). This model assumes that there exists an 

underlying continuous outcome variable where a value above some threshold 

corresponds to the value 1 in the dichotomous outcome variable. Since the 
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development of caries is a continuous process with a certain threshold at which an 

examiner will judge a lesion to be present, this model seems appropriate for these data. 

Under the assumptions of a logistic regression model, the underlying continuous 

. tr
2 

. 
variable must follow a logistic distribution, which has vanance - , which IS 

3 

approximately equal to 3.29 (Snijders and Bosker, 1999). This can then be used as the 

level 1 variance to calculate the ICC in the same way as for continuous outcomes. 

5.3. Estimation in multilevel logistic models in MLwiN. 

The multilevel analyses were performed using version 2 of the MLwiN software 

(Rasbash et aI., 2005). This section gives details on how this software fits multilevel 

logistic models. 

The standard two-level logistic model with binary outcome, as used in model 1, is given 

by the following equations. 

logit (nik ) = Po + P.x. + P2X2 + ... + PnXn + V Ok + eOik 

Yik ,..." Bin(1, n ik ) 

~var( VOk ) = 0';0 

var(Yik I 7r ik ) = 7r ik (1- n ik ) 

The outcome variable for a specific surface i, Yik, which takes the value 0 if the surface 

does not develop caries and 1 if it does develop caries, is assumed to follow a binomial 

distribution with probability of success TCik' This represents the probability that the ith 

surface becomes affected by caries during the course of the study. The logistic model 

uses the logit transformation on the left hand side of the equation, where 

logit(!tjk) = log( ~) . The right hand side of the equation includes the intercept, Po, 
I-trjk 
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covariates Xl to Xn, with associated coefficients Pi to Pn. These form the fixed part of 

the model. The remaining terms in the equation, the random effect at level 2, VOk, and 

the level 1 residual term e(lik form the random part of the model. The quantity uJo is the 

variance of the random term at the participant level, and is estimated in the modelling 

process. 

The unknown parameters to be estimated in this model are the P coefficients, and the 

variance of the random effect, uJo 

5.3.1. Quasi-likelihood estimation 

The default estimation methods in MLwiN are based on iterative generalised least 

squares (IGLS) (Goldstein, 1986). For models assuming a normal distribution, this 

procedure begins by generating initial values for the parameters in the fixed part of the 

model using ordinary least squares, then alternates between updating the estimates in 

the random and fixed parts of the model, using generalised least squares, until 

convergence, when the change in each parameter from one iteration to the next, is less 

than a given tolerance. The estimates from this method are biased, but a correction 

term can be applied to give unbiased estimates, which is particularly important in small 

samples. This method is known as restricted iterative generalised least squares (RIGLS) 

(Goldstein, 1989). 

For models with other distributional assumptions, such as the logistic model considered 

here, one approach to estimation is to use a Taylor series expansion to linearise the 

model, and allow the IGLS or RIGLS procedures to be used. 

The two main types of quasi-likelihood method differ based on which value is used for 

the Taylor series expansion. In marginal quasi-likelihood (MQL) the expansion is done 
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around zero, whereas in predictive quasi-likelihood (PQL) the expansion is done around 

the current estimates of the residuals. PQL is also sometimes known as penalised quasi­

likelihood. Both methods also have 1 st and 2nd order versions, depending on whether 

the Taylor series expansion includes 101 order terms only, or also incorporates 2nd order 

terms. 

Both 151 order MQL, and 151 order PQL have been shown to be seriously biased, 

particularly when the underlying random parameter values are large, with the 2nd order 

MQL method only giving a modest improvement over its 1 SI order counterpart 

(Rodriguez and Goldman, 1995). However, in response to these results the 2nd order 

PQL method was developed, and was shown to be considerably less biased (Goldstein 

and Rasbash, 1996). Subsequent investigation has shown that 2nd order PQL can also 

show significant bias on certain datasets (Browne and Draper, 2006). 

Another drawback of PQL is that it often fails to converge in cases where there are 

many level 2 units where the responses are all zero. This can often happen in models 

where there are few level 1 units in each level 2 unit (Goldstein, 2003). The three level 

model for caries data falls into this category, as each level 2 unit (tooth) will only have a 

maximum of 5 level 1 units (surfaces). 

5.3.2. Markov Chain Monte Carlo Estimation 

An alternative form of estimation available in MLwiN is the Markov Chain Monte Carlo 

(MCMC) method (Browne, 2005). 

The modelling involves estimation of several parameters, the coefficients of the fixed 

part of the model, Po, ... , Pn, and the variance from the random part, 0';0, for two level 

models. These unknown parameters are denoted as a group bye. 
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The software generates samples from the joint posterior distribution of these unknown 

parameters, using the likelihood form of Bayes' theorem, p(6 I y) oc p(6)L(y I 6). Here 

L(y I 6) is the likelihood function formed from the observed data y, and the 

distributional assumption used in the model. The default prior distributions used in 

MLwiN are uniform for fixed parameters, and gamma distributions for variances. 

The estimation process requires starting values, so before the MeMe algorithm can be 

used, one of the quasi-likelihood methods described above must be used to generate 

these. The MeMe process then uses a combination of Gibbs sampling (Geman and 

Geman, 1984), and Metropolis-Hastings sampling (Hastings, 1970) to sample from the 

joint posterior distribution of the estimates. 

Beginning with the starting values generated by the quasi-likelihood method, the Gibbs 

sampling method updates each parameter estimate in turn by sampling from the 

conditional posterior distribution of the parameter, given the observed data y, and the 

current values of all the other parameters. This new estimate then replaces the current 

value of that parameter, to be used in the conditional distribution for sampling the next 

parameter. 

This method can be used for normally distributed models, as it is straightforward to 

write the conditional posterior distributions for both the fixed and random parameters. 

However, for more complex models, such as the logistic model considered here, the 

conditional distributions are more complicated, and an alternative approach is required, 

the Metropolis-Hastings method. 

At each iteration, Metropolis-Hastings sampling forms a proposal distribution for the 

parameters, and samples from this distribution. The proposal distribution is usually a 

multivariate normal distribution. A rule is then applied to either accept or reject this 
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new set of parameters. This rule is based on calculating the ratio of the conditional 

probability of the new proposed estimates to the conditional probability of the previous 

set of estimates, known as r. If r> 1, then the new estimates are accepted. If r<l, then 

the new estimates are accepted with probability r, using a random mechanism. 

The aim of these MCMC iterations is not to generate individual point estimates for the 

values of the coefficients, but to generate a sample from the complete posterior 

distribution. Therefore, the procedure stores all the values generated, and this simulated 

distribution can be used to calculate both point estimates and coverage estimates for 

each parameter. As the chain may take some time to converge to the correct posterior 

distribution, a number of iterations from the beginning of the run are discarded, and 

not used in calculating the estimates. This is known as the burn-in period, and the 

default number of iterations in MLwiN is 500. 

It is necessary to determine for how many iterations the MCMC routine should be run 

to give an acceptable accuracy of the estimates. This can be done using the Raftery­

Lewis diagnostic (Raftery and Lewis, 1995). Once the routine has been run for around 

5000 iterations, this statistic can be calculated. This gives the number of iterations that 

are required so that the 95% credible interval calculated from the simulated posterior 

distribution is accurate to within a given tolerance (default 1 %). The procedure can then 

be continued for the required number of iterations, and the diagnostic checked again to 

ensure that convergence has been reached. 

Simulation studies have shown that MCMC methods can give considerably more 

accurate estimates than quasi-likelihood methods (Browne and Draper, 2006), although 

they are considerably more computationally intensive. 
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The models in this chapter were fitted using the Markov Chain Monte-Carlo (MCMC) 

method of estimation. Convergence was checked using the Raftery-Lewis diagnostic to 

ensure that the chain was run for a sufficient number of iterations to estimate the 95% 

credible interval to an accuracy of 1 %, with p=0.05. 

5.4. Results 

A total of 53146 surfaces from 465 participants were included in the analysis. There 

were a mean of 4.22 surfaces included per tooth (range 1 to 5), a mean of 114.29 

surfaces per participant (range 49 to 128), and a mean of 27.09 teeth per participant 

(range 20 to 28). 

Using the traditional method of analysis gives a mean caries increment of 10.63 (s.d. 

8.07) in the varnish group, and 10.81 (s.d. 9.38) in the control group. These data would 

usually be analysed using a t-test given the relatively large sample size, giving no 

evidence of a difference between the groups. 

Table 5.1 shows the estimated regression coefficients for models 0 to 2. 

Model 0 is a logistic model treating all surfaces as independent observations. In this 

mOdel the coefficient of group is given by 4).010. The associated odds ratio is 0.99. The 

interpretation of this is that the odds of a surface in the intervention group developing 

caries is almost identical to the odds of a surface in the control group developing caries, 

by a factor of 0.99. The 95% credible interval for this odds ratio is 0.94 to 1.05. 
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Model 0 - single Model 1- two- Model 2 - three-
level logistic level model, level model, 
regression, surface individual - surface individual - tooth -
only surface 

Fixed part of 
model 

Constant ~o -2.263 -2.547 -3.195 
(95% Cd) 

(-2.303,-2.223) (-2.674,-2.419)) (-3.359,-3.034) 

Coefficient of -0.010 0.030 0.018 
group covariate 
(95% Cd) (-0.066,0.049) (-0.153,0.205) (-0.206,0.242) 

Odds ratio for 0.99 (0.94,1.05) 1.03 (0.86,1.23) 1.02 (0.81,1.27) 
group (95% Cd) 

Random part 
of model 

Variance at 
individual level 0.840 (0.713,0.985) 1.138 (0.955,1.347) 
(95% Crt) 

Variance at 
tooth level (95% 1.930 (1.732,2.134) 
Cd) 

ICC estimate at 0.20 0.18 
individual level 

ICC:-estimate at 
0.30 

tooth level 

Table 5.1: Coefficients from models with different level structures 

This interval contains 1, and therefore this model shows no evidence for a difference 

between the groups. 

Model 1 adds individual as a source of variation, and the estimate of the variance of the 

random effect due to individual variation is 0.840. The ICC estimate shows that 20% of 
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the variance can be attributed to variations between individuals. The calculation of this 

value uses the value of 3.29 for the variance at surface level, from the threshold model 

described above. The ICC is the proportion of the variance attributable to the individual 

level, so is equal to 0.840 / (3.29 + 0.840) = 0.20. The estimate of the coefficient of 

group is higher than that derived from model 0 above, but the credible interval is much 

wider. This is to be expected, and is due to the added uncertainty of the effect of the 

individual. The odds ratio here is 1.03, and the 95% credible interval of 0.86 to 1.23 is 

much wider than in the previous model. 

Model 2 adds tooth level to the analysis. Here, the ICC estimates show 18% of the 

variance attributable to the individual level, and 30% of the variance attributable to 

variation between teeth within individuals. In clinical practice, one may expect a higher 

percentage of the variance to be found between individuals. However, in this and most 

Phase III clinical trials, investigators seek to reduce variation attributable to the 

individual by pre-selecting people of similar age, socio-economic background and 

previous caries levels. 

Table 5.2 shows the results for Model 2, with each of the covariates of tooth position, 

and ~he model including fixed effects for all teeth. The effects of group in all of these 

models are similar. The ICes at tooth level are lower in these models than the 30% in 

the model without the tooth position covariates. This is due to the covariates explaining 

much of the variation at tooth level. 

Table 5.3 shows the fixed effects of the three types of tooth position covariates, 

compared to the model with fixed effects for all teeth. The entries in the table are 

predicted probabilities (expressed as percentages) of a surface in the control group 

developing caries. An entry for a particular tooth can be interpreted as the predicted 

probability from the model, that a surface on that tooth, for a child in the control group 
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Fixed effects Classification Classification Classification 
for all teeth A B C 

Fixed part of 
model 

Constant ~o -3.081 -3.826 -3.834 -2.996 
(95% Cd) 

(-3.394,-2.721) (-4.016,-3.634) (-4.054,-3.612) (-3.200,-2.771) 

Coefficient of 0.031 0.028 0.024 0.036 
group covariate 
(95% Cd) (-0.201,0.258) (-0.202,0.259) (-0.209,0.257) (-0.193,0.267) 

Odds ratio of 1.03 1.02 1.04 
group (95% Cd) 1.03 (0.82,1.29) 

(0.83-1.30) (0.81,1.29) (0.82,1.31) 

Random part 
of model 

Variance at 1.365 1.364 1.368 
individual level 

1.395 

(95% Cd) 
(1.101,1.627) (1.157,1.602) (1.162,1.606) (1.174,1.639) 

Variance at 0.520 0.811 0.784 
tooth level (95% 

0.640 

Crl) 
(0.001,0.738) (0.693,0.941 ) (0.659,0.909) (0.125,0.779) 

ICC estimate at 0.26 
individual level 

0.25 0.25 0.26 

ICC estimate at 0.10 0.15 0.14 0.12 
tooth level 

Table 5.2 : Coefficients of models with tooth position covariates 

will develop caries during the course of the trial. The predicted probabilities for the 

varnish group are very similar, and are not presented here. The top part of the table 

shows the predicted probabilities from the model with fixed effects for all teeth, and the 

bottom part shows the predicted probabilities for the three sets of tooth position 

covariates. 
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Tooth number (position) within the quadrant 

1 2 3 4 5 6 7 

Quadrant 1 (VR) 4 5 2 3 3 16 15 

Quadrant 2 (VL) 5 5 2 2 4 15 14 

Quadrant 3 (LL) 0 0 1 2 2 21 14 

Quadrant 4 (LR) 1 1 1 1 4 25 18 

All quadrants 

Teeth grouped by 2 1 2 16 
type 

(Classification A) 

All quadrants 2 2 1 2 3 18 15 
(classification B) 

Quadrants 1 and 2 

VpperTeeth 5 2 3 15 14 

(Classification C) 

Quadrants 3 and 4 

Lower Teeth 0 1 2 23 16 

(Classification C) 

Table~ 5.3 Predicted probabilities (xlOO) of a surface in the control group 
developing caries from models with different tooth position covariates 

The predicted probabilities from Classifications A and B are similar to each other, but 

both fail to account for some of the variation between individual teeth in the overall 

model, most noticeably the differences observed between the upper (quadrants 1 and 2) 

and lower (quadrants 3 and 4) incisors (tooth numbers 1 and 2), with the lower incisors 

being less likely to develop caries. Classification C treats the upper and lower teeth 

separately, and accounts for this difference. This is reflected in the ICCs, where 
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Classifications A and B have higher ICCs at tooth level (0.15 and 0.14) than 

Classification C (0.12), which has a closer ICC to the model with fixed effects for each 

tooth (0.10). Further investigation of model fit for these analyses will be presented in 

Chapter 7. 

5.5. Discussion 

Traditional analysis of caries data using the summary measure of caries increment at the 

individual level does not allow for any exploration of the data at tooth or surface level, 

although data is usually available at these levels. There may be a number of reasons why 

an investigator or healthcare provider would be interested in the efficacy of different 

methods, preventive agents or treatments at different levels. For example, 

understanding treatment effects or health benefit at level 3, i.e. for individuals allows a 

consideration for how a particular procedure could have different effect sizes for people 

of different ages, men or women, or whether people live in fluoridated water 

communities. Being able to quantify relative treatment effect sizes at the tooth level, 

may be important in looking at degenerative conditions that can present more 

commonly on different tooth types, for example the relative benefit of an erosion 

preventing agent on molars and incisors rather than on an overall whole mouth measure 

for a condition that may occur with a lower frequency on canines and premolars. 

Investigators commonly require to measure comparative benefit at the surface level, or 

level 1, for example being able to determine whether a preferential benefit is found on 

fissures as compared to smooth surfaces 

The use of the threshold model for dental caries data allows straightforward modelling 

of relative variance estimates at the different levels of a multilevel logistic model. The 

model assumption that a dichotomous outcome is based on an underlying continuous 
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variable with a threshold point where the outcome changes from zero to one, is in 

reality how dental caries is classified in clinical trials, as caries is a continuous process, 

but is only identified as present in a clinical trial when it has reached a certain level of 

severity. 

This chapter illustrated modelling issues using a data set from a group of adolescents, 

and the results here model the probabilities of a sound surface on a given tooth 

developing caries over the three year period between the approximate ages of 12 and 

15, when the canines (position 3 within quadrants), premolars (positions 4 and 5), and 

second permanent molars (position 7) have recendy erupted into the mouth. The other 

permanent teeth (incisors, positions 1 and 2, and first permanent molars, position 6) will 

have been in the mouth since around the age of 6 years. This age group is often 

included in caries clinical trials due to the large number of newly erupting teeth, which 

have the potential to become affected by caries. Due to the pattern of caries 

development, the tooth position results cannot be assumed to be generalisable to data 

from other age groups. Younger age groups will certainly show different patterns, due 

to the different teeth present, deciduous teeth in very young children, and a mixture of 

deciduous and permanent teeth in older children. In addition, the exclusion from the 

analysis of surfaces which already have caries at baseline means that models may differ 

in populations with higher or lower levels of existing disease. The finding of differing 

probabilities of caries according to differing tooth types, with molars most susceptible is 

well established and has been shown most commonly in analyses of cross-sectional 

survey data (Batchelor and Sheiham, 2004). 

However, this work considers development and prevention of new carious lesions over 

time and the results also show the importance of differentiating between the upper and 

lower arches, when modelling the probabilities of caries developing on teeth, 
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particularly on the incisors. The lesser probability of developing caries in the lower arch 

is likely to be due to the protective effect of saliva, which contains calcium and 

phosphate and can be considered as a remineralising fluid as it collects in pools around 

the lower incisors (Featherstone, 2004). The model with fixed effects for all teeth also 

shows a potential difference between the left (quadrants 2 and 3) and right (quadrants 1 

and 4) sides of the mouth in the probabilities of the molars developing caries, with 

slightly higher probabilities of developing caries in the right side of the mouth. The 

remineralising effect of saliva combined with topical fluorides e.g. from brushing with a 

fluoridated toothpaste can result in the repair of Dtlevellesions, so surfaces with caries 

at baseline can appear sound at follow-up (Kidd, 2005). However, the models here only 

predict caries at follow-up on surfaces considered sound at baseline, as surfaces with 

caries at baseline are excluded, so these reversals do not impact on the models. 

The models here were fitted using MCMC estimates. The default method in the MLwiN 

software, is an iterative generalised least squares estimation, using either MQL 

(marginalised quasi-likelihood), or PQL (penalised-quasi-likelihood) approximations for 

transformation to a linear model. The first order MQL approximation is known to give 

estimates which are biased downwards, which could result in underestimates of the 

ICCs and treatment effects (Goldstein, 2003). In this data set, the MQL approximation 

of the variance at tooth level in model 2 was less than half that of the MCMC estimate. 

Second order PQL (penalised quasi-likelihood) methods are considered to give better 

estimates. However these are known to suffer from convergence problems (Goldstein, 

2003), and in fact failed to converge for this data set. Therefore, although MCMC 

methods are far more computationally expensive, they give much more robust and 

reliable solutions, and should be the method of choice for this type of data. 
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The models used here are random intercept models, i.e. the probability of developing 

caries for a given surface varies depending on the tooth and the individual child. The 

treatment effect, however, is constrained to be equal for all teeth and individuals. These 

models can be extended to random slopes models, where the treatment effect is allowed 

to vary by tooth or by individual. If the data are to be analysed at the surface level, the 

clustering must be accounted for to avoid potential incorrect conclusions, as illustrated 

by the much wider confidence intervals for treatment effect observed in the multilevel 

models, compared to the single level model. 

In summary, this chapter provides the first application of multilevel modelling to caries 

data from a clinical trial and has found that this statistical approach can increase 

understanding of the patterns of caries development within the mouth, and allows for 

full use of the data collected at surface level. Use of the threshold model allows 

estimation of the relative variances at individual, tooth and surface level, within a 

multilevel logistic regression model. 
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6. Prediction of patterns of caries 

incidence using multilevel 

modelling 

6.1. Introduction 

Studies of caries prediction have often come to the conclusion that past caries 

experience is the best predictor of the development of caries in the future. A review of 

the dental literature for caries prediction models (powell, 1998) found that clinical 

variables such as the caries status of the most recently erupted teeth and surfaces were 

stronger predictors than non-clinical variables, and that past caries experience was the 

most significant predictor, with other important independent variables including socio­

economic status, fluoride exposure, tooth morphology, and microbial agents. 

6.1.1. Symmetry of caries development 

It has long been a commonly held view by clinical observation that caries develops 

symmetrically in similar teeth on the right and left sides of the mouth. This apparent 

symmetry with respect to the midline was interpreted in the early part of last century, as 

evidence that caries was not an infective disease (Eckermann, 1919). A study of 300 

bitewing radiographs (Scott, 1944), found that 73% of posterior decayed, missing or 

filled teeth were involved bilaterally (i.e. the corresponding tooth on the opposite side 
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of the mouth was also decayed, missing or filled). A longitudinal study of dental caries 

in 666 English schoolchildren (Berman and Slack, 1972) found "bilateral symmetry of 

caries attack at all ages." 

Some more recent studies have challenged this view. A study of 510 children aged 12 

years (\Vood, 1985) demonstrates that, from a retrospective dental record study, 44% of 

maxillary and 33% of mandibular pairs of occlusal surfaces of first permanent molars 

showed caries experience unilaterally, i.e. only on one side of the mouth. A study of 

15,132 adults, using data from the 1985-86 National Survey of Oral Health in the US 

(Hujoel et al., 1994b), found that 94% of adults with two or more decayed or filled 

surfaces had two or more "discordant pairs", where a decayed surface on one side of 

the mouth, had a sound counterpart on the laterally opposite side of the mouth. The 

study showed that the distribution of these pairs was not random with respect to the 

midline, and that the caries tended to be aggregated on one side of the mouth. A study 

using data from 20000 UK children aged 5 to 16 years (Batchelor and Sheiham, 2004) 

used probit analysis to rank surfaces by their susceptibility to caries. The study did not 

show precise symmetry between equivalent surfaces on the left and right sides of the 

mouth, but found that symmetry existed within groups of sites with similar 

susceptibility to caries. A recent study of deciduous teeth in 7074 children aged 3 to 7 

years (Vanobbergen et al., 2007) concluded that associations of caries experience at the 

population level appeared to follow a symmetrical pattern, but at an individual level, 

when using the same method as in the US study above (Hujoel et al., 1994b) the study 

found similar results, i.e. that caries lesions tend to cluster on one side of the mouth. 

6.1.2. Carles prediction 

Although some of the studies above used longitudinal data sets, none have studied the 

issue of the symmetry of the disease over time, instead choosing a single timepoint and 
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examining the issue cross-sectionally. At a given time point, while there may be caries 

present on a surface, while the corresponding surface on the other side of the mouth is 

sound, which would be assessed as asymmetrical caries in a cross-sectional study at this 

particular timepoint, there is a possibility that the sound surface could develop caries at 

a later date. 

Models of caries prediction generally assess the likelihood of a child developing caries 

anywhere in the mouth. However, it can also be of interest to predict individual teeth 

and surfaces which are likely to develop caries in order to inform the nature of the most 

effective intervention during a given time. For example, if fissure surfaces are most at 

risk, a fissure sealant programme may be optimal; but if approximal surfaces are most 

vulnerable and a fissure sealant policy is followed, the costs of repairing the approximal 

carious lesions present, which would usually involve access via the fissure, could 

outweigh the short-term benefit of the initial intervention with sealants. This may be 

confounded by the fact that the probabilities of caries development can vary 

significandy for different teeth, as seen in Chapter 5. 

6.1.3. Multilevel modelling 

Data collected at the surface level is clustered within teeth, which are clustered within 

individual participants. If statistical models use surface or tooth as the unit of analysis, 

then this clustering must be accounted for to avoid potential incorrect conclusions. A 

method which can be used to allow for this clustering is multilevel modelling, which in 

this case uses surface as the basic unit of analysis, but rather than assuming all surfaces 

are independent, assumes that the variability between surfaces affected can be explained 

as a combination of the variability at surface level, tooth level, and individual child level. 
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The purpose of this study is to investigate if caries on a given surface can be used as a 

predictor of future caries on the corresponding surface on the other side of the mouth. 

The importance of quantifying any such likelihood would be in the nature of the 

preventive intervention the dental care provider could give, and perhaps, more crucially 

in the nature of the very specific advice and quantification of risk that could be given to 

patients by their practitioner, so providing a significant and evidence-based motivator to 

self care. 

6.2. Methods 

The data come from a randomised controlled trial examining the caries preventive 

efficacy of a chlorhexidine varnish on the teeth of adolescents aged 12-14 years at 

baseline (mean age 13.4 years), and followed up over 3 years (Forgie et al., 2000). The 

study was conducted in Tayside, Scotland, an area with relatively high levels of caries, 

with mean DMFT in 14 year olds of 2.88, compared to a mean DMFT for the UK of 

1.67 (pitts et al., 2000). All schools in the region took part, and the participants selected 

for inclusion had high levels of mutans streptococci, and were thus regarded to be at 

high risk of developing caries. Chlorhexidine is an anti-bacterial agent, and the varnish is 

intended to reduce the development of caries by reducing the level of caries-associated 

micro flora (Emilson, 1994). The intervention groups received applications of the 

varnish a minimum of once per year, with additional applications if they were found to 

have high levels of bacteria. The varnish was applied to all teeth. Dental examinations 

were performed by a single examiner, and intra-examiner reliability levels were good 

(kappa>0.80). 

The 1200 participants in the trial were randomised to one of four groups. Group A 

received chlorhexidine varnish and dental health advice, group B received a placebo 
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varnish and dental health advice, group C received only dental health advice, and group 

D received no intervention. The study showed no significant difference in caries 

increment between the four groups, and for this analysis, all participants are treated as a 

single group. 

The analysis here uses data from all participants who received both a baseline and a 3 

year follow up examination. 

The outcome variable is calculated for each surface, taking the value 1 if it was 

unaffected by caries at baseline, and had become affected by caries by the end of the 

study. If it was unaffected by caries at baseline, and remained unaffected by the end of 

the study, the increment takes the value o. If the surface was affected by caries at 

baseline, and therefore cannot contribute to the outcome, it has been excluded from the 

analysis. This excluded 12930 of the 126336 possible surfaces (10%). The threshold for 

determining whether a surface was affected by caries was the DI level, which includes 

any visible caries, whether only in the enamel of the tooth, or extending into the 

dentine. 

A logistic multilevel model was fitted USing MLwiN software. Three levels were 

specified: individual participant, tooth, and surface. Only surfaces which were sound at 

baseline were included. The outcome variable was the development of caries into 

enamel or dentine, after three years. Covariates in the model were tooth position, the 

caries status of the contralateral surface at baseline, the caries status of the 

corresponding surface in the opposing jaw at baseline, whether caries was present on an 

adjacent tooth, and the individual's total number of decayed surfaces at baseline. In 

addition, interaction terms between tooth position and caries status of the opposite 

surfaces were investigated. The equations describing the multilevel model are shown 

here. 
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logit (7rijk) = Po + PIXI + P2 X2 + ... + PnXn + Uk + U jk 

Yijk ,..., Bin(1,7riJ'IJ 
var(uk ) = a; 

var(ujk ) = a; 

var(y ijk I 7r ijk ) = 7r ijk (1- 7r ijk ) 

The outcome variable for the ith surface on the jth tooth of the kth individual is 

denoted Yijk> and takes the value 0 if the surface does not develop caries and 1 if it does 

develop caries. This variable is assumed to follow a binomial distribution with 

probability of success 7r ijk . In this model, 7r ijk represents the probability that the 

surface becomes affected by caries during the course of the study. The logistic model 

uses the logit transformation on the left hand side of the equation, where 

logit( 7rjjk) = loge 7rijk 
), to create a continuous outcome variable for use in the model. 

1-7rjjk 

The right hand side of the equation includes covariates Xl to Xn with associated 

coefficients PI to Pn· 

The multilevel model differs from a standard logistic regression model by including 

random effects at participant level (Uk), and at tooth level (U jk ). The variances of the 

error terms at participant level, a; , and tooth level, a; , are estimated in the model-

fitting process. 

The coefficients of logistic models can be interpreted using predicted probabilities. 

These represent the probability under the model assumptions, of a surface developing 

caries over the course of the study, given particular values of the covariates. 
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All analyses were performed using version 2 of the MLwiN software (Rasbash et al., 

2005). The models were fitted using the Markov Chain Monte-Carlo (MCMC) method 

of estimation (Browne, 2005). This method constructs a chain of estimates which, if the 

chain is run for a sufficient number of iterations, will converge to the final estimate. 

Convergence was checked using the Raftery-Lewis diagnostic, which is an estimate of 

the required number of iterations to produce an estimate of a given accuracy. In this 

model, the chain was run for a sufficient number of iterations to estimate the 95% 

credible interval of all estimates to an accuracy of 1 %, with p=0.05 (i.e. the probability 

that the estimates of the 95% Cd bounds are within 1 % of the true value is less than 

0.05). 

6.3. Results 

A total of 987 of the 1200 randomised children (82%) were included in the analysis, 

with 113406 surfaces which were sound at baseline. Of these surfaces, 4388 (4%) were 

decayed by 3 years. The dropouts had slighdy higher caries levels at baseline (mean 

DtMFS 13.9) than those who completed the study (mean DtMFS 10.7). 

The odds ratios from the final multilevel model are shown in Table 6.1. The model was 

initially run with all possible interaction terms between tooth position and the baseline 

caries status of the corresponding laterally opposite surface, corresponding surface in 

the opposing jaw, and adjacent teeth. The interaction terms which were significant were 

those between the caries status of the corresponding laterally opposite surface and the 

first molars, the caries status of the corresponding surface in the opposite jaw and the 

canines, and second molars, and caries status of the adjacent teeth and the first molars 

and upper second molars. All other interaction terms were removed to obtain the final 

model. 
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The effect of caries at baseline on the corresponding laterally opposite surface is shown 

to be highly significant (odds ratio 4.80, 95% credible interval 4.28 to 5.38). The effect 

of caries at baseline on the corresponding surface in the opposing jaw was also 

significant, but the effect was smaller in magnitude (odds ratio 1.66, 95% credible 

interval 1.49 to 1.83). The effect of caries at baseline on an adjacent tooth was also 

significant (odds ratio 1.89, 95% credible interval 1.74 to 2.05), but also smaller in 

magnitude than that of caries in the laterally opposite surface. 

The effects of all tooth positions, compared to the reference category, the upper 

incisors, were significant. Odds ratios less than one indicate teeth where a given surface 

is less likely to develop caries than one on the upper incisors, and those greater than one 

indicate teeth where surfaces are more likely to develop caries. 

The odds ratios for the interaction terms between the first molars and the baseline 

caries status of the corresponding laterally opposite surfaces are both less than one. This 

indicates that the effect on outcome of having baseline caries on the corresponding 

laterally opposite surface is smaller in the first molars than in the other teeth. 

In contrast, the odds ratios for the interaction terms between the baseline caries of the 

corresponding surface in the opposing jaw and the canines and second molars were all 

greater than one. This indicates that the effect on outcome of having baseline caries in 

the corresponding surface in the opposing jaw is greater in these teeth than in the 

others. 

The results are illustrated in Table 6.2, which shows the predicted probabilities of 

developing caries for a surface on each of the tooth classifications. These are shown for 

all four possible combinations of caries status of the corresponding laterally opposite 

surface, and caries status of the corresponding surface in the opposing jaw, where the 
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Variable Odds ratio 95% Cd 

Caries at baseline variables: 

On contralateral surface 4.80 (4.28,5,38) 

On corresponding surface in opposing jaw 1.66 (1.49, 1.83) 

On adjacent tooth 1.89 (1.74,2.05) 

Number of decayed surfaces in mouth 1.06 (1.05, 1.06) 

Tooth position variables 

Upper incisor (reference tooth) 

Upper canine 0.35 (0.30,0.41) 

Upper premolar 0.55 (0049,0.61) 

Upper first molar 3.72 (3.27,4.25) 

Upper second molar 3.46 (2.97,4.03) 

Lower incisor 0.09 (0.07,0.11) 

Lower canine 0.16 (0.13, 0.20) 

Lower premolar 0041 (0.37,0.46) 

Lower first molar 6042 (5.64, 7.32) 

Lower second molar 2.54 (2.27, 2.83) 

Interactions 

Upper first molar x Caries at baseline on contralateral surface 0.65 (0.53,0.81) 

Lower first molar x Caries at baseline on contralateral opposite 0.44 (0.36, 0.54) 
.urf",. .. 

Upper canine x Caries at baseline on corresponding surface in 2.89 (1049, 5.55) 
opposing jaw 
Lower canine x Caries at baseline on corresponding surface in 

2.54 (1.41,4046) 
opposing jaw 

Upper second molar x Caries at baseline on corresponding 1.95 (1.57, 2043) 
surface in opposing jaw 
Lower second molar x Caries at baseline on corresponding 1.63 (1.24, 2.13) 
surface in opposing jaw 

Upper first molar x Caries at baseline on adjacent tooth 0.43 (0.36, 0.52) 

Lower first molar x Caries at baseline on adjacent tooth 0.52 (0.43, 0.62) 

Upper second molar x Caries at baseline on adjacent tooth 0.54 (0045, 0.64) 

Table 6.1: Odds ratios and 95% credible intervals from final model predicting the 
development of caries on a given surface during the study. 
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Caries status of 

laterally opposite Sound Sound Decayed Decayed 

surface at baseline 

Caries status of 

corresponding surface 
Sound Decayed Sound Decayed 

in opposing jaw at 

baseline 

Upper incisor 0.04 0.06 0.15 0.23 

Upper canine 0.01 0.06 0.06 0.23 

Upper premolar 0.02 0.03 0.09 0.14 

Upper first molar 0.12 0.19 0.31 0.42 

Upper second molar 0.12 0.30 0.39 0.67 

Lower incisor 0.00 0.01 0.02 0.03 

Lower canine 0.01 0.03 0.03 0.11 

Lower premolar 0.02 0.03 0.07 0.11 

Lower first molar 0.20 0.29 0.34 0.46 

Lower second molar 0.09 0.21 0.32 0.55 

Table 6.2 Predicted probabilities of a surface (sound at baseline) on a given 
tooth developing caries over the 3-year study, by baseline caries status of 
opposite surfaces, for a child with the mean number of decayed surfaces overall 
(D1MFS=10.7), and no caries on the adjacent teeth. 

other covariates are set at baseline DMFS=10.7 (the mean), and no caries present on 

adjacent teeth. 

The predicted probabilities of surfaces on different teeth developing caries vary gready, 

as expected. The relative effects of the status of the corresponding opposite surfaces 
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also vary as suggested by the significant interaction terms in the model. A surface on the 

lower incisors where the corresponding surface in the opposing jaw is also sound has a 

predicted probability of less than 1 % of developing caries if the corresponding laterally 

opposite surface is sound at baseline, and 1 % if decayed, whereas a surface on a upper 

first molar has a predicted probability of 12% of developing caries if both the 

corresponding laterally opposite surface and corresponding surface in the opposing jaw 

were sound at baseline, increasing to 67% if both were decayed. 

The effect of the interaction terms for the first molars can be seen when comparing the 

predicted probabilities in Table 2 for the first and second molars. Clearly the differences 

between the predicted probabilities for those with and without a decayed corresponding 

laterally opposite surface are smaller for the first molars than for the second molars. 

6.4.Discussion 

Caries data is traditionally analysed at individual participant level, to avoid the issue of 

clustered data. The multilevel modelling technique used here allows the analysis to take 

place at tooth surface level, while directly modelling the clustering effects of the 

hierarchical structure. This allows both efficacy analyses and predictive models to 

explore the effects of co~ariates which operate at tooth or surface level, as well as those 

operating at participant level. 

The differing probabilities of caries development in the various tooth types is well 

documented (Batchelor and Sheiham, 2004). The work here shows that there is also a 

marked difference in the probabilities of caries development on surfaces which have 

caries on the corresponding laterally opposite surface, and to a lesser degree, on the 

corresponding surface in the opposing jaw. This is particularly large in the upper second 

molars, where a surface has a 67% chance of developing caries in the following 3 years 
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when both the corresponding laterally opposite surface, and the corresponding surface 

in the opposing jaw are decayed at first examination between ages 12 and 14, compared 

to only 12% if both are sound. It is important to note that these results should not be 

generalised beyond the age group studied, due to the times of eruption of the different 

teeth. In addition, the exclusion of surfaces which have caries at baseline means that 

models may differ in populations with different caries levels. The participants in this 

study had a mean D3MFT of 2.6 (standard deviation 2.9). A national UK survey of 14 

year olds (pitts et al., 2000) showed a mean D3MFT for the UK of 1.8, so the group 

studied here have above average caries levels. However, the survey showed a mean 

D3MFT for Scotland of 2.8, although as the surveyed children had a mean age of one 

year older than those in this study, it is likely that the study children have a slightly 

higher caries level than the overall population of Scotland. This is to be expected as the 

children were pre-selected based on levels of Streptococcus mutans found in the mouth. 

Several other variables may impact on the development of caries, such as SOClO­

economic status, fluoride exposure, tooth morphology, and microbial agents. These 

variables have not been included in the models here. Although some of these may be 

confounders, they are not readily available for this data set, and these models have been 

fitted to investigate the predictive power of existing caries patterns alone. 

The significant interaction terms show that the effect of having canes on the 

corresponding laterally opposite surface is reduced on the first molars. This is likely to 

be due to the fact that the first molars are the first permanent teeth to erupt into the 

mouth, and do so several years before the canines, premolars and second molars. Since 

the children in this dataset are aged 12-14 at baseline, their first molars will have been 

erupted for 6-8 years by this point, whereas the other posterior permanent teeth will be 

fairly newly erupted, or indeed still be unerupted at the initial examination. Therefore, 
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there is a greater chance of caries on the flrst molars having been present for several 

years, having been filled or the tooth extracted. This historical caries is less likely to be a 

predictor of new caries on the same type of tooth than the more recent caries in the 

newer teeth, as teeth are particularly vulnerable to caries in the first few years after 

eruption (Carlos and Gittelsohn, 1965). In fact 91 % of the children included here had 

some caries experience on the flrst molars at baseline. If this study was carried out at a 

younger age, it is likely that the effect on the flrst molars would be greater. This does 

not apply to the other teeth which have been present for several years, the incisors, as 

they are far less likely to have developed caries at a young age (Hannigan et al., 2000). 

Conversely, the increased effect of caries on the corresponding surface in the opposing 

jaw for canines and second molars is likely to be due to the fact that these teeth have 

only recently erupted into the mouth at baseline. A child who has already developed 

caries in these teeth may be at greater risk of developing further caries in the next 2 

years (powell, 1998). 

The remineralising effect of fluoride can result in reversals of carious lesions, with 

lesions diagnosed with D\ level caries becoming apparently sound at a later date. This 

can cause problems with models of caries progression, but as all surfaces with caries at 

baseline were excluded from this analysis, these do not impact on the model. 

In conclusion, this multilevel modelling technique provides a clinically useful method of 

estimating the probability of a surface developing caries over a period of time, based on 

the caries status of the laterally opposite surface, and the corresponding surface in the 

opposing jaw, while controlling for the natural clustering in tooth surface data. 

This information can help inform preventive treatment planning decisions, by indicating 

particular surfaces which may be at risk in the short term for targeted interventions such 
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as fissure sealants. The use of whole-mouth treatments such as fluoride varnishes may 

also be indicated where there is caries on one side of the mouth which is not mirrored 

on the opposite side. 
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7. Investigation of model fit 

7.1. Introduction 

In Chapter 5, various specifications of multilevel model were applied to a data set from 

a clinical trial of a caries preventive agent. This chapter discusses aspects of model fit 

for the multilevel models applied to these data. The concept of assessing comparative 

model fit using the Akaike Information Criterion (AIC) and the Deviance Information 

Criterion (DIC) is introduced, and the various models assessed using this method. The 

residuals from the models are examined, leading to investigation of the possibility of 

fitting the zero-inflated binomial model to the data. 

7.2. Comparative model fit using AIC and DIC 

Goodness of fit in statistical models is often assessed using the likelihood function. The 

likelihood statistic -2 log (likelihood) can be calculated for a fitted model. This 

statistic can also be calculated for the full model, where a parameter is included for 

every observation, so the data fits the model exacdy. The difference between the 

likelihood statistic for the fitted model and the full model is known as the deviance. 

If two fitted models are nested, i.e. all parameters in the first model are also included in 

the second, then the difference in the deviances can be compared to a chi -squared 

distribution with degrees of freedom equal to the additional number of parameters in 
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the second model, to test whether the additional parameters significandy improve the 

model. However, if the models are not nested, this technique cannot be used. In this 

case, models can be compared using methods such as the Akaike Information Criterion. 

7.2.1. Akaike Information Criterion 

The Akaike Information Criterion, or AIC (Akaike, 1974) is a general method of 

comparing statistical models to assess which has the best fit to a given data set. The 

AlC is calculated using the formula Ale = -2Iog(likelihood) + 2k, where k is the 

number of parameters in the model. A model with a lower AIC is considered to fit 

better. The statistic is designed to balance between accuracy (measured using the 

likelihood statistic) and the complexity of the model (measured by the number of 

parameters). 

7.2.2. Deviance Information Criterion 

The Deviance Information Criterion, or DIC (Spiegelhalter et al., 2002) is a 

generalisation of the AIC which is particularly useful in the multilevel models fitted 

here, as it is straightforward to calculate from the MCMC estimation used in MLwiN. 

First, a quantity known as 15 is calculated by calculating the deviance at every iteration 

of the MCMC run, and taking the mean. This is used as the measure of accuracy of the 

model, as with the likelihood statistic in the AIC. Calculating the deviance at the 

expected value of the unknown parameters, DeB), and subtracting this from 15, gives 

the quantity Pd, which is the effective number of parameters, giving a measure of 

complexity. The DIC is then calculated as 15 + Pd, the sum of terms measuring the 

accuracy and complexity of the model. As with the AIC, lower values of the DIe 

represent improved model fit. 
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Comparison of multilevel models using DIC 

Table 7.1 shows the values of the DIC calculated for all models fitted to the data set in 

Chapter 5. The first 3 models did not include the tooth position covariates, and were 

comparing the different level structures. It can be seen from the table that the three 

level model has a better fit than either the two level model ignoring tooth level, or the 

simple logistic regression with no multilevel structure. The last four models compare 

the fitted model with different classifications of tooth position. Both classification A, 

which categorised teeth into incisors, canines, premolars and molars, and classification 

B, which categorised teeth into seven categories (central incisor, lateral incisor, canine, 

first premolar, second premolar, first molar and second molar) had a higher DIC than 

the model which included fixed effects for all teeth. Neither of these classifications 

separated the upper and lower jaw, whereas classification C categorised teeth into 

incisors, canines, premolars, first molars and second molars, separately for each jaw, 

giving a total of ten categories. This model had the lowest DIe of all fitted models, 

confirming that this model the best fit of all models tested. 

7.3. Examination of residuals 

The three level model with hierarchy participant-tooth-surface can be written as the 

following equation. 

logit (n!ik ) = Po + PIXl + P2X2 + ... + PnXn + VOk + UOjk + eO!ik 

Y!ik ,.., Bin(1, n!ik ) 

var( VOk ) = U;O 

var(uOjk ) = U;O 
Modell 

var(Y!ik In!ik) = n!ik (1- n Uk ) 
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Model DIC 

Models without tooth position covariates 

Single level logistic regression, surface only, 33090.50 

Two level model, individual- surface 30198.30 

Three level model - individual- tooth surface 27656.18 

Three level models with tooth position covariates 

Fixed effects for all teeth 25381.29 

Classification A (four categories) 25717.33 

Classification B (seven categories) 25677.81 

Classification C (ten categories) 25283.02 

Table 7.1: DIC values for all models fitted in Chapter 5 

The outcome variable for the ith surface on the jth tooth in the kth individual, Yijk 

takes the value 0 if the surface does not develop caries and 1 if it does develop caries, 

and is assumed to follow a single trial binomial distribution with probability of success 

1( ijk . The model predicts 1( ijk , which represents the probability that the ith surface on 

the jth tooth in the kth individual becomes affected by caries during the course of the 

study. The logistic model uses the logit transformation on the left hand side of the 

equation, where logit( 1fj ) = loge .-!!.L) . The right hand side of the equation can be 
I-1f. 

t 

separated into the fixed part of the model, and the random part of the model. The fixed 

part of the model includes covariates Xl to Xn with associated coefficients PI to Pn 

The random part includes the random effect of participant, UOk ' and the random effect 
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of tooth, U Ojk ' Also U;O is the variance of the random effect at the participant level, 

and U;o is the variance of the random effect at the tooth level. Both variances are 

estimated in the modelling process. 

The model includes intervention group and tooth position as covariates. As the effect 

of intervention group was very small and non-significant, it has been excluded from the 

analyses in this section, and only the covariate describing tooth position included. This 

categorical variable has ten classifications for tooth position, incisors, canines, 

premolars, first molars, and second molars, each separately for the upper and lower jaw. 

The coefficients from the fitted model are shown in Table 7.2, with those from the 

fixed part expressed as odds ratios, with 95% credible intervals produced from the 

MCMC estimation. The predicted probabilities in the table represent the probability that 

a sound surface at baseline on the given tooth will develop caries over the 3 years of the 

study. These probabilities are predicted from the fixed effects in the model only, which 

corresponds to the means of the distributions of the random effects i.e. at V Ok = UOjk 

=0. 

In order to investigate Olodel fit, the crude residuals have been calculated from the 

model, as the observed value minus the predicted value. The predicted values are 

calculated using both the fixed and random parts of the model. Figure 7.1 shows the 

distribution of residuals. 
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Fixed part 

exp (13) 95% Cd 
Predicted 

probability 

Upper incisors 
(reference 0.05 
category) 

Upper canines 0.39 (0.32 ,0.48) 0.02 

Upper premolars 0.57 (0.49 ,0.66) 0.03 

Upper fIrst 
3.58 (3.06 ,4.19) 0.15 

molars 

Upper second 
3.36 (2.90,3.90) 0.15 

molars 

Lower incisors 0.09 (0.07 ,0.12) 0.00 

Lower canines 0.16 (0.12,0.21) 0.01 

Lower premolars 0.42 (0.36 ,0.49) 0.02 

Lower first 
5.97 (5.10,6.98) 0.23 

molars 

Lower second 
3.81 (3.29 ,4.42) 0.16 

molars 

Random part 

a 95% Cd 

Tooth level 1.393 (1.186, 1.632) 

Participant level 0.646 (0.530,0.764) 

Table 7.2: Coefficients from Modell 
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Figure 7.1 : Distribution of crude residuals from Modell. 

The left hand side of this graph corresponds to those cases where the observed value is 

zero, and seems to be reasonably distributed with most cases having a residual close to 

zero, with a tail of more negative values. However, the graph is very asymmetrical, with 

the right hand side of the graph, corresponding to those cases with an observed value of 

1, being grouped together at the upper end of the scale. This suggests that the model 

may be underestimating the probabilities of surfaces developing caries. 

One possible contributory factor to this is that the model does not differentiate 

between surfaces. None of the covariates in this model vary at level 1, as the tooth 
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position variable only varies at level 2, the tooth level. Therefore, where certain surfaces 

on a particular tooth may have differing probabilities of developing caries, the predicted 

values from the model will be an average for the whole tooth. In a tooth which has one 

surface with an observed value of 1 (caries), and 4 with observed values of 0 (no caries) 

this will result in small negative residuals for the four surfaces with no caries, and a 

larger positive residual for the surface with caries. 

Another possible contributory factor is that there may be an excess of zeroes in the data 

set, resulting in a violation of the level 1 binomial assumption. This will be addressed in 

a later section. 

Models such as this where no covariates vary at level 1, can be reformulated as two level 

models, with the outcome variable as a binomial count. In this model, the outcome 

variable at tooth level will now be the number of surfaces on the tooth which become 

carious during the study. 

logit (7rjk ) = Po + PIX, + P2X2 + ... + PnXn +VOk +UOjk +eOjk 

Yjk '" Bin(njk ,7rjk ) 

var(VOk ) = 0';0 

var(uOjk ) = 0';0 

Model 2 

var(y jk I 7r jk ) = n jk 7r jk (1- 7r jk ) 

Here, njk is the number of surfaces on tooth j in individual k which are sound at 

baseline, and thus included in the analysis. The model still allows us to include a random 

effect at tooth level, which may seem counterintuitive, as we already have a residual 

error term at tooth level, eOjk. However, since each tooth has an associated count value, 

of the number of sound surfaces at baseline, and since the level 1 variance depends on 

the values of the covariates, it is possible to model this random effect. If all n jk values 
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were equal, and there were no covariates, it would be impossible to model the random 

effect at tooth level. 

This model is in fact, equivalent to model 1, and produces identical parameter estimates 

to those shown in Table 7.2. However, as the outcome variable is measured at tooth 

level rather than surface level, the residuals are different. Residuals from model 2 are 

shown in Figure 7.2. 

It can be seen from this graph that rewriting the outcome variable as the number of 

surfaces which become carious results in more symmetric residuals. It appears that the 

model is still underestimating the number of surfaces which develop caries, as the right 

hand side of the distribution has a peak above zero. 

--C 
~ 
o 
(.) 

6000-r---------------------------------------------, 

4000 

2000 

O~------~------
-0 .50000000 0 .00000000 0 .50000000 

Residual (observed value - predicted value) 

Figure 7.2: Distribution of crude residuals from Model 2. 
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7.4. Zero inflation 

Another factor which could be contributing to the underestimation of the probabilities 

of caries incidence is an excess of zeroes in the data. The current model assumes that 

the data follows a binomial distribution at level 1. If the observed data has more teeth 

which do not develop caries during the study (i.e. have an outcome of zero) than would 

be expected from the binomial distribution, the data is zero-inflated. This can be 

modelled by assuming a zero-inflated binomial distribution at level 1, rather than the 

previous binomial assumption (Hall, 2000). The zero inflated distribution differs from 

the standard binomial distribution by adding a zero-inflation parameter, given by Pik for 

the jth tooth in the kth individual. The distribution is then given by: 

with probability Pik 

with probability 1-Pik 

In this model, when Pik is zero, this is equivalent to the usual binomial distribution, and 

when Pikis equal to 1, all outcomes would be expected to be non-carious. 

This model cannot be fitted using MLwiN, but the software Latent GOLD (Vermunt 

and Magidson, 2005) allows two-level models with zero-inflated binomial distribution at 

level 1. However, this software does not allow a random effect to be added at tooth 

level, as we have done in the model fitted using MLwiN. Therefore, before investigating 

the zero-inflated model, the models fitted in MLwiN both with and without a random 

effect at tooth level will be compared. Table 7.3 shows the coefficients from these two 

models. 
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With random effect at Without random effect 
Fixed part 

tooth level at tooth level 

exp ((3) (95% CrI) exp ((3) (95% CrI) 

Upper incisors (reference 

category) 

Upper canines 0.39 (0.32, 0.49) 0.43 (0.36, 0.52) 

Upper premolars 0.57 (0.49,0.66) 0.59 (0.52, 0.67) 

Upper first molars 3.57 (3.06, 4.19) 3.10 (2.72, 3.53) 

Upper second molars 3.36 (2.90,3.90) 2.91 (2.59,3.30) 

Lower incisors 0.09 (0.07,0.12) 0.11 (0.09,0.14) 

Lower canines 0.16 (0.12,0.21) 0.18 (0.14,0.23) 

Lower premolars 0.42 (0.36, 0.49) 0.45 (0.39,0.51) 

Lower first molars 5.97 (5.10,6.98) 5.01 (4.41,5.71) 

Lower second molars 3.81 (3.29,4.42) 3.35 (2.97,3.79) 

Random part 

cr cr 

Tooth level 0.65 (0.53,0.76) 

Participant level 1.39 (1.19, 1.63) 1.19 (1.02, 1.39) 

Table 7.3 : Comparison of parameter estimates for binomial count models fitted 

in MLwiN with and without random effects at tooth level 
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The residuals from the two models are shown in Figure 7.3. 
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residuals with random effect at tooth level residuals without random effect at tooth level 

Figure 7.3: Comparison of residuals from models with and without random 

effects at tooth level 

This figure shows that although the shapes of the graphs are similar, the model with 

random effects at tooth level has a much higher peak at the point immediately below 

zero, corresponding to accurate predictions of outcome in teeth which do not develop 

caries during the study. The model with random effects at tooth level appears to have a 

better fit to the data than the model without. The model with random effects at tooth 

level has a DIe of 15427, and the model without random effects at tooth level has a 

DIe of 15954, confllllling that the model with random effects at tooth level is a better 

fit to the data than the model without. 

7.4.1. Estimation of model using Latent GOLD 

The estimation of the model using the Latent GOLD software differs from the MeMe 

routine in MLwiN, as Latent GOLD uses a different method of estimation, a 

combination of EM and Newton-Raphson methods. Table 7.4 extends Table 7.3 by 
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showing the parameter estimates from the model without random effect at tooth level 

fitted using Latent GOLD. 

Estimated in MLwiN Estimated in 
Latent GOLD 

With random Without random Without random 
Fixed part effect at tooth effect at tooth effect at tooth 

level level level 

exp (n) exp (n) exp (n) 

Upper incisors 
(reference category) 

Upper canines 0.39 0.43 0.44 

Upper premolars 0.57 0.59 0.59 

Upper first molars 3.58 3.10 3.08 

Upper second molars 3.36 2.92 2.90 

Lower incisors 0.09 0.11 0.11 

Lower canines 0.16 0.18 0.18 

Lower premolars 0.42 0.45 0.45 

Lower first molars 5.97 5.01 4.98 

Lower second molars 3.81 3.35 3.33 

Random part 

a a a 

Tooth level 0.646 

Participant level 1.393 1.193 1.056 

Table 7.4 : Comparison of parameter estimates for binomial count models fitted 

in MLwiN with and without random effects at tooth level, and fitted in Latent 

GOLD without random effects at tooth level 
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It can be seen from this table that the parameter estimates from Latent GOLD are fairly 

close to those of the same model fitted in MLwiN. Latent GOLD has the advantage 

that estimation is much quicker, with this model being fitted in under a minute, 

compared to several hours for the MCMC routine in MLwiN. 

7.4.2. The zero-inflated binomial model 

The model in Latent GOLD can now be extended to assume a zero-inflated binomial 

distribution at level 1. This model has additional parameters which estimate the 

probability that a given tooth will have a guaranteed zero outcome, and not be affected 

by the rest of the model. This will be referred to as the probability of being in the zero 

part of the model. The other part of the model, which has a binomial distribution will 

be referred to as the non-zero part of the model, although it should be noted that this 

part of the model can also predict zero outcomes, within the binomial distribution. 

Rather than assume a constant probability of being in the zero-part of the model for all 

teeth, we can also allow this to vary with the covariates in the model. Therefore, tooth 

position will also predict the probability of being in the zero part of the model. 

Table 7.5 shows the parameter estimates from this model. These are not directly 

comparable to the parameter estimates from the previous model, as the predictions 

come from a combination of the probability of being in the zero part of the model, and 

the prediction from the fixed part of the model. The table also shows the probabilities 

of falling into the zero part of the model for each value of the tooth position variable. 
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Fixed part for non-zero part of model 
With random effect at tooth 
level 

exp (6) 

Upper incisors (reference category) 

Upper canines 0.57 

Upper premolars 0.60 

Upper ftrst molars 1.09 

Upper second molars 1.10 

Lower incisors 0.70 

Lower canines 0.35 

Lower premolars 0.47 

Lower ftrst molars 1.98 

Lower second molars 1.30 

Random part for non-zero part of model 

a 

Participant level 0.70 

Probabilities of being in zero part of model 

Upper incisors (reference category) 0.64 

Upper canines 0.77 

Upper premolars 0.67 

Upper first molars 0.01 

Upper second molars 0.06 

Lower incisors 0.95 

Lower canines 0.85 

Lower premolars 0.70 

Lower first molars 0.16 

Lower second molars 0.11 

Table 7.5: Parameter estimates from zero-inflated binomial model 
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Figure 7.4 shows the comparison of the residuals from the two models fitted using 

Latent GOLD. 

..... . 
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residuals from binomial model residuals from zero-inflated binom lal model 

Figure 7.4 : Comparison of crude residuals (observed value - predicted value) 

from binomial model, and zero inflated binomial model, fitted in Latent GOLD. 

These graphs show that the zero-inflated binomial model appears to be a better fit to 

the data than the non-zero inflated model with a higher peak around zero, and a 

flattening of the second peak on the right hand side of the graph. Comparing the 

models using the AIC gives 16026 for the zero-inflated model, and 16604 for the non-

zero inflated model, confirming that the zero-inflated binomial model is a better fit to 

the data. The AIC has been used rather than the DIC as Latent GOLD does not use the 

MCMC estimation method. 

In order to compare the results of the zero-inflated binomial model with those from the 

binomial models, we can calculate predicted probabilities of developing caries from 
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each model. For the zero-inflated binomial model, these are derived from a 

combination of the probability of being in the non-zero part of the model, and the 

predicted probability of a tooth in the non-zero part of the model developing caries. 

The probabilities are shown in Table 7.6. 

Binomial model Zero-inflated 
Binomial model without random binomial model 

with random effect at tooth without random 
effect at tooth level (MLwiN) effect at tooth 
level (MLwiN) level (Latent 

GOLD) 

Upper incisors 
0.05 0.06 0.06 

(reference category) 

Upper canines 0.02 0.03 0.03 

Upper premolars 0.03 0.04 0.04 

Upper flrst molars 0.15 0.17 0.19 

Upper second molars 0.15 0.16 0.18 

Lower incisors 0.00 0.01 0.01 

Lower canines 0.01 0.01 0.01 

Lower premolars 0.02 0.03 0.03 

Lower fust molars 0.23 0.25 0.26 

Lower second molars 0.16 0.18 0.20 

Table 7.6 : Predicted probabilities from binomial models with and without 
random effects, and from zero-inflated binomial model. 

This table shows differences between the predicted probabilities for the model with 

random effects at tooth level, and the zero-inflated binomial model, particularly on the 

molars. However, the differences between the two models without random effects at 

tooth level, with and without zero-inflation, are closer. 
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In summary, software limitations have affected the model fit investigations. Use of 

MLwiN shows that the binomial model with a random effect at tooth level is a better fit 

than the model without. Use of Latent GOLD shows that a zero-inflated binomial 

model is a better fit to the data than a standard binomial. A zero-inflated binomial 

model with random effect at tooth level may be the best fit to the data, but neither 

package is capable of fitting this model. 
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8. Simulation study 

8.1. Introduction 

One of the criticisms of analysing caries data using the DMF index, is that the detail of 

the observations at tooth and surface level are lost. By increasing the number of 

observations analysed, there is the potential for increased efficiency in caries clinical 

trials. 

The analysis of model fit in Chapter 7 has suggested that a 3-level model, with random 

effects at both tooth level and individual participant level, is a better fit to the data than 

a 2-level model, with only random effect at individual participant level. However, the 

two level model is computationally easier to fit, and the procedure is available in a wider 

range of software than three level modelling. The two level model also avoids problems 

which can be caused by_ fitting models with few observations in each level 2 unit 

(Goldstein, 2003). 

The purpose of this simulation study is to assess the power of analysis of caries data 

using multilevel modelling, compared to the traditional caries increment analysis. In 

addition, the effect of ignoring tooth level in the multilevel structure is investigated, to 

assess robustness of the data to this method of analysis, which is computationally 

simpler, and may be easier to interpret. 
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8.2. Simulation methods 

The basis of the simulation study is the following model: 

10 

logit (nijk) = Po + PlXl + L Pmxm + VOk + UOjk + eOijk 

Yijk ~ Bin(l,7rijk) 

var(VOk ) = 0';0 

var(UOjk ) = 0';0 

m=2 

var(Yik In ijk ) = n ijk (1- n ijk ) 

In this model Xl is the indicator variable for group allocation, and X2, ... ,XlO are indicator 

variables for the tooth position classification from previous chapters (Classification C in 

Chapter 5), with upper incisor as the reference category. 

The data set that has been used in this thesis comes from a clinical trial which showed 

no significant group effect. In order to investigate whether a significant group effect 

would have an effect on the other parameters in the model, the data set analysed 

selected a different subgroup of participants. 

The data set here includes all participants in the two groups who received chlorhexidine 

or placebo varnish from the clinical trial data set used in previous chapters. As no 

significant treatment effect was found in this trial, the effect of compliance to the 

varnish protocol has been used in the model instead of group allocation. There was a 

significant difference found in D1FS caries increment between those who complied with 

the protocol (mean=9 .89, s.d.=7.59), and those who did not (mean=12.19, s.d.=9.23). 

Clearly this is not an effect due to a caries preventive agent, but has been used here to 

generate two subgroups with significandy different caries levels. 
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Published work on the estimation methods in MLwiN (Browne and Draper, 2006) 

show that the default estimation method for multilevel logistic regression, 1 sl order 

MQL, is significantly biased, with the 2nd order PQL method, giving more accurate 

estimates, although still sometimes biased, particularly in estimating random effect . 

Another disadvantage of PQL is that it can fail to converge in some models. The 

MCMC routine has been shown to give the least biased estimates, but this method takes 

a prohibitively long time to converge, which makes it unrealistic for large scale 

simulations. The simulations here will be performed using 2nd order PQL estimation. 

In order to check the likely accuracy of the PQL method, models have been fitted using 

the three estimation methods on the data set described above. Table 8.1 shows the 

fitted coefficients from the three level logistic multilevel model, fitted using the three 

estimation methods. 

The PQL estimates here are mostly very similar to the MCMC estimates, with the 

exception of the random effect at tooth level where the PQL estimate is higher than the 

MCMC estimate. The 1 sl order MQL results are clearly very different from the MCMC 

results. 

8.2.1. Choice of simulation parameters 

In order to assess power in different situations, the simulations were run with various 

numbers of simulated individuals per group, and with various coefficients of 

intervention effect. As the effect of ignoring tooth level is also of interest, various 

random effects at tooth level were also simulated. 

The parameters which vary in the simulations are number of individuals per group, 

coefficient of intervention effect, and variance of the random effect at tooth level. The 

values of the first two parameters were chosen based on observed values in trials 
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I sl order MQL 200 order PQL MCMC 

Constant -2.390 (0.072) -3.247 (0.090) -3.143 (0.087) 

Group (compliant or 0.351 (0.1l5) 0.417 (0.130) 0.407 (0.127) 

not) 

Upper incisor 

(reference category) 

Upper canine -0.854 (0.093) -1.040 (0.133) -1.038 (0.1l3) 

Upper premolar -0.561 (0.064) -0.655 (0.093) -0.650 (0.080) 

Upper 1 S molar 1.107 (0.061) 1.439 (0.088) 1.420 (0.080) 

Upper 20a molar 0.891 (0.059) 1.200 (0.085) 1.183 (0.077) 

Lower incisor -2.109 (0.112) -2.510 (0.160) -2.503 (0.131) 

Lower canine -1.653 (0.126) -1.928 (0.177) -1.941 (0.145) 

Lower premolar -0.730 (0.067) -0.883 (0.096) -0.877 (0.082) 

Lower 1 sl molar 1.467 (0.061) 1.930 (0.088) 1.886 (0.080) 

Lower 200 molar 1.046 (0.059) 1.361 (0.085) 1.338 (0.077) 

Random effect - 1.175 (0.083) 1.332 (0.105) 1.276 (0.1 04) 

participant 

Random effect - tooth 0.301 (0.035) 1.099 (0.063) 0.806 (0.066) 

Table 8.1: Coefficients from three different estimation methods in MLwiN. 

reported in the Cochrane review on topical fluorides for preventing dental caries in 

children and adolescents (Marinho et al., 2003a). The review included 133 trials, with 

group size varying from 10 to 708. The median group size was 158, with quartiles at 93 

and 254. The simulations will use values of 50, 150 and 300 individuals per group. The 

intervention effect in the 133 trials ranged from a prevented fraction (PF) of 0 to 80%. 

The prevented fraction is defined as the difference in caries increment between 
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intervention and control group, expressed as a percentage of the increment in the 

control group. The median PF was 25%, with quartiles of 17% and 32%. The three 

values chosen for the simulation are 15%, 25% and 35%. The observed coefficient of 

group effect in Table 8.1 (0.417), corresponds to a PF of 25%. As the trials in the 

Cochrane review generally do not use multilevel analysis, the values for the third 

parameter, variance of random effect at tooth level, cannot be chosen in the same way. 

The observed variance of the random effect at tooth level in the model fitted above was 

1.099, from the 2nd order PQL analysis, and 0.806 from the MCMC analysis. The values 

for the simulation were chosen as 0 (no random effect at tooth level), 1 and 2. This 

gives a total of 27 combinations of parameter values. 

It is also of interest to consider the effect of zero-inflation on the analysis, but due to 

serious convergence issues on this data set in Latent GOLD, the software which fits the 

zero-inflated binomial model, this has not been considered in this work, and will be 

returned to in the future (see the section in Chapter 9 on further work). 

The coefficients of tooth position, and the random effect at individual participant level 

are kept constant for each simulation at the values from the 2nd order PQL model 

shown in Table 8.1. 

1500 data sets were simulated for each of the 27 combinations of parameters detailed 

above using the MLwiN syntax language. For each simulated participant, predicted 

values of the outcome variable for each tooth surface were calculated based on the 

model parameters. Random effects at individual and tooth level were then applied to 

these predicted values, resulting in a probability of decay for each surface. The data 

were then sampled from the binomial distributions with these probabilities to obtain the 

simulated data sets. The two-level model ignoring the random effect at tooth level was 

fitted to each of the data sets. In addition, the full three-level model was also fitted to 
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each data set. All models were fitted using the second order PQL method. As PQL can 

have convergence problems (Goldstein, 2003) the maximum number of iterations was 

set at 100 for each data set, and if this maximum was reached, the model for that data 

set was considered to have failed to converge. All models which did converge, did so in 

fewer than 50 iterations. Finally, the traditional analysis of comparing DFS caries 

increment using t-tests was performed on each simulated data set. As a check, data sets 

were also simulated with no treatment effect, to check the value of 0(, 

8.3. Results 

8.3.1. Convergence 

All the 2-level models successfully converged to a solution within the limit of 100 

iterations. Some convergence problems were encountered in the 3-level models, and 

Table 8.2 summarises these. 

50 per group Random effect variance Random effect variance Random effect variance 

0 1 2 

PF15% 100% 72% 0% 

PF25% 100% 84% 1% 

PF35% 100% 91% 3% 

150 per group Random effect variance Random effect variance Random effect variance 

0 1 2 

PF 15% 100% 72% 0% 

PF25% 100% 94% 0% 

PF35% 100% 100% 0% 

300 per group Random effect variance Random effect variance Random effect variance 

0 1 2 

PF 15% 100% 86% 0% 

PF25% 100% 99% 0% 

PF35% 100% 100% 0% 

Table 8.2 : Percentage of 3-level models which successfully converged within 100 

iterations 
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All models converged for the simulations where there was no random effect at tooth 

level. Where the variance of the random effect was 2, there were major convergence 

problems, and very few of the models successfully converged within 100 iterations. Of 

the models which did converge, none took more than 50 iterations. The models with 

random effect of variance 1, which is the closest value to that observed from the caries 

data set, had more success in converging in larger data sets, and where the prevented 

fraction was larger. In order to investigate if the failure to converge is systematic, Table 

8.3 compares the coefficients of intervention group estimated in the 2-level model, 

between those data sets where the 3-level model converged, and those where it did not, 

for the simulations with the variance of the random effect at tooth level equal to one. 

The comparisons which are excluded are those where the number of failures was less 

than 20. 

Mean (s.d.) coefficient of group from 2-level model 

50 per group Failed to converge Converged 

PF 15% 0.234 (0.212), n=427 0.267 (0.233), n=1073 

PF25% 0.332 (0.225), n=244 0.387 (0.222), n=1256 

PF35% 0.497 (0.195), n=135 0.530 (0.230), n=1365 

150 per group 

PF 15% 0.226 (0.136), n=413 0.247 (0.132), n=1087 

PF25% 0.344 (0.141), n=84 0.372 (0.127), n=1416 

300 per group 

PF 15% 0.224 (0.096), n=211 0.240 (0.094), n=1289 

Table 8.3 : Group coefficients from 2-level model by convergence status of 3-

level models, for simulated data sets with variance of random tooth effect equal 

to 1. 
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Table 8.2 and Table 8.3 both suggest that convergence difficulties increase as the group 

effect decreases. In Table 8.2, data sets simulated using lower preventive fractions have 

higher proportions of convergence failure. Table 8.3 shows that on average, the group 

coefficient estimated from the 2-level model appears to be slightly lower in those data 

sets where the three level model failed to converge. However, as this difference is quite 

small in most cases, the subsequent investigation of the observed power for the various 

analysis methods will use only those data sets for which the three-level model 

converged. As very few of the data sets with tooth level random effect of variance 2 

converged, these have not been included in the remainder of this chapter. 

8.3.2. Results of analyses of simulated data sets 

Table 8.4 shows the mean group coefficient estimates for the simulated data sets using 

the 3-level and 2-level models. The analysis of data sets simulated with no treatment 

effect showed that IX was within a sampling tolerance of 0.05 for all combinations of 

parameters and tests. 

The mean estimated coefficients from the 3-level models of the simulated data sets with 

no random effect are mostly similar to the true values. As this model specification is the 

one used in the simulation, this is to be expected. For the data sets simulated with the 

random effect included with variance 1, the estimates from the 3-level model are biased 

upwards. This is likely to be partly due to the exclusion of the datasets where the 3-level 

model did not converge, as they tended to have smaller group effects. 

The 2-level models gave very similar estimates to the 3-level models where there was no 

random effect in the simulated data sets, as would be expected. However, where a 

random effect was present, the estimates from the 2-level model are biased downwards. 
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Random effect variance 0 Random effect variance 1 

50 pet 

group 3-level 2-level 3-level 2-level 

Prevented PF 15% 

fraction and true 0.268 0.269 (0.246) 0.266 (0.244) 0.306 (0.266) 0.267 (0.233) 

coefficient value PF 25% 

0.417 0.419 (0.249) 0.416 (0.247) 0.443 (0.253) 0.387 (0.222) 

PF 35% 

0.591 0.599 (0.246) 0.595 (0.244) 0.607 (0.258) 0.530 (0.226) 

Random effect variance 0 Random effect variance 1 

150 pet 

group 3-level 2-level 3-level 2-level 

Prevented PF 15% 

fraction and true 0.268 0.260 (0.147) 0.258 (0.146) 0.283 (0.151) 0.247 (0.132) 

coefficient value PF 25% 

0.417 0.412 (0.144) 0.409 (0.142) 0.427 (0.145) 0.372 (0.127) 

PF 35% 

0.591 0.593 (0.148) 0.590 (0.147) 0.606 (0.147) 0.528 (0.128) 

Random effect variance 0 Random effect variance 1 

300 pet 

group 3-level 2-level 3-level 2-level 

Prevented PF 15% 

fraction and true 0.268 0.271 (0.101) 0.270 (0.100) 0.276 (0.108) 0.240 (0.094) 

coefficient value PF 25% 

0.417 0.415 (0.100) 0.413 (0.100) 0.425 (0.105) 0.371 (0.091) 

PF 35% 

0.591 0.589 (0.103) 0.586 (0.102) 0.603 (0.104) 0.526 (0.091) 

Table 8.4: Mean (s.d.) of group coefficient estimates for simulated data sets for 
which the 3-level model converged. 
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Table 8.5 shows the observed power for each combination of parameters, using the 3-

level model, the 2-level model, and the traditional DFS increment analysis. 

Random effect variance 0 Random effect variance 1 

3-1evel with 2-1evel with 3-1evel with 2-1evel with 
50 per DFS DFS 

tooth tooth tooth tooth 
group Increment Increment 

position position position position 

PF 
18% 18% 21% 20% 21% 23% 

15% 

PF 
39% 39% 40% 39% 41% 43% 

25% 

PF 
68% 68% 67% 64% 66% 67% 

35% 

Random effect variance 0 Random effect variance 1 

150 3-1evel with 2-1evel with 3-1evel with 2-1evel with 
DFS DFS 

per tooth tooth tooth tooth 
Increment Increment 

group position position position position 

PF 
43% 43% 44% 44% 48% 48% 

15% 

PF 
81% 81% 81% 80% 82% 81% 

25% 

PF 
98% 98% 98% 98% 98% 98% 

35% 

Random effect variance 0 Random effect variance 1 

300 3-1evel with 2-1evel with 3-1evel with 2-1evel with 
DFS DFS 

per tooth tooth tooth tooth 
Increment Increment 

group position position position position 

PF 
76% 76% 74% 71% 73% 73% 

15% 

PF 
99% 99% 97% 98% 98% 98% 

25% 

PF 
100% 100% 100% 100% 100% 100% 

35% 

Table 8.5 : Observed power for 3 analysis methods. 

114 



This table shows that ignoring the tooth level random effect generally only changed the 

observed power by a small amount, although where it did change it was always greater 

in the 2-level model than in the 3-level model. The observed power for the traditional 

DFS increment method was also very similar to that of the 3-level multilevel analysis, 

with more variation in the smaller data sets (50 per group). 

8.4. Summary 

This simulation study has shown that there is litde difference between the observed 

power of multilevel models and traditional DFS increment analysis. It should be noted 

that although a range of parameters were simulated, all data sets were based on a 

population of Scottish adolescents with a particular disease level, and that these results 

cannot necessarily be assumed to be generalis able beyond this population. This work 

does give some indication that the advantages of multilevel modelling in dental caries 

clinical trials may lie in greater understanding of the data structure and within mouth 

patterns of caries development, rather than reduction of required sample size. 

If multilevel modelling is to be used, then the results in this, and other chapters, indicate 

that the 3-level model should be used in preference to the 2-level model with no 

random effect at tooth level, due to underestimates of the treatment effect. However, 

this does not appear to have a large impact on the comparative power of the methods. 
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9. Discussion 

The main aim of this thesis has been to investigate the use of multilevel modelling in 

the analysis of data from clinical trials of caries preventive agents. There has been 

discussion in the literature on the hierarchical structure of caries data, and work has 

been published on methods which allow for analysis at tooth or surface level. However, 

multilevel modelling has been litde used in the caries literature, which has prompted the 

work presented here. 

In this chapter, the main fIndings will be discussed, and recommendations will be made 

for investigators on the use of multilevel modelling in the analysis of caries clinical trial 

data. Some opportunities for further work in this area will be considered. 

9.1. Summary of main findings 

In Chapter 4, the statistical aspects of recent publications from clinical trials of topical 

fluorides in children were assessed, specifIcally considering issues related to clustering. 

This work found that several cluster randomised caries trials, with participants 

randomised in groups such as school class, have been published with analysis which 

incorrecdy ignores the clustering. Some of these trials would only require the presence 

of a small intracluster correlation coefflcient to result in an apparendy statistically 

signifIcant fInding no longer showing signifIcance with an appropriate analysis. In 

addition, the hierarchical structure of caries data, with surfaces and teeth clustered 
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within individual participants, was rarely considered in the analysis of these clinical 

trials. 

In Chapter 5 multilevel modelling was applied to a data set from a caries clinical trial, 

and showed how modelling the random structure and calculating the intracluster 

correlation coefficient using the threshold model allows estimation of relative variances 

at individual, tooth and surface level, with computations which are much more 

straightforward than alternative methods. Use of tooth position fixed effects in the 

model can increase understanding of the patterns of caries development within the 

mouth. Estimation using MCMC methods was found to give more accurate estimates 

than the default quasi-likelihood methods in MLwiN. 

In Chapter 6 it was demonstrated how multilevel modelling of caries clinical trial data 

could provide clinically useful methods of predicting tooth and surface specific caries 

incidence, within the age groups and populations examined, based on baseline caries 

patterns. The method applied to a data set of 12-16 year olds from Scodand showed 

that caries on the contralateral surface (the corresponding surface on the opposite side 

of the mouth), was a stronger predictor than caries in the corresponding surface on the 

opposing jaw, or caries on an adjacent tooth. 

The investigation of model fit in Chapter 7 suggested that the three level model 

specification with the hierarchy individual - tooth - surface gave a better fit to the data 

than the two level model not including the tooth level. Also, there is evidence that a 

zero-inflated binomial model gives a better fit to the data than the standard binomial, 

although this could only be shown for the two-level model, due to software limitations. 

The simulation study in Chapter 8 showed that where data are simulated with a random 

effect at tooth level, ignoring this in the multilevel analysis can result in biased estimates 
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of the treatment effect, which may explain why the observed power for this analysis was 

higher in some cases than for the model including random effect at tooth level. The 

investigation of observed power suggests that using multilevel modelling may not result 

in significant reductions in required sample size in planning caries clinical trials. 

9.2. Limitations 

The analyses presented here are on a population of 12 to 16 year olds in Tayside, 

Scotland. The results relating to tooth position are influenced by the eruption times of 

specific teeth. The canines, premolars and second permanent molars will have recently 

erupted, whereas the other permanent teeth will have been present for several years. 

This means that the tooth position results cannot be generalised beyond the age group 

examined. In addition to this, the exclusion of surfaces which had already developed 

caries from the analysis means that models may differ in populations with higher or 

lower caries levels. 

The software which was used for analysis limited the full investigation of the best model 

fit. Model fit assessment suggested that a three-level zero-inflated binomial model may 

be a good fit to the data, but MLwiN does not support zero-inflated binomial 

modelling, and Latent GOLD does not support three-level models. 

The simulation study did not use the most accurate estimation method (MCMC) as the 

time taken for each model to converge was prohibitive. However, the 2nd order PQL 

method used has been shown to give reasonably accurate estimates, although its failure 

to converge on some data sets has limited the data available for certain parameter 

combinations in the simulation study. 
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9.3. Comparison with other work 

The results in Chapter 4 on the appropriateness of analysis, and quality of reporting, of 

cluster randomised trials of caries preventive agents are similar to those found in a 

general review of trials in primary care (Eldridge et al., 2004), and those found in a 

review of articles published in the American Journal of Public Health and Preventive 

Medicine (Varnell et al., 2004), which both found inappropriate analyses of cluster 

randomised trials. 

The findings in Chapter 5 on the differing probabilities of caries according to different 

tooth types, with molars more susceptible, are similar to results from cross-sectional 

survey data e.g. (Batchelor and Sheiham, 2004). 

Several previous studies on patterns of caries within the mouth have shown evidence 

that caries tends to aggregate on one side of the mouth, rather than show symmetry 

(Hujoel et al., 1994b; Vanobbergen et al., 2007). This is in contrast to the findings in 

Chapter 6 that the caries status of the contralateral surface was the best predictor of 

caries on a given surface. These previous studies both used different age groups (adults, 

and 3-7 year old children, respectively). It is possible that the result may not hold in 

these age groups, but as these previous studies used cross-sectional rather than 

longitudinal data, it may be that the lesions aggregated on one side of the mouth may be 

predictors of future caries on the contralateral surface, as shown in the results here. This 

thesis presents the first published work on this phenomenon using longitudinal data. 

The lack of evidence for a reduction in required sample size in analysing at tooth and 

surface level was similar to conclusions drawn by Mancl et al., in relation to time-to­

event analysis with surface as the unit of analysis, where the authors stated that "the 

gain in efficiency due to the use of surface-specific infonnation will most likely be small 
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under most circumstances" (Mancl et al., 2004). The work in this thesis is the first to 

consider this issue in caries data using a multilevel modelling framework. 

The findings here show that MCMC estimation gives more accurate estimates than the 

default quasi-likelihood methods in MLwiN for the specific data structures present in 

caries data. This is supported by previous work on other types of data (Browne and 

Draper, 2006). 

9.4. Implications and recommendations to investigators 

Investigators planning clinical trials of caries preventive programmes which are to be 

cluster randomised must ensure that the planned statistical analysis, and associated 

sample size calculation, is appropriate. Multilevel modelling is one appropriate analysis, 

which allows for covariates at both cluster and individual level to be included in the 

analysis. Multilevel modelling of binary data should use MCMC estimation in 

preference to quasi-likelihood based methods, to ensure accuracy of estimates. 

There is no indication from this work that the use of multilevel modelling using the 

natural hierarchy of surfaces and teeth clustered within individuals will allow 

investigators to make significant reductions in the number of participants required in a 

clinical trial of a caries preventive agent, compared to the use of the traditional 

comparison of caries increments. 

However, multilevel modelling does have the advantage of allowing greater 

understanding of the patterns of caries development within the mouth. Modelling the 

random structure allow estimates to be made of the relative variance at individual, tooth 

and surface level. Investigators who are interested in exploring the effect of their 

intervention in more detail should consider the application of multilevel modelling to 

their clinical trial data. 
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The use of multilevel modelling on clinical trial data sets to predict tooth and surface 

specific caries incidence using patterns of previous caries experience can be 

recommended. 

9.S. Future work 

The results in this thesis are based on data from a particular population in a specific age 

range, 12-16 year olds in Tayside, Scodand. Further investigations will involve the use of 

this multilevel modelling technique on data sets from different populations, and 

different age ranges. The results on groupings of tooth positions from Chapter 5 will be 

population dependent, and it is of interest to investigate how this varies in other 

populations. Different age ranges will have different teeth which are susceptible to 

caries, and the techniques used in Chapter 6 to predict tooth and surface specific caries 

incidence should be applied to other data sets to examine if the symmetry based 

predictions can be used in different populations. 

The work presented here has concentrated on the differential probabilities of 

developing caries on different tooth types. It may also be of interest to investigate the 

effect of different surface types on these probabilities, specifically pit and fissure 

surfaces compared to smooth surfaces. 

A possible application of multilevel modelling is to dental caries data collected on 

children with a mixed dentition, where some teeth are from the deciduous dentition, 

and some from the permanent. These data are usually analysed with separate outcome 

variables for each dentition. The application of multilevel modelling to these data sets 

may allow the modelling of both dentitions together, by including a covariate indicating 

to which dentition a particular tooth belongs. 
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The work presented in Chapter 7 on model fit suggested that for the two level model 

with hierarchy individual - surface, that a zero-inflated binomial distribution may give a 

better fit to the data than a standard binomial distribution. Also, for the standard 

binomial models, the three level model with hierarchy individual - tooth - surface fitted 

the data better than the two level model. These results suggest that the three level model 

with the zero-inflated binomial distribution may be worth investigating. At the present 

time, the software is not available to fit this model. One possible course of action is to 

program this model in the software package R, by modifying the currendy available 

multilevel modelling routines. Another approach is to test the robustness of modelling 

using the standard binomial distribution in MLwiN to data sets simulated from zero­

inflated multilevel binomial distributions. The introduction of a syntax module to the 

software Latent GOLD will facilitate this work by allowing models to be fitted to 

multiple data sets automatically, a feature which was unavailable until recendy. 

Another method of analysing caries clinical trial data at tooth and surface level which 

has been suggested is the use of survival analysis at surface level, with jackknife 

estimators for the variance, which adjust for the clustering in the data (Hannigan et al., 

2001). A possible future study would involve comparing this method with the multilevel 

modelling method used in this thesis, both on real and simulated data sets, to investigate 

robustness to model mis-specification, and observed power to detect treatment 

differences. 
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