
m UNIVERSITY OF

~ LIVERPOOL

SERSE

An Agent-based System for

Scalable Search on the Semantic Web

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree

of Doctor in Philosophy

By

Ian Blacoe

Department of Computer Science

March 2009s

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, lS23 7BQ

www.bl.uk

ORIGINAL COpy TIGHTLY.

BOUND

.!

." ,/, -:' '"'-

Co"rltents
, . -

Abstract xiii

Acknowledgements xv

I Background and Context 1

1 Introduction 2

1.1 Background and Motivation 2

1.2 Application Scenarios . . 5

1.3 Goals and Contributions 9
1.4 Thesis Structure 10

2 Intelligent Agents and Multiagent Systems 14
2.1 Autonomous Agents 15
2.2 Multiagent Systems . 16

2.2.1 Agent Communication 18
2.2.2 FIPA Standardisation . 19

2.2.3 Agent Platforms .. 20

2.2.4 The JADE Platform . 23

2.3 Information Agents . . . 26

2.3.1 Digital Libraries 31

2.4 Peer-to-Peer Systems 35
2.5 Summary ... 41

3 The Semantic Web 44
3.1 The Semantic Web Vision. 44
3.2 Metadata and RDF 46

3.2.1 RDF 47

iii

3.2.2 Annotation of Resources

3.3 Ontologies and OWL

3.3.1 Components and Types of Ontologies

3.3.2 Representing an Ontology

3.3.3 OWL

3.4 Semantic Query Languages.

3.4.1 SQL-Type languages

3.5 Semantic Heterogeneity and Matching

3.5.1 Semantic' Heterogeneity

3.5.2

3.5.3

3.5.4

3.5.5

Semantic Similarity.

Ontology Alignment

Quick Ontology Mapping

Semantic Indexing

3.6 Summary

11 Scalable Search on the Semantic Web

4 SERSE Design

4.1 Purpose of SERSE • . . .

4.1.1 Esperonto Architecture.

4.1.2 Non-functional Requirements for SERSE •

4.1.3 Intended Task of SERSE •••...

4.1.4 Functional Requirements for SERSE

4.2 Design Objectives .

4.2.1 Scalability

4.2.2 Semantics-Based Resource Retrieval.

4.2.3 Robustness

4.3 SERSE Architecture

4.3.1

4.3.2

Multi-platform Approach .

Agent Types

4.4 Semantic Relatedness Metric

4.4.1 SRMetric Implementation

5 SERSE Implementation

5.1 Overview

5.2 Semantic Message Routing

iv

48

50

52

55

57

61

61

64

65

68

69

74

78

79

81

82

82

83

89

90

95

99

100

102

103

105

106

107

112

113

119

119

121

5.3 Ontology Notifications .

5.4 Indexing New Resources

5.4.1 Content Notification

5.5

5.4.2 Creation of New RouterAgents .

5.4.3 Semantic Overlay Network Creation.

Answering Queries

5.5.1

5.5.2

5.5.3

5.5.4

Formulating Queries in the Web Interface

Query Decomposition ...

Answering Atomic Queries.

Reply Re-aggregation ...

III Evaluation

6 Experimental Evaluation

6.1 Experimental Plan. .

6.1.1 System Performance and Scalability .

6.1.2 Semantic Relatedness Metric Evaluation.

6.2 Experimental Procedure

6.2.1 Experimental environments

6.2.2 Input Data-Sets . . .

6.2.3 Result Data Capture

6.3 Experiments.........

6.3.1 Experiment 1: Query response times.

6.3.2 Experiment 2: Additional neighbours timing scenario.

6.3.3 Experiment 3: Additional agents timing scenario

6.3.4 Experiment 4: Effects of SRMetric parameter variation.

6.3.5 Experiment 5: Semantic neighbourhood comparison ..

6.3.6 Experiment 6: Cross-ontology semantic neighbourhood formation

6.4 Summary .

IV QuestSemantics

7 QuestSemantics

7.1 Development from SERSE .

7.1.1 Annotation and Search

7.2 Platform Design

v

125

127

128

130

131

136

136

139

141

143

145

146

146

147

147

148

148

149

152

153

153

159

162

165

173

181

183

186

187

187

190

191

7.2.1 System Tasks and Components . 193

7.2.2 Annotation Component . 193

7.2.3 Search Component . . 198

7.3 Development and Deployment 201

7.3.1 Development 202

7.3.2 Deployment. 202

7.4 Lessons Learned .. 206

V Synopsis 209

8 Conclusions 210

8.1 Summary of Completed Work 210

8.2 Satisfaction of Requirements . 214

8.3 Ongoing and Future Development Directions 217

VI Appendix 223

A SERSE Message 1)rpes 224

Al External Messages 224

A2 Internal Messages . 226

A3 Test Messages . . . 230

B NWAA Ontology and Knowledge-Base 231

B.1 Companies 232

B.2 Contact Details ... 234

B.3 Business Categories . 234

B.4 Approvals ... 242

B.5 Part-of Relation 244

Bibliography 245

vi

./

To Loredana and my family.

vii

List of Figures

1.1 Esperonto system components. 6

2.1 FIPA standards. 19

2.2 JADE platform architecture. 25

2.3 Multiagent Information Systems architecture compared to Esperonto architecture. 30

2.4 Generic agent - based digital library architecture.

2.5 Message routing in peer-to-peer architectures.

3.1 Semantic Web 'layer cake' ..

3.2 RDF graph example 1.

3.3 RDF graph example 2.

3.4 Semantic Web resource annotation ..

3.5 SparQL underlying a data integration system.

3.6 Ontology alignment example ..

4.1 Esperonto architecture.

4.2 SERSE conceptual architecture.

4.3 SERSE architecture distributed over mUltiple platforms.

5.1 Sequence diagram illustrating neighbour location.

5.2 Web-based query interface.

5.3 Query results display

6.1 Query 20 from FundFinder dataset. .

6.2 Average query response times for FF dataset in SERSE.

6.3 Average query response times for FF dataset in Jena. .

6.4 Average query response times for CT dataset in SERSE.

6.5 Average query response times for CT dataset in Jena. .

6.6 Average query response time in Experiment 2 using FF dataset. .

viii

33

40

46

47

48

49

64

71

85

107

108

134

138

144

155

156

157

158

158

161

.I

6.7 Average query response time in Experiment 2 using Galen dataset.

6.8 Average query response time in Experiment 3 using FF dataset. . .

6.9 Average query response time in Experiment 3 using Galen data set.

6.10 Average query response time vs lexical weighting value.

6.11 Average neighbourhood size vs lexical weighting value ..

6.12 Average query response time vs structural weighting value.

6.13 Average neighbourhood size vs structural weighting value.

6.14 Average query response time vs property weighting value.

6.15 Average neighbourhood size vs property weighting value ..

6.16 Average query response time vs relatedness weighting value.

6.17 Average neighbourhood size vs relatedness weighting value.

6.18 Average recall and precision over neighbourhood for SRMetric.

6.19 Average neighbourhood size for SRMetric.

6.20 Average recall and precision over neighbourhood for FOAM (efficient).

6.21 Average neighbourhood size for FOAM (efficient).

6.22 Average recall and precision over neighbourhood for FOAM (complete) ..

6.23 Average neighbourhood size for FOAM (complete)

6.24 Average recall and precision over neighbourhood for CROSI (without WN).

6.25 Average neighbourhood size for CROSI (without WN).

6.26 Average recall and precision over neighbourhood for CROSI (with WN) ..

6.27 Average neighbourhood size for CROSI (with WN) ..

6.28 Summary of cross-ontology neighbourhoods.

7.1 QuestSemantics system architecture.

7.2 Analyzer detailed architecture

7.3 Annotation Engine detailed architecture.

7.4 Filter detailed architecture.

7.5 NWAA search interface. .

7.6 NWAA search results list. .

7.7 NWAA detailed company results ..

B.l Company concepts. ...
B.2 Contact detail concepts. .

B.3 Sector concept.

B.4 Market concept.

B.5 CompanyTier concept.

ix

161

164

164

167

168

168

169

171

171

172

172

176

176

177

177

178

178

179

179

180

180

182

194

196

197

198

205

206

207

233

235

236

236

237

B.6 CompanyTier instances ... 238

B.7 LifecyclePosition concept. 238

B.8 LifecyclePosition instances. 239

B.9 Activity concept. 240

B.W Activity instances .. 241

B .11 ProductCategory concept. . 241

B.12 Approval concepts. 242

x

./

Abstract

The Semantic Web is envisioned as an open, distributed environment in which heterogeneous, dis

tributed and dynamic knowledge can be shared and utilised by software. This software includes knowle

dge-based applications and autonomous software agents that act proactively to achieve their goals. The

Semantic Web is intended to be an extension of the current World Wide Web, in which the existing

human-understandable information is supplemented by machine-readable metadata - to enable this in

formation to be manipulated by software. In this environment knowledge is represented in a machine

processable way by use of ontologies and their extensions, defining the vocabulary and specific entities

that can be used in metadata descriptions. This knowledge is then linked to relevant resources through

a process of annotation, which is usually performed in a (semi-) automatic manner - attaching suitable

metadata representations to existing information resources. These metadata representations can then be

utilised by software to gather and aggregate knowledge about available resources, and to perform further

processing and reasoning over this knowledge.

One of the key functions of this knowledge representation and metadata annotation is to enable ac

cess to information based upon the meaning of the information and of the search terms, rather than

simply on the presence of keywords within texts. That is, the retrieval of information resources is based

upon the semantics of their metadata annotations, as defined in the underlying ontologies. In this thesis

we propose the use of Semantic Web technologies for the provision of semantics-based search for infor

mation resources, and within this context we describe two main research threads - scalable and robust

indexing of semantically annotated resources; and the application of semantic search techniques within

real commercial environments.

The first research thread is predicated upon the characteristics of the Semantic Web, its potential size,

and the expected quantity of metadata that may be generated. The amount of information in digital form

that is available for semantic annotation, and the emphasis on openess and distribution in the Semantic

Web, means that there is a requirement for scalable and robust mechanisms supporting the search for

xi

and location of these annotated resources. As indicated in the original vision, the Semantic Web envi

ronment is seen as being well suited to autonomous agents.

In this thesis, we present the design, implementation and evaluation of SERSE - SEmantic Routing

SystEm - a distributed, multi agent system, composed of task-specialised agents, that provides robust

and efficient indexing and aggregation of annotated information resources from diverse and heteroge

neous sources. The agents composing SERSE apply ontological knowledge to search for and retrieve

semantically annotated resources, by maintaining a distributed semantic index that stores the annotation

metadata, and a semantic overlay network that inter-connects the distributed index elements. Efficient

retrieval of annotated resources is then made possible through the semantic routing mechanism, which

enables identification and location of the agents that index the resources requested by a user query, with

out relying on a central index or on message broadcasts. Furthermore, the semantic similarity algorithm 1

that underlies the semantic routing is able to generate links between entities from different, heteroge

neous ontologies, thus enabling SERSE to support information aggregation and semantic browsing of

retrieved information. The multi agent system permits the distribution of the metadata indexes, and it is

this distribution, along with a number of basic autonomic system features, that underlies the scalability

and fault-tolerance of the system.

In the second research thread we examine the application of semantic annotation and search tech

niques within realistic commercial contexts, in order to examine the benefits offered by semantics-based

searching over information sources when applied to specific business problems. We examine the use

of ontologies and metadata to represent specific and restricted business-knowledge domains, with the

aim of enabling an enhanced, semantics-based search facility over the company information that can be

annotated with this metadata. The QuestSemantics system is presented as a proof-of-concept solution

to identification and retrieval of commercially useful information based upon a relatively lightweight

knowledge model - by focussing upon carefulIy delimited domains of knowledge within the two dif

ferent commercial test-cases undertaken. In this system the knowledge representations are utilised in

two key processes: firstly, the annotation component analyses the selected information resources and

then automatically generates suitable metadata annotations to describe them; secondly, the stored meta

data is made searchable through a specialised interface, which provides access to the resources based

on the encoded business knowledge. QuestSemantics is intended to demonstrate the effectiveness of

semantics-based resource annotation and retrieval to address knowledge-based business tasks.

1 Based upon ontology alignment techniques.

xii

.!

Acknowledgements

I would like to thank my supervisors, Dr. Valentina Tamma and Prof. Mike Wooldridge for their instruc

tion and guidance in the research areas of Multi-Agent Systems and the Semantic Web, and for their

support throughout my PhD research. This work has been made possible thanks to the financial support

of the Esperonto (IST-2001-34373) project, and the University of Liverpool Academic Enterprise Fund.

I would like to thank all the people involved in these projects that have contributed towards this work.

I would also like to thank all my friends and colleagues at the University of Liverpool. I especially

wish to thank all the past and present members of the Semantic Web Lab at Liverpool: Loredana Laera,

Luigi lannone, Ignazio Palmisano, Paul Doran and Ben Lithgow Smith. I thoroughly enjoyed my time

at Liverpool University, professionally and socially, and it was the people around me that made this

possible.

I want to thank both my family and Lori's family - my parents Peter and Diane and Lori's parents

Angelo and Giovanna; sisters and brothers Helen and Chris, Gennaro and Kiwa, Paola and Renzo; my

nieces Amelie, Elena and Greta, and my nephew Logan. I am very grateful to them for the love and

support they have all given to me.

Finally, but most importantly, I would like to thank Lori - for your love, support and patience

throughout the last five years. Without your help and encouragement this thesis would never have been

completed. Ti amo tanto stupenda mia.

xiii

Part I

Background and Context

Chapter 1

Introduction

"Knowledge is of two kinds. We know a subject ourselves, or we know where we canfmd

information on it."

- Samuel 10hnson (1709 - 1784)

The primary goal of this thesis is to examine the application of semantic web technologies in order

to provide enhanced search facilities over semantically annotated information resources. As the main

thread of the thesis, we present an agent-based approach to managing a distributed knowledge-base

of annotation metadata, in order to support a robust and scalable indexing system for the search and

location of semantic web resources. Development of such distributed, scalable and flexible approaches

to the process of resource location is seen as an important goal for the Semantic Web, to leverage

the encoded knowledge in order to better answer queries over annotated resources. As a secondary

thread we present further developments in the application of Semantic Web technologies to information

searches, and evaluate these developments in the context of two commercial test-cases.

In this chapter we provide an overview of our work. We begin with an extended outline of the

background and motivation for this thesis in section 1.1, and continue with a description of the main

assumptions with regard to our scenario in section 1.2. We summarize the main goals and contributions

of this thesis in section 1.3, and in section 1.4 we present a guide to the structure of this thesis.

1.1 Background and Motivation

Information on the World Wide Web (WWW) is primarily intended to be read and processed by humans,

and is not information that can be readily manipulated by computers. The intelligence applied in search

tasks is supplied by the user, with limited support from software [154]. The WWWis based on the use of

visual markup languages (such as HTML) that are intended to facilitate the presentation of information

2

for human users. Current keyword based search engines present limitations, in' that they cannot fully

capture the richness intrinsic in natural language; as indicated by the obvious problems that synonymy

and polysemy raise for the search task. Enhancing search engines with lexicons such as WordNet [108]

can help to relieve this problem, but this is not sufficient to identify and resolve more complicated types

of ambiguity. Furthermore, keyword-based search engines make little provision for the formulation of

very precise queries, particularly those that make use of relationships between entities.

The Semantic Web (SW) is an evolution of the WWW in which knowledge is also expressed in a

machine understandable way. The aim is to extend the web to become a container of interconnected,

machine-process able information and knowledge, rather than just a collection of documents. The Se

mantic Web primarily aims to share knowledge from distributed, dynamic, and heterogeneous sources,

whose content is expressed in a machine-readable format by means of languages such as RDF [36] and

OWL [106], in a similar way to that in which information is shared on the WWW. The SW promises

to add value to the web, without requiring any fundamental changes to the infrastructure that is cur

rently in place. The added value is created by enriching information resources with annotations that

reference ontologies - explicit and sharable, machine-readable representations of the conceptualisation

abstracting a phenomenon [142].

Ontologies [142] are crucial in providing meaning to web resources. An ontology models the enti

ties that are used to describe the content of a web resource, and, most importantly, the logical relations

existing between these entities. Using such a model, an explicit representation can be created of the

information contained in relevant web documents through annotation. Annotation is normally achieved

by using or creating metadata items (as instances of concepts from the ontology) to represent specific

entities recognised in the resources, and then linking this metadata to the resource as its description.

Semantically annotated resources can, therefore, be located on the basis of their metadata annota

tions, leveraging the knowledge encoded in the ontologies (used for the annotation) to express precise

queries for resources matching complex, knowledge-based constraints. Such semantics-based retrieval

of resources requires a robust system for indexing and search for the resources and their metadata, which

supports the processing of metadata queries to efficiently retrieve the required resources. In order to han

dle the vast scale of resource and metadata information potentially available on the Semantic Web, any

such system must be inherently scalable, decentralised, and amenable to distribution over the WWW.

Furthermore, the SW has the potential to make large volumes of knowledge more readily available,

through the combination of different information items from diverse sources, thus making the provision

of scalable, decentralised indexing and search mechanisms even more important to its success [151]. In

3

,/

recent years, many tools have been developed for managing traditional knowledge sources, but such ap

proaches usually imply a static environment in which control is centralised. This type of approach does

not promise to scale well to the Semantic Web, which is an open, dynamic, and often chaotic environ

ment. Searching for information on the SW is arguably more complex than searching the current web -

not only must a SW search system deal with a large number of distributed, heterogeneous resources, but

the metadata annotating these resources may reference many different ontologies. Distributed, decen

tralised systems are thought to be a better alternative for scalability [113] than traditional, centralised

systems. Their architecture is characterised by system components each with equal roles and the capa

bility to exchange knowledge and services directly with each other. Peer-to-peer technology (P2P) such

as EduteUa [113] or Morpheus l is a possible answer to this quest for decentralisation. P2P systems are

networks of peers with equal roles and capabilities, and recently peer-based management systems have

been proposed, which exploit P2P technology for sharing and retrieving huge amounts of data [70].

However, most P2P approaches are oriented towards file sharing - utilising only lightweight categorisa

tions and/or ad-hoc keyword tagging as file annotations, rather than at the management of semantically

enriched content for a wide range of resources utilising complex, shareable knowledge models for re

Source annotation as provided by the Semantic Web. However, it would be possible for the information

indexed within existing P2P file-sharing systems to be 'upgraded' to Semantic Web standards by provi

sion of mappings between existing categorisations and suitable ontologies.

Autonomous software agents [170] are central to the vision of the Semantic Web described in [151],

and the agent paradigm seems to offer equally good prospects for the management of semantically

annotated content. This vision is based on the provision of sustainable support to distributed and de

centralised knowledge processing and management, with agents able to provide persistent and reliable

knowledge-based services. Agents can use the machine-readable representations to gather and aggregate

knowledge, as well as to reason in order to manage inconsistencies, and to infer new facts. Agents are

able to process the knowledge expressed in these semantic markup languages, and can thus offer services

which make use of this knowledge, including search and retrieval services. Agents are intended to oper

ate as individual, autonomous entities, exhibiting goal-directed behaviour that permits them to perform

complex tasks without user intervention. When such agents are engineered as a multi agent system, they

are able to communicate in order to collaborate over specific tasks, and thus provide self-organising,

distributed processing for the task at hand. There exist a number of widely used platforms for agent

oriented programming, which offer standardised communication protocols and management mecha

nisms, and have well-automated discovery mechanisms for advertising and locating resources within an

open framework (for instance~ Jade [9]). There are a number of other features of multi agent systems

Ih . ttp.//www.morpheus.com

4

that make them particularly useful in the provision of service-based support for semantic web tools

and applications, such as pre-existing work on automated discovery mechanisms for locating services

within an open framework, established trust and reputation frameworks, and expressive communication

languages and protocols [148]. Furthermore, multi agent systems can be constructed to exhibit features

of autonomic computing, enabling the creation of robust, fault-tolerant and self-managing systems to

provide services to users and other software systems [86]. Autonomic computing is an emerging branch

of software engineering, promoting the design and implementation of self-managing systems, in which

independent system components provide monitoring and management services to other components, in

addition to their functional tasks, in order to achieve system-level self-monitoring and self-mangement.

Many autonomic systems are constructed as modular systems, consisting of several interacting, au

tonomous components that, in turn, comprise large numbers of interacting, autonomous, self-governing

components at the next level down [86]. This type of behaviour is intended to make it easier to manage

the complexity and scalability of complex distributed systems. The combination of these features make

multi agent systems particularly well suited to manage large, heterogenous, and distributed knowledge

bases - as might be found on the Semantic Web.

1.2 Application Scenarios

The primary application scenario is intended to enable an examination of the the issues involved in the

provision of a scalable and robust resource indexing and search system for the Semantic Web. This re

search has sought to manage the complexity inherent in such a system through the integration of different

technologies such as ontologies and metadata, multi-agent systems, and peer-to-peer approaches. This

integration resulted in the design of SERSE (SEmantic Routing SystEm), a multi-agent system providing

distributed indexing of and semantic search over Semantic Web resources. In SERSE, agents are organ

ised in a multiagent system according to a semantic overlay, where the interconnections between agents

are determined by the semantic proximity of the ontological definitions known to the agents. SERSE

provides robust and reliable indexing, retrieval and aggregation of semantically annotated knowledge

sources. SERSE is composed of specialised agents that collectively maintain a distributed index of an

notated resources, and autonomously discover and maintain links between themselves, based on the

semantics of the information they index.

The SERSE system was originally built as a component of the Esperonto project (IST-2001-34373).

It is intended to function as a scalable2, open and dynamic index of semantic web resources that can be

queried for semantically annotated resources using semantically specified queries. The system is built as

a distributed collection of indexes that store pointers to web resources that are characterised by instances

2 A measure of how well a hardware or software system can adapt to increased demands.

5

of concepts. The aim of Esperonto was to provide a set of tools for performing the transition from the

traditional web to the semantic web [147]. In addition to SERSE (from the University of Liverpool),

the other partners of the Esperonto project provided a number a components performing fundamental

Semantic Web tasks, as depicted in Figure 1.1 :

• Ontology server - providing facilities for the creation, editing and storage of ontologies.

• Annotation system - to support the semi-automatic annotation of resources with metadata.

• Multilingual services - to support the use of multiple human languages in ontologies and metadata.

OntQ!Qgy~

I Engineering I I Storage I
I Maintenance I I Mapping I

Ont%gies -----------,~

MJLItIllng.ual
~

Annotation
Sy~

... Trans·
lations I I ... Trans . ..-

Translation lations Wrappers

NLP

Smlantlc Indexing and Routing
~~)

I Query Interface I I Distributed index I

Taggers

Annotated

~rces

Figure 1. 1: Esperonto system components.

The par! of the project in which SERSE was developed was concerned with exploring the creation of

an infrastructure of semantic indexes and semantic routers for the SW, following a decentralised peer-to

peer approach. The goal was to enable the automatic aggregation of distributed, semantically annotated

web resources regarding the same domain by means of domain specific semantic indexes. These se

mantic indexes were to be used to route user queries, improving the results of current key-word based

search engines and ontology-based search engines. The aggregation of SW content in semantic indexes

is important to improve scalability and to ensure that those applications on top of the SW can aggregate

Content in order to provide va lue-added services. The semantic indexes implemented in thi s system are

generated dynamically using both ontological information and annotated documents. Scalability is also

addressed by coordinating semantic indexes, which behave as active agents whose knowledge includes

the topics they can handle. In order to operate within an open and dynamic environment such as the SW

the indexes need to exist in a di stributed , decentrali sed and scalable architecture. Peer-to-peer systems

exhibit these qualities and are, therefore, seen as useful paradigm on which to base the index infrastruc

ture.

6

In examining the required features for the intended distributed semantic index; we identified a num

ber of desiderata for searching the Semantic Web. The design choices we made in SERSE are motivated

by some considerations and requirements for a (multi-agent) system that is able to efficiently navigate

and search the Semantic Web. Searching the SW is arguably more complex than searching the current

web, due to the inherent complexity in the manipulation of 'knowledge level' metadata. We believe that

one way to overcome this increased complexity is to take the view of the SW as being composed of

elements of 'fragmented knowledge': each fragment represents a specific topic, that is described by a

concept or a group of similar concepts3 . This enables a very large and complex knowledge index to be

managed as a set of siinple, independent indexes that each describe a specific subset of the knowledge.

However, once the global index has been sub-divided in this manner, we require a means to navigate

between topics. This could be achieved using a central index of indexes, or by each index within the

system maintaining knowledge about every other index, or by having indexes broadcasting communi

cation messages to the entire system. However, all of these approaches are unsuitable for the Semantic

Web environment - due to central points of failure, and the potential scalability of such systems. SERSE

was designed so that each index is connected to one or more other indexes, forming a network of index

nodes and communication interconnections. Within such a system, to decide the most efficient route

from topic A to B, we could simply try a random direction - but this would give no guarantee to find B

in a finite time. Alternatively, we can simply try to find another topic C, whose existence we are certain

about, and that is closer to the topic we aim to reach. This process is then repeated by each succes-

sive recipient of the message, breaking down the communication between two nodes that unaware of

each other into a succession of comminations between linked nodes that successively move the message

closer to its intended target. By using this approach we are sure to reach the right fragment of knowl

edge in a limited time (the sum of the times needed to reach each topic between A and B) - providing a

suitable mechanism to avoid message cycles has been implemented, as within SERSE.

Based upon the various required features, the general architecture of SERSE is as follows:

• Annotated resources are indexed on the basis of ontological concepts, so resources will be in

dexed together with those characterised by the same instance and by other instances of the same

concept. They are dynamically constructed using the annotations contained in the web resources

and the definitions in ontologies of the annotation terms used. The indexes are handled by au

tonomous agents that 'know' what topics they can handle (i.e., find content for) based upon their

own ontologies.

3 Such similar concepts are likely to be defined within heterogeneous ontologies that describe overlapping domains of
knowledge.

7

i
I
a

/

• The agents are linked together into semantic neighbourhoods on the basis of the ontological con

cepts they handle, i.e., concepts that are significantly related are explicitly connected to each

other, thus fonning a network of overlapping groupings of closely related concepts. This enables

queries to follow semantic linkages between concepts, and to aggregate resources annotated by

related concepts.

• Semantic queries for resources are formulated in the search interface and then sent into the net

work of interconnected agents. Any query received by an agent for a concept that is not handled

by that agent is then semantically routed to a 'neighbouring' agent. In this context the closeness

of a neighbour is a function of the semantic distance between the concepts handled by the agents.

• Determination of the semantic distance between tenns defined in the ontologies needs to consider

the issue of semantic heterogeneity between different ontologies. The comparison of these ontol

ogy terms utilises techniques for dynamically evaluating semantic relatedness, enabling an agent

to identify which of its neighbours is best able to answer the query. These semantics-based con

nections enable SERSE to create linkages between concepts from heterogeneous ontologies, thus

providing the means to aggregate knowledge from a wide range of sources. The semantic over

lay network formed by these self-determined links enables SERSE to efficiently determine which

agents are most appropriate to answer a query through a process of semantic message routing.

The system is also intended to be robust4, using autonomic system techniques to preserve index

knowledge and to adjust the agent inter-connections when one or more agents within the system are

unavailable. Most other approaches to storing and querying semantic web meta-data largely rely on a

centralised repository (e.g., Sesame).

SERSE was designed to function in concert with the other tools produced by the Esperonto project,

and as such depends upon some of the other tools for essential support functions. The first of these

dependencies is on the Ontology Server, that supports the construction and maintenance of the ontolo

gies that SERSE uses - however, it is not relied upon for access to the ontologies themselves, as they

are accessed directly by SERSE. The second dependency is upon the Annotation System, that provides

more fundamental support, by performing the annotation of information resources on the basis of the

available ontologies and their extensions. SERSE then receives notifications of newly acquired and an

notated resources from the Annotation system, and it is these annotations that are then stored, indexed

and made searchable using the distributed index structure.

4Does not break down easily or is not wholly affected by a single component failure, and either recovers quickly from or holds
up well under exceptional circumstances.

8

The second application scenario considered within this research regards the application of Semantic

Web technologies to the provision of enhanced search facilities over specified information sources in real

commercial test-case scenarios. The SERSE approach to robust and scalable indexing addresses issues

related to the volume and interconnectedness of Semantic Web metadata annotations. In this additional

investigation we have examined the practical application of semantic annotation and search technologies

to problems of information overload and precise information access. One result of this investigation was

the QuestSemantics system, which is designed to provide an integrated semantic annotation and search

facility over business information, and is tailored to the needs of the system's end-user. The QuestSe

mantics system consists of two principal components: the annotation component, which automatically

discovers suitable web resources and annotates them with relevant metadata; and the search component,

providing a specialised search interface to enable the specification of precise semantic queries to be

executed over the generated metadata. Both the annotation and search functions are based upon the use

of a task and domain specific ontology and extension, that represents the relevant business knowledge.

1.3 Goals and Contributions

The primary objective of my research is to develop an approach for the search and location of Semantic

Web resources that addresses many of the problems involved in other approaches. These problems

include a lack of robustness and fault tolerance due to reliance on a centralised index of content, limited

use of the available information describing the semantics of the indexed resources, and poor scalability

due to use of broadcast messages for communication between the nodes of distributed indexes. This

research is based upon the use of a multi agent system architecture to distribute an index of semantically

annotated web resources, and to link these indexes on the basis of the semantics of their content. We

investigate to what extent this use of an agent architecture contributes towards dealing with the inherent

complexities of the Semantic Web, and seek to answer the following questions:

• Can this approach make use of the available semantic information (from the semantically anno

tated resources and the referenced ontologies) to index the web resources and to answer semanti

cally specified queries for such resources?

• Does the distribution of a content index, sub-dividing it on basis of the semantics of its content,

provide a more scalable solution than a centralised index?

• To what extent does the application of agent technologies facilitate the provision of such a dis

tributed content index? Specifically, do the concepts of agent autonomy and social ability provide

means to dynamically manage such a distributed index?

9

I

• Does the index distribution and use of agents provide a more robust and fault-tolerant indexing

system than existing centralised indexes?

The secondary objective of this research is to investigate and assess the applicability and added

value of semantics-based search, particularly in the context of information overload problems, when

searching over business information. As part of this objective we have investigated the means to provide

automatic semantic annotation of selected information sources, based upon the knowledge encoded in

the used ontology and its extension. Furthermore, we have performed an evaluation of the application of

semantic search technologies in real-world commercial test-cases, to determine both the added-value of

such technologies to business, and some of the barriers to the large-scale adoption of these technologies.

In the development and deployment of this QuestSemantics system, a number of important lessons were

learnt regarding the applicability and utility of semantic annotation and search in business environments.

For example:

1. The knowledge elicitation process, to obtain and encode the specialist business knowledge re

quired for the task, remains a significant barrier to the adoption of knowledge-based systems -

as it requires a significant expenditure of time and effort from a client before any benefit can be

realised.

2. The knowledge modeling constructions available in the Semantic Web languages are readily ap

plicable to a wide range of business domains, particularly as much of the knowledge can be

expressed within categorisation hierarchies.

3. The triples-based Semantic Web query languages are not readily utilised by business users, and a

graphical user interface to simplify the definition of knowledge-based queries is required to make

Semantic Web search available as a viable business tool.

FUrthermore, the direct involvement of the commercial end-users in the development and evaluation of

QuestSemantics has revealed many practical considerations regarding the adoption and use of seman

tic web technologies by end-users. The QuestSemantics system and the various points raised by the

development and deployment process are discussed in detail in Chapter 7.

1.4 Thesis Structure

This thesis is divided into four parts, totaling eight chapters and two appendices. Part I presents the

background and context of our work, surveying the main contributory research areas that underlie the

Work in this thesis. Part II presents the design and implementation of the agent-based system, along

with an extensive experimental evaluation of its operation. Part III presents the adaptation and extension

10

of the techniques presented in Part 11 that were undertaken to investigate the application of semantic

indexing techniques to real-world issues. Finally, Part IV presents a synopsis of the main results and

contributions of this thesis, and concludes with a summary of future work. ,

A more detailed description of the structure and content of this thesis is as follows:

Chapter 1 - Provides the thesis introduction, and outlines the background, motivation and goals of this

work.

Chapter 2 - Presents background material on autonomous agents and multiagent systems. The chapter

provides an overview of the field, and describes the primary features of agents and multi agent systems.

It further discusses the topics of agent communication and agent development platforms, with particular

reference to the FIPA standardisation efforts. The chapter then moves on to present in more detail the

features of information agents, and the r~les such agents play in mUltiagent information systems. Fi

nally, the chapter briefly presents two associated topics: (agent-based) Digital Libraries and peer-to-peer

systems.

Chapter 3 - Presents background material on the Semantic Web. The chapter presents an overview of

the various technologies involved in the Semantic Web effort, and focusses on the role of ontologies and

metadata annotations within this environment. It provides a detailed examination of the interoperability

problems associated with the use of multiple, heterogeneous ontologies, and discusses how such het

erogeneity can be addressed in order to generate semantic connections between entities from different

ontologies.

Chapter 4 - Introduces the design of the SERSE system, describing the system's conceptual architec

ture, together with a detailed presentation of the system components. In doing so, the chapter reviews

the related work that has directly contributed to the design of the system, and describes the main algo

rithms underlying the system functions. In particular, the chapter addresses the design and function of

the algorithm for calculating the semantic proximity between ontological entities, that is fundamental to

the operation of SERSE

Chapter 5 - Presents the details of the implementation of SERSE. This chapter describes how the agent

development platform and Semantic Web language processing toolkit utilised in the implementation are

applied in practice. We then examine the operation of SERSE, describing the main functionalities pro

vided by the system and presenting the manner in which they operate together to provide scalable and

11

/

robust semantic indexing.

Chapter 6 - Provides a detailed experimental evaluation of the SERSE system. The set of experiments

presented are intended to evaluate the performance of SERSE in each of the main functional scenarios. A

particular focus of the evaluation regards the performance of the semantic proximity metric (described

in Chapter 4), which is compared to estimations of semantic distance obtained from state-of-the-art on

tology alignment tools.

Chapter 7 - Presents the QuestSemantics system, a development of many of the technologies and ideas

within SERSE, which provides an integrated semantic annotation and search system. The chapter then

goes on to investigate the application of this semantic search system to commercial test-cases in which

there was a requirement for enhanced search facilities over business information.

Chapter 8 - Provides some brief conclusions on the work presented, and indicates a number of potential

directions for further development and enhancement of the semantic search tools presented.

The thesis also includes some additional material in appendices, that supplements the material pre

sented in the main thesis:

Appendix A - Provides an overview of the messages exchanged by SERSE, both within the agent system

and between the agents and external systems.

Appendix B - Provides a summary of the ontology and knowledge-base developed for the QuestSe

mantics system in the context of the North West Aerospace Alliance search application.

The work presented in this thesis has, in part, been previously published or accepted for publication,

as follows:

• V. Tamma, M. Wooldridge, I. Blacoe, and A. Persidis. Retrieval of Scientific data in Esperanto.

In Proceedings of the 3rd International Semantic Web Conference (ISWC 2003) Workshop on

Semantic Web Technologies for Searching and Retrieving Scientific Data, Sanibel Island, Florida,

October 2003.

• V. Tamma, I. B1acoe, B. Lithgow Smith and M. Wooldridge. SERSE: searching for digital content

in Esperanto. In Proceedings of the 14th International Conference on Knowledge Engineering and

Knowledge Management (EKAW 2004), Whittlebury Hall, UK, October 2004.

12

• V. Tamma, I. Blacoe, B. Lithgow Smith and M. Wooldridge. SERSE: Searchlngfor Semantic Web

Content. In Proceedings of the 16th European Conference on Artificial Intelligence, ECAI 2004,

Valencia, Spain, August 2004.

• V. Tamma, I. Blacoe, B. Lithgow Smith, and M. Wooldridge. SERSE: surfing the Semantic Web

with Esperanto. In Proceedings of the 3rd International Joint Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS 2004) Workshop on Challenges in the Coordination of Large

Scale Multi-Agent Systems, New York, USA, August 2004.

• V. Tamma, I. Blacoe, B. Lithgow Smith, and M. Wooldridge. Introducing Autonomic Behaviour in

Semantic Web Agents. In Proceedings of the 4th International Semantic Web Conference (ISWC

2005), Galway, Ireland, November 2005.

13

I

Chapter 2

Intelligent Agents and Multiagent

Systems

In this chapter the fundamental principles behind software agents and multiagent systems are intro

duced. It is not intended to provide a comprehensive review of this wide-ranging research area, but

rather to focus on those aspects that are relevant to this thesis. The purpose of this chapter is to present

the key points of agent technologies that underlie the design and function of SERSE - such as agent au

tonomy and social ability. The chapter also introduces multi-agent information systems, in which agent

technologies are utilised to manage distributed and heterogeneous information. In addition the chapter

briefly reviews the main features of peer-to-peer and digital library systems, that can be implemented

USing agentframeworks, and have contributed to the architecture ofsERsE.

Section 2.1 presents a definition of agency and an overview of the main characteristics of software

agents. This continues into a presentation of agent societies and multiagent systems in section 2.2,

along with an overview of agent communication techniques, FIPA standardisation efforts, and available

agent systems. Section 2.3 thenfocusses on the application and specific roles of agents in specialised in

formation systems such as SERSE, where agents are used to manage the heterogeneity and distribution

of information. The closely related approaches utilised in Digital Libraries are then briefly reviewed

in Section 2.3.1, and Section 2.4 presents the main ideas underlying peer-to-peer (P2P) systems, their

association with multiagent systems, and their use as distributed content indexing systems. Finally, Sec

tion 2.5 presents a summary of the main ideas and approaches drawn from these research areas that

have contributed to the design of SERSE.

14

2.1 Autonomous Agents

The term 'agent' has a number of different interpretations with AI research, dependent on the particular

context of their conceptualisation. However, a number of fundamental features can be abstracted from

these various viewpoints that characterise the properties of intelligent software agents [125]:

1. They are situated in a dynamic environment.

Agents operate both within and upon an environment. This may be the real world for a robot, the

WWW for network agents [166], or a software environment such as UNIX for softbots [47]. This

is in contrast to the theorem provers and expert systems of early AI research, that were not aware

of their environment.

2. They can have only partial information about their environment.

Agents are able to perceive their environment, but the information obtained can only be a limited

view, and may be erroneous. Based upon this, the agent is only able able to make, at best, limited

predictions about the future.

3. They can act to make changes to the environment.

Agents have only limited control over their environment, and can undertake actions to alter it;

4. They have potentially conflicting tasks they must perform.

In many circumstances an agent cannot achieve all of the tasks that have been allocated to it,

because they are in conflict. In these situations an agent determine some subset of the tasks that

are all achievable, and commit to realizing them.

5. They have many different possible courses of action available.

An agent will typically have a number of ways in which it can achieve a task or tasks. The agent

must select those actions that it believes will achieve the required task(s) in the 'best' possible

way, and then commit to performing them.

6. They are required to make decisions in a timely fashion.

Agents do not have unbounded computational resources, and the environment is dynamic and

changes in real time. Therefore, agents must make the best (Le., most rational) decisions pos

sible, with respect to the resources (e.g., information, time, computational power) available to

them [130].

Based upon these requirements for intelligent software agents, we can identify a number of key

properties that an individual agent should possess [170]:

15

I

• autonomy: agents have control over their actions and internal state, and are able to operate with

out the direct intervention of any other entity;

• reactivity: agents can perceive their environment, and can respond to changes occurring within it

in a timely fashion;

• pro-activeness: agents exhibit goal-directed behaviour, and are able to take the initiative to

achieve these goals, rather than simply reacting to their environment;

• social ability: agents are able to communicate and cooperate with other entities, humans or

agents, in order to achieve their tasks.

In addition to these properties, that are widely accepted as essential agent features, a number of other

properties have been identified that may have a role in the characterisation of intelligent agents:

• rationality: an agent will act in order to achieve its goals, and will not act in a way that will

prevent its goals being achieved, according to its knowledge and beliefs at the time [131];

• veracity: agents are assumed to be honest, and will not knowingly communicate false informa

tion [60];

• mobility: agents are able to move around within an electronic network, i.e., the sofware and

knowledge comprising an agent can be physically transported between different host systems [166];

• benevolence: agents are assumed to share common goals, and so every agent will always attempt

to do what is asked of it [128];

• learning: agents can adapt themselves in order to fit their environment.

2.2 MuItiagent Systems

The design of individual agents has been the primary focus of traditional AI research, which until

recently did not consider the issues of agent societies - also known as MultiAgent Systems. This

area has been the main focus of research in in the subfield of AI - Distributed Artificial Intelligence

(DAI) [77, 16, 61]. Therefore, the main issues in DAI are those of organisation, co-ordination and

co-operation [61]. A multiagent system can be defined as a loosely coupled network of intelligent

agents that are able to work together in order to tackle problems that are beyond the capabilities of any

individual agent. The characteristics of multiagent systems can be summaried as [144]:

16

• individual agents within the system have a limited viewpoint, and have insufficient information or

capability to solve the problem addressed by the system as a whole.

• the system does not have a control component, and the overall behaviour is dependent on agent

interactions and social rules within the system.

• the information and resources required to complete the system's tasks are decentralised and dis

tributed over the system.

Examining the spectrum of systems composed of more than one intelligent agent, we can distinguish

two main classes of system [171]:

1. Distributed problem solving systems - the agents within the system have been specifically de

signed to co-operate in order to achieve certain goals. All agents are known a priori, can be

assumed to be benevolent towards each other, and can be trusted.

2. Open multiagent systems - the agents are heterogeneous in design, tasks, goals, etc., and are

able to dynamically enter and leave the system at will. In this case there are many other factors

for agents to take into account: arrival of unknown agents; self-intertested behaviour; competi

tion; etc.

In either class of multiagent system, the main thrust of the research regards the problem of managing

co-ordination between agents in order for them to jointly take action and solve problems [16]. Therefore,

when considering agent societies there are additional architectural issues to address:

• the organisational structure(s) employed in the agent system, e.g. hierarchy, anarchy, etc.

• the organisational interactions supporting these structures.

• the organisational and environmental rules that regulate the structures and interactions.

As is often the case within DAI research, there are differing approaches to solving these architectural

issues. In the multi agent system field we can distinguish two main threads, fixed-design and emergent

approaches. Fixed-design approaches seek to pre-determine the organisational structure and interac

tions in order to obtain a system that conforms to an application specification. In contrast, emergent

approaches seek to create mechanisms that exert an influence upon the independent component agents,

in order to generate a configuration that achieves the application objectives.

17

/

2.2.1 Agent Communication

In order for agents within multi agent systems to be able to interoperate, co-operate, etc. it is necessary

for them to be able to communicate with each other. Developments towards effective agent communi

cation began by the application of speech act theory to communications between planning agents [28].

Speech act theory considers communication as action, i.e., communications are modeled as actions that

alter the mental state of the participants [5].

Following this early work on agent communication using speech act theory, a number of agent

communication languages (ACLs) were developed. The US-based Knowledge Sharing Effort (KSE)1

pursued the development of protocols and languages for the exchange of represented knowledge be

tween autonomous information systems. There were two key results of this project: the Knowledge

Interaction Format [112], and the Knowledge Query and Manipulation Language [56]. The Knowledge

Interaction Format (KIF) was developed to enable the representation of a 'domain of discourse', and is

based on first-order logic. KIF is intended to form the content of an ACL message, allowing agents to

express properties of and relationships between entities in a domain. To enable this representation, KIF

Contains the usual constructs of classical logic (boolean connectives, universal and existential quanti

fiers, etc.), and provides a basic vocabulary of objects (numbers, characters and strings), basic functions

and relations for these objects. The Knowledge Query and Manipulation Language (KQML) defines

an envelope format for ACL messages. KQML enables an agent to express the illocutionary force of a

message, by encapsulating a specified speech act performative. KQML defines a standard message for

mat, and number of parameters that can be set to define the message, e.g. the performative, the message

Content (to be expressed in KIF), agent IDs for sender and recipient, etc.

However, despite early success, there were a number of problems with KQML, that subsequently led

to the development of a new, but closely related, language from the Foundation for Intelligent Physical

Agents2 (described in Section 2.2.2):

• The performative set was not fixed - meaning different implementations of the language could

not interoperate.

• Transport mechanisms were not fixed - again hindering interoperation.

• The language semantics of KQML were not fully defined - meaning that it could not be deter

mined if an agent was using the language 'properly'.

~ http://www-ksl.stanford.edulknowledge-sharingl
http://www.fipa.org

18

• A class of performatives (commisives) were missing - meaning an agent could not make a com

mitment to another, which is vital for coordination.

• The performative set was too big and rather ad hoc.

2.2.2 FIPA Standardisation

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to foster standardisation

in agent-based systems. FIPA specifications are divided into five categories: Applications, Abstract

Architecture, Agent Communication, Agent Management and Agent Message Transport. These speci

fications are shown in Figure 2.1, and are detailed further below, with the exception of Applications that

are examples of systems constructed using the standard architecture, communication, etc ..

Abstract Architecture

Agent
managemoot

ACl
representatial

Agent
message transport

En~ope

represertatlon
Transport
protocols

Figure 2.1: FIPA standards.

The Abstract Architecture is intended to promote interoperability and reusability. The specification de

fines the key elements of agent systems, and how these elements interact. Furthermore, it distinguishes

the readily abstractable elements, such as ACL, message transport, directory services, etc., and the more

implementation specific elements, such as agent management and mobility services.

Agent Communication

Specialised communication techniques are required to structure and control the interactions within agent

19

I

systems. The FIPA agent communication specifications address these issues, covering the communica

tion language, and predefined libraries of communicative act types, interaction protocols and content

languages.

The FIPA ACL3, similarly to KQML, defines an envelope language for messages, defining 22 perfor

matives (such as inform and request) to fix the intended interpretation of messages, but does not require

a specific message content language. The syntax of FIPA ACL messages is also similar to KQML, with

the same general structure and attributes. The performatives in this ACL differ from those in KQML,

and have been given a formal semantics based on the 'speech acts as rational action' approach [27, 19],

Using the formal Semantic Language (SL). The performatives are defined in terms of SL formulas, rep

resenting the constraints on beliefs, desires, actions, etc. that the sender must conform to in order to

correctly use the performative, and that represent the rational effect of the performative (though con

forming to these effects is not mandatory). Several FIPA implementations have been developed, and

examples of these are described in Section 2.2.3 below. The ACL Communicative Act Specifications

defines a library of the 22 FIPA communicative acts and their requirements, and the ACL Message

Structure Specification describes the grammatical structure of the language ..

In addition to the ACL specification, the FIPA standards for agent communication include interac

tion protocol definitions to give structure to agents' message-based interactions. The Interaction Proto

Col Library defines a set of interaction protocols: Request, Query, Request When, Contract Net, Iterated

Contract Net, English Auction, Dutch Auction, Brokering, Recruiting, Subscribe, and Propose. Fur

thermore, the ACL defined requires use of a content language to express the 'body' of a message. The

Content Language Library provides a generic description of the requirements for a FIPA content lan

guage, and specifies the following content languages: SL Content Language, CCL Content Language,

KIF Content Language, RDF Content Language. Within the content language employed for a message,

agents require a means to unambiguously express information about entities and relations within a do

Ihain of discourse - requiring the parties to a communication to have an agreed terminology about the

domain. A widely accepted means to do this is through ontologies, that formally define the terms and

relations present within a conceptualisation [142]. Ontologies are described in Section 3.3.

2.2.3 Agent Platforms

Once a degree of standardization has been achieved, though efforts like FIPA, practical commercial and

industrial use of agent-based systems requires implemented tools and platforms. The are a wide variety

3http;//www.fipa.org/repository/aclspecs.html

20

of both academic and commercial agent platforms available [158], which differ significantly in terms of

architecture and implementation. In the following, we give an example selection of the major publicly

available platforms that implement the FIPA specifications.

AgentCities project

Whilst not an agent platform in its own right, Agentcities4 provided an open, dynamic agent environ

ment in which the FIPA specifications were evaluated and refined. Agentcities developed an open agent

environment to allow the deployment of agents, enable communication between agents on the basis

of standard protocols, agent languages and ontologies, enable them to dynamically discover one an

other through directories, and support interactions between them to establish coordination relationships.

Agentcites main objectives were development of:

• a realistic, decentralised, open distributed system enabling high-level peer-to-peer interoperability

between agents on multiple platforms,

• a rich trading environment through agent-based business services, enabling business transactions

between agents in the system to support the dynamic composition of services,

• and agent-based applications by deploying multiple agents offering diverse services.

Agentcities is comprised of a number of agent platforms that each form a node within the network,

and agents can directly interact with others on any platform. By use of the communication models,

semantic frameworks, shared ontologies, etc., agents on different platforms can interact to provide end

user applications. The Agentcities distribution model has three levels:

• Network level: Agentcities platforms interoperate and exchange basic communications at the

infrastructure level.

• Service composition level: The services provide an open test bed for running services, by hosting

business components, including their service and behaviour descriptions.

• Semantic interoperability level: Agentcities as a test bed for communication in an open environ

ment that can dynamically host business components, and perform service discovery and invoca

tion.

Agent Development Kit

The Agent Development Kit (ADK) is developed by Tryllian5• ADK is a mobile component-based

4http://www.agentcities.org
5http://www.tryllian.com!

21

/

development platform that enables the construction of reliable and scalable applications - featuring dy

namic tasking, a JXTA-based P2P architecture with XML message-based communication supporting

FIPA and SOAP, JNDI directory services, and uses a reliable, lightweight runtime environment based

on Java. ADK supports the creation of large-scale distributed solutions that operate regardless of loca

tion, environment or protocol, enables an adaptive, dynamic response to environmental changes.

FIPA-OS

FIPA-OS6 was the first Open Source implementation of the FlPA standards, supporting all the main

standarised elements, and now also supports the majority of the FlPA experimental specifications. A

further development of the platform, FlPA-OS 2, is a component-based tool kit implemented in Java, and

there is also a "small-footprint" version aimed at PDAs and smart-phones.

JADE

The Java Agent Development Environment [9] (JADE) is a Java-based agent platform developed under a

grant from the European Commission (lST-1999-I0211). JADE agents exist within a 'container', hosted

on a 'platform', that forms the agent's home environment. The 'main container' on a platform contains

agents that provide the particular functions of a JADE platform - Agent Management System, Agent

Communication Channel, Directory Facilitator, etc. JADE also provides support for FIPA ACL, content

language ontologies, multiple MTPs, agent mobility, etc. The JADE platform and the methodologies

for developing agent-based systems upon it are described further in Section 2.2.4.

Java Agent Services

Java Agent Services (JAS) project7 was developed by a number of software industry vendors, and has

defined a standard specification and API for the deployment of commercial-grade agent platform-service

infrastructures. The project consists of a Java API for deploying open platform architectures, that sup

port the plug-in of third-party platform service technology, and provides interfaces for message creation,

encoding and transport, and directory and naming services. The plug-in based design is intended to en

Sure that JAS deployments are unaffected by changes in underlying implementations and technologies.

LEAP

The Lightweight Extensible Agent Platform8 (IST-1999-I0211), known as LEAP, is a development

and run-time environment for agents. LEAP is an integrated agent development environment, that can

generate agent applications in th~ ZEUS environment and execute them on JADE-dervived run-time

6http://fipa-os.sourceforge.netl
7http://www.java-agent.orgl
8http:lneap.crm-paris.coml

22

environments. In this way, LEAP benefits from the advanced design-time features of Zeus and the

lightweight and extensible properties of JADE. LEAP is intended to have a small 'footprint' enabling

an agent contain to run on almost any device, and has been implemented on wide variety of devices

(computers, PDA and mobile phones), and over various communication mechanisms (TCPIIP, WAP).

ZEUS

ZEUS9 is an open-source toolkit for constructing collaborative, multi-agent applications. Zeus provides

support for generic agent functionality and, in particular offers sophisticated support for the planning

and scheduling agent actions. The toolkit provides a graphical environment for agent construction and

behaviour modification. ZEUS implements FIPA ACL for communication, and uses a TCP/lP sockets

based message transport.

We now return to the JADE agent platform introduced above to provide a more in-depth description

of the platform, its components and functions.

2.2.4 The JADE Platform

JADE is a middleware environment, developed by TILab iO
, for the development of distributed multi

agent applications based upon the FIPA Abstract Architecture and the employing the FIPA Agent Com

munication Language (both of which are described in more detail in Section 2.2.2). JADE is composed

of two main components: the run-time environment providing the services required by deployed agents;

and the API libraries needed to develop agents within this environment. The run-time environment

consists of one or more agent 'containers' that together comprise an agent 'platform' - that provides a

homogeneous middleware layer over the lower-level tiers (operating system, network, hardware, etc.).

The platform and container services enable agents to perform a number of vital tasks:

• Dynamically discover other agents, and communicate with them on a peer-to-peer basis.

• Register the services it offers, and search for services offered by other agents.

• Manage its state and life-cycle.

The host platform assigns each agent deployed on it a unique name - a Globally Unique IDen

tification (GUID) - by assigning a unique local name and qualifying it with the unique platform ID.

As described in the previous section on FIPA ACL, agents communicate by exchanging asynchronous

9http://www.labs.bt.com!projectlagents.htm
IDTILab is a research division of Telecom Italia S.p.A.

23

/

messages. This is a model of communication that is very widely accepted for distributed and loosely

coupled communications, Le., between heterogeneous entities that have no a priori knowledge of each

other.

The architecture of the run-time environment is that of the FIPA Abstract Architecture, consisting

of an Agent Management System, a Directory Facilitator, and a Message Transport System. These

components and the relationships are depicted in Figure 2.2, and described in more detail as follows:

• The Agent Management System (AMS) has supervisory control over access to and use of the

Agent Platform. The AMS is implemented as an agent on the JADE platform, and only one AMS

can exist on any platform. The AMS maintains a directory of the identifiers (AID) and state of

all agents on the platform, each of which has registered with the AMS and been allocated an

AID. The AMS uses this information to provide a yellow-pages look-up service and life-cycle

management services.

• The Directory Facilitator (DF) provides the default yellow-pages service in the platform. The DF

is implemented as an agent on the platform, an offers a number of services to the other agents

that enable them to register descriptions of the services they offer, and search for specific services

from each other. A JADE system may support multiple DFs, each offering a yellow-pages service

for a specific domain or set of agents. Furthermore, DFs on the same or different agent platforms

can be federated into a DF network that acts as a global facilitation service.

• The Message Transport System (MTS) - also known as the Agent Communication Channel

(ACC) - provides facilities for the exchange of all messages within the platform, and for mes

sages to and from other platforms. Unlike the AMS and DF, the MTS is not implemented as an

agent on the platform, but is implemented as a set of middleware services.

On the launch of a JADE platform, the AMS and DF are initialised on the platform, and the MTS

activated to enable inter-agent communication. The AMS and DF are hosted in the platform 'main con

tainer', and subsequently other agent containers may be created within the platform and connect to this

main container. Platforms may be distributed over different host machines, each running one or more

Containers. Each of these hosts execute a single Java Virtual Machine (JVM), which each provide a

complete run-time environment for a set of JADE agents, executing concurrently within separate execu

tion threads.

FIPA-compliant agent environments in general, and JADE in particular, offer a number of features

that Were useful for the implementation of the SERSE system design presented in the previous chapter.

24

Agent Platform

Agent
Management

System

t
Message Transport System

r Directory J l Facilitator

t

Figure 2.2: JADE platform architecture.

Firstly, the FIPA specifications enable end-to-end interoperability between agents on different agent plat

forms, that may be implemented using different development environments. Secondly, JADE simplifies

the development of distributed applications composed of autonomous entities that need to communicate

in order to function as a system, by provision of a software fTamework that masks the complexity of

the distributed architecture. This allows application developers to focus on the appli cation rather than

on framework and middleware issues , and, in addition, a number of debugging tools are included to

assist in the development of multiagent systems. Thirdly, JADE supports the development of systems

that require coordination and negotiation between agents, through provision of software libraries imple

menting peer-to-peer communication and agent interaction protocols. Fourthly, agents control their own

thread of execution and, so can be programmed to execute actions on the basis of a goal and (internal

and environmental) state changes - without requiring human intervention. Finally, peer-to-peer archi

tectures are, in general, more efficient multi-party solutions than client-server architectures - removing

the server as a potential bottleneck and/or point of fai lure of the whole system. This is because agents

can both provide and consume services, and so remove any need for a distinction between the two.

JADE agents allow clients to communicate with each-other without the intervention of a central server.

Agent Behaviours

An agent must be able to perform several, possibly concurrent, tasks in response to different external

and internal events. The different ways in which an agent can act are governed by the behaviours that an

agent is equipped with - within an agent system the execution of a behaviour may involve a sequence of

actions, both internal and external to the agent itself. When designing multiagent systems within JADE

(and within FIPA-based systems in general) all the actions that the intended agent will be able to take

must be encoded into a set of behaviours. This set of behaviours may be arranged hierarchically, with

25

!

some behaviours representing low-level or 'atomic' actions of the agent, and other behaviours making

use of one or more of these simpler behaviours to provide a higher-level or more complex agent be

haviour. Such structuring of agent behaviours bears some similarity with modularisation of programme

code, as both intend to avoid replication of functionality (and consequent developer effort). This be

haviour model provides support for the execution of multiple, parallel and concurrent agent activities.

Within the JADE middleware environment, every agent consists of a single execution thread and all

its possible actions are modelled and implemented as Behaviour objects. Developers implementing

a specific agent behaviour, define a sub-class of one of the library Behaviours, then instatiate this

object and add the behaviour to the agents task queue. The generic Agent class provides methods to

add and remove behaviours from the task queue, allowing the agent to manage its own task list and

add behaviours and sub-behaviours as required. The Agent class provides a behaviour scheduling pro

cess, that performs a round-robin, non-preemptive scheduling policy among all behaviours in the task

queue, and then executes the selected behaviour until it releases execution control. A behaviour can

relinquish control before completing, in which case it is added to the task queue and re-scheduled, or

it can block execution whilst waiting for a message to be received. This behaviour model is intended

to enable the behaviours to operate as cooperative execution threads. However, there is no equivalent

to the thread stack - so all elements of the agent's state must be managed in variables of the behaviour

and the agent itself, as in finite-state machines. This approach can become problematic when dealing

with complex tasks, therefore, JADE provides behaviour composition methods that allow complex be

haviours to utilise more simple one (as described above). The JADE development library provides a set

of 'skeleton' behaviours for composing sub-behaviours, that each apply different execution policies to

the sub-behaviours.

We now turn our attention to agent-based systems that may be implemented using one of the afore

mentioned agent platforms. Specifically, we will now examine the tasks that agents can achieve and the

roles that agent can play in Information Retrieval systems.

2.3 Information Agents

The amount, diversity and complexity of online information resources is overwhelming manual brows

ing and centralised search system approaches. Furthermore, the diversity of information systems means

that there is a need for interoperation between them, so that isolated systems can "exchange information

and services with other programs and thereby solve problems that cannot be solved alone" [62].

26

In the same way that they are fundamental to agent communication, ontologies are a vital technology

for information systems. Ontologies provide the basis for handling information resource heterogeneity

- enabling semantics-based integration of diverse sources. The use of semantics in information systems

is intended to complement existing techniques for information navigation and retrieval [107]. Mena and

colleagues in [107] propose a division of information systems approaches into three types:

• Classical keyword-based and navigational approaches that do not use semantic representations,

often leading to poor quality answers.

• Global shared ontology approaches that enable complex queries and indexes, supporting high

quality answers. Such systems are only achievable where prior terminological agreement can be

reached.

• Loosely coupled approaches that use multiple ontologies, where interoperability is achieved by

ontology mappings. These systems are more complex than shared ontology systems and the' qual

ity of answers is lower, but they are more scalable and extensible.

Development ofloosely-couped, ontology-based approaches to distributed information systems found

many points of correspondence with developments in multi agent systems - in particular the emphasis

upon distributed reasoning, and the use of explicit knowledge representations. It could be seen that

the combination of these technologies offered the possibility of providing a common means to access

independent information sources, and, further, to offer common access to all types of resources and

services. The application of agents and multiagent systems offer further means to handle the informa

tion and software heterogeneity by using agents to 'wrap' information systems and resources. Such

'intelligent information agents' are intended to interact with each other, and with users to provide active

assistance in the location and organisation of information [101]. The benefits of using agents within a

heterogeneous information environment are based on their ability to interoperate through common pro

tocols, whilst exerting local control over information resources, removing the need for a central point

of control [78]. Information agents are situated in this information environment, and can independently

specialise and adapt to the features of the information resources locally available to them.

The definition of an information agent was initially often limited to that of agents for information

retrieval, that is, agents that can retrieve information for end-users. This stance is typified by [91] - "in

formation agents are computational software systems that have access to mUltiple, heterogeneous and

geographically distributed information sources. Such agents may assist their users in finding useful,

27

relevant information; in other words, managing and overcoming the difficulties associated with 'infor

mation overload'. Information agents not only have to provide transparent access to many different

information sources in the Internet, but also to be able to retrieve, analyse, manipulate, and integrate

heterogeneous data and information on demand, preferably in a just-in-time fashion". This definition

later became extended to include the management and organistion of information and resources [137].

Therefore, information agents can be characterised as agents offering one or more of a variety of key

information services:

• Acquisition - obtain and provide access to information.

• Management - maintain resources and ensure up-to-date information.

• Search - locate and retrieve information matching a request.

• Integration - aggregate and integrate information from heterogeneous sources.

• Presentation - layout information in a suitable format.

• Adaptation - tailor information to users, tasks, context, etc.

A multiagent system inhabited by a variety of trusted information agents that offer this range of ser

vices can then perform value-added information services for users. Examples of such services provided

by multi agent information systems are given in [91], and include:

• access to multiple heterogeneous distributed sources to locate, retrieve, process, integrate, and

store information,

• notification to users of publication of new information within a specified topic area,

• negotiation for and purchase of information, goods and services,

• explanation of the relevance and reliability of retrieved information,

• evolution and adaption to the dynamic information environment.

Therefore, multi agent information systems use their inherent dynamism and heterogeneity to man

'age the dynamic and heterogenetic nature of open information environments. The different tasks in

volved are performed by different agents within these systems, and these agents communicate and

cooperate integrate the available information resources. The reasons for the suitability of multi agent

systems to this task of providing homogeneous access to heterogeneous information can be summarised

in four main points. Firstly, the information sources may be heterogeneous in a number of dimensions,

28

which requires local adaptation. Secondly, the information sources themselves are distributed, which

requires system-level cooperation to integrate them. Thirdly, no centralised control is required, meaning

that there is no single point of failure or bottleneck within the system. Finally, the inherent complexity

calls for modular solutions and clear task divisions to manage it, with minimal user involvement.

There are a variety of multiagent information systems in existence that aim to integrate information

from heterogeneous sources, and most of these approaches utilise agents in three main roles [93]:

• Information consnmers - that query information managed within the system and receive the

result of the information integration process. Such agents are often user interface agents or appli

cations.

• Information providers - that link the information sources into the agent-based system. These

often take the form of 'wrapper', I I agents that provide an agent interface to an existing information

resource. Such agents are often used to 'translate' the information from the data-schema used in

the information source to that used in the multi agent system.

• Middle agents - that mediate between the provider and consumer agents by directing queries to

those information sources that are best able to answer them [35]. This is achieved by matching a

query to the provider's advertisements of their capabilities [167]. These middle agents can be fur

ther sub-divided into facilitator, broker and mediator agents that provide different 'middle-man'

services on top of their basic matchmaking task.

Agents often play more than one role in these systems, such as agents that are both consumers

and providers of information. In this case the agent receives information, processes or otherwise adds

value to it and then provides this processed information to other agents [93]. Examples of informa

tion integration systems that utilise agents in this sort of architecture are iBROW [12], RETSINA /

LARKS [146, 145], InfoSleuth [115] and KRAFT [120].

This three-layer system of provider, middle and consumer agents is reflected in the architecture of

the Esperonto project - introduced in Chapter 1. As depicted in Figure 2.3, the provider agents are

represented by the wrappers attached to each of the information sources, the demonstration applications

(and the user query interface within SERSE) represent the consumer agents, and the semantic indexing

and routing system (SERSE) represents the middle agents. Therefore, SERSE requires many of the func

tionalities of middle-agents: locating resources, matching queries to resources, connecting requestors

.11 So named because they can be seen to wrap around the existing resource.

29

and suitable providers, etc.

Multlagent
Information

System

Esperonto
System

I
I
I
I

B • I

Figure 2.3: Multiagent Information Systems architecture compared to Esperonto architecture.

Many approaches to middle agents require the prov ider agents to broadcast their capability descrip

ti ons which raises a question over the sca lability of such systems due the communication overheads

inherent in such an approach [1 29]. In addition, many approaches utili se a central register of content

and/or a hierarchical structure of middle agents [93]. Any large-scale open and dynamic environment,

such as the Semantic Web, requires certain features from any information integration architecture, in

cluding:

• Scalability - meaning that the architecture should be able to function effectively over any number

of in formation sources. The scalability is affected by the volume and efficiency of communica

tions between the agents, by any hierarchical relati ons between the middle agents, etc.

• Failure recovery - the architecture should be able to cope with the failure of individual agents

within the system, and should support self-maintainance to manage such fa ilures.

• Maintainability - the architecture should maintain up-to-date references to the information sources

to allow for the arrival and departure of information sources into and from the system.

Approaches to constructing information agents and multi agent information systems can be distin

guished into three main types [92]:

• User Programming - agents are equipped, by the user, with the requisi te rules and knowledge to

30

perform their specific information processing task. This approach is often made impractical by

the degree of knowledge and understanding needed from the user.

• Knowledge engineering - agents are equipped, from design-time, with application-specific knowl

edge. This creates agents that are only applicable to their intended information environment, and

needs significant prior knowledge engineering. Knowledge-based environments, such as the Se

mantic Web, assist in this engineering task by providing reusable ontologies, annotations and

knowledge-bases, and tools to process this knowledge.

• Machine learning - agents are equipped with the ability to acquire the knowledge they need to

process information. This learning process is usually performed by abstracting useful patterns

from user-provided example information sources, and from system usage monitoring.

2.3.1 Digital Libraries

Digital libraries have been proposed as a solution to the problems of information management and inte

gration in distributed, multimedia environments, such as that represented by the WWW [96]. As such

they have a number of similarities with the role of SERSE within the Esperonto project. They also en

vision a network of distributed repositories, where all types of objects and resources can be located and

retrieved, both within and across different indexed collections. A general definition of a digital library

is 'a distributed technology environment which dramatically reduces barriers to the creation, dissem

ination, manipulation, storage, integration and reuse of information by individuals and groups' [99].

Therefore, a digital library is, as with traditional libraries, not simply a collection of information re

sources, but provides additional services relating to those resources. Reflecting this, digital libraries

have also been defined as [102]:

"An electronic information access system that offers the user a coherent view of an organ

ised, selected, and managed body of information"

In order to achieve these aims within the intended environments Digital Libraries have had to address

many of the same issues as encountered in the design and development as SERSE. Therefore, many

of the approaches adopted by Digital Libraries may provide useful pointers to the solution of common

problems within distributed and heterogeneous information environments.

The main functions of a digital library can be summarised as (from Esposito et al. [44]):

• Collection - refers to the detection of information resources that are useful to the clients of the

library. It does not necessarily refer to the physical acquisition of such resources.

31

• Organisation and Representation - these require that the information resources are classified and

indexed, according to criteria relevant to the potential users.

• Access and Retrieval - which involve the design and organisation of the materials within a phys

ical space in order to effectively retrieve them when they are required.

A digital library system has to address some of the major issues of information retrieval, particularly

in an environment such as the WWW. In this scenario data and control are distributed, there is no central

control or viewpoint, and the system is highly dynamic. In addition, a digital library might reasonably

be expected to provide personalised services to individuals and groups [54].

The general architectures of digital libraries, as shown in Figure 2.4, are based around the concept of

Digital Objects [83], which represents a particular form of data structure containing the digital material

(data) and metadata for it, such as a unique identifier for the material. In the system proposed by Khan

and Wilensky the digital objects are stored in repositories, the unique identifier (handle) is obtained from

a global naming authority and registered with a handle server. The repositories have mechanisms for

depositing and accessing digital objects, and store a properties record containing the metadata for each

of the digital objects within them. The system described provides methods for the naming, identification

and retrieval or invocation of digital objects in an architecture of distributed repositories, and enables

the location of objects independently from their physical location in the system.

A good example of a digital library system not based upon agent technologies is the Cheshire Sys

tem [96]. This system was originally designed as an online library catalog that provided a combination

of probabilistic and boolean retrieval methods. Subsequently, Cheshire has evolved into a flexible in

formation retrieval tool for textual and structured metadata resources, and is utilised in a wide range of

applications - including web-based library catalogs and specialised document search engines. The key

features of the system are:

• SGML and XML metadata representation, manipulation and storage.

• Web-based client-server system, supporting the z39.50 v.3 Information Retrieval Protocol.

• Natural language queries, incorporating boolean logic.

• Probabilistic document ranking and document-topic clustering methods.

• Dynamic document linking, supporting exploratory browsing.

32

A more recent development of the Cheshire system, aims to provide a generic framework for In

formation Retrieval applications - based around use of modular components to provide the required

functionality. This Cheshire 3 system [165] is built upon the integration of a number of technologies,

including 'Data Grid' technologies for distributed resource storage and access, a content management

model and model-based document parser, and text and data mining technologies. The intention is to

develop a framework within which Information Retrieval and Digital Library systems can be developed,

based upon existing, best-of-breed tools for the required functionality.

DLCllents

Query facility, Natural Languago, IR,

Coordinator I Mediator

Figure 2.4: Generic agent - based digital library architecture,

A classic example of agent based digital library technologies is that of the University of Michigan

Digital Library (UMDL) [39], which is based upon the use of an agent architecture in order to deliver the

library services in a decentralised environment. The UMDL system supports an evolving, open network

of capability providers and consumers that each act autonomously in the interest of their 'owners', but

which collectively provide the whole digital library service. The library is characterised as an 'evolving

agent economy' in which individual agents provide and consume different library services, and commu

nicate and cooperate with each other in order to achieve their goals. The basic services, such as those

for locating other agents, reaching agreements with them, etc., are standardised within the system and

are realised using agents and teams of agents. The extensible basis of the system means that third-party

agents, which might offer specialist services such as natural language processing, are free to join the

system and offer their information and / or services to the library. The UMDL system is designed as

a n~mber of layers, which build upon each other to provide the library functionality. The lowest layer

33

is the system and network environment that provides the network transport (TCPIIP), agent communi

cation transport layer (CORBA), and the operating environment for the agents (Unix). Above this lies

the 'agentware' that defines agent communication interfaces, which are implemented using the KQML

performatives and message structure. Built upon this basic structure are three levels of UMDL-specific

functionalities:

• Protocols that enable system-wide agent interaction and interoperability, by defining a small num

ber of patterns of message exchange that enable all the agents to tackle common tasks, such as

location, selection, etc., in the same way. The semantics of the terms used in the KQML mes

sages are defined in a UMDL ontology that defines the basic concepts used in the system, such

as the types of things that can belong to a digital library (documents, articles, pictures, etc.) and

the types of library services available. The ontology is not designed as a source of metadata to

describe the content of library resources. This layer also defines a number of languages used by

the system, such as that for registration and querying the registry, but leaves open the option to

utilise more specialised languages for specific library tasks.

• Facilitators are those library agents that collectively provide the UMDL services for agent lo

cation, content-based message routing, security, negotiation and renumeration. These services

underlie and underpin the task-specific services of the system that users see. The principal fa

cilitator is the Registry agent, which maintains records of the agents within the system and their

capabilities, and retrieves lists of agents that satisfy the capabilities required by a query.

• Services form the top-level of the UMDL architecture and provide the task-specific library func

tions to the users of the system. A task-specific agent operates in a narrow task domain, and the

system implements, or envisions the need for, agents that offer services for a registry, content pub

lishing and retrieval, a thesaurus, query planning, a content metadata vocabulary, task planning, a

user interface and a collection interface.

The concept of agent-based digital libraries has been developed by a number of research groups, for

example ZunoDL [54]. In this approach the digital library is implemented as a collection of autonomous

agents operating within an 'information economy', in which producers and consumers of information

interact in a market-like environment. The system has producer agents that link information 'owned' by

third parties to the digital library, facilitator agents which map user's requirements onto the producers

best able to satisfy them, and consumer agents which interface between the library and its users.

34

2.4 Peer-to-Peer Systems

Peer-to-peer systems can be characterised as distributed systems in which all nodes have minimal set

of equivalent capabilities and equal responsibilities towards each other, and all communication is sym

metric [129]. In P2P systems, each agent or node in the system is on an equal footing with all the other

agents in the system, and communication between two peers is an exchange of information between

two equals, though the overall capabilities and responsibilities of the nodes may differ widely. There

are a number of definitions of what constitutes a peer-to-peer system, many of which overlap or are

complementary, however:

"Reduced to a common denominator; P2P refers to a technology that enables two or more

peers to collaborate spontaneously in a network of equals (peers) by using appropriate

information and communication systems without the necessity for central coordination.

" [134J.

Multiagent systems and peer-to-peer systems can be viewed as being compatible - in that agents can

be designed to behave as peers in a network. Peers within a peer-to-peer system can be characterised as

software objects that have a shared set of responsibilities towards each other [129], that is each peer will

respond to a specific message from another peer in a known manner. Furthermore, this implies that the

peers have a core set of shared (or equivalent) capabilities in order to provide the required services to

other peers in the network. Such characteristics can also be seen in typical multi agent information sys

tems (see Section 2.3) where the agents within the system are designed to offer a specific set of services

to each other to enable the overall cooperative behaviour of the system.

The idea of peer-to-peer systems is not a new one, as the telephone system or Usenet groups can

be characterised as P2P systems. More recently the use of peer-to-peer technologies has become more

widespread, primarily through the very large numbers of users for file sharing systems, such as Nap

sterl2 and Gnutellal 3, and instant messaging services, such as Jabber [80]. However, there are methods

used in many of these systems, in particular the use of a central index of content or a message broadcast

protocol, that deviate from those of a 'pure' peer-to-peer system.

A comprehesive survey of peer-to-peer systems is presented in [2]. In this survey the authors present

a classification of peer-to-peer systems based upon the application category of the system:

• Communication and Collaboration - Systems that provide the infrastructure for facilitating direct,

real-time communication and collaboration between peer computers. These systems include chat

12http://www.napster.com!
l~http://www.gnutelJa.com

35

and instant messaging applications, such as IRC, MSN and Jabber.

• Distributed Computation - Systems that aim to use available idle CPU processing cycles on peer

computers. The main approach is to break down a processing-intensive task into many small

work units, which are then distributed to peers to be processed. This approach usually requires

central coordination to divide original task and re-combine the work-unit results. Prime examples

of distributed computation P2P systems include seti@home [135] and genome@home [63].

• Internet Service Support - A variety of different systems exist to support internet-wide services.

Such systems include a variety of peer-to-peer multicast systems, like those described in [162]

and [23]; indirection infrastructures [140]; and web security applications [164, 87, 81].

• Database Systems - There are a number of published approaches to constructing distributed

database systems based upon peer-to-peer infrastructures. These approaches include:

- the Local Relational Model (LMA) [14] in which the totality of the data within a P2P net

work is treated a set of inconsistent local relational databases, which are interconnected by

'acquaintance' links that define mappings between the databases. This 'acquaintance' con

cept bears significant similarity with the 'neighbour' concept utilised within SERSE, though

in LMA these connections are not predicated upon any specific semantic relationship be

tween the linked databases.

- the PIER system [76] is a scalable, distributed query engine built upon a P2P overlay net

work, enabling large scale (1000s of nodes) distributed processing of relational database

queries.

- Piazza [70] is, like SERSE, a Semantic Web [151] (see Chapter 3) peer-to-peer system in

which the individual nodes act as sources of data (e.g. obtained from a database to which

the node has access) and/or ontologies (see Section 3.3) in order to provide an information

infrastructure for Semantic Web applications. The nodes in Piazza are all interconnected

by chains of pair-wise mappings between nodes, again as in SERSE, but in Piazza indi

vidual nodes have heterogeneous data semantics and queries are replicated and distributed

through the peer network to multiple source nodes, whereas SERSE sub-divides the queries

and moves each one through the P2P network to a single source node.

- Edutella [113] is also a SW P2P system, that uses standardised metadata representation to

provide a metadata-based infrastructure and querying facility to applications layered upon

it, such as Bibster [69].- Edutella and Bibster together bear some similarity to SERSE,

such as the use of an on otology-based querying process, semantically annotated resources,

semantics-based query routing, and indexed content being distributed over a number of

36

peers. However there are also a number of differences between the two systems. The two

most significant differences are that SERSE uses a network of agents to host a distributed

metadata index, in which each agent has a specified and unique area of expertise, selected

from any of the ontologies used in the annotations. On the contrary, Bibster's peers have

expertise that is based on their own resources, that are annotated according to two design

time specified ontologies. These differences reflect the differing goals of the two systems -

Bibster aims to enable the the sharing of local resources regarding only bibliographic infor

mation over a network of peers; whereas SERSE aims to provide an open indexing system

for resources annotated according to any ontology, and distributes the index over a network

of agents in order to ensure the scalability and robustness of the system .

• Content Distribution - This forms the largest category of existing peer-to-peer systems, in which

the intention is to enable end users, represented by peer nodes, to share digital media and data over

the internet. Content distribution P2P applications range from relatively simple direct file-sharing

systems, such as the aforementioned Napster and Gnutella, Kazaa [85] and FreeNet [26]; to more

sophisticated systems that provide a secure and efficient distributed data storage, often built upon

distributed hash tables, such as Oceanstore [95], PAST [129], Chord [141] and Groove [66].

The focus of the survey presented in [2] is upon P2P content distribution systems. Consequently the

authors present a further two-level classification of such systems based upon the variety of available (up

to 2004) technologies, which consists of:

• Peer-to-Peer Applications - The essential features of a P2P content distribution application are

the publishing, searching and retrieval of files by peers in the P2P network. They can be further

sub-divided into two types of system:

- File Exchange Systems: Intended to provide direct transfer of individual files between pairs

of peers. The system facilitates the setup of the peer network, and enables the search and

file transfer functions. Most examples of such systems are lightweight implementations that

largely ignore security, availability and persistence issue, and focus upon basic, best-effort

file exchange. This category of system includes the most well-known examples of peer-to

peer systems, such as Napster, Guntella and Kaaza.

- Content Publication and Storage Systems: Intended to provide a distributed storage medium

for users to publish, store and distribute digital content, in a way that is secure and incorpo

rates persistent content management (update, removal and version control). In many such

systems peers require appropriate privileges to access specified content, and facilities are

provided for anonymity, accountability, and censorship resistance.

37

• Peer-to-Peer Infrastructures - Service and application frameworks based upon P2P networks, that

provide distributed storage and retrieval facilities to end-user applications. They can be further

sub-divided into three service types:

- Routing and Location: All P2P systems rely upon a mechanism for routing messages be

tween peers within the peer network. Ideally mechanisms should be both efficient and fault

tolerant. Within SERSE this vital task is performed by the Semantic Relatedness Metric,

described in Section 4.4.

- Anonymity: Enabling peers, and thus end users, to remain anonymous when publishing and

retrieving files.

- Reputation Management: As in many mass-user systems, reputation management is utilised

in some P2P content distribution systems to enable user to select optimal sources from their

content requirements. In P2P systems, with no central authority to manage such facilities,

complex solutions are needed maintain a distributed reputation management system that is

secure, up-to-date and has high-availabilty.

Essentially a peer-to-peer system consists of a set of methods, services and protocols that allow

nodes to pass messages amongst themselves so that messages are directed to the correct node. A node is

any computer program, application, agent, etc. that implements the methods and protocols, and so can

communicate and interoperate with other nodes in the system. Each node requires methods to locate

and contact other nodes and to cope with nodes arriving in and departing from the system. The nodes

also require a mechanism to determine which of their neighbour nodes to pass a message to. In addition

to passing messages, nodes provide resources (information, data files, etc.) under their control to the

peer group. The messages themselves can represent queries, responses, maintenance functions, etc.,

and are directed to nodes by means of location independent addresses, that point to nodes irrespective

of the node's physical location in the network. The P2P system has to address a number of issues re

lating to efficiency, such as keeping the number of messages to a minimum to reduce network load and

ensuring that messages traverse the nodes between their source and destination by the most direct route.

Implementations of peer-to-peer systems have built the network of nodes on top of existing network

communication and location infrastructures such as TCP/IP.

In order to direct messages to their intended destinations, a peer-to-peer system requires an index

of the system content. This index can be a simple hash table, linking resource identifiers to resource

locations, or may be more complex, providing metadata about the resources. The index needs to be

stored within the P2P system, and this can be achieved in three main ways:

38

1. As a centralised index held in a single location. This acts as a hub through which all queries pass,

and provides a global view of the content of all the peers. However, this central point is a source

of significant vulnerability, and failure of the index effectively disables the whole system.

2. Distributed amongst a sub-set of the nodes in the system. These index nodes are referred to

as super-peersl4 and can be seen as peers with additional capabilities that provide a specialised

service to the P2P system.

3. Distributed amongst all the nodes in the system. In this case every node has responsibility for a

specific part or parts of the global index. Ideally the index distribution will be even amongst the

peers, ensuring that storage, computation and networking costs are approximately equal for all

nodes.

In peer-to-peer architectures messages can be passed between peers using two different methods.

Broadcast messages are sent from one peer to all the other peers, or a large subset of the peers, in the

network. This is not a technique that will scale, due to the network traffic generated by these multiple

messages. Point to point messages are sent between specific peers, by a process of dynamic routing

whereby the message passes from neighbour to neighbour and can traverse a number of nodes in the

system en route from its source to its destination. Neighbours are those nodes that have a logical link

between them, determined by the P2P application, and this bears no relation to the underlying physical

network connections. Figure 2.4 shows an example message route, where the message originates from a

source node S, and is passed from node to node until the destination node D is reached. In such a system

of dynamic routing, each node en route needs to select the best neighbour to send the message on to,

which is usually achieved by numerical closeness of the neighbours ID-key to that of the messages in

tended destination. The messages marked as 3 and 4 on the diagram demonstrate an incorrect message

routing. In this case the node that receives message 3 is not the intended destination, but does not have

any other neighbours to which to send the message on to. Such errors can occur due to imprecision in

the method used to select the best node to route a message to. Therefore, the node returns message 4

to the originator of message 3 - which then determines the next closest neighbour to route tol5 . This

results in message 5 to node D, which is the message's destination.

Routing indexes [33] are intended to extend the information available at each peer that can be used

to identify the best neighbour to which to route a query. This is achieved by including information

from 'over the horizon', that is, from beyond the current node's immediate neighbours. In the system

proposed by [33], documents and queries are characterised using manually assigned topic (or class)

14That is, peers that have additional functionalities / responsibilities within the peer-to-peer system.
15'I:emporary message routing histories can be kept by nodes in order to avoid circular message routing.

39

Figure 2.5: Message routing in peer-to-peer architectures.

labels, which are matched as strings. Each peer in the system has a routing index that records the number

of documents available, subdivided by their characterising topics, that indicates which neighbouring

peer represents the best source for information on any specified topic. Three types of these routing

indexes are defined:

1. Complete - each peer's routing index enumerates by topic the total number of documents available

from all peers.

2. Hop-count - the routing indexes are subdivided by topic and by the number of neighbour peers

that must be traversed in order to reach the documents. Therefore, for a particular topic, there is

a record of how many documents can be found one 'hop' away, two hops, etc. The size of the

index can be controlled by imposing a maximum number of hops for which the indexes record

document counts.

3. Exponential- the routing indexes contain, for each topic, a number that is algorithmic ally gener

ated as the sum of the number of documents available multiplied by an exponential factor based

on the number of hops away those documents are located.

Semantic Overlay Networks [34] are a method to group together peers based on the semantics of

their content resources. As in [33], document semantics are represented by assigned topic labels. For

each topic there exists a group of peers that contain documents characterised by that topic, and these

peers form the overlay network for that topic. Nodes can have different neighbours in a number of

different overlay networks. A query is processed by identifying which semantic overlay network (SON),

or set of SONs, are best able to answer it. The query is then sent to a node in that SON and is only

forwarded to other members of the SON. [34] proposes the use of a classification hierarchy as the

basis for the formation of the SONs, where documents and queries are classified into one or more leaf

concepts in the hierarchy. However, in practice, it may not be possible to determine which concept

40

they should fall within, in which case they can be classified into one of the non-leaf concepts that is the

immediate ancestor of the possible concepts for classification. Since document classifications usually

change infrequently, SONs seek to classify documents in advance of queries, placing them in 'buckets'

that correspond to concepts in the hierarchy. The authors consider that a suitable classification hierarchy

is one that:

• Produces 'buckets' with documents that belong to few nodes, because the smaller the number of

nodes to be searched the better the query performance.

• Ensures nodes have documents in a small number of 'buckets', in order to reduce the number of

SONs that a node belongs to and, therefore, to reduce the load at that node.

• Allows for easy-to-implement classification algorithms that make a low number of errors.

Semantic Overlay Networks utilise the fact that when a user is searching for a topic they do not

necessarily want to find every available resource in that topic, but require a timely response with a sig

nificant proportion of the available resources. Therefore, nodes that only contain a few resources in a

topic may not join the SON for that topic, thus reducing network traffic and the load upon that node

without significantly reducing the utility of the system. Nodes that have a significant percentage of their

documents (the authors use 15%) classified in a topic are assigned to the respective SON. Documents

in topics that do not reach this threshold are grouped together under successive super-concepts until

the number of documents within a concept passes the threshold (not including those documents already

assigned to a more specific concept). The mechanism is referred to as Layered Semantic Overlay Net

works, and produces an improvement in the efficiency of queries (in time, message overhead, etc.) with

only a small reduction in the maximum recalllevel achievable.

Current research in the peer-to-peer domain is largely focused upon distributed indexing, dynamic

message routing, reduction of messaging overheads, and fault tolerance through redundancy and repli

cation [8]. In addition, there is significant ongoing work in the usage of peer-to-peer system approaches

within the Semantic Web and (Semantic) Grid research communities [2].

2.5 Summary

This chapter has described a number of areas of research in autonomous agents and mutiagent systems,

and the related topics of (agent-based) Digital Libraries and peer-to-peer systems. Each of the research

area~ described have contributed different technologies, approaches and techniques that can be used in

41

the design and construction of a distributed system for semantic content indexing, such as SERSE.

The core concepts of autonomous agents - proactivity, reactivity, social ability and autonomy - and

the organisation of agents into multiagent systems all provide clear means by which to achieve many

of the stated aims of SERSE. Autonomy is important because the indexes within SERSE are intended to

'know' which topics they index, and act independently to mange their own index. Social ability fulfills

the need for the indexes to communicate and cooperate with each other to achieve system-level func

tions. Reactivity enables the indexes to act appropriately on receipt of different messages from other

components of the SERSE system. Finally, both reactivity and proactivity provide the means by which

the individual components of the index system can act in order to maintain the functioning of the overall

system in case of disruptive events. When autonomous agents are designed and constructed in order

to work together as a multi agent system, the combination of the different agent capabilities enables the

system to exhibit system-level functionality that cannot be provided by any of the component agents in

dividually. Furthermore, the sub-division of a multi agent system into independent functional elements,

that communicate with other elements through messaging, means that a multiagent system lends itself

naturally to distribution over multiple networked host systems.

The existing work on information agents and multiagent information systems described in this chap

ter demonstrate how a multiagent system can be organised in order to achieve specific infonnation re

trieval tasks. The use of multiple specialised agent types, with different capabilities, to perform different

roles within the system provides an effective way to modularise the internal functionality of the system.

Furthennore, the separation of information system components into provider, mediator and consumer,

When applied to the function of SERSE within Esperonto, clarifies the intended role of SERSE within the

overall infonnation retrieval task - allowing design to focus on the mediation role, connecting queries to

relevant content. Digital Libraries (DLs) offer an alternative approach to the construction of large-scale

information storage and retrieval systems, with a focus on replicating the functions of an actual library

in digital form. However, DLs also demonstrate the viability of large-scale infonnation systems, and,

with agent-based digital libraries such as UMDL, there is a clear confluence of ideas between DLs and

multiagent infonnation systems that can further inform the design of SERSE.

There are three primary contributions towards the design of SERSE from the peer-to-peer (P2P) tech

nologies described in this chapter. The first is the way in which the peers in the system have only limited

knowledge about the other peers in the system. That is, each peer is only aware of and able to commu

nicate with a relatively small sub-set of the other peers, supporting system scalability by limiting the

size of each peer's routing index. The second regards the logical organisation of peers using semantic

42

· overlay networks to inter-connect peers, so that peers only know about other peers whose content has

similar meaning. This leads to peers having routing indexes organised on the basis of specified 'topics',

so that each peer can determine which other known peer is the best source for information on a topic.

Finally, the concept of routing messages from one peer to another via multiple other peers in a series

of hops provides an efficient communication mechanism for a large-scale distributed system, in which

each node cannot know all of the the other nodes in the system.

43

~hapter 3

The Semantic Web

This c,hapter presents an overview of the Semantic Web - its background, vision, technologies and lan

guages, It is not intended to cover all aspects of this multi-disiplinary endeavour; but will focus upon

those aspects that have relevance for the SERSE system presented in the next two chapters. The purpose

of this chapter is to highlight the specific Semantic Web technologies and approaches that have con

tributed to the design and development of SERSE - primarily knowledge representation, manipulation

and query languages, dynamic mapping between such representations, and resource annotation.

Section 3.1 presents the general vision of the Semantic Web, as an extension of the current web. In

section 3.2 we present the concept of metadata in this context, and its use on the Semantic Web. Sec

tion 3.3 goes on to describe ontologies, and their role as afundamental building-block of the Semantic

Web. Section 3.4 then describes how such ontology-based metadata can be queried and retrieved, using

Semantic Web languages designed for this purpose. Finally, in section 3.5 we discuss semantic hetero

geneity and matching, including the types of heterogeneity that may occur; semantic similarity between

entities, ontology alignment techniques, and semantic indexing methods.

3.1 The Semantic Web Vision

The Semantic Web is intended as an evolution of the World Wide Web in which the information within

it is also expressed in a machine understandable way, rather than only be human interpretable [151].

That is, on the current web the elements of web resources that are processable by software only regard

the layout, navigation, etc., and express nothing about the content of the resource. The main purpose of

the languages and technologies developed within Semantic Web research are to enable the addition of

machine-processable metadata to web resources, giving software the means to 'understand' the mean

ing of the information contained within them. The semantics of the metadata are underpinned by use

of ontologies to unambiguously define sharable terminologies - as introduced in the previous chapter in

44

the context of agent communication and multi agent information systems. Providing softwa~e with the

means to meaningfully process self-describing information resources promises to significantly increase

the power of the web - freeing users from time-consuming information processing tasks, and allowing

user applications to provide sophisticated, 'knowledge-level' services that leverage the vast quantities

of information available. However, in addition to stressing the semantic of the Semantic Web, we must

also retain the web by retaining the decentralised, heterogeneous, fault-tolerant and scalable approaches

that have made it such a success. Furthermore, The Semantic Web has the potential to make far more

knowledge available, through the combination of different pieces of information from diverse sources,

thus making the provision of scalable, decentralised control mechanisms even more crucial for its suc

cess [151].

The development of the Semantic Web has progressed on the basis of extending the current web with

knowledge representation languages that enable the encoding of structured information and processing

rules, sufficient to support automated reasoning over the information contained. Underpinning the Se

mantic Web with a set of 'standard' knowledge representation languages overcomes the key problem of

representational heterogeneity that has hindered interoperation of traditional KR systems. Furthermore,

the languages developed for the Semantic Web are intended to strike a balance between their expressiv

ity and the degree to which they can be reliably processed - underlining the focus on the Semantic Web

as a practical exercise. The Semantic Web is often depicted as a 'layer cake' of languages and standards,

in which each layer builds upon the expressivity and functionality offered by the layers below it. This

'layer cake' is shown in figure 3.11.

The aim of the Semantic Web is to provide machine-processable descriptions for any kind of web

resource or service, thus creating the kind of open information system discussed in the previous chap

ter. The standard languages and protocols of the Semantic Web provide the framework within which a

wide range of knowledge-based and artificial intelligence techniques can be applied to create intelligent

service that can solve complex problems for users. The interoperability enabled by the use of Semantic

Web standards means that software components are able to reliably and consistently exchange, share

and process the represented knowledge.

1 www.w3.org/2005/12131-damI-final.html

45

User Interface & Applications

Trust

Ontology:

Query: OWL Rule:
SPARQL RIF

RDFS

Data interchange:
RDF r---------~

XML

URI/IRI

Figure 3.1: Semantic Web ' layer cake'.

3.2 Metadata and RDF

o
a.
~

U

Metadata is 'data about data' . That is, metadata represents an additional layer of encoding that expresses

supplementary information about the information item(s) under consideration. Metadata is used to fa

cilitate the understanding, use and management of data. However, the metadata required for description

will vary with the information being described, and so any metadata scheme for heterogeneous data

must be suffic iently fl exible to handle thi s heterogeneity and suffi ciently extensible to adapt to any in

formation domain.

On the Semantic Web, the representation of metadata is achieved by use of a number of underlying

technologies that enable identi fica tion of entiti es and prov ide a syntax for metadata expression. This

lowest level of the Semantic Web ' layer cake' - often referred to as the syntactic layer - refers to

the fundamental technologies of Universal Resource Identifiers (URIs) , Unicode, and the eXtensible

Markup Language (XML)2.

I . URIs mean that any entity on the Semantic Web can be assigned a unique identi fica tion that

enables unambiguous reference to that entity from anywhere on the web. URIs are utili sed in

metadata and ontological representations to provide an identificati on scheme that ensures any

information regarding an entity can be reliably associated with the correct enti ty.

2. Unicode is an industry standard scheme that allows the consistent representation and manipulation

of text - that is, representati on of the characters, digits, punctuation, etc. present in the variety of

2www.w3.orgIXMLI

46

human writing systems.

3. XML is a general purpose markup language in which users are able to define their own 'tags'

to structure the representation of data. It is primarily intended as a language data sharing across

information systems, however, such sharing requires prior agreement on the meaning of the tags

used. XML Namespaces are a further contribution to the layer cake that enable the separation of

different sets of defined XML tags into disjoint vocabularies .

3.2.1 RDF

hUp:Jhvww.eJCample.otgIindax.htmI

~L""""".~M"".1/cr_'
hItp:Jhvww.eJCample.otgIstallidl857-40

hltp:llpurl.orgldclelemenIS11 .1/Ianguage

en

Figure 3.2: RDF graph example 1.

Built upon this syntactic layer are the semantic layers that enable the representation of knowledge. The

lowest of these semantic layers consists of the Resource Description Language (RDF)3. RDF provides

the means to make statements regarding entities, i.e., metadata statements, by reference to their identi

fying URIs. Statements in RDF are composed as triples that loosely correspond to the subject, verb (or

predicate), and object structure in a basic sentence. These statements are encoded as a set of three XML

tags , where the subject and predicate are represented by URIs, and the object is represented either by a

URI or by an XML data type value. An example of such a statement would be:

(thisthesis) (writtenby) (/ anBlacoe)

In this case, the subject would be identified by a URI that represents this document, the predicate is a

URI that refers to a published definition of 'written by', and the object is identified by a URI represent

ing a specific human being - myself. The use of URIs to refer to entities and predicates ensures that

the statements are not just words - they are tied to unique, public definitions that define the implied

semantics. In human language polysemy and synonomy add to the richness of the language, but such

3 W~w.w3.orgIRDF/

47

ambiguity significantly complicates automated processing, and so URIs enable statements to be based

upon unambiguous meanings.

Statements in RDF connect together, on the basis of matching URIs, to form webs of information

about entities . Collections of RDF statements are often depicited as graphs, in which the nodes represent

the subjects and objects, and the arcs represent the predicates linking these entities. Figure 3.2 shows

how a number of RDF statements can combine to create a detailed description of an entity, in terms of

its properties and their values. Figure 3.3 shows how RDF statements can be chained together to connect

such descriptions, and , thus, enable the ' information web' .

http:/AYww.example.orglstaflidl85740

1 http11w_.""'pIe.",,,,,,,,,,,,,,,,,,,

htlp:Jhvww.example.orgIadcIr88SIdI740

hIIP:/lwww.examPle.orgltermsJdY ~ttP:/lwww.examPle. orgltermsJpostaICode

Bedkfd 01730

htlp:/lwww.example.orgltermsJstreel http://www.example.orglterms/state

1501 GnlntAvenue

Figure 3.3: RDF graph example 2.

3.2.2 Annotation of Resources

In order to describe web resources with metadata expressed in RDF, it is necessary to link the metadata

to the respective web resource. RDF statements can be linked to web resources by use of the resource's

URL as the subject URI in statements about the resource. However, to enable software to di scover meta

data regarding a resource there is a requirement for the resource itself to contain , or indicate the location

of, thi s metadata. This ability to effectively combine RDF descriptions within the syntax of web pages is

an ongoing issue within the Semantic Web. Current proposals for the inclusion of metadata statements

in web resources include RDFa and GRDDL. RDFa4 is an approach to directly embed RDF statements

into XHTML5, by using exi sting HTML constructs and defining a number of HTML-compatable ex

tensions to specify RDF content. A specific aim of RDFa is to reuse ex isting HTML content, so that

4 www.w3.orgrrRlxhtml -rdfa-primer/
5www.w3.orgrrRlxhtmll!

48

the metadata does not repeat information already contained within the HTML tags . GRDDL (Gleaning

Resource Descriptions from Dialects of Languages)6 is a technique for obtaining RDF metadata from

XML documents and XHTML pages, by declaration of an XSLT transformation for the source XML.

This is intended to shift the workload from generating RDF directly to the generation of transformations

for specific XML dialects .

Prior to these developments, a variety of means have been used to connect metadata descriptions

to their resources. These include centralised knowledge-bases ensuring that any metadata about a re

source can be discovered in one place, annotation ontologies defining specific links between resources

and metadata statements, and separate indexing approaches that connect metadata and resources, and

interconnect them based on the metadata semantics. SERSE applies this latter approach to resource an-

notation .

~ j ~

~~=Plla~='----_~------------l
re".

o
Dall reprrse:ntcd In ~bstract forrmt

Data In Yafl OUS formatl

Figure 3.4: Semantic Web resource annotation.

Query.
ManipulaU!,

0«.

Map.
hpo~.

0«.

As stated in the introduction to this chapter, the Semantic Web is intended as an extension of the

current web. This implies that the Semantic Web will encompass the existing web content, upgrading

this content to Semantic Web standards. This upgrade is achieved by a process of annotation in which

6www.w3.orgrrRlgrddl

49

resources are analysed and suitable metadata generated to describe them. This can be performed as

an entirely manual process, where users hand-build the metadata based on their interpretation of the

resource. However, the sheer volume of resources available on the web renders this an impractical

approach. Recent work within the Semantic Web community has focus sed upon semi-automatic an

notation methods, whereby the metadata is generated automatically by software. This is achieved by

~sing techniques from information retrieval, information extraction, etc. to analyse the resource content,

and determine what this content means. The metadata is then generated based upon this analysis, by

reference to the available ontological definitions to select the most appropriate descriptive terms. This

general process of metadata annotation is shown in Figure 3.4.

3.3 Ontologies and OWL

The idea of ontologies as way to 'define' the meaning of terms has already been introduced in the previ

ous chapter in the contexts of agent communication and multi agent information systems. Development

of ontologies originated in the Knowledge Representation research field, and they were adopted as a

fundamental building block of the Semantic Web [72]. Ontologies are intended to capture the meaning

of terms through expression of their properties and inter-relations. The purpose of ontologies is to pro

vide reference points for vocabulary terms, so that independent software components can refer to the

same definitions, and so be certain that they are referring to precisely the same entities. The prototyp

ical ontology for knowledge representation on the Semantic Web consists of a taxonomy of terms, and

their properties, and an associated set of inference rules. The taxonomy enables the definition of classes

of entities, and the expression of sub-class relations among them. This approach to categorising and

inter-relating entities is a very powerful and natural means to. encode basic knowledge for software to

process [139].

The term ontology is taken from Philosophy, where it regards a systematic explanation of being [3].

More recently, the term has been co-opted by the knowledge representation engineering research com

munity. Early work in this context provide this definition: "an ontology defines the basic terms and

relations comprising the vocabulary of a topic area as well as the rules for combining terms and rela

tions to define extensions to the vocabulary" [112]. This descriptive definition identifies basic terms

and relations between terms, identifies rules to combine terms, and provides the definitions of such

terms and relations. Note that, according to this definition, an ontology includes not only the terms that

are explicitly defined in it, but also the knowledge that can be inferred from it. A later definition by

Gruber [67] became the most quoted, utilised and subsequently extended by the community - in this

50

work an ontology was charaterised as "an explicit specification of a conceptualization". One significant

modification was proposed by [17]: "Ontologies are defined as a formal specification of a shared con

ceptualization". These two overlapping definitions were then merged by Studer and colleagues [142] to

provide the now widely accepted general definition:

"An ontology is aformal, explicit specification of a shared conceptualisation."

The elements of this definition bear closer examination:

• Formal- an ontology should be rendered machine-readable by encoding it in a language that has

formally based semantics.

• Explicit - the types of concepts and the constraints on their use are explicitly defined within the

ontology.

• Shared - an ontology captures consensual knowledge that is not private to an individual, but is

shared by a group.

• Conceptualisation - an ontology represents an abstract model of some phenomenon that identifies

the relevant concepts of that phenomenon.

Further definitions in the knowledge representation research community highlight the relationship

between ontologies and knowledge bases, for example: "[An ontology] provides the means for describ

ing explicitly the conceptualization behind the knowledge represented in a knowledge base" [13]. Thus,

based on this definition, the same ontology can underlie any number of knowledge-bases. Furthermore,

an ontology can be extended by adding more specific sub-concepts of a defined term, or by adding

higher-level concepts that extend the domain over new areas. However, systems using the same ontolo

gies share the same underlying knowledge structure, and so any subsequent sharing or merging of their

knowledge-bases is supported by the ontology.

Due in part to the vagueness of such definitions, there is a wide range of representations that can be

considered to be ontologies [142]. The research community distinguishes two main classes of ontolo

gies:

• Lightweight ontologies - are mainly formed by taxonomic hierarchies, such as a web directory.

Lightweight ontologies include concepts, concept taxonomies, relationships between concepts,

. and properties and their values to describe concepts.

51

• Heavyweight ontologies - model the knowledge domain in more detail and provide more restric

tions on domain semantics. Heavyweight ontologies add axioms and constraints to lightweight

ontologies.

Although there are many definitions of the word "ontology" in the research literature, there is gen

eral consensus among the ontology and SW community. The various definitions described here provide

different and complementary points of view - some that are independent of the ontology construction

process and of the ontology's application, and others that are influenced by the development process.

However, given the wide-ranging purposes for ontologies, and their use in different research commu

nities, an new definition was proposed in order to encompass this broad purpose [157]: "An ontology

may take a variety of forms, but it will necessarily include a vocabulary of terms and some specification

of their meaning. This includes definitions and an indication of how concepts are inter-related which

collectively impose a structure on the domain and constrain the possible interpretations of terms." This

broad definition of an ontology provides an 'umbrella' description of these knowledge representation

constructs within a variety of research domains, including the Semantic Web.

The application of ontologies on the Semantic Web provides a means to represent what is meant by a

concept or a relationship between concepts. Ontologies allow these definitions to have URls, which are

referred to from the RDF metadata statements discussed earlier. Thus, different metadata statements can

refer to the same concepts and properties by use of the appropriate UR!. Not only does this support in

teroperation between software using these ontologies, it also supports reuse of the knowledge captured

in the ontological concept definitions. The expression of ontologies is not, in general, bound to any

particular formalism. However, as has previously been indicated, one of the key actions of the Seman

tic Web endeavour is to provide a degree of standardisation, particularly with regard to languages - to

enable widespread interoperation and reuse. Therefore, the W3C has proposed RDF Schema (RDFS?

and (most recently) the Web Ontology Language (OWL) [106] as the Semantic Web languages for the

representation of ontologies.

3.3.1 Components and Types of Ontologies

Ontologies formalize the knowledge within a conceptualisation of a domain by representing different

components - concepts, relations, functions, axioms and instances [67]:

• Concepts: A concept, also known as a class, represents the abstractions used to describe an object

in the conceptualisation; where a concept can be abstract or concrete, simple or complex, real

7 www.w3.orgfTRlrdf-schema!

52

or fictitious. Formally, a concept is described by a term (generally a symbol), an extension, and

an intension. The extension of a concept is the set of objects (i.e., instances) that the concept

can be applied to: for instance, the extension of Car includes: "the blue Porsche". On

the other hand, the intension of a concept is the set of properties, features, and attributes specify

ing the semantics of the concept - i.e., the set of features shared by these objects. For instance,

the intension of the concept Car includes the features: a road vehicle with engine,

and usually with four wheel s. Moreover, in the description of a concept we can also

use specific elements, such as: Metaclasses that are classes which have classes as their instances;

Slots / Attributes which belong to a specific concept, for instance, the attribute Age may belong

to the concept Person; Facets that allow the specification of an attribute; e.g., default value,

type, cardinality, operational definition. Concepts in an ontology are usually organized in a hier

archical taxonomy. Taxonomies are used to organize ontological knowledge in the domain using

generalization / specialization relationships through which simple and multiple inheritance can

be applied. The semantics of these relationships may be based on definitions of subclass of,

partitions, disjoint composition, etc.

• Relations: Relations represent different types of linkage among domain concepts. As with con

cepts, a relation is described by a term, an extension, and an intension. The extension of a relation

is the set of possible tuples of the instantiated relation. For example, the extension of the relation

Parent can include: "Peter and Diane are the parents of Ian". The intension

specifies the types of the concepts linked by the relation, e.g., the intension of the relation P a re n t

mayb~'~he raising of children, and all the responsibilities and

acti vities involved in it". Examples of binary relations are is-a and links to.

• Functions: Functions are a particular type of relation that are defined on the set of available

concepts and return a concept. For example, the function Pr ice-of-f lat is a function of the

concepts Size and Location.

• Axioms: Axioms are assertions that are always true and specify the semantics of the concepts.

They generally describe how the vocabulary (concepts and relations) can be used to reason over

the domain. They are included in an ontology as information constraints, correctness checks, or

knowledge inferences. In particular, they may express the type of relation between concepts, the

signature and the cardinality of a relation, algebraic properties of a relation (e.g., symmetry or

transitivity), and other conceptual properties, such as exclusivity, generality, or identity.

• Instances: The instances of concepts and relations are the elements of the domain - the actual

objects of the conceptualised world. The instances of a concept are also known as Individuals.

53

In some cases, ontologies can be also complemented by rules and procedures:

• Rules: Rules follow an if-then structure and are used to express a set of actions or heuristics

to represent decision making and business logic, and to facilitate enhanced representation and

reasoning capabilities. Rules play an integral role within the Semantic Web, and the rule layer is

intended to enable the deduction of knowledge and combination of information.

• Procedures. Procedures represent operational definitions to infer values of arguments, or to exe

cute formulas and rules. Procedures have been particularly used for problem solving methods and

task ontologies (see [110, 155] for details).

Depending on the representation language utilised and on the scope of an ontology, only a subset of

the components presented above may be used.

A number of different types of ontologies are presented in the literature, that can be classified along

different dimensions, which range from the level of generality of the concepts they describe, to the type

of knowledge they model (regarding the domain or the task). According to [68], ontologies can be

classified into four categories:

• Upper-level / top-level ontologies. Describe general-purpose concepts and their properties, such

as space, time, etc., which are independent of a particular problem or domain.

• Domain ontologies. Are used to model specific domains, such as medicine, engineering or

academia. The scope of these domains may vary widely, and is related to the intended appli

cation(s) of the ontology.

• Task ontologies. Describe general or domain-specific activities, such as diagnosis or sales.

• Application ontologies. Are instantiations of domain ontologies that relate to particular applica

tion requirements, and may be associated with application-related task ontologies.

An additional category of ontologies, which has not been covered by the classifications presented

so far, are the so-called meta-ontologies or (knowledge) representation ontologies. They describe the

primitives used to formalize knowledge in order to to conform with a specific representation paradigm.

Ontologies may also differ in the degree of formality by which the terms and their meanings are

expressed in the ontology. In [156], for example, the authors classify ontologies as:

• Highly informal: are ontologies expressed in natural language. Term definitions may be ambigu

ous, due to the inherent ambiguity of natural language.

54

• Semi-informal: are ontologies expressed in a restricted and structured form of natural language.

Restricting and structuring natural language achieves an improvement in clarity and a reduction

in ambiguity.

• Semi-formal: are ontologies expressed in formally defined artificial languages.

• Rigorously formal: are ontologies whose terms are precisely defined with formal semantics, the

orems, and proofs of desired properties, such as soundness and completeness.

A similar classification is given by McGuinness [105], who defines an "ontological continuum" that

specifies a total ordering between common types of models . This essentially divides ontologies (or

ontology-like structures) into informal and formal types, as follows:

• Informal models: are ordered in ascending order of their degree of formality - as controlled

vocabularies, glossaries, thesauri and informal taxonomies.

• Formal models: are ordered in the same manner, starting with formal taxonomies, which precisely

define the meaning of the specialization / generalization relationship. More formal models are de

rived by incrementally adding formal instances, properties / frames, value restrictions, general

logical constraints, disjointness, etc.

In the first category we usually encounter thesauri such as WordNet [108], taxonomies such as the

Open Directory8 and the ACM classification9, and various eCommerce standards [52]. Most of the on

tologies available on the Semantic Web can be localized at the lower end of the formal continuum (Le.,

as formal taxonomies), a category which coincides with the semi-formal level in the previous catego

rization.

3.3.2 Representing an Ontology

The definitions presented at the beginning of this section highlight the fact that ontologies are not bound

to any particular formalism, but focus on the aspect of sharing a conceptual model. However, a funda

mental requirement for this aspect is that ontologies are represented in some formal language, in order

that "detailed. accurate. consistent. sound and meaningful distinctions can be made" [72]. Ontologies

have typically been represented using frames (e.g., FLogic [88] and OKBC [25]), conceptual graphs,

first-order logic or description logics. Currently, the most dominant are the representation schemas

8http://www.dmoz.org
9http://www.acm.org

55

based on description logic languages, such as OWL [106]. We will begin with a short introduction to

Description Logics, and will use that as a foundation for the presentation of OWL, which is the current

W3C standard ontology language.

Description Logics (DLs) [7] are a family of logic-based Knowledge Representation (KR) for

malisms devised for the representation of and reasoning about the knowledge within an application

domain in a structured and unambiguous way. For such a purpose, DLs are equipped with a well

defined semantics, which provides each of its constructs with a precise logical meaning. DLs structure

the knowledge about a domain by defining the relevant atomic concepts and roles of the domain, and

then using these to specify the properties of objects and individuals occurring in that domain. A DL

provides a set of operators, called constructors, which allow the formation of complex concepts and

roles from atomic ones. Concepts are sets of individuals and roles are binary relationships between

individuals. For example, by applying the concept disjuncton constructor U on the atomic concepts

UndergraduateStudent and GraduateStudent, the set of all students can be represented by the following

complex concept:

U ndergraduateStudent U GraduateStudent

In addition to concept disjunction (U), the boolean concept constructors are concept conjunction (n), and

concept negation (-.). A Description Logic that provides, either implicitly or explicitly, all the boolean

operators is called propositionally closed. Moreover, DLs typically provide concept constructors that

use roles to form complex concepts. The basic constructors of this type are existential and universal

restriction operators, which represent restricted forms of quantification. For example, the following

concepts would describe all those researchers whose only affiliation is to a university, and all those

persons who have obtained at least one bachelors degree:

Researcher n Vaf filiatedWith.University

Person n 3hasDegreeBachelors

In a DL, a set of concept and role assertions constitute an ABox. Statements about how the concepts

and roles are related to each other are defined by terminological axioms. A set of terminological axioms

constitute a TBox. A TBox describes the structure of a conceptualisation in terms of classes (concepts)

and properties (roles). This means that in a DL, concepts are defined intensionally using descriptions

that specify what properties objects must have in order to belong to a certain class. In its simplest form,

a TBox consists of concept definitions, i.e., a restricted form of concept inclusion axioms: sentences of

the form Cl ~ C2 or Cl == C2, or C2 atomic, which describe necessary or necessary and sufficient

56

conditions, respectively, for individual members of Cl to be members of C2 . For example, the axiom:

Student [;:;; UndergraduateStudent U GraduateStudent

introduces the atomic concept Student, and states that a Student is necessarily either an Undergrad

uateStudent or a GraduateStudent, or both. However, TBox axioms can also be used to describe more

complex sentences. For example, the axiom:

'v'studiesAt.University [;:;; UndergraduateStudent U GraduateStudent

states that everybody studying at a university must be either an undergraduate or a graduate student, or

both.

An ABox consists of assertions about named individuals, using the concepts and roles defined in

the TBox, i.e., terminological axioms. Thus, an ABox contains axioms of the form C(a), called concept

assertions, and R(a, b), called role assertions - where a, b are object names, R is a role and C is a con

cept. For example, the axiom University(University of Liverpool) states that the University of Liverpool

is a university. On the other hand, a role assertion is used to state that two objects are related by a role.

For example, the axiom located/ne University of Liverpool, UK) states that the University of Liverpool

is located in the UK.

3.3.3 OWL

The Resource Description Framework Schema language provides a relatively simple language for repre

senting RDF vocabularies 10. RDF enables the specification of inter-relationships between resources, in

terms of named properties and values. However, RDF does not provide any means to declare such prop

erties, nor does it provide any method for defining relationships between properties and other resources.

RDFS fulfills the requirement for describing a taxonomy of concepts and their simple relationships and

properties. RDFS specifies a basic type-system for RDF, by providing the mechanisms to define classes

of resources, to define sub-class relations between them, and to restrict the application of properties to

certain classes. However, RDFS falls short of the full requirements of an ontology language for the

SW, by not providing sufficient expressivness to represent desired features, such as means to limit the

properties with respect to number and type, means to infer that the presence of certain properties implies

specific class membership, a well-defined model of property inheritance, etc.

The Web Ontology Language (OWL) [106] is the end result of the combined research efforts of

a number of projects investigating knowledge representation for the SW, and is now the World Wide

IOh~p;llwww.w3.org!fRlrdf"schemal

57

Web Consortium (W3C) standard for representing ontologies on the Semantic Web. The main ances

tors of OWL were the Ontology Inference Language (OIL) and the DARPA Agent Modeling Language

(DAML). Through the results of this prior research, OWL was based upon Description Logics (DLs), in

order to provide the formal basis for representation. OWL is layered on top of RDF, conforming to the

same underlying syntax, but extends RDF with an additional DL-based vocabulary for the specification

~f ontologies. This means that OWL ontologies can be encoded in RDFIXML documents, and parsed

into normal RDF graphs. However, it also means that the logic underlying OWL is somewhat different

from classical DL semantics.

OWL defines three sub-languages: OWL-lite, OWL DL, and OWL Full. These are intended to

provide differing level of functionality to different communities of users, which differ in the level of

expressivness offered by their underlying logic:

• OWL Lite - Represents the lowest level of OWL expressiveness. OWL Lite is intended to sup

port those users that mainly need a classification hierarchy, along with a reduced set of possible

constraints. The expressivness restrictions mean that tool support for OWL Lite should be simpler

than with the other variants, given its reduced formal complexity.

• OWL DL - Represents the 'normal' level of OWL expressiveness. OWL DL is intended to strike

a balance between expressivness and computability (in terms of completeness and decidability),

providing users with all of the OWL language constructs, but placing some restrictions on their

application to reduce them to DL complexity.

• OWL Full - Represents the highest level of expressiviness, and is beyond that of description

logic. OWL Full semantics are based on those of RDF, providing greater expressivness by im

posing fewer constraints than OWL DL, but at the cost of making OWL Full undecidable. OWL

Full enables the extension of the RDF and OWL language primitives themselves, reducing the

possiblity for tools to offer complete OWL Full reasoning support.

The semantics of OWL are defined using a standard model theory [106]. However, the theory is

somewhat complex, given the (partial) integration with RDF semantics. OWL DL semantics are largely

those of a 'normal' Description Logic - that is, an OWL interpretation has a domain that is a set of

abstract objects and datatype values 11. An ontology in OWL DL conforms to DL satisfiability (an on

tology 0 is satisfied by an interpretation I), but of greater significance for inference is entailment, as in

RDF. Inference in OWL is based on- ontology entailment - an ontology 01 entails 02 iff all interpre

tations satisfying 01 also satisfy 02. Inference in OWL is aligned with classical DL by the fact that

110WL datatypes are based upon a subset of the XML Schema datatypes.

58

entailment in OWL DL and OWL Lite can be reduced to checking for unsatisfiability in the respective

DL model [119].

The main modelling primitives provided by OWL DL - concepts and properties - can be simply

described as follows:

• Classes (Concepts) in OWL DL - A class defines a group of individuals that belong together

because they share some properties. There are two built-in classes: Thing is the class of all indi

viduals and is a superclass of all OWL classes, and Nothing is the class that has no instances and

is a subclass of all OWL classes. New classes are introduced with either complete or partial de

scriptions. Complete descriptions are introduced by axioms stating equivalence of classes, while

partial descriptions specify that a class is a subclass of another class. Furthermore, the oneOj

class axiom gives a complete definition by enumerating all individuals belonging to this class.

Additionally, classes can be specified to be disjoint with other classes. Classes can also be speci

fied via restrictions. Cardinality restrictions specify a lower or upper bound, or an exact number,

of properties that must be present. More precisely, this means that an individual belongs to such

a class if and only if the number of individuals that it is related to (via some property, which is a

binary relation) meets the specified bounds. The restrictions allValuesFrom and someValuesFrom

are stated on a property with respect to a class. The former meaning that this property on this

particular class has a local range restriction associated with it. The latter means that a particular

class may have a restriction on a property where at least one value for that property is of a certain

type .

• Properties (Roles) in OWL DL - Properties are used to state relationships between individuals

(object properties), or from individuals to data values (datatype properties). Property hierarchies

may be created by making one or more statements that a property is a subproperty of one or more

other properties. Both types of property can be restricted to a certain domain and range. A domain

of a property limits the individuals to which the property can be applied. The range of a property

limits the individuals that a property may have as its value. OWL DL also includes primitives

related to equality or inequality of properties. Equivalent properties relate one individual to the

same set of other individuals. There are also special identifiers used to provide information con

cerning properties and their values. A property may be stated to be the inverse of another property.

Properties may be stated to be transitive and/or symmetric. Moreover, properties may be stated

to be functional (i.e., have a unique value - shorthand for stating that the propertys minimum

cardinality is zero and its maximum cardinality is 1), or inverse functional (also referred to as an

unambiguous property).

59

'Clearly, OWL is not the final word on ontology languages for the Semantic Web.' [73]. A number of

useful features for a web ontology language had already been identified in the OWL Requirements [72]

and were never incorporated into the final language. These non-implemented features include enhanced

modularisation and import facilities, default inherited property values, flexible application of closed

world assumption reasoning, and an integrated rule-expression language. Furthermore, an number of

additional limitations have been observed in OWL:

• Ill-defined Layering - The main limitations of OWL are because of the problems of layering the

language on top of RDF, and the (politically defined) layering within OWL itself. Specifically,

OWL Lite does not meet its requirement to be an 'easy' language for knowledge representation,

that would aid wide adoption.

• Monolithic Ontoiogies - OWL ontologies can be viewed as being monolithic in the sense that

they are divided into a set of individual ontologies, but which have to be interpreted as one unified

ontology. This is due to the poorly defined import semantics of OWL, that only provides means

to include entire ontologies, rather than importing particular subsets of other ontologies.

• Datatyping - Datatyping in OWL remains weakly defined, and continues to be poorly aligned

with XML datatypes.

• Tractability - As has been widely reported [73], the language has unimpressive complexity re

sults for reasoning tasks. While several optimizations for the standard TBox problems are known,

which result in tractability of realistic TBox problems, the same degree of tractability has not yet

been achieved for ABox problems.

To address a number of these short-comings an update to the OWL language - OWL 1.1 [118] - was

proposed in 2006. This update adds features to the language in four main categories: syntactic sugar,

new Description Logic constructs, expanded data-type expressiveness, and meta-modeling constructs.

The syntactic sugar is intended to make commonly stated constructs easier to express, e.g. disjoint

unions, and negative property membership. The additional DL constructs include qualified cardinality

restrictions, local reflexivity restrictions, disjoint properties, and property chain inclusion axioms. The

expanded expressiveness in data-type handling relates to the ability to include user-defined data-types,

built upon XML Schema data-types.-Finally, the meta-modeling introduced is known as 'punning', and

allows a specified name to refer to any or all of an individual, class or property with that label.

60

3.4 Semantic Query Languages

In order to take advantage of large collections of RDF metadata, a method is required to effectively

query them, in order to extract specific values, check for the existence of statements, etc. In the RDF

Model and Syntax Specification I 2, that formally specifies a model-theoretic semantics for RDF, the

primary syntax is as a graph. This graph is (partially) labeled and directed, in which the node labels

are either URIs or data-type literals, and the arc labels are URIs. Constraints upon this graph syntax

include: no two nodes can have the same label, no two arcs between two nodes can have the same label.

An additional point is that nodes do not always need to be labeled with a URI - producing anonymous

nodes (also known as b-Nodes).

The proposed query model for RDF [94] is that the RDF query itself be expressed as an RDF model,

in which any of the nodes and arcs can be replaced by a variable. The result of such a query would be

formed by a sub-graph of the target knowledge-base that matches the query, and sets of valid values for

the specified variables. Further expressed intentions of a query model for RDF are that it leverages the

inferencing available from use of class and properties hierarchies, and that a query might specify if it

is to be executed against the original knowledge-base RDF graph or against a deductive closure of that

graph. This query model provides a basic level of Semantic Web querying, by using the RDF model

itself rather than applying any inference or interpretation over the higher-level language constructs.

A variable within an RDF query is from an anonymous node (an unlabeled 'blank' node) in an RDF

graph. Despite bNodes being considered as existentially bound variables in the model theory, they differ

from variables in query patterns in a number of ways:

1. The set of variables specified in a query is distinct from the set of bNodes in the queried graph.

2. Query variables can match with graph nodes, and so can be resource URIs, literals, or bNodes.

3. Query variables can also match with graph arcs, and so can be property URIs.

3.4.1 SQL. Type languages

There has been ongoing development of various semantic query languages, based on RDF graph match

ing and SQL-type syntax. The following descriptions of current semantic web query languages is not

intended to be an exhaustive listing, but rather an overview of the development and current state-of-the

art in this field.

12http://www.w3.orgffR/rdf-mtl

61

TRIPLE - The term Triple denotes both a query and rules language as well as the actual run time sys

tem [138]. The language is derived from F-Logic [88]. RDF triples (S,P,O) are represented as F-Logic

expressions S[P--+O], which can be nested. Triple does not distinguish between rules and queries, which

are simply headless rules, where the results are bindings of free variables in the query. Since the out

put is a table of variables and possible bindings, Triple does not fulfill the closure property. Similarly,

Triple is not safe in the sense that it allows unsafe rules such as FORALL X (X[rdfs:label--+"foo"] ~(

a[rdfs:label--+"foo"])@default:ln .. While Triple is adequate and closed for its own data model, the map

ping from RDF to Triple is not lossless. For example, anonymous RDF nodes are made explicit. Triple

is able to deal with several RDF models simultaneously, which are identified via a suffix model. Triple

does not encode a fixed RDF semantics. The desired semantics have to be specified as a set of rules

along with the query. Triple does not support datatypes, and updates to the fact base are also not possible.

SquishQL - SquishQL [109] adds to the baseline query model, introducing filter functions over the

variables, which restrict the values that the variables can take. These filter functions do not change the

expressive power of the graph pattern. The pattern language is formed from:

• Triple patterns, which describe one edge of the graph, allowing either a variable or an explicit

value for each of subject, predicate and object. In the syntax, variables are indicated by'?': the

most general pattern is (?x, ?y, ?z) which matches any triple.

• Graph patterns, which describe the graph shape, expressed as a collection of triple patterns. In the

syntax below, there is a list of triple patterns which are interpreted as the conjunction of the triple

patterns. This list is an edge-list of the graph pattern.

RDQL - RDQL was a previous W3C submission 13, now superceded by SparQL. The syntax of RDQL

follows a SQL-like select pattern, where a from clause is omitted. For example, Select ?p Where (?p,

(rdf s : label), "foo") collects all resources with label "foo" in the free variable p. The Select clause at

the beginning of the query allows projecting the variables. Namespace abbreviations can be defined in

a query via a separate "using" clause. RDF Schema information is not interpreted. Since the output is a

table of variables and possible bindings, RDQL does not fulfill the closure and orthogonality property.

In addition, RDQL is type-safe and offers preliminary support for datatypes.

SeRQL - The Sesame RDF Query Language (SeRQL) [20] is a querying and tranformation language

loosely based on several existing languages, most notably RQL, RDQL and N3. Its primary design

goals are unification of best practices from query language and delivering a light-weight yet expressive

13http://www.w3.orglSubmissionJ2004/SUBM-RDQL-20040109/

62

query language for RDF that addresses practical concerns. SeRQL syntax is similar to that of RQL

though modifications have been made to make the language easier to parse. Like RQL, SeRQL is based

on a formal interpretation of the RDF graph, but SeRQL's formal interpretation is based directly on the

RDF Model Theory. SeRQL supports generalized path expressions, boolean constraints and optional

matching, as well two basic filters: select-from-where and construct-from-where. The first returns the

familiar variable-binding/table result, the second returns a matching (optionally transformed) subgraph.

As such, SeRQL construct-from-where-queries fulfill the closure and orthogonality property and thus

allow composition of queries. SeRQL is not safe as it provides various recursive built-in functions.

SeRQL is implemented and available in the Sesame system. A number of querying features are still

missing from the current implementation. Most notable of these are functions for aggregation (mini

mum, maximum, average, count) and query nesting.

SparQL - SparQL now has the status of a W3C Candidate Recommendationl4 . SparQL was devel

oped on the basis of many of the previous query languages, and attempted to combine the best-practices

identified in the earlier languages. SparQL queries consist primarily of RDF triple patterns, along with

conjunctions and disjunctions, and additional optional patterns. Variables within a SparQL query are

denoted by a ? preceding the variable identifier. Execution of a SparQL query over a knowledge-base

will cause the query processor to seek to match the triple patterns expressed in the query with those in

the knowledge-base - binding the variables to the corresponding parts of each triple. As an example the

following SparQL query will select the names of all of the capital cites within Europe (given a suffi

ciently detailed geographical ontology and knowledge-base).

PREFIX geo: <http://example.com/geographyOntology>
SELECT ?capital
WHERE

?x
?x
?y

geo:cityName
geo:capitalOf
geo:inContinent

? capital
?y

geo:europe

The ability to express and process semantic queries is intended to enable a SparQL compliant query

processor to act as the hub of an ontology-based data-integration system (as shown in Figure 3.5, that

can draw information from a number of heterogeneous sources and then pass the result to a user-facing

application.

14http://www.w3.orgITRlrdf-sparql-query/

63

E]I • ~ lE]
Triple Store Database

SPARQ L

~ Engine ~ _

~ I \0 ~cYr.=
$ ~ il~l
~ ~ ~~

i 1" :: Relatio nal

RDF Data ~ ~ Da~,base

XHTML XML

Figure 3.5: SparQL underl ying a data integration system.

3.5 Semantic Heterogeneity and Matching

Ontologies provide the ability to define a vocabulary for a specific domain of knowledge, and thi s vocab

ul ary can be shared among those entities parti cipating in a task to provide an unambiguous definiti on of

the terms used in communication, etc. However, the Semantic Web explicitly anticipates an environment

in which there are many different ontologies, developed independently, whose domains of knowledge

overl ap. In this situation it is intended that the entities using the di fferent ontologies engage in a process

of mapping between the concepts and properties they define in order to establish those terms that refer

to the same real-world entities. This process should determine which concepts in the ontologies are

sufficiently similar to each other to be considered as being a reference to the same abstraction. The

generation of such ontology entity mappings forms the basis of ontology alignment, where a set of map

pings are generated to represent the similarities between all entiti es in the two ontologies involved.

In this section we first examine the underl ying causes of heterogeneity between ontologies, and then

describe the basis for determining similarity between them. We then go on to examine the various means

for assess ing ontological similarity, and examine the state-of-the-art approaches to ontology alignment.

64

Finally, we examine the techniques of semantic indexing, which often rely upon an evaluation of se

mantic similarity between index terms.

3.5.1 Semantic Heterogeneity

Ontologies are primarily intended to enable the formal encoding of a particular conceptualization of a

domain of knowledge. In general, an ontology is designed to represent the knowledge required for a

particular task or set of tasks, and it is these tasks that determine both the conceptualization and the

delimiting of the particular domain. Therefore, given the array of knowledge available for representa

tion and the huge number of possible tasks, it is inevitable that ontologies will overlap in terms of the

knowledge they represent. So, although ontologies enable the required knowledge representation, inde

pendently developed systems will, most likely, make use of different ontologies - developed to support

the tasks of a system. Indeed, differences often occur between independently developed ontologies even

when they regard the same (or similar) domains of knowledge [112, 163]. When ontologies are devel

oped independently they can differ in a number of ways with regard to the semantics they represent.

The forms that this semantic heterogeneity can take and the knowledge mismatches they can cause are

briefly discussed below.

The large volume of literature on the integration of heterogeneous information sources is sometimes

confusing regarding the kinds of heterogeneity and the mismatches that can arise, especially where the

knowledge engineering and data modelling fields meet. This makes it less easy to compare the different

approaches [149, 161]. An attempt to reconcile and compare the different definitions presented in the

literature and to find commonalities is given by Klein [90] and Chalupsky [24]. These works and that of

Visser and colleagues [163] form a starting point for reviewing the different types of heterogeneity that

might affect resources.

The importance of dealing with heterogeneity is that it causes mismatches that need at least to be

taken into account, if not reconciled, when manipulating this knowledge. We can broadly distinguish

between mismatches caused by non-semantic and semantic heterogeneity [89]. The former type of het

erogeneity is also known as syntactic or language heterogeneity in [90], while the latter is also called

ontology heterogeneity by Visser and colleagues [163]. Syntactic heterogeneity denotes the differences

in the language primitives that are used to specify ontologies, while semantic heterogeneity denotes

differences in the way the domain is conceptualised and modelled.

Syntactic heterogeneity occurs when resources and their underlying ontologies, that are written in

65

different ontology languages, are combined. In [90] and after [24] four types of mismatch due to lan

guage heterogeneity are recognised:

• Syntax: Different ontology languages are often characterised by different syntaxes. Differences

in the language syntax give rise to mismatches that can be resolved by means of rewrite rules.

• Logical representations: This kind of mismatch is caused by differences in the representation of

logical notions, and more precisely, differences in the language constructs that are used to express

something.

• Semantics of primitives: This is, to a certain extent, a more subtle kind of mismatch deriving from

non-semantic heterogeneity. Indeed, it is caused by differences in the semantics of the language

statements. These differences can be sometimes quite difficult to detect, since two languages can

use constructs with the same name, but slightly different interpretations, or sometimes the same

interpretation might be associated with constructs with different names.

• Language expressivity: Mismatches due to differences in the expressivity between two languages

are those which have the most impact on the problem of integrating/merging ontologies. Differ

ences in the expressive power of the languages imply that one language can express something

that the other language cannot express. For example, some languages support negation while oth

ers do not. A complete comparison of different ontology languages can be found in [30].

We have listed here the four types of syntactic heterogeneity, however, we should point out that mis

matches due to syntactic heterogeneity can be overcome by providing the means to translate ontologies

into different ontology languages in an automatic fashion. Facilities of this kind are offered by various

ontology editors such as Web Ode [4], which permits the editing of ontologies in a language independent

representation and their automatic translation at a later stage.

Mismatches caused by semantic heterogeneity occur when different ontological assumptions are

made about the same domain. This kind of mismatch also becomes evident when combining ontologies

which describe domains that partially overlap. In particular, mismatches due to ontology heterogeneity

can occur while conceptualising and/or explicating [163] the domain. Visser and colleagues use these

terms to refer to the definition of ontology given by Gruber [67] stating that 'an ontology is the explicit

specification of a conceptualisation'. That is, the process of designing an ontology is comprised of

two main stages, the conceptualisation of the domain and the subsequent explication of this conceptu

alisation, and the idea is that ontology heterogeneity can be introduced in both stages of the design [163].

66

Mismatches due to ontology heterogeneity can, therefore, be subdivided into conceptualisation and

explication mismatches. Conceptualisation mismatches are semantic differences arising from different

conceptualisations of the concepts and the relations between them in the ontology domain. Conceptual

isation mismatches can be caused by the following types of heterogeneity:

• Model coverage and granularity: This type of ontology heterogeneity occurs when different con

ceptualisations, and thus different ontologies, model the same part of domain differently both with

respect to model coverage and granularity.

• Scope: This mismatch occurs when two concepts or relations in the ontologies seem to be the

same but their extensions (that is the set of their instances) are not the same although they are not

disjoint. Relations mismatches also include mismatches concerning the assignment of attributes

to concepts, since those represent relations between conceptual entities [169].

Explication mismatches arise because of differences in the specification of the domain conceptu

alisation. During the conceptualisation phase the concepts describing the domain are selected. In the

explication phase these concepts are made explicit, usually by labelling each of them with a term (which

is one or more words in natural language) and associating a definition with each term, which could be

expressed in natural language or in a formal ontology language. We distinguish six types of mismatches,

in which the first three concern the modelling choices, the following two concern the choice of terms

that are used to label a concept in the ontology, whilst the last type of mismatch concerns the way in

which concepts are encoded:

• Representation paradigm: This type of mismatch depends on different representation paradigms

used to model the same domain. It can become apparent with concepts such as time, actions,

plans, causality, etc.

• Top-level concepts: Top-level concept mismatches arise because ontologies differ in the top-level

ontologies they refer to.

• Modelling conventions (Also known as concept description in [90]): Modelling convention mis

matches depend on modelling decisions made while designing the ontology. For instance, it is

often the case that an ontology designer has to decide whether to model a certain distinction by

introducing a separate class or by introducing a qualifying attribute relation [24, 58].

• Synonym terms: This type of mismatch is discussed in length in [163], where it is called term

mismatch. It occurs when the same concept, attribute, or relation is referred to by different terms

. and/or described by different definitions, which are semantically equivalent.

67

• Homonym terms: This type of mismatch occurs when a term can refer to different concepts

depending on the context. It is mainly due to the existence of homonyms in natural language,

such as the English word wood, which can mean a collection of trees or the material that forms

the main substance of the trunk and branches of a tree. Homonym terms can appear in different

ontologies concerning the same domain if these operationalise the term in different ways. For

example the concept Year might be described as a period of time divided into 12 months in two

different ontologies, 01 and 02. If the first ontology considers a month as a period of time of 30

days, whereas the second ontology considers a month as a period of time that can have a number

of days between 28 and 31, then the term Year in 01 is a homonym of the analogous term in 02 .

• Encoding: This is maybe the easiest mismatch to resolve. It occurs when different ontologies

encode values in different ways.

Heterogeneity, and especially ontology heterogeneity, can seriously hinder attempts to share and

reuse knowledge automatically. In fact, in order to recognise whether two concepts from heterogeneous

knowledge source are similar, we cannot only rely on the terms denoting them and on their descriptions,

and we need to have a full understanding of the concepts in order to decide whether they are semanti

cally related or not. However, the vision of the Semantic Web is that of open communication between

'knowledge-based' systems, using the ontologies to unambiguously identify the vocabulary terms used.

Therefore, some method is required to reconcile terms within heterogeneous ontologies that describe the

same real-world entities. Such reconciliation is based on a determination of semantic similarity between

ontology terms, based upon the issues described in the following sub-section.

3.5.2 Semantic Similarity

There is extensive literature on measuring similarity in general and on word similarity in particular. The

classic work by Tversky is based upon a psychological view of similarity, where similarity is treated

as a property characterized by human perception and intuition [152]. Several similarity measures or

semantic distance functions have been developed in Artificial Intelligence. Many of these have been

provided to evaluate similarity between simple objects, in which the objects are represented as vectors

of attribute values and similarity measures are defined in terms of those vectors [46]. More recently,

there has been some work, such as in the SODAS project [38], that deals with similarity between com

pleX objects [45]. However, these measures can only account for structural similarity, but can say very

little on the similarity in meaning, that is, similarity between concepts rather than objects.

68

Semantic similarity is a form of semantic relatedness using network representation, a p;oblem that

has received much attention in the artificial intelligence field [122, 29]. Rada et al. [123] suggest that

similarity in semantic networks can be assessed solely on the basis of the IS-A taxonomy, without con

sidering other types of links. One of the easiest way to evaluate semantic similarity in taxonomies is to

measure the distance between the nodes corresponding to the items being compared, that is the shorter

the path between the nodes, the more similar they are. This idea is the basis of some definitions of

dissimilarities defined for cluster analysis, namely ultrametrics, tree distances and strong Robinsonian

dissimilarities [46]. A hierarchical! tree distance characterises an additive tree, i.e., a tree T with n

vertices and n-l weighted edges. The dissimilarity dCa,b) is then reproduced as the sum of the weights

of all edges of the (unique) path connecting two given vertices Q: and f3 in T.

There are two principal problems with similarity measurements based upon evaluation of an IS-A

taxonomy:

1. It assumes that taxonomic links represent uniform distances, whereas in real taxonomies there is

typically a wide variation in the 'distance' covered by a single link.

2. It is based upon the assumption that the two concepts being compared have a common ancestor

within the taxonomy [150].

The first problem has been addressed in a number of ways, in particular by the use of weighted path

measures. The weighting calculation for each link can be based on many different factors, such as:

• the types oflinks present [143],

• the depth of a link in the taxonomy [143, 57],

• the density of concepts in the immediate neighbourhood of the link [57, 127].

The second problem limits the applicability of this sort of measure to those concepts that have an ances

tor that is common to both of them.

3.5.3 Ontology Alignment

Determining similarity between knowledge entities is usually referred to as a matching process, and the

majority of work in this area has been done within the fields of information integration using database

schemas, within XML schemas and web catalogs, and with knowledge representation using ontolo

gies £.136]. Many traditional applications based on structured data models utilise matching processes,

69

for example information integration, data warehousing, distributed query processing, etc. However,

these processes are usually based on an initial design-time matching. More recent application scenar

ios, such as web service integration, agent communication and peer-to-peer systems, are more dynamic

and require the ability to perform run-time matching - and this is usually achieved by use of a 'richer'

knowledge model [136].

In the context of the Semantic Web (SW), this knowledge model is provided by the ontologies,

and it is this model that is utilised when attempting to achieve accurate dynamic matching. The open

nature of the SW environment implies that there will be multiple ontologies available for any particular

domain, task, etc. among which interoperability is required, and so matching of ontology entities is

a core question for the Semantic Web [40]. In addition, due to both the dynamism of the SW, and the

number, size and complexity of available ontologies, it is essential that such matching systems operate in

an automatic (or at least semi-automatic) manner. Furthermore, in an open environment, no assumptions

can be made about the ontologies and their content, thus establishing entity matches cannot assume the

existence of common entities employed as points of reference between the ontologies. The matching

process that we are considering here is then based solely on the ontological information, that is, on the

entity features, and on the ontology structure. When discussing ontologies in a SW environment, the

product of a matching process is usually termed an ontology alignment. Such an alignment consists of

a set of mappings between the entities (concepts, properties, etc.) in the aligned ontologies. Formally,

following the definition in [136], an ontology alignment is defined as follows:

Definition Given two ontologies 0 and 0', an alignment between 0 and 0' is a set of correspondences

(or mappings). A correspondence is described as a 4-tuple: m = (e, e', n, r), where e and e' are the

entities (concepts, relations or individuals) between which a relation is asserted by the correspondence;

n is a numeric value expressing the degree of confidence in that correspondence; and r is the relation

(e.g., equivalence, more general, etc.) holding between e and e' asserted by the correspondence.

Therefore, ontology alignment systems utilise semantic similarity techniques to determine mappings

between ontology entitlies, primarily by exploiting knowledge encoded within the ontologies [136]. Due

to the consistent underlying semantics of ontologies, the modelled coherences are rendered interpretable,

and so further knowledge can be derived, such as the similarity of entities in different ontologies [40].

This knowledge about entity similarity is derived from the features and relationships of the entities un

der consideration, as described in the ontologies. A simple example of how this is achieved can be

seen when considering the labels assigned to ontological entities. These labels are a natural-language

description of the entities, and so it can be assumed that entities having the same label are highly likely

to be similar. This rule does not always hold true, but can be a strong indicator of similarity, and other

70

o Thing o Thing

o Employee -_-_-_- _=-_-+-+-_- _-_--<_ C
2:

0 Marketing

0 Computer

0 Optics

o Administration

cv Accounting

Worker

o Spain

c Salesforce

Headquaters

Ontology 01 Ontology 02

-- Al --- A2

Figure 3.6: Ontology alignment example.

constructs, such as subclass relations and type definitions can be interpreted similarly [41].

Following on from the descriptions and definitions of ontologies and similarity provided previously,

below we provide a formal definition of similarity for ontologies (adapted from [41)):

• 0 i : ontology 0 , with ontology index i E N - where N represents the set of all integers ..

• sim(x. y) : similarity function .

• eij : entities of V i , with eij E {Ci , ni , I i }, and entity index j E N. Where C, n, and I

respectively represent the concepts, relations and instances present in the ontology.

• sim(ei l j l , ei2j2) : similarity function between two entities ei ljl and ei2j2 (where i l i= i l).

The key question then remains how the function sim(eiljl, ei2j2. O i l, Od is computed.

In essence, aligning ontologies amounts to defining a pair-wise distance between entities (which

cannot be reduced to an equality predicate) , and often relies on computation of the 'best match' between

them, i.e. , the one that maximizes a similarity measure (or minimises a distance) between them. There

are many different ways to compute such a semantic similarity measure, as shown in the following

classification [136]:

• Terminological methods. These methods compare lexical information, and can be applied to

.labels, comments, etc. The comparison may be based on consideration of character strings alone,

71

by use of common substrings, etc., or may use some additional linguistic knowledge, such as

Wordnet [108].

• Internal structure methods. These methods calculate the similarity between entities by comparing

their internal structure, such as the value range of their properties (attributes and relations), their

cardinality, and their transitivity and/or symmetry. These internal structure based methods are

sometimes referred to as constraint based approaches in the literature [124].

• External structure methods. These methods compare the relationships between the entities under

consideration and other entities. This comparison is primarily based upon the relative position

of the entities within a hierarchy - if two entities (from different ontologies) are similar, their

ontological neighbours may also be similar in some respects.

• Extensional methods. These methods compare the known extensions of entities, that is the set of

other entities that may be attached to them (Le., instances of classes). In some applications (e.g.,

agent interactions or web service integration) no concept instances are given before alignment,

and so it is necessary to perform matching based only on the schema-level information [136].

• Semantic methods. These methods compare the interpretations, or more exactly the models, of the

entities. Examples of such comparisions may include use of subsumption or satisfiability tests,

which are well-studied reasoning tasks in description logics [6]. The main limitation of these

methods is that they can only be applied after a pre-processing phase in which a number of con

cept mappings are declared. Therefore, when no relations are known to exist between ontologies,

these techniques cannot be used to derive ontology mappings.

This classification demonstrates that ontology alignments can be derived using a variety of different

methods that based on different underlying research. Ontology alignment systems can operate using

different matching techniques, and differing combinations of these techniques. A number of represen

tative approaches for ontology alignment have been proposed in recent years.

Ontology Alignment Systems

Many existing systems utilise lexical matching and synonym sets using terminological taxonomies, such

as WordNet, and semantic neighbourhoods to compute semantic similarity, for example, SymOntos [57]

(developed during the 1ST project Harmonise) and OBSERVER [107]. Some approaches also use addi

tional information encoded into the ontology concepts, such as the mereology (part-whole relations) [57]

or typical and distinguishing features of concepts [139]. Several ontology alignment approaches have

72

been developed within the Semantic Web research area, some of which present features such as full

automation and efficiency that are particularly suitable for such an open environment. The following list

of ontology alignment systems and approaches is not intended to be an exhaustive review, but rather is

intended to briefly introduce some of the key existing systems, and to indicate the variety of techniques

employed in different situations:

NOM - NOM (Naive Ontology Mapping) [41] is the forerunner of the QOM system [40] described in

Section 3.5.4. These systems are primarily intended to allow for the ad-hoc mapping of large, light

weight ontologies. NOM is based on heuristically calculated similarity of the individual ontology enti

ties, using a set of specialised matching rules.

FOAM - Foam [42] is a successor to the QOM system [40], and uses the same approach to computing

similarity between entities.

Crosi - Crosi [84] is constructed a set of matching algorthims, that may be applied individually or in

combination to achieve ontology alignment. The selection of matchers used and the relative weighting

factor applied to the result of each matcher when combining results are set by the user on invocation of

the system. The matchers developed within the Crosi system include: string-based matching algorithms

that operate on the entity labels, structural matchers that compare entities positions in taxonomic hier

archies, and terminological matchers that make use of Wordnet to leverage synonyms, etc.

OLA - OLA (OWL Lite Aligner) [51] is intended for the alignment of ontologies expressed in OWL

lite. The matching process is designed to balance the contribution towards (dis-)similarity made by each

type of component that comprises an ontology. OLA determines semantic distances between entities

using matchers examining different ontology components. OLA uses all the available information (Le.,

lexical, internal and external structural, extensional, and data-types) extracted from the two given on

tologies. OLA then converts these distance measurements into a set of equations, and attempts to find

an ontology alignment that minimises the total distance between matched entities.

FalconAO - FalconAO [82] is an automatic tool for aligning ontologies that employs a combination

of two distinct matching approaches. The first is a linguistic matcher, called LMO, that utilises en

tity labels to generate intitial alignments. The output from LMO then forms the input to the second,

graph-based matcher, known as GMO, that then generates additional mappings based on the ontology

structure. Alignments are generated by the LMO and GMO according to the concept of reliability, which

is obtained by observing the linguistic and structural comparability of the two ontologies being aligned.

73

Anchor-PROMPT - Anchor-PROMPT [59] assesses both lexical and semantic matches exploiting

the content and structure of the source ontologies. Anchor-PROMPT is able to produce new concept

mappings by analyzing similar paths between a set of anchor matches, which have previously been

identified, either manually or automatically.

HICAL - HICAL (HIerarchical Concept ALignment system) [79] provides concept hierarchy man

agement for ontology alignment, enabling one concept in a concept hierarchy to align with a concept

in another concept hierarchy. HICAL uses a machine-learning approach for aligning multiple concept

hierarchies, and exploits the overlap in concept instances from the two taxonomies to infer mappings.

In addition, HICAL uses hierarchical categorization and syntactic information so that it can categorize

different terms as identifying the same concept.

COMA++ - COMA++ [43] is a customizable and generic tool for matching schemas and ontologies,

expressed in SQL, XML Schema and OWL. COMA++ provides a GUI to visualize ontology mod

els, and to manage the matching process and the mappings produced. It supports the combined use

of several matching algorithms, and different matching strategies can be applied. Of particular note

is the 'fragment-based' matching approach, which decomposes a large matching problem into smaller

problems, by reusing the results of previously applied matchers in subsequent matching algorithms. In

addition to addressing schema-based matching problems, COMA++ also enables the comparative eval

uation of the relative effectiveness of different matching algorithms and strategies.

This concludes the overview of the principle current approaches to achieving ontology alignment.

Interested readers are referred to [48] for a full coverage of the state of the art in this area. We now

turn to a detailed description of the previously mentioned successor to the NOM system - the Quick

Ontology Mapping (QOM) system - as many of the approaches utilised in QOM are re-used and / or

adapted for use within SERSE to perform determinations of semantic relatedness between concepts.

3.5.4 Quick Ontology Mapping

The Quick Ontology Mapping system (QOM) [40] was designed in order to find a balance between

the effectiveness (i.e., quality) and the efficiency of ontology mapping generation algorithms. In order

to present an efficient ontology mapping algorithm QOM optimizes its predecessor - the effective, but

inefficient Naive Ontology Mapping (NOM) approach - by adapting (or removing) the computation ally

74

expensive feature comparisons. Like many other state-of-the-art ontology mapping systems: QOM em

ploys a number of different comparisons over different features of the concept descriptions, and then

seeks to aggregate the results of these comparisons into a single similarity measure. Therefore, QOM

represents a system that provides a widely adopted general mapping approach that produces high quality

mappings, but with specific modifications for efficiency. These are precisely the features required for

the semantic similarity calculation within SERSE, making QOM a suitable basis for the design of this

function.

The basic ontology mapping procedure of QOM is that, given two ontologies 0 1 and O2, mapping

one ontology onto another means that for each entity (concept C, relation R, or instance J) in ontology

0 1, the system tries to find a corresponding entity, which has the same intended meaning, in ontol

ogy O2 • To compare two entities from two different ontologies, and to determine the degree to which

their intended meanings coincide, one considers their characteristics, i.e., their features. These fea

tures of ontological entities (of concepts, relations, instances) need to be extracted from the extensional

and intensional ontology definitions. Possible concept characteristics considered in QOM can include:

identifiers - strings with dedicated formats, such as URIs or RDF labels; RDFIS primitives - such as

properties or subclass relations; derived features - which constrain or extend simple RDFS primitives;

aggregated features - aggregating more than one simple RDFS primitive; OWL primitives - such as an

entity being the sameAs another entity; and domain specific features - which only apply to a certain

domain with a pre-defined shared ontology. See also [41] and [50] for an overview and classification of

possible ontological mapping features.

In order to compare the different features that can be obtained from concept descriptions, QOM

employs a number of different means of measurement. The following four similarity measures are used

to compare the features of ontological entities, at any particular iteration of the matching algorithm:

• Object Equality - is based on existing logical assertions - especially assertions from previous

iterations.

• Explicit Equality - checks whether a logical assertion already forces two entities to be equal.

• String Similarity - measures the similarity of two strings on a scale from 0 to 1 (cf. [103]), based

on Levenshteins edit distance [100].

• SimSet - to determine to what extent two sets of entities are similar. Multidimensional scaling

[32] measures how far two entities are from all other entities and assumes that if they have very

similar distances to all other entities, they must be very similar.

75

These results obtained from the use of these measures are all input to a similarity aggregation

method, in order to produce a single similarity measure. Similarities are aggregated by a function that

weights and sums the individual measures, and then normalises the result. The similarity aggregation

function is:

. (f) L~=l Wk 'adj(simk(e,J))
szmagg e, = "n TV:

L...k=l k

- where Wk is the weight for each individual similarity measure, which are assigned manually following

evaluation to maximise the f-measure results on a number of training-data ontologies. adj is a function

that transforms the original similarity values into a [0 - 1] range, providing comparable results between

measures.

From the individual similarity values between the ontology entities, the actual mappings are derived.

The basic idea is that each entity may only participate in one mapping and that mappings are assigned

based on a similarity threshold value t, and a greedy strategy that starts with the largest similarity values

first. Ties are broken arbitrarily by argmax(g,h), but with a deterministic strategy.

The ontology mapping process performed in QOM is based upon a canonical process model that

subsumes the vast majority of existing mapping approaches [40]. The steps of this process, and the

specific feature comparisons performed within QOM, are as follows:

1. Feature Engineering: Feature engineering transforms the initial representation of ontologies

into a format digestible for the similarity calculations. QOM exploits RDF triples, extracted

from RDFS definitions, that represent the ontological features, such as identifiers and language

primitives, which are detailed above.

2. Search Step Selection: The derivation of ontology mappings takes place in a search space of can

didate mappings. A major ingredient of run-time complexity is the number of candidate mapping

pairs which have to be compared to actually find the best mappings - so QOM uses heuristics

to lower the number of candidate mappings. The system makes use of ontological structures to

classify the candidate mappings into promising and less promising pairs. In particular, QOM em

ploys a dynamic programming approach [15], in which there are two main data structures. First,

there are candidate mappings which ought to be investigated, and, second, an agenda orders the

candidate mappings, discarding some of them entirely to gain efficiency.

76

3. Similarity Computation: The similarity between an entity of 0 1 and an entity of O2 is de

termined using a range of similarity functions. Each function is based on one of the available

ontological features, and employs a particular similarity measure. However, in order to optimize

QOM, the range of costly features have been restricted. In particular, QOM avoids the complete

pair-wise comparison of trees in favor of a (incomplete) top-down strategy. Some feature compar

isons were changed from features which point to complete inferred sets to features only retrieving

limited size direct sets.

4. Similarity Aggregation: 'In general, there may be several similarity values for a candidate pair

of entities e, f from two ontologies 0 1 and O2, e.g., one for the similarity of their labels and

one for the similarity of their relationship to other terms. These different similarity values for

one candidate pair must be aggregated into a single aggregated similarity value. QOM seeks to

emphasize high similarities and de-emphasize low similarities by weighting individual similarity

values with a sigmoid function, prior to summing of these modified values. The aggregation of

single methods is only performed once per candidate mapping and is therefore not critical for the

overall efficiency.

5. Interpretation: Similarity results are interpreted by two means. Firstly, a threshold value is used

to eliminate spurious similarity determinations, and, secondly, the mapping bijectivity is enforced

by favouring those mappings with the highest aggregate similarity scores.

6. Iteration: Several algorithms perform an iteration over the whole process in order to boots trap the

amount of structural knowledge. Iteration may stop when no new mappings are proposed. QOM

iterates to first find mappings based only on lexical knowledge, and then subsequently based on

knowledge structures. By performing the computation in several rounds, the algorithm can access

the previously computed pairs, and then use more sophisticated structural similarity measures.

The output returned from this process is a mapping table representing the relation map(01' O2) -

this defines the ontology mappings comprising the calculated ontology alignment. Due to the aim of

increasing mapping efficiency, achieved by limiting and adapting the most computation ally expensive

feature comparisons, QOM has lower run-time complexity than existing prominent approaches. The

complexity of QOM is of O(n . log(n)) - (where n is the number of the entities in the ontologies)

against 0(n2) for approaches that have similar effective outcomes. This focus upon efficiency, whilst

retaining the effective mapping functionality, made the QOM approach a promising starting point for

the development of the semantic relatedness determination required within the SERSE architecture.

77

3.5.5 Semantic Indexing

The purpose of an information retrieval (IR) system is to process files of records and requests for infor

mation, and identify and retrieve from the files certain records in response to requests. The retrieval of

particular records depends on the similarity between records and the queries, which in turn is measured

by comparing the values of certain attributes to records and information requests [132]. In order to be

able to compare the similarity between records (resources) and queries, both need to be represented in

a compatible way. Compatible representation makes it possible to automate the process of calculating

the relevance between queries and resources. The term indexing has been widely used to refer to the

process of building such representations. Indexing techniques have been developed in order to make

possible the identification of the information content of documents (be they text documents, hyperme

dia or multimedia ones).

In general, indexes permit the representation of knowledge about a domain in order to facilitate

access to information. It simply means pointing to or indicating the content, meaning, purpose and fea

tures of messages, texts and documents [1]. Traditional indexing is based on the assignment of semantic

labels or more formal typing to authored links [111]. Typically the indexing of a textual document is

obtained through the identification of a set of terms or keywords which characterise the document con

tent, that is, terms which describe the topics dealt with in the document. The terms included in this set

have not only to be representative of the topics covered in the documents, but they also need to be distin

guishing, in that they should make it possible to discriminate one document against the other documents

in the collection covering the same or similar topics.

Indexing systems can be categorised along three dimensions [160]:

• index terms are automatically derived or manually assigned;

• index terms belong to a controlled vocabulary or are uncontrolled;

• terms can be combined as ordered strings representing a single concept when indexing (pre

coordinated terms), e.g., Association of Computing Machinery (ACM)15, or must be post-coordi

nated on retrieval.

Information retrieval applications concerning textual documents use automatically generated free

text index terms (post-coordinated), which are weighted by the statistical frequency of terms in docu

ments and collections. On the other hand, distinguishing features of a semantic index are that semantic

relationships exist between controlled index terms, usually (but not necessarily) the result of manual

15 http://www.acm.org/

78

cataloguing. Semantically indexed hypermedia links are, by definition, computed corresponding to

Intensional-Retrievallinks [37]. This allows the possibility of flexible query-based navigation tools.

We will now concentrate on the first type of indexing in the list above, since it is the most commonly

used and can allow for all types of resources. Indexing can be either manual or automatic. The former

is based on human analysis whereas the latter depends on the use of some type of algorithm, typically

machine learning. A study by Anderson and Perez-Carballo [1] has compared the two approaches, tak

ing into consideration the different aspects of indexing and concluded that there is no real motivation to

prefer one approach over the other. However, there are some considerations concerning the domain, the

type of documents to index and on the number of documents available. Manual indexing can be rather

expensive to perform and it might become difficult to perform with very large collections of documents

such as those stored in digital libraries. Furthermore, it is not sufficiently flexible to support different

indexing strategies. On the other hand, automatic indexing is less expensive to perform and can easily

support different indexing strategies, but it might result in less precise indexing, since it is based on

some mathematical or statistical formulations and not on a real understanding of the semantics of the

terms used for the indexing.

3.6 Summary

This chapter has described a number of areas of research under the umbrella of Semantic Web technolo

gies, primarily knowledge representation and query languages, and semantic similarity and matching

approaches. Each of the research areas described have contributed different technologies, approaches

and techniques that can be used in the design and construction of a distributed system for semantic con

tent indexing, such as SERSE.

The basis ofthe entire Semantic Web effort is the development and use of 'standardised' knowledge

representation languages, so that encoded knowledge can be easily combined, re-used, etc. The aim

is to overcome the limitations of prior knowledge representation systems, that encoded knowledge in

differing ways that discouraged inter-operation and re-use of the knowledge. Therefore, a 'layer-cake'

of Semantic Web languages have been developed to provide suitable representations of a wide variety

of knowledge types. The basic language is RDF, allowing the specification of relationships between

entitites. The semantics of these relationships and entities are described in the next layer using OWL

to define ontologies of terms and properties, that are then instanciated in knowledge-bases. Further Se

mant!c Web languages provide means to query collections of RDF statements, attach RDF statements

79

to multimedia resources, express rules that operate over ontology definitions, and handle a wide variety

of knowledge representation and manipulation tasks. Widespread adoption of this set of languages and

their application to the vast store of implicit knowledge on the WWW has the potential to make avail

able exponentially more semantically annotated resources than any other knowledge representation and

storage system, thus making a clear case for the adoption of these languages within SERSE. Further

more, the rich expressivity and easy knowledge manipulation provided by the languages should aid the

complex use of knowledge required within the intended distributed semantic index.

A significant requirement of any knowledge indexing system that aims to operate using multiple, het

erogeneous ontologies is the ability to make connections between the terms and properties described in

the ontologies on the basis of the similarity (or other mode of connection) of their defined semantics. In

the Semantic Web context, this requirement for determining semantic similarity between defined terms

has been approached through the process of ontology alignment. The approach involves the determi

nation of pair-wise mappings between ontologically defined entities, by use of the respective properties

and relationships defined for each entity. Such mappings can be pre-computed and then stored in li

braries of mappings, or determined dynamically at point at which the degree of similarity is required.

Therefore, this Semantic Web approach to knowledge representation through multiple, heterogeneous

ontologies, and the means to semantically relate this separately defined knowledge, provide the means

for a system like SERSE to inter-connect distributed, topic-based indexes using the semantics of their

contents. More specifically, efficient ontology alignment systems like QOM provide a clear approach to

on-demand determination of semantic similarity between ontological entities, using only the ontology

definitions. Finally, the existing work on application of relevant semantic information to the indexing of

resources can be adapted to the large-scale Semantic Web domain, with the ontology entities acting as

the index terms.

80

Part 11

Scalable Search on the Semantic Web

81

~hapter 4

SERSE Design

In this chapter we present the conceptual and detailed design ofsERsE, beginning with functional and

non-functional requirements for the system - engendered by the intended functions and the system's

context within its encompassing Esperonto project. The chapter thenfocusses upon the system architec

ture and algorithms that enable it to perform its primary intended distributed semantic indexing task.

Section 4.1 presents the intended tasks of SERSE, with the overall context of the Esperonto project,

within which it was conceived. In section 4.2 we describe the design objectives of the system, and the

principles underlying the design approach. We then go on, in Section 4.3, to present the architecture of

SERSE's multiagent system, and detail the specialised roles and tasks of the agents within it. Finally,

Section 4.4 presents in detail the concept of semantic relatedness, and describes how this was applied

as a fundamental component within SERSE.

4.1 Purpose of SERSE

The intended purpose of SERSE was as a component of the Esperonto (IST-2001-34373) project archi

tecture. The overall project goal was to develop a suite of tools and techniques to 'provide a bridge

between the current web and the Semantic Web' [11]. The global architecture of the Esperonto project

deliverables is described in the following sub-section. The role of SERSE within this architecture was to

provide semantic indexing and retrieval semantically annotated resources. A fundamental intention was

that this semantic indexing system should be robust and scalable, in order to handle both the potential

volume of SW resources, and deal with the dynamic nature of the web in a fault-tolerant manner. In this

context, scalable refers to the ability of a system to adapt to increased demands!. For example, a scal

able network system would be one that can start with just a few nodes but can easily expand to thousands

of nodes - the distributed nature of the Domain Name System (DNS) allows it to work efficiently even

1 http://www.webopedia.com

82

when all hosts on the Internet are served, and so it is said to "scale well". Robust refers to a system that

does not break down easily or is not significantly adversely affected by a single application or compo

nent failure. Robustness can also refer to a system that holds up well under exceptional circumstances,

and is able to recover quickly from the effect of such circumstances. For example, an algorithm is robust

if it can continue to operate despite abnormalities in its input, calculations, etc. A further fundamental

intention for SERSE was that that this indexing system should leverage the semantics of the resource

metadata in order to aggregate resources over specific topic areas. The intended role and functions of

the 'semantic indexing and routing system' are fully described in Section 4.1.3.
. .

4.1.1 Esperonto Architecture

The objective of the Esperonto project was to provide a bridge between the current web and the Seman

tic Web (SW). In spite of the big advantages that the SW promises, its success or failure will - as with

the WWW - be determined to a large extent by the availability of content. Currently, there is very little

SW content available, since the infrastructure is still being developed (RDFS, OIL, DAML+OIL, OWL,

etc.). Apart from the infrastructure, researchers are currently building tools to support semantic annota

tion of web content. Such tools are important and critical to the success of the SW, but, in general, they

have two main limiting characteristics. Firstly, most of them annotate only static pages - they do not

consider' dynamic content (content generated from databases), known as the 'Deep Web', whose size

was estimated in March 2000 to be 400 to 550 times larger than the commonly defined World Wide Web

(more than one billion static web pages) [97]. Secondly, many of these tools only focus on the annota

tion of new web content, i.e., annotating web resources as they are constructed, rather than annotating

existing resources.

In light of these problems, the first objective of Esperonto was to construct a service that provides

content providers with tools and techniques to publish their (existing and new) content on the SW.

Once available on the SW, the content becomes accessible for software agents and other applications

like intelligent navigation, visualization, filtering, aggregation, etc. The service - called SEMantic

Annotation Service Provider (SemASP) - operates as an ASP (application service provider) with a

variety of services aimed at different users. These services include, but are not limited to:

• Manual annotation tools that users can employ to annotate static web documents.

• (Semi)-automatic annotation tools to annotate static, dynamic and multimedia content, as well as

web services.

• Ontology construction, selection, browsing, consistency checking and maintenance tools.

• . Ontology import and mapping tools.

83

• Multiple European language support.

The main innovation of the SEMantic Annotation Service Provider with respect to other ongQing SW

annotation efforts is that it not only considers static web pages, but also dynamically generated pages.

The service also includes multimedia content and multilingual capabilities, providing ontology-based

translation services. Besides constructing SemASP, other objectives of the Esperonto project included

the exploration and exploitation of innovative knowledge-based services built on top of the basic tech

nology of the SW. This included the semantic indexing and routing system, and innovative visualisation

techniques and user interfaces. The rationale for this overall architecture was to provide the SEMantic

Annotation Service Provider as a core set of services that covered the essential Semantic Web tasks

of ontology construction and maintenance, and resource annotation based upon ontological knowledge

models. The implementation of SemASP was further sub-divided into the two self-contained modules:

an ontology engineering platform; and a multimedia resource annotation service. The semantic index

ing and routing system and the knowledge model visualisation tools where conceptualised as a second

layer of functionality that layers on top of the core functionality of SemASP, utilising the products of

the ontology engineering and resource annotation modules to perform their own functions.

The technology was demonstrated in three case study pilot applications that use the output of the

semantic annotation process to provide innovative services and innovative uses of the SW content in

order to illustrate the added value of SW technology. The case study prototypes can be grouped into

two application areas:

• Semantic-based navigation - Innovative visualization techniques and user interfaces are em

ployed for SW navigation. These techniques for semantic-based navigation were applied to ex

isting content, annotated using SemASP. The resulting application offers a cultural tour through

Spanish art and literature.

• Semantic Web search - The semantic indexing and routing infrastructure (i.e. SERSE) enables

the automatic aggregation of information contained (and annotated) in distributed web resources,

and this enables new approaches for intelligent access, navigation, etc. The following pilot appli

cations have been developed on top of the semantic indexing and routing infrastructure:

- European Fund Finder for R&D. Aggregates information from varied web resources related

to funding for R&D in the European Union and specifically in Catalunya.

- Scientific Discovery. Computer assisted literature search for scientific knowledge discov

ery. Identifies interesting but previously unknown links between two concepts (for example

84

a chemical compound and a disease) by providing suggestive juxtapositions of scientific ar

ticles. It uses scientific papers in the bio-technology area as the source.

The five main components of the Esperonto system architecture can be seen in Figure 4.1:

• Ontology Server

• Annotation System

• Semantic Indexing

• Visualization

• Multilinguality

----- ---- ---- ----- ---- -1 - - - - - OntOiogy-SerVer- - - - - - : 1 Annotation Service 1

1 : 1
1 I: NL
1 1 Understanding
: ... I Certificate Mullilingualily_J

I Workbench Reenglneerlng I
I Maintenance MaDDina I : : r:\ r:\ r:\ r:\ :

1 ______ ----------- ______ 1 : ~ ~ ~ ~ :

[~~~~~~~~~~~~~~~~~~~: :- -J-----1-- --1-----J --J
W~;ld Wid; Web ---------------------t ----t- ---f ---f -----

Dynamic
Infonnation

Web Static
Server Information

Multimedia
Data

Provider Provider Provider provider

Figure 4.1: Esperonto architecture.

In more detail these five components of the Esperonto architecture can be described as follows:

85

Ontology Server - Ontologies provide the vocabulary and semantics for annotating Web content; this

is the basis for having machine-understandable content. In Esperonto there were two goals concerning

ontologies. Firstly, the construction of kernel ontologies to be used as upper level ontologies, as well

as domain ontologies for culture (art), funding organizations and biotechnology within the case studies.

Secondly, to provide a workbench along with methodological support for the activities of the ontology

development process, including learning, construction, evaluation, version control and evolution, align

ment, import and export, etc.

In the context of these requirements, an ontology server, named WebODE [4], was developed as a

scalable ontological engineering workbench that gives support to most of the ontology development and

management activities. WebODE also includes middleware services to aid in the integration of ontolo

gies into real-world applications, as well as rapid development tools for building ontology-based Web

portals (ODESeW [31]) and ontology-based knowledge management applications (ODEKM [31]). In

addition, WebODE has been created to provide technological support to Methontology [55], a method

ology for ontology construction. However, this does not prevent it from being used with other ontology

development methodologies, or using no methodological approach at all. In addition, the ontology

server was intended to provide the basis for ontology middleware services that allow the easy use and

integration of ontology-based technology into existing and future information systems, such as services

for ontology library administration and access, ontology upgrading, querying, metrics, etc.

In Esperonto the Ontology Server provides all the ontology management functions within the ar

chitecture. Specifically, it provides functions for ontology building (manually or semi-automatically

by processes of ontology learning), ontology selection, browsing, consistency checking, maintenance,

evolution, importation and mapping.

Annotation System - As described in the previous chapter, the resource annotation on the Semantic

Web takes existing content, either structured (e.g., databases), semi-structured (e.g., spreadsheets, dy

namically generated HTML pages) or unstructured (e.g., free text, static HTML pages), and provides as

output a semantic annotation of that content. The semantics are defined in ontologies, and the annota

tions provide pointers to these ontologies. Annotation can be performed in several ways, ranging from

completely manual, through tool-assisted to fully automatic. The type of annotation approach to be cho

sen depends on the degree of structure the content exhibits. More structure allows for more automation,

while maintaining the quality of the annotations. This diversity in annotation approaches leads to use of

different 'wrappers' to provide access to information sources of different types.

86

A wrapper is a software 'shell' around a source of information that makes its content accessible

regardless of its implementation details. That is, the wrapper is able to extract the information content,

manipulate it, and then make it available in a standardised form for use by another system. With the

growth of the web, wrappers are becoming increasingly important for accessing heterogeneous con

tent. In order to deal with the weak structure web content usually has, wrappers can rely on several

techniques, such as heuristics to guess where the necessary information resides, NLP for reducing the

ambiguities in the content, Information Retrieval techniques, etc. Wrappers can be constructed in var

ious ways ranging from manual programming to semi-automatic generation. The main problems of

wrappers reside in the fact that they are failure prone (simple layout changes of the sources cause prob

lems), and they are hard to validate and to maintain. Wrapper construction is usually considered the

main bottleneck. However, experience shows that source identification and wrapper maintenance are

equally time-consuming tasks [10].

Esperonto has developed wrapping generation technology for different types of sources and with

different degrees of automation. ODEMapster transforms database content into Semantic Web content

(Le., RDF annotated) according to the specified mappings. Knowledge Parser transforms less structured

content into Semantic Web content according to both the source description - provided by means of

a wrapping ontology - and to the evaluation of a set of ontology population hypothesis with the ex

tracted content. SeMMannot annotates multimedia files by means of the contextual information that can

be found close (and possibly attached) to them. ODESWS allows creating Semantic Web Services by

means of a user interface that relies on problem solving method modelling. Finally, Esperonto has also

created a supervised annotation tool for documents, which provides suggestions about the contents to

be annotated and allows users to validate those suggestions or create new annotations.

Semantic Indexing and Routing - This is the Esperonto component that has been implemented as the

SERSE system presented in this thesis. Semantic indexes are intended to group Semantic Web content

based on particular topics. This is a necessary step to enable applications to aggregate resources in

order to provide added value services. Semantic indexes are generated dynamically using ontological

information and annotated resources. Within Esperonto the semantic indexing and routing system is in

charge of indexing the static and dynamic Semantic Web content generated by the Annotation System,

or otherwise available on the Semantic Web.

For the coordination between semantic indexes, a peer-to-peer (P2P) architecture has been explored.

This ~rchitecture is based on the notion of peers of equal capabilities, each of them knowledgeable about

87

a 'fragment' of the Semantic Web, and each having an index to access the resources within that frag

ment. Naturally, the Semantic Web is composed of many of these fragments, and the idea of maintaining

a large index of the whole SW is clearly impractical. Therefore, there is a need to decentralise not only

the indexing mechanism, but also decentralise the search for indexed resources. Such decentralised or

ganisation is in the spirit of the original WWW.

Visualisation - Due to the massive amount of information and knowledge available to visualize, scal

able technology is required for visualising any semantic web content - without requiring manual design

and implementation of a specific interface. Three-dimensional and other visualisation techniques have

been developed to visualise the content of the semantic web, making a major step forward with respect

to traditional site maps that represent link structures. Furthermore, the same visualisation techniques

have been applied to the monitoring of the semantic indexing and routing system, showing the activa

tion of nodes and the exchanges of messages between them.

Multilinguality - Multilinguality plays a role at various levels in the project: ontologies, annotations

and interfaces. At the ontology level, ontology builders may want to use their native language for on

tology construction. Existing multilingual and linguistic resources, such as EuroWordnet2, have been

integrated into the ontology engineering platform (WebODE). The ontology editor gives support for the

translation of ontology terms to multiple languages (Spanish, English, and German) and its interface

is also available in those languages. Besides this, the platform also allows the storing and retrieving

of ontology terms in multiple languages. Manual annotation of content can be performed in various

languages, and users from different countries may want to access content in their native languages. The

project explored the possibility of (semi)-automatic multilingual annotation of content, basing the work

on experiences done with multilingual Information Extraction (lE). lE allows as a side effect of the

extraction procedure to provide for domain specific annotations of text corpora. We have generalized

this approach to extraction and annotation of content as such. At the user interface level, Esperonto has

explored the possibility of generating natural language texts in multiple languages from multilingual

ontologies.

Finally, the various primary components of the Esperonto system, Ontology Server, Annotation

System and Semantic Index, communicate with each other in a decoupled fashion through use of the

Notification Server. The Notification Server uses the Java Messaging Service3 to maintain a number

of publish and subscribe 'topics' that each relate to certain system events, and to which the system

components subscribe. System components announce events, such as ontology publication or content

2http://www.illc.uva.nllEuroWordNetl
3http://java.sun,comlproducts/jrns/

88

annotation, to the appropriate topic on the Notification Server. Components subscribing to a specific

topic will then receive all topic publications from the Notification Server. In this way, components can

publish their events without a priori knowledge of the interested recipients, and can receive publications

on topics of interest without any knowledge of how and where these publications are generated.

4.1.2 Non-functional Requirements for SERSE

Before moving on to describe in'detail the intended task of SERSE within the context of the Esperonto

project, there are a number of non-functional requirements resulting from this context. Firstly, SERSE

should integrate with the other software products of the project. That is, SERSE should make use of

the other Esperonto components to provide elements of the required functionality. The two primary

elements of required functionality are the provision of ontologies and the provision of semantically

annotated information resources. Therefore, SERSE is required to utilise the Ontology Server for the

provision of domain ontologies, and be capable of reacting appropriately to nofifications from the On

tology Server regarding the publication of new ontologies and regarding the modification of existing

ontologies. SERSE is also required to receive notifications from the annotation system regarding newly

available semantically annotated web resources, and to use this information to generate and populate

the distributed semantic index.

Secondly, SERSE is required to function as a Semantic Web application - using the standard Seman

tic Web knowledge representation languages of RDF, RDFS and OWL. Specifically SERSE is intended

to function as an RDF metadata index, that utilises the semantic knowledge encoded in the OWL entities

referenced in the RDF statements. Thirdly, SERSE is required by the aims of the Esperonto project to

pursue a distributed indexing approach. That is, the RDF metadata index maintained by SERSE is to be

sub-divided amongst a number of nodes within a network. The nodes that manage the index elements

should act in manner consistent with them 'knowing' which semantic sub-domains they are responsible

for. Furthermore, the organisation of the network of index nodes should make use of the underlying

semantics of the contents of the indexes.

Finally, SERSE is required to provide an end-user query interface that enables the submission of

queries to SERSE, and consequent display of the (semantically-annotated) resources that SERSE deter

mines to be a match for the query semantics. In addition, this user interface should seek to aid the

end-user in the construction of semantically-specified queries, whose underlying representation should

utilise a suitable Semantic Web query language. The external interface exposed by SERSE should be

able t~ accept queries from any external application, provided the query is submitted in a specified SW

89

query language. This end-user interface is one such external application, and the FundFinder business

funding search application and the Scientific Discovery biotech literature aggregation application case

studies within Esperonto are two others.

4.1.3 Intended Task of SERSE

In order to provide access to annotated web resources, this part of the Esperonto project was concerned

with exploring the creation of an infrastructure of semantic indexes and routers for the SW, following

a decentralised peer-to-peer (P2P) approach. This infrastructure was intended to enable the automatic

aggregation of information contained in semantically annotated web resources. The intended general

architecture of the semantic indexes and routers was:

1. The semantic indexes group SW content on particular topics. They are dynamically constructed

using the annotations contained in the web resources and the definitions in ontologies of the

annotation terms used. The indexes were envisioned as active agents that 'know' what topics they

can handle (Le., find content for) based upon the known ontologies.

2. Queries received by an index for a topic that is not handled by that index are then semantically

routed to a 'neighbour' index. In this context the closeness of a neighbour is a function of the

semantic relationships between the topics covered by a pair of indexes. Determination of the se

mantic distance between indexes is based on comparison of the terms defined in their ontologies,

and so addresses the issue of semantic heterogeneity between different ontologies. The compar

ison of these ontology terms utilises techniques for evaluating semantic similarity to identify the

neighbouring index that is best able to answer the query.

3. In order to operate within an open and dynamic environment such as the SW the indexes needed to

exist in a distributed, decentralised and scalable architecture. Peer-to-peer systems exhibit these

qualities [64] and were, therefore, seen as a useful paradigm on which to base the index infras

tructure.

In the above description it is indicated that the structure of the distributed semantic index should be

influenced by the peer-to-peer paradigm, as such systems provide good prospects for both distribution

and scalability. However, this does not conflict with the intention to design SERSE as a multi agent system

- a choice determined by the requirements of proactivity, knowledge-level behaviour and fault-tolerance

for the system. As described in Section 2.4 previously, multi agent systems and peer-to-peer systems can

be viewed as being compatible technologies. The design principles drawn from peer-to-peer approaches

and their integration into a multi agent system architecture are fully described in Section 4.2.1. Drawing

90

on these twin threads of multi agent systems and peer-to-peer systems, the basis of the intended semantic

indexing and routing system is of a network of agents, that are each responsible for indexing a subset

of the global knowledge of the system. Furthermore, the agents communicate with each other in order

to 'route' messages, either notifications of content or queries for content, around the network to those

agents best able to handle the message - based upon the semantics of the message content and the

knowledge handled by individual agents.

Therefore, within the tasks assigned to it as a part of the Esperonto system architecture, SERSE

presents four main use cases. The first, Ontology Publication use case, covers the receipt of notifica

tions of the publication of new ontologies and the incorporation of this new ontological knowledge into

the indexing system. The second, Ontology Update use case, covers receiving notifications of ontology

modifications, routing these to the appropriate agents and modifying both their content indexes and their

inter-connections with other system agents to reflect the change in ontological knowledge. The third,

Content Acquisition use case, covers receiving notifications of newly acquired semantic web content,

routing these notifications to the appropriate indexes and storing both the metadata annotations and the

pointers to these semantically annotated resources. The fourth, Answer Query use case, covers the

process of receiving a semantically specified query for semantic web content, semantically routing this

query to the appropriate agent(s) and re-aggregating the generated answer sets into a set of pointers to

web resources matching the original query.

1) Ontology Publication Use Case

Purpose: Receive an ontology publication notification from the Notification Server, and intialise the

ontological knowledge it contains within the indexing system.

Overview: SERSE receives an ontology publication notification message from the Notification Server

component of Esperonto. This ontology publication message then needs to be distributed throughout

the SERSE network for two key purposes. Firstly, the new ontological knowledge needs to be integrated

into the index network, by making the existing index agents in the system aware of the concepts avail

able in the new ontology. Secondly the new ontology needs to be made available for use in the user

interface, so that it can be used within the query generation process.

Course of events: Messages are generated by the Notification Server and sent to SERSE, via some suit

able asynchronous mess aging system, with the purpose of notifying SERSE about the publication of a

new o.ntology. The notification must first be distributed to each of the host systems that is hosting a

91

part of the distributed SERSE system. This may be achieved by a specialised component that is aware

of all host systems within SERSE, that receives all notifications and sends a copy of the notification to a

known contact point within each separately hosted fragment of the distributed index. Then upon each

of these separately hosted fragments of the index system, the notification needs to be used in two ways.

Each of the indexing agents on the host must be made aware of the availability of the entities within the

~ew ontology. This may be achieved by adding the ontology to a list of available ontologies, held in

an accessible point on each host, that the individual indexes then query to obtain the list. In addition,

each of the components within the SERSE system that provide a user interface need to be made aware of

the newly published ontology, thus allowing users to make use of the new ontology definitions within

queries for semantically annotated resources.

Exceptional flows: Exceptional flows would occur if the notification message is not received by one of

the host systems, or by the any of the intended recipients on any of those systems. Such exceptional

flows can be straightforwardly handled using a variety of available message management techniques.

2) Ontology Update Use Case

Purpose: Receive an ontology update notification from the Notification Server, and apply the updates

indicated within the message to the appropriate indexes within SERSE.

Overview: SERSE receives an ontology modification notification message from the Notification Server

component of Esperonto. The modifications to the ontology entities then need to be notified to the ap

propriate indexes with the SERSE distributed index. The appropriate indexes are those that index content

whose semantic annotations are directly affected by one or more of the notified ontology notifications.

Course of events: Messages are generated by the Notification Server and sent to SERSE, via some

suitable asynchronous messaging system, with the purpose of notifying SERSE about one or more mod

ifications to a previously published ontology. The notification must first be distributed to each of the

host systems that is hosting a part of the distributed SERSE system - which should be achieved by the

same means as in the previous use-case. The multiple ontology modifications within a notification mes

sage then need to be made available to each of the indexes on the host system that index content whose

semantics are affected by the modifications. The modifications to the ontology entities should then

be reflected within the SERSE index - changing, adding and deleting entity definitions - but without

discarding information indexed under the previous ontology definition. Such changes should then be

reflected in the topographical structure of the interconnections between the distributed indexes, driven

92

by the notified changes in the defined semantics of the ontological entities. Finally, each of the com

ponents within the SERSE system that provide a user interface need to be made aware of the ontology

modifications, so that the user interface is utilising up-to-date ontological information.

Exceptional flows: Exceptional flows would occur if the notification message is not received by one of

the host systems, or by the any of the intended recipients on any of those systems. Such exceptional

flows can be straightforwardly handled using a variety of available message management techniques.

3) Content Acquisition Use Case

Purpose: Receive a content acquisition notification from the Notification Server and incorporate this

information into the SERSE index.

Overview: SERSE receives a content acquisition notification message from the Notification Server com

ponent of Esperonto. The information about newly acquired semantically annotated resources then

needs to be notified to the appropriate indexes with the SERSE distributed index in order to incorporate

this new content into the global content index. The appropriate indexes are those that are specialised to

handle each of the ontology entities referred to in the notified resources semantic annotations.

Course of events: Messages are generated by the Notification Server and sent to SERSE, via some suit

able asynchronous messaging system, with the purpose of notifying SERSE about one or more online

resources that have been newly acquired (i.e. appropriately semantically annotated) by the Annotation

System component of Esperonto. The notification must first be distributed to each of the host systems

that is hosting a part of the distributed SERSE system - which should be achieved by the same means

as in the previous use-cases. The multiple annotated resources within a notification message then need

to be made available to each of the indexes (on each host system) that are specialised to handle the

ontology entities referred to in the semantic annotations attached to those resources. Once the message

is received by the indexes that handle the ontology entities referred to in the notification, they should

then update their content indexes by adding, deleting and modifying entries in the index, according to

the information contained to in the notification message. If the content acquisition notification relates

to an ontology entity that is not handled by any existing and operational index in the SERSE network,

the system should act in order to assign responsibility for the new entity to a (newly created or existing)

index within SERSE.

93

Exceptional flows: Exceptional flows would occur if the notification message is not received by one of

the host systems, or by the any of the intended recipients on any of those systems. Such exceptional

flows can be straightforwardly handled using a variety of available message management techniques.

4) Answer Query Use Case

Purpose: To pose a semantically specified query to SERSE which then generates a reply consisting of a

list of semantically annotated resources whose annotations match the constraints imposed by the terms

of the query.

Overview: The system receives a message from an external application that contains semantically spec

ified query for annotated resources. SERSE should respond to the query with a single reply, containing

pointers to all those resources indexed within the distributed system that are a match for the query. In

order to do this the query needs to be directed to the most suitable of the index fragments within SERSE

in order to answer the query. The most suitable indexes are those that contain resources whose metadata

annotations may be a match for the constraints expressed in the query. All resources returned from

the distributed indexes should be formed into single reply message, which is then sent to the external

application that posed the query.

Course of events: An external application generates a query for semantically annotated resources, and

submits this query in a suitable message format to an externally visible contact point within the SERSE

system. The query itself should be expressed expressed in a pre-defined semantic query language in

tended to operate over collections of semantic metadata, such as that indexed by SERSE. Once received

by SERSE the system should reply as if it were a single content index. That is, the distributed nature of

the resource index implementation should not affect which resources are contained in the generated re

ply. Therefore, the query must be directed to each of the indexes (on each of the host systems in SERSE)

that are specialised to handle the ontology entities, that are referred to in the semantic constraints ex-

. pressed within the query. Once the message is received by the indexes that handle the ontology entities

referred to in the query, they each should then retrieve the resources from their fragment of the global

content index that are a match for the query. All the resources returned from all of the queried indexes

should then be aggregated into a single reply message, and this aggregate reply is then returned to the

application that posed the query to SERSE.

Exceptional flows: Exceptional flows would occur if the notification message is not received by one of

the host systems, or by the any of the intended recipients on any of those systems. Such exceptional

94

flows can be straightforwardly handled using a variety of available message management techniques.

4.1.4 Functional Requirements for SERSE

On the basis of the non-functional requirements identified in Section 4.1.2 and the four primary use

cases detailed above, a number of key functional requirements can be identified, that are necessary for

SERSE to be able to fulfill its intended purpose:

1. Scalable network of limited-knowledge domain indexes - the basis of the indexing system is

to sub-divide the global resource index into a number of sub-indexes that are each responsible

for indexing resources falling within a limited domain of knowledge. The stated intention is to

implement each of the managing entities of the indexes as autonomous agents. Furthermore, each

of the agents will be linked to other agents, forming a network of index nodes. However, each

agent will only have knowledge of a sub-set of the other index agents, so that the number of

interconnections each agent has to maintain remains manageable - underlying the scalability of

the system. Finally, the inter-connections between the index agents should be on the basis of the

semantic 'closeness' of the respective limited domains of knowledge of the agents involved.

2. Inter-index communication - all of the agents in the index network are potentially able to commu

nicate with all other agents, but agents can only send messages directly to the sub-set of the other

index agents they 'know' about. This then leads to a requirement for messages to be 'routed' via

a number of index agents from their source to their target, potentially traversing the entire index

agent network.

3. Semantic similarity function - a key requirement of the system is to have a means to determine the

degree of semantic similarity between ontologically defined concepts. The degree of similarity

between concepts is need for both the formation of index inter-connections on the basis of their

semantic proximity, and for the index agents to determine which of other index agent they know

of is the most appropriate recipient of the semantics expressed in a message that is being routed

through the network.

4. Robust system-level functioning - the system as whole should be robust and fault-tolerant, that

is, able to continue system-level functioning despite the failure of any of the index agents, and

attempt to recover from any such failure. The sub-division of the global resource index between a

large number of index agents supports this aim, as temporary loss of a small fraction of the global

index will not significantly hinder overall system performance - only queries directly addressing

.the knowledge domain managed by the absent index agent will not be fully answered. The index

95

agents themselves can support the fault-tolerance of the system, through the ability to re-structure

their inter-connections when other index agents are absent.

Thus, drawing together these functional requirements, SERSE is designed as a multiagent system

composed of specialised agents capable of functioning in a scalable, self-managing, open, and dynamic

fashion. The core of the system is represented by a network of specialised agents providing indexing

and routing functionalites, that permit them to efficiently retrieve resources based on the semantics of

their content. Each agent is specialised with respect to a single concept, meaning that it can access

the resources whose annotations contain instances of that concept, and it is only aware of those agents

specialised with concepts that are semantically related to its own. The decision to base the system ar

chitecture upon one index agent being responsible for indexing a single concept was taken for a number

of reasons - the primary ones being:

• The sub-division of the global resource index has to be performed at some level of granularity.

An initial consideration was for individual indexes to aggregate over a number of very similar

concepts. However, the concepts handled by a single index would then have to vary as new

concepts became known to the system - meaning that the aggregate semantics of an index would

not be fixed. The end result of this would be that index agents would have to continually re

calculate their relative semantics and re-adjust their inter-connections appropriately. Selecting the

lowest possible sub-division granularity of one concept per index retains the possibility of concept

aggregation in the query process, whilst keeping the semantics of each agent, and thus their inter

connections, fixed (and not requiring computationally expensive continual re-adjustment).

• Reducing the granularity of the index sub-division to the single concept level has significant ben

efits to the semantic similarity function that the system requires. That is, the function can be built

upon the basis of a comparison of two individual concepts - whilst accounting for the semantics

provided by the respective ontological contexts. If a coarser granularity were selected, with an

individual agent managing more than one concept, the semantic similarity function would need to

be able to determine similarity between two sets of composite semantics. This would be far more

computation ally expensive, and would present significant semantic aggregation problems, when

compared to the single concept granularity function.

• Sub-dividing the index amongst the maximum possible number of index agents, without sub

dividing the metadata referencing a single concept, helps to support the system robustness. As

explained above, the more index agents hosting the system's knowledge, the smaller part of that

knowledge is lost by the failure of a single index agent. Furthermore, keeping individual in

dexes as small as possible (whilst keeping index inter-communication under control) supports the

96

scalability of the system, by enabling the indexing system to be distributed over as inany host

computers as there are concepts contained in the global index.

The inter-connections between semantically similar index concepts means that index agent network

is organised into semantic neighbourhoods that mirror the structures of the known ontologies (in terms

of the hierarchical and other specific relationships defined in these ontologies). That is, more formally,

if we consider an ontology as a directed, labelled graph G=(N,E), where N is a finite set of labelled

nodes, each corresponding to a concept in the ontology, and E is a finite set of labelled edges, then the

topology of the network of routers is determined by the structure of G (that is by the semantic relations

between the nodes), and there is a one to one correspondence between the nodes N and the set of agents

composing the nework A. For each agent in the network ai, following [69], we can define a function

knows ~ A x A, such that knows(ai' aj), if there is an edge ek between the concept nx of the agent ai,

and the concept ny of the agent aj, or, more informally, if there is a relationship linking nx to n y. The

function knows is symmetric, thus knows(ai' aj) = knows(aj, ai). The neighbourhood of an agent ai

is then given by the set Neighbourai = {aj E Alknows(ai, aj)}.

Neighbourhoods are partially overlapping, and this permits the routing mechanism to find the answer

to a query in a limited number of hops, without having to browse through all of the known ontologies and

without having to flood the network with a large number of messages (see explanation in Section 5.2).

Semantic neighbourhoods are automatically determined when the system receives a notification of new

ontological content - received as new concepts are used to annotate resources. The neighbourhoods

are not static but they dynamically change as the system is required to handle further notification of

new ontological content, or if an ontology is modified (and a new version of the ontology is used in the

annotation). In this way, we have multiple overlapping neighbourhoods, each centred on one concept,

and agents have knowledge only of the agents composing their neighbourhood.

Indexing ontological content consists of creating structures that link resources, identified through

their URLs, to RDF statements describing instances of the concepts in the ontologies. The routing func

tionality permits SERSE to route queries to the index agents that are specialised to retrieve resources

annotated with metadata that references particular concepts. SERSE handles queries expressed in RDQL

(see Section 3.4) on any combination of concepts and concepts' properties. Complex queries are de

composed into simple ones, that each query over a single concept. Each simple query is routed to one

of the agents in the network of routers, and the agent consults its index to determine whether it can

answer the query. If the agent cannot answer the query, then it routes the request to that agent within its

neigh~ourhood that handles the concept closest to the one in the query. This next agent then performs

97

the same task - answering the query if it is able, and if it cannot, routing it onto its neighbour (not

including the previous agent) handling the concept most closely related to the queried concept. This

process thus iteratively moves the message from neighbour to neighbour, with each step moving the

message semantically closer to its target.

This simple approach to the semantic routing process was later amended and elaborated, following

early evaluation of its functioning. When the network of index agents became sufficiently large (the

specific number being entirely dependent on the semantic granularity of the ontologies used) it became

possible for messages to become 'lost' in a section of the network that was significantly semantically

dissimilar from the message concept. The problem was that the agents became unable to determine

suitable neighbours to whom to route messages, as all their neighbours handled concepts that were not

at all semantically similar to the target concept. Clearly, the semantic similarity function could only

function when there was some degree of similarity to evaluate. When all available neighbouring con

cepts within five or more hops had no similarity with the message concept the message could not be

routed along a definite semantic direction across the agent network, and often began to 'wander aim

lessly'. Therefore, a decision was taken to adopt a two-tier semantic routing system whereby messages

would be initially routed, by specialised system elements, to the correct general semantic 'area' of the

index agent network. This approach draws upon P2P super-peer hybrid architectures - as described in

Section 2.4.

These specialised elements would, like the index agents, only have knowledge of a sub-set of the

index agent network (to support system scalability). The approach calls upon these elements, that offer

a 'portal' into different areas of the semantic network, to be linked to a set of 'significant points' within

the index agent network. Such 'significant points' could be selected on the basis of many index agent

features, such as number of neighbours, local network density, total message traffic, etc., but would need

to be fairly evenly distributed throughout the network to fulfill their 'portal' function. The selection of

which index agent (that is listed as a 'significant point') to route a message to is made, as with the other

index agents, by use of the semantic similarity function within SERSE. The detailed functioning of these

portal elements and the implemented 'significant point' selection criteria are described in Section 5.2.

SERSE evaluates similarity between concepts according to the method proposed in Ehrig and Staab's

Quick Ontology Mapping (QOM) approach [40]. However, the algorithm has been modified so that it

exhibits a task-specialised behaviour, implemented through heuristics, that provides a higher number

of potential matches for a given concept. Ehrig and Staab's approach is aimed at ontology mapping,

a process that can be taken off line and requires high precision in order to establish the correct map

pings. Semantic routing is different in nature: the evaluation of similarity should be sufficiently precise

98

to determine a new agent to whom the query can be routed, not necessarily the very best agent avail

able. In addition, semantic routing is a dynamic process executed on-line, and therefore it requires fast

computation in order to minimise the time spent by the user waiting for an answer to a query. The

semantic routing process and the algorithms underlying the semantic relatedness metric are described

in Section 4.4.

In addition to the main indexing and routing facilities, the system is also intended to be robust and

self-maintaining. SERSE uses autonomic computing techniques to preserve index knowledge and to

adjust the index connections ·when one or more indices within the system are unavailable. Autonomic

behaviour is also used to ensure the system remains operative in case of failure of one or more agent

or one platform. Section 4.2.3 describes the mechanisms used to implement autonomic behaviour in

SERSE.

4.2 Design Objectives

Utilising the desiderata for searching the Semantic Web, presented in Section 1.2, a number of required

features can be identified that SERSE should exhibit:

1. Decentralisation: Efficient navigation toward a specific topic depends on the ability to identify the

'right direction' in which to travel. A centralised approach would imply maintaining a directory of

all topics, acting as a centralised server for queries. However, this can prove too inefficient and cum

bersome for the SW [22]. An alternative is to have system components each with equal roles and the

capability to exchange knowledge and services directly with each other. Peer-to-peer technology such

as Edutella [113] or Morpheus4 is a possible answer to this quest for decentralisation. P2P systems

are networks of peers with equal roles and capabilities, and recently peer-based management systems

have been proposed, which exploit P2P technology for sharing and retrieving huge amounts of data [70].

2. Openness: Openness is inherent in both the syntactic and the Semantic Web. In the case of the SW,

openness is enhanced, because ubiquitous software components - from computers to mobile phones and

TVs - are involved in the process of using it [151].

3. Autonomy and social ability: P2P systems are usually comprised of simple data-storing systems, and

the sharing and retrieval of data is performed on the basis of a central directory, while communication

among peers simply relies on raw TCPIIP protocols. However, we require that our system components

4http://www.morpheus.com!

99

be able to interact with users and other peers, and decide which peer supervises the 'fragment of know 1-

edge' closest to their own one. This implies that our components must exhibit autonomy and social

ability: characteristic features of multi-agent systems [170].

4. Scalability: As with the Internet itself, the SW is expected to grow exponentially [151]. Scalability

is thus critical: the system must adapt flexibly and dynamically to the highly dynamic nature of the SW.

This implies that the system must be able to incorporate and integrate new knowledge as it becomes

available.

5. Semantic based content retrieval: Content retrieval can exploit the ontology-based annotation of the

SW. System components must exhibit the ability to understand and process ontological descriptions.

When knowledge is factored into fragments, navigation is determined by means of the ontological de

scriptions of the concepts to search. Semantics is used to establish the right path to a neighbourhood, by

evaluating the relatedness between concepts (as described in Section 4.4).

A key issue when searching annotated content in such an architecture is to determine the approx

imate size of a neighbourhood. This has implications for the topology of the network of peers - in

particular, on the level of centralisation - and on the overlay networks, on the performance of the sys

tem, and on scalability. There is clearly a spectrum, where at one extreme a small neighbourhood means

a search component has only knowledge local to few concepts of the ontology(ies), and at the other

extreme, there is global knowledge (every search component has knowledge of the whole ontology or

ontologies used to annotate the instances to search). Local knowledge favours a purely decentralised

approach, but gives little help in determining the right message routing direction, while global knowl

edge creates a single point of failure that affects the performance of the system [133].

In the following three sub-sections we will examine in further detail the way in which the design of

SERSE seeks to address the objectives of scalability, semantic-based information retrieval, and system

robustness.

4.2.1 Scalability

Scalability is a fundamental feature of the design of SERSE, intended to enable the system to handle

both the size and growth of the Semantic Web, and the dynamic nature of the information contained

within it. As indicated earlier, a potential system architecture that would support such scalability is

. that of peer-to-peer (P2P). Within the SERSE design the P2P architecture adopted represents a hybrid

between super-peer indexing and individual peer indexing - the index agents represent the individual

100

nodes within the P2P network, and these agents handle and maintain the index of content - see the

description of RouterAgents in Section 4.3 below. The super-peers are utilised to enhance the ef

ficiency and effectiveness of the semantic message routing process between peers by providing direct

access into different semantic neighbourhoods (clusters of related terms) within the P2P network - see

the description of PortalAgent s in Section 4.3 below.

In the design of SERSE the concept of routing indexes has been adapted to enable the index agents

to manage their 'semantic neighbourhoods'. Each of the index agents has a routing index that contains

information about those other index agents that manage concepts that are 'closely related' to its own

concept. However, this routing index describes only immediate neighbours and does not include in

formation from 'over the horizon'. This is because of the different organisation of the information by

the peers within the system. Within the system proposed in [33], different peers can index documents

belonging to the same topic, and so the routing index enables a peer to determine which of its neigh

bours leads towards other peers that index higher number of documents within a topic. In SERSE each

of the index agents provides indexing information for a specified topic, and does not index resources

that do not pertain to that topic. Furthermore, each index agent's assigned topic is unique within the

system, so a search for a specific topic within the system is a search for a specific index agent5• Finally,

the semantic message routing process within SERSE enables the index agents to determine the 'best'

routing direction by indicating to what extent neighbours' topics are related to that in the message by

use of the 'relatedness metric'. This allows the index agents to determine a direction based upon which

of its neighbours' topics are 'closest' to the topic sought. The semantic relatedness metric is based upon

well established ontology alignment techniques, and is described in detail in Section 4.4.

The application of Semantic Overlay Networks to the intended muItiagent indexing and routing

system again required some adaptation. In the system described in [34], individual peers can have het

erogeneous content, and content for a single topic can be spread over many nodes. Conversely, in SERSE

individual agents (nodes) within the system contain homogeneous content - referring to a single topic

only. Therefore, SONs of the type described are not required, as each 'bucket' would contain only a

single node, and, furthermore, in our case the classification hierarchy is already determined by the on

tological relationships and cannot be adapted to 'fit' the criteria proposed. However, the idea of SONs

remains applicable to our design, as the interconnections between the indexing agents are determined

on the basis of semantically defined relationships in the underlying ontologies. So, these onto logically

based interconnections themselves represent a type of Semantic Overlay Network - connecting nodes

with 'closely related' topics, and enabling messages to move between nodes on the basis of the semantic

5 Can be seen as conflicting with the need for fault tolerance, but this is addressed by the autonomic system features described
in Section 4.2.3

101

interconnections.

The application of these peer-to-peer approaches to our system, and their adaptation to the partic

ular requirements of it, form the scalable basis of SERSE. This distributed organisation of the index

knowledge, with individual agents being responsible for a specified sub-set of the system knowledge,

, provides a means to extend the system simply by the addition of agents to handle new areas of knowl

edge. Furthermore, the sub-division of the agent network into semantic neighbourhoods means that any

additions to the system can be incorporated into the semantic overlay network on a 'local' basis, only

requiring action from those agents identified as semantic neighbours of the new agent. Thus, the overall

indexing system is distributed over a number of nodes, that themselves may be distributed over multiple

host machines, and communication in the system only occurs on a point-to-point basis - underlying the

scalability of the system as a whole, as demonstrated by Experiments 2 and 3 in Chapter 6.

4.2.2 Semantics-Based Resource Retrieval

As a Semantic Web application, SERSE is intended to utilise and leverage the knowledge encoded into

the ontologies, annotations and queries to retrieve web resources. This is achieved in two main ways:

1. Firstly, the ontological definitions are utilised to generate the interconnections between the index

ing agents, and to determine how messages are moved around the network in order to locate the

index agent most suitable to answer a query.

2. Secondly, the queries within the system are 'semantically specified'. That is, the queries are

encoded in RDQL and specify which resources are to be matched on the basis of the metadata

annotations attached to them. Thus, once a query has been routed to the appropriate index agent,

it is semantically matched against the the RDF knowledge base maintained by that index agent

to identify which metadata annotations match the metadata template defined in the query. Once

the metadata annotations have been identified the index agent then consults its content index to

determine the URLs of those resources annotated which the identified metadata. The reply to the

query is formed the by the URLs of this set of resources.

These twin approaches of semantic message routing within the agent network, coupled with seman

tic query answering by the individual agents, enables SERSE to retrieve resources purely on the basis of

. the semantics of their annotations.

102

4.2.3 Robustness

The muItiagent system approach to indexing Semantic Web content is intended to be more robust than

a centralised system. This implies that the system will continue to operate when existing index agents

become unavailable - either through an individual agent developing a fault, a network communication

error, or through one of the platforms hosting a part of the index system being shut-down. This will

require the agents to have a number of behaviours that prevent the agent network as a whole being

adversely affected by the state of any of its individual components. SERSE has been designed to au

tonomously react to both normal and exceptional events, such as the notification of a new ontology, or

the failure of an indexing agent. This behaviour is motivated by the need to have a system that operates

in an open and dynamic environment, such as the Semantic Web, and so must be scalable, robust, and

require limited human intervention for its functioning. For this reason, SERSE has been designed as a

multi-agent system in which agents can join and leave the network without any need to take (any part

of) the system off-line, and without degrading the performance of the system as a whole.

Autonomic computing is an emerging branch of software engineering that advocates the design and

implementation of self-managing systems, consisting of several interacting, autonomous components

that in turn comprise large numbers of interacting, autonomous, self-governing components at the next

level down [86]. Agents provide a ready vehicle for such techniques, in that they are already charac

terised as autonomous and self-governing, and are able to exhibit proactive behaviour to achieve the

type of individual and cooperative self-management envisioned in autonomic systems. Autonomic be

haviour in SERSE supervises two main functionalities: dynamic management of the network of index

agents, and management of failures within the network. Index agent management primarily consists

of on-demand creation of index agents, and pro-active maintenance of the neighbourhood connections

between them. This management is designed to handle the construction of the index agent network from

the initial notification of the first available ontology - building the system from scratch. Failure manage

ment consists of enabling the system to continue to operate despite the temporary or permanent loss of

index agents, or even whole index agent platforms, from an existing network. Such failure management

includes equipping the agents with the abilities to recover from failure to a previously saved state, thus

prevent loss of indexing data held at each agent. Several autonomic systems mechanisms provide this

dynamic management within SERSE:

Agent network creation: The creation of index agents and population of the agent network is triggered

by the notification of new ontologies (in the case of ontology root concepts), and of annotated resources

(when these regard a concept not previously known to the system). On receipt of a notification regard

ing publication of a new annotation ontology, the root concept(s) of the ontology are determined and a

103

creation request message is generated for each of these concepts, and is then sent to the platform man

agement agent, that in turn, creates a index agent for each root concept. On receipt of a notification

regarding a concept for which an index agent has not yet been created, the message will be semantically

routed though the network until it reaches the 'closest' existing index agent for the message concept.

This index agent will determine from its routing index that the index agent for the sought concept does

not exist, and will then send a creation request message to the platform management agent for that con

cept. The platform management agent creates a new index agent for the concept, populating its content

index with the content ofthe original notification message. Each of the index agents that handle concepts

neighbouring this new one will then be contacted by the new agent, that has autonomously determined

its appropriate semantic neighbourhood, and they will then update their routing indexes with this new

neighbourhood knowledge.

Heartbeat monitor: A heartbeat monitor in an autonomic system is intended to enable components to

know when associated components are available for communication. This is achieved by components

periodically sending 'ping' messages to each other in order to determine their state. However, rather

than having a dedicated heartbeat message system in place, which would impose a high message trans

port cost on the agent system, the existing system messages are used by the index agents to monitor the

state of neighbouring agents. The monitoring is performed by maintaining a field in the routing index

table that records the recent message transmission success history for each of the neighbours. In the

situation where messages have not been attempted between two neighbours for a specified time period,

a specific heartbeat message is employed to determine the neighbour's state - in this way the heartbeat

monitoring is achieved by the normal system messages where possible, and falls back on a periodic

heartbeat message when required. When messages are not received successfully the neighbour's routing

index entry is first set to a warning level, and if failure continues for a short time the entry is marked as

unavailable. The neighbour will become available again if a message is received from it within a spec

ified time period. Once a neighbour has been un-contactable for this specified period, it is considered

to be permanently unavailable, and the index agent(s) neighbouring this agent then update their routing

indexes accordingly.

Shutdown procedure: Individual index agents within the network may be shut-down by the Agent Man

agement System (AMS) of the platform hosting the agent, due to an internal error with that agent. If

agent shutdown is instructed by the AMS, the index agent then performs a controlled shutdown proce

dure. In this procedure the index agent first backs up its index knowledge to permanent storage - saving

. all knowledge in both the content and routing indexes. The agent then sends a set of messages, one

to each of its neighbours, informing them of its shutdown and subsequent unavailability. This enables

104

the neighbours to adapt their neighbourhood connections to reflect the loss of this agent6• A further

shutdown message is sent to the platform management agent within SERSE, notifying the shutdown and

providing a reference to the saved state of the index agent concerned. The platform management agent

will the create a new index agent to handle the knowledge fragment managed by the expired agent -

passing in the saved state knowledge to intialise the new index agent (effectively restoring the original

agent). It may also be the case that an entire agent platform hosting a part of the SERSE system is sub

ject to a controlled shut-down, due, for example, to system maintenance or the host machine failing. In

this case all the index agents on the platform perform the controlled shut-down procedure, saving their

knowledge and informing their neighbours (though with platform shut-down, the agents only send these

messages to those neighbours on different platforms). Recovery from platform shut-down is initially a

manual process to re-boot the platform itself and restart the SERSE platform management agent. How

ever, once started the platform management agent will detect the saved-states of the index agents and

restore these agents on the platform.

Index backup and recovery: Index agents periodically save their content and routing index knowledge

into backup storage, which enables the recovery of knowledge following failure of the agent or of its

platform. The location of this back-up file is shared by all agents on anyone agent platform, and is

pre-defined for each computer system hosting an agent platform forming part of SERSE. The actual

location is specified at the point of manual initiation of each platform, so that a suitable location can

be chosen dependent on the configuration of each hardware and software environment. The period of

the back-up can be adjusted to suit the system usage, size of agents' indexes, available backup storage,

etc .. Each successive back-up overwrites the previously saved state, though it would also be possible

to enable the storage of mUltiple previous states. This behaviour operates in the same way as with the

controlled shutdown procedure, and recovery from either individual agent or platform failure is also

managed by the platform management agent. The behaviours differ in that the controlled shut-down

triggers an immediate backup, ensuring no index knowledge is lost, whereas in this case the re-created

index agent(s) will have a older saved state restored. Therefore, in case of uncontrolled failure and

shutdown of part of the system, some index knowledge may be lost due to unrecorded updates.

4.3 SERSE Architecture

The requirements and goals identified previously have motivated the design of the semantic indexing

and routing system. SERSE is implemented as a multi-agent system, whose index I router agents share a

core of equal capabilities and responsibilities, and which are capable of retrieving web resources based

6Non-reciept of such messages simply means agents are not warned of the unavailability, but are still able to handle it through
the heartbeat message system previously described

105

on the semantics of their annotations. The system is internally organised in a peer-to-peer fashion: each

agent can communicate with its immediate neighbours, and the neighbourhood population and size is

determined by the semantic proximity between the concepts known to the agents. No agent can broad

cast messages to the whole system, and no agent has global knowledge of the network: this ensures

decentralisation.

SERSE was implemented using JADE [9], a FIPA-compliant middleware platform. JADE is used to

handle the transport aspects of agent communication: our implementation builds on JADE to provide

a semantic overlay network, i.e., the logical organisation of the agents in a network of peers, which

is based on the notion of semantic neighbourhood. Agents in SERSE have knowledge of a number of

concepts forming the ontologies, that are expressed in OWL and stored in some ontology server. Agents

have the ability to send FIPA messages to the agents belonging to their immediate semantic neighbour

hood. Although limited, these 'social abilities' permit the agents to autonomously and dynamically

determine the most appropriate index agent, i.e., the agent that can retrieve instances of a concept that

is identical or semantically closest to the queried concept, and to route them an unanswered query.

4.3.1 Multi-platform Approach

SERSE'S ability to retrieve annotated content is based on distributed index structures and semantic rout

ing mechanisms. These functionalites are provided by a network of specialised indexing agents that

allow the system to efficiently retrieve resources based on the semantics of their content. Semantic rout

ing of messages between the agents permits SERSE to route queries through the network to the most

appropriate agents, i.e., those that are capable of retrieving the resources annotated with instances of the

concepts used in the query. Figure 4.2 illustrates the different roles played by the agents in SERSE and

the primary message flows within the system.

Scalability of the indexing system is achieved through distribution: SERSE is designed to be dis

tributed over a number of JADE agent platforms, on different host machines, with each platform con

taining part of the network of index agents and its own set of interface agents. This enables the system

to operate even when reduced to one platform, as each platform in the system provides the necessary

points of entry to the system. It also dynamically reconfigures the network of agents in response to

temporary or permanent unavailability of individual agents, or whole platforms within the system. Fig-

- ure 4.3 shows the interactions between the different types of agents on multiple platforms.

106

Query

~
~""- ..qtom1c ~ Qu8Iy~ qUeries ---.
I,. PQrtaI AQ8nI

Atomic quory
answer sets et\e"'~ ---

f'..to(ft\C ~\\\iC8\\()fIS
cdI\ef\\f'O

Content notifications

~~rP°\
",,,,Q;,*,~"

AoIIfII' ' Q'~""\'"

~ OntolOgy notifications ~
AoI..- NaIiIIGIIIIon

PIeIIom> .,. ~

Figure 4.2: SERSE conceptual architecture.

The basis for new platforms being created and joining an existing SERSE system is that an adminis

trator for the host system sets up the platform (giving web server and notification mediator addresses).

The new platform then connects itself to the notification mediator and web server. It will now be avail

able for the mediator to send notifications to, which will lead to index agents being created on the

platform - so the platform now hosts part of the indexing network. The policy of multi-platform distri

bution is applied by the notification mediator - as it is here that the selection is made of which available

platform to send a notification. The current policy is to apply a simple round-robin approach, with each

of the n available platforms receiving fin of the total notifications. This approach means that the system

is self-distributing, making use of all available platforms.

4.3.2 Agent Types

SERSE is implemented as a multi-agent system composed of six main types of specialised agents, each

playing different roles in the provision of management, semantic indexing and routing services. The

network of agents that perform the semantic indexing and routing constitute the core of the architecture,

by each handling one concept out of all those known to the system. In addition, five other types of

specialised agents provide various ancillary services, including interfacing with external systems, and

system management functions. The different roles that these agents play in SERSE are described below.

Router Agent (RA): RouterAgent s form the core of SERSE, by creating a highly interconnected

network of distributed indexes - previously referred to as ' indexing agents'. These agents provide the

107

· 1 (iil ,. 1 __ . ~'---.!. ,
. ..--- L--J ~

(~) Query
Inlerface Mgmt

Agent Agent

'----'
No@cation

Agent

Query
Interface Mgmt

Agent Agent

Platform C

(. 1
L--J

Notilicatlon
Agent

Interface
Agent

Query p l Agent Mgmt
Agent

. "1
Platform D I Aer'fl'atform

r. V Agent

. ~)

Notification
Agent

Figure 4.3: SERSE architecture distributed over mUl tiple platforms.

semantic indexing and message routing, and some of the self-management functionalities of the system.

RAs can be distributed over multiple agent platforms, while the other agent types described in the

remainder of thi s section are replicated for each of the platforms within the system. The RAs maintain

two types of index: a content index and a routing index. The content index stores the identifiers for

the RDF metadata of an annotation, together with the URLs of the resources that have been annotated

with it. The routing index stores the communications address for each of the RAs that are in the agent's

semantic neighbourhood, along with the concept handled by each of these RAs and the semantic distance

metric score between the concepts. In order to ensure that the routing process wi ll perform correctly,

despite the absence of RAs from the network (due to neighbouring concepts in the ontology(s) not yet

having reported index content, and so the corresponding RA has not yet been created), routing indexes

store neighbour entries of three types: actual: neighbouring concepts that are handled by ex isting RAs

that this RA is aware of; onto logy: neighbouring concepts (according to the ontology(s) known to the

RA) for which no RA currently exists; and implied : concepts from outside of the normal neighbourhood

for thi s concept, that should be indirectly linked except for the absence of one or more interven ing RA s -

providing a ' bridge' over gaps in the network. Actual neighbours represent the normal semantic links in

the network, whil st implied and ontology neighbours enable messages to be routed even if the network

of RAs is not fully populated. Through thi s sub-division of the network into semantic neighbourhoods,

each RA is responsible for a sub-set of the total system knowledge, hav ing only part of the global content

index and only localised knowledge about its own semantic neighbours.

108

RAs are also equipped with self-management capabilities that allow them to actively respond to

changes in the state of their neighbourhood. In order to ascertain the current status of their neighbour

hood, RAs employ two mechanisms: they monitor the result of their outgoing messages to other RAs to

verify that they do not return an error, and, in addition, they periodically send heartbeat messages [86]

that verify that their neighbours are alive. RAs also periodically store the state of their content and

routing indexes, thus enabling the recovery of this knowledge following any failure of the agent. These

self-management capabilities are more fully described in Section 4.2.3.

Router Platform Agent (RP A): These agents support the distribution of the system over multiple plat

forms by providing management services for each platform. A primary task is the creation of new RAs

on its platform, following a request from within the RA network, which triggers the dynamic creation

and adjustment of the semantic neighbourhood overlay on the network. The RP A is a "factory" agent,

that is able to generate the other agent types within the system:

• A PortalAgent, NotificationAgent, QueryManagementAgent and Interface

Agent for the platform on which the RouterP latformAgent is initialised .

• RouterAgents - in response to requests from RouterAgents as part of the content notifi

cation mechanism (see Section 5.4.2).

The RP A is also intended to provide the initial conduit for cross-platform messages, allowing RAs and

P As to discover neighbours with whom they can subsequently communicate directly. This is the only

agent type within the system that has access to the central registry of router system platforms, therefore

enabling messages to be sent to any of these platforms. This agent receives messages from the PAin its

own platform, re-sends the message to the RP A on another platform, and this in turn passes the message

on to its own P A.

Portal Agents (P A): These agents act as the gateway into the RA network - all atomic notification and

query messages are passed through them, in order to get the messages into the correct approximate

semantic 'area' within the RA network. Each P A maintains a list of significant points within the RA

network, and send messages into the network by initially routing them to the most appropriate of these

points using the semantic routing mechanism. The selection of such significant points could be based

upon many different criteria - such as density of neighbour connections, volume of content, and message

throughput. In SERSE these points are currently implemented as the set of root nodes (Le., all concepts

within the ontology that have no ancestor other than OWL:Thing) of all the ontologies currently known

to the system. The P A forms an important element of the semantic routing system, by enabling messages

to be sent to RAs that are in the same general semantic 'area' as the message concept. This reduces the

109

size of the section of the network that the messages have to traverse as they are routed, thus making

the routing mechanism faster and more efficient. It also means that messages are unlikely to become

'lost' in a semantic area very different from the target concept, where it cannot be determined which

neighbour connection provides the most appropriate route.

, Query Management Agent (QMA): These agents are responsible for decomposing complex queries

(i.e., queries involving multiple concepts linked by logical connectives) into atomic queries, that each

refer to only one concept. This decomposition is performed so that each atomic query can be answered

by a single RouterAgent - thus supporting the semantic routing mechanism by ensuring that each

message in the system has a single target destination. These atomic queries are then sent into the RA

network, via the P A. When the QMA receives the query responses, they are aggregated by re-applying

the logical connectives present in the complex query, thus returning the set of web resources matching

the constraints expressed in this original query. As a part of the reply aggregation process a number of

result 'cleaning' tasks are performed, identifying and removing duplicate instances and resources from

the aggregated result set. The query decomposition and the reply aggregation and optimisation tech

niques implemented in this agent are adaptations of existing techniques and mechanisms. A detailed

description of the specific processes employed in query decomposition and reply re-aggregation, and

the algorithms developed to implement them, are presented in Section 5.5.2 and Section 5.5.4 respec

tively.

In addition to its primary query decomposition and reply re-aggregation tasks, the QMA also provides

some management of the query process. That is, the QMA seeks to cope with non-reciept of expected

replies to atomic queries. This management is achieved by two different behaviours. Firstly, the QMA

tries again to obtain a reply by re-sending 'failed' queries, where no reply has been received within a

specified time limit - in order to handle situations where the RA handling the concept in the atomic

query is temporarily unavailable. Secondly, where the QMA is unable to obtain any reply to one or

more of the atomic messages, it then seeks to compile a partial reply from the available results within

the replies that have been received. This is achieved by identifying the position of the missing replies

within the tree-reconstruction that drives the re-aggregation process, and then simply forming the union

of the aggregated result sets on either side of the missing element. Clearly there are cases where even a

partial reply cannot be sensibly reconstructed, for example where the majority of the expected replies are

missing or the missing reply represents the only element in the SELECT construct of the query. In these

cases, identified by use of a set of simple rules, the QMA replies to the IA with an 'query failed' message.

Notification Agent (NA): These agents act as the interface between SERSE and the Notification Server

110

component of the Esperonto architecture. These notifications are received by the agent via the Java

Messaging Service, from the Notification Server - to which the agent must subscribe in order to get the

messages. NAs can receive three types of notifications:

• Ontology publications - notifies that a new ontology has been published on the Ontology Server.

The NA then sends this notification to the local RP A which then generates the RAs for each of the

root concepts within the ontology, in order to introduce the ontological knowledge into the RA

network. The NA also passes the notification to the The lA, so that the query interface is updated,

and can include all the available ontologies in the query generation process.

• Ontology modification - notifies that an existing ontology on the Ontology server has been mod

ified in some way. The The NA extracts the, potentially multiple, concept mappings from the

notification message, and then re-sends these mappings as a set of ACL messages - with each

message relating to one of the original concepts that is to be modified. These messages are then

routed to the appropriate RAs so that they can update their ontological knowledge.

• Content acquisition - notifies that new web resources have been semantically annotated by the

Annotation System. NAs decompose these XML notifications, that may regard multiple concepts

and resources, into 'atomic' notifications that each refer to only one concept. These atomic notifi

cations are then sent into the RA network, via the P A, as Agent Communication Language (ACL)

messages. This notification decomposition process is performed in the same manner as the query

decomposition process performed by the QMA.

The role of the NotificationAgent within SERSE and its handling of these messages is further

elaborated in Section 5.4.1.

Interface Agent (lA): These agents provide a connection between each agent platform within SERSE

and an external user-query application that operates outside the platform, by creating a socket interface

and passing query and response objects across it. An external application queries the routing system

by using a published API, which consists of a set of objects that both parties use to communicate about

queries and replies. The system has an implemented web-based query interface to enable users to gen

erate semantic queries (as described in Section 5.4.1), that utilises the lA to pass queries into SERSE

and receive the corresponding replies.

111

4.4 Semantic Relatedness Metric

The Rout e r Agen t s (RAS) within SERSE are each specialised with respect to a defined concept,

meaning that they index and can access those resources whose annotations contain instances of that

concept. Furthermore, each RA is only aware of those other RAs whose concepts are similar or related

to its own. In this way, the network of RAs is organised into a set of overlapping semantic neighbour-

. hoods that link together those agents whose concepts are determined to be sufficiently similar or related.

Messages within the RA network each regard a single concept, and are semantically routed through the

RA network by determining the degree of similarity or relatedness between the message concept and

the concepts handled by the neighbouring RAs. Therefore, the RouterAgents require a means to

determine the degree to which their concept is related to any other concept, that may appear in a routed

message or as a potential neighbour. This evaluation of similarity and relatedness between concepts is

performed by the Semantic Relatedness Metric (SRMetric).

We refer to both similarity and relatedness as ways in which two concepts can be 'related' because

these two types of relation are used in different ways within SERSE, though both are determined on

the basis of the ontological descriptions by the SRMetric. Two concepts are similar based on whether

they refer to the same conceptualised entity, and this can be evaluated by comparison of the elements of

the two ontological descriptions of the concepts. Similarity is the basis upon which the semantic mes

sage routing operates, in that messages are only routed to neighbouring RAs with the highest similarity

determination. Two concepts are related if there is an non-hierarchical, ontological relation defined

between them, that is, if they are related through an object property - for example, the concepts car

and person would be related by the properties drives and hasDriver. Relatedness is only used within

the formation of semantic neighbours, in conjunction with the similarity determination. The purpose of

including relatedness links within the semantic neighbourhoods is to provide additional links across the

RA network. This is primarily to support the semantic browsing mode of resource discovery, but also to

aid the semantic routing of messages by enabling 'shortcuts' across the network - allowing a message to

be moved to an RA handling a more closely related concept without traversing all of the RAs in between.

Thus, the semantic relatedness between two concepts, determined on the basis of their ontological

definitions by the SRMetric, is utilised within SERSE in two main ways:

• To underlie the formation of semantic neighbourhoods, by making connections between Route

rAgent s based on the semantic relatedness of the concepts they are responsible for. Such rela

tions include similarity and other relations, such as meronomy, ownership, usage, etc., between

concepts, as specified within the defining ontologies. This usage of semantic relatedness to inter

connect RAs results in a semantic overlay that effectively clusters and links the RAs based upon

112

the meaning of the terms they index .

• To enable the semantic routing of messages between RouterAgents, by enabling agents to de

termine the degree of similarity between their, and their neighbours, concepts and those concepts

that form the subjects of the messages. By use of the SRMetric individual RAs are able to select

which is the most appropriate neighbour to route a message to based purely upon the meaning of

the message concept and those handled by each of the neighbours.

The SRMetric has been specifically designed and implemented to perform the determination of con

cept similarity and relatedness within the SERSE environment - with a strong focus on efficient and rapid

calculation. The manner in which the determination is made owes a great deal to current approaches

in ontology alignment (see Section 3.5.3), and in particular on the Quick Ontology Mapping (QOM)

system described in Section 3.5.4.

4.4.1 SRMetric Implementation

The Semantic Relatedness Metric (SRMetric) has been implemented as a set of heuristic rules (based

on existing semantic similarity research) that exploit the characteristics of a concept described in the

ontology -lexical information, ancestors, descendants, properties, property values and constraints, etc.

This element-based approach, using the features of the concept description for separate sets of compar

isons that are subsequently aggregated, is common among state-of-the-art ontology alignment systems

(see Section 3.5.3), and QOM is a leading example of such approaches. However, we have modified

the adopted approaches, because they are intended to perform a process that requires high precision in

order to establish the correct mappings. Semantic routing is a problem that presents different features:

the evaluation of similarity should be sufficiently precise to determine a new target agent for the routing

process, but not necessarily the best one available if the global knowledge of the system is considered.

In addition, semantic routing is executed as a dynamic process, and requires efficient computation in

order to minimise the round-trip query time, and so make the system usable for on-demand search.

A number of different modifications and adaptations were performed upon existing state-of-the

art approaches to fit these requirements. Some of the modifications follow a similar pattern to those

modifications introduced by QOM itself - adapting and removing the most computationally expensive

comparisions. In addition, the iterative behaviour of many alignment systems was also excluded from

the SRMetric, because we are only comparing single concepts rather than whole ontologies, and so there

113

are no previously determined mappings available to be considered in a later iteration. Other modifica

tions include the application of specialised element-weighting heuristics, so that the SRMetric generates

a higher number of potential matches for any particular concept when compared to ontology alignment

systems, and thus exhibits a less precise behaviour than is required for ontology alignment. Finally,

the SRMetric does not make use of ontology extensions (Le., instances of concepts) when determining

similarity, because they are often not available, if they are available they may be a large set that take

time to process, and, unlike with ontology alignment, there is no assumption that the extensions of two

similar concepts should overlap (the two concepts being compared may be entirely unrelated).

Component Feature Comparator
Lexical Concept label String similarity
Lexical URI String equality

Structural Super-concepts Concept-set similarity
Structural Sub-concepts Concept-set similarity
Structural Sibling-concepts Concept-set similarity
Property Data-type properties Property-set similarity
Property Object properties Property-set similarity

Relatedness Object properties Co-reference property identifer

Table 4.1: SRMetric components.

The differences between similarity and relatedness in this context were discussed in the introduction

to this section. Essentially, similarity assesses to what degree two concepts represent the same concep

tualisation of the same abstract or concrete entity or object. Relatedness assesses to what degree two

concepts may be related through means other than similarity. The Semantic Relatedness Metric outputs

either a similarity score between 0 and 1, or a relatedness score between 0 and 1, and indicates the

type using an additional output parameter. When comparing two concepts the metric will attempt to

determine a score for both similarity and relatedness. The usual case is that one of the two scores will

not be significant - due to the fact that two concepts that are significantly similar are usually not also

strongly related - and the higher score is the one that is returned. In those cases where two concepts are

both somewhat similar and somewhat related, the metric will still return the higher of the two scores,

unless the similarity score is above a defined threshold value in which case the similarity score is always

returned. This is because similarity is utilised as the primary semantic relation within SERSE, and the

purpose of determining a relatedness score between two concepts is to provide additional interconnec

tions within the RouterAgent network only when a significant similarity cannot be determined.

The semantic relatedness metric determination is built upon four sets of feature comparisons (sum

marized in Table 4.1), utilising different means of determining similarity and relatedness, that are com

bined to produce an overall metric. The components of the ontological descriptions utilised in these

114

comparisons are:

1. Lexical component: This utilises the labels and URis of the concepts, but in two different ways.

The URIs are checked for exact equality, and finding this would immediately result in the two con

cepts being determined to be the same (i.e., be totally similar). The strings representing the labels

used to denote the concepts are compared to each other, using an edit-distance calculation [100],

plus checks for term containment, sub-string match between terms, etc. The more similar these

strings, the greater the contribution to the overall metric score.

2. Structural component: This compares the relative position of the two concepts in their respec

tive ontology hierarchies. This is achieved by comparison of the sets of super, sub, and sibling

concepts of the two concepts being compared. Such comparisons are achieved by recursive use

of the SRMetric, to make concept comparisons that themselves form a part of the original com

parison. Such recursive use of the metric requires addition constraints, as described below. Each

item of similarity evidence obtained from these comparisons, indicated by significant similarity

between any of the members of the concept sets, then contributes to the overall metric score.

3. Property component: This comparison utilises the concepts properties and their values, and

makes reference to the property inheritance hierarchy in the two source ontologies. The property

labels and URIs can be compared lexically, which is achieved by re-use of the same lexical com

parison component used for concept comparisons, as described above. Additionally, the values

of the properties can be compared, but in different ways for data-type and object properties. The

values of data-type properties can be compared in terms of the type and allowable range of the

specified data-types. The values of object properties are concepts, and their extensions, and so

they are compared by recursive use of the entire metric (with additional constraints, described be

low). As with the structural component, each item of similarity evidence, obtained through these

comparisons, contributes to the overall metric score.

4. Relational component: The object properties defined for each of the concepts are examined, and

the concepts representing their ranges are identified. If any of these range concepts are the same

as the other concept in the original comparison, then the original concepts are determined to be

'fully' related. Where one or more of the range concepts is determined to be similar to the other

concept in the original comparison, then the original concepts are determined to be somewhat

related. The degree to which they are determined to be related is based upon the highest similarity

score found during this comparison. As with hierarchically related concepts and with the ranges

of object properties, these concept comparisons are achieved by recursive use of the entire metric.

As described in the metric component descriptions above, the metric is used recursively when the

115

Algorithm 1 Semantic Relatedness Metric

Require: Concept A' and Concept B'
Ensure: Metric value - 0 ::; SRM ::; 1

I: Hierarchical depth index 8 = 0
2: Recursion flag J1 = true
3: SRM (A', B') = Compare Concepts (A', B')

degree of relatedness between two concepts is used as a part of the evidence in the comparison of an

other two concepts. This is the case when considering the ancestor, descendent and sibling concepts of

two concepts, and with those concepts that are the subjects of the original concepts' properties. How

ever, such recursive use of the metric requires careful implementation. In particular, there is the need

to place a limit on how 'deep' into a concept hierarchy such recursion can go - otherwise the metric

will ultimately compare the two entire ontologies as a part of the comparison of any two concepts from

these ontologies, by traversing the whole inheritance hierarchy for each concept. To avoid this situa

tion, and to ensure the rapid calculation of the metric, the recursion applies a 'depth-limit' control that

specifies at which cycle of recursion the comparison should cease. Furthermore, the recursion depth is

also applied as an additional weighting factor on the recursive applications of the metric, to reduce the

significance of similarity scores contributing to an overall score, dependent on the number of hierarchy

steps the found similarity is from the original comparison concepts. This depth-limit could be further

refined by taking into account the degree of relatedness already determined at the point of recursion.

This would allow the metric to terminate calculation earlier when the concepts being compared have not

already demonstrated any significant relatedness, and, conversely, would also allow the metric to take

into account further ontological information when the two concepts have already been determined to

have significant relatedness.

The final features of the SRMetric calculation are the use of heuristic weighting factors and thresh

old values. The metric uses a number of weighting factors, with different weights applied to different

components of the metric. The primary weighting factors are those applied to the four components of the

metric calculation. However, additional weighting factors are applied at a number of points within the

metric calculation, such as the recursive-depth weighting mentioned above, and the similar weighting

applied due to traversal of the property hierarchy. There are three main threshold values utilised within

the SRMetric calculation. The first threshold value has the most significant function, that is to deter

mine if a potential neighbour concept is sufficiently similar to an RA's own concept for that concept to

be included in the RA' s semantic neighbourhood. In the current implementation of the SRMetric this

threshold value has a fixed value, however, consideration has been given to enabling the RAs to have

. autonomy over this value, and determine individual values based on available evidence. This feature has

been trialled within SERSE with some success, and highlighted the fact that the degree of autonomy over

116

Algorithm 2 Compare Concepts

Require: Concept A and Concept B
Ensure: 0::; SRM ::; 1

I: Increment J
2: Find lexical matches - A - between concept labels and URIs
3: Aggregate and weight lexical matches - .c = E~=l Wl Aa
4: if J..L = true (i.e., comparing A' and Concept B') then
5: for all sibling classes of A (A,),) and B (B')') do
6: O"b = Compare Concepts (A')'b, B')'b)
7: end for
8: J..L =false
9: end if

10: if J ::; Do (hierarchical depth limit) then
11: for all super-classes of A (Ao:) and B (Bo:) do
12: o"c = Compare Concepts (Ao:c, Bo:c)
13: end for
14: for all sub-classes of A (AB) and B (B(3) do
IS: O"d = Compare Concepts (A(3d, B(3d)
16: end for
17: end if
18: Aggregate and weight structural matches - S = E~=l Ws O"e
19: for all properties of concepts A (A4» and B (B4» do
20: Hierarchical depth index rJ = 0
21: Recursion flag 1/ = true
22: 4> f = CompareProperties (A4> f' B4> f)
23: end for
24: Aggregate and weight property matches - P = E;=l wp 4>g
25: for all object properties of A (Ap) do
26: Ph = Compare Concepts (Aph, B)
27: end for
28: for all object properties of B (Bp) do
29: Pi = Compare Concepts (A, Bpi)
30: end for
31: Aggregate and weight relation matches - n = E;=l Wr Pj

32: Aggregate all element-match scores - SRM = ~tStP\n
Wl s Wp Wr

the threshold value must be limited in a number of different ways in order to ensure that routing paths

remain intact, and RAs do not become unconnected from the rest of the network - which is ensured

by the currently selected threshold value. That is, RAs cannot have total autonomy over the threshold

value, due to the fact that this would enable RAs to select too high a value, resulting in them having no

neighbours and so becoming isolated from the rest of the network, or too Iowa threshold, resulting in

over-large neighbourhoods that entirely engulf the neighbourhoods of neighbouring agents. The most

promising approach is to define a range of possible threshold values and enable RAs to exert autonomy

over the value within this range, but determination of such a range is in itself problematic. The second

threshold value used is that mentioned above in relation to determining whether to return the similarity

or relatedness score from the metric. The role of this threshold value is to set a lower bound on the value

117

of the similarity score, below which the similarity can be discarded in favour of a greater relatedness

score. The third, and final, threshold value is similar to the first, in that it determines the cut-off value

for inclusion in a semantic neighbourhood, but applies to the relatedness score, rather than the similarity

score. As in the development of the QOM system, the values of the weights and the threshold value are

all manually determined on the basis of performance evaluations - such as that presented in Experiment

4 in Section 6.3.4.

Based on the descriptions given above, a formal definition of the overall Semantic Relatedness Met

ric is as follows:

S RM etric(a, (3) =
max(fIs(E~=l WI' Li(a, f3) + E~=l Ws' Si(a, (3) + E~=1 Wp' Pi(a, (3), fIr(E~=l Wr · R;(a, (3»))

where: Wx are individual weighting factors for each of the components, and fIx are separate normalisa

tion factors for similarity and relatedness, used to express the result of the metric in a [0-1] range. The

implementation of this formal definition is divided into three functions. The overall SRMetric algorthim

can be seen in Algorthim 1 - which itself uses the separate concept and property comparison functions

described in Algorithm 2 and Algorithm 3 respectively.

Algorithm 3 Compare Properties

Require: Property A and Property 13
Ensure: 0::; <Pi ::; 1

1: Increment 1)

2: Find lexical matches - A - between property labels and URIs
3: Aggregate and weight lexical matches - £, = 2::=1 Wl Aa
4: if V = true then
5: for all sibling properties of A (A-y) and 13 (131) do
6: ai = CompareProperties (Ali , 13li)
7: end for
8: V =false
9: end if

10: if 1) ::; 6. (hierarchical depth limit) then
11: for all super-properties of A (Aa) and 13 (13a) do
12: aj = CompareProperties (Aaj, 13aj)
13: end for
14: for all sub-properties of A (A(3) and 13 (13(3) do
15: ak = CompareProperties (A(3k. 13(3k)
16: end for
17: end if
18: Aggregate and weight structural m~tches - S = 2:;=1 w. ab

19: Aggregate all element-match scores - SRM = we+t
I w.

118

Chapter 5

SERSE Implementation

In the previous chapter we detailed the context and intended task of SERSE, the principles underlying

the system design, and the multiagent architecture of the system and the agent roles within it. In this

chapter we present details on the implementation of this design, and describe how the intended functions

of SERSE are achieved in practice.

Section 5. I discusses the means by which the capabilities of the agents are defined and constructed

within the development environment, and describes the structure of the following descriptions. Sec

tion 5.2 describes the way in which the underlying semantic message routing process operates, ab

stracting this fundamental system-support function from the primary use-case function sections that

follow. The first of these, Section 5.3, describes how SERSE handles the notification of ontology publi

cations and potential, subsequent ontology modification notifications. Then, Section 5.4 and Section 5.5

describe the operation ofsERSE when performing its two primary tasks of, respectively, indexing anno

tated resources and answering semantic queries over these resources.

5.1 Overview

This chapter is intended to provide a description of how SERSE has been constructed to fulfill the re

quirements and implement the system design presented in the previous chapter. The multi agent system

design for SERSE has been implemented using the Java Agent DEvelopment Framework (JADE) [9],

that was presented in Section 2.2.4. The required capabilities of the SERSE agents were developed fol

lowing JADE's model of task-specific behaviours, and composition of behaviours to achieve complex

tasks. All the agents within SERSE have a number of possible behaviours, that are each triggered by a

particular set of environment circumstances - usually related to the receipt of a particular type of sys

tem message. Therefore, each agent makes use of a cyclic 'message receipt and behaviour dispatch'

behaviour. This behaviour operates continuously within each of the agents, performing the following

119

general sequence of actions:

1. Check incoming message buffer for new messages received since the last behaviour cycle. Dif

ferent system messages are assigned different priorities, and this determines the order in which

received messages are removed from the buffer and processed.

2. Remove the oldest, highest priority message from the buffer, and parse the message contents

according to the message template definition.

3. Select and execute the appropriate behaviour for this message type and content, passing in the

message contents for subsequent action by the new behaviour.

The sub-behaviours spawned off by this cycle message handling behaviour fall into four main categories:

semantic message routing, notification behaviours, query answering behaviours, system management

behaviours. These task-specific behaviours are described in detail, as a part of the overall functional

description of SERSE in the following sections.

The following sections describe the implementation of the primary SERSE functions presented in

the use-cases descriptions in Section 4.1.3. Therefore, the sections present how SERSE handles ontol

ogy publication notifications, ontology modification notifications, content acquisition notifications, and

query answering. However, the first section abstracts a key component of all of these primary use-cases

the semantic message routing function - as identified in Section 4.1.4. The behaviour implementing this

semantic message routing, that underlies all communication between RouterAgents, is presented in

Section 5.2. The next section 5.3 presents both the ontology publication notification and ontology mod

ificatiem notification functions, thus describing how SERSE learns about newly available concepts, and

where necessary, their subsequent modifications. The content acquisition notification function, through

which SERSE receives new knowledge about resources to index, is described in Section 5.4. The query

answering function, through which the knowledge regarding semantically annotated resources is se

lectively retrieved from SERSE by use of semantically specified queries, are described in Section 5.5.

Finally, the system management behaviours introduced above are not presented in a separate section, but

are described within the other sections along with the more directly functional elements of the system

that they support.

120

5.2 Semantic Message Routing

The semantic routing behaviour is the means by which messages are moved around the RouterAgent

(RA) network on the basis of the semantics of the message contents, and those of the concepts handled

by the RAs. The semantic routing mechanism is designed to move messages, addressed by concept, in

a series of RA to RA hops across the network to the most appropriate RA for the message concept. Se

mantic routing is achieved by each RA in the system: firstly determining if it is the most appropriate for

the message concept, and if it is, the agent handles the message itself; if it is not the most appropriate,

the RA will route the message to the most appropriate other RA that it knows about. Both the determi

nation of whether it handles the closest available concepts and of which of its neighbours handle the

closest known concept is performed by the RA using the Semantic Relatedness Metric (as described in

Section 4.4 of the previous chapter). This semantic routing mechanism builds upon three main threads

of research: agent communication, peer-to-peer routing, and semantic overlay networks. The adaptation

and combination of these approaches is a unique feature of SERSE, enabling dynamic inter-linking of the

whole multiagent system by use of only 'local' semantic knowledge within each of the agents involved.

The intention of the Semantic Routing process is to incrementally, at the point of re-transmission of

the message by an RA to its most appropriate neighbour, move a message semantically 'closer' to the

correct RouterAgent (for the message concept), until that agent is reached. The Semantic Routing

process aims to move a message along the most efficient route between its starting RA and its target RA,

however this cannot be guaranteed given the dynamism of neighbourhoods of the RAs on this route. The

routing process can guarantee a message reaches its target within a limited number of re-transmission

hops, given that the RAs act in order to prevent cycling of messages (as described later in this section),

thus ensuring that anyone message will not traverse more hops than there are RAs within the entire

SERSE network.

Each RA maintains a routing index to manage its semantic neighbourhood - recording the agent

ID, concept handled, and recent message transmission success for each neighbouring RA. This routing

index is initialised when the RA is created, and subsequently modified on the basis of changes in the RA

network, by addition of new RAs to, or their removal from, the neighbourhood. The processes by which

the routing index is created and maintained are triggered by the notification of new resources to the sys

tem, and these are fully described in Section 5.4. In order to dynamically manage their neighbourhoods,

RAs utilise a simple type-system for the neighbours in their routing indexes. This system enables the

agents to determine which concepts are present in their semantic neighbourhood, and which concepts

should be in the neighbourhood (on the basis ofthe ontological knowledge) but do not yet have notified

content - and therefore no existing RA. Furthermore, the type system enables the agents to 'bridge' over

121

these gaps in the RA network that are due to the absence of RAs that do not yet have content to index.

The three types of neighbour used in the routing index entries are:

• actual - an actual neighbour is an already existing RA that handles a concept determined to be a

semantic neighbour. These represent the 'normal' agent inter-connections in the RA network.

• ontology - an ontology neighbour is that of a semantic neighbour concept for which there is not

yet an existing RA. The presence of these neighbours enables RAs to know when a concept is not

indexed within the system - in that, if it was, its ontology neighbours would be aware of it.

• implied - an implied neighbour is an already existing RA that handles a concept determined to

be just outside the semantic neighbourhood - that is a concept that should be a neighbour of this

concept's neighbour. Implied neighbours are used to maintain this semantic connection when the

immediate ontology neighbour is not present.

The operation of the semantic message routing process is based upon the fact that messages within

the RA network always regard only a single concept. This is achieved by the decomposition of 'com

plex' messages that refer to multiple concepts into a set of 'atomic' messages, that each refer to only

one of the concepts in the original message, and collectively maintain the semantics of the original

message. This message decomposition process is applied to notification and query messages originat

ing from outside SERSE by the NotificationAgent (NA) and QueryManagementAgent (QMA)

respectively, and are fully described in Section 5.4 and Section 5.5. Following this decomposition the

'atomic' messages are passed from the NA or QMA to the PortalAgent (PA) for transmission into the

RA network. Messages directed between RAs are generated as 'atomic' messages and do not require

decomposition. The different types of messages utilised within the SERSE system, including those that

are semantically routed in the RA network are presented in detail in Appendix A.

An RA receiving an 'atomic' message, from either the P A or another RA, follows the semantic routing

algorithm shown in Algorithm 4. The execution of this algorithm produces the following process:

• The message concept is first compared to the concept indexed by this RA, using the semantic

relatedness metric and the OWL concept definitions. If the message concept is sufficiently 'close'

to the agents concept, i.e., the semantic relatedness score is above the matching threshold, then the

message is dealt with by this agent. Depending on the message type, the RA handles the message

as follows:

- ACLNotijicationMessage - the RA updates its content index, by reading the RDF file re

ferred to in the message, and using this RDF data to add new annotation instances to the

122

Algorithm 4 Semantic Routing

Require: RAi receives message M
Ensure: M handled by RAi or forwarded to most approprIate neighbour RA

1: if concept Cm in M = concept Ci handled by RAi then
2: RAi handles message M
3: else
4: for all neighbour RAs - Nj E {NI, ... , Nn } - in routing index of RAi do
5: if type of Nj = actual then
6: Retrieve concept Cn of Nj
7: Calculate SRM(Cm , Cn)
8: end if
9: end for

10: Select Nk where - SRM(Cn , Cm) = min {SRM(Cs , Cm)}
11: Forward message M to Nk
12: end if

index and to remove old instances (as identified by the annotation wrapper). See Section 5.4

for a full description of this process.

- ACLOntologyModificationMessage:: the RA modifies its routing index. The ontology mod

ification mappings in the message are used to map existing content index and routing index

entries using the previous ontology definition into ones using the new definition.

- ACLSimpleQueryMessage - the RA extracts the RDQL query contained in the message,

and executes this query against its stored RDF content index. The RA then responds to the

originating QMA with a reply to this query. See Section 5.5 for a full description of this

process.

• If the message concept does not match the agents concept, the RA then compares the concept to the

concepts handled by each of the neighbours in its routing index. The concept that is semantically

closest to the message concept is determined using the semantic relatedness metric (as described

in Section 4.4) and, thus, which of the RA's neighbours is the most suitable recipient of the

message. The following action is then dependent on the type of the neighbour:

- if the neighbour is an actual neighbour or an implied neighbour then the message is sent to

that agent.

- if the neighbour is an ontology neighbour, the current agent can determine that no RA exists

for the message concept (due to the creation of implied neighbours when a RA is created),

the the RA takes one of two actions. If the message is a content notification then the RA sends

a message (ACLRouterCreationMessage) to the RouterPlatformAgent, thus creating

the new RA for the notified content. If the message is a query, the current RA can be certain

that there are no indexed instances for the message concept and can reply accordingly to the

123

originating QMA.

Within this overall semantic message routing process there are a number of issues that require special

handling:

• A RA must be able to determine when the same message has been received multiple times, to avoid

the formation of 'cycles in the routing process. This is achieved by each RA keeping a history of

its most recently handled messages, and checking incoming messages against this. The message

is detected as cycling if a RA receiving a message determines that it has seen this message before

(through use of the unique message ID) and that it has already sent it to all of its neighbours.

When a cycle is detected, the message is sent back to the P A, which will then re-send the message

into the RA network, but using a different RA as the starting point for the routing.

• When the neighbouring RA selected as the receiver of a forwarded message is unavailable, a RAs

have a handling procedure that allows them to re-send a message to an unavailable neighbour, for

a fixed number of attempts, and then to consider the neighbour RA dead and permanently unavail

able for routing). In this situation the message would then be handled as for a non-existant RA -

contacting the local RouterP latf ormAgent to create a new RA for content notifications, and

returning an empty reply for queries.

The semantic routing process described here is designed to move messages through the RA network,

from agent to agent in a series of iterative 'hops', on the basis of the semantics of the concept that is

the subject of the message and of the concepts handled by each of the RAs. However, the potential

size of the RA network, when indexing a large collection of knowledge, raises an additional problem.

In the case where the ontologies available to SERSE cover a diverse domain of knowledge, there is the

potential for an RA receiving a message being unable to determine which of its neighbours is best suited

to handle the message, because the semantics of the message concept are sufficiently dissimilar to all the

neighbours concepts that no clear routing direction can be determined - due to the fact that the SRMetric

cannot effectively discriminate between neighbour concepts when they are all very dissimilar from the

target concept. Initial evaluation of the semantic routing process demonstrated that if messages where

initially sent to a RA in a neighbourhood that was semanticaIly very dissimilar, there was a significant

probability that such messages would become 'lost' in the RA network - with the query timing-out

before the message reached the apiJropriate RA. In order to handle such situations, and to increase the

efficiency of the semantic routing process in general, the concept of super-peers, within a hybrid P2P

I However, the autonomic system processes in place would seek to recover the failed agent, and would re-instate the neighbour
connections - see Section 4.2.3.

124

architecture, was adopted. As described in Section 2.4, super-peers are intended to operate within the

P2P network, but also have additional capabilities - usually associated with some management or con

trol processes within the P2P system. This approach was adapted to suit the existing architecture of

SERSE by devolving the additional capabilities into a separate agent (the PortalAgent) that was not

responsible for indexing any resources, but was solely responsible for the additional capabilities relating

to the semantic routing process. These capabilities were designed to enable the P A to direct a message

into the correct general semantic 'area' of the RA network - enabling the receiving RA to determine

the correct routing direction amongst its semantic neighbours. In order to achieve this initial semantic

routing step, the PAs hold a' routing index that records a set of RAs that have been determined to be

'significant points' within the RA network.

In the current implementation of SERSE, these RAs are those that handle the root concepts of each

ontology that is known to the system. Although this initial routing step to the root-concept RAs can be

seen as the potential cause of a bottleneck in the message routing, these RAs are those that are likely to

have the smallest workload from responding to queries. In fact, in most domain ontologies the majority

of the concept instances are instanciations of more specific descendant concepts (leaf nodes), whilst

the root-node concepts have few (if any) instances. Therefore, the additional routing effort performed

by these RAs is compensated for by responding to fewer direct queries. In addition, any such set of

significant entry points in the RA network could act as a bottleneck, and the use of possible alternatives

points is constrained by the computation required to dynamically identify these points, and by message

overhead involved in continually aligning these points between the existing PAs.

5.3 Ontology Notifications

The Notification Server provides SERSE with notifications of ontologies that have been newly published

on the Ontology Server. The knowledge regarding this availability must be incorporated into the index

ing system, so that the system can store indexing information for the concept, and so that the concept

can be utilised within queries for resources. This incorporation must support the subsequent process of

indexing resources annotated with instances of concepts from the new ontologies - that is, provide an

initial placeholder within the index network for the concepts within the ontology.

Once an ontology is published on the Ontology Server, the server generates a message that is sent via

the Notification Server component of the Esperonto system and then Notification Mediator component

of SERSE to all of the available NotificationAgent s within the SERSE system. The Notification

125

Mediator forwards the details of the new ontology to all of the available platforms, so that the ontology

is added to the master list of available ontologies maintained by all RPAs, forming the register of onto

logical knowledge maintained within the system. This then means that the ontology becomes available

to all RAs within the network, which enable them to use the concepts in the new ontology when con

sidering potential semantic neighbours. This means that the new concepts are rapidly integrated into the

index network. The process of creating new RAs in this situation is described in detail in Section 5.4.2.

The ontology publication notification is also forwarded by the RPAs to the InterfaceAgent on

each platform. This is so that the query interfaces linked to each IA can be aware which ontologies

are available for use within user's queries, and so make the concepts within the ontology available for

selection in the interface.

However, despite the fact that the notification message is sent to all RPAs only one of them, on one

of the available platforms within the SERSE system, is requested to act on the notification in terms of

creation of RAs. That is, the initial action within SERSE following notification of a new ontology is to

create RouterAgents for each of the 'root' node concepts described in the ontology. The purpose

of this initial creation is to make the concepts available for portal routing (see previous section), and

to ensure at least one concept from the ontology has an existing RA within the network - to perform

the role of 'nearest available neighbour' in the subsequent creation of RAs for other concepts in the

ontology (see Section 5.4.2). Therefore, only one of the RP As receiving the notification should act on

it with regard to root node RA creation, to prevent duplication of index agents.

The selection of which platform in the system to use for this initial RA creation is made by the No

tification Mediator, whose function with SERSE is to distribute notified content over all the platforms

available within the SERSE system, on the basis of some distribution policy. In the current implemen

tation, this policy operates as a simple 'round-robin' selection, ensuring that each available platform

receives approximately the same number of notifications. Clearly, other more policies could be adopted

to achieve the same aim of appropriate distribution of indexing effort over available index platforms.

Such other policies could include additional considerations, such as the processing and storage capacity

of platform host systems, the network connectivity of hosts, existing query and notification traffic per

platform, etc.

The Notification Server also provides SERSE with notifications of modifications to ontologies on the

Ontology Server, consisting of one or more specific modifications to one or more individual concept

definitions. This knowledge must be incorporated into the indexing system, so that up-to-date concepts

definitions are being used, but without discarding resources indexed under prior definitions. As with all

126

other messages that potentially regard multiple concepts, ontology modification notifications are sub

divided into atomic notifications that each contain the notified OWL mapping for one of the modified

concepts. This mapping represents a declarative representation of each of the specific modifications to

a concept description, specified in terms of OWL statements showing the existing descriptive elements

and their respective replacement descriptions. These atomic 'concept modification' notifications are

then sent as ACL messages into the RouterAgent network. There are three ontology modification

cases, which cover all potential modifications within an ontology, that SERSE is equipped to handle:

1. New concepts in the modified ontology are processed in the same way as any other newly available

concept - the availability of the concept is made known to all RPAs, and via them to all IAs. In

addition, if the concept is a new root node of an ontology, its availability is also made known to

all PAs for use in portal routing (see previous section).

2. Concepts that have had their existing descriptions modified are treated as being a new 'version' of

the existing concept, and so are handled by the same RouterAgent (whether or not it already

exists). The basis on which the distinction is made between a 'new' concept and a 'modified'

concept, given that the modifications may entirely change the concept description, is whether the

concept label has changed. The rationale for this is that if the label of the concept has not changed,

then the intended semantics have not significantly changed. If the semantics of a concept had

significantly changed within the context of an existing ontology, this should be reflected by some

change in the label that is intended to provide some indication of those semantics.

3. Finally, one or more concepts in the original ontology may have been removed in the modified

ontology, but it would be unreasonable for SERSE to mirror this action within the RA network.

That is, SERSE should retain any information about resources indexed under these concepts, and

should continue to make the concept available in the user interface for use in queries. Therefore,

SERSE takes no action with regard to any concepts that were previously known to it, but have

subsequently been removed from a later version of the ontologies in which they were described.

5.4 Indexing New Resources

A core function of SERSE is to index the annotated resources that are notified to it from the Annota

tion System component, via the Notification Server. The Annotation System, through a set of resource

'wrappers', creates a metadata description of the web resources it examines. This is achieved by the

use of instances of the concepts defined in the ontologies available on the Ontology Server - that are

dynamically created to provide a semantic representation of the resource content. Wrappers within

127

the Annotation System access and analyse specified web resources using techniques from Information

Retrieval, such as document layout analysis, Term Frequency / Inverse Document Frequency (TFIIDF)

analysis, etc., and then generate metadata descriptions on the basis of this analysis. Wrappers then report

batches of newly annotated resources to the Notification Server, providing references to the resources

and the generated metadata. The Notification Server then forwards these notifications to the Notification

Mediator component of SERSE, and the task of the multi agent system is then to incorporate knowledge

about these new resources into the distributed indexing system. This process requires the identification,

and possible creation, of the appropriate RouterAgent s to handle this indexing knowledge.

This process involves the creation of new RAs, and the creation of their interconnections with their

semantic neighbours. Therefore, this RA creation process manages the dynamic construction of the se

mantic overlay network superimposed on the multi agent system. In the following subsections we firstly

describe in detail the manner in which SERSE handles notifications of new resources. Secondly, we

explain the process of RA creation following such notifications, and thirdly, we describe how these new

RAs then go about the dynamic generation of interconnections with their semantic neighbour RAs.

5.4.1 Content Notification

Content notification is the process by which newly annotated resources are reported to and subsequently

indexed by SERSE. These notifications originate from the Annotation system component of Esperonto,

and are forwarded to SERSE via the Notification Server. If a notification regards newly annotated con

tent, the system will seek to direct the notification to the appropriate RAs for the concepts used within

the annotations. The process of indexing newly annotated resources begins with a message sent from

one of the wrappers within the Annotation system, via the Notification Server and Notification Media

tor, to one of the NAs in the SERSE system. As with ontology notifications, the Notification Mediator

determines which NA to use for any particular notification using the 'round-robin' selection policy. The

content acquisition message from the Annotation system describes one or more annotated resources by

recording the URL of the annotated resource and the URL of the RDF file, generated by the annotating

wrapper, that details the annotation metadata. The receiving NA first decomposes the message content

into separate notifications for each concept referred to in the RDF metadata file - in a similar manner to

the query decomposition (see Algorithm 5). These 'atomic' notification messages are then sent into the

RA network, via the local P A, to be semantically routed to the appropriate RA.

On receipt of an ACLContentNoti,ficationMessage an RA will extract the concept referred to in the

notification, and will compare this to its own concept and, subsequently, the concepts handled by its

128

neighbour RAs. The receiving RA will then detennine that it is the 'most appropriate' to handle the

notification if either of the two following conditions hold: ,

1. The concept referred to in the notification message matches the concept handled by the RA. In

this case the RA will index the notified content - as described below.

2. The concept referred to in the notification message matches the concept handled by a neighbour

RA that is recorded as an ontology neighbour, or if it is 'bridged over' by an implied neighbour.

In this case the RA then knows that the relevant agent has not yet been created, and will initiate

a process to create a new RA to take responsibility for indexing content referring to this concept

and, thus, to handle the notified content - as described in the following sub-section.

A RouterAgent, having detennined that it is the most appropriate location at which a content no

tification should be handled, needs to update its content index using the new annotation metadata. This

is achieved by extracting the message parameters that specify the URLs of the annotated resources and

the URL of the RDF metadata file generated by the wrapper performing the annotation. The RA then

accesses the RDF file and extracts all those triples relating to instances of the concept handled by this

RA. Wrapper metadata files are continually updated by a wrapper, with new annotations being added

to the file and annotations that are no longer valid being removed from the file. Update of the con

tent index is achieved by fonning (Resource URL) (InstanceURI) (Wrapper ID) tuples for each

unique combination of resource in the notification and instance in the wrapper file, and then comparing

these with the existing set of tuples in the content index. If a tuple is not found in the current content

index, the RA adds the tuple to the index - linking the resource to the metadata. All unique combina

tions of instance and resource are stored - i.e., the same resource, described by a different instance, or

a different resource described by the same instance will have separate entries in the index. The RA then

adds all the RDF triples extracted from the wrapper file, that relevant to the instance, to the RDF model

that forms part of the RA's content index. If a tuple is found in the RAs content index that originates

from the currently notifying wrapper and refers to an instance that is no longer recorded in the wrapper's

RDF file, the entry is determined to be invalid. In this case the RA will remove the relevant tuple from

the content index, and, if they are not referred to by any other entry, remove the RDF triples relating to

the instance from the stored RDF model. The structure of the tuples within the content index means that

the same resource annotated with the same instance but reported by two different wrappers is treated as

a separate entry. This is because the wrappers have independent knowledge-bases, and if one wrapper

ceases to report an instance whilst another does not, the entry will remain in the RAs content index and

available for query answering.

129

5.4.2 Creation of New RouterAgents

As previously outlined, RouterAgent s are created in two situations: when an existing RA determines

that the RA for the concept within a content notification does not yet exist; and when the Notificati

onAgent on a platform receives an ontology publication notification that is marked for action by that

NA. When the notification message regards a concept for which there is no pre-existing RA, i.e., this is

the first time resources annotated with instances of this concept have been notified to the system, the

semantic routing mechanism will cause the message to arrive at the existing RA whose concept is most

closely related. This RA can then determine whether a new RA should be created to handle the newly

notified content, by examining the ontology and implied neighbours in its routing index. If the newly

notified concept occurs as an ontology neighbour, or if it is 'bridged over' by an implied neighbour, the

RA knows that the relevant agent has not yet been created. The RA then forwards the content notification

to the local RP A, as a RouterCreationRequestMessage, requesting creation of a new RA for that concept.

The RouterCreationRequestMessage send to the RPA contains the following information:

• The relevant contents of the original ACLContentNotijlcationMessage, namely the VRI of the

concept and the VRL of the concepts ontology, and the resource and metadata file VRIs.

• The Jade global unique identifier (GVID) of the RA sending the creation request.

• The routing index of the RA sending the creation request - subsequently referred to as the 'donor'

routing index.

On receipt of a RouterCreationRequestMessage the RP A firstly checks its recent action history log,

to determine if a RA has recently been created for the concept referred to in the message. This check is

intended to avoid the situation where multiple RAs are created for a concept, as a result of a subsequent

RouterCreationRequestMessage being created (as the result of a subsequent notification) whilst the RP A

is in the process of creating the required RA. The length of time for which the RP A stores recent actions

is determined by a system parameter, itself based on consideration of the time delay occurring between

generation of a ACLContentNotijlcationMessage and creation of the RA (and its subsequent integration

into the RA network)2. If the action history does not indicate a repeated request the RP A continues with

the RA creation process, otherwise the repeated ACLContentNotijlcationMessage is ignored.

The RouterPlatformAgent then creates the RouterAgent, using facilities within the JADE libraries,

and passes a number of data structures as parameters:

2In the current implementation, based upon experimentation and evaluation of the system, the action history timeout parameter
is set at two seconds.

130

• Concept URI - the URI of the ontological concept that this RA is being created to handle.

• Ontology URL - the URL of the OWL ontology file in which the concept is defined.

• Content notification - the details of the content acquisition notification that triggered this RA

creation process. Specifically, the URL of the wrapper metadata file, the wrapper ID, and the

URLs of the annotated resources.

• Donor routing index - the routing index of the RA (A) that requested the creation of this RA (B).

This routing index records the semantic neighbourhood of A, listing the GUIDs of the neigh

bour RAs and the URIs of the concepts they are responsible for. This information is intended to

facilitate the process of integrating the new RA into the existing agent network.

• Available ontologies - a list of the URLs of all the ontologies known to SERSE at this time.

Once the new RA has been created it undertakes three tasks in parallel in order to begin functioning

as a part of the distributed index. The RA handles the content notification in the normal way, reading

the RDF metadata file generated by the wrapper, and then adding the metadata and resource knowledge

to its content index. The new RA makes itself available for message routing, by starting the cyclic mes

sage handling behaviour described in Section 5.1 above. Finally, the RA acts to integrate itself into the

existing network of RAs by identifying those available concepts that are semantic neighbours of its own

concept, and then seeking to locate the RAs that handle these concepts. The process of creating and

maintaining the semantic overlay network for the RAs is described in the following sub-section.

5.4.3 Semantic Overlay Network Creation

The semantic overlay network that interconnects the RAs within SERSE is fundamental to the system's

operation. The creation and maintenance of this overlay is intended to ensure that:

• Concepts (and thus RAs) are linked, by semantic neighbourhood connections, to those other con

cepts known to the system that are most strongly related to them.

• RAs are not created without semantic neighbourhood connections.

• Closely related concepts are not handled by unconnected RAs.

• Missing RAs do not create 'gaps' within the network.

131

Once a new RA has been created it must integrate itself into the existing semantic overlay network.

An individual RA only has knowledge of a small section of this network, representing the RA' s se

mantic neighbourhood, that it records in its routing index. In order for a RA to identify its semantic

neighbourhood, and so build its routing index, it must perform the following process:

• Identify those concepts, from all those available in all of the ontologies that are currently known

to SERSE, that are sufficiently closely related to the RA's concept to be included in its semantic

neighbourhood .

• For each semantic neighbour concept identified, the RA then attempts to locate the RA that is re

sponsible for that concept, thus completing the semantic neighbourhood connection.

The identification of those concepts that should be in the semantic neighbourhood is determined

using the list of available ontologies and the ontological definition of the RA's own concept. The RA

systematically examines each ontology and compares the concepts defined within them with its own -

using the SRMetric described in the previous chapter. Those concepts that are determined to be suffi

ciently related to the RA' s concept, by exceeding a threshold defined on the SRMetric3, are then added

to the routing index. At this point the identified concept is added to the routing index as an 'ontology

neighbour' - as it has been determined from the ontology alone, and the GUID of the responsible RA is

not yet known.

The RA will then seek to locate the appropriate RA for each of these neighbours, and this is achieved

in two ways. Firstly, the new RA will examine the 'donor' routing index and determine if any of the

concepts it has determined to be semantic neighbours are present. This donor routing index is used

because the RA that donated this routing index had been identified as the RA responsible for the concept

most closely related to that in the original content notification message - indicating that some of the

potential semantic neighbours of the notified concept may also be neighbours of its most closely related

existing neighbour. If any of the new RAs ontology neighbours are found within the donor routing

index as actual or implied neighbours, the GUID of the responsible RA is extracted and added directly

into the new routing index, upgrading the routing index entry from an ontology neighbour to an actual

neighbour. Any neighbours located in this way are then contacted by the RA to inform them of their new

neighbour, and to complete the bi-directional neighbourhood connection. This is achieved by sending

an ACLNeighbourNotificationMessage to each of these neighbours, notifying them of the concept and

GUID of the new RA. This use of the donor routing index is intended to accelerate the integration of the

new RA into the overlay network, and reduce the total number of ACL messages exchanged to achieve

3 Set at a level intended to ensure that the total number of neighbours remains in proportion to the total number concepts
indexed within the system. However, further control over the total number of neighbours may be required.

132

this.

The RA then seeks to locate the remaining ontology neighbours by sending out finder messages, that

are addressed with the required neighbour concept and sent into the RA network, via the local P A, to

be semantically routed to the appropriate RA (if it exists). These ACLNeighbourLocationMessages are

sent to each of the remaining ontology neighbours, and contain the URI of this RA's concept, the URL

of the ontology defining the concept, and this RA's GUID. The result of the semantic routing process

for each of these messages will either be that the message successfully reaches the appropriate RA, or

that it fails to do so because this RA has not yet been created. In the first case the located neighbour

replies to the ACLNeighbourLocationMessages by sending an ACLNeighbourNotificationMessage back

to the originating RA, and both RAs add the new semantic neighbour GUID information to their rout

ing indexes and update the neighbour status. The initial ACLNeighbourLocationMessages contains the

same GUID, concept and ontology information as an ACLNeighbourNotificationMessage, allowing the

located RA to obtain this required neighbour information from the initial message, and so avoiding the

need for an additional ACLNeighbourNotificationMessage from the seeking RA to complete the connec

tion.

This process is illustrated in the sequence diagram presented in Figure 5.1. The sequence depicted

follows RouterAgent 1 receiving the initial content notification message, for which there is no ex

isting RA to handle the concept being notified. RouterAgent 1 then sends an ACLRouterCreation

RequestMessage to its local RouterPlatformAgent, containing the original ACLContentNotifica

tionMessage and a copy of Router Agent l' s routing index. The RouterP latformAgent then

creates the new RA - RouterAgent 2 - passing in the donor routing index from RouterAgent 1.

This new RouterAgent 2 then seeks to locate those neighbours it has determined from the ontologies

known within the system (as provided by the creating RPA), that it cannot find within the donor rout

ing index. For each of these neighbours RouterAgent 2 sends out an ACLNeighbourLocationMes

sage, via its local PortalAgent, to be then semantically routed to the appropriate RA. The sequence

diagram shows the resulting message sequence for one of these neighbour RAs. Once the intended

RA - RouterAgent 3 - receives the ACLNeighbourLocationMessage, it adds RouterAgent 2

to its own routing index. Finally, RouterAgent 3 replies directly to RouterAgent 2 with an

ACLNeighbourNotificationMessage, and RouterAgent 2 then completes its routing index entry for

RouterAgent 3 - upgrading it to an actual neighbour and recording the agent's GUID.

In the case where the sought neighbour RA does not yet exist, no further action will be taken by the

originating RA and the routing index entry will remain as an ontology neighbour. The decision to take

133

no further action in this case is based upon the fact that when the un-locatable neighbour RA is created,

it will seek out its semantic neighbours using the process described. Given that the determination of

semantic neighbours is based upon the same ontological information using the same SRMetric imple

mentation, then the originally sought neighbour connection will be created at thi s time.

Router Agent 1 Router Platform Agent
I

ACLRouterCreation
RequestMessage

~

I
I
I
I
I
I

I Router Agent 2 I Portal Agent I .. . ___ . I Router Agent 3 I

I
I
I

ACLNeighbour I

ACLNeighbour :
NotificationMessage

r

ACLNeighbour
LocationMessage

Figure 5.1 : Sequence diagram illustrating neighbour location.

This process of RAs autonomously seeking out their own semantic ne ighbours also ensures that any

new ontological information (due to the notification of the availabili ty of new ontologies) is integrated

into the the existing semantic overl ay network, that has been generated on the basis of the previously

available ontologies. This integration is ensured by the fact that any RAs created after the ontology

notification will have thi s ontology included in the list of available ontologies it is provided with on

creation . The determination of thi s RA ' s semantic neighbourhood then includes concepts from the new

ontology, and the new RA will then seek to make connections with these concepts. Furthermore, once

RAs for these new concepts are created, they will seek out their semantic neighbours on the bas is of all

the ontological information, and so connect themselves into the semantic overl ay network.

If the system were con fi gured differently, and the RAs had access to different ontological informa

tion or used a different means to determine semantic related ness, there would be no such guarantee that

134

the connection would be made once both RAs existed. In this case, there are a number of different

approaches that might be pursued to ensure that these semantic neighbour connections are completed.

Firstly, the RA seeking out a neighbour that does not yet exist could revert to a neighbour location be

haviour, in which it periodically re-sends the ACLNeighbourLocationMessage, and so will eventually

discover its neighbour, after that neighbour is created. An alternative means to ensure the connection is

made would be for the seeking RA to respond to the failure of an ACLNeighbourLocationMessage by

determining the immediate ontological ancestor of the sought concept and then sending out a locator

message for this RA. This would ensure that a connection is made4, as an implied neighbour, to the

concept that is most specific ancestor of the sought concept for which an RA exists. This would then

mean that any subsequent content acquisition message regarding the originally sought concept would

be semantically routed through this ancestor, which would then be able to include the neighbour infor

mation in the donor routing index that forms part of the RA creation process.

The final step in the process of creating and maintaining the semantic overlay network regards the

routing index update process that each RA performs when adding, removing or updating the status of

semantic neighbours. This update process is primarily intended to replace ontology neighbours and

implied neighbours in the routing index with actual neighbours as the relevant RAs are created and the

semantic overlay network is populated. When the appropriate RA receives an ACLNeighbourLocation

Message or an ACLNeighbourNotificationMessage, it will examine its routing index to determine which

updates are required. Firstly, if the new neighbour is not currently present in the routing index, it is

entered as an actual neighbour. Secondly, if the new neighbour is currently present in the routing index

as an ontology neighbour, the GUID of the agent is recorded and its status is upgraded to that of an

actual neighbour. Finally, if the new neighbour is determined to occupy a position in its ontology hier

archy that places it between the RA performing the update, and one of this RA's implied neighbours,

i.e., the implied link 'bridges over' the new neighbour, then this implied neighbour is removed and an

actual neighbour connection to the new neighbour is entered into the routing index. The other part of

this discarded implied neighbour connection is then replaced by the new neighbour RA then seeking out

its own semantic neighbours, which will include this previously implied neighbour.

4Through a process of iteratively moving up the concept hierarchy until an existing RA is found, which in turn is guaranteed
because the root node concepts of all available concepts are always created within SERSE at the time the new ontology is notified
to it.

135

5.5 Answering Queries

The final core function of SERSE is to answer semantically specified queries over annotated resources

that have been indexed within the RA network. Such queries are intended to return the URLs of web

resources whose recorded annotations match the constraints expressed in the query. Queries to SERSE

are expressed in RDQL, defining constraints upon the annotations of the resources sought, and can

contain any combination of concepts and concept properties (including object properties). Queries are

presented to SERSE directly from other agents, or by using the web query interface (or other external

applications) that uses the query API provided as a part of the system. Queries from external query

generation applications are sent to one of the InterfaceAgents within the system, and then on to

the local QueryManagementAgent, where they are sub-divided into atomic queries that each refer

to one concept. Queries originating directly from other FlPA ACL enabled agents are sent directly to

one of the available QMAs.

As a part of the overall SERSE system a web-based query interface system has been developed,

in order to allow queries to be posed to SERSE. This interface is intended to enable non-expert users

to generate semantic queries, using and abstract query model and a graphical user interface to guide

construction of such queries. This user interface and its method of operation is fully described in the

following sub-section. Replies to queries in SERSE fulfill three functions, through the different items of

information that they return to the user. The primary function is to report those indexed resources whose

annotations match the constraints specified in the query. The two secondary functions relate to reporting

back to the user information regarding the replying RA's knowledge of the semantic overlay network

that is, the neighbourhood information contained in their routing indexes. This neighbourhood informa

tion is, firstly, intended to enable the user to modify and recompose the original query using the closely

related concepts. An additional purpose of the exposure of this knowledge is to support the user in a 'se

mantic browsing' mode of resource discovery. The way in which queries are answered, the information

returned to the user, and the intended purposes of the information are fully described in Section 5.5.3.

Finally, the responses from the various atomic queries, that were generated by the QMA from the original

complex query, must be recombined by the QMA to provide an answer to the original query. This reply

re-aggregation process, and associated 'cleaning' processes, are described in Section 5.5.4.

5.5.1 Formulating Queries in the Web Interface

The SERSE multiagent system accepts queries for annotated resources specified in RDQL, and such

queries can enter the system in one of two ways. Firstly, queries can be sent directly to any of the QMAs

136

within SERSE, using the defined ACLCompiexQueryMessage message format. This entry route is in

tended for agents outside of the SERSE system to interact directly at an agent communication level. The

second entry route for queries is via the lnterfaceAgent, and this is intended for non-agent sys

tems to interact with the SERSE agent system. The lA exposes a socket interface that other applications,

user interfaces, etc. can then connect t05• Communication of queries and replies over this interface is

achieved by use of pre-defined query and response messages, and a provided interface client API that is

utilised by the external application. Using this client, different query interfaces can be developed to suit

particular needs.

The primary means provided within SERSE for the expression of semantic queries is through the

web-based query interface. This interface is intended as a user interface that enables users to visually

construct a semantic query, on the basis of an abstract query model. This interface does not require

the user to have knowledge of RDQL, and encapsulates a guided query construction process where the

user selects the concepts, properties, values, etc. in the query from drop-down selection lists, themselves

generated from the available ontologies - see Figure 5.2. In defining a query the user is effectively speci

fying (sets of) instances of the concepts in the available ontologies to be matched against those instances

recorded, by the RAs, as annotating particular resources. The query model used based on the same RDF

semantics as RDQL, constructing the query in terms of RDF triples that may contain variables. The user

selects an ontology, then a concept, then a property of this concept, and finally defines the value of the

property - as a datatype for datatype properties or as another RDF triple specifying a concept instance.

Anyone of the concept, property, and value in these triples can be defined as a variable, and for those

variables referring to datatype properties further constraints on the value can be defined (minimum and

maximum numeric values, etc.).

The interface was developed as a Java applet, in order to have the necessary interaction with the

user and dynamic communication with the multiagent system, via the socket interface managed by the

servlet component of the interface. On activation the applet sends a request to a known lA 6 to obtain an

up to date list of the available ontologies currently known to SERSE. Once this list has been obtained,

the following process is used to define each triple within the query:

• The applet presents the user with the list of the available ontologies, prompting the user to select

an ontology from which to select the definitions to be used in the current query triple .

• On selection of an ontology, the applet communicates with the lA to then fetch a list of the

5However, this could also be implemented by other means, such as by exposing a web service.
6Each interface deployment may be aware of the existence of a number of IAs on different agent platforms within the SERSE

system, and the servlet must implement its own policy to select between multiple available IAs. The currently implemented
policy is to make a random selection between the available agents.

137

..!1';)~, Se .. ", rlY(l'~ e

... 4l ktp;J~.ht"

Co ·:Jtlt,.. Sa¥ltIwtb • " 9J OtUMcl

Till! U N I \, r . • "' I T \ ·
tl/ LI\'r. .'OO I.

c:::=>. I ,
ES PERONf O

~O-YHuIHI.

AIId..,mslO-y ... 1hIIII'1fIII...,. "".-..lcrOUll .. ""'_

hchllfmC_ III'at .. IJfIIGIoWConc MIICtIId 'nIIlttloM "1I$IIffItL

:~LECT 'h: "'IHERE (11 . · IIID~W) ~i9Q.tI2J2;. 'IIf. $.,.,..... n'''M1t '. · hI ''
n.-w (J(w;J(UW-t~~I,III~JIllIkr CfolMt ·'d".1

" .

... jlWWW.CK~·~OfAJIN...I.~~ 1)f1M

..., Coc: • . .,~IaJa.OWLf JowIifItGnfK1~.on
r
flf(lJl: ' ·COC: • . ~J-..-~

(_",."..c:OC:.II¥~CIdl'M JwIIIpfCWllllld-'OIJ If"""

t .. /MIww.nc..,·~~J-I".._at_

'rrnp:.."...c;ICJIr,r,"'HII~ fWI_...-....:~.JII _

fl/WlllW.nc..IN.~~~"''''''''''''1!
htlp: __ .COC 1C.IAI1 bI~' JIrMIM'......-c:,.,..,..Il'II_~

"" __ .cK"euaf-~J"'~
f("lf'EN OEADUl.r;
rrnp:'*""'.cac ~~WldJIrWfIII.otIIIof\'IIItIIctIld~to

... 1AoMw.eOC-:.t*/·~w.dr ~ A

tIt\II:_.cIC-.:x-.YLIINcot.OM.II8ICIJ ""_= ... ""!..-__ ~

-- • 1 Ilftp:JIIww.UC ... IC.a*lbtlcoaOM.k J , ...
SMd..,y a...-v 8tN .. AuI~.nI

tfnII:cKJN.8C.diJ. ... ot.OMA·IRIII~.owItJI(utt~_'11

r
... 1JMrW.cK IC.-J· blKoe.OMA1aIdJ ~~ ... _1I¥

- J

Figure 5.2: Web-based query interface.

concepts defined within the selected ontology, and once returned this li st is di splayed in a drop

down selection box.

• The user then selects one of these concepts, and , fo llowing communication between the applet

and the lA, is presented with a li st of properties that specify that concept within their domain.

• The user then selects a property whose value they wish to restrict, and the applet again queries

the lA for the appropriate range of the selected property. The property range may be that of an

XML datatype value, or of a set of concepts whose instances are acceptable values for the selected

property. If the property is an object property, the value is defined using one or more addi tional

triples, constructed using thi s same process nested with one iteration of itself.

• On completion of the defi nition of a triple, the query is in a state in which it may be submitted to

the system. Alternatively, the user may chose to add an additional triple to the query, attaching it

to the ex isting query specification using boolean logical connectives (AND and OR).

Following one or more iterations of this triple-based query specification process, the user can elect

to submit the query to SE RSE. At thi s point the applet automaticall y generates the RDQL query, using

the abstract query model and user's triple definiti ons. The generated RDQL query is then submitted to

the lA, and then sent on to the QMA, in the same manner as for the simple query interface. On receipt of

138

an ACLComplexQueryMessage, from its local lA, the QMA then acts to manipulate the query into a form

suitable for semantic message routing in the network of RAs, as described in the following sub-section.

Improvements to this approach of generating semantic queries could include further development of the

abstract query model and the applet interface to support the user in editing and modifying the query,

both before submission and subsequent to the reply. Such post-reply modification may be intended as

query refinement or as query 'debugging' . Further developments could improve upon the graphical dis

play of the query specification, especially with regard to triples that are connected by properties in the

query - that is, to more clearly show the 'nested' relationship of these triple definitions. Some of these

issues have been addressed in the development of the web-based query interface for the QuestSemantic

system, that was developed on the basis of this applet interface - as described in Chapter 7.

5.5.2 Query Decomposition

Queries submitted to SERSE may refer to one or more concept definitions, and such queries are, respec

tively, denoted 'atomic' and 'complex' queries. The semantic message routing process utilised in SERSE

requires each message within the network of RAs to be expressed with regard to one concept definition

alone, i.e., all messages must be 'atomic'. Therefore, all complex queries submitted to SERSE must be

decomposed into a set of atomic queries in order to be semantically routed within the RA network. How

ever, the decomposition should preserve the semantics of the original complex query, and also provide

the means to re-compose the set of atomic query replies into a single reply that represents a valid reply

to the complex query. This process of query decomposition and subsequent reply re-combination is per

formed by the QueryManagementAgent - as its primary role in the system. RDF query languages,

like RDQL, are intended to function using a centralised repository of meta-data. The sub-division of

complex queries into sets of atomic queries, that each relate to only one of the concepts referred to in

the original query, is a further unique feature of SERSE. This process enables an individual RA to answer

each of the simple queries, using only 'local semantic knowledge to determine each of the replies.

Decomposition of complex queries is achieved by the QMA by first creating an abstract model of the

query, that will be used both to guide the query decomposition, and subsequently to guide the reply-set

re-composition process. This abstract model of the query is formed by determining which triples within

the query refer to concept URIs, and which triples utilise variables that refer to other triples within the

query. The query is then syntactically parsed and consistent 'blocks' are identified that group together

those triples that make direct or indirect reference to one concept URI. This process may result in some

triples being included in more than one of the atomic queries, and this fact is recorded in the abstract

query model. At the end of the query decomposition process the QMA has the original complex query, an

139

abstract model of this query that recorded how the query was decomposed, and a set of atomic queries,

that collectively preserve the semantics of the original query.

Algorithm 5 Query Decomposition

Require: QMA receives query Q
Ensure: All atomic queries Ql ... Qn are sent

I: Parse query and extract triples T
2: for all variables Vi E Q do
3: Select triple Ti E Q
4: if subject ofTi is Vi and property is RDF: typeOf then
5: Extract concept C that is object of Ti
6: Create atomic query Qc for concept C
7: for all triples 'Fj E Q do
8: if Vi is the subject of triple 'Fj then
9: Add 'Fj to Qc

10: end if
11: end for
12: Send atomic query Qc
13: end if
14: end for

The query decomposition algorthim can be seen in Algorthim 5. This algorithm shows that the de

composition process first separates the query into the component RDF triples. It then operates upon

each of the variables found within the query, as these represent the elements that the individual atomic

queries must collectively retrieve. For each of these variables it is first determined whether that variable

refers to an ontological concept - as opposed to a data-type object, or an instance URI - by searching

through all of the query triples and finding that triple Ti where the subject of the triple is the variable Vi

and the property is RDF : t ypeO f 7. For each of the identified 'concept variables', the algorithm then

generates an atomic query for that concept C, by querying for the current variable Vi and inserting into

the RDQL triple pattern the triple Ti that stated that the sought variable was an instance of the concept.

For each atomic query, the algorithm then searches through all other triples of the original query and

identifies those where the variable sought is the subject of the triple, and adds each of these triples to the

current atomic query. In this way the self-consistent 'blocks' that each define the required properties of

one variable within the query are identified and re-formed as atomic queries. The issue of the concept

hierarchy is handled by, for each concept within the complex query, generating atomic queries for that

specific concept and also for each of the concepts subsumed by it - as defined in the ontology. In this

way atomic queries are generated for each concept whose instances can be classified as instances of the

sought concept. In order to generate atomic queries for all concepts subsumed by the sought concept,

the process must utilise additional information from the ontology - restrictions on class membership that

7This means that for each concept referred to in the query there is an explicit concept-instanciation statement, however, this is
handled in the RDQL generation process within the query interface.

140

may exclude certain sub-classes, class equivalency statements, etc. Following the query decomposition,

the QMA sends each atomic query to the local P A, which forwards each of them to the most appropriate

RA known to it - that is the RA listed in the PA' s routing index that has the highest similarity score

with the concept that is the subject of the atomic query.

In addition to forming a set of atomic queries to represent the original complex query, the query

decomposition process also records information about the decomposition actions taken. This Query

Model records three key sets of information about the decomposition, which are subsequently used to

assist in the reply re-combination process. Firstly, the model records the original query and all of the

generated atomic queries. Secondly, the model records which triples make reference to other triples in

the query by the use of query variables. Finally, the model records the position and type of any log

ical connectives, from the available set AND, OR, NOT, present in the complex query - enabling the

re-combination process to correctly re-apply them to aggregation of the reply-sets.

This query decomposition approach also requires that the QueryManagementAgent must not

only create and send the atomic queries, but it must also perform some management tasks upon these

atomic queries as part of the overall process. This management includes:

• Seeking to ensure that the replies to all atomic queries forming one complex query have been

received before re-combining them. That is, the QMA will wait until all relevant replies have been

received8 before attempting to combine them into a composite reply - using the unique ID labels

of the atomic queries recorded in the generated query model.

• Re-sending atomic queries that have failed - due to timeout, temporary router unavailability, etc.

The QMA will continue to seek replies to unanswered atomic queries until the timeout period for

the original complex query is reached, at which point it will attempt to construct a partial reply us

ing the atomic replies received by that point (see Section 5.5.4). The re-sending of atomic queries

has the potential to generate multiple atomic replies where only one is required. This situation is

handled by utilising the first received reply to any atomic query in the composite reply generation,

and simply ignoring any subsequent atomic replies that have the same query ID.

5.5.3 Answering Atomic Queries

When an RA receives an atomic query, it extracts the query constraints expressed in RDQL and consults

its content index to determine whether it indexes instances of the queried concept. If this RA does not

8Unless a pre-defined timeout period is exceeded, in which case the QMA will generate a partial composite reply using those
atomic replies that have been received within this time.

141

handle the required concept, the query is routed to the neighbouring RA whose concept is most similar

to that queried. Once an atomic query is received by the appropriate RA, the RA matches the RDQL

expression against its RDF content index and identifies any instances satisfying the expression. These

instances are then matched against resources in the RAs annotation index (within the content index),

and the reply to the query is formed by the set of resources annotated with instances matching the query,

along with the URIs of the instances themselves. Included in the reply to the query is information about

the concepts handled by neighbours of the replying RA. The included neighbour information consists of,

for each neighbouring RA, the concept indexed by that neighbour and the RouterAgent GVID. This

information can then be used in follow-up queries and enables users to semantically browse from one

concept to another closely related concept, using knowledge about the semantic neighbourhood of the

replying RA that is revealed by this original query. The query reply is then returned directly to the QMA

that dispatched the query, using the return address specified in the query message. The query answering

algorithm performing this process can be seen in Algorithm 6.

Algorithm 6 Atomic Query Answering

Require: Query Qs received by RAi where Cs = Ci
Ensure: Query result RS returned to QMA

I: Triple pattern of Qs matched against RDF model of RAi

2: Resulting instances Il ... In stored in set S
3: for all instances Is E S do
4: for all instances Ii E content index of RAi do
5: if instance Is = instance I j then
6: Retrieve pointer Ti to linked web resource Ri

7: Add tuple (Ii' Ti) to result set RS
8: end if
9: end for

10: end for
11: Return RS to QMA

A reply to a query consists of a list of web resources, identified by their URLs, whose annotations

match the query constraints, together with the URIs of the relevant annotation instances - see Figure 5.3

- with users being able to access both the returned resources and the meta-data annotations presented.

In addition, these replies also contain a list of the concepts that form tile semantic neighbourhoods of

each the responding RAs.

In addition to the query management actions performed by the QMA, the RAs also behave in a manner

to support the query management processes:

• By re-sending atomic queries to a neighbour that is the target of the query when its unavailability

is possibly only temporary - as indicated by the warning status indicator for the neighbour in the

142

RA's routing index (see Section 4.2.3).

• Immediate neighbours of absent query-target RAs answering in their place with an empty reply.

5.5.4 Reply Re-aggregation

When the QMA has received a reply for each of the atomic queries sent out as part of an original com

plex query, it re-combines the replies by re-applying the cross-reference connections between them, that

were determined when decomposing the complex query. Duplicate resources are also removed during

this process. In those cases where the QMA does not receive replies to one or more of the atomic queries,

due to the temporary unavailability of the RA handling the relevant concept (or where the relevant RA

does not yet exist because there is no annotation data for this concept present within the system), it acts

to address the problem. Firstly, the atomic query can be re-sent, and if this also fails (or a query timeout

period is reached), the QMA forms a partial reply to the query using that information available from those

replies received. This reply is then sent from the QMA to its local lA, and from there to the originating

servlet for presentation to the user.

Algorithm 7 Reply Re-combination

Require: QMA receives all atomic query results nsl··· RSn for query Q
Ensure: Final result set ns f sent to the lA that submitted Q

I: for all result variable Va E Q do
2: Retrieve nsb for concept Cc identified by Vd
3: for all variables R in Q referring to another concept C do
4: Retrieve instance IAe from RS f identified by Rg
5: Retrieve RS h for concept Ci identified by Rg
6: for all instances IB E ns j do
7: if IAe = IBl then
8: Retrieve URL (Tm) of resource nESn linked to Io E RSp

9: Add tuple (IAe, Tm) to working set WSq

10: end if
11: end for
12: end for
13: for all WS do
14: for all resources RESr in result set WSs for Va do
15: ifRESr E any other result set WSt then
16: Extract instance Iu linked to nESr in WSs
17: Add tuple (Ti' Il ... In) to RS f
18: end if
19: end for
20: end for
21: end for
22: Send ns f to lA

143

The query reply re-aggregation algorithm can be seen in Algortihm 7. This algorithm demonstrates

the process by which the cross-references between the query variables are resolved with respect to

the corresponding reply-sets. This re-combination uses the in formation recorded in the relevant query

model, to guide the cross-reference resolution and avoiding the need to repeatedly search through the

reply-sets for the variable references. The re-combination process also re-applies any logical connec

tives present between the triples in the complex query, as al so recorded in the query model. Once the

re-aggregated reply has been generated by the QMA, it is then returned to the lA and on to the originating

client servlet. This servlet then generates the query response page, as shown in Figure 5.3. Responses

to queries are di splayed as li sts of web resources, identified by URLs, that match query constraints to

gether with the URIs of the instances that annotate them. In addition, query replies also contain a lis t of

the concepts that are neighbours of each the responding agents. This enables follow-up queri es in which

the original query is modified by changing the property values of concepts, exchanging one concept for

a similar one, broadening or narrowing a query by substituting ontological ancestors or descendents of

a concept, etc. This combination in one system of support for both direct querying for web resources

and browsing of available resources, both using the semantic of the resources and queries, is a novel

approach to locating and retri eving semantic web resources. At present such query modifi cation, or

'semantic browsing' across neighbourhoods, is applied manually via the query interface, but thi s infor

mation could be applied to automatic query modification procedures.

I \
ESPERQNTO

~eartn f'esutrs ·6
T H E UNIVERS I1'V

,,/ L I \ ' U f'OOL

Re.,,,,,,,,,
f' F']0·310 httpJI'WWW Clt bv.QCukI-blacoclOWUf'Q·; IO

f"f _QIO hltp:lfWWW Clc.bv.ac.ukI-blacoelOWl..Jf'O-310

Ff_QI8 httpJ/WwW,Clt.Irv.U .ukI-bllcodOWl..JfO·310

httpJIwww.c.c.hv.ac.ukI- b.cocfOWlJFun4]1fL4er.owk.IOiscount

hltp /lwww.c.c hv.ac.UW-blacocfOWUfund]inder.owUlf"undula...Body

tutpJ/www elc !lv ac ukI-blacodO\l/lJFund]indc' ow1AfundinlLOpPortunlly

httpllwww,csc !Iv ae ukI""blacoelOWUFUIld]indtr owt#lNegotiator J~ody

httpJIwww,c.c hvac.UIcI-b.codO\oVUF'und]indc:r,owIIObJectLve

hnpJIwww,c.c.!ivac.ukI- blacocfOWlA'unc1]indc:r.owMlONlcl::ItPubhcalion

http /lwww elchvac,UkI-bacodOW'LlFund]Wlc1crawtllPropn

Figure 5.3: Query results display.

144

Part III

Evaluation

145

Chapter 6

Experimental Evaluation

This chapter presents an experimental evaluation of the SERSE system, investigating both the overall

function of the query answering process, and focusing on the operation of the underlying semantic

similarity and relatedness metric, and its comparison with related systems.

Section 6.1 describes the intentions of the experiments conducted, and then section 6.2 describes the

general experimental proceedure, and provenance of the data used in the experiments. Section 6.3

details each of the different specific experiments conducted, and presents their results along with a brief

analysis and discussion of the meanings of these results. Finally, Section 6.4 presents an overview of

the main conclusions that can be drawn from the experimental results.

6.1 Experimental Plan

The experimental evaluation of SERSE can be divided into two main sections, each of which investi

gate and evaluate different aspects of the system performance. The first set of experiments regard the

performance and scalability of the overall system. These experiments have mainly focused upon the

query response timings as a key indicator of system performance, and on investigating the effect of

various system states on these response times. The aim of these experiments is, firstly, to demonstrate

that SERSE is able to answer complex semantic queries in a reasonable time period, and, secondly, to

evaluate how increases in RouterAgent network density affect these response times. The second

section of experiments regard the function of the semantic similarity and relatedness metric (SRMet

ric). These experiments have, firstly, investigated the effect of adjustments to the heuristic element

weightings used within the metric calculation upon the metric performance and consequent effect upon

the RouterAgent network topology. Secondly, these experiments compare the performance of the

SRMetric with other systems that perform calculations of semantic similarity and relatedness between

ontological concepts.

146

6.1.1 System Performance and Scalability,

The two main variables that can directly affect the performance of SERSE, in terms of response times

to queries, are: the degree of complexity present in the semantic query, and the density of the the

RouterAgent (RA) network. In the first case, a semantic query expressed in RDQL can vary in com

plexity in a number of different ways, and each of these will have differing effects on the performance

of SERSE, particularly in terms of effects on the processes to decompose complex queries and to re

aggregate the results from a number of atomic sub-queries. In the second case, the number of RAs

present within the system will affect the query response times, both in terms of the number of RAs a

query will pass through on a semantic routing path, and in terms of the number of semantic neighbours

that each RA on the routing path has to consider when performing the routing process.

The first section of three experiments were intended to investigate the different effects of these

variables on the query response time of the system:

• Experiment 1 examines the query response times achieved when varying the query complexity, in

a number of pre-defined ways.

• Experiment 2 examines the query response times achieved when varying the semantic message

routing path-length.

• Experiment 3 examines the query response times achieved when varying the semantic neighbour

hood density of the RAs on a message routing path.

6.1.2 Semantic Relatedness Metric Evaluation

The key element of the entire SERSE system is the Semantic Relatedness Metric, which underlies both

the formation of the semantic neighbourhoods (and consequently the entire RA network topology), and

the semantic routing of queries and other messages within the RA network. The second section of three

experiments were intended to investigate, firstly, how variation of the metric's parameters affect its func

tion, and, secondly, how the function of the SRMetric compares with other systems performing a similar

task. Experiment 4 examines the effects of varying the internal, heuristic weighting parameters of the

SRMetric upon the network formation effectiveness and query response times. The results ofthese eval

uations were then used to 'tune' the metric performance by adjusting the relative values ofthe weighing

factors, in order to achieve an optimum metric performance. Experiment 5 compares the performance of

the SRMetric with two other systems that measure semantic similarity between concept definitions (Le.,

147

ontology alignment systems). This experiment compares the semantic neighbourhoods (within a single

ontology) that are determined by the different systems, and measures these against a manually calcu

lated 'Gold Standard'. This 'Gold Standard' determination of the semantic neighbourhoods of each of

the concepts within the ontology was determined by an independent third party to represent an optimal

set of neighbourhood connections based upon the concept semantics. Finally, Experiment 6 examines

how the SRMetric compares with an ontology alignment tools when determining neighbourhood links

between two heterogeneous ontologies: that is, how well does the SRMetric perform when comparing

concepts defined in different ontologies, when compared to ontology alignment systems.

6.2 Experimental Procedure

Before proceeding with the descriptions of the experiments themselves, it is necessary to briefly cover

the three vital points of experimental procedure: one, what systems were experiments performed upon;

two, where the test-data used in the experiments comes from; and, three, how the result measurements

are obtained from the system during the evaluation. Therefore, the next sub-section will describe the

experimental environments, in terms of the hardware, software and network setups of the experimental

systems. The following sub-section describes the provenance of the various sets of data used in the

different experiments, and the reasons for selecting these data-sets. The final sub-section then describes

how the different experimental measurements were obtained from the system, and what these figures

represent.

6.2.1 Experimental environments

The environment for an experiment consists of the hardware, software and network conditions apply

ing during the execution of the experiment. The different experiments presented in this chapter were

performed in different two experimental environments, with all the experiments utilising timed results

being performed within one environment, and the other non-performance related experiments being ex

ecuted within a different environment.

The first experimental environment was used for Experiments 1,2 and 3 - so that the timing results

for these experiments were comparable. This environment consisted of:

1. Hardware - Asus Laptop PC with Intel Pentium M 2.0GHz. CPU, 1Gb RAM, and supporting

100Mb/s Ethernet networking.

2. Operating System - Microsoft Windows XP, upgraded with Service Pack 1.

148

3. Other Software - Resin Web Application Server I Servlet container. Sun Java SE SDK 1.4.

4. Network - 100Mb/s Ethernet network carrying IPffCP messages.

The second experimental environment was used for Experiments 4, 5 and 6 - as these experiments

did not report performance results that required comparison with results from the earlier experiments.

This environment consisted of:

1. Hardware - Apple iBook G4 with PowerPC l.3GHz. CPU, 1Gb RAM, and supporting 100Mb/s

Ethernet networking.

2. Operating System - Apple OS X 10.4 (Tiger).

3. Other Software - Tomcat Web Application Server I Servlet container. Sun Java SE SDK 1.4.

4. Network - 100Mb/s Ethernet network carrying IPffCP messages.

6.2.2 Input Data-Sets

Given the specific task of SERSE - to index and retrieve semantically annotated resources - it is neces

sary to have test data-sets that contain three types of data: an ontology encoded in OWL or RDFS, a set

of RDF instances of concepts from that ontology (a knowledge-base), and a set of web resources, each

annotated with one or more instances. This requirement means that there have been limited options for

test data-sets to use with SERSE, as the availability of such data is severely limited.

Manual creation of test data-sets was not feasible due to limited time and resources, and would

not have significantly have improved upon the test data-sets available within the Esperonto project -

- both of which have been utilised. Consideration was given to the use of either partially or entirely

synthetic data-sets obtained through a process of automatic generation of ontologies, concept instances,

and resource annotations. Limited use of synthetic data contributed to the Galen data-set (described

below) by providing randomly generated resource URLs as placeholders for resources that actually

embody the semantics expressed in their annotations. However, the decision was taken not to make

further use of synthetic data-sets because of the potential skewing of the semantics expressed within

the ontologies, instance-sets and resource annotations. In this context, 'skewing the semantics' would

include any ontological or metadata statements that did not reliably reflect the semantics implied by their

context and usage, and which disrupted the semantic integrity of related statements. Any such disrupted

semantics could then lead to an anomalous topography of the semantic overlay network inter-connecting

SERSE which relies on these semantics. Such anomalous topographies could severely interfere with the

149

operation of SERSE, and this would invalidate any experimental results obtained in this way. There are a

number of ways in which, wholly or partially, synthetically generated data-sets could skew or disrupt the

overalI semantics of the information available to SERSE. It is possible, with varying degrees of success,

to generate each of the three required elements of a SERSE data-set - but each of these synthetic elements

could produce 'skewed' semantics in different ways.

• Ontologies - Ontologies should seek to express the semantics of the entities they describe, both

in the individual concept descriptions and in the context provided by the concept's position in the

ontology hierarchy. That is, an ontology should be internalIy consistent. Synthetic generation

of ontologies therefore requires some means to artificially generate meaningful semantic descrip

tions, that are inter-related in a way consistent with those descriptions. Clearly, any ontology

generation process requires a source of knowledge upon which to base the ontology construction,

in order to provide the required semantics. The learning of ontologies from, usually large collec

tions of, knowledge sources is a research area in itself, but even the best performing approaches

are not able to produce sufficiently rich and precise semantic descriptions to enable SERSE to

operate as intended.

• Instances - As with ontological descriptions of concepts, instances should accurately reflect the

intended semantics of the concept they instanciate. Specifically, the label attributed to the in

stance and the values attributed to the appropriate properties should 'make sense' in terms of the

described semantics, so that an indexing system can make use of them. SERSE, like any other

system seeking to index semantically annotated resources, must consider the entire index pop

ulation when determining inter-connections between annotations, and so the entire semantics of

the metadata annotations should be self-consistent. Therefore, synthetic generation of instances

in isolation is not feasible, they should reflect some underlying domain of knowledge, rather than

simply being a collection of un-related instances consisting of random properties and values. A

realistic knowledge-base of instances could be generated using real knowledge sources, and is

usually considered to form a part of ontology learning. However, as noted above, current ap

proaches do not produce very precise or detailed semantics. In addition, the algorithms employed

in the ontology learning process also have the potential to introduce some skewing of the seman

tics, that would then affect the operation of SERSE.

• Annotations - Semantic annotations attached to digital resources, that reference instances of on

tological entities in their statements, should also accurately reflect real world semantics in order

to behave 'realistically' within a semantics-based system such as SERSE. That is, resources of

ten refer to the instances of a number of ontological concepts, and, in order to make fulI use of

150

the semantic query processing abilities of SERSE, this sort of cross-referencing should remain in

tact. For example, a web-page describing a university building could be annotated with metadata

statements that reference instances of the concepts UNIVERSITY and BUILDING. A semantic

query can require that matching resources refer to instances of both these concepts, and that those

instances have properties that meet certain specified criteria. Therefore, any synthetic annotation

generation process for SERSE should generate a consistent collection of annotations that reflect

the domain of knowledge required. A sufficiently complex synthetic annotation generation pro

cess was beyond the scope of this thesis, and would amount to creating an automatic processes

to semantically annotate resources on the basis of given ontologies and their extensions, such as

the Annotation System component of Esperonto. The data-sets available within the Esperonto

test-cases contain collections of annotations generated by the Annotation System, and these have

been used within these experiments. However, the annotation process requires the creation of

specialised resource wrappers, and there are only two sets of case-study wrappers available from

the Esperonto project. Finally, a limited form of random generation of synthetic annotations was

used within the Galen data-set (described below), but the resulting collection of met ad at a reqired

extensive modification to create appropriate instance co-occurence information, for subsequent

use by SERSE - which would be impractical for large-scale annotation generation.

Therefore, out of the limited choice available, different real data-sets have been utilised in different

experiments, dependent on the experimental aim. Furthermore, in some cases it has been necessary

to utilise partial data-sets, with placeholders used as substitutes for resource URIs, but only when this

would not effect experimental results. These composite data sets, consisting of ontology, knowledge

base and annotated resources, are:

1. FundFinder - Test-case data-set from the Esperonto project, developed to represent public fund

ing opportunities for SMEs in Catalunya. Consists of 49 concepts and 118 instances.

2. CulturalTour - Test-case data-set from the Esperonto project, developed to represent a collection

of Spainish cultural artefacts and information resources. Consists of 58 concepts and about 61000

instances.

3. Galen - A data-set generated using the OWL translation of the full Galen ontology from the CO

ODE projectl. The Galen ontology represents large-scale medical and clinical terminologies, and

consists of around 10,000 defined concepts. The existing Galen data-set already contained an

ontology and a set of instances, with only the annotated resources element not present. Therefore,

Iwww.co-ode.orglgalenl

151

to complete the data-set, random URIs were generated to represent web resources annotated with

instances of the ontology's concepts.

4. UKResearchGroup (UKRG) - An ontology and knowledge-base, created at the University ofLiv

erpool, to represent the members, projects and publications of an academic research group. Con

sists of 38 concepts and 173 instances.

5. OAEI - Consists of the benchmark ontology from the 2005 Ontology Alignment Evaluation Initia

tive (OAEI). This ontology was constructed as the reference ontology for the ongoing evaluation

effort, and is used as the basis of all the evaluation tests and benchmarks.

6. QOM - Consists of two ontologies, with overlapping domains, selected from the Quick Ontology

Mapping (QOM) system evaluation test-data: RussialA and RussialB. Both of these ontologies

represent the domain of tourism in Russia, but in significantly different ways. Usage of the QOM

evaluation data provided both a pair of ontologies concerning the same domain, and enabled di

rect comparison of the results with those of QOM.

6.2.3 Result Data Capture

The different experiments conducted required differing types of data to be collected from SERSE in

order to quantify the results. Experiments 1,2 and 3 all required query response times to be recorded

from a functioning SERSE system. Experiment 4 also required query response timings to be recorded,

and required the recording of average neighbourhood sizes for all RouterAgents present in a SERSE

system. Experiments 5 and 6 required the recording of individual RouterAgent s' neighbourhoods,

specifying which concepts were determined to be within the neighbourhoods of other concepts, and

then comparison of these neighbourhood sets with other such sets - generated by other means. These

different types of data were collected from the SERSE system by different means, as follows:

• Query response timings were generated from the system logs, after the experimental runs were

completed. The logging process (implemented using log4j) was specifically adapted for the ex

periments to log data from all agents in the system into a single composite log file. This file then

recorded details of all queries posed to the system, and tracked the transmission of all messages

(sub-queries, sub-query responses and query response) resulting from receipt of a query. The ac

tual timing results were semi-automatically extracted from the logs by use of special XML tags

indicating which log entries contained timing data, and to which query these times applied .

• Neighbourhood sizes were also recorded in the system logs. The logging system was again specif

ically adapted for this experiment, recording every addition to an RA's neighbourhood, and these

152

log entries were identified with XML tags that enabled semi-automatic extraction, and subsequent

calculation of average neighbourhood sizes .

• Neighbourhood compositions were determined by use of the SRMetric operating within a 'test

harness'. This enabled the specification of two source ontologies, from which the concepts were

extracted. Each of these concepts was then semantically compared with all of the other con

cepts from both ontologies, and for each concept a semantic neighbourhood was determined and

recorded.

6.3 Experiments

In this section we provide the detailed experimental descriptions for the six different experiments per

formed upon SERSE and the SRMetric as a part of this evaluation. Each experiment is described in

terms of the experimental aim, the experimental method employed, and the specific experiment results,

including pictorial representations of these results. An analysis and discussion of the various experi

mental results is presented in the following section.

6.3.1 Experiment 1: Query response times.

The primary purpose of this experiment is to demonstrate that SERSE is able to answer queries within

an acceptable time, for a end-user facing query engine. A secondary purpose is to show that process

of decomposing queries, obtaining replies from different RAs and then re-aggregating replies does not

impose an unreasonably high overhead on the query answering function. Therefore, the primary hypoth

esis being tested is that responses to queries are received within 1 second of query submission from the

user interface. The rationale for this time limit is that 1 second clearly represents a timely response from

the point of view of the end-user, and up to 5 seconds could be deemed acceptable2• The limit selected

is towards the lower end of this acceptable range because the experiment is being performed upon a

relatively small distributed index, and response time would be expected to increase with index size -

though only in an approximately linear manner (see Experiments 2 and 3). The secondary hypothesis

is that the increasing complexity of the queries does not increase the response time when compared to

separately querying the individual indexes involved in the response. That is, a complex query that re

quires responses from 7 RAs (such as query 20 in the FF data-set) should not take longer that 7 queries

to a single RA (as with queries 1 to 5 in each data-set). This is intended to demonstrate that the cost of

decomposing the query and recomposing the reply is not greater than the time gained by submitting the

2 As supported by comments from independent end-users of QuestSemantics (see Chapter 7).

153

queries in parallel when compared to executing them in sequence against a single index (with similar

communication overheads).

The conditions under which the experiment was carried out were as follows:

• System - Asus Laptop PC with Intel Pentium M 2.0GHz. and 1Gb RAM, Microsoft Windows

XP, running SERSE within a Sun Java SE SDK 1.4 JVM and using the Resin Web Application

Server for hosting the web interface .

• Dataset - Experiment 1 used the FundFinder and Cultural Tour data-sets, developed as test-case

demonstrations within the Esperonto project. Experiment 1 used all three elements of these data

sets, plus a set of 20 pre-defined queries specified for each data-set.

Aim - To determine the response time of the system when answering queries for annotated resources,

by recording the average round-trip reply time for a set of twenty pre-defined queries. This experiment

also tests the performance of the query management processes, as the queries increase in complexity (in

terms of the number and types of constraints they contain). Finally, the experiment provides a base-line

comparison for the results, by executing the same queries over the same knowledge-base when it is

stored in a single RDF model- as opposed to being distributed across a number of RouterAgents.

This comparison thus offers some insight into the overall processing costs involved in the use of the

multi agent system.

Method - The annotated resources, from the FF and CT data-sets, are notified to SERSE, which results

in the construction and population of a network of RAs to index these resources. A single experimental

run consists of each of the twenty pre-defined queries being input to SERSE, with each separate query

and reply cycle performed consecutively and independently. For each of the data-sets a total of one

thousand experimental runs were conducted, each recording the time taken to perform every query and

response cycle, and then calculating the average time taken for each of the queries. For comparison

purposes the same set of queries were posed to a single RDF model (built in Jena) containing all of the

instance meta-data in the data-set. As before, the queries were repeated 1000 times, and the average

response time recorded.

The twenty pre-defined queries were designed to vary in complexity by changing the types and

n~mbers of constraints present in _the queries. The four main ways in which the types of constraint can

vary, in order of computational complexity, are:

1. querying for a single variable with no other variables present in the query;

154

SELECT ?X, ?z WHERE
(?x, <http://www.w3.orgl1999/02l22-rdf-syntax-ns#type>, <http://www.csc.liv.ac.ukl-blacoe/OWU
Fund_Finder.owl#Discoun1»
(?x, <http://www.csc.liv.ac.ukl-blacoeIOWUFund_Finder.owl#Aims>. ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, <http://www.csc.liv.ac.ukl-blacoe/OWU
Fund_Finder.owl#Objective»
(?y, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#obJectiveName>, "Company_Creation")
(?x, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#negotiated_bp, ?u)
(?u, <http://www.w3.org/1999/02l22-rdf-syntax-ns#type>, <http://www.csc.liv.ac.uk/-blacoe/OWU
Fund_Finder.owl#NegotiatocBodp)
(?u, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#actsForBodp, ?t)
(?t, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, <http://www.csc.liv.ac.ukl-blacoe/OWU
Fund_Finder.owl#State_Funding_Body»
(?z, <http://www.w3.orgl1999/02l22-rdf-syntax-ns#type>, <http://www.csc.liv.ac.ukl-blacoe/OWU
Fund_Finder.owl#subvention»
(?z, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#Deadline>, "30-juny-2005")
(?z, <http://www.csc.liv.ac.ukl-blacoelOWUFund_Finder.owl#Aims>. ?w)
(?w, <http://www.w3.org/1999/02l22-rdf-syntax-ns#type>, <http://www.csc.llv.ac.ukl-blacoe/OWU
Fund_Finder.owl#Objeclive»
(?w, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#objectiveName>, "Quality")
(?z, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#hasRelatedRegulation>, ?v)
(?v, <http://www.w3.org/1999/02l22-rdf-syntax-ns#type>, <http://www.csc.liv.ac.ukl-blacoe/OWU
Fund_Finder.owl#DiarLOficiaLde_la_Generalila,-de_Calaluny8»
(?v, <http://www.csc.liv.ac.ukl-blacoe/OWUFund_Finder.owl#dale>. "26104/1996")

Figure 6.1: Query 20 from FundFinder dataset.

2. querying for multiple variables with no cross-reference between the variables;

3. querying for a single variable with cross-reference to one or more non-result variables;

4. querying for multiple variables with cross-references to one or more non-result variables.

Within each of these four groups of queries, five separate queries are defined, each progressively

increasing the number of query constraints. In this way, we obtain a set of twenty queries that represent

an ordered spectrum of query complexity, in order to fully test the performance of the query decompo

sition and reply re-aggregation processes. Figure 6.3.1 illustrates the most complex query we posed for

the FP data-set. This query demonstrates the multiple result variables (x and z), the non-result variable

cross-references (y, u, wand v), and the multi-layer cross-references (x to u and then to t) that all con

tribute to the high complexity of this query.

Results - Figures 6.2 and 6.4 show the average response time for each of the twenty queries, using the

two data-sets FF and CT respectively. As would be expected, the response time increases significantly

with the complexity of the queries - given that query 1 involves only one responding RA and query 20

involves seven RAs in the response. Comparing these results with those obtained by querying the single

RDF model, shown in Figures 6.3 and 6.5 for the FP and CT data-sets respectively, we can see that the

relative increase in response time due to increasing query complexity is similar (though with interesting

exceptions, as discussed below). In addition, comparing the actual response time for the same queries

using SERSE and a single RDF model, we can see that the cost of distributing the semantic resource

155

Cii .s
Q)

:§
Q)
CIl
c
0
a.
CIl

~
Q)
Cl
~
Q)

~

600

500

400

300

200

100

0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Query number

Figure 6.2: Average query response times for FF dataset in SERSE.

index across a multi agent system varies between 44 ms and as much as 483 ms. Nevertheless, the re

sponse times recorded demonstrate that SERSE is able to provide timely answers to queries , despite the

performance overhead of the multiagent system.

Overall the results of Experiment I concerning the response times for di fferent queries shows that SERSE

requires more time to answer the queries, when compared with executing the same queries against the

same meta-data stored in a single RDF model. This is the predicted resul t, as SERSE adds a number

of different overheads to the query answering process, such as the messages exchanged to enable the

semantic message routing and the system's self management, and the query decomposition and reply

re-aggregation processes. It should be noted that the results for querying the single RDF model are not

intended as a "control" compari son for SE RSE. The single RDF model is strictly limited in size, based

upon the memory capacity of the host machine, whereas SE RSE is specifica lly intended to be di stributed

across a number of host machines in order to be able to manage an RDF model that is orders of magni

tude larger.

However, within these results, there are some anomalies with queries numbered 14, IS, 18, and 19

for the Cultural Tour data-set. We have identified a number of factors contributing to these anomalies,

largely relating to the large number of resources and instances returned by each atomic query, requir

ing cross-matching and duplicate detection, and increasing message transmission time. These issues

are directly related to the specific ontology being handled, and in particular with the relative instance

156

(j)
§.
Q)

E
:;::
Q)
Ul
c
8.
Ul

l!!
Q)
Cl
~
Q)

~

80

60

40

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Query number

Figure 6.3: Average query response times for FF dataset in Jena.

distribution within them. The Cultural Tour data-set has some unusual features in this respect: around

half of the instances instantiate only three concepts, while the other half populate the remaining classes,

and this unusual distribution is the primary cause of the anomalies. By creating a network of RAs that

are each responsible for one concept out of all those known to the system, SERSE is splitting the global

RDF model into smaller components, whose size depends on the number of instances for each concept.

This can have a significant effect on response time for queries requiring cross-referencing of atomic

query results from different RDF models. Normally such queries would not cause efficiency issues, as

shown by the response times obtained for the Fund Finder data-set (Figure 6.2). However, when the

RAs involved in the query answering handle particularly large ex tensional models (as in the Cultural

Tour data-set where three classes each have around 10000 instances), then the performance degrades

significantly.

Conclusion - The experiment broadly supports the primary hypothesis, that responses to queries are

received within I second of query submission, except under certain conditions described above. In gen

eral, the query response time is of the order of 0.1 sec to 1 sec - with the exception of a number of

queries in the CT data-set. Of these, queries 12, 16, 17 and 20 have response times in the order of I to 4

seconds, which, although outside the strict bounds set by the hypothesis, is still within the upper identi

fied limit of 5 seconds. Queries 14, 15, 18 and 19 have response times that are significantly greater than

the hypothesis limit, being in the order of 60 to 110 seconds. The primary reason for this, as identified

157

en
5
a>

.§
a>
VI
c:
8.
VI
~
a>
Cl
~
a>

~

en
E-
a>
E
"" ID
VI
c:
8.
VI
~
ID
Cl

"' ID
> «

120000

100000

80000

60000

40000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query number

Figure 6.4: Average query response times for CT dataset in SERSE.

800

600

400

200

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query number

Figure 6.5: Average query response times for CT dataset in Jena.

158

above, regards inefficiency in the RDF content index handled by each RA - which appears to be over

whelmed by the numbers of instances recorded in the indexes for four of the concepts in the data-set3•

The underlying cause of this appears to be the use of an in-memory RDF model for the index, rather

than a relational database managed model, which have been shown to be far more able to efficiently

handle large numbers ofRDF statements (as in the QuestSemantics system described in Chapter 7).

The experiment does support the secondary hypothesis, that the increasing complexity of the queries

does not increase the response time when compared to separately querying the individual indexes in

volved in the response. Therefore, the process of decomposing queries and recomposing replies does

not impose an unreasonable overhead on the overall query answering function.

6.3.2 Experiment 2: Additional neighbours timing scenario.

The purpose of this Experiment is to demonstrate that the query response time of SERSE remains

bounded as the size of the index increases, in terms of the number of separate indexes within the net

work. That is, more indexes within the system means that, on average, each RA within the system has

more neighbours. This in turn means that, on average, each RA has to consider more potential targets for

a message, thus adding to the query processing time overhead at each RA on the route of a message. The

additional cost imposed can be examined by considering the effect on query response time of varying

the number of neighbours a single RA has to consider when routing a query message (without altering

the final destination of the message). In order for response time to remain bounded as index numbers

increase, the addition of neighbours to an RA should not impose an exponential increase on the response

time. Therefore, the hypothesis being tested is that the response time increases linearly with the num

ber of neighbouring RAs an individual RA has to consider when it is determining where to forward a

semantically routed message.

The conditions under which the experiment was carried out were as follows:

• System - Asus Laptop PC with Intel Pentium M 2.0GHz. and 1Gb RAM, Microsoft Windows

XP, running SERSE within a Sun Java SE SDK 1.4 JVM and using the Resin Web Application

Server for hosting the web interface.

• Dataset - Experiment 3 used the FundFinder and Galen data-sets. FunderFinder was developed as

a test-case demonstration within the Esperonto project, and Galen is constructed data-set consist

ing of a fragment of the full Galen ontology and knowledge-base along with a semi-synthetically

3Compounded by the large numbers of properties (greater than 10) for many of the concepts in the ontology.

159

generated annotation set. Experiment 3 used all three elements of these data-sets, plus a pre

defined query and content notification schedule for each data-set.

Aim - To determine the effect upon the query response time when the number of neighbours an indi

vidual RA has to consider, when seeking to semantically route a pre-defined query message, is varied.

The experiment also enables an estimation of the average time taken for a single SRMetric comparison

between two given concepts.

Method - In order to set up this experimental scenario, the sequence of content notification messages

in the FF data-set (that populate the RA network with the content metadata) was modified so that the

number of semantic neighbours associated with the tested RA could be controlled. The scenario consists

of an examination of one RA within the network, selected because it lies on the known routing path of

a pre-defined query within a known network topology. The modified sequence of content notifications

mean that the size of the examined RA's neighbourhood can be incremented prior to each execution

of the query - but without any other variations in the network being introduced. In this way the query

response times associated with each of the neighbourhood sizes is recorded, which demonstrates the

effect of varying the number of neighbours (that a RA must consider in order to semantically route a

message) upon this response time. The entire experimental run, including all content notifications and

queries, is then repeated one hundred times to obtain an average set of results.

Due to the relatively small size and low complexity of the ontology in the FP data-set, use of this

data-set in this scenario only allows a maximum of five neighbours for anyone RA in the populated net

work. Therefore, this experimental scenario was repeated using the Galen data-set, along with a suitably

modified content notification sequence and a pre-defined query. Use of this data-set enabled examina

tion of a RA with up to fourteen semantic neighbours - for example, the concept GenericBodyProcess

has fifteen direct sub-concepts, thus allowing the number of neighbours for the RA responsible for this

concept to vary between one and fourteen.

Results - Figure 6.6 shows the average query response times obtained in this scenario for the FF data

set, and Figure 6.7 shows the corresponding response times for the Galen data-set. These results illus

trate that the increase in query response time caused by the addition of neighbours to an individual RA,

lying on the routing path of the query, is only a small fraction of the total response time. Furthermore,

the addition of RAs to an existing network, as the neighbours of RAs performing semantic message

routing, produces only a small, and approximately linear, increase in query response time - which, in

turn, indicates that the system as a whole is scalable. The results of this experiment also enable the

160

(j)

.s
Ql
E
:;:;;
Ql
rJl
r::
0
c.
rJl
Q)

a:

(j)

.s
Q)

E
."
Ql
rJl
r::
0
c.
rJl
Ql
a:

80

70

60

50

40

30

20

10

0
2 3 4 5

Query set

Figure 6.6: Average query response time in Experiment 2 using FF dataset.

80

60

40

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Query set

Figure 6.7: Average query response time in Experiment 2 using Galen dataset.

161

calculation of the average time required for a single SRMetric calculation, and this can be estimated as

approximately 3ms. Overall, these results demonstrate that SERSE is able to dynamically adjust its net

work of RAs, in order to cope with the notification of new content and the consequent addition of new

RAs into neighbourhoods, without significantly degrading performance in terms of query response time.

Conclusion - The experiment supports the hypothesis, that the response time increases (approximately)

linearly with the number of neighbouring RAs an individual RA has to consider when it is determin

ing where to forward a semantically routed message. That is, the additional cost in response time of

additional neighbouring RAs within the system increases by approximately the same amount for each

addition. Furthermore, this increase represents only a small fraction of the total response time - about

4 to 6%. This adds supporting evidence that the distributed index in SERSE is able to scale to handle

very large numbers of nodes, given that the average number of neighbours for an RA only increases as a

fraction of the total number of concepts indexed.

6.3.3 Experiment 3: Additional agents timing scenario.

The purpose of this Experiment is to demonstrate that the query response time of SERSE remains

bounded as the size of the index increases, in terms of the number of separate indexes within the net

work. That is, more indexes within the system means that, on average, each query message will have

to traverse more RAs within the system in order to reach its target RA. The message will, on average,

need to be received, semantically routed and re-transmitted more times in a larger network, thus adding

to the overall query processing time overhead over the whole query routing process. The additional

cost imposed can be examined by considering the effect on query response time of varying the number

of RAs along the routing path of a single query message (without altering the final destination of the

message). In order for response time to remain bounded as index numbers increase, the addition of

RAs to the routing path of a message should not impose an exponential increase on the response time.

Therefore, the hypothesis being tested is that the response time increases linearly with the number of

RAs an individual query message has to traverse in order to be semantically routed to its target.

The conditions under which the experiment was carried out were as follows:

• System - Asus Laptop PC with Intel Pentium M 2.0GHz. and 1 Gb RAM, Microsoft Windows

XP, running SERSE within a Sun Java SE SDK 1.4 JVM and using the Resin Web Application

Server for hosting the web interface .

• Dataset - Experiment 3 used the FundFinder and Galen data-sets. FunderFinder was developed as

162

a test-case demonstration within the Esperonto project, and Galen is constructed'data-set consist

ing of a fragment of the full Galen ontology and knowledge-base along with a semi-synthetically

generated annotation set. Experiment 3 used all three elements of these data-sets, plus a pre

defined query and content notification schedule for each data-set.

Aim - To determine the time effect upon query response time when the number of RAs traversed during

the semantic routing of a query message are varied. As in Experiment 2, the aim is to see how the

system responds to an increase in workload due to introducing additional RAs along the routing path of

a query. However, in this case the experiment shows the additional cost of routing the message through

an increasing number of RAs.

Method - In order to setup this experimental scenario, the sequence of content notification messages

in the FF data-set (that populate the RA network) was modified so that the number of RAs lying on the

known routing path of a pre-defined query could be controlled. The scenario consists of examining one

RA within the network, selected because it lies on the known routing path of a pre-defined query within

a known network topology. The modified sequence of content notifications mean that each time the

query is posed to the system, it has to be routed through an additional RA (created due to an intervening

content notification) is order to reach the intended RA - but without any other variations in the network

being introduced. In this way the query response times were recorded for each of the different number

of RAs on the message routing path, and so would demonstrate the effect on query timings of varying

the number of RAs that message must traverse when being semantically routed. The entire experimen

tal run, including all content notifications and queries, is then repeated one hundred times to obtain an

average set of results.

However, as in Experiment 2, the FF data-set does not allow much variation of the number of RAs

on the path of anyone query. Therefore, this experiment was also repeated using the larger Galen data

set. This allows up to fifteen RAs on any individual query path - for example, the concept TopCategory

has a chain of fifteen successive decendents that allows the number of RAs along the path of a query for

AcuteErosionOfStomach to vary between one and fifteen.

Results - Figure 6.8 shows the average query response times obtained in this scenario for the FF data

set, and Figure 6.9 shows the corresponding response times for the Galen data-set. As in Experiment

2, these results illustrate that the increase in query response time due to the addition of new RAs along

the routing path of a query is only a small fraction of the total response time. Furthermore, the ad

dition of RAs to an existing network, as additional nodes to be traversed during a semantic message

163

60

50

Ul 40
.E-
Q)

E
:0:>

30 Q)
Cl)
c
0
Co
Cl)
Q)

20 er:

10

0
2 3

Query set

Figure 6.8: Average query response time in Experiment 3 using FF dataset.

80

Ul
.E- 60
Q)

E
:;:::
Q)
Cl)
c
8. 40
Cl)
Q)

er:

20

2 3 4 5 6 7 8 9 10 11 12 13 14
Query set

Figure 6.9: Average query response time in Experiment 3 using Galen dataset.

164

routing, again produces only a small, and approximately linear, increase in query response time - which

further indicates that the system as a whole is scalable., The results of this experiment also enable the

calculation of the average time required for a single SRMetric calculation, and this can be estimated as

approximately 3ms - in agreement with the figure obtained from Experiment 2. Overall, we can see that

(as in Experiment 2) SERSE is able to dynamically adjust its network of RAs, in order to cope with the

notification of new content and the consequent addition of new RAs into the RouterAgent network,

without significantly degrading performance in terms of query response time.

Conclusion - The experiment supports the hypothesis, that the response time increases (approximately)

linearly with the number of RAs an individual query message has to traverse in order to be semantically

routed to its target. That is, the additional cost in response time of additional RAs along the routing path

of a message increases by approximately the same amount for each addition. Furthermore, this increase

represents only a small fraction of the total response time - about 3 to 7%. This adds supporting evi

dence that the distributed index in SERSE is able to scale to handle very large numbers of nodes, given

that the average number RAs on the routing path of a message only increases as a fraction of the total

number of concepts indexed (given the initial routing action of the PortalAgent).

6.3.4 Experiment 4: Effects of SRMetric parameter variation.

The purpose of this Experiment is to determine the differing influences that each of the 4 component

weightings have upon the overall SRMetric score. The SRMetric is described in Section 4.4, and the

metric formula is repeated here for reference:

S RM etric(a, (3) =
max(lls(E~l Wl • L i(a, (3) + E~=l Ws' Si(a,(3) + E~=l Wp' Pi(a,(3)), Ilr(E~=l Wr · Ri(a, (3)))

where: Wx are individual weighting factors for each of the components, and Ilx are separate normalisa

tion factors for similarity and relatedness, used to express the result of the metric in a [0-1] range.

As shown in the formula, the 4 components of the SRMetric -lexical, structural, property and relat

edness comparisons - each have a weighting factor, and different values of these weighting factors will

have differing effects upon the overall metric score. Furthermore, the same weighting value for different

components will have differing effects upon that overall score. The hypothesis being tested is that each

of the 4 metric components produce different inputs to the overall SRMetric score for the same concept

165

comparison and same component weighting, and so these components differ in their effectiveness of de

termining semantic relatedness. This differing effectiveness is then utilised as an input into the process

of selecting appropriate relative weightings for the components - the final values of which are reported

in the conclusion to this experiment.

The conditions under which the experiment was carried out were as follows:

• System - Apple iBook G4 with PowerPC 13GHz. and 1Gb RAM, Apple OS X 10.4 (Tiger),

running SERSE within a Sun Java SE SDK 1.4 JVM and using the Tomcat Web Application

Server for hosting the web interface .

• Dataset - Experiment 4 used the UKResearchGroup (UKRG) data set, created at the University

of Liverpool, to represent the members, projects and publications of an academic research group.

Experiment 4 used all three elements of this data-set, plus a set of 20 pre-defined queries specified

for this data-set (following the same complexity pattern described in Experiment 1).

Aim - To determine the effect upon the semantic neighbourhoods formed by the RAs, and the subse

quent effect on query response times, of systematic variation of the individual component weighting

values used within the SRMetric.

Method - The SRMetric utilises a total of five variable parameters within its algorithms - the four

heuristic weighting factors applied to the lexical, structural, property, and relatedness components of the

metric, and the threshold value on the metric used to determine neighbourhood membership. The four

components, to which the weighting values apply, represent the different elements of the ontological

descriptions employed when comparing two concepts: lexical refers to the comparisons of entity (and

other) labels; structural refers to the comparison of concepts' local position within their ontological

hierarchies; property refers to the comparison of concepts' object and datatype properties; and relat

edness refers to the degree to which two concepts may be explicitly related to each other by a mutual

object property. Each of the weighting values and the threshold value are expressed as a decimal value

between 0 and 1. Further explanation of these heuristic weighting factors and their role in the SRMetric

calculation is given in Section 4.4.

The aim of this set of experiments is to observe the different effects of systematically varying the

weighting and threshold values. -In order to achieve this, the experiments were performed by varying

each of the weighting parameters in turn over a specified set of values - 0.0, 0.25, 0.50, 0.75, and 1.0. At

each of these values the average neighbourhood size and average query response time over all concepts

166

1.4

1.2

0.8

0.6

............. " .
..... ->' ;'.::::::.~'~:~:~'.~~ -..... -.... --............ "" ' .. -.....

-.. -..... --'-"'-"- -.-... -.-.. ~: .•. :::::~.::~::::.:".:".:~,~ .•.•. ~ .• ''''";.":o.:;::.=.:~.:::.::.:::::~.:~:.:~.: -........ .

[:·:::~:K~y::::~::]
i Set 1 -- i
I Set 2 -------.- i
I Set 3 i
i Set 4 ... -............. I
L$~tg ... ::.::.::.::.::.:i

0.4~~~==~~~---------~----------~~--------~
o 0.25 0.5 0.75

Lexical component weighting

Figure 6.10: Average query response time vs lexical weighting value.

in the ontology is recorded - using the UKRG data-set. The query response time is determined in the

same manner as in Experiment 1, using a pre-defined set of twenty queries of varying complexity. In

order to observe the interaction between the different metric components, each experiment upon one of

the parameters is repeated using differing values of the other weighting parameters. However, in order

to keep the volume of experimental results to a manageable size this variation of the other values is also

limited to the same set of five specified values. In addition, the threshold value is also varied across the

same range of values. Therefore, the results of a single parameter-variation experiment consist of two

graphs: one showing the average query response time, and one showing the average neighbourhood size

for the different values of the investigated parameter. In each of these graphs there are five sets of results,

each representing a different set of values for the other parameters - i.e., in Set 1 the three remaining

component weightings and the threshold value are set at 0.0, in Set 2 at 0.25, and continuing to Set 5

at 1.0. Overall, the experiment produces four sets of results, one for each of the SRMetric weighting

values, showing how both the average neighbourhood size and average query response time vary as the

investigated parameter is varied, and showing how the effect of this parameter variation changes as the

other parameters and the threshold value are also varied.

Results - Figures 6.10 to 6.17 show the results for systematic variation of each of the four component

weighting values (lexical, structural, property and related) when using the UKRG data-set. For each of

the examined parameters there are two graphs of results - one showing how the average query response

167

<D
• t::!
Ul

'8
o
-E

~

5 ~ __ ~ ____ ~-r------------~-----------r----------~
1:::~~~:f.~~:::1
1 Set 2 .•.• K.... i
! Set 3 I'

4 I Set 4 ·····<;1···· ... · .
i Set 5 _ _.. I
L

,., ...
, .. :~.~ .. "

... /,,/
... /

3

'§, 2
'ijj

... / .-._ -............................. -_ _.-:;......

/~// .. // ////// .,~ ..•••...• ~ •.. : ..• -.: •.•...••.•.•....•..• -.•... _/ ... ' ... ///.-//.-

z

<D
E ..
5l
§
0.

m
Cl:

-.-:: " _ , ,,,.e f" ,.,-. _ _ _ _ _ __ _

,/
./ '/.,/

/'
/'

o~------------~··/--··----------~------------~------------~
o 0.25 0.5 0.75 1

Lexical component weighting

Figure 6.11: Average neighbourhood size vs lexical weighting value.

O. 6 r::::~~i:f.~y::::::::::::1
I Set 2 •.••••••• I
I Set 3
I Set4 " I

0.4 L .. $et!?.~:.~:.~:.~:.~:.~!
o 0.25 0.5 0.75

Structural component weighting

Figure 6.12: Average query response time vs structural weighting value.

168

.~
If)

'0

8
of
::J

.B

5 ~==~==~~-.------------r------------.-----------,
L. - K~y..::::.:.J
! Set 1 --+- i
i Set 2 ----M---- i I Set3 ,. !
: Set 4 ·--····8····-· I

4 l....§~t!.>..:~::~~.::.~..J

3

"6, 2
'Qj

... ,.; z

1

........... '
... ,

o~----------~----------~----------~--------~ o 0.25 0.5 0.75
Structural component weighting

Figure 6.13: Average neighbourhood size vs structural weighting value.

time varies against the component weighting; and one showing how the average neighbourhood size

varies against the the component weighting. In each figure there are five sets of results, each showing

the differing effect of the values of the remaining parameters within the metric, when they are set at one

of the five specified values (Le., 0.0, 0.25, 0.50, 0.75, or 1.0).

These results demonstrate a number of points regarding the functioning of the SRMetric, and the

relative contributions of the different components of the metric score:

• Firstly, there is a clear inverse relationship between average neighbourhood size and average

query response time. Larger average neighbourhoods mean that each message is required to

pass through fewer RAs before reaching its goal - that is, larger neighbourhoods mean that each

message 'hop' between RAs enables the message to traverse more of the overall RA network. This

is despite the additional processing overhead in message routing caused by the presence of more

RAs within each RA's neighbourhood, as demonstrated in Experiment 2. However, the effect of

this additional processing can be seen in the query response timings, especially for the lexical and

structural components, when the average neighbourhood size exceeds 3.

• Secondly, the performance of the semantic routing mechanism in terms of query response time

is significantly reduced when considering low parameter values. That is when all the parameter

values are below 0.5, the query response time varies greatly and is generally high. However,

when all parameter values are above 0.5 there is far less variation in response times, and they

169

are generally low. This demonstrates that the metric relies on input from all four components,

and that it is the combination of the different elements of semantic relatedness that enables the

metric to function. Furthermore, these experimental results also demonstrate that there is a range

of parameter values, between 0.6 and 0.85, that enable the greatest degree of discrimination in the

overall metric result.

• Thirdly, significant differences can be observed between the relative effects of the different param

eters on the overall function of the metric. Variation in the lexical component weighting clearly

has the greatest influence on the SRMetric scores - which matches with our intuition that a sig

nificant fraction of the meaning of an ontologically defined concept is encoded in the concept and

property labels. The structural component weighting has the second most significant effect on the

metric, indicating that significant evidence of similarity is obtained from the comparison of ontol

ogy hierarchies. The property component weighting has the least influence on the metric score,

which indicates that similar concepts do not necessarily have similar properties, as the defined

properties usually reflect the differing conceptualisations underlying the different ontologies. The

effect of the relatedness component upon the overall SRMetric score must be considered in light

of the fact the fact the SRMetric will only return a score based on the relatedness component when

the concept similarity score (resulting from the other three components) is below a pre-defined

threshold - i.e., the metric will only return a relatedness score when the concepts are determined

to be sufficiently dissimilar. Given this, the relatedness component can be seen to have only a

minimal influence on the overaII metric score, which matches the intention of this metric compo

nent, that was to provide additional connections in the RA network, cutting across the similarity

connections and providing support to the 'semantic browsing' form of resource navigation.

Conclusion - The experiment supports the hypothesis, that each of the 4 metric components produce

different inputs to the overaII SRMetric score for the same concept comparison and same component

weighting, and so these components differ in their effectiveness of determining semantic relatedness.

Experiment 4 shows the specific effects of varying the weighting values on the average size of the RA

neighbourhoods formed, and the consequent effects this has on query-response timings. Firstly, response

times are generaIIy high when aII parameter values are below 0.5, that is the metric requires inputs from

aII components and their weightings to be proportional to the neighbourhood threshold value - which in

this experiment was set at 0.75. The lexical mapping is most significant input to the SRMetric, because

a high proportion of a concept's semantics are in its label and those of its properties. The structural

mapping is the next most significant input to the metric, as ontology hierarchies - in terms of the se

mantics of the ancestor, child and sibling concepts - also encode a lot of a concept's semantics. The

property mapping has the least effect on the metric score, which indicates that similar concepts do not

170

en
tJ
Q)

.!!!.
Q)

E
."
Q)
IJl
C
0 a.
Q)

a::

Q)
N
'(ji

8
-E
:::J

.8

1.4

1.2

0.8

0.6
[:: : : K~y::::::J
i Set 1 - - i
! Set 2 --------- 1
! Set 3 - !

l ~:.Lt ;;; .. ~;~:~;: . .J 0.4 ~========~-L ____________ ~ __________ ~ __________ ~
o 0.25 0.5 0.75

Property component weighting

Figure 6.14: Average query response time vs property weighting value.

5 r=~~==~~~-----------'----------~-----------'
!··: .. :::::::::::::.K~.y':~:::~:::::.:::::j

Set 1 -+- !
Set 2 --- -~-- -- i
Set 3 1
Set 4 ·-· e - i

4 L_Set 5 ~~ ~ ~: ... 1

3

-a, 2
'Qj

..... -.. . _._ _._._._ .• .•.•. _ .•.. .. . ;.. :.:-.:
.. '

z

~-

0.25 0.5 0.75

Property component weighting

Figure 6.15: Average neighbourhood size vs property weighting value.

171

~
~
Q)

g
Q)
en c
8. en
Q)

a:

1.4

1.2

.....................................
...

.... ~ ... "

..... "~

0.8 --.... ::.-
";:";;:' - -'!':' - .~

0.6
~~~ ~iS~Y : ....... 1 
Set 2 

[ Set3 .......... i 
. Set4 i 
$~t§ ::::.:: : j 0.4 L...:;;;;===="'---'-_____ ---'-_____ ----'~ ____ ____I 

o 0.25 0 .5 0.75 

Relatedness component weighting 

Figure 6. 16: Average query response time vs relatedness weighting value. 

5 ~~~~==~-.-------------r------------,-------------, 
~··· ... ::.:::::::::::K~y :::::::::::::::::] 

4 

3 

2 

Set 1 ---+--- i 
Set 2 ----1(---- i 
Set 3 ..... " .... i 
Set 4 ······ fJ ·· i 

.. .$.~t ,.Q ... ~ .. ~:.~-.~:.= .. j 
. -._._.-._._._._._._._._._._._._._ . 

'" 

.0 ··· 
~ .......... . 

,,/' 
.. ~ .. , 

/,. ... ':./.~ ............... . 

• - . -. - . - . - . - . - . - . - . - . - . - . - . - .- . - . - ~-:.~::.>"'" 
~ .... , 

~ .......... . 
~ .... , 

~~ ..... 
/ ....... .. . 

0.25 0.5 0.75 

Relatedness component weighting 

Figure 6.17: Average neighbourhood size vs relatedness weighting value. 

172 



necessarily have similar properties, as the defined properties usually reflect the specific needs of the 

differing conceptualisations underlying the respective ontologies. Finally, the SRMetric will only return 

a score based on the relatedness component when the concept similarity score is below a pre-defined 

threshold - i.e., when the concepts are determined to be sufficiently dissimilar. However, the weighting 

of the relatedness component cannot be considered independently from the other three components, as 

the scores returned for similarity and relatedness need to be comparable in scale. 

Overall, this experiment enables an evaluation of the relative influence and effectiveness of the met

ric components, and provides concrete data upon which to base the values of the component weightings 

within the metric calculation. The final component weighting values arrived at, using this and other 

data, are as follows: 

• Lexical component weighting = 0.85 

• Structural component weighting = 0.7 

• Property component weighting = 0.6 

• Relatedness component weighting = 0.7 

• Neighbourhood threshold value = 0.75 - used to select only those concepts returning an overall 

metric score over this value as semantic neighbours 

• Dissimilarity threshold value = 0.5 - concepts returning an similarity score below this value can 

return their relatedness score instead, if it is higher. 

6.3.5 Experiment 5: Semantic neighbourhood comparison 

The purpose of this Experiment is to compare the performance of the SRMetric, in determining related

ness between ontological concepts, with a selection of leading research products intended to determine 

alignments between whole ontologies. The semantic relatedness determination performed by the SR

Metric between two concepts is the same as the determination performed by an ontology alignment 

tool when it is comparing the same two concepts as a part of the process of determining one pair-wise 

concept mapping within the whole ontology alignment. Therefore, each of the comparisons being made 

are between the results of the SRMetric and the results of internal (and usually unreported) calculations 

within the alignment algorithm produced when comparing the same pairs of concepts. These individ

ual comparisons are then aggregated to show how the SRMetric compares with the ontology alignment 

tools when determining the semantic neighbourhood of a concept within this concept's source ontology. 

In addition, a 'Gold Standard' calculation of the appropriate semantic neighbourhood of each concept 

173 



is provided to act as a baseline comparison for the performance of all of the tools. This alignment was 

provided by an independent third party. The hypothesis being tested is that the SRMetric is able to 

determine semantic neighbourhoods of concepts with an accuracy, in terms of the declared semantics, 

that is comparable to a selection of the leading ontology alignment tools available within Semantic Web 

research. 

The conditions under which the experiment was carried out were as follows: 

• System - Apple iBook G4 with PowerPC l.3GHz. and 1Gb RAM, Apple OS X 10.4 (Tiger), 

running SERSE within a Sun Java SE SDK 1.4 JVM and using the Tomcat Web Application 

Server for hosting the web interface. 

• Dataset - Experiment 5 used the OAEI data-set, that consists of the benchmark ontology from 

the 2005 Ontology Alignment Evaluation Initiative (OAEI), that was constructed as a reference 

ontology for ontology alignment evaluations. Experiment 5 concerns the operation of the SRMet

ric, which can be examined in isolation, outside of the SERSE system. Therefore, it is only the 

ontology element that is required, as the SRMetric uses only the ontological definition to calculate 

similarity and relatedness between concepts. 

Aim - To determine how well the SRMetric within SERSE compares with other tools that are able to 

calculate semantic relations between concepts, and against a gold standard alignment, when computing 

the semantic neighbourhoods of each concept within an ontology. 

Method - The SRMetric within SERSE performs a specialized semantic relatedness comparison task 

between ontologically defined concepts, for which we are aware of no directly comparable tools or sys

tems. However, it is possible to utilize ontology alignment tools to produce comparable results. The 

ontology alignment tools selected to perform this experiment were FOAM [42] and Crosi [84], both of 

which performed well in the 2005 Ontology Alignment Evaluation Initiative [49]. Furthermore, both 

of these tools were able to report the partial semantic matches required for this experiment, and for 

comparison with the SRMetric in general. By 'partial matches' we mean those concepts that have some 

calculated similarity with the examined concept, but are not the top-scoring result which is what an 

ontology matching tool would normally report. In order to generate semantic neighbourhoods when 

using only a single ontology, using tools designed to evaluate semantic alignments between ontologies, 

the tools were used to map an ontology to itself - and the semantic neighbourhood for a concept is then 

formed by those potential matches for each concept (excluding the concept itself, which is usually the 

best match), above a specified threshold value. In this way the ontology alignment tools can be used 

174 



to generate the member concepts of semantic neighbourhoods, in the same way as performed by the 

SRMetric, and thus making the results comparable. 

As is common in state-of-the-art ontology alignment tools, both FOAM and Crosi expose parameters 

that affect the semantic matching algorthim at the core of each tool. In FOAM the parameters deter

mine a wide range of factors, such as the the number of comparative iterations, confidence (threshold) 

values, use of alignment strategies, use of existing alignments and external rules or classifiers, and the 

general efficiency of the alignment process. In Crosi the parameters determine which of the available 

matching algorithms are employed, and what relative weighting is applied to each of these individual 

matchers. For FOAM two sets of parameters were defined for this experiment - one representing the 

simplest alignment calculation (Efficient), and one representing the most complex and computationally 

expensive alignment calculation (Complete) that the tool will perform whilst not considering any other 

information in addition to the ontology itself. Two sets of parameters were also defined for Crosi in 

this experiment, each of them using equally weighted component algorithms - one using all matchers, 

except those three that employ the WordNet [108] (WN) online lexical database (without WN); and one 

using all fourteen available matchers (with WN)' 

Therefore, for each ontology considered there are five sets of results - one for the SRMetric, two for 

FOAM and two for Crosi. Each of these results contain two sets of graphed measurements that are pro

duced as the tool threshold is varied. The first is the size of the semantic neighbourhood averaged over 

all concepts in the ontology, and the second is the average precision and recall of these neighbourhoods 

when compared with an ideal, human-judged neighbourhood for each concept. These human-judged 

neighbourhoods were determined by an independent third-party on the basis of the considered ontology 

alone. 

Results - Figures 6.18 to 6.27 show the results for both average recall and precision of the calculated 

semantic neighbourhoods and average neighbourhood size for all five experimental runs - using the 

UKRG ontology. The experiment was also performed using the OAEI ontology, producing largely sim

ilar results that are omitted here for space-saving reasons. When examining the results it is necessary to 

note that both the SRMetric and FOAM utilize similarity score values that vary between 0 and 1, how

ever, Crosi does not normalise results, and the maximum value can vary up to an observed maximum 

of 4.8. Furthermore, it is believed that no fixed maximum value exists for Crosi similarity scores, and 

the calculated maximum score is largely dependent on the amount of (particularly lexical) information 

encoded within the ontology. 

175 



100 ~--------~--------r---------r---------r-------~ 

SRMetric threshold 

Figure 6.18: Average recall and precision over neighbourhood for SRMetric. 

6 

5 

<D 4 N 
·Ui 

8 .r: 3 5 
0 .c .r: 
.Ql 
<D 

2 z 

o~------~--------~--------~--------~------~ 
0.5 0.6 0.7 0.8 0.9 

SRMetric threshold 

Figure 6.19: Average neighbourhood size for SRMetric. 

176 



80 

60 -------- -.. 
\,\ 

. -------

'\"'\"'\, 

~" o ~ __________ ~ __________ -L __________ ~ __________ ~ 

40 

20 

0.1 0.2 0 .3 0.4 0.5 

Foam threshold 

Figure 6.20: Average recall and precision over neighbourhood for FOAM (efficient). 

6 

5 

Cl 4 N 
'in 
"0 

8 
of 3 ::::I 
0 .c 
.c 
Cl 
'Qj 

2 z 

o ~----------~------------~----------~----------~ 
0.1 0.2 0.3 0.4 0.5 

Foam threshold 

Figure 6.2 1: Average neighbourhood size for FOAM (effi cient) . 

177 



100 r-----------~----------_r----------~~~~~~~ 
m •••••••••••••• K~y:.--i 

Recall -- : 
Pre9.i§ion --------:_ .. j 

80 

60 

40 

20 

o L-_____ -L ______ ~ _____ ~ __________ ~ 

0.1 0.2 0.3 0.4 0.5 

Foam threshold 

Figure 6.22: Average reca ll and precision over neighbourhood for FOAM (complete). 

6 

5 

Q) 4 N 
'(ij 

'0 

8 
-E 3 :l 

.8 

.c 
Cl 
'(jj 

2 z 

o ~----------~----------~----------~--------~ 
0.1 0.2 0 .3 0.4 0 .5 

Foam threshold 

Figure 6.23 : Average neighbourhood size for FOAM (complete). 

178 



70 

60 

eft 50 
c: ,', 
0 
'(ij 
'0 40 
~ 

:// \'\,.\ 
a.. 
'0 
c: 30 ctI 

Cii 
~ 

ex: 20 
~ .. / 

/ \\ 
'- -----, 

" 

10 

0 
0.5 1.5 

'---." ....... -----. 
--------- - ------------, 

2 2.5 3 
Crosi threshold 

........... K~y .. :::.l 
. Recall -- i 
t .......... P..r.~p..i~i.9D ...... :.:.:~.:.:.::.: .•. .. J 

'-------------------- ----------\ 

3.5 4 4.5 

\ 
\,,\ 

5 

Figure 6.24: Average recall and precision over neighbourhood for CROSI (without WN). 

20 

18 

16 

14 
Q) 
N 
'(ij 

12 
'8 
0 
J:: 10 :; 
0 
.0 
J:: 8 Cl 
'(ji 
z 

6 

4 

2 

0 

-

-

-

0.5 

I 

1.5 
Crosi threshold 

2 

Figure 6.25: Average neighbourhood size for CROSI (without WN). 

179 

I 
2.5 



70 

60 

~ 50 
0 

c 
0 
'00 
'0 40 
~ a.. 
u c 

30 «I 

~ 
Q) 

er. 20 

/ ...... 

i// \""\,\ 

'------'.,\ 

10 

0 
0.5 1.5 

'---------, 

2 

1 .... ::::. K~y :: .................. .l 
i Recall -- i 

L.. Pr~pi~iQn. :.::.:::.::.:. j 

,------------------. 
,----------------------------

2.5 

Crosi threshold 

3 3.5 

---\\, 

4 4.5 

Figure 6.26: Average recall and precision over neighbourhood for CROSI (with WN). 

20 

18 

16 

14 
Q) 
N r--
'00 

12 u 
8 ..c 

10 :5 
0 

oD ..c 8 Cl 
'Qj 

~ 

z 
6 

4 

2 I 
0 I 

0.5 1.5 2 2.5 

Crosi threshold 

Figure 6.27: Average neighbourhood size for CROSI (with WN). 

180 



Conclusion - The experiment supports the hypothesis, that the SRMetric is able to determine semantic 

neighbourhoods of concepts with an accuracy, in terms of the declared semantics, that is comparable to 

a selection of the leading ontology alignment tools available within Semantic Web research. The ex

perimental results show that, for the general task of correctly matching similar concepts, the SRMetric 

performs comparably with FOAM and Crosi, although with slightly lower precision overall. How

ever, with respect to the specialised task of forming semantic neighbourhoods around concepts based 

upon only the ontological information, the SRMetric out-performs the two ontology alignment tools -

forming these neighbourhoods with greater precision and recall, when compared to the hand-mapped 

'gold-standard' reference neighbourhoods. Overall, this experiment demonstrates that the SRMetric 

within SERSE performs the ontology-concept semantic matching task to a comparable standard with 

state-of-the-art ontology alignment tools. This is despite the somewhat different focus of the tools, 

where ontology alignment seeks to get the best single match for each concept considered using two 

whole ontologies, and the SRMetric seeks to much more rapidly calculate the degree of semantic relat

edness between each considered concept and all other known concepts (in anyone neighbourhood). 

6.3.6 Experiment 6: Cross-ontology semantic neighbourhood formation 

The purpose of this Experiment is to compare the performance of the SRMetric when determining se

mantic connections between concepts from different ontologies, that represent overlapping domains, 

with the performance of a leading ontology alignment tool when aligning the same ontologies. As in 

Experiment 5, the comparison is between the results of the individual SRMetric results, for each pair

wise concept comparison, with the internal calculations generated by the ontology alignment tool when 

performing the same pair-wise comparisons. The hypothesis being tested is that the SRMetric is able to 

determine semantic connections between concepts from different ontologies with an accuracy, in terms 

of the declared semantics, that is comparable to a leading ontology alignment tool available within Se

mantic Web research. 

The conditions under which the experiment was carried out were as follows: 

• System - Apple iBook G4 with PowerPC l.3GHz. and 1Gb RAM, Apple OS X 10.4 (Tiger), 

running SERSE within a Sun Java SE SDK 1.4 JVM and using the Tomcat Web Application 

Server for hosting the web interface . 

• Dataset - Experiment 6 used the QOM data-set, that consists of two ontologies, with overlapping 

domains, selected from the Quick Ontology Mapping (QOM) system evaluation test-data: Rus

sia1A and Russia1B. Both of these ontologies represent the domain of tourism in Russia, but in 

181 



Total 
Average Total cross- Average cross-

Concepts 
neighbours 

neighbourhood ontology ontology 
size neighbours neighbours 

Russia 1a 149 740 4.97 67 0.45 

Russia 1b 161 852 5.29 67 0.42 

Total 310 1592 5.14 67 0.22 

Figure 6.28: Summary of cross-ontology neighbourhoods. 

significantly different ways. Experiment 6 again considers the SRMetric in isolation from SERSE, 

and compares the SRMetric against the QOM ontology alignment system. Therefore, two ontolo

gies with overlapping domains are required. 

Aim - To see how SERSE performs when using multiple ontologies whose domains overlap, in compar

ison with ontology alignment tools. That is, whereas Experiment 5 examined the semantic neighbour

hoods formed by the SRMetric, FOAM and Crosi when considering only one ontology, this experiment 

is intended to determine whether the SRMetric produces the expected connections between closely re

lated concepts from heterogeneous ontologies. This better reflects the situation that would pertain in an 

open web environment, where similar concepts are likely to be defined in a number of entirely separate 

ontologies. 

Method - In this experiment, as in Experiment 5, the performance of the SRMetric is being examined 

in isolation from the rest of the SERSE system. Using the Russia lA and Russia 1B ontologies from 

the QOM evaluation data sets, the SRMetric was used to determine the semantic neighbourhoods of 

each of the concepts in both ontologies, when considering all available concepts from both ontologies 

as potential neighbours. The resulting neighbourhoods were then analysed to determine, for each con

cept, those neighbouring concepts originating from the other ontology - representing the cross-ontology 

concept relatedness connections formed by the SRMetric. These cross-ontology connections were then 

compared with those produced by the QOM ontology alignment tool itself, for which the experimental 

data was devised. 

Results - The experimental result data regarding the semantic neighbourhoods determined for each of 

the concepts in the two ontologies is shown in Figure 6.28. The two ontologies define a total of 310 con

cepts, and, as determined by the SRMetric, each concept had an average of 5.14 semantic neighbours 

- of which 0.22 were drawn from the 'other' ontology. That is, 67 neighbourhood connections were 

182 



formed between concepts from the two heterogeneous ontologies. Using the same two ·ontologies the 

QOM system generated 70 alignments between concepts from the different ontologies, and of these 70 

alignments, 52 were replicated by the neighbourhood connections formed by the SRMetric. 18 of the 

alignments generated by QOM were not reproduced - mainly due to the fact that the SRMetric does not 

take into account the known extension of concepts (for performance reasons), whereas QOM does. 15 

cross-ontology neighbourhood connections were created that were not present in the QOM alignment, 

which is explained by the fact that the SRMetric can create more than one cross-ontology neighbour 

for any given concept - due to an underlying algorithm that attempts to generate all connections for 

suffficently related concepts; compared to ontology alignment algorithms that seek to chose only the 

best of the potential mappings. Overall, Experiment 6 demonstrates that the SRMetric is able to gen

erate concept neighbourhood links across heterogeneous ontologies with overlapping domains that are 

comparable with those generated through widely accepted ontology alignment techniques. 

Conclusion - The experiment supports the hypothesis, that the SRMetric is able to determine seman

tic connections between concepts from different ontologies with an accuracy, in terms of the declared 

semantics, that is comparable to a leading ontology alignment tool available within Semantic Web re

search. This is not entirely surprising given that the SRMetric design was based upon the theory behind 

QOM, and uses a similar comparison process. However, to reduce computation time the SRMetric does 

not utilise a number of the comparisons in QOM, and does not perform multiple iterations of compari

son refinement like QOM. Therefore, simply matching the performance of QOM, which is a reasonable 

representation of state-of-the-art in ontology alignment, represents a good result for the SRMetric. Most 

importantly, the result ensures that SERSE is able to generate the appropriate cross-ontology mappings, 

so that SERSE can operate as intended using multiple ontologies with partially overlapping domains. 

6.4 Summary 

This final section of this chapter is intended to provide an overview of the main experimental results, and 

outlines the conclusions that can be drawn from each of the experiments. A number of key points are 

raised by the results of the experiments, and there are a number of implications raised for the operation 

of SERSE as a large-scale, distributed indexing system. The section presents an overview of the results 

of each experiment and the conclusions that can be drawn from them, focusing upon the implications 

for the functioning of SERSE. 

Firstly, Experiment 1 shows that SERSE is able to effectively answer complex queries, by sub

dividing the complex query, routing the atomic queries to individual RAs and then recombining the 

183 



replies. In addition, this experiment shows that the overhead of the query decomposition and reply 

recombination processes, even when considering very complex queries, does not outweigh the cost of 

the individual queries themselves. However, the results of experiment 1 also highlight a specific issue 

regarding the handling of large, in-memory RDF models, which clearly indicates that for indexing ef

ficiency reasons RAs should utilise database-managed RDF models. Experiments 2 and 3 show that 

SERSE is able to handle additional RAs within the index network without significantly increasing query 

response time. Specifically, when answering a query, the addition of RAs to the routing path of the 

query or the addition of neighbouring RAs to the semantic neighbourhoods of RAs on the routing path 

only increases response time by a small proportion of the overall response time. Furthermore, this in

crease in response time increases in a linear manner as additional RAs are added to the routing path or 

neighbourhoods along it. These experiments demonstrate that SERSE is able to manage the large-scale 

deployments intended for it whilst retaining an acceptable response time. This is underlined by the fact 

that these two experiments only consider additional RAs that have a direct bearing on a specified query, 

and do not consider the potentially vast numbers of RAs added to SERSE that do not take part in the 

routing or answering of any given query. 

Experiment 4 shows that each ofthe 4 metric components produce different inputs to the overall SR

Metric score, and so differ in their effectiveness of determining semantic relatedness. The experiment 

shows the specific effects of varying the weighting values on the average size of the RA neighbourhoods 

formed, and the consequent effects this has on query-response timings. The relative importance of the 

different metric components can be summarised as follows: the lexical mapping is most significant in

put to the SRMetric, because a high proportion of a concept's semantics are in its label and those of its 

properties; the structural mapping is the next most significant input to the metric, as ontology hierar

chies also encode a lot of a concept's semantics; the property mapping has the least effect on the metric 

score, which indicates that similar concepts do not necessarily have similar properties, due to differing 

conceptualisations underlying the respective ontologies; finally, the SRMetric will only return a score 

based on the relatedness component when the concepts are determined to be sufficiently dissimilar, and 

so requires a weighting proportional to the other components. The results of this experiment provided 

the primary input into the determination of the appropriate weighting values for each of these compo

nents in the overall metric calculation. 

Experiment 5 shows that the SRMetric performs comparably with leading ontology alignment tools 

when matching similar concepts; Furthermore, the SRMetric out-performs the ontology alignment tools 

in the determination of semantic neighbourhoods for concepts when using only ontological informa

tion - forming these neighbourhoods with greater precision and recall, based on the 'gold-standard' 

184 



reference. That is, although the SRMetric aims to more rapidly calculate semantic matches by aban

doning some of the matching components used in the ontology alignment tools, it performs the general 

semantic matching task to a comparable standard, and its particular matching task slightly better, than 

state-of-the-art ontology alignment tools. This demonstrates that the SRMetric within SERSE is suitable 

for its intended tasks of semantic matching within the system. Finally, Experiment 6 shows that the 

SRMetric determines semantic connections between concepts from heterogeneous ontologies as well as 

the leading ontology alignment tool, QOM, upon which it is based. That is, despite removing a number 

of the comparisons used in QOM to decrease execution time, the SRMetric matches the performance of 

a state-of-the-art ontology alignment system in generating cross-ontology mappings. This demonstrates 

that SERSE is able to generate the appropriate cross-ontology mappings for SERSE to operate using mul

tiple ontologies with partially overlapping domains. 

Overall, the experiments performed show that, firstly, SERSE is able to correctly answer queries, 

of any complexity, within an acceptable response time. Secondly, SERSE scales well as additional 

information, and so RouterAgents, are added - which supports the claim that SERSE can operate 

as a large-scale, distributed index. Thirdly, SERSE utilises a process of semantic concept matching, in 

the SRMetric, that employs tuned and weighted matching components. This SRMetric is shown to be 

suitable for its intended task within SERSE by performing the semantic concept matching task, both 

within one ontology and across heterogeneous ontologies, to a comparable standard with that of leading 

ontology alignment systems. 

185 



Part IV 

QuestSemantics 

186 



Chapter 7 

QuestSemantics 

This chapter presents a specific set of developments of the SERSE system itself, and of the ideas and ap

proaches within SERSE, that were undertaken in order to investigate the application of resource location 

using semantic indexing and querying within real-world business scenarios. The system developed from 

SERSE in this context is known as QuestSemantics, and here we describe both the major extensions and 

the significant modifications made to the SERSE approach, in order to address the specific constraints 

of the application context. 

Section 7.1 describes the background to the QuestSemantics system, its similarities and differences with 

SERSE, and the intended applications for the system. Following this, section 7.2 presents an overview of 

the design and architecture of QuestSemantics, and then details the main system components and their 

functions. Section 7.3 describes the deployment of QuestSemantics within two different commercial test

cases, and presents an initial evaluation of the performance of QuestSemantics in these applications. 

Finally, section 7.4 outlines the main lessons learnt in the development and deployment of QuestSeman

tics. 

7.1 Development from SERSE 

Before moving into a detailed description of the design, development and deployment of the QuestSe

mantics platform, we must first review the relationship with SERSE. SERSE was designed to provide 

a scalable indexing and retrieval system for semantically annotated resources. The requirement for a 

scalable mechanism to index the semantic metadata used to annotate resources was predicated on an 

expected explosion in semantic annotation of existing and newly created web resources [11]. However, 

four years after the conception of the SERSE architecture there is still relatively little semantic meta

data to index, as shown by the statistic gathered on websites like Swooglel • Furthermore, SERSE was 

1 http://swoogle.umbc.eduJindex.php?option=coffi-swoogle-stats 

187 



intended to demonstrate the power of semantic search over annotated resources - leveraging the for

mally defined metadata to perform precise queries over knowledge-bases of aggregated metadata, and 

leading to the retrieval of resources on the basis of the meaning of its content. However, the relatively 

limited volume of publicly available semantic metadata meant that there were few opportunities to do 

so, and in particular there was insufficient volume of heterogeneous ontologies, metadata and resources 

regarding overlapping domains to properly demonstrate the power of SERSE to index, aggregate and re

trieve this information in a logically connected, but physically distributed indexing system. Therefore, 

we determined that in order to work to towards a significantly populated Semantic Web, and to be able 

to practically demonstrate the potential of semantically enhanced information search and retrieval, we 

should develop a system that was able to semantically annotate resources, index the generated metadata, 

and then present a user-friendly and intuitive user interface to enable the construction and execution of 

semantic queries over this metadata. In addition, we intended that this system should be used to pursue 

test-case deployments in real commercial environments to explore the application of semantic annota

tion and search techniques to real business problems. 

The pursuit of test-case deployments in commercial environments was undertaken for two reasons. 

Firstly, working with commercial partners enabled us to focus on a specific business problem, that is 

rooted in the problems associated with precisely identifying and retrieving information resources. This 

focus on a specific issue, and the availably of the partner as the domain expert, meant that we were able 

to quickly develop ontologies and populated knowledge-bases to describe the required domain, and task, 

entities and relations. The second reason was that the commercialisation of semantic web technologies 

had not developed as quickly as initially envisaged, partially due to the problems of annotating the vast 

and diverse resources available. Therefore, we sought a means by which these technologies could be 

introduced to small enterprises, to annotate a very specific sub-set of available resources for a clearly 

defined purpose, thus enabling us to construct a detailed ontological model for the domain of knowl

edge and the task at hand. This fine-grained business knowledge then enabled the precise annotation 

and subsequent retrieval of the required resources using semantic queries that are constructed on the 

basis of this encoded knowledge. Such commercial test-cases would then provide concrete data on the 

advantages that the adoption of semantic web technologies can bring to classical information retrieval 

problems, and demonstrate their value in realistic situations. 

However, this focus upon small-scale problems in commercial environments had two significant im

plications for the development of the QuestSemantics platform. The initial intention was that SERSE 

should be employed as the semantic indexing and retrieval component of QuestSemantics, including 

a re-developed and significantly enhanced search interface, along with a newly developed annotation 

188 



component. The first issue regarded the fact that SERSE was intended to handle large quantities of 

heterogeneous information, whilst the test-~ase contexts provided relatively small quantities of fairly 

homogeneous information. Therefore, SERSE could not be used to aggregate heterogeneous informa

tion, and, more importantly, was not required to handle the volume of metadata and resources involved. 

In fact, the small scale of these test-case deployments meant that the communication and processing 

requirements of SERSE were significantly higher than those needed for handling the metadata within a 

single RDF model (as demonstrated in Experiment 1 in Chapter 6). The second issue regarded the use 

of agent technology to underpin the distributed indexing mechanism in SERSE, and various problems 

with deployment of such systems within the IT infrastructure of the commercial partners. Not only 

does the agent system require significant processing and memory resources to operate, it also represents 

a potential IT security risk, by providing an open communication channel, that the partners were not 

willing to take on. 

Therefore, it was determined that, whilst the option remained to utilse SERSE in this role, a spe

cialised search-engine component should be developed for the QuestSemantics platform. The function

ing of this component closely mirrors the main functions of a RouterAgent within SERSE - indexing 

resources and their associated metadata, and executing semantic queries over the metadata in order to 

retrieve the relevant resources. This specialised component would enable a much easier deployment of 

the QuestSemantics system onto other IT systems, requiring far fewer processing and memory resources 

from the host system than SERSE. However, despite the fact that SERSE is not suitable for the deploy

ments undertaken to date, this does not mean that SERSE will not be deployed as the search engine 

component of QuestSemantics in any future deployment. In a situation where the volume of resources 

require a more scalable solution, or where heterogeneous information (annotated using heterogeneous 

ontologies) needs to be aggregated and integrated, SERSE would then become the more viable option for 

the search engine component. It is our intention to seek a test-case deployment project that requires the 

particular abilities of SERSE, in order to demonstrate its value in this situation. Furthermore, it should 

be noted that whilst the search engine component is not a direct development of SERSE, it is based 

upon the design of an individual RouterAgent, and the search interface in QuestSemantics is a direct 

development of the ideas and approaches employed in the SearchApplet of SERSE. Overall, QuestSe

mantics continues the focus upon semantic-based search and retrieval begun in SERSE, but does so in a 

way that may assist in the task of boot-strapping the generation of semantic web content, and attempts 

to disseminate these technologies to industry and commerce. 

189 



7.1.1 Annotation and Search 

As previously described in Section 3.2, in a Semantic Web context, semantic annotation of resources is 

normally achieved by using or creating metadata items (as instances of ontology concepts) to represent 

specific entities recognised within information resources, and then linking this metadata description 

to the resource. However, one of the key problems of applying automatic annotation in unrestricted 

knowledge domains like the web is that it becomes extremely difficult to define a conceptualisation that 

captures sufficient knowledge to enable detailed descriptions of resources to be constructed. That is, 

despite efforts such as CyC [98] and SUMO [114], it has proved difficult to define 'general' upper-level 

ontologies, and, furthurmore, such ontologies cannot provide the level of detailed knowledge required. 

This lack of more 'general' ontologies has held back any large-scale efforts to generate general-purpose 

semantic annotations for web (or other) resources. 

Using current approaches, the intelligence applied in search tasks, as well as the assessment of the 

relevance of retrieved pages, is mainly human, with limited support from software [154]. Whilst this 

type of processing is still adequate for domestic users, it cannot scale to the volume of information avail

able to business, where the vast amount of data available on the web is coupled to company documents 

and databases. Current keyword based search engines present limitations in that they cannot fully cap

ture the the richness intrinsic in natural language - examples are the problems caused by synonymy and 

polysemy to the search task. Enhancing search engines with lexicons such as WordNet [108] can help 

to relieve the problem, but is not sufficient to identify and resolve more complicated types of ambiguity. 

Furthermore, keyword-based search engines make little provision for the formulation of very specific 

queries, particularly those that make use of relationships between entities. However, as described in Sec

tion 3.4, by application of Semantic Web technologies (such as RDF and SparQL) very precise queries 

over metadata annotations can be executed. Such queries are usually expressed using the same ontology 

entities as are used to annotate relevant resources, thus making search over annotated resources very 

precise and accurate. 

In order to generate semantic annotations that capture sufficient detail about the resources to en

able precise semantic queries, we have focused on applying knowledge representation and manipulation 

within restricted and clearly delimited domains of knowledge. This enables the construction of detailed 

conceptualisations that provide the means to discover, annotate, filter and search for resources on the 

basis of fine-grained business knowledge. Once a suitable ontology, and relevant extension thereof, of 

the domain knowledge has been constructed, it can be used to identify and semantically annotate rel

evant resources. This ontology also underpins the provision of fine-grained search-based access to the 

identified knowledge resources on the basis of the domain knowledge. Thus, through the application of 

190 



knowledge representation and manipulation techniques, within specific contexts, we can apply a degree 

of 'intelligence' to the problem of access to information. This work has focused on providing a full an

notation and search platform that can be applied to information retrieval in a variety of task and domain 

scenarios. In the annotation stage, we use both domain knowledge (encoded as ontologies) and task 

specific knowledge (e.g., layout specification, annotation and filter rules) in order to create semantic 

metadata about the information sources we want to exploit. This metadata then forms the knowledge

base for the search process, where the construction of user queries is guided by the domain knowledge, 

and these queries are then answered against the annotation knowledge-base. 

The remainder of this Chapter presents the QuestSemantics software platform for semantic annota

tion and search, which is comprised of two main parts: 

• Firstly, a general framework for the (semi-) automatic annotation of resources based upon a de

tailed ontological model of the domain - generating metadata representing knowledge about these 

resources. 

• Secondly, a search interface for the user friendly formulation and execution of knowledge-based 

queries over the generated metadata - that utilises the represented knowledge without requiring 

users to handle the constructs necessary to formulate complex queries. 

It is this search component that represents the development of SERSE - with the search interface 

being a direct development of the query applet interface, and the query answering being performed over 

a metadata model and linked resource index in the same manner as by an individual RA in SERSE. In ad

dition, QuestSemantics was designed in order to maximise the separation between the different types of 

knowledge represented, that is domain versus task specific, and application versus generic knowledge. 

This separation is aimed at achieving reusability, and easy customisation of the various architectural 

components, thus allowing semantic based retrieval in a wide range of tasks and domains. 

7.2 Platform Design 

QuestSemantics is a generic framework for the automatic annotation and retrieval of semi-structured in

formation sources based on semantic queries - by which we mean queries that are aware and make use 

of knowledge about the application domain. The QuestSemantics framework is designed for use within 

applications that aim to leverage different information sources in order to provide searchable knowl

edge. This overall requirement is often accomplished by means of process steps that only differ slightly 

191 



between different applications and different domains. The aim of our framework is to enable applica

tions to abstract from all the details that are common, so that application specific code is reduced and 

simplified. In this way, the platform components are designed to be customisable, and can be adapted 

dependent upon the specific requirements of the domain it is applied to. Therefore, the main concern in 

the platform design is that its customisation only regards the domain-related aspects, i.e., an application 

of the framework is the result of providing application specific knowledge to the general framework. 

The application of the framework to annotation and search in a specific context then becomes a matter 

of generating the correct model representations, that encode the application and domain specific knowl

edge - i.e., the ontologies. 

In our design we make a distinction between domain knowledge and task knowledge. Domain knowl

edge is the description of all relevant entities in a specific domain. Task knowledge, in general, uses 

the domain knowledge, and describes all the relevant entities with resepct to the tasks an application 

executes [159]. These two types of knowledge, though separate, are dependant on each other. In fact, 

the representation of domain knowledge cannot be entirely independent from the task the knowledge 

will be used for - this problem has been described in [21] as the interaction problem. Due to the mod

ularity and abstraction of our approach, the only decisions taken at the platform design level regard the 

formalisms adopted for representing this domain and task knowledge. The domain knowledge repre

sents a particular state of affairs and constrains the possible states it can evolve into - that is, static 

knowledge. Therefore, a domain ontology needs a formalism that allows to easily express taxonomical 

and non-taxonomical relationships among entities, and other properties of these entities. Task knowl

edge, on the other hand, describes the ways to perform useful changes to the domain states. Therefore, a 

task ontology requires a means to represent dynamic operations like sequences, selections and iterations. 

The Semantic Web standard for representing ontologies is the Web Ontology Language (OWL) [106]. 

This Description Logic-based language (as described in Section 3.3), provides the majority of the neces

sary constructs to represent domain knowledge. However, OWL is not itself able to express the dynamic 

operations required to represent some relationships, and so, in these situations rules are added on top of 

OWL ontologies, represented using OWL's standard candidate extension SWRL [75, 74]. One example 

of such expressive extension was used to describe meronomic relations [168], that were required to be 

expressed in a domain, and Description Logic was not expressive enough to formalise them. The task 

(or procedural) knowledge, on the other hand, was represented utilising a combination of declarative 

rules and procedural definitions in a traditional programming language (in this case Java). Tasks then 

are represented by clauses (i.e., a set of premises in conjunction and a single consequence) whose con

sequence is represented by a block of code to be executed (as described in Section 7.2.2). 

192 



In the reminder of this section we discuss the main aspects underlying the design and implementa

tion of the QuestSemantics framework. 

7.2.1 System Tasks and Components 

The issue that QuestSemantics is trying to solve is how to annotate and subsequently retrieve infor

mation from, possibly heterogeneous2, resources that are described with respect to an ontology that 

formalises the application domain. QuestSemantics addresses this issue by providing a framework for 

the semi-automatic annotation and retrieval of knowledge regarding a specific business application. As 

described above, the QuestSemantics framework is based around two software components: an an

notation engine to analyse, annotate and filter the retrieved documents; and a semantic search engine 

to provide fine-grained access to the annotated resources. In the annotation component, we use both 

domain knowledge (encoded as ontologies) and task specific knowledge (e.g., layout specification, an

notation and filter rules) in order to create semantic metadata about the information sources we want to 

exploit. This metadata is then used in the search component, where specific queries from the application 

user are answered using the domain knowledge to guide the query process. 

Figure 7.1 depicts the general architecture of the system, showing the annotation and search com

ponents, the specialised user interfaces, and the various knowledge sources that are utilised within the 

system. The diagram also shows the system's shared store component, that is responsible for all system 

data storage, including resource pointers, ontologies and generated metadata, as well as the intermediate 

results created by the analysis and annotation processes. In the following sub-sections we describe in 

detail the function of the annotation and search components, and how they interact with each other. 

7.2.2 Annotation Component 

The annotation component retrieves information resources and then analyses, annotates and filters them 

based on the application requirements - as encoded in the ontology and rules. Each of these functions 

is performed by a specific decoupled element within the annotation component. The annotation compo

nent utilises both the task-specific knowledge and domain knowledge, but strictly distinguishes between 

their use by the different elements. For example, the analyzer element uses the task specific knowledge 

to find relevant information within a resource, whilst the annotator element uses domain knowledge in 

2Despite the focus upon restricted domains of knowledge in order to reduce knowledge heterogeneity, the different resources 
will remain hetergeneous in terms of format, layout, content, etc. 

193 



Data 
sources 

Raw 
data 

\ 
\ 
~ 

I 
I , 

Annotation Engine 

Apply mapping and 
annotation rules 

to database. 

I 
I 

\ 
\ 

Key 

.... .... .... .... .... 
Generated 
knowledge 

.... 

- - ~ Knowledge use [=:J User interface 

" 

c::::J Knowledge source c:::> Core application 

Figure 7.1: QuestSemantics system architecture. 

Search Interface 

Web-based GUI to 
create queries and 

view results. 

Queries 
& replies 

Search Engine 

Answer semantic queries 
over annotated resources. 

KBManager 

Review and edit 
annotations. 

order to create the actual metadata. The intention here was to develop independent system elements by 

leveraging the distinctions between the knowledge needed for each function, so that changes in task or 

domain can be performed independently, and have predictable implications for each element - simpli

fying the design of new applications. Moreover, confining the task specific knowledge to the annotation 

component makes the search component completely agnostic with regard to the way information is ob

tained, enabling the use of multiple, heterogeneous information sources to answer users ' queries. 

The Annotation process is composed of five main steps: 

• Harvesting of live information resources, with no intermediate storage required , so retrieved in

formation is up to date with the latest available . 

• Analysis of the retrieved resources using the task knowledge encoded in the heuristic rules that 

specify which resources, and which parts of those resources would be of interest to the annotator 

element. 

194 



• Annotation of the resources resulting from the analysis step, with reference to the domain on

tologies: instances of concepts are identified, and" where possible, attributes are retrieved and 

relations between instances are stated. 

• Application of business-level rules to filter the metadata and eliminate unwanted resources based 

on the annotations generated. 

• Storage of the resulting metadata in a RDF database, so that it can be accessed and queried by the 

search component. 

Each of these process steps is executed by an dedicated element within the annotation component, 

and the function of these five elements is described in detail in the following sub-sections. 

Harvester element 

The Harvester element retrieves information resources, such as documents, web-pages, database records, 

etc., and converts them into a form suitable for the annotation process. The location of suitable informa

tion resources is specific to individual applications and is encoded in the task-knowledge rules. Different 

types of resources are handle in different ways by the Harvester. In the case of web pages, the Harvester 

retrieves the pages and saves them in the Store component as text documents, whereas, for database 

sources, it first retrieves the database schema and then the table contents, and saves them in an XML 

format. 

Analyzer element 

The Analyzer element performs operations to extract relevant information from an input resource, and 

to then store this information in an intermediate format suitable for use by the Annotator element. The 

general architecture of this element is sketched in Figure 7.2. The Analyzer element identifies relevant 

content within resources by use of layout information. This information is encoded in the form of reg

ular expressions or with specialized Java code, where no regular expression could be devised, into an 

implementation of the MatchingPattern interface. A set of such MatchingPattern implementations is 

used by a Parser implementation, where the Pars er is responsible for extracting the matched content. 

The combination of a Parser and its MatchingPattern elements forms an AnalysisRule. AnalysisRules, 

in turn, are considered as atomic objects, meaning that the relevant information found by the Match

ingPattern elements inside a AnalysisRule are only extracted if all the MatchingPatterns are found to 

be satisfied in the input resource - when all MatchingPatterns fire on a resource, the AnalysisRule is 

195 



applicable and the Parser extracts the relevant information. 

Non-BlockingAnalys/sRule 

Analysis 1 
[ 1 

Matching 

Analyzer ( Parser ) Pattern 

J Analysis 1 
Matching 
Pattern 

, 

Store 

Figure 7.2: Analyzer detailed architecture. 

Some AnalysisRules can condition the applicability of other rules, i.e., if AnalysisRule A is devoted 

to find an essential information item, such as the document reference number, and this AnalysisRule is 

not sati sfied with regard to a specific resource, this means that the resource is missing necessary infor

mation and is thus rendered useless for further annotation or search purposes. As a consequence, it is no 

longer useful to proceed with the application of other AnalysisRules upon this same resource, and any 

subsequent AnalysisRules are therefore skipped. Such a AnalysisRule is described as a Blocking Rule, 

whilst other AnalysisRules that do not act is thi s way are described as Non-Blocking Rules. When using 

the Analyzer over the XML structure extracted from a database, its primary function is to translate from 

XML into the system-internal intermediate format. 

Annotator element 

The Annotator element is intended to create the RDF models containing the relevant items of informa

tion extracted by the Analyzer, thus building resource metadata according to the domain and application 

specifi c ontology(s). The general architecture of this element is sketched in Figure 7.3 . In analogy with 

the internal structure of the Analyzer element, annotation is performed by means of AbstractDocument

MatchingPattern implementations. Each implementation extracts a specific piece of information from 

the Analyzer output, and then individual ItemAnnotator implementations utili se these items to generate 

and formalise the relevant metadata in an RDF model. This generated RDF model for an annotated 

resource will then form part of the overall RDF knowledge base upon which the Search component 

will operate. As with the Analysis element, ItemAnnotators and AbstractDocumentMatchingPatterns 

are grouped into AnnotationRules, which, as before, can be Blocking or Non-Blocking. The Annotator 

196 



element is the first step in the annotation process where the form of the source information becomes 

unimportant, i.e., it is agnostic with respect to whether the framework is used to retrieve information 

from web-pages, documents, data bases, etc. 

Non-BlocklngAnnotatlonRule 

~An",m>"1 
[ 1 ... 

Matching 

Annotator 
Item Pattern 

J -
Annotator 

..... Annotation J 
Matching 
Pattern 

, r 

Store 

Figure 7.3 : Annotation Engine detailed architecture. 

Filter element 

The role of the Filter element is to apply some pre-defined FilterRules over the generated metadata to 

determine whether a specific annotated resource is suitable for use by the Search component. One exam

ple of the uses of the FilterRules is the removal from the knowledge-base of resources that are no longer 

up to date - e.g. , some information can expire after a certain amount of time, like a call for papers which 

is not useful after the submission date has passed. As with the AnalysisRules and AnnotatorRules, 

the FilterRules form part of the application-specific knowledge utilised by the framework . However, 

whereas the other rules encode information about how to process the source material , FilterRules regard 

application-level information about specific exceptions to the annotation process results. The general 

architecture of this element is sketched in Figure 7.4. 

Store element 

Each step of the annotation process, as well as the search process itself, produces data that must be 

saved persistently - both for performance reasons, such as storing harvested resources so that they are 

available for analysis, and to keep track of connections between information items, such as the source 

resource for a specific annotation. The Store element enables an application to save and retrieve different 

types of data, with each data item identified by a URI. The different data-types employed include byte 

streams (typically containing text documents such as HTML pages), Java maps containing intermediate 

197 



Filter Rule 

~ ""~ ) [ 1 ... 
Matching 

Filter l Filter Pattern 

J ... 
Action '[ Filtar j 

j~ 
Matching 
Pattern 

, r 

Store 

Figure 7.4: Filter detailed architecture. 

mapping results, and RDF models containing completed annotations. In addition, the Store element is 

designed to enable the storage of specific information relationships, such as the fact that a given URI 

is an alternate name for another resource - that is, in OWL terms, the two resources are OWL:SAMEAs 

each other. This feature is particularly useful when a single conceptual resource is described by differ

ent physical resources that are available at different locations - the reference to any of these resources 

enable the annotation rules to retrieve all the available information for the resource being annotated, and 

thus aids in overcoming the problem of information logically related but phisically disconnected. In the 

current implementation of the framework , it is possible to use either a file based persistence implemen

tation (using files for byte streams, Java Properties files for Java maps and RDF/XML serialization for 

RDF models), or a database implementation, where all the information items are stored within database 

tables . 

7.2.3 Search Component 

The Search component is responsible for executing queries over the resource knowledge generated 

by the Annotation component. Queries are expressed using the same domain ontology(s) and initial 

knowledge-base as used in the annotation process, in order to impose constraints upon potentially match

ing metadata elements. If a query matches one or more concept instances within the generated metadata 

the search engine then retrieves the annotated resource(s) represented by the matching instance(s). In 

this way the search engine component uses the domain ontology and knowledge base, and the generated 

annotation metadata and resource index, to enable access to the annotated resources on the basis of the 

encoded domain knowledge. 

The Search component is divided into three distinct modular elements - the Search Engine, the 

198 



Search Interface, and the Knowledge-Base Manager. The Search Engine is a fixed component of the 

QuestSemantics framework, and varies only with respect to the knowledge it operates upon. In contrast, 

the Search Interface is an application-specific interface, based on a template solution that is adapted 

to the requirements of the particular information search task. The Knowledge-Base Manager is also 

application-specific, but to a lesser extent than the Search Interface, and requires only minor modifi

cations (again based on a template solution) to adapt to different application requirements. The basic 

architecture of the both the Search Interface and the Knowledge-Base Manager is that of a web-based 

client interface, and a set of Java objects that form the server-side of these user interfaces. Communica

tion between the web-based front-ends and the server-side functions is performed over HTTP using an 

AJAX implementation. Each of these user interfaces also communicate with the Search Engine in order 

to retrieve specific items of metadata. These three components are further described in the following 

paragraphs. 

The Search Engine maintains and utilises a number of different knowledge structures to provide 

semantics-based retrieval of annotated resources. The domain ontology(s) and knowledge-base, com

posed of pre-defined instances of domain concepts, enable queries to be expressed using the same vo

cabulary as the annotations. Such queries are expressed in the current Semantic Web standard query 

language for RDF - SparQL [121] (as previously described in Section 3.4). SparQL was adopted for 

QuestSemantics, as a replacement for RDQL used in SERSE, following its submission to the W3C as 

the proposed standard RDF query language. However, SparQL is very similar to the preceding RDQL 

in both syntax and semantics, but has some more expressive constructs available. The SparQL queries 

impose constraints upon the properties and/or values of potentially matching instances within the gener

ated metadata, by specifying one or more RDF statements in which any element of each statement may 

be a variable. SparQL queries are able to retrieve URIs for any of the three elements of RDF statements 

- subject, property and object, however, within QuestSemantics queries are always expressed in terms 

of retrieval of RDF object URIs representing individual instantiations of domain concepts. These URIs 

are then matched against the annotation index to retrieve those resources annotated with the matched in

stance. Thus, in response to a SparQL query, the Search Engine will return a set of pointers to matching 

resources. The type of pointer retrieved is dependent on the resource type, with the most common types 

being URLs for web resources and pointers to record-sets in databases. 

The Knowledge-Base Manager component is intended to enable the users of a particular Quest

Semantics application to review and edit the domain knowledge-base used within the system. This 

knowledge-base includes both the extension of the domain ontology, enabling the addition and removal 

199 



of information used in the annotation process, and the generated knowledge-base of resource meta

data, to enable the correction of any minor errors introduced in the automatic annotation process. The 

Knowledge-Base Manager is architected in the same manner as the Search Interface (described below), 

with the component consisting of a web-based front-end and a server-side element that interacts with 

the Search Interface to retrieve metadata for review and editing. The web-based front-end is largely 

constructed using AJAX (Asynchronous Javascript and XML) technologies to provide an interactive 

interface consisting of multiple selection boxes that enable direct editing of the properties and values 

of existing metadata instances. The Knowledge-Base Manager purposely does not allow end users to 

edit the domain ontology, primarily because of the complexity of this process and the potential for in

troducing far-reaching errors into the knowledge model. However, this separation of concerns reflects 

the intended roles of ontology and knowledge-base, with the ontology providing the (relatively static) 

abstract model of entities in the domain, and the knowledge-base representing the actual entities within 

the domain, that are far more dynamic and may change regularly. 

The Search interface provides the means by which final users (i.e., people who are not knowledge 

engineers nor experts in Semantic Web technologies) will access the resources annotated and filtered by 

the annotation component. The design of the Search Interface reflects two main concerns: firstly, the 

user should be presented with an clear abstract query model, in order to hide as much of the underly

ing representational complexity as possible; and secondly we want to use powerful semantic queries, 

that use as much of the available information as possible. Therefore the search component presents a 

specialised interface that enables users to develop a semantic query in an intuitive and non-technical 

manner. This is, in part, achieved by two key restrictions on the expressiveness of the queries being 

generated: 

• All queries are for RDF objects that represent a specific instance of a domain concept, and queries 

can only return a single result set - i.e., queries can have only one result variable. This is in line 

with the annotation approach that generates a single domain concept instance to represent each 

annotated resource. Therefore, the object element of each RDF statement in the query is the 

result variable of the query. This approach was taken to simplify the query construction process, 

as users were far more comfortable defining only the properties and values of a sought resource, 

as compared to the use of multiple variables and instances to match resources. 

• The use of boolean connectives between query triples is restricted, to simplify query construction 

and to avoid creation of unintended query configurations that do not express the intended seman

tics. This means that an OR or NOT connective is only applicable to the immediately preceding 

property and value specified - i.e., full use of the three connectives would also require the intro

duction of brackets to define their scope. However, users again found this level of complexity 

200 



confusing and were largely unable to employ it correctly. 

The web-based interface itself is specialised with respect to the intended application and the type 

and available knowledge about the resources being searched over. However, this specialisation largely 

regards the presentation of the search results, and the query generation process is very similar across dif

ferent domains. This generation process consists of the user defining a number of properties and values, 

using drop-down selection lists of available properties and object values, and direct input of data-type 

values. Once the user submits the query, the interface uses the abstract query model to automatically 

generate a SparQL representation of the specified query. This query is then submitted to the Search En

gine, and any result subsequently returned to the Search Interface. The presentation of the query results 

may vary significantly depending on the type of resources being retrieved, and a single application of 

the framework may incorporate multiple result layouts to handle different types of available resources. 

A typical results presentation would consist of a results list in which brief details of all the matching re

sources are listed, and selection of any of these results would display further details regarding the result. 

Such further details might consist of displaying the annotation metadata regarding the result, linking 

directly to the resource (web-page, document, etc.) itself, linking to other resources relevant to the re

sulting resource (e.g., a map location of a retrieved address), or any combination of these approaches. 

The interface also supports query modification, enabling users to edit, add and delete query elements 

within the graphical interface. Such modification can be performed at any time prior to submission of a 

query, enabling users to correct mistakes without having to discard an entire query. Furthermore, users 

can link back to a query from the results produced by that query, enabling users to interact with the 

knowledge base in order to fine tune the query. In this way a user can iteratively view the results of a 

query and then modify it so that the results of subsequent searches may become more accurate. 

7.3 Development and Deployment 

In this section we will first briefly review the main implementation details of the QuestSemantics frame

work. Following this, we will move on to describe in detail each of the two test-case commercial 

deployments of the framework. 

201 



7.3.1 Development 

The QuestSemantics framework is primarily built using Java Standard Edition (version 1.5). The Se

mantic Web knowledge representation languages employed are RDF for metadata representation, and 

OWL [106] as the ontology specification language. In order to access the RDF models and OWL on

tologies, we used the Jena Semantic Web Framework (version 2.4) from Hewlett Packard Labs [104]. 

In order to construct and refine the ontologies themselves, we utilised the SWOOP ontology editor3. 

Furthermore, the Pellet DL reasoner4 was also used for ontology reasoning and consistence checking 

purposes. The language used to specify semantic queries over the knowledge base is SparQL, which 

is currently a W3C Candidate Recommendation. The implementation of the SparQL language used is 

the ARQ engine - developed by the Jena team and included as part of the Jena framework. In addition, 

XML [18] is used as intermediate format, in both the Store component, and as an intermediate result 

representation for the database-oriented implementation of Harvester. In order to process the XML data, 

the Xerces API for XML5 was used, which is included in Java SE 1.5. 

The framework development proceeded in a structured manner, and in parallel with the test-case 

deployments. The development began with knowledge modeling and construction of the ontologies and 

initial domain knowledge-base. Secondly, the ontological knowledge was then leveraged to construct 

both the Annotation Engine component and the annotation and filter rules used within it. Finally the on

tologies and annotation meta-data form the knowledge-base over which the Search Engine component 

executes queries and retrieves results. However, there was some degree of overlap between these tasks 

in order to ensure a smooth development progression. 

7.3.2 Deployment 

The QuestSemantics framework has been deployed in two different commercial test-cases, both of which 

had a requirement for more 'intelligent' searches over business information. In the first case the require

ment was to search web documents for appropriate commercial opportunities, based on specified areas 

of business interest. QuestSemantics was applied to this task of information retrieval, to enable domain

specific identification and filtering of the available documents. In this case the domain ontology and 

knowledge-base represent the relevant areas of business (i.e., specific sectors, markets, activities, etc.), 

and knowledge about the source material regarding how to select, annotate and filter those resources 

on the basis of the business knowledge. Using QuestSemantics this search now produces more accu

rate results - returning smaller sets of documents that are potential matches for the business criteria. 

3http://www.mindswap.org/2004/SWOOP/ 
4http://pellet.owldl.com! 
5http://xerces.apache.org! 

202 



The increased accuracy aids identification of suitable resources that may be over-looked in the current 

human-filtering process due to information-overload. In addition, providing fine-grained access to re

sources through an advanced search interface enables on-demand search, on the basis of the business 

knowledge, for resources matching specific criteria. 

The second commercial test-case concerns knowledge-based search over database information re

sources - enhancing an existing facility to search for companies in the aerospace domain. The knowl

edge represented in this ontology is a conceptualistion of the aerospace domain in terms of the features, 

capabilities and business relationships applying to companies within that domain. This conceptualisa

tion is instanciated to describe the specific companies and ancillary information, by gathering infor

mation from existing database resources - applying annotation rules, layered on top of the ontology, 

specify how the existing information is automatically mapped into the new representation. The primary 

benefits of the enhanced search facility are that it produces more accurate results for all types of search 

over the company information, leading to more efficient identification of potential partner companies. 

These two commercial deployments are described in more detail in the following sub-sections. 

Vectra Group Ltd. 

The first commercial partner was Vectra Group Ltd. Their problem was one of information overload -

they need to search documents, published on the web, for appropriate commercial opportunities, based 

on their areas of business interest. However, their current search service only matches a set of keywords, 

representing these areas of interest, against the entire publication set. Therefore, there are too many re

sulting documents, many of which represent false-positive matches, and the documents then need to be 

human-filtered to determine if they do represent suitable commercial opportunities. 

The aim of this project was to apply QuestSemantics to this task of information retrieval, to enable 

more domain-specific identification and filtering of the published documents. The primary benefits to 

Vectra are that the system produces more accurate results from the resource filtering process, produc

ing smaller sets of web-pages considered to be potential matches for Vectra's business criteria. This 

allows Vectra to concentrate efforts on a more precise set of results, reducing the time spent human

filtering of documents to determine which of the identified possible matches are actual matches. The 

increased result accuracy also aids identification of suitable resources, that may be over-looked in the 

current human-filtering process due to information-overload. In addition, providing fine-grained access 

203 



Contracts British Contracts Returned Matches True Matches 
Total 34285 2894 199 7 
Daily average 836.22 70.59 4.83 0.17 

Table 7.1: Summary ofVectra test-case evaluation. 

to potentially matching resources through an advanced search interface enables Vectra to perform on

demand search, on the basis of the business knowledge, for resources matching specific criteria, rather 

than having to determine this by a manual search of all resources. For Vectra the knowledge representa

tion formalisms are used to encode knowledge about the areas of business in which they are interested 

(i.e., specific sectors, markets, activities, companies, locations, etc.), and knowledge about the source 

material and how to select, annotate and filter those sources on the basis of the business knowledge. 

The performance of the annotation and filtering system was evaluated in the first test-case, when ap

plied to the problem of identifying web resources that match specified business interests. The evaluation 

examined a large-scale harvest of 34285 published documents, determining how many were returned by 

the QuestSemantics system, and, of these, how many are of genuine business interest to the customer, 

see Table 7.1. These results demonstrate that only a very small fraction of the published documents are 

of genuine interest - which matches with expectations. Furthermore, the results show that the semantic 

annotation and filtering process is performing well, eliminating over 93 percent of unmatched British 

documents, and these results for QuestSemantics compare very well with the current service. A full 

comparative evaluation is still ongoing in this regard, however, spot-check comparisions over individual 

daily returns show an average reduction in non-relevant returns of 71 percent. 

North West Aerospace Association 

The second commercial test-case concerns knowledge-based search over database information resources. 

The North West Aerospace Association (NWAA) maintains a database of its member aerospace com

panies, giving details of these companies, their areas of expertise, specific capabilities, etc. Access to 

this database is provided through the NWAA website, enabling interested parties to search for aerospace 

companies. However, the current search facility is inflexible - there is only a basic categorization of 

activities, capabilities and approvals, and there is no facility to combine search features. This means 

that searches can only be approximate and do not allow identification of companies exhibiting specific 

combinations of features, unless manual cross-referencing of search results is performed. 

The application of QuestSemantics enables creation of a knowledge-base, based on an ontology of 

204 



I hssProductCst"fjO<)' g I Aero-engines. 

loperaleslnMaJtet I North America d 
~t't'~t~ c-'" • ,;l;''''' ~ ,," "): ,- 'l'"~. • ' ........ ~":': , :;"r', . ..- 't;' ~: ~, I~·" ~ 11 
~,.':' . Add Search ..' '., Clear ;. I ... 
~~~.-l}~. "i' : • I • I. ' ~ ~'-4~" 

I
. .. - - . - ___ __ - ... _I

Figure 7.5 : NWAA search interface.

the domain , using the company data currently held in NWAA's database, and provides a semantic search

facility that allows the knowledge-base to be searched by constructing specific queries based upon the

ontological model. The semantic search offers search over multiple, hierarchically structured categori

sations and features, combination of categorizations using boolean logic, aggregation of results over

similar categories, reference to specific company features within search constraints, etc. The knowledge

represented in the ontology is a conceptualistion of the aerospace domain in terms of the features, capa

bilities and business relationships applying to companies within that domain . This conceptualisation is

then instanciated to describe the specific companies and ancillary information, gathered from existing

database resources. A detailed presentation of the NWAA domain ontology and initial knowledge-base

are presented in Appendix B. Finally, the annotation rules , layered on top of the ontology, specify how

the existing information is automatically mapped into this knowledge representation. The primary ben

efits to NWAA and its members of the enhanced search facility are that it produces more accurate results

for all types of search over company information, leading to a saving of company time analysing search

results in order to identify potential partner (customer, supplier, etc.) companies.

The Search Interface element for NWAA can be seen in Figures 7.5, 7.6, and 7.7. Figure 7.5 shows

the query generation screen, where users construct semantic queries within an abstract query model ,

using a set of drop-down selection boxes to specify the required properties and values of the sought

resources . Figure 7.6 shows the results list screen, displaying the full set of query results along with

brief details, and a link to further detail regarding each resource. Figure 7.7 shows the result detail

screen, in which the metadata information is displayed and categorised according to the ontology.

205

Search results Back Help

~~~ 
IBeldam Cra.ley Ltd I~Helga Mutton 

+44 (0) 1204 494711 I 
Details I 

IBoldman limited 
Nigel Clarke 

I Detail!; I +44 (0) 1204 522123 

lerouHiiller 
NULL McDowall r Details I +44 (0 ) 1515452210 

Dennis G Mendoros OBE. DL 
I Details I 

. 
Euravla Engineering & Supply Co Lld +44 (0) 1282 844480 

MB Faber Lld 
lan Eaves I Details I +44 (0) 1772 622200 

Figure 7.6 : NWAA search results list. 

7.4 Lessons Learned 

This section provides a summary of the main lessons learned in the development and deployment of 

QuestSemantics, both with regard to the current system and general observations about the use of 

knowledge-based search in restricted domains. As can be seen from the evaluation in the Vectra test

case (see Section 7 .3.2), the application of knowledge representation methodologies to intell igent data 

capture and access can produce very successful results. The signifi cant reduction in false positive re

turns produces savings in company time and effort expended to identify opportunities, and helps to 

reduce the likelyhood that suitable opportunities are missed due to information overload . In addition, as 

shown with both Vectra and NWAA, the facility to access the data resources on the basis of the encoded 

business knowledge enables users to identify useful resources in a way that is tailored to their needs and 

experience. Furthermore, our focus upon limited and clearly defined domains of knowledge enables the 

business partners to specify the conceptuali sation needed to apply their implicit knowledge about their 

business to the problem tasks in an automated manner. 

As a result of the two test-case applications of the QuestSemantics system, including feedback fro m 

the business partners, a number of lessons have been learnt regarding the application of knowledge 

representation and manipulation techniques within commercial scenarios . 

• Initial feedback from the companies approached regarding development of QuestSemantics, was 

that they require end-to-end solutions that solve specific business problems, and it is then our task 

to develop an integrated system of knowledge representation and other technologies to solve the 

whole of that problem. Many previous semantic web tools in thi s area provide solutions for only 

a part o f the task - which is useful for research purposes but does not present a commercial IT 

206 



Figure 7.7: NWAA detailed company results . 

solution . 

• A significant element of the task of recruiting business partners was the need to ' sell' Seman

tic Web technologies, and in particular the specific business benefit of utilising Semantic Web 

technologies in preference to more established technologies , such as databases for storage of cat

egorised data, and XML as a metadata representation. One of the key lessons learnt was that in 

order to pursuade companies about the potential of the Semantic Web, it was necessary to focus 

upon the ease of knowledge representation and manipulation using SW languages, rather than on 

the more typical arguments that leverage the shared knowledge and large-scale semantic markup 

aspects of the envisioned SW . 

• The knowledge elicitation process requires significant time and effort, but, in our experience, the 

rich expressivity of the description logic and rule formal isms employed provides a straightfor

ward means to encode the knowledge required. However, it is usually the case that a knowledge 

engineer would be required in addition to the domain experts to accurately encode this knowledge 

- that is the company experts needed the assistance of a knowledgeable user of SW knowledge 

207 



representations. It was clear from the company experts engaged with that the SW languages em

ployed provide some assistance here by allowing concepts, properties and values to be represented 

in a natural way that supports an expressive but clear representation. 

• To enable the business partners to make full use of the application, the presentation of the knowl

edge is as important as its representation. The business partners needed the entire display of the 

search interface and results to be customised to meet their needs, along with specific formats of re

sult presentation that only exposed precisely those features of the data that were required by their 

specific task. Furthermore, the most appropriate results presentation also differed for different 

types of knowledge and resource. These requirements lead to the conclusion that each application 

of QuestSemantics would require a specialised user interface, but based upon a common core 

layout and functionality. 

• Despite the relative ease with which Semantic Web languages can be used to encode knowledge, 

the majority of users encountered still required most of the knowledge representation detail to 

be hidden from them to enable them to easily make use of the system. Where possible the user 

interface should guide and constrain the possible actions of the user to assist them in generating 

accurate queries. 

• Application of semantically enabled annotation and search requires both a detailed domain model 

and a set of rules or policies to guide the process. Within strictly delimited domains of knowledge 

it is relatively easy to construct these models and rules, but the larger the domain the more difficult 

it becomes to create a model that provide both the scope and detail required to support semantic 

annotation and search. 

Finally, the focus upon maintaining a strict separation between the various different types of knowl

edge represented, both problem-specific and generic, underpins the ftexiblility of the approach, and 

enables its application to almost any domain, given a sufficiently detailed ontology and annotation rules. 

208 



Part V 

Synopsis 

209 



Chapter 8 

Conclusions 

This chapter summarises the work presented in this thesis, examines the extent to which the research 

objectives presented in the Introduction have been achieved, and presents possible avenues for ongoing 

research and development based around the two existing implementations. 

Section 8.1 presents a brief analysis of the design and implementation of the SERSE and QuestSemantics 

systems, and reviews the unique contributions of the work presented in this thesis. Section 8.2 then 

discusses how both systems have satisfied their use-case requirements, and summarises the results of the 

experimental evaluation of SERSE and the evaluation of QuestSemantics. Finally, Section 8.3 presents 

a summary of the ongoing and possible future developments of SERSE and QuestSemantics. 

8.1 Summary of Completed Work 

This thesis began by presenting relevant background material to support the subsequent presentations of 

SERSE and, to a lesser extent, QuestSemantics. This background material introduced the fundamental 

technologies of the Semantic Web and gave details on core tasks within the domain - such as semantic 

annotation, semantic querying, and ontology alignment. This material also described the concepts of 

autonomous agents and muItiagent systems, and went on to explain the ideas underlying agent-based 

information systems in order to contextualise SERSE as a cooperative information system. In addition, 

the background describes the basis of peer-to-peer systems, their relationship to multiagent systems, and 

the means by which queries can be routed through distributed indexes. 

The main presentation of this thesis has been SERSE - SEmantic Routing SystEm - a distributed 

multi-agent system composed of specialised agents that provides robust and efficient indexing and re

trieval of semantically annotated, heterogeneous resources. The agents composing SERSE use concept 

210 



descriptions represented in ontological models to search for and retrieve semantically annotated knowl

edge sources, by cooperatively maintaining a semantic index of the relevant instances of those ontologies 

utilised in the annotations. This distributed semantic index is then used to answer semantically specified 

queries over the total set of annotations, and thus retrieving resources on the basis of their metadata. 

The robust nature of the system is supported by the implementation of autonomic behaviour techniques, 

characterised by self-management and self-healing capabilities, aimed at permitting the system to man

age the failure of one or more of its agents and ensure continuous functioning. 

The primary aim of the system design was to enable the system to handle large volumes of anno

tation metadata though sub-dividing and distributing the global index into a number of interconnected 

indexes, managed by specialised agents. Each agent in SERSE creates and maintains a local semantic 

index of the instances of the concept from the annotation ontologies for which they are responsible. Ef

ficient retrieval is made possible through the semantic routing mechanism, which permits identification 

of the agent indexing the resources requested by a user query without having to maintain a central index 

or resorting to broadcast messages. The semantic routing mechanism and the determinations of inter

connections between agents are both based on the specialised Semantic Relatedness Metric (SRMetric) 

developed within SERSE. The SRMetric utilises the ontological definitions of concepts to determine the 

degree to which two concepts are related, either in terms of their similarity or other defined relationship. 

The main contributions of the research and development of SERSE regard a number of different 

issues. The use of autonomous agents to manage elements of a sub-divided semantic index that are 

each indexes regarding a specific ontological concept, and interconnecting these agents on the basis of 

the relationships between the concepts they manage is, as far as we are aware, a unique approach to 

indexing Semantic Web metadata. In addition, the SRMetric is unique in its run-time evaluation of the 

degree of relatedness between concepts using only the ontological definitions, and its application to the 

problem of message routing in a distributed system. Finally, SERSE iIIustrates the application of tech

niques from autonomic systems within the multi agent system in order to support the fault-tolerance and 

self-maintenance of the system as a whole. 

A number of important lessons were learnt in the design, development and evaluation of SERSE. 

Firstly, it is clear that the potential power of semantic querying over annotated resources offered signif

icant benefits in terms of provision for precise query formulation and the consequent improvement in 

the precision of results. However, it is also clear that such precise querying was dependent upon a suffi

ciently detailed model of the relevant domain of knowledge, and that this model needs to be constructed 

211 



with the search task in mind. The various 'general knowledge' ontologies available do not provide suf

ficient detail to enable any large-scale annotation of web resources, and many existing ontologies are 

unsuitable for the task. These and other issues argue against the original conception of a 'bottom-up' 

construction of the Semantic Web, where metadata is generated on a wide-scale, representing hetero

geneous resources that relate to diverse knowledge domains, and, thus, requires a large-scale indexing 

system that could inter-relate the represented domains. Furthermore, the initially anticipated volumes of 

Semantic Web metadata have not (yet) been forthcoming, and so the task for which SERSE was designed 

is not required at the present time - although we stiIl anticipate that such distributed indexes that can 

determine relationships between entities from heterogeneous ontologies will soon be needed. Therefore, 

we re-established our focus upon the semantic annotation and search task employing a more 'top down' 

view of Semantic Web development in which knowledge is represented in strictly delimited domains 

and applied to specific tasks, with the intention of developing a large number of independent semantic 

webs that can be usefully applied without requiring the representations and systems to handle the open

ness, heterogeneity and complexity of the global Semantic Web. Finally, the development of SERSE 

demonstrated the difficulties inherent in designing a generic semantic query interface, and showed that 

that query and results presentation and workflow require adaptation to the specific details of the search 

task undertaken. Many of these lessons then lead to the development of the QuestSemantics framework. 

This thesis has also presented the QuestSemantics framework, which is designed to enable automatic 

resource annotation and subsequent semantic search in specified domains. QuestSemantics provides a 

generic framework for semantic annotation of resources, based upon a set of models that encode the 

knowledge applied by the annotation process. This enables the framework to be applied to a wide range 

of sources, knowledge domains, etc. Furthermore, the modular construction of the system means that 

the functionality is provided by an extensible and modifiable set of tools, which enables the framework 

to be adapted to specific annotation tasks. 

QuestSemantics offers many of the key benefits of searching over semantic metadata, whilst be

ing tailored to work in specific domains of knowledge based upon a relatively simple ontological model. 

The primary reason for the focus being upon straight-forward semantic models that are applied in tightly 

restricted task contexts is that QuestSemantics is intended to provide a self-contained solution for se

mantic annotation and search in commercial environments. Therefore, one of the key objectives is to 

reduce the time and effort required for knowledge - elicitation and encoding - enabling the system to 

be applied relatively quickly and easily. This is assisted by restricting the search task undertaken, mean

ing that the variation in what can be searched for and retrieved is kept to a minimum. Both of these 

'approaches are illustrated in the two commercial test cases: 

• The Vectra ontology simply models the business activities, companies, etc. that the company is 

212 



interested in identifying in published tenders, and the search task is restricted to one of retrieving 

tenders exhibiting specified features. 

• The NWAA ontology models the capabilities, activities, etc. of their member companies, and the 

search task is restricted to retrieving details member companies exhibiting specified features. 

The annotation process performed by QuestSemantics is based upon multiple knowledge models. 

These models are comprised of the domain ontology (and its known extension), plus a number of sup

plementary models encoding other aspects of the process. These supplementary models include: 

• Annotation ontology - encoding the relationships that can exist between the annotated resources 

and the automatically generated metadata. 

• Source models - encoding the internal structure and organisation of the type of resources that are 

to be annotated. 

• Annotation rules - encoding the conditions under which an annotation is created for a resource. 

• Mapping rules - encoding the links between different input sources that relate to the same concept 

instance. 

• Filter rules - encoding the conditions under which an annotated resource is accepted into or re

jected from the generated knowledge-base. 

The search facilities provided by the QuestSemantics framework enable the retrieval of both the se

mantic metadata and the annotated resources, using semantic queries that employ the same ontological 

vocabulary as used in the annotation. The construction of such semantic queries is facilitated by the 

system's query interface that provides a simplified means to select the constraints expressed to be in a 

query, which is based upon an abstract query model that slightly reduces the expressiveness allowed in 

such queries in order to reduce the complexity of the query expression. Once completed the abstract 

query models constructed in the query interface are translated into the semantic query language RDQL 

and then executed by the search engine component over the stored annotation metadata. Presentation of 

search results will usually differ dependent upon the specific search task and the information contained 

within the results. Each of the deployments of QuestSemantics have provided a specialised results pre

sentation format, tailored to the task and results involved. 

The development within the QuestSemantics system of many of the approaches utilised in SERSE, 

demonstrates that the application of knowledge representation methodologies to intelligent data retrieval 

213 



and access can produce very successful results. The deployments of QuestSemantics within small and 

medium enterprises (SMEs) to solve specific information access problems is an early-stage exploration 

of the potential value of Semantic Web technologies in commercial environments, and strongly indicates 

that their use can enable valuable functionality provided that the inherent complexity of the represen

tations employed is sufficiently hidden from the end users. The key contribution of QuestSemantics is 

the demonstration that the knowledge representation and manipulation technologies can be sufficiently 

'packaged' into solutions to specific commercial problems, based upon an extensible framework that 

can be relatively easily adapted to a wide range of annotation and retrieval tasks within any knowledge 

domain (given a suitable domain model). 

As a result of the two test-case applications of the QuestSemantics system a number of lessons 

have been learnt regarding the application of knowledge representation and manipulation techniques 

within commercial scenarios. Companies usually require end-to-end solutions that solve specific busi

ness problems, and require an integrated system of knowledge representation and other technologies to 

solve the whole of that specific problem. The knowledge elicitation process requires significant time 

and effort, but, in our experience, the rich expressivity of the description logic and rule formalisms 

employed provides a straightforward means to encode the knowledge required. To enable the business 

partners to make full use of the application, the presentation of the knowledge is as important as its 

representation. The languages employed provide assistance here by allowing concepts, properties and 

values to be represented in a natural way that supports an expressive but clear presentation. Finally, our 

focus upon maintaining a strict separation between the various different types of knowledge represented, 

both problem-specific and generic, underpins the flexiblility of our approach, and enables its application 

to almost any domain, given a sufficiently detailed ontology and set of annotation rules. 

8.2 Satisfaction of Requirements 

In this section we examine the extent to which both SERSE and QuestSemantics have satisfied their 

design requirements, and thus how well they perform their intended tasks. The requirements for the 

SERSE system are detailed in the Introduction to this thesis. The primary requirements were to have a 

scalable and robust system, that was able to make full use of the semantic information available, and in 

which the use of intelligent agents offers significant support to these features . 

• Scalability - The scalability (i.e the ability to cope well with increased system size and demands) 

of the system is based upon the use of specialised agents to manage the sub-divided index. The 

agents are able to be distributed over different host systems by virtue of the facilities provided 

214 



by the FIPA-compliant agent platfonn. There is no central index to effectively limit the overall 

volume of information indexed within the system. Furthermore, the fact that the agents composing 

SERSE can be hosted on any agent platform on any host system means that the system can be 

distributed over as many hosts as are required to provide the computing and storage resources 

needed. 

• Robustness and fauIt-tolerance - The are a number of features within SERSE that underlie the 

system's robustness and fault-tolerance (i.e the ability of the system to cope well with and recover 

from individual component failure). Firstly, the sub-division of the semantic index ensures that 

the unavailability of anyone RouterAgent will only affect the fragment of the index handled 

by that agent, leaving the remainder of the system fully operational. Furthermore, the system 

is able to recover from such localised failures by re-activating RAs and restoring their index 

knowledge from saved states (see Section 4.2.3). These features are enabled by the autonomic 

system processes that allow RouterAgents to determine when one of their neighbours has 

become unavailable, and to re-route neighbourhood interconnections accordingly. 

• Use of semantics - SERSE is intended to make full use of the semantic information available 

in the resource annotations and the relevant ontologies. This has been achieved in three main 

ways within the implemented system: in the semantic indexes, in the use of semantic queries, 

and in the Semantic Relatedness Metric. The agent-managed indexes make use of the semantics 

by organising the entries on the basis of the concept instances, and by making explicit use of the 

instance inter-connections. The generated queries utilise the semantics by employing the RDF 

query language RDQL, which enables the queries to make specific reference to the properties and 

values of the concept instances present in the resource annotations. Finally, the SRMetric utilises 

the semantics encoded in the relevant ontologies to determine the similarity and other connections 

between the defined concepts. 

• Use of agents - The use of autonomous agents to manage the sub-divided semantic index en

ables the system control mechanisms to be distributed on the same basis as the index itself. The 

individual RouterAgents exert local control over their own index fragment, and over their 

inter-connections with other RouterAgent s This application of local control over each index 

fragment and neighbourhood inter-connections is a key feature of SERSE, and underlies both the 

scalability and fault-tolerance of the system as a whole. 

SERSE underwent experimental evaluation of various aspects of its functionality. This evaluation 

consisted of a number of detailed experiments, each examining different features and functions of the 

system. The evaluation firstly tested the performance of the search and retrieval capabilities of the 

215 



system, and the experimental results show that SERSE generally maintains response times in an usable 

range, demonstrating that the computational and communication overheads due to the index distribu

tion do not have a significant adverse impact on the system performance. However, this experiment 

also showed that the system is sensitive to the relative instance distribution, when answering specific 

types of queries, as we outlined when discussing the experimental results. Further experiments were 

conducted regarding the autonomic behaviour, and the results show how the system is able to efficiently 

re-configure itself as agents are added to and removed from the RouterAgent network. Finally, a 

number of experiments were conducted to evaluate the performance of the SRMetric underlying the 

semantic routing mechanism, particularly in order to compare its performance to other systems able to 

determine semantic relations between ontological entities, such as ontology alignment tools. 

The requirements for the QuestSemantics framework are outlined in Chapter 7. The main require

ments were to develop a system for semi-automatic semantic annotation and search, that could be ap

plied in commercial environments to solve specific information access problems. Furthermore, the 

system was intended to be easily applied to different resources, domains, tasks, etc. by encoding these 

knowledge items in independent semantic models. Finally, QuestSemantics should require only rel

atively simple domain models, reducing the knowledge elicitation task, and, thus, meaning that the 

framework could be relatively easily applied to different problems, without needing prior extensive and 

time-consuming knowledge engineering. 

These requirements drove the design of QuestSemantics as a modular framework of specific tools in 

which all the required knowledge is stored in ontological models and rules. The annotation process is 

supported by how the domain knowledge is represented in the relevant ontology, in particular in the way 

that each type of resource examined can be represented as an instance of an ontological concept, with 

the values of the properties being determined from further examination of the resource. The stipulation 

on the use of only relatively simple domain ontologies is adhered to through a number system features. 

Firstly, QuestSemantics is only able to use ontologies specified in OWL lite and OWL DL, thus keeping 

the language expressiveness to a manageable level. Secondly, the nature of the knowledge categorisation 

task at hand often leads to straightforward taxonomic hierarchies that are simply encoded. Thirdly, the 

required detail of the domain knowledge can usually be encoded within such categorisation hierarchies 

by use of extensive use of properties, in particular object properties that reference an instance within the 

ontology'S known extension. 

As can be seen from the evaluation in the Vectra use-case, the application of knowledge represen

tation methodologies to intelligent data capture and access can produce very successful results. The 

216 



significant reduction in false positive returns produces savings in company time and effort expended to 

identify opportunities, and helps to reduce the likelyhood that suitable opportunities are missed due to 

information overload. In addition, as shown with both Vectra and NWAA, the facility to access the data 

resources on the basis of the encoded business knowledge enables users to identify useful resources in 

a way that is tailored to their needs and experience. Furthermore, our focus upon limited and clearly 

defined domains of knowledge enables the business partners to specify the conceptualisation needed to 

apply their implicit knowledge about their business to the problem tasks in an automated manner. 

The evaluation of QuestSemantics consisted of both a limited experiment, conducted within one of 

the commercial test-cases, and a more subjective review of the operation of the system by both of the 

commercial partners. The annotation accuracy of the QuestSemantics framework was evaluated in the 

context of the Vectra Group test-case deployment, in which the framework was applied to the annotation 

and retrieval of contract tender documents. This evaluation demonstrated that the application of Seman

tic Web technologies provided the means to accurately annotate and subsequently retrieve the tender 

documents in terms of Vectra's specified business interests. When compared to the simple keyword

based selection process that was then employed by Vectra, the QuestSemantics deployment was able 

to demonstrate an approximately five-fold increase in precision, whilst retaining an equivalent level of 

recall. In addition, the operation of the QuestSemantics system was reviewed by both of the commercial 

test-case partners independently regarding how well they felt the system had addressed their particular 

information access problems. In both cases the feedback was mainly positive, and, in particular, high

lighted the fact the the users found it intuitive to retrieve resources on the basis of specified properties 

and values. However, this feedback also highlighted the fact that further software support was required 

for the knowledge elicitation process, to enable this to be be largely achieved by the users independently 

without requiring repeated consultations with a knowledge engineer. 

8.3 Ongoing and Future Development Directions 

Finally, to complete the presentation of SERSE and QuestSemantics, we briefly overview the ongoing 

and potential development directions for both of these systems. 

The SERSE system has a number of possible development directions, encompassing both revisions 

and extensions to existing features and the addition of new features and functionality. The elements of 

the system that are the primary candidates for further development are the Semantic Relatedness Metric, 

the inter-agent communication messaging, and the query generation and results interface: 

217 



• There are a number of possible refinements and extensions to the SRMetric that may improve 

the way in which it determines the degree of relatedness between ontological concepts. One 

of these is the use of flexible threshold values and weighting parameters for each of the metric 

components, which would enable the Rou t e rAge n t s to exert autonomy over these parameters 

and thus have greater control over their role within the system. Another improvement would be 

to separate the semantic similarity and semantic relatedness elements of the metric, thus enabling 

each of these different estimations of semantic connections to be applied only where required. 

Finally, the efficiency of the existing algorithm implementation - in terms of the time required 

to execute a concept comparison, and, to a lesser extent, the computational costs (processor load, 

memory use) - can be improved upon. Any reduction in the time taken for an average semantic 

relatedness calculation would have a significant positive effect on the usability of SERSE as a 

large-scale indexing system. 

• The messages exchanged between the agents within the system are currently implemented as ACL 

messages containing XML encoded information, that have different implied handling procedures 

dependent on the message type. A more open solution would be to utilise an existing content 

expression language, so that the implied handling procedure is instead explicitly expressed as an 

action requested by the sender of the recipient. This would also require the development of an 

ontology to encode the vocabulary require to express the requested actions. 

• It is intended to refine and extend the query interface along the same lines as explored within 

the QuestSemaantics system. However, although many of the developments to the QuestSeman

tics interface can be re-applied here, significant differences must remain given that SERSE must 

perform a more generic search task, over a wider range of resources and using heterogeneous 

ontologies. 

In addition to further development of the system functionality, further experimentation and evalua

tion work is planned, in order to more fully test the scalability and robustness of the distributed indexing 

system. Such evaluation will require the availability of large volumes of semantically annotated re

sources, that have been annotated using a number of independent ontologies that represent overlapping 

domains of knowledge. At the time of writing such large-scale data-sets are not readily available, par

ticularly with regard to the use of multiple ontologies with overlapping domains. 

As with SERSE, the development of the QuestSemantics system is continuing on a number of fronts. 

There are many ways in which the currently deployed applications could be improved upon, both in the 

existing tasks of annotation and search, and in extensions to the current system to address areas such as 

218 



knowledge management and business intelligence. The primary development directions'of this future 

work are: 

• Development of search interface - Further development of the user search interface to provide a 

simple, powerful and intuitive query construction and results presentation interface. This is cur

rently focus sing upon refinement of the query construction and editing methodology, enabling a 

more intuitive and flexible workflow, and permitting in-line editing of search constraints and data

type values. Work on the presentation of search results is focussing upon extending the search 

result ordering to allow.a variety of rankings, based on different criteria, to be applied. Further

more, we are exploring the potential of a declarative layout system for results presentation, so that 

the required layout for any specified set of results can be encoded in an ontological model, and 

thus improve the flexibility of the framework by removing the need to adapt the search interface 

software to suit result presentation. 

• Development of annotation component - The accurate and detailed annotation of resources is the 

most important feature of the current system, and we are continuing to develop the annotation 

component to improve the results of this process. Specific developments currently ongoing are 

improvements to the use of natural language processing in the analysis phase, to provide further 

means by which sought information can be recognised and extracted. Specifically, we intend 

to use lexical engineering tools to apply grammatical and language rules to provide greater 'un

derstanding of the text within resources, and use electronic dictionaries to supplement search 

term sets with synonyms, enabling matching of search terms when the expected words are not 

used. In addition, we are developing extensions to the use of filter rules to consider specific rule

exceptions, and thus allowing more flexible application of filters. Finally, we are enhancing the 

annotation lifecycle management system to revise and remove annotations describing resources, 

when required on the basis of various criteria, in a fully automated manner. 

• Use of SERSE as SearchEngine component - As further suitable ontologies, metadata, resource 

sets, etc. become available, particularly where different resources are annotated using two or 

more ontologies regarding overlapping domains of knowledge, the need grows for an indexing 

and retrieval system that can generate interconnections between such heterogeneous ontologies. 

Our intention is to employ the multiagent system of SERSE as the Search Engine component of 

QuestSemantics, enabling the system to both index large volumes of metadata and inter-relate 

different annotated resource sets. This synthesis of the two systems presented here would enable 

the application of the new system to large-scale semantic annotation and retrieval tasks, where the 

knowledge is encoded in multiple ontologies representing the differing viewpoints ofthe different 

stakeholder groups within the scope of the application. 

219 



Finally, commercial partners continue to be sought in order to apply QuestSemantics to other in

formation access problems. The understanding is that there are a significant number of commonalities 

in the various information categorisation, access and manipulation tasks that have been presented, and 

that by developing solutions based upon QuestSemantics to address different specific domains and tasks 

these commonalities can be elicited and leveraged. This would then enable reductions in the burden of 

knowledge elicitation and in development of specialised knowledge manipulation processes, and further 

simplify the adaptation of the framework for different tasks and domains. The long-term development 

target for QuestSemantics is to develop a comprehensive semantic modeling, annotation and search sys

tem that can be applied across a wide range of domains and sources. 

There are a number of possible directions of future research under consideration, in relation to both 

SERSE and QuestSemantics, that have a wider scope than the (re-)engineering issues outlined above. 

Prime examples of these preliminary research ideas, that mainly involve how the kind of semantic anno

tation and search described in this thesis can relate to and benefit from other current web technologies, 

include: 

• Since the initial design of the SERSE architecture there have been a number of significant de

velopments in Semantic Web, distributed systems, and other technologies that offer the possi

bility of both refining the current architecture and entirely replacing it. Potential refinements 

range from simple new features like using a (semantic) web service as the access point to the 

InterfaceAgent, to more significant changes like utilising a web interface constructed using 

up-to-date web development technologies (as in the QuestSemantics interface). The more fun

damental re-architecting of SERSE, fulfilling the same basic requirements for semantics-based, 

scalable and robust resource indexing and retrieval, could be based upon technologies such as 

semantic web services [53] - with each seperate concept-based resource index managed by a dif

ferent web service process on, potentially, different hosts. The system could make use of the ser

vice discovery and location functionalities offered with current semantic web service platforms, 

and, in an extension to SERSE, could make use of the semantic service description formalisms 

available to identify the service both as a resource index that accepts semantic notifications and 

queries, and that the index handles resources relating to a specified concept. This would open 

the index network up to operation as individual indexes, as well as a part of one or more general 

indexing systems. 

• A significant extension to the annotation component of QuestSemantics would be to find a means 

to include the now widespread use of folksonomic tagging. Use of such textual labels that exhibit 

220 



informal and implicit semantics is clearly disjoint from the Semantic Web approach 'to formal and 

explicit knowledge representation. However, due to the accepted semantics of tags within their 

specific community of use (fulfilling the SW requirement for shared semantics), we can attempt to 

generate mappings to SW representations, that then allow us to take advantage of the considerable 

volume of web resources that have been tagged. Initial ideas on how this may be achieved include: 

straightforward use of the lexical information in the tag label to map to concepts, plus use of 

online dictionaries I thesuri to support such mapping; use of the tag contexts, such as the contents 

of tagged documents, and commonly co-occuring tags to provide additional information to assist 

the mapping process; and leveraging the interest within communities of use to provide human

generated tag to concept mappings . 

• Ranking of search results is clearly a vital feature within large-scale search tasks, as demonstrated 

by the role of the pagerank algorithm in the success of Google [71] [117]. As mentioned above, 

there is existing work in the QuestSemantics system addressing result ranking based on the num

ber of search clauses matched. However, an another approach would be to produce an analogy of 

the well-known pagerank that performs the same ranking task over concept instances. That is the 

relative 'strength' of different instances of the same (or potentially just significantly similar) con

cepts could be estimated on the basis of the usage of and references to that instance. Therefore, an 

instance that is widely used within RDF statements annotating resources, and is widely referred 

to in RDF statements in general, would rank above one that only appears in a few RDF state

ments. A search system could then use these instance rankings to inform search result ranking, 

with the rankings of the each of the instances referred to in the annotations of each resource being 

combined to contribute to the overall rank of the resource in the result-set. The issues to address 

in such ranking are similar to those faced by Google - primarily the vast size of the required in

dex and the processing needed to continually update rankings. In addition, such instance ranking 

information would have to be globally available within the search system, which would be dif

ficult within a distributed system like SERSE due to the additional communication, or replicated 

comparison processing that would result. Therefore, as a research topic this approach would best 

be developed within a system like QuestSemantics, that focusses on a small domain of knowl

edge represented in a centralised knowledge-base. However, this approach would also require a 

generally high-density of semantic annotations, just as page-rank needs lots of hyper-links, and is 

therefore not yet applicable to the wider web where semantic annotations are generally scarce . 

• Both SERSE and QuestSemantics are able to index and retrieve URLs for any type of web resource 

that is semantically annotated, that is, has attached RDF statements describing properties of the 

resource in terms of ontological concepts. Technologies are available to attach such semantic 

annotations to a wide range of resource types, including semantic web services [116], HTML and 

221 



XML[65], images, sound clips, etc. Therefore, both systems are able to address indexing for the 

currently important research area of semantic web services. However, within a specialised web 

service application built upon QuestSemantics, additional resources could be brought to bear to 

extend the coverage of the resource index. A key example here would be to make use of the 

UDDI web service index[153], which would probably be addressed using a mapping between 

the existing descriptive elements used in the UDDI index and a Semantic Web representation of 

a service. In this way, such a web service index could contain both those services semantically 

annotated by their authors (or a third party), and those services described within existing indexes 

like UDDI. 

222 



Part VI 

Appendix 

223 



AppendixA 

SERSE Message Types 

SERSE utilises many different message types, with each one being specifically tailored to suit an indi

vidual system function. However, wherever possible the same message type has been utilised for more 

than one function to reduce the number of message types required. These messages can be divided into 

two main groups: those messages that involve communication between agents in SERSE and software 

external to the agent system - external messages; and those messages exchanged between agents within 

the system itself - internal messages. An additional group of system messages are those utilised in the 

system testing only, and do not play a part in the functioning system. These three sets of messages are 

detailed in the following three sub-sections. 

A.I External Messages 

External messages are those exchanged between agents in SERSE and other systems outside of the mul

tiagent system - i.e., systems not hosted within a FIPA agent platform. SERSE has connections with 

two external systems - the Notification Server component of Esperonto, from which SERSE can receive 

messages regarding content acquisition, ontology publication and ontology modification; and the web

based query interface, from which SERSE receives queries and to which the replies are returned. The 

details of these messages and the ways in which they are handled are as follows: 

Content Acquisition notifications 

These messages originate from the Annotation system, and are generated when a wrapper newly ac

quires and annotates web resources. A content acquisition message is sent from the Notification Server, 

via the Notification Mediator, to the Noti f icat ionAgent on one of the agent platforms comprising 

SERSE. The NotificationAgent parses the XML message, and extracts the URIs of the notified 

224 



concepts, and the URL of the RDF file containing the generated metadata. For each of the concepts in 

the notification the NotificationAgent generates an ACLNotificationMessage, which are 

then sent into the RouterAgent network via the PortalAgent, and semantically routed to their 

destination RAs. 

Ontology Publication notifications 

These messages originate from the Ontology Server, and are generated when a new ontology is made 

available for resource annotation. An ontology publication message is sent from the Notification Server, 

via the Notification Mediator, to the NotificationAgent on all of the agent platforms comprising 

SERSE. The NotificationAgents each parse the XML message, and extract the ontology name 

and URI. This information is then sentto the local RouterPlatformAgent and InterfaceAgent 

as an ACLAvailabilityMessage. The RouterPlatformAgent adds the newly published on

tology to its list of available ontologies, that is used by RouterAgents to determine their semantic 

neighbourhoods from all of the ontologies. The InterfaceAgent passes the information to the ex

ternal web interface to update the ontology list, so that queries can be formed using all of the available 

ontologies. 

Ontology Modification notifications 

These messages originate from the Ontology Server, and are generated when an existing ontology (Le., 

one already published by the Ontology Server) is modified. An ontology modification message is sent 

from the Notification Server, via the Notification Mediator, to the Notif icationAgent on one of the 

agent platforms comprising SERSE. The Not i f i ca t i onAgent parses the XML message and extracts 

the ontology name and URI, and the set of declarative mappings from the original ontology to newly 

modified version. The NotificationAgent then forms an ACLOntologyModificationMes

sage for each of the concepts referred to in the original message, inserting the mappings concerning 

different concepts into the relative message. This set of messages are then sent into the RouterAgent 

network via the PortalAgent, and semantically routed to their destination RAs. 

Queries 

These messages originate from the web-based query interface, and are generated when a query is created 

and submitted by a user. Query messages are sent from the query interface, via the server-side interface 

component and a socket interface, to the local InterfaceAgent. The InterfaceAgent parses 

the XML message, extracting the RDQL query contained within it. This RDQL query is then placed in 

an ACLComplexQueryMessage and sent to the QueryManagementAgent. 

225 



Replies 

These messages are generated by the InterfaceAgent following receipt of an ACLQueryReply

Message from the QueryManagementAgent. The InterfaceAgent extracts the reply infor

mation from the ACL reply and forms these into an XML message. This XML message is then sent 

across the socket connection to the web interface. 

A.2 Internal Messages 

Communication between agents within SERSE, and therefore all existing on a FIPA agent platform, is 

achieved through use of FIPA Agent Communication Language messages. FIPA ACL messages are 

chosen from a set of performatives, which have fixed protocols for actions and responses regarding each 

different performative. SERSE uses only Inform-ref and Query-ref messages, and the contents of 

these FIPA ACL messages vary dependent on the purpose of the message. The messages utilised within 

SERSE are contained within the (Content) field of the FIPA ACL messages, asstring serializations 

of XML messages. For each message type there is an XML Document Type Definition and a corre

sponding Java class used to represent the message. The type of a message is recorded in a user-defined 

parameter of the FIPA ACLMessage class, and is one of the following: 

ACLAvailabilityMessage 

Uses the FIPA Inform-ref message performative. These messages are generated by the Notif ica

t i onAgent when it receives a notification message regarding the publication of a new ontology on the 

Ontology Server. This message is sent to the local RouterP lat forrnAgent to make it available to 

all RouterAgents, and to the InterfaceAgent to inform it of the availability of this ontology for 

the formation of queries. This message type defines a field for (OntologyU RL) that contains a pointer 

to the newly published ontology. 

ACLCreateRouterMessage 

Uses the FIPA Inform-ref message performative. These messages are sent by RouterAgents to 

the local RouterPlatforrnAgent, when they determine that a received content acquisition notifi

cation refers to a new concept that is not handled by any existing RouterAgent. This message type 

defines fields for: 

• (ConceptU RI) and (OntologyU RL) that identify the indexing responsibility of the new Rout

erAgent; 

• (Donor RI) that holds the senders routing index; 

226 



• (Wrapper I D) that holds the ID of the wrapper that acquired and notified the resource. 

ACLComplexQuery Message 

Uses the FIPA Query-ref message performative. These messages are generated by the Interface

Agent, following reception of a user-generated query, to represent the query within an ACL message. 

These messages contain a string serialization of the RDQL query that is output from the web-based 

query interface, and are sent to the local QueryManagementAgent. 

ACLComplexQuery ReplyMessage 

Uses theFIPA Inform-ref message performative. These messages are sent by a QueryManageme

ntAgent to the local InterfaceAgent as a response to a complex query. They are generated by 

the Que ryManagemen tAgent following re-aggregation and optimisation of the results of the atomic 

queries, contained in the relevant ACLSimpleQueryReplyMessages. This message type defines 

fields for: 

• (ReplyTo) - holding the message ID of the query to which this message is the response; 

• (Results) - holding the result set for the query concept. This result set is formed by a list of 

resources, each coupled with a list of instance URIs that caused the resource to be retrieved; 

• (Neighbours) - holding an aggregated list of the semantic neighbour concepts of all of the re

plying RouterAgents. 

ACLFailureMessage 

Uses the FIPA Inform-ref message performative. These messages are generated by RouterAge

nts when a query or notification message has exceeded a set number of re-transmissions without find

ing the appropriate agent - as indicated by the (Deathclock) within these messages. The failure mes

sage is sent to the PortalAgent, and then forwarded to either the QueryManagementAgent or 

Notif icationAgent depending on the type of message that has failed. These messages have one 

field for (FailedM essageJ D) that contains the ID of the message that has failed. 

ACLHeartbeatMessage 

Uses the FIPA Inform-ref message performative. These messages are generated by RouterAge

nt s in order to 'ping' their semantic neighbours, if they have not successfully communicated within a 

pre-determined time-frame. 

227 



ACLNeighbourLocatorMessage 

Uses the FIPA Query-ref message performative. These messages are sent by RouterAgents fol

lowing their creation, in order to discover the RouterAgent responsible for handling a neighbouring 

concept, for which the sending RouterAgent does not yet have an agent GUID. These messages are 

sent from a RouterAgent to its local PortalAgent to then be semantically routed to the appropri

ate RouterAgent for the neighbouring concept. In addition to fields identifying the sought concept, 

the message has a (N eighbourGU I D) field, identifying the sending RouterAgent. 

ACLNeighbourLocatorReplyMessage 

Uses the FIPA Inform-ref message performative. These messages are sent by RouterAgents 

following receipt of a ACLNeighbourLocatorReplyMes sage referring to the concept for which 

they are responsible. These messages are sent directly to the sending RouterAgent, and contain fields 

identifying the concept and the agent GUID of the sender. 

ACLNeighbourNotificationMessage 

Uses the FIPA Inform-ref message performative. These messages are sent by RouterAgents fol

lowing their creation, to those RouterAgent s that handle neighbouring concepts, and for which the 

RouterAgent already has a GUID - obtained from the donor routing index of the RouterAgent 

that requested the creation. 

ACLNeighbourShutdownMessage 

Uses the FIPA Inform-ref message performative. These messages are generated by RouterAge

nt s as part of their shutdown process, and are intended to inform the neighbours of a RouterAgent 

that it will no longer be available for semantic message routing. 

ACLNotificationMessage 

Uses the FIPA Inform-ref message performative. These messages are generated by the Noti fic

ationAgent following receipt of a content acquisition message from the Notification Server, and 

contain the information required by the appropriate RouterAgent for it to retrieve the metadata 

for the newly annotated resources. The NotificationAgent sends these messages to the local 

PortalAgent to be semantically routed to the appropriate RouterAgent. This message type de

fines fields for: 

• (Deathclock) - recording the number of re-transmissions between RouterAgents that the 

message has traversed; 

• (Concept) and (Ontology) - identifying the subject concept of the notification; 

228 



• (Wrapper I D) - holding an identification of the wrapper that is the source of the nbtification; 

• (DataU RL) - holding the location ofthe appropriate RDF file; 

• (AcquisitionDate) - containing the date (and time) that the relevant resources were acquired by 

the Annotation System. 

ACLOntology ModificationMessage 

Uses the FlPA Inform-ref message performative. These messages are sent by the Notificatio

nAgent following receipt of an ontology modification notification from the Notification Server. Each 

of these messages represents one of the ontology mappings contained in the original notification mes

sage, and are sent to the local PortalAgent to be semantically routed to the appropriate RouterAg

ent. This message type defines fields for: 

• (Concept) and (Ontology) - identifying the subject concept of the modification; 

• (Mappings) - containing a number of OWL mappings between the old and new definitions of a 

concept defined in the ontology. 

ACLSimpleQuery Message 

Uses the FlPA Query-ref message performative. These messages are generated by the QueryMan

agementAgent following decomposition of a received ACLComplexQueryMessage. They are 

sent to the local PortalAgent to be semantically routed to the appropriate RouterAgent. This 

message type defines fields for: 

• (Deathclock) - recording the number of re-transmissions between RouterAgents that the 

message has traversed; 

• (Concept) and (Ontology) - identifying the subject concept of the query; 

• (ReplyGU I D) - holding the GUm of the sending QueryManagementAgent; 

• (Query) - holding the RDQL atomic query. 

ACLSimpleQueryReplyMessage 

Uses the FlPA Inform-ref message performative. These messages are generated by RouterAge

nts in response to received ACLSimpleQueryMes sages that refer to their concept. The results are 

generated by the RouterAgent by executing the atomic RDQL query over its stored metadata index, 

and then cross-referencing results with its stored resource index. This message type defines fields for: 

229 



• (Concept) and (Ontology) - identifying the subject concept of the reply; 

• (Repl yTo) - holding the message ID of the query; 

• (Results) - holds the result set for the query concept. This result set is formed by a list of 

resources, each coupled with a list of instance URIs that caused the resource to be retrieved; 

• (Neighbours) - holding a list of the semantic neighbour concepts of the replying RouterAg-

ent. 

A.3 Test Messages 

In addition to the internal system messages used in normal operation, there are a number of additional 

internal messages that are only used for performing tests upon the system as a part of the development 

process. These messages are: 

ACLClientReadyMessage 

These messages are used to indicate to the TestAgent that the NotificationClient class within the 

NotificationAgent has successfully registered with the Notification Server and is ready to re

ceive notification messages. 

ACLCreationTestMessage 

These messages are sent by a newly created RouterAgent to the TestAgent to confirm that it has 

been created. The message contains the initial routing index and content index of the RouterAgent 

to enable the TestAgent to check that it has been created correctly. 

ACLRoutingTestMessage 

These messages are sent by a RouterAgent on receipt of a message referring to the concept for which 

it is responsible. This message is sent to the TestAgent to confirm receipt of the semantically routed 

message. 

ACLUpdateTestMessage 

These messages are sent by a RouterAgent following an update of its content index, caused by receipt 

of a ACLNot ificationMes sage. This message is sent to the TestAgent to confirm update of the 
-

content index, and the message includes a serialisation of this index so that the update can be checked. 

230 



AppendixB 

NWAA Ontology and Knowledge-Base 

In this appendix we present the details of the ontology and knowledge-base constructed for the Quest

Semantics framework deployment with the North West Aerospace Association (NW AA) - as referred to 

from Chapter 7. The ontology and knowledge-base were constructed using information from the current 

database schema, existing capability search categories and input from NWAA as the domain experts. 

The ontology has been produced to represent the 'top level' abstraction for the restricted domain 

of describing NWAA's member companies for the purposes of search and identification. Therefore, the 

ontology has MemberCompany as its central concept, and a number of subsidiary concepts used to de

scribe the properties of a MemberCompany. The following description of the ontology divides into 4 

sections, each describing different groups of concepts: companies, contact details, business categories, 

and approvals. In each section there is both a textual and an abstract diagrammatic description of the 

concepts involved. 

The ontology description is accompanied by the description of the initial knowledge-base of com

pany details, consisting of instances of the concepts and properties defined in the ontology. The majority 

of the knowledge-base consists of MemberCompany instances - detailing the information about indi

vidual companies in the domain. However, an important pre-requisite is the definition of instances of 

concepts used to describe the features of these companies. In each of the following sections, for each 

ontology concept described we detail the concept instances required to populate the knowledge-base 

with sufficient detail to fully describe the companies within the domain. These are then used in an auto

matic annotation process upon the current member company database content. 

In the descriptions provided below the representation of concepts and their properties (including the 

range and cardinality of the property) is as follows: 

231 



Concept name 

- property name - range of property - (cardinality) 

B.1 Companies 

Primary items of information to represent are member companies. They should sub-class a more general 

Company concept so that non-member companies (as suppliers, customers, etc.) can also be represented. 

The majority of the information in the domain is represented in terms of MemberCompany instances and 

their properties. Population of the knowledge-base with MemberCompany instances will be performed 

through automatic mapping of the information in the current database into instances of MemberCom

pany, using the other concept instances described below as values of many of the instanciated properties. 

Company 

- hasName - string - (1) 

NonMemberCompany 

MemberCompany 

- hasDescription - string - (1) 

- hasWebsite - string - (1) 

- hasTurnover - in t - (1) 

- hasAerospaceTurnover - int - (1) 

- hasNumEmployees - int - (1) 

- hasAddress - Address - (1) 

- hasContact - Person - (n) 

- operateslnSector - Sector - (n) 

- operateslnMarket - Market - (n) 

- hasLifecyclePosition - LifecyclePosition - (n) 

- hasCompanyTier - CompanyTier - (n) 

- hasActivity - Activity - (n) 

- hasProductCategory - ProductCategory - (n) 

- hasApproval- Approval- (n) -

- hasCustomer - Company - (n) 

- hasSupplier - Company - (n) 

232 



- hasParentCompany - Company - (1) 

- hasSubsidiary - Company - (n) 

N.B.: the hasParentCompany and hasSubsidiary relationships are defined as a sub-properties of the 

partOf / hasPart relationships described in Section B.5 . 

~ 
r----~) hasWebsite 

integer 
~ ___ --'~ hasNum 

Employees 

string 

has Subsidiary 

hasParent 
Com any 

hasName --.[ string 

.. ( 
hasTurnover '-----' 

integer 

... ( integer 

operalesl~ 
Markel' ~ 

Figure B.l: Company concepts. 

233 



B.2 Contact Details 

In the company information we need to represent people and addresses. People are described for the 

purpose of providing contact details for various personnel within companies. Addresses are described 

for the purpose of providing a company address, and address details for the represented personnel. It 

is intended that this information will be extracted from the current database as part of the automatic 

annotation process. 

Person 

- hasName - string - (1) 

- hasPosition - string - (1) 

- hasPhoneNumber - string - (1) 

- hasMobileNumber - string - (1) 

- hasFaxNumber- string - (1) 

- hasAddress - Address - (1) 

Address 

- number - string - (1) 

-road - string - (n) 

- town - string - (1) 

- region - string - (1) 

- country - string - (1) 

- postcode - string - (1) 

B.3 Business Categories 

A company's business activities can be represented using concepts for sector, market, and company cat

egorisations based on activity, tier, lifecycie position and product category. Sector to represent sectors 

other than aerospace that the company operates within. Market is used to represent general geographic 

areas in which the company is active. CompanyTier and LifecyciePosition describe the general position 

of a company within the aerospace domain and supply chain. Activity instances describe the specific 

activities a company engages in.ProductCategory describes the category of the main product(s) of the 

company. These CompanyTier, LifecyciePosition, Activity and ProductCategory instances can be hi

erarchically structured - as shown in the concept definitions and, where appropriate, in the instance 

234 



string 

string 

hasFax 

Number ........... 

[,---s-tri-n
g
- ..... ) E 

number ( string) 

~ 

hasAddress 

string) 

region -..r ) 
l string 

count~ 

postc0...t"'l l~-s-tri-ng--.....) 

~ 
Figure B.2: Contact detail concepts. 

descriptions. These hierarchically structured categorisation relationships are defined in terms of a gen

eral partOf / hasPart pair of relations, described in Section B.5. 

Also, the Support instance (and all those instances that form partOf Support) defined under both 

CompanyTier and LifecyclePosition are instances of both these concepts - i.e. , the same entities are 

intended in both cases, and so are defined only once, but belong to both categorisation hierarchies. 

Sector 

- hasName - string - (I) 

- hasDescription - string - (1) 

The required instances of the Sector concept for the initial knowledge-base are as follows : Aerospace, 

Automotive, Energy, Marine, Medical , Oil, Textiles, Services, Defence, and OtherSector. 

235 



~[,-_s_tri_ng_-,) 
hasName 

G::C has Description 

~[,-_s_tri_ng_...J) 
Figure B.3 : Sector concept. 

Market 

- hasName - string - (1) 

- hasDescription - string - (1) 

~(,-_s_t_rin_g_-,) 
~hasName 

~~, has Description 

~( ..... _s_t_rin_g_....J) 

Figure BA: Market concept. 

The required instances of the Market concept for the initial knowledge~base are as follows: Europe, 

North America, South America, Asia, Worldwide, Australia, UK, Africa, and OtherMarket. 

CompanyTier 

- hasName - string - (1) 

- hasDescription - string - (I) 

- subTierOf - CompanyTier - (1) 

- hasSubTier - CompanyTier - (n) 

The required instances of the CompanyTier concept for the initial knowledge~base are shown in the 

following li st. The indentation within the list indicates the containment of tiers by other tiers , which 

is represented in the instantiations by use of the hasSubTier property, itself a sub~property of the 

hasPart property described in Section B.S . 

• OEM 

236 



~ 

subTierOf 

Figure B.5: CompanyTier concept. 

• Tier I 

• Tier 2 - 4 

• Support 

- Tooling 

- OtherSupport 

* CAD / CAM software & support 

* T / IS services 

* Consultancy 

* Universities 

* Local Government 

* Trade unions 

* Airport services 

string ) 

string ) 

N.B.: the Support instance, and all of those instances that form part of Support, are instantiations of 

both CompanyTier and LifecyclePosition. These instances appear in both definitions for the purpose of 

clarity, not due to their replication. 

LifecyclePosition 

- hasName - string - Cl) 

- hasDescription - string - (I) 

- subPositionOf - LifecyclePosition - Cl) 

237 



R 
r-__ .z.I;,...aS,SUbTier haSS

l3
UbTier 

Other 
Support Tooling 

Figure B.6: CompanyTier instances. 

- hasSubPosition - Lifecyc\ePosition - (n) 

( string ) 
~ 

string ) 

subPositionOf 

Figure B.7: Lifecyc\ePosition concept. 

The required instances of the Lifecyc\ePosition concept for the initial knowledge-base are shown in 

the following list. The indentation within the list indicates the containment of positions by other po

sitions, which is represented in the instantiations by use of the ha sS ubP osi tio n property, itself a 

sub-property of the hasP a rt property described in Section B.5 . 

• Research 

Academic institutions 

Commercial research organisations 

238 



- Internal research 

• Design and development 

• Production 

• Support 

- Tooling 

OtherSupport 

* CAD/CAM software & support 

* IT / IS services 

* Consultancy 

* Universities 

* Local Government 

* Trade unions 

* Airport services 

• Aftermarket 

M.R.O. 

Aircraft On Ground 

N.B.: the Support instance above, and all of those instances that form part of Support, are instantiations 

of both CompanyTier and LifecyclePosition. These instances appear in both definitions for the purpose 

of clarity, not due to their replication. 

Figure B.8: LifecyclePosition instances. 

239 



Activity 

- hasName - string - (I) 

- hasDescription - string - (I) 

- subActivityOf - Activity - (1) 

- hasSubActivity - Activity - (n) 

~[ string ) 

string ) 
hasSub ~ 
Activity --.~ 

SUbActiVi~ 

8 
Figure B.9: Activity concept. 

The required instances of the Activity concept for the initial knowledge-base are shown in the following 

list. The indentation within the list indicates the containment of activities by other activities, which is 

represented in the instantiations by use of the has SubAct i v i t y property, itself a sub-property of the 

hasPart property described in Section B.S. 

• Own product 

• Major assemblies 

• Build-to-print 

- Fabrication / machining 

- Material 

- Treatments / NDT 

- Testing 

- Integration 

• Major sub-assemblies 

• Material 

240 



~ 
~ 

Major 
Assemblies 

hasSub 

Build-To 
-Print 

Major 
Sub

assemblies 

hasSub hasSub 

EJ 

Fabrication 
!Machining 

AC;ty ActiVi\ Activity ~ 

'--1i-r-~a...J~m~D~-nts-"" B [-- 1 

Activity 
Activity I 

EJ 
Figure B.lO: Activity instances. 

ProductCategory 

- hasName - string - (1) 

- hasDescription - string - (1) 

- subCategoryOf - ProductCategory - (1) 

- hasSubCategory - ProductCategory - (n) 

.) string ) 
hasName 

.. -.[ string ) 
hasDescnptlOn 

subCategoryOf 

Figure B.ll : ProductCategory concept. 

The required instances of the ProductCategory concept for the initial knowledge-base are as follows: 

Aero-engines, Aero-structures, Major aircraft systems, Aircraft interiors, Aircraft maintenance, Aircraft 

construction, Ground support, and Electrical/electronic. 

241 



B.4 Approvals 

Approval is used to represent the different national and company approvals that may have been awarded 

to a company. The two sub-classes CompanyApproval and NationalApproval represent the two types . 

Approval 

- hasName - st ring - (1) 

- hasDescription - s tri ng - (I) 

Company Approval 

- awardedByCompany - Company - (1) 

NationalApproval 

- awardedByOrganisation - s tri ng - (I) 

awardedBy 

COlan
y 

Gmpa:0 

hasName 
~( 

hasDescription ----.( 

awardedBy 

O~'ru'" 
( sIring 

Figure B.12: Approval concepts. 

string ) 

string ) 

The required instances of the CompanyApproval and NationalApproval concepts for the initial knowledge

base are as follows . 

• NationalApproval: 

- ASIENIJISQ 9100 

- ASIENIJISQ 9110 

242 



- ASIENIJISQ 9120 

- ISO 9000:2000 

- ISO 9001:2000 

- ISO 9001:TickIT 

- ISO 14001:2004 

- ISO 17025 

- EASA Part 145 - Approved maintenance organisations 

- EASA Part 147 - Training organisation 

- EASA Part 21 - Design organisation approval 

- EASA Part 21 - Production organisation approval 

- OHSAS 18001 

- CAA 

- FAA 

- UKAS 

- NADCAP 

- NATO/MoD 

- OtherNationalApproval 

• Company Approval: 

- Raytheon 

- General Electric 

- Avio 

- Thales 

- Cessna 

- Bombardier 

- Goodrich 

- Snecma 

- Fokker 

- Airbus 

- Rolls Royce 

243 



- BAE Systems 

- Smiths 

- Boeing 

- GKN Westland 

- OtherCompany Approval 

B.S Part-of Relation 

There are five situations within this ontology where we wish to present a meronomy hierarchy, i.e., 

represent entities as being part of other entities. The cases we wish to represent are: 

• Parents and subsidiaries of companies 

• Activities 

• ProductCategories 

• LifecyclePositions 

• CompanyTiers 

Therefore, we define a general meronomy relation and then use sub-properties of this in each of the 

specific cases. In each of these cases we wish to represent the same type of meronomy relation between 

entities, with the same set of constraints. These constraints are: 

• hasPart and partOf are symmetric (represented directly in OWL - symmetric declaration) 

• both are transitive (represented directly in OWL - transitive declaration) 

• any part is partOf only one other part, i.e., no multiple inheritance (represented directly in OWL 

- functional declaration) 

• parts can have multiple sub-parts (represented directly in OWL - inverse functional declaration) 

• parts cannot be partOf themselves or their sub-parts (represented as a rule - using SWRL) 

• disjointness of sub-parts from their siblings only (represented as a rule - using SWRL) 

This encoding of the required part-whole relations has been constructed with appropriate reference 

to the W3C guidelines on meronomy within OWL ontologies [126]. 

244 



Bibliography 

[1] J. D. Anderson and J. P. Carballo. The nature of indexing: how humans and machines analyze 

messages and texts for retrieval - Part I: Research, and the nature of human indexing. Information 

Processing Management, 37(2):255-277, 2001. 

[2] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution tech

nologies. ACM Computing Surveys, 2004. 

[3] Aristotle. The Categories, On Interpretation, Prior Analytics. Harvard University Press, Cam

bridge, MA. 

[4] J. Arpfrez, O. Corcho, M. Fernandez-L6pez, and A. G6mez-Perez. WebODE: A Scalable Work

bench for Ontological Engineering. In Proceedings of the First International Conference on 

Knowledge Capture, K-CAP 2001, pages 6-13. ACM-Sigmod, 2001. 

[5] J. L. Austin. How to Do Things With Words. Oxford University Press: Oxford, England, 1962. 

[6] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for the semantic 

web. In D. Hutter and W. Stephan, editors, Festschrift in honor of loerg Siekmann, Lecture Notes 

in Artificial Intelligence. Springer, 2003. 

[7] F. Baader and W. Nutt. Basic Description Logics, pages 43-95. Cambridge University Press, 

1993. 

[8] H. Balakrishnan, M. F. Kaashoek, D. Karger, and I. Stoica. Looking Up Data in P2P Systems. 

Communications of the ACM, 46(2):43 - 48, February 2003. 

[9] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE a white paper. EXP In search of 

innovation, 3(3):12-16, September 2003. 

[10] V. Benjamins, J. Contreras, M. Blazquez, M. Niii, A. Garcfa, E. Navas, J. Rodriguez, F. Her

nandez, C. Wert, and J. Dodero. ONTO-H: A collaborative semi-automatic annotation tool. In 

Proceedings of the 8th international Protege conference, Madrid, Spain, 2005. 

245 

... 



[11] V. Benjamins, J. Contreras, A. G6mez-Perez, H. Uszkoreit, T. Declerck, D. Fensel, Y. Ding, 

M. Wooldridge, and V. Tamma. Esperonto application: Service provision of semantic annota

tion, aggregation, indexing, and routing of textual, multimedia and multilingual web content. In 

Proceedings ofWIAMS/,03, 2003. 

[12] V. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer, B. Wielinga, G. Schreiber, Z. Zdrahal, 

and S. Decker. Ibrow3: An intelligent brokering service for knowledge-component reuse on 

the World Wide Web. In Proceedings of the 11th Knowledge Aquisition for Knowledge-Based 

Systems Workshop (KAW-98), Banff, Canada, 1998. 

[13] A. Bernaras, I. Laresgoiti, and J. M. Corera. Building and reusing ontologies for electrical net

work applications. In Proceedings of the 12th European Conference on Artificial Intelligence, 

pages 298-302, Budapest, Hungary, 1996. 

[14] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Zaihrayeu. 

Data management for peer-to-peer computing: A vision. In Proceedings of the Workshop on the 

Web and Databases (WebDB'02)., 2002. 

[15] M. Boddy. Any time problem solving using dynamic programming. In Proceedings of the Ninth 

National Conference on Artificial Intelligence, Anaheim, California, USA, 1991. 

[16] A. H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan 

Kaufmann Publishers: San Mateo, CA, 1988. 

[17] P. Borst. Construction of Engineering Ontologies for Knowledge Sharing and Reuse. PhD thesis, 

Centre for Telematica and Information Technology, University of Twente, 1997. 

[18] T. Bray, 1. Paoli, C. Sperberg-McQueen, E. Maler, and F. Y. (Editors). Extensible Markup Lan

guage (XML) 1.0 (Fourth Edition), 2006. http://www.w3.orgffRlxml. 

[19] P. Bretier and D. Sadek. A rational agent as the kernel of a cooperative spoken dialogue system: 

Implementing a logical theory of interaction. In M. Wooldridge and N. R. Jennings, editors, 

Intelligent Agents III Agent Theories, Architectures, and Languages, volume 1193/1997, pages 

189-204. Springer-Verlag: Berlin, Germany, 1997. 

[20] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for Storing 

and Querying RDF and RDF Schema. In Proceedings of the First International Semantic Web 

Conference, Sardinia, Italy, 2002. 

[21] T. Bylander and B. Chandrasekaran. Generic Tasks in Knowledge-based Reasoning: The Right 

Level of Abstraction for Knowledge Acquisition. In B. Gaines and J. Boose, editors, Knowledge 

Acquisition for Knowledge Bases, volume 1, pages 65-77. Academic Press, London, 1988. 

246 



[22] S. Castano, A. Ferrara, S. Montanelli, E. Pagani, and G. Rossi. Ontology-Addressable Contents 

in P2P Networks. In Proceeding of the First WWW International Workshop on Semantics in 

Peer-to-Peer and Grid Computing (SemPGRID 2003), 2003. 

[23] M. Castro, P. Druschel, A.-M. Kerrnarree, and A. Rowstron. Scribe: A large-scale and decentral

ized application-level multicast infrastructure. IEEE Journal of Select. Areas Communication, 

20(8), October 2002. 

[24] H. Chalupsky. OntoMorph: A Translation System for Symbolic Knowledge. In A. Cohn, 

F. Giunchiglia, and B. Selman, editors, Principles of Knowledge Representation and Reasoning -

Proceedings of the Seventh International Conference (KR'2000), pages 471-482, San Francisco, 

CA, 2000. Morgan Kaufmann. 

[25] V. Chaudhri, A. Farquhar, R. Fikes, P. Karp, and 1. Rice. OKBC: A Programmatic Foundation 

for Knowledge Base Interoperability. In Proceedings of the Fifteenth American Conference on 

Artificial Intelligence (AAAI-98), pages 600-607, Madison, Wisconsin, 1998. AAAI PressIThe 

MITPress. 

[26] I. Clarke, O. Sandberg, and B. Wiley. Freenet: A distributed anonymous information storage 

and retrieval system. In Lecture Notes in Computer Science, volume 2009, pages 46+. Springer

Verlag, 2001. 

[27] P. R. Cohen and H. 1. Levesque. Rational interaction as the basis for communication. Intention 

in Communication, pages 221-256,1990. 

[28] P. R. Cohen and C. R. Perrault. Elements of a Plan Based Theory of Speech Acts. Cognitive 

Science, 3:177-212,1979. 

[29] A. M. ColIins and E. F. Loftus. A Spreading-Activation Theory of Semantic Processing. Psycho

logical Review, 82:407-425, 1975. 

[30] O. Corcho and A. G6mez-Perez. A roadmap to ontology specification languages. In R. Dieng, 

editor, Proceedings of the 12th European Workshop on Knowledge Acquisition, Modeling and 

Management. LNCS, volume 1937, pages 80-96, Berlin, 2000. Springer Verlag. 

[31] O. Corcho, A. G6mez-Perez, A. L6pez-Cima, and M. Smlrez-Figueroa. ODESeW - Automatic 

Generation of Knowledge Portals for Intranets and Extranets. In Proceedings of the 2nd Interna

tional Semantic Web Conference (ISWC), LNCS. Springer, 2003. 

[32] T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, 1994. 

247 



[33] A. Crespo and H. Garcia-Molina. Routing Indices For Peer-to-Peer Systems. In Proceedings of 

the International Conference on Distributed Computing Systems, 2002. 

[34] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. Technical report, 

Computer Science Department, Stanford University, October 2002. 

[35] K. Decker, K. Sycara, and M. Williamson. Middle-Agents for the Internet. In Proceedings of the 

Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97) , pages 578-583, 

Nagoya, Japan, 1997. 

[36] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann, and 

I. Horrocks. The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing, 

4(5):63-74,2000. 

[37] S. J. DeRose. Expanding the notion of links. In Proceedings of ACM Hypertext '89, pages 

249-257, Pittsburgh, USA, November 1989. 

[38] E. Diday. Knowledge discovery from symbolic data and the SODAS software. 

http://citeseer.comp.nus.edu.sg/462410.html, 2000. 

[39] E. H. Durfee, D. L. Kiskis, and W. P. Birmingham. The Agent Architecture of the University of 

Michigan Digital Library. IEEE Proceedings on Software Engineering, 144(1):61-71, Feb. 1997. 

[40] M. Ehrig and S. Staab. QOM Quick Ontology Mapping. In S. McIlraith, D. Plexousakis, and 

F. van Harmelen, editors, Proceedings of the Third International Semantic Web Conference, num

ber 3298 in LNCS, pages 683-697, Hiroshima, Japan, 2004. 

[41] M. Ehrig and Y. Sure. Ontology Mapping - An Integrated Approach. In C. Bussler, J. Davis, 

D. Fensel, and R. Studer, editors, Proceedings of the First European Semantic Web Symposium 

(ESWS-04), pages 76-91, Heraklion, Greece, 2004. 

[42] M. Ehrig and Y. Sure. FOAM - Framework for Ontology Alignment and Mapping: Results of the 

Ontology Evaluation Initiative. In J. E. Benjamin Ashpole, Marc Ehrig and H. Stuckenschmidt, 

editors, Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada, 

October 2005. 

[43] D. Engmann and S. Massmann. Instance Matching with COMA++. In Proceedings of the Work

shop of Model Management und Metadaten-Verwaltung, 2007. 

[44] F. Esposito, D. Malerba, G. Semeraro, C. Antifora, and G. de Gennaro. Information Capture and 

Semantic Indexing of Digital Libraries through Machine Learning Techniques. In Proceedings 

248 



of Fourth International Conference on Document Analysis and Recognition ICDAR "97, pages 

722-727, VIm, Germany, 1997. 

[45] F. Esposito, D. Malerba, and V. Tamma. Dissimilarity Measures for Symbolic Objects. In H.

H. Bock and E. Diday, editors, Analysis of Symbolic data. Exploratory methods for extracting 

statistical information from complex data, volume 15 of Studies in Classification, Data Analysis, 

and Knowledge Organisation, pages 165-185. Springer-Verlag, Berlin, Germany, 2000. 

[46] F. Esposito, D. Malerba, V. Tamma, and H.-H. Bock. Classical Similarity and Dissimilarity 

Measures. In H.-H. Bock and E. Diday, editors, Analysis of Symbolic data. Exploratory methods 

for extracting statistical information from complex data, volume 15 of Studies in Classification, 

Data Analysis, and Knowledge Organisation, pages 139-152. Springer-Verlag, Berlin, 2000. 

[47] O. Etzioni, N. Lesh, and R. Segal. Building softbots for UNIX. In O. Etzioni, editor, Software 

Agents - Papers from the 1994 Spring Symposium (Technical Report SS-94-03), pages 9-16. 

AAAI Press, March 1994. 

[48] J. Euzenat and P. Shvaiko. Ontology matching. Springer-VerJag, Heidelberg, Germany, 2007. 

[49] J. Euzenat, H. Stuckenschmidt, and M. Yatskevich. Introduction to the Ontology Alignment 

Evaluation Initiative 2005. http://oaei.ontologymatching.org/2005/results/oaei2005.pdf. 

[50] J. Euzenat and P. Valtchev. An integrative proximity measure for ontology alignment. In A. Doan, 

A. Halevy, and N. Fridman Noy, editors, Proceedings of the Semantic Integration Workshop at 

ISWC-03, 2003. 

[51] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In Proceedings of 

the European Conference on Artificial Intelligence (ECAI), pages 333-337, 2004. 

[52] D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. 

Springer, 2001. 

[53] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors. Spinning the Semantic Web: 

Bringing the World Wide Web to its full potential. The MIT Press: Cambridge, MA, 2003. 

[54] I. Ferguson and M. Wooldridge. Paying their way: Commercial Digital Libraries for the Twenty

First Century. dLib Magazine: The Journal of Digital Library Research, pages 385 - 391, June 

1997. 

[55] M. Femandez-L6pez, A. G6mez-Perez, and N. Juristo. METHONTOLOGY: From Ontological 

Art Towards Ontological Engineering. Spring Symposium on Ontological Engineering of AAA!. 

Stanford University, California, pages 33 - 40, 1997. 

249 



[56] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In Software 

Agents, pages 456-463. ACM, 1997. 

[57] A. Formica and M. Missikoff. Concept Similarity in SymOntos: an Enterprise Ontology Man

agement Tool. The Computer Journal, 45(6):583-594, 2002. 

[58] N. Fridman-Noy and D. McGuinness. Ontology development 101: A guide to creating your first 

ontology. Technical Report SMI-2001-0880, Stanford Medical Informatics (SMI), Department 

of Medicine, Stanford University School of Medicine, 2001. 

[59] N. Fridman Noy and M. Musen. Anchor-PROMPT: Using non-local context for semantic match

ing. In A. Gomez-Perez, M. Gruninger, H. Stuchenschmidt, and M. Uschold, editors, Proceedings 

of the IJCAI'OI Workshop on Ontologies and Information Sharing, pages 63-70, 2001. 

[60] J. R. Galliers. A Theoretical Framework for Computer Models of Cooperative Dialogue, Ac

knowledging Mulri-Agent Conflict. PhD thesis, Open University, UK, 1988. 

[61] L. Gasser and M. Huhns, editors. Distributed Artificial Intelligence (Volume /I). Pitman / Morgan 

Kaufmann, 1989. 

[62] M. R. Genesereth and S. P. Ketchpel. Software Agents. Communications of the ACM, 37(7):48-

53, July 1994. 

[63] The genome@home project website. http://genomeathome.stanford.edu. 

[64] R. Graham. P2P Computing: Towards a Definition. http://www.itm.mh.se/ros-

gra/p2pdefinition.html,2001. 

[65] Gleaning Resource Descriptions from Dialects of Languages (GRDDL). W3C Recommenda

tion., September 2007. 

[66] The Groove web-site. http://www.groove.net. 2003. 

[67] T. Gruber. A translation approach to portable ontology specifications. Knowledge Aquisition, 

5(2):199-220,1993. 

[68] N. Guarino. Formal ontologies and information systems. In N. Guarino, editor, Proceedings of 

the International Conference on Formal Ontology in Information Systems, 1998. 

[69] P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Plechawski, P. Pyszlak, B. Schnizler, 

R. Siebes, S. Staab, and C. Tempich. Bibster - a semantics-based bibliographic peer-to-peer 

system. In Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, 

November 2004. 

250 



[70] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data management 

systems. In Proceedings of the International Conference on Data Engineering (ICDE'03), Ban

galore, India, 2003. 

[71] T. Haveliwala. Efficient computation of page rank. Technical Report 1999-31, Stanford University 

- Digital Library Technolgies Project, 1999. 

[72] R. V. J. Heflin and J. Dale. Requirements for a web ontology language. Technical report, World 

Wide Web Consortium (W3C), 2002. 

[73] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making 

of a web ontology language. Journal of Web Semantics, 1,2003. 

[74] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL Rules: A Proposal and 

Prototype Implementation. Journal of Web Semantics, 3(1):23-40, 2005. 

[75] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. 

SWRL: A Semantic Web Rule Language Combining OWL and RuleML, 2004. 

http://www.w3.org/Submission/SWRU. 

[76] R. Huebsch, J. Hellerstein, N. Lanham, and B. Thau Loo. Querying the internet with PIER. In 

Proceedings of the 29th VLDB Conference. Berlin, Germany., 2003. 

[77] M. Huhns, editor. Distributed Artificial Intelligence. Pitman Publishing: London and Morgan 

Kaufmann: San Mateo, CA, 1987. 

[78] M. Huhns. Agent Foundations for Cooperative Information Systems. In H. S. Nwana and D. T. 

Ndumu, editors, Proceedings of the Third International Conference on the Practical Applications 

of Intelligent Agents and Multi-Agent Technology, London, 1998. 

[79] R. Ichise, H. Takeda, and S. Honiden. Rule Induction for Concept Hierarchy Alignment. In 

Proceedings of the Workshop on Ontology Learning at the 17th International Joint Conference 

on Artificial Intelligence (UCA/), 2001. 

[80] The Jabber web-site. http://www.jabber.org. 

[81] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-peer approach to network intru

sion detection and prevention. In Proceedings of 2003 IEEE WET ICE Workshop on Enterprise 

Security., 2003. 

[82] N. Jian, W. Hu, G. Cheng, and Y. Qu. FalconAO: Aligning Ontologies with Falcon. In B. Ash

pole, M. Ehrig, 1. Euzenat, and H. Stuckenschmidt, editors, Proceedings of K-CAP Workshop on 

Integrating Ontologies, 2005. 

251 



[83] R. Kahn and R. Wilensky. A framework for distributed digital object services. Technical Report 

cnri.dlib/tn95-01, Corporation for National Reasearch Initiatives, 1995. 

[84] Y. Kalfoglou and B. Hu. CROSI Mapping System (CMS): Results of the 2005 Ontology Align

ment Contest. In B. Ashpole, M. Ehrig, J. Euzenat, and H. Stuckenschmidt, editors, Proceedings 

of the K-CAP Workshop on Integrating Ontologies, Banff, Canada, October 2005. 

{85] The Kazaa web-site. http://www.kazaa.com. 

[86] J. Kephart and D. Chess. The vision of autonomic computing. Computer magazine, 36(1):41-51, 

2003. 

[87] A. Keromytis and D. Rubenstein. SOS: Secure Overlay Services. In Proceedings of the ACM 

SIGCOMM'02 Conference., 2002. 

[88] M. Kifer, G. Lausen, and J. We. Logical foundations of object-oriented and frame-based lan

guages. Journal of the ACM, 42, 1995. 

[89] H. Kitakami, Y. Mori, and M. Arikawa. An intelligent system for integrating autonomous nomen

clature databases in semantic heterogeneity. In R. R. Wagner and H. Thoma, editors, Proceedings 

of Database and Expert System Applications (DEXA-96), pages 187-196. Springer, 1996. 

[90] M. Klein. Combining and relating ontologies: an analysis of problems and solutions. In 

A. G6mez-Perez, M. Gruninger, H. Stuckenschmidt, and M. Uschold, editors, Proceedings of 

the IJCAI'OJ Workshop on Ontologies and Information Sharing, pages 53-62, 2001. 

[91] M. Klusch, editor. Intelligent Information Agents: Agent-Based Information Discovery and Man

agement on the Internet. Springer-Verlag: Berlin, Germany, 1999. 

[92] M. Klusch. Information agent technology for the intern et: A survey. In D. Fensel, editor, Jour

nal on Data and Knowledge Engineering. Special Issue on Intelligent Information Integration, 

volume 36(3). Elsevier Science Publishers B.Y., Amsterdam, The Netherlands, 2001. 

[93] M. Klusch and K. Sycara. Brokering and Matchmaking for Coordination of Agent Societies: A 

Survey. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors, Coordination of 

Internet Agents, pages 197-224. Springer-Verlag, Berlin, 2001. 

[94] G. Klyne and J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax. 

W3C Recommendation, February 2004. 

[95] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, S. Gummadi, H. Weatherspoon, 

W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent 

storage. In Proceedings of ACM ASPLOS., 2000. 

252 



[96] R. Larson and C. Carson. Information Access for a Digital Library: Cheshire II and th~ Berkeley 

Environmental Digital Library. In ASIS, Washington, USA, October 1999. 

[97] S. Lawrence and C. Giles. Searching the World Wide Web. Science, 280(5360):98-100, 1999. 

[98] D. Lenat. Cyc: a Large-Scale Investment in Knowledge Infrastructure. Communications of the 

ACM, 38(11):33-38, November 1995. 

[99] M. Lesk. The digital library: What is it? why should it be here? Technical Report TR-93-35, 

Department of Computer Science, Virginia Tech., VA, 1993. 

[100] I. V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Cyber

netics and Control Theory, 1966. 

[101] H. Lieberman. Personal assistants for the web: An MIT perspective. In Intelligent Information 

Agents: Agent-Based Information Discovery and Management on the Internet, pages 279-292. 

Springer, 1999. 

[102] C. Lynch, A. Michelson, C. Preston, and C. A. SummerhiIl. CNI White paper on Networked 

Information Discovery and Retrieval. http://www.cni.org/projects/nidr/. 1995. 

[103] A. Maedche and S. Staab. Measuring similarity between ontologies. In A. G6mez-Perez and 

R. Benjamins, editors, Proceedings of EKA W'02, Siguenza, Spain, pages 251-263, Berlin, 2002. 

Springer-Verlag. 

[104] B. McBride. JENA: A Semantic Web toolkit. IEEE Internet Computing, 6:55-59, Nov-Dec 

2002. 

[105] D. L. McGuinness. Ontologies come of age. In Spinning the Semantic Web: Bringing the World 

Wide Web to Its Full Potential. MIT Press, 2002. 

[106] D. L. McGuinness and F. van Harmelen (Editors). OWL Web Ontology Language Overview. 

W3C Recommendation, February 2004. http://www.w3.org/TRlowl-features/. 

[107] E. Mena, A. IIIarramendi, V. Kashyap, and A. Sheth. OBSERVER: An approach for query 

processing in global information systems based on interoperation across pre-existing ontologies. 

In Proceedings of the First IFCIS International Conference on Cooperative Information Systems, 

Brussels, Belgium, 1996. 

[108] G. Miller. WordNet: a lexical database for English. Communications of the A CM, 38(11):39-41, 

November 1995. 

253 



[109] L. Miller, A. Seabourne, and A. Reggiori. Three Implementations of SquishQL, a Simple RDF 

Query Language. Tech. Report HPL-2002-110, HP Labs, 2002. 

[110] R. Mizoguchi. Ontological engineering: Foundation of the next generation knowledge process

ing. Lecture Notes in Computer Science, 2198, 2001. 

[111] J. Nanard and M. Nanard. Using structured types to incorporate knowledge in hypertext. In 

Proceedings of the Third Annual ACM Conference on Hypertext, pages 329-343, 1991. 

[112] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout. Enabling technol

ogy for knowledge sharing. AI Magazine, 12(3):36-56, 1991. 

[113] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch. 

EDUTELLA: A P2P Networking Infrastructure Based on RDF. In Proceedings of the World 

Wide Web Conference (WWW), pages 604-615, Honolulu, Hawaii, USA, 2002. 

[114] I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty and B. Smith, editors, 

Proceedings of the 2nd International Conference on Formal Ontology in Information Systems, 

Ogunquit, Maine, USA, October 2001. 

[115] M. Nodine, D. Chandrasekara, and A. Unruh. Task Coordination Paradigms for Information 

Agents. In Proceedings of Intelligent Agents VII. Agent Theories, Architectures and Languages, 

7th International Workshop (ATAL-OO), Boston, MA, 2000. 

[116] OWL-S: Semantic Markup for Web Services. W3C Member Submission 22 November 2004 -

http://www. w3 .org/Su bmission/ owl-sf. 

[117] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order 

to the web. Technical report, Stanford University - Digital Library Technolgies Project, 1998. 

[118] P. Patel -Schneider and I. Horrocks. OWL 1.1 Web Ontology Language Overview. W3C Member 

Submission 19 December 2006 - http://www.w3.org/Submission/owlll-overview/. 

[119] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language. Semantics and 

Abstract Syntax. W3C Recommendation, February 2004. 

[120] A. Preece, K. Hui, A. Gray, P. Marti, T. Bench-Capon, Z. Cui, and D. Jones. KRAFT: an agent 

architecture for knowledge fusion. International Journal of Cooperative Information Systems, 

10(1/2):171-196, March & June 2001. 

. [121] E. Prud'hommeaux and A. Seaborne. SparQL Query Language for RDF. W3C Recommendation 

- 15th January 2008. http://www.w3.org/TRlrdf-sparql-query/. 

254 



[122] M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Information Processing, pages 

227-270. MIT Press, 1968. 

[123] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on 

semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1): 17-30, 1989. 

[124] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. The Interna

tional Journal on Very Large Databases (VLDB), 10(4):334-350,2001. 

[125] A. S. Rao and M. P. Georgeff. Formal models and decision procedures for multi-agent systems. 

Technical Note 61, Australian AI Institute, Melbourne, Australia, 1995. 

[126] A. Rector and C. Welty. Simple Part-Whole Relations in OWL Ontologies. -

- http://www.w3.org/200l/swlBestPractices/OEP/SimplePartWhole/. Technical report, W3C, 

2005. 

[127] M. Rodriguez and M. Egenhofer. Determining semantic similarity among entity classes from 

different ontologies. IEEE Transactions on Knowledge and Data Engineering, 2002. 

[128] J. S. Rosenschein and M. R. Genesereth. Deals among rational agents. In Proceedings of the Ninth 

International Joint Conference on Artificial Intelligence (IlCAI-85), pages 91-99, Los Angeles, 

CA,1985. 

[129] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for 

large-scale peer-to-peer systems. In Proceedings of the 18th IFIPIACM International Conference 

on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany, 2001. 

[130] S. J. Russell, D. Subramanian, and R. Parr. Provably bounded optimal agents. In Proceedings of 

the Thirteenth International Joint Conference on Artificial Intelligence (IlCAI-93), pages 338-

344, Chambery, France, 1993. 

[131] S. J. Russell and E. Wefald. Do the Right Thing - Studies in Limited Rationality. The MIT Press: 

Cambridge, MA, 1991. 

[132] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Informa

tion by Computer. Addison-Wesley, Reading, MA, 1989. 

[133] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A Scalable and Ontology-Based P2P Infras

tructure for Semantic Web Services. In Proceedings of the Second IEEE International Conference 

on Peer-to-Peer Computing (P2P2002), 2002. 

[134] D. Schoder and K.Fischbach. Peer-to-peer prospects. Communications of the ACM, 46(2):27-29, 

February 2003. 

255 



[135] The seti@home project web-site. http://setiathome.ssl.berkley.edu. 

[136] P. Shvaiko and 1. Euzenat. A Survey of Schema-Based Matching Approaches. Journal of Data 

Semantics N, pages 146-171,2005. 

[137] M. P. Singh and M. N. Huhns. Social abstraction for information agents. In M. Klusch, edi

tor, Intelligent Information Agents: Agent-Based Information Discovery and Management on the 

Internet, pages 37-52. Springer-Verlag: Berlin, Germany, 1999. 

[138] M. Sintek and S. Decker. TRIPLE - an RDF query, inference and transformation language. 

Deductive Databases and Knowledge Management (DDLP), 2001. 

[139] J. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foundations. 

Brooks Cole Publishing Co., Pacific Grove, CA, 2000. 

[140] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastructure. In 

Proceedings of the ACM SIGCOMM'02 Conference., 2002. 

[141] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: a scalable peer-to

peer lookup service for internet applications. In Proceedings of ACM SIGCOMM, 2001. 

[142] R. Studer, V. Benjamins, and D. Fensel. Knowledge engineering, principles and methods. Data 

and Knowledge Engineering, 25(1-2):161-197,1998. 

[143] M. Sussna. Word sense disambiguation for free-text indexing using a massive semantic network. 

In Proceedings of the Second Conference on Information and Knowledge Management, Arling

ton, Virginia, 1993. 

[144] K. Sycara. Multiagent systems. AI Magazine, 19(2):79-92, 1998. 

[145] K. Sycara, M. Klusch, S. Widoff, and J. Lu. LARKS: Dynamic matchmaking among heteroge

neous software agents in cyberspace. Autonomous Agents and Multiagent Systems, 5:173-203, 

2002. 

[146] K. Sycara, J. Lu, M. Klusch, and S. Widoff. Dynamic service matchmaking among agents in open 

information environments. ACM SIGMOD Record. Special Issue on Semantic Interoperability in 

Open Information Environments, 1999. 

[147] V. Tamma, I. Blacoe, B. L. Smith, and M. Wooldridge. SERSE: Searching for Semantic Web 

Content. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI'04), 

volume 3257, pages 419-432, 2004. 

256 



[148] V. Tamma and T. Payne. Toward semantic web agents: AgentLink and Knowledge Web. 

AgentLink newsletter, 17, 2005. 

[149] V. Tamma and P. R. S. Visser. Integration of heterogeneous resources: Towards a framework 

for comparing techniques. In Proceedings of the "6 Convegno dell'Associazione Italiana per 

l'Intelligenza Artificiale (AI*IA), Workshop su Stumenti di Organizzazione ed Accesso Intelli

gente per Informazione Eterogenee", pages 89-93, Padua, Italy, 1998. 

[150] V. A. M. Tamma. An Ontology Model Supporting Multiple Ontologies for Knowledge Sharing. 

PhD thesis, The University of Liverpool, 2002. 

[151] T.Bemers-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284:35-43, 

May 2001. 

[152] A. Tversky. Features of similarity. Psychological Review, 84(4):327-372, 1977. 

[153] Universal Description Discovery and Integration. OASIS Project - http://www.oasis-open.org/. 

[154] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, and F. Ciravegna. Semantic 

Annotation for Knowledge Management: Requirements and a Survey of the State of the Art. 

Journal of Web Semantics, 4(1),2006. 

[155] M. Uschold. Knowledge level modelling: concepts and terminology. Knowledge Engineering 

Review: Special Issue on Ontologies, 13(1):5-29, 1998. 

[156] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge 

Engineering Review, 11 (2):93-136, 1996. 

[157] M. Uschold and R. Jasper. A framework for understanding and classifying ontology applica

tions. In Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods, 

Stockholm, Sweden, 1999. 

[158] R. van Eijk, J. Hamers, T. Klos, and M. S. Bargh. Agent technology for designing personalized 

mobile service brokerage. GigaMobile Deliverable D3.8, Telematica Instituut, Enschede, The 

Netherlands, 2002. 

[159] G. van Heijst, A. Schreiber, and B. Wielinga. Using explicit ontologies in KBS development. 

International Journal of Human-Computer Studies, 46(2): 183-292, 1997. 

[160] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979. 

257 



[161] J. van Zyl and D. Corbett. Population of a framework for understanding and classifying ontology 

applications. In V. R. Benjamins, A. Gomez-Perez, N. Guarino, and M. Uschold, editors, Pro

ceedings of the ECAI-OO Workshop on Applications ofOntologies and Problem-Solving Methods, 

pages 101-112,2000. 

[162] R. Vanrenesse, K. Birman, A. Bozdog, D. Dimitriu, M. Singh, and W. Vogels. Heterogeneity

aware peer-to-peer multi cast. In Proceedings of the 17th International Symposium on Distributed 

Computing (DISC2003)., 2003. 

[163] P. Visser, D. Jones, T. Bench-Capon, and M. Shave. Assessing heterogeneity by classifying on

tology mismatches. In N. Guarino, editor, Formal Ontology in Information Systems. Proceedings 

FOIS'98, Trento, Italy, pages 148-182. IOS Press, 1998. 

[164] V. Vlachos, S. AndroutseIlis-Theotokis, and D. Spinellis. Security applications of peer-to-peer 

networks. Computing Networks Journal, 45(2):195-205., 2004. 

[165] P. Watry and R. Larson. Cheshire 3 framework white paper: Implementing support for digital 

repositories in a data grid environment. Technical report, University of Liverpool and University 

of California, Berkeley, 2005. 

[166] J. E. White. Telescript technology: The foundation for the electronic marketplace. White paper, 

General Magic Inc., Mountain View, CA 94040, USA, 1994. 

[167] G. Wiederhold and M. Genesereth. The conceptual basis for mediation services. IEEE Experts, 

12(5):38-47, Sept-Oct 1997. 

[168] M. E. Winston, R. Chaffin, and D. Herrmann. A taxonomy of part-whole relations. Cognitive 

Science, 11(4):417-444, 1987. 

[169] W. Woods. What's in a Link: Foundations for Semantic Networks. In D. G. Bobrow and 

A. CoIlins, editors, Representation and Understanding, pages 35-82. Academic Press, New York, 

1975. 

[170] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge 

Engineering Review, 10(2):115-152, 1995. 

[171] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational abstractions for the analysis 

and design of multi-agent systems. In Proceedings of the 1st International Workshop on Agent

Oriented Software Engineering at ICSE 2000, Limerick, Ireland, 2000. 

258 


