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Abstract 

This thesis deals with the numerical solution of anisotropic nonlinear high order par

tial differential equations. The differential equations we tackle here arise from the 

minimization of variational models for image restoration techniques such as denoising 

and inpainting. Fast and efficient numerical algorithms for these models are in ur

gent demand but only slow explicit time marching schemes have been reported in the 

literature. 

The main contribution presented here is the development of fast geometrical multi

grid methods for these models. Non-standard fixed point methods are developed for 

each application. When convergent these fixed point methods can be used as standalone 

algorithms and they are much faster than explicit methods. However, in this thesis we 

focus more on the use of these methods as non-standard smoot hers for nonlinear multi

grid methods. Evidence showing the quality of restoration and fast convergence of our 

multigrid methods will be presented. 

An extra bonus is the Chapter 7 where we introduce two new high order models for 

vectorial (color) image denoising. 

vii 
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Chapter 1 

Introduction 

LIOn the numerical solutions of variational models 

Variational techniques for image processing tasks have been around already for some

time, ~ome of them a~ image denoi~ing have been deeply inve~tigated, though there i~ 

still room for improvement. Some others like image registration and particularly image 

inpainting are relatively new and many challenges are still open to research. One of 

paramount importance i~ the numerical realization of the exi~ting modcl~, i.e. f~t and 

reliable numerical algorithms. Usually finding the solution of variational models implies 

minimizing a nonlinear functional which most of the time leads to the numerical so

lution of nonlinear and anisotropic partial differential equations (PDEs). By studying 

those which the research community has accepted as the better models, it is possible 

to identify a trend which suggests that the better the model, the more nonlinear or 

anisotropic the PDE is. It is well-known that stable numerical solvers for these type 

of differential equations are difficult to implement. This the~i~ deal~ with thi~ problem 

by proposing fast and efficient numerical algorithms for the solution of a number of 

nonlinear differential equations. 

In ~ome ca~e~ variational energie~ are con~tructed u~ing intrin~ic and frequently 

invariant geometrical information existent in the image, examples are first order gradi

ents fields, the second order curvature of level sets or the also second order curvature of 

the image surface. For inpainting, there is real and strong evidence that second order 

information delivers better re~ults, this can be in the form of reconnection of far apart 

broken parts of the image features or by recovering smoothly the curvature of missing 

sections of an object. In denoising, second order contributes to reconstructing smooth 

or piecewi:;e :;mooth part~ of the image avoiding the ~o called staircase effect which 

other models do have and .makes images to look blocky. 

Thus curvature brings nice properties to restoration models, but introduces new dif

ficulties. The resulting differential equations from curvature-b~ed models are fourth 

order and even more anisotropic and nonlinear than their second order gradient-based 

competitors. Numerical approximations of high order derivatives are therefore an im

portant issue, stencils can be extremely large and the numerical treatment of boundary 
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conditions starts being difficult to handle. 

Numerical algorithms for fourth order equations are known to be extremely slow, 

this is the case even for linear differential operators like the fourth order bi-harmonic 

operator. This brings to life an important, but yet not considered issue: the size of the 

domain. Image re~olution i~ continuou~ly and rapidly increa~ing due to technological 

advances in digital capturing devices, hence currently an image can easily surpass the 

million pixels in its domain. Therefore, it would be naive to believe that unilevel nu

merical algorithms can be f~t enough to solve difficult high-order ani~otropic equation~ 

in such a large domain. 

In this thesis we take the multilevel approach also known as multigrid approach 

to tackle this problem. Multigrid methods take advantage on constructing a hierarchy 

of discretizations where at each level the error equation is partially solved and the 

new approximation transported to the next coarser level. This process is recursively 

applied until reaching the coarsest level where and exact, but computationally cheap 

~olution i~ obtained. Then the proce~~ move backward~ in the hierarchical ~tructure 

transporting the more accurate error and updating the approximate solution at each 

level until reaching the finest level again. 

Thu~ multigrid methods look attractive because only few iteration~ are u~ed in high 

resolution levels and many iterations are only applied to obtain the exact solution at 

the coarsest and lowest resolution level. They are well known to deliver the optimal 

method for a large class of linear PDEs or nonlinear PDEs with smoothly varying 

coefficients [139]. For other PDEs, standard application of multigrid methods leads to 

no convergence. For the nonlinear anisotropic PDEs studied in this thesis, implementing 

an operating and reliable multigrid algorithm is however not an easy task. Multigrid 

methods rely on a good numerical algorithm to smooth the error at every level so it 

can be easily transported to the next coarser level. These numerical algorithms are 

known as smoothers. Anisotropy makes standard smoothers to fail at the interface 

due to jumping of coefficients among other things. The problem i~ that interfaces are 

represented by edges in an image and common images may have many of them making 

this a big issue for multigrid algorithms. 

The main contribution of this the~is is the development and analy~is of good non

standard smoot hers for multigrid algorithms for high order anisotropic partial differ

ential equations. In some cases, these smoothers happen to be convergent algorithms 

so they can be used as standalone algorithms which are much faster than the usual 

explicit methods, though not than multigTids. 
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1.2 Thesis outline 

Chapter 2 

This chapter contains the mathematical tools the reader may need to review while 

reading the following chapters of the thesis. A short revision in some important math

ematical topics ranging from linear spaces, variations of a functional, bounded space 

of variations and inverse problems to image representation, iterative solutions of linear 

and nonlinear equations and multigrid algorithms is presented. 

Chapter 3 

Here we present a short revision of variational models for image reconstruction tech

niques. We start with energy based anisotropic filters like the total variation model 

for image denoising explaining its virtues and shortcomings, then we move to illustrate 

briefly the properties of high order denoising models. A more extensive revision is 

carried out for image inpainting models, here we cover the Euler's elastica model, the 

Cahn-Hilliard model and the Mumford-Shah based models. Their virtues and draw

backs are also described. An important non-variational technique for inpainting called 

patch-based image completion is also explained and examples from this technique are 

presented. 

Chapter 4 

A numerical algorithm for solving the third order nonlinear PDE of the curvature 

driven diffusion (CDD) inpainting model is developed. The differential equation we 

deal with here degenerates at flat regions inside the inpainting domain and therefore 

stable numerical algorithms other than slow explicit methods are not at hand. To 

tackle this problem a slight modification of the original PDE is introduced enabling us 

to implement a fixed point method for this new differential equation. Although this 

fixed point method is not convergent we give evidence through local Fourier analysis 

that it may have good smoothing properties. Using this non-standard fixed point as 

smoother we develop a nonlinear multigrid method for the original CDD formulation. 

A short discussion explaining why coarsening is unique for inpainting problems is given 

and a method to handle this situation proposed. Finally, numerical evidence showing 

the fast convergence of the algorithm and its quality of reconstruction is presented. 

Chapter 5 

In this chapter we develop different algorithms for the solution of the Euler's elastica 

variational inpainting model. Here the challenge involves solving fast and efficiently a 

fourth order anisotropic and highly nonlinear PDE. We start explaining why standard 

fixed point methods fail to converge for this equation and then introduce our first algo

rithms: two novel unconditionally stable semi-implicit time marching (USTM) schemes 
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based on convexity splitting techniques. Using one of these USTM algorithms as foun

dation, we develop our third algorithm for the elastica model: a non-standard stabilized 

fixed point (SFP) algorithm. Finally, after showing the smoothing properties of the SFP 

algorithm we develop an even faster nonlinear multigrid algorithm. Quality restoration 

and convergence results are presented at the end of the chapter. 

Chapter 6 

In this chapter we generalize and extend our work of chapter 5 to the curvature-based 

denoising model. After describing the curvature model and presenting a revision of the 

challenges to develop efficient multigrid methods for anisotropic nonlinear high order 

PDEs, we develop a multigTid algorithm using again a non-standard stabilized fixed 

point method. However, this time the SFP method has the important characteristic of 

being adaptive, meaning that it applies extra local relaxation only where required. This 

new feature of the smoother let us to dramatically reduce the number of Gauss-Seidel 

iterations applied on each grid without decimating the performance of the multigrid 

algorithm. We also elaborate a more rigorous local Fourier analysis of the smoother 

and a two-grid analysis to study the convergence properties of the multigrid method. 

Extensive information about robustness with respect to variations of parameters and 

effectiveness of the multigrid algorithm are presented. 

Chapter 7 

This chapter introduces two new high order models for vectorial (color) image denoising. 

I3ased on the two observations: (1) that high order models, in particular curvature

based, preserve better the characteristics of the images, and (2) coupling between image 

channels adapts the level of smoothing allowing to denoise without wiping out any weak 

channel, we develop two models: a globally coupled and a locally coupled curvature

based color denoising models. Evidence showing that the quality of reconstruction 

of these high-order-coupled models is better than the one of non-coupled-high-order 

and coupled-low-order models is presented. The fast numerical solution of these two 

models is carried out using a multigTid method similar to the one developed in chapter 

6. However, coupling brings a new difficulty to the numerical algorithm introducing 

instability due to the level of regularization changing at every iteration. We illustrate 

this problem and explain how to adapt the multigrid method to obtain an optimal 

performance. Numerical and quality results are presented at the end. 

Chapter 8 

In the this last chapter we propose possible future research directions derived from the 

work presented in this thesis. 
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Chapter 2 

Mathematical Preliminaries 

2.1 Normed linear spaces 

On the early days of mathematics a lot of results were obtained on the real line. To 

facilitate the extension of those results to n-Euclidean spaces (of dimension n), it was 

required some kind of structure in the n-dimensional space to avoid certain technical 

difficulties appearing in more general topological spaces. The class of normed linear 

spaces fits this need admirably. 

We start by introducing the required notation we use throughout this thesis and 

some definitions commonly met in either linear algebra or advanced calculus literature. 

The elements of the n-Euclidean space lRn, called either points or vectors, will be 

represented as the n-tuples (Xl, ... ,xn ) which for easy of writing we indicate by using 

a boldface letter. This is, 

(2.1) 

The inner product of two vectors x and y is defined as 

x· y = (x,y) = XIYl + ... +xnYn (2.2) 

and the length or Euclidean norm of a vector as 

(2.3) 

The concept of norm can be generalized with the following definition. 

Definition 2.1.1 (Norm). A real valued function N : L ~ lRn -+ lR is called a norm 
on L if it satisfies 

N(x) ~ 0 with equality if and only if x = 0, (2.4) 

N(ax) = laIN(x), for a given scalar a and (2.5) 

N(x + y) ::; N(x) + N(y} which is the triangle inequality. (2.6) 

The norm of a vector x is usually represented by IIxli. 
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Example 2.1.2 (p-norm). Consider x E ]Rn, then for any real number p ~ 1 the 
p-norm of x is defined as 

( 

n ) lip 
IIxlip = ~ IXilP (2.7) 

where for p = 2 we recover the Euclidean norm previously defined in {2.3}. Note the 
p-norm can be extended to vectors having an infinite number of components, yielding 
the i P space defined as the set of all infinite sequences of real or complex numbers with 
finite p-norm. 

Example 2.1.3 (V-norm). Consider a function f defined on a domain nand 1 ~ 
p ~ 00. Then 

IIfllp = (In If(x)jP dx) lip (2.8) 

defines the LP-norm of f on n. Note this is a generalization of the previous exam
ple since now f is allowed to have not only countably-infinitely many components but 
arbitrarily many components. The special case when p = 00 is defint'A a,s 

IIflloo = sup If(x)l. 
xEIl 

(2.9) 

Definition 2.1.4 (Normed linear space). A space with a norm defined on it is 
called a normed linear space. 

Definition 2.1.5 (Cauchy sequence). A Cauchy sequence is a sequence {x;} having 
the property that for anye > 0, there exists an integer N such that if i,j ~ N, then 

Ilxi - xjll ~ e. 
Definition 2.1.6 (Banach space). A normed linear space L is said to be complete if 
every Cauchy sequence in L converges to an element in L. A complete normed linear 
space is called a Banach space. 

Definition 2.1.7 (Linear transformation). A function '1': L --+ M is called a linear 
transformation if for all x, y ELand all real a the following two equations are satisfied 

T(x + y) = T(x) + T(y). 

T(ax) = aT(x). 

(2.10) 

(2.11) 

Definition 2.1.8 (Convex functions). A function f defined on an interval S (or a 
convex subset of some vector space) is called convex if 

f(ax + (1 - a)y) ~ af(x) + (1 - a)f(y) (2.12) 

for all x,y E S and a E [0, 1J. It is called strictly convex provided that the inequality is 
strict for x -:F y and a E (0,1). 

Example 2.1.9 Using definition 2.1.8, prove that the total variation ofu: n ~]R2--+ 
]R defined as 

TV(u) = 10 IVul dxdy 
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is a convex functional. 

Proof. Consider UI =F U2 two arbitrary functions then, 

In 1'V(auI + (1 - a)u2)1 dxdy = In la'VuI + (1 - a)'VU2) I dxdy 

::; a In I'VUII dxdy + (1- a) In l'VU21 dxdy. 0 

Definition 2.1.10 (Lipschitz condition). A f7mction f : I c lR -+ lR that satisfies 

If(x) - f(y)1 ::; Klx - yl 

for some K and all x, y E I is said to satisfy a Lipschitz condition on the interval I 
and is called a Lipschitz continuous function. 

2.2 Derivatives in a normed linear space 

Here we give the definitions of derivatives and differentiable functions in normed linear 

spaces. 

Definition 2.2.1 (Frechet derivative). Let f be defined on an open set U ~ L, 
taking values in a second normed linear space JI,f. Then f is differentiable at Xo E U if 
there is a linear transformation T : L -+ M such that, for sufficiently small h E L 

T(h) = f(xo + h) - f(xo) -lIhllc:(xo,h), (2.13) 

where c:(xo,h) EM goes to zero as IIhll-+ O. The linear transformation T is called the 
Frechet derivat'ive of f and is denoted by f'(xo). 

Definition 2.2.2 (Gateaux derivative). Let f be defined on an open set U ~ L, 
taking values in a second normed linear space JI,f. Then f is differentiable at Xo E U if 
the two-sided directional derivative f'(xo; v) exists for each vEL; that is, if 

1· f(xo + c:v) - f(xo) f'( ) 
1m = ~;v. 

£->0 c: 
(2.14) 

Notice that provided f has a Frechet derivative at xo, f is Gateaux differentiable 

at Xo with f'(xo)(v) = 1'(xo; v) because 

f'(xo)(v) = lim f'(xo)(tv) + Iltvllc:(xo,tv) = lim f(xo +tv) - f(xo) = f'(xo;v). 
t->O t t--+O t 

The opposite, this is, Gateaux differentiability of f at Xo does not, however, guar

antee the existence of the Fh~chet derivative 1'(xo) without some further conditions on 

f· 
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2.3 Calculus of variation 

In this section we introduce the basic tools to compute the first variation (also known 

as the Euler-Lagrange equation) of a functional. Extensive literature in this respect 

can be found elsewhere. For instance, in the excellent monographies [60, 62, 63]. 

2.3.1 Variation of a functional 

Com;ider the functional 

J[u] = fn F(x,u(x), Vu(x)) dx, (2.15) 

defined on some normed linear space depending upon the independent variable x = 
(Xl,X2, ... ,xn ), an unknown function u(x) of these variables and its gradient Vu(x) = 

(u(x)Xl'U(X)X2, ... ,u(x)Xn). Here, for instance, U(X)Xl stands for the derivative of 

u(x) with respect to Xl (similar for others) and dx is the n-differential element defined 

as dx = dx1dx2··· dxn • 

The most important necessary condition to be satisfied by any minimizer of a vari

ational integral like J(u) is the vanishing of its first variation 8J defined as 

(2.16) 

This is, if u is a minimizer of J( u) with respect to variations 8u = cp which do 

not change boundary values of u, then (2.16) must be satisfied for all cp with compact 

support 1 in n. Then for some Uo E n, we call 8J(uo) the fist variation of J at Uo in 

the direction of cpo 

To compute the first variation of variational integrals like (2.15) on the direction of 

a function cp( x) with compact support in n, we define the following transformation: 

u*(x) = u(x) + c:cp(x) + 0(c:2
), (2.17) 

where c: _ 0 and IIcpli - o. Then the variation 8J of the functional (2.15) corresponding 

to the above transformation is defined as the the linear part in c: of the difference 

J(u*) - J(u). By using Taylor's theorem is possible to show, see for example [60], that 

(2.18) 

It follows then that the variation of the functional (2.15) is given by 

(2.19) 

lThe support of a function is the set of points where this function is not zero. Functions with 
compact support in a space X are those for which their support is a compact subset of x. 
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2.3.2 The Gauss (divergence) theorem 

Consider an open and bounded subset n c IRn with piece-wise smooth boundary an . 
Suppose a scalar function u( x) is continuously differentiable in (20 Then 

f uxidx = f u(x)vids ln lan (2.20) 

is satisfied for i = 1, ... , n with v = (VI, lI2, ... , vn) the outward unit normal of an. 
Using this result and simple additivity, it is simple to show that for a given vector field 

F = F(x) the following is true 

f ('\1 . F) dx = f F· V ds. ln lan (2.21) 

The latter, is the most common way to present the divergence theorem. 

2.3.3 Integration by parts 

An immediate consequence of the divergence theorem is the integration by parts for

mula. This is, for i = 1, ... , n and for two continuously differentiable functions u(x) 

and v{x) in n 

f ux;v(x) dx = - f u{x)VXi dx + f u{x)v{x)lIids . ln ln lan (2.22) 

Or by applying (2.21) to the product of a scalar function 9 and a vector field F we 

obtain the vectorial representation 

f(F.Vg+gV.F)dx= f gF.vds. ln lan (2.23) 

To finalize this short section we present an example of how to compute the first 

variation of a functional of our interest. 

Example 2.3.1 Consider the problem of finding the first variation of the functional 

F{u) = In IVul dxdy 

defined on a domain n c 1R2. To this end, we introduce the small variation £c.p composed 
by the parameter £ -+ 0 and the continuously differentiable function c.p with compact 
support in n. Then we compute, 

d_ F(u + ec.p)1 =! f IV(u + ec.p)1 dxdyl 
de; 6=0 ln 6=0 

f V(u + £c.p) I f Vu 
= ln IV(u + £c.p)1 . Vc.p dxdy 6=0 = ln IVul . Vc.p dxdy. (2.24) 
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We can now use integration by parts on (2.24), thus 

in I~:I . \1~ dxdy = -in \1. C~:I) ~ dxdy + Jan ~v· \1u ds, (2.25) 

where 00 is the boundary of 0, v is the unit outward normal vector to DO and ds is 
the length element of integration. If we further require 

d
d F(U+E~)I =0, 
E €=o 

then the following PDE known as the Euler-Lagrange equation must be satisjit'4 : 

\1. C~:I) = 0 in 0 (2.26) 

with Neumann boundaT'lJ condition v· \1u = 0 on 00. 

2.4 Functions of bounded variation 

Let 0 be a bounded open subset of lR.n and let U E £1(0). Define the total variation of 

where 

in IDul = sup {in u divcp dx: cp = (<P1,<P2, ••• ,<Pn) E CJ(O;lR.nt 

and li<piIiLoo(n) ~ 1 for i = 1, ... , n}, (2.27) 

dx is the Lebesgue measure2 and cJ(o)n is the space of continuously differentiable 

functions with compact support in O. Notice that all the components of cp have £00(0)_ 

norm less than 1. 

As described in [65], a particular and interesting case is when U E C 1(0), then 

integration by parts gives 

1. l ~ou u divlt' dx = - L.J ox' ~i dx 
n n i=1 ' 

(2.28) 

in IDul = in l\1ul dx. (2.29) 

2In Euclidean spaces, the standard way to assign a measure (length, area or volume) to a given 
subset is through the Lebesgue measure. lIenee, set.s with finite Lebesgue measure are called Lebesgue 
measurables. In real analysis, this measure is used to define Lebesgue integration. 
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Figure 2.1: On the left, three bounded variation functions with the same total variation. 
On the right, a function with no bounded variation. 

A function u E £1(0) is said to have bounded variation in 0 ir In IDul < 00 . We 

define BV(O) as the space of all functions in £1 (0) with bounded variation. 

Example 2.4.1 To better understand bounded variation functions let us briefly ana
lyze some illustrative examples. The following functions fl (x ), h (x ) and h (x ) defined 
below, all belong to BV(O) with 0 = [0, n/2J. 

h(x ) = sin (x), 

forO ::; x < nl8 
fornl8::; x < n/4 
for n I 4 ::; x < 3n I 8 ' 
for 3n 18 ::; x < n 12 

2x 
h(x ) =-. 

n 

(2.30) 

(2.31) 

(2.32) 

Even more, since h , hand h are all monotonic functions'3 , then all have the 
same total variation equal to one4

. However, only fl (x) and h(x) are continuous and 

differentiable functions on O. 

Example 2.4.2 Now consider the function f4( X) defined as 

{ 
0 for x = 0 

f4(X) = sin(l/x) forO < x ::; a with a> o. (2.33) 

Here 0 = [0, a] for any a > O. This function is plotted on the right-hand-side in 
Figure 2.1 . We see that as x -* 0 the frequency of the oscillations of f4( X) increases, 
then the more x appTaaches zeTa the more variations need to be added and the value of 

3In calculus, a fun ction f is called monotonic if for a ll x and y such that x ~ y one has f( x ) ~ f(y) , 
i.e. f preserves thc ordcr. 

4Thc tota l va ria tion of a monotonic real valu cd fun ction f in an interval (a ,b) i given by If(b) - f (a)1, 
sce [113). 
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the integral (2.29) increases. Therefore, this function has infinite total variat-ion and 
does not belong to BV(O). Note however that f4(x) does have bounded variation on 
[a, b] for any a > O. 

Remark 2.4.3 Under the norm 

lIullBV = IluliLl + In IDul, 

BV(O) is a Banach space {65}. 

(2.3.1) 

An interesting characterization of the functions with bounded variation can also be 

found in [87]. 

2.5 The coarea formula 

This section introduce a powerful tool for the analysis of BV functions: the coarea 

formula. This formula gives a natural connection between the total variation of a 

function u representing an image and the perimeter of its level sets. 

Definition 2.5.1 (Borel set). Given X any topological space, we say that E c X 
is a Borel set if E can be obtained by a countable number of operations, starling from 
open sets, each operation consisting in taking unions, intersections and complements 
(115, 16J. 

Definition 2.5.2 (Perimeter). Let b' be a Borel set and 0 an open set in JRn. Define 
the perimeter of E in 0 as 

Per(E, O) = In IDXEI = sup{L divcp dx: cp E CJ(O;JRn)n and Icp(x)1 ~ 1 for x EO}, 

(2.35) 

where 

XE = {01 if x E E 
if x E 0- E 

(2.36) 

is the indicator function of E. 

Definition 2.5.3 (Coarea formula). Let u = u(x) and f = f(x) be two scalar 
flLnct'ions definpAi, on JRn. Assume that u is Lipschitz continuous and that for almost 
every ,\ E JR, the level set L>. = {x E JRn: u( x) = A} is a smooth (n - 1) -dimensional 
hyper-surface in JRn. Suppose also that f is continuous and integrable. Then 

r IVulf dx = 1+00 (r fdS) dA. 
j,{j"n -00 i LA 

(2.37) 

For the particular case when f = 1 and the region of integration is a subset 0 c JRn 
we have 

r IVul dx = 1+00 (r dS) dA = 1+00 

Per(L>., 0) dA. in -00 i LA -00 

(2.38) 
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Figure 2.2: On the left a given gray level image u(x) and on the right some of its A-lev I 
curves, these are curves wh re u(x) = A for some A E [0, 1] . 

Remark 2.5.4 Let us go back to our definition of an image as a real function u(x) 
taking values on some finite interval, ay [0,1] for simplicity. Let us select ome slice 
(level set) of u by setting u(x) = A. The slice selected this way represents a )"-level 
domain defined as L>. = {x E 0 C ]R2 : u(x) = )..} for).. E [0,1]. We illustrate this with 
an example in Figure 2.2 where the image in (a) i defined by the function 

{ 

1 -J(x-64)2+(y-64)2/128 (x,y)EO\01U02 
f( x,y ) = 0.6 (x,y) E 0 1 

0.7 (x, y) E O2 

(2.39) 

with 0 = [0 , 12 ]2, 0 1 the ring bounded by the two circles (x - 64)2 + (y - 64)2 = 
142 and (x - 64)2 + (y - 64)2 = 262 and 0 2 the ring bounded by the latter and (x -
6 )2 + (y _ 64)2 = 3 2, and the 3-dimensional plot in (b) show some of its level sets. 

Therefor-e according to (2.35) the perimeter- of ach slice oj u is given by 

(2.40) 

And now using the coa~ a formula we obtain 

(2.41) 

Thi Janta tic l' ull shows that the total variation oj a given image u is just the 
um oj v ry l ngth oj all its A-l vel curves. This automatically takes care oj all di -
onlinuities oj u and the~ for the contribution of edges to the total variation integral 

is nJorced. 

2.6 Inverse problems and regularization 

fnv r e probl m ar common ly encountered in many different branches of cience. For 

in tance, water pollution sourc identification problems [Ill], hydraulic conductivity 

ident ification in steady gr undwatcr now [57], etc. T hcy are also present in the for

mulation of many image proces ing ta k such as d noi ing deblurring, inpainting, 
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etc. 

The variational approach to these problems usually requires the regularization of 

the inverse problem to make it well-posed and therefore solvable. In this section, we 

review the very basic theory of inverse problems and their regularization. We start by 

introducing the concepts of well- and ill-posed problems. 

2.6.1 Well and ill-posed problems 

It is usual to refer to a well-posed problem (in the sense of Hadamard) one for which: 

1. the solution exists, 

2. the solution is unique, 

3. the solution depends continuously on the data (stability condition). 

If any of these conditions do not hold, then the problem is said to be ill-posed. 

2.6.2 Inverse problems 

An inverse problem is one where the task is to recover from the known data some 

parameter values of the physical model. 

Inverse problems are typically ill-posed, being the stability condition the most 

violated condition of well-posedness. In the branch of variational models for image 

restoration it is not uncommon however to find inverse problems where the uniqueness 

condition fails as well (inpainting for example). 

Example 2.6.1 The classical example to illustrate an inverse problem (linear in this 
case) is the Fredholm integral equation of the first kind 

f(x) = lb g(x, y)h(y) dy, 

where the task is to infer h(y) from the data f (x) with smooth g( x, y) . Here if the 
mapping is only injective then the inverse will not be continuous. Hence small errors 
in the measured data f(x) will introduce large errors in the solution h(y). In this sense 
the inverse problem is ill-posed. 

Example 2.6.2 We consider now an example from image restoration techniques. A 
noisy image uO defined in n c ]R2 can easily be constructed by adding certain quantity 
of Gaussian noise rJ to a clean image u in such a way that the relation uO = u + rJ 
is satisfied. Now consider the inverse problem of given only uO to find u, implying 
the removal of the noisy part rJ. This problem can be approached using variational 
techniques with the extra assumption that the standard deviation (72 of the noise is 
known or at least can be estimated. In this case, the problem is to find u which minimizes 

(2.42) 

Here, we have an inverse problem that is ill-possed due to (2.42) having many 
possible solutions. 
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2.6.3 Regularization 

Regularization is a technique used to transform an inverse problem into a well-posed 

problem; Tikhonov et al. [138] introduced a popular way to overcome ill-posed min

imization problems. The basic idea is to introduce a new constraint to the problem 

which demands the solution to belong to a specific set of solutions, or to have specific 

features. For instance, Example 2.6.2 can be regularized the following way: 

(2.43) 

The first term in (2.43) is the data or fitting term and the second is the regularization 

term which requires the solution U to have low gradient values and therefore removing 

noise. Other examples where Tikhonov regularization has been used can be found in 

[94, 49] and references therein. 

2.6.4 Choosing the regularization parameter 

We discuss two different methods for choosing the positive regularization parameter 

a> 0 automatically. 

L-curve method 

This method proposes to choose an extensive set of parameters 0 < al < a2 < ... < aN 

and solve the Tikhonov regularization problem (2.43) for all of them. Then we plot the 

points (X(a), Y(a)) with 

X(a) == log (Ilua - uOIlD, Y(a) == log (llualin 

in the plane, resulting in a curve which looks like the letter L. Then we can take the 

a value corresponding to the corner of the L as the better choice for the regularization 

parameter. More information about this very useful technique can be found in [71, 72, 

70, 144] and references therein. 

Morozov's discrepancy principle 

Morozov's discrepancy principle is based on the assumption that if we have an estimate 

on the magnitude of the error in the data (noise in Example 2.6.2) then any solution that 

yields a measurement with error of same magnitude is acceptable. Morozov's principle 

gives us a way of choosing the parameter a when Ilull~ is used as regularization instead 

of any other general functional such as lI'Vull~ in Example 2.6.2. 

This method involves finding the zero of a nonlinear real function of one variable 

and is usually computationally quick. References for this method can be found for 

instance in [120, 144, 15]. 
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2.7 Image representation 

In this section we will review some of the most frequent ways to represent images. 

2.7.1 Computational representation 

Computationally a gray-scale image is a collection of values stored in a 2-dimensional 

array or matrix U = [Ui,j]mxn. Each entry of the array is called a pixel of the image 

and it takes values usually on either [0,255] or [0,1] depending upon if the image has 

been normalized or not and representing the brightness of that specific pixel. 

Color or vector-valued images, on the other hand, are multi-dimensional arrays 

U = [Ui,j,k]mxnxp, where each p-Iayer (of dimension m X n) may represent color, 

brightness or a combination of both. In a color image at each (i,j)-location, a pixel 

is now represented by a vector Ui,j = (Ui,j,l, Ui,j,2, ..• ,Ui,j,p). In the popular RGB 

representation, p = 3 and each entry of the vector u~fB = (Ui,j,1,Ui,j,2,Ui,j,a) stands 

for the intensity level of each one of the color channels: red (R), green (G) and blue 

(B). 

2.7.2 Mathematical representation 

Mathematically a gray-scale image is characterized by a smooth function 

U = u(x,y) : n ~ JR, (2.44) 

where n c JR2 • Based on this, images can be seen as : 

• Parameterized curves. 

• The level sets or isophotes of the function u. 

• Surfaces where the height is the gTay-scale value. 

Details of the parameterized-curves representation can be found in [6J. The other 

two will be reviewed in the following sections. They are important for us since, in 

this thesis, the restoration models described on the first chapters use the level set 

representation and the curvature-based denoising model of Chapter 6 adopts the surface 

representation. 

2.7.3 Images as a collection of level sets 

Consider a gray level image U defined as in (2.44). Then, for each real value A define 

the A-level set of U as 

"I>. = ((x,y) En: u(x,y) = A}. 
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Figure 2.3: (a) Original gray-scale image of size 256 x 256 taking values on th interval 
[O , lJ. (b) Level sets of the image in a 2-dimensional view. 

Then the classical level-set representation of u is the one-parameter family of all 

the level sets 

By adopting this representation, the image domain is par titioned, meaning that 

n = U~E1R I A with I A n I f.' = 0 for A # fJ, . This wayan image can be represented as a 

collec tion of level sets. 

Notice tha t this representation yields \lu as the normal vector to each A-level set 

and since the curvature K,L S is defined as the rate of change of the unitary normal 

vector we have that 

\lu 
K,L S = \l. l\lul ' (2.45) 

A quite illu tra tive and detailed derivation of this formula for a general fun ction 

parameterized by its curvilinear abscissa can be found in [6J. 

Figure 2.3 shows a gray-scale image and some of its level ets. 

2.7.4 Images as surfaces 

A different image representation i obtained from regarding an image as the induced 

3-dimensional surface or graph characterized by z = u(x , V) which defines the image 

surface (x, V, u(x, V)). By considering the level set fun ction 

¢(x ,V,z) = u(x ,V) - z, 
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F igure 2.4 : T wo different views of t he surface I' pI' sentation of the image in Figure 
2.3. 

we see that its zero level et {(x,y,z) : ¢(x, y ,z) = O} corresponds to the surface z = 

u(x,y). Therefore, the mean curvature of the surface can be expres ed as 

V ¢ 
"'s= V · --

IV¢I 
(2.46) 

and since V ¢ = (ux , Uy, - 1) and IV¢I = ju~ + ut + 1 = v'IVuI2 + 1 the curvature of 

the surface can be expressed in terms of u only a 

V u 
"'s = V . -y'r.;1 V;::;u=;I:;;=2 =+==1 (2.47) 

In Figur 2.4 we show the surface repre entation of the image presented in Figure 

2.3. 

2.7.5 ScaJe- pace representation 

Scale-space theory is Lhe framework which propose to repr nt imag as a one

paranl ter family of smooth d images. Scale-scale representation was ini tially studied 

by Wi tkin [154], Ko nd erink [2, 3] and Lindeberg [ 9] and more recently can be found 

in the works of W ickerL [14 ], Dui ts t al. [51] an d references therein. 

To obLai n such a representation , a moo thing k m el d pending upon a parameter t 

is I cted and u d to suppre t he fin cale structures of the image. The structures 

of spaLial size malleI' than about It are mooth d away in the scale- pace I vel at cale 

t . The paranl ter t is re£ rr d to as Lhe cale parameter. 

The most known type of scale-space is the Gaus ian scale-space which i linear 

and has the ni e proper Ly of being pos ible to deri ve from it a small et of 'cale-space 

axiom [2J. For a given image u(x,y ), its linear (Gaus ian) cale-space repr entation 

is a family of derived imag L(x,y; l ) d fin ed by t he convoluLion of u(x,y ) with the 
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Gaussian kernel 

1 (2 2) / 2 Gt(X,y) = 27ft e - x +y t (2.48) 

such that L(x, y;t) = (Gt *1.L)(:r,y). 

Linear scale spaces [154] are also obtained from evolving a parabolic equation of 

the form 

au at = V · (D( x ,y)Vu) , (x ,y) EO , u(x ,y , O) = uO(x,y), (2.49) 

which due to D(x, y) being linear, unavoidably smear sharp edges while filtering out 

noises. 

rn Figure 2.5 we present some different scales L(:J;, y; t) obtained t hrough linear 

(Gaussian) filtering for a model image. 

(a) (b) 

(c) (tl) 

Figure 2.5: (a) Scale-space representation {,(x, y ; t) at scale t = 0, corresponding to the 
origina l image 7.L. (b) Scale-space representation L(x , y; t) at scale t = 1. (c) Scale-space 
representation L(:J;, y;t ) at scale t = 8. (d) Scale-space representation L(x, y;t) at scale 
t = 32. 
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A remedy for the edge smearing shortcoming from linear filtering was introduced in 

[108], where the use of different types of nonlinear coefficients D(u) was studied. This 

type of nonlinear diffusion gives rifle to a nonlinear Rcale-Rpace repreRentation of the 

image. We will give more details of this method in Chapter 3, where we will study the 

Perona and Malik's nonlinear diffusion model [108]. 

2.8 Iterative solution of nonlinear equations 

In many applications, a nonlinear system of equations usually arises in the attempt to 

minimize or find a critical point of a nonlinear functional. This type of systemR can be 

represented as 

F(x) = y, (2.50) 

where F : dom(F) C ]Rn -+ ]Rn is a nonlinear operator, x = (Xl, ... ,xn ) the vector 

of unknowns and y = (Yl, ... ,Yn) a fixed vector. It is common practice to absorb the 

vector y into F and con~ider only 

F(x) = 0 (2.51) 

with 0 representing the zero vector. 

In this section, we introduce two of the mo~t u~ed iterative nonlinear methods to 

find solutions for this type of problems: the Newton's method and the Descent method. 

These two methods are highly used due to two completely different reasons: Newton's 

method becau~e of it~ very de~irable property of quadratic convergence and De~cent 

method because of its simplicity of implementation. Unfortunately both methods, as we 

Rhall show in future chapters, have drawbacks when solving highly nonlinear problems 

with discontinuous coefficients which are the type of problem~ we deal with in this 

thesis. 

2.8.1 Newton's method 

This method prop~es to find the solution of (2.51) by applying the following iterative 

equation 

k = 0,1, ... (2.52) 

In practice, the inverse of F'{x k
) is rarely explicitly computed since may be a 

difficult task, this happens particularly for problems in which the dimen~ion of the 

system may be of several thouRand. InRtead, the system 

(2.53) 

is solved and xk+l = xk + h is taken as the new approximation. 
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For the Newton's iteration (2.52), it can be proved [102J that under certain natural 

conditions on F, the estimate 

(2.54) 

with c any positive constant and p = 2, holds provided that the iterate xk is s·ufficiently 

close to the true ~olution x*. Algorithm~ ~ati~fying (2.54) for p = 1 are ~aid to have 

linear convergence and those with p = 2 to have quadratic convergence. It is here, 

in (2.54) where the importance of Newton's method rests since it shows that under 

suitable conditions Newton's method is very quick to converge. Notice however that 

(2.54) is only satisfied for IIxk - x*1I very small. In other words, Newton's method 

requires a very good initial guess; on the contrary, it is very likely it will get stranded. 

Newton's method applied to nonlinear problems with discontinuous coefficients 

presents very often an erratic behavior. In. the following chapters we will show that 

minimization of total-variation-type functionals as (2.41) in Section 2.5 yields nonlinear 

systems with highly discontinuous coefficients preventing us to use Newton's method 

as our iterative solver. 

2.8.2 Descent method 

Consider a general function 9 : JRn -+ JR. Descent methods propose to minimize 9 using 

the following scheme 

k = 0,1, ... , (2.55) 

where a k is an scalar allowed to change at each k-iteration and _pk can be thought as 

a vector defining the direction along which the new iterate xkt 1 will be chosen. The 

parameter a k is used to determine the step-length from xk to xk+l. It is also common 

practice to think of the parameter a k as the time-step I1t of a newly introduced time

variable t. In this case, the descent method is referred to as a time-marching method. 

The main characteristic of descent methods is that the iterates decrease the function 

value at each stage, i.e. 

(2.56) 

Gradient descent or steepest descent method 

An important class of descent methods is obtained by selecting pk as the direction of 

maximallocal'decrease of g. If 9 is differentiable at xk then this direction is given by 

V g( xk) resulting in the scheme 

k= 0,1, ... (2.57) 

Here "/, which can be fixed or not, must be selected sufficiently small to satisfy 
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condition (2.56). This is the main weakness of the gradient descent method since 

selecting the optimal, can be time-consuming and using, fixed may produce poor 

convergence. Further, if the curvature of g in different directions is very different, 

the method will converge very slowly. This situation is very likely to occur in highly 

nonlinear problems. 

2.9 Iterative methods for linear systems of equations 

Consider the linear system Ax = b where A is an m x n matrix, x is the n x 1 vector 

of unknowns and b is an m x 1 vector. 

al,1 al,2 al,n 

XI J 
bi 

A= 
112,l a2,2 a2,n X2 

b= 
b2 

X= . , (2.58) 

am,l am,2 am,n Xn bm 

The above is a system of m linear equations with n unknowns, each one of them 

(say the ith ) of the form 
n 

L ai,jxj = bi. 
j=l 

(2.59) 

In the field of image processing the size of these systems is governed by the quality 

or resolution of the image is going to be processed. In this new era of high resolution 

digital cameras, images can easily have millions of pixels of resolution resulting in very 

large systems of equations; usually of order from 104 to 106
• For this reason, trying 

to solve these systems with direct methods (for instance Gaussian elimination) can be 

computationally very expensive since a lot of memory is needed [66]. 

Here is where iterative methods like conjugate gradient [116, 66, 102]' Jacobi [116, 

137], Gauss-Seidel [116, 137] and others result to be very useful. These iterative methods 

compute the solution of the system (up to some accuracy) by starting from a given 

initial guess and then successively finding new and closer approximations to the true 

solution of the system. They are computationally cheap and easy to implement. 

Before introducing the iterative methods of our interest, first we present some matrix 

properties which make the linear systems of the form Ax = b suitable to be solved using 

these iterative methods. 

Definition 2.9.1 (Symmetric matrices). A symmetric matrix A is a square matrix 
{m = n} that is equal to its transpose AT. This is, A = AT. 

Definition 2.9.2 (Diagonally dominant matrices). A matrix A is said to be di
agonally dominant if satisfies 

lai,il ~ L lai,jl for all i. 
jti 
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If the strict inequality is satisfied then we say that A is strictly diagonally dominant. 

Definition 2.9.3 (Positive definite matrices). A real ,~ymmetric matrix A is posi
tive definite if x T Ax > 0 for all non-zero vectors x. This is equivalent to say that all 
the eigenvalues of the matrix are positive. 

Remark 2.9.4 A nice consequence of a matrix A being positive definite is that its 
inverse A -1 exists. A matrix being diagonally dominant has very nice properties as 
well. To start, if A is strictly diagonally dominant then is non-singular meaning the 
system Ax = b has a unique solution. Further, Jacobi and Gauss-Seidel methods for 
solving a linear system of equations with this type of matrices always converge. 

2.9.1 General iterative method 

Iterative methods are heavily used to find the numerical solution of linear systems of 

equatioml arising from many and variate p~ysical problems. The general idea of these 

, algorithms is to compute an iterate xk which gradually approximates the true solution 

of the linear system. Each iterate is updated through the formula 

(2.60) 

where B is known as the iteration matrix and c is a given vector, none of them de

pending on k. There are many different ways to construct Band c yielding different 

algorithms. 

To express the above equation in algorithm form, we assume that there is an ap

proximation xk of x and define rk = b - Axk as the residual or defect equation for 

this approximation. \Ve also suppose that it is possible to obtain an approximation A 
of A in such a way that the system Ae = r is easier to solve than the original system 

Ax = b. lIence, we obtain the following iterative algorithm : 

Algorithm 1 Iterative Method. 
1: Select an initial guess xO and the maximum number of iterations ft.! AX 
2: for k = 0 to MAX do 
3: Compute the residual equation rk = b - Axk 

4: Solve the system Aek = rk 

5: Update the value of with xk+1 = xk + ek 

6: end for 

The above is certainly similar to (2.60) with B = I - (A)-1 A. The asymptotic 

speed of convergence of the general iteration (2.60) is characterized by the spectral 

radius p(B) defined as 

pCB) = max {IAI: A eigenvalue of B} . (2.61) 

Asymptotically we have IIx - xk+I II ~ p{B)IIx - xkll as k -+ 00. Of course, if 

pCB) < 1 the iterative scheme (2.60) will converge. 
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We now proceed to review four of the most popular iterative solvers; some of them 

we will be using throughout this thesis, they are: Jacobi (JAC), Gauss-Seidel (GS), 

Successive Over-relaxation (SOR) and Conjugate Gradient (CG) methods. 

2.9.2 Jacobi method (JAC) 

The Jacobi method results from splitting matrix A as 

(2.62) 

where D, -L and -U represent the diagonal, lower-triangular, and upper-triangular 

parts of A, respectively. Then the following iteration is defined 

(2.63) 

Although the above matrix representation helps to easier the understanding of the 

method, in practice is very seldom implemented this way since for very large systems 

of equations it would require large amounts of memory. In these cases, the following 

point-wise formula is better recommended 

X
k +1 - (b' "'a· .X

k
) la· . i - t - L...J t,) j t,t· 

#i 
(2.M) 

The Jacobi method is also known as the method of simultaneous displacements 

since the updates of x at each entry i can be done at the same time regardless the 

order. This certainly turns to be and advantage if a parallel implementation can be 

done. However, it is also true that xk needs to be kept all the time until the updating 

of xk+l has finished requiring for example twice the amount of memory used by the 

Gauss-Seidel method we shall now proceed to review. 

2.9.3 Gauss-Seidel method (GS) 

The matrix representation of the Gauss-Seidel method is 

(2.65) 

with D, ·-L and -U defined as above. Again, a point-wise formula is also better 

recommended to save computer memory and this is given by 

(2.66) 

A first look into the above formula reveals that the new iterate in the GS method 

has a strong dependence upon all the previously evaluated spatial components on the 

grid. This is, each entry x7+1 depends upon xj+l for all j <~. This fact, makes the 
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order on which the equations are evaluated very important. Equation (2.66) describes 

the lexicographic order for the one dimensional case while the two dimensional case is 

illustrated on the left hand side of Figure 2.6. A different order of evaluation and very 

common in practice is the red-black ordering, this is shown on the rigth hand side of 

Figure 2.6. 

21 22 23 24 25 11 24 12 25 13 

16 17 18 19 20 21 9 22 10 23 

11 12 13 14 15 6 19 7 20 8 

6 7 8 9 10 16 4 17 5 18 

1 2 3 4 5 1 14 2 15 3 

Figure 2.6: Lexicographic and Red-Black ordering 

One important advantage of the GS method is that there is no need to keep x(k) 

in memory until the updating of x(k+1) has finished. On the contrary, we delete every 

entry x~kJ as soon as it is no longer needed. This represents an important saving in 

computer memory, particularly when solving large linear systems. 

2.9.4 Successive over-relaxation method (SOR) 

This method is nothing but a weighted average between two consecutive iterates of 

Gau~~-Seidel iteration~ for each entry i, thi~ i~ 

(2.67) 

where w denotes the given weight and x the Gauss-Seidel iterate. The idea is to find 

the be~t value of w which will accelerate the rate of convergence to the real ~olution. 

In matrix form the SOR scheme is expressed as 

X k+1 = (D - wL)-l(wU + (1- w)D)xk + w(D - wL)-lb. (2.68) 

The value of w in principle mu~t be ~elected in the interval (0, 2). Out~ide thi~ 

interval, Kahan [78] proved that SOR does not converge. Sometimes if w is selected 

from (0,1], it is said that under-relaxation is being applied. Although technically this 

i~ correct it i~ not alway~ u~ed and over-relaxation prevail~ for w E (0,2). 

Some algorithms have been designed to compute the best value for w, see [158, 66]. 
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2.9.5 Conjugate gradient method (CG) 

When A is a symmetric and positive definite matrix, solving the linear system Ax = b 

is equivalent to finding the minimum of the quadratic function 

(2.69) 

where x T indicates the transpose of vector x. 

The first order condition of (2.69) gives us the answer. This is, stationary points of 

f(x) are attained when f'(x) = Ax - b = o. Further, since f(x) is quadratic, then it 

has only one stationary point and because of A being positive definite this point is a 

minimum. 

Hence a line search optimization method can be applied to minimize f(x). This is, 

x is updated using the equation 

(2.70) 

where Pk is line search direction and a is a line search parameter chosen to minimize 

f(Xk + apk) along Pk. 5 

Due· to the special features of f (x), there is however no need to perform a line 

search since a can be chosen analytically. To this end, firstly we observe that the 

residual equation is simply 

r=b-Ax=-Vf(x), (2.71) 

and secondly, the minimum over a of f(Xktl) occurs precisely when the residual rktl 

is orthogonal to the search direction Pk. This is, 

(2.72) 

Thus by expressing rk+l in terms of the old residual and the search direction, 

(2.73) 

we can solve (2.70) for 

(2.74) 

Algorithm 2 express the conjugate gradient method in computational form 

5Notice, in (2.70) we moved the iteration index from the top to the bottom. That is, in :1:k, k 
denotes the kth iterate of:1:. We will use this notation only in this section. 
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Algorithm 2 Conjugate Gradient Algorithm 
1: Select an initial guess Xo and the maximum number of iterations .AI AX 
2: Compute the initial residual TO = b - Axo 
3: Po = TO 

4: for k = 0 to MAX do 
rTrk 

5: f:Xk-~ 
- Pk Apk 

6: Xk+l = Xk + f:XkPk 

7: Tk+l = Tk - f:XkApk 

8: f3k = Tl+ITk+I/TlTk 

9: Pk+I = Tk+I + f3kPk 

10: end for 

2.10 Multigrid method 

One of the main contributions of this thesi~ is to show how multigrid methods can be 

implemented and used to obtain fa.<;t solutions of systems of equations (not necessarily 

linear) arising from the discretization of partial differential equations with particular 

interest to image restoration problems. 

To illustrate the basics of multigrid algorithms we start with an heuristic explana

tion of how they approach the solution of linear systems of equations. Thus the goal is 

to solve the linear system 

Lu=/. (2.75) 

We aSsume having in our hands a good iterative solver for this linear system. At 

this moment, the type of this iterative solver is not important although, as we will 

explain later on, it will show to be of great relevance for the performance of the muIti

grid algorithm. Actually, we will require from the iterative algorithm to be a good 

smoother6. 

Thus, after applying some iterations of our solver to the system (2.75) we obtain 

an approximate solution u which defines the error 

e = u - u. (2.76) 

Since L is a linear operator the following relation can be derived and is known as 

the residual or defect equation: 

Le = L(u - u) = / - Lu = T. (2.77) 

From here we see that if we can solve exactly the residual equation then we can 

6The term smoother is commonly used in the theory of multigrid algorithms and is used to describe 
an algorithm capable of reducing the high frequencies of the error fast and efficiently. 
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obtain u through 

U= u+e. (2.78) 

Of course solving the residual equation (2.77) as it is, does not represent any ad

vantage since it can be as difficult to solve as the original system (2.75). 

To tackle this problem, recall that the iterative methods we introduced in Section 

2.9, approximate L with some L of the same sh!le in such a way that Le = r is easier 

to solve. 

Multigrid methods on the other hand, use a completely different approach. In 

multigrid methods the idea is first to obtain a lower resolution version of the residual 

equation (2.77), then solve exactly for the error and interpolate it to the original res

olution. In multigrid methods, the system Le = r might be not easier to solve in its 

low resolution version, but at least is computationally less expensive since the number 

of variables has been reduced. Further, this idea can he applied ff'!cursively to lower 

levels obtaining optimal performance. 

The idea we just described in the previous paragraph is the foundation of what is 

known as the two-grid correction scheme, where grid here means the discrete domain 

where the problem has been formulated and defines the level of resolution. 

To express the two-grid correction scheme in mathematical terms, denote by 0 = 

[0, mJ X [0, nJ the continuous domain where the problem has been originally formulated 

an let h = (hx,hy) represent a vector of finite mesh sizes. We define the infinite grid 

G h as 

Gh={(X,Y):X=Xi=ihx, Y=Yj=jhy ; i,jEZ}, (2.79) 

the discrete grid as Oh = 0 n Gh and 

(2.80) 

the discretized version of any function u defined on 0h· We usually refer to Uh and fh 

as grid functions. 

Now, denote by Lh the representation of L on the grid Oh which is commonly called 

the fine-grid. Suppose now that L can be approximated on a coarser grid OH with 

l/ > h and let us represent by Ll/ this approximation. Assume we have two transfer 

operators Rt! and 171 capable to transport vectors from Oh to OH and viceversa. Then, 

the two-grid correction scheme is defined in Algorithm 3. 

There are issues that need to he addressed in the above scheme. One is the ap

proximation of operator L on coarser grids and under what conditions it can be well 

approximated. Another is the construction of good transfer operators to satisfactorily 

transport r, u and e between consecutive grids. Notice that if these vectors are too 

oscillatory then high order interpolation operators would he required increasing the 
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Algorithm 3 Two-Grid Correction Scheme 
1: Solve approximately LhUh = fh to obtain an approximate solution Uh on Oh 
2: Compute the fine-grid residual rh ;" fh - LhUh, 

3: Transport this residual to the coarser grid by rH = Rf!rh' 
4: Solve exactly LHeH = rH on the coarse grid OH, 

5: Transport the error to the fine grid by eh = I'Jie H, 

6: Correct the fine grid approximation by Uh = Uh + eh, 
7: Solve approximately LhUh = fh with initial guess Uh. 

computational cost of the algorithm. There is also the possibility of them not being 

good enough to obtain a fair representation on the next grid. 

The above discussion leads to the idea that it would be nice to have smooth resid

uals since they are easy to interpolate using simple linear or bilinear operators. This 

automatically imposes the condition in mu,ltigrid algorithms of selecting or designing 

iterative solvers capable of smoothing (eliminating the high frequencies) the residual as 

much as possible. Not only that, we expect to apply only a few iterations on each level 

so the smoothing proceRS needs to be very efficient. 

The smoothing property required for the iterative solvers although it looks as a 

very restrictive condition, for some problems (mainly linear) it is not. On the contrary, 

it can be taken as an advantage since some of the iterative algorithms we introduced . 

in Section 2.9 like Jacobi, Gauss-Seidel and SOR methods are good smoothers for 

linear problems with constant or smooth coefficients. It is well-known [66, 116] that 

these methods eliminate rapidly the high frequency components of the error, but are 

very slow to converge as stand-alone solvers since they struggle to reduce the low 

frequency components. In multigTid algorithms this undesirable property is no longer 

that important since, as we will show shortly, due to the coarsening applied, only high 

frequency components are distinguishable on coarser grids. 

As we mentioned above JAC, GS and SOR are good smoothers for linear problems. 

However, difficulties start appearing when the problems to solve have discontinuous 

coefficients, or they are nonlinear. For them constructing efficient smoot hers can be 

very hard. Usually JAC, GS or SOR are not enough, so fixed point methods need to 

be used as I:lmootherl:l. Thil:l thel:lis deall:l with this type of problems in Chapters 4-7 by 

introducing novel fixed point algorithms in each case. 

From" the correction scheme described in Algorithm 3 one obtains the iteration 

operator for the two-grid (h, II) cycle: 

(2.81) 

where h is the identity operator and SK represents the action of v steps of the iterative 

solver over Uh to obtain the approximation Uh as in step 1 of Algorithm 3. Sometimes, 
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when convenient, we will also denote this action by 

(2.82) 

2.11 Multigrid components 

We already know the different components involved in a multigrid algorithm so it is 

time to start giving an exact definition of each one of them. There are many ways to 

select these components and they usually depend on the problem to be solved. Due to 

the list being long, in this section, we give details of the basic multigrid components 

only for those we will use in this thesis. 

2.11.1 Choices of grids 

The first decision one has to make is related to the discretization of the problem and 

therefore the choice of the structure of the grid. 

• • • • • • • • 
'" '" " 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

Figure 2.7: Left-hand side: A vertex-centered grid where the unknowns (. )are located 
at the vertices of the grid. Center: A cell-centered grid with the unknowns (.) defined 
at the center of the cells. Right-hand side: A staggered grid with two unknowns (. and 
0); they are defined at different locations within the grid. 

There are different ways to construct grids and the final selection has an immediate 

effect on how the problem will be discrcii:wd. Usually the choice of the grid depends on 

the application, the boundary conditions and many other considerations. For instance, 

finite difference methods are traditionally used in the context of structured Cartesian 

grids. For these, there is also the choice of where to locate the unknowns within the 

grid. In the Figure 2.7 we illustrate the most preferred choices: vertex-centered grid, 

cell-centered grid and sta.ggered grid. 

In vertex-centered grids the unknowns are defined at the vertices of the grid. In 

cell-centered grids, on the contrary, the location of the unknowns is at the center of 

each cell. This type of grids is in particular suitable for image processing algorithms 

since images are already intrinsically arranged in this way. That is, each pixel of the 

image can be represented as a cell within the cell-centered grid. Finally, staggered grids 
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are useful when different unknowns are located at different locations within the grid. 

This can be particularly useful for some problems, among them those of high order. 

2.11.2 Choices of coarse grids 

The simplest and most frequently way to construct a coarse grid OH is by doubling the 

mesh size h in every direction. This technique is known as standard coarsening and is 

illustrated on the left-hand side of Figure 2.8. In this thesis all the multigrid algorithms 

we develop use this technique. 

In some cases, like when solving anisotropic problems, there is a strong coupling 

between variables in some direction. In this situation if the coupling between variables 

is known a priori or it can be easily identified then techniques such as semi-coarsening 

are very helpful. The right-hand side of Figure 2.8 illustrates semi-coarsening in the 

x-direction. 

( 

Figure 2.8: Left-hand side: standard coarsening where the coarse gTid is constructed 
by doubling the mesh size in the vertical and horizontal directions. Right-hand side: 
An example of semi-coarsening where the coarse grid is obtained by doubling the mesh 
size only in the x-direction. In both, unknowns are represented by (.). 

2.11.3 Transfer operators 

The choice of the intergrid transfer operators is closely related to the choice of the coarse 

grid. There are different types for each case. For instance injection, full-weighting and 

half-weighting operators for restriction are the most commonly used. The equivalents 

for interpolation are linear and bilinear operators, see [139] for details. 

In this thesis, we work only with standard coarsening between cell-centered grids and 

we mainly use the four-point average operator for restriction and the bilinear operator 

for interpolation. Thus, in the following, we give the details of their implementation. 
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• • • • • • • • CJ • CJ • CJ • CJ • 
• • • • • • • • /:,. <> /:,. <> /:,. <> /:,. <> 

• • • • • • • • CJ • CJ • CJ • CJ • 
• • • • • • • • /:,. <> /:,. <> b. <> /:,. <> 

• • • • • • • • CJ • CJ • CJ • CJ • 
• • • • • • • • /:,. <> /:,. <> /:,. <> /:,. <> 

• • • • • • • • CJ • CJ • CJ • CJ • 
• • • • • • • • /:,. <> /:,. <> /:,. <> /:,. <> 

Figure 2.9: Left-hand side: A fine-grid with the symbols for the fine and coarse grid 
points correRponding to the formula (2.84). Fine-grid points are labeled as (e) and 
coarse-grid points as (0). Right-hand side: A fine-grid with a graphical description 
(through symbols) of the bilinear interpolation used to transfer from the coarse-grid 
(o) to the fine-grid (e, 0,.6., D). 

Restriction - four point average 

Applying this operator to a grid function (uhkj = Uh (x, y) at a coarse gTid point 

(i,j) = (x,y) E f22h is expressed as 

(2.83) 

and means 

Interpolation - bilinear 

Similarly, the bilinear interpolation operator for cell-centered discretizations is ex

pressed as 

(2.85) 

and defined hy 

(Uhhi,2j = [9( U2hkj + 3[( U2h)it l,j + (U2hkj til + {U2h)itl,j u] /16, for e 

(uhhi-l,2j = [9(U2hkj + 3[(U2h)i-l,j + (u2hkj+1l + (U2h)i-l,j+1]/16, for 0 

{uhhi,2j -1 = [9{U2h)i,j + 3[(U2h)itl,j + (U2hkj-I] + {u2hktl,j-d/16, for 0 

{uhhi-l,2j-l = [9(U2hkj + 3[(U2h)i-l,j + {u2hkj-ll + (U2h)i-l,j-I]/16, for .6.. 

(2.86) 

Graphically, hoth transfer operators are descrihed in the Figure 2.9. 
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2.11.4 The smoother 

Recall from the analysis of the two-grid cycle in Section 2.10, that it would be desirable 

to have an iterative solver that eliminates the high frequency components of the residual 

quickly and efficiently. Iterative algorithms with this property are called smoothers ru:; 

we have remarked before. Coarsening also makes enough to have as iterative solver a 

smoother since low frequencies on one grid are not seen on the next coarser grid. 

For linear problems with smooth coefficients, it is well-known that Gauss-Seidel, 

Jacobi and SOR methods are good smoothers. For nonlinear problems however it is 

not an easy task to implement a good one. 

The smoothing properties of the Gauss-Seidel method will be better understood 

after reviewing the following example. Similar analysis can be done for the others. 

Example 2.11.1 Consider the one dimensional problem defined by the following dis
crete equations 

-Ui-l + 2Ui - Ui+l = 0, 1 ~ i ~ n - 1, 

Uo = Un = O. (2.87) 

The exact solution u = (uo, . .. ,un) for this problem is u = 0 (the zero vector), so 
the error e for this problem is simply e = -v the approximatzon of u at some stage. 
Now we will study the performance of lexicographic Gauss-Seidel (GSLEX) method for 
different selections of the initial guess vo = (v8, ... , v~). In particular, we are interested 
to see how G8LEX is affected when the init'ial guess changes its frequency. To this end, 
we construct an initial guess consisting of the vectors (also called Fourier modes) 

( 

° . (ik1r) Vi = sm --:;;- , o ~ i ~ n, l~k~n-l. (2.88) 

Here, the integer k represents the wavenumber, or frequency of vo. For instance, 
small k yields a vector vo with few oscillations along the one-dimensional grid, whilst 
large k yields a highly oscillatory vo. In the Figure 2.1 O(b) we display vo for different 
values of k. 

Thus we implement GSLEX as it was described in Section 2.9.3 with n = 64 and 
apply some relaxation steps to the system (2.87). We display in the Figure 2.10(a) the 
evolution of the error for k = 1,6,32. 

It is quite clear from Figure 2.1 O( a) that GSLEX is very quick in reducing the error 
for small wavenumbers (high frequency), but struggles to decrease it for large wavenum
bers (low frequency). For this reason iterative algorithms as GSLEX and JAC and 
SOR which share sim'ilar properties are called smoothers and are the perfect relaxation 
schemes for multigrid methods. 

2.12 The multigrid cycle 

In Section 2.10 we introduced the two-grid cycle also known as the two-grid correction 

scheme and explained the principles it is based on. One interesting observation is that 
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Figure 2. 10: (a) Performance of GSLEX for different wavenumbers k = 1, 6, 32. We 
plot the L2-norm of the error e against the number of. iterations. (b) Here we illu trate 
the shape of the Fourier mode v o (size n = 64) for the selected values of k. The larger 
the value of k the more oscillatory vo is. 

by assuming a convergent two-grid cycle there is no need to solve the coal' est grid 

exactly for it to converge. This immediately and naturally induces the idea of using 

a differ nt two-grid cycle to solve the coarsest problem. Even more we can apply this 

method recur ively to construct a hierarchy of coarser grids 

(2. 9) 

characteriz d by a equence of mesh size' h11 : p = e, e - 1, ... , 0 7. This way the fin st 

grid nh = nht is characterized by h = he and the coarsest gr id nho by Lhe mesh ize 

ho. Following [139], to simplify notation we replace the index h11 by h, 0 now h is the 

one which varies [rom e to O. 

T hen , assuming ther ar int rgrid tran -fer op rator R~- l and rk_l a defin ed 

before for each nh, we d cribe in AlgoriLhm 4 the muiligrid cycle (MG Y) sch m 

Lo solve (2 .75) for a fixed e> 1. 

Depending on Lhe valu e of 'Y the str uct ure of th multigrid cycle can take different 

hape . In the F igure 2.11, w illusLrat with the h lp of some di agrams diff r nt 

Lr uct llf . of ne yc le of a mliitigrid 111 t hod. y I with a V- hap sLrucLlIre ar 

called V-cycl s and are haracteriz d by s I cting 'Y = 1. Cycles with a W-shape 

structure are called W-cycl es and for th m 'Y = 2. Those two are the mo t ommon ly 

u cl a lt hough many cl iff rents exist. T h number 'Y i a ll d the cycle ind ex. 

7W ithin Lhis secLion, we borrow noLaLion rrolll [139] si nce we found it v ry useful to write the 
equations and algoriLhms of th' multigrid III thod cl arly. 
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(1) Pre-smoothing 
Obtain u~ by applying VI smoothing steps to u~. That is, 

u~ = SMOOTIP'l(utLh,/h). 

(2) Coarse grid correction 
Compute the residual r~ = fh - LhU~. 
R t · t th ·d I -k Rh- 1 - k es riC e reSl ua Th-l = h T h • 

Compute an approximate solution ilLl of the residual equation on 0h-l. 

if h = 1 then 
use a direct or fast iterative solver for (2.91). 

else if h > 1 then 

(2.90) 

(2.91) 

solve (2.91) approximately by performing 'Y h-grid cycles using the zero grid func
tion as first approximation i.e., 

(2.92) 

end if 
Interpolate the correction v~ = Ik-l vL 1. 

Compute the corrected approximation on Oh, u~ = U~ + v~. 
(3) Post-smoothing 
Compute u~tl by applying V2 smoothing steps to u~. 

(2.93) 
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two-grid w-cycle 

three-grid v-cycle three-grid w-cycle 

Figure 2.11: Top-row: Illustration of mulLigrid cycles of two levels with V b = 1) 
and W b = 2) shape structures. Bottom-row: Illustration of multigrid cycles of three 
levels, again with V and W shape structures. 

2.13 Computational work 

In the following, we will estimate the computational work of a V-cycle multigTid method. 

We restrain ourselves to this structure since all the multigrid algorithms we develop 

in this thesis are ba.'led on it. A more general derivation for different values of "y and 

therefore different shape structures can be found in [139]. Usually the cost of a cycle 

is expressed using work units (WU) which may be defined in different ways. Here we 

define a WU as the computational CORt of performing a relaxation sweep on the fineRt 

grid. Usually the cost of the intergTid transfer operators is neglected since it amounts 

to no more than 20% of the cost of the entire cycle. 

ThuR, for a problem defined in a d-dimenRional grid and conRidering a V-cycle with 

III = 112 = 1, each grid OPh requires p-d WU. Adding these costs gives 

V-cycle CORt = 2 { 1 + 2-d + 2-2d + .,. + 2-nd
} < 1 _22_d WU. (2.94) 

For instance, a single V-cycle has a cost of about i WU for 2-dimensional problem, 

as the ones we work with here. 

2.14 Full multigrid 

A full multigrid algorithm (FMG) is deRigned to ohtain a very good initial guess for 

iterative solvers including other multigrid methods. Full multigrid is based on the idea 

of nested iteration, this is, given the coarse grid Oh, one can apply a multigrid cycle 

(say a V-cycle) to ohtain an approximate solution Uh at this h-Ievel, then this Uh is 

interpolated to the next finer grid Oh+! to be used as initial guess for another multigrid 
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cycle at the h + I-level. This process is carried out until reaching the finest level. 

Notice that in FMC is the solution Uh and not the error eh the one that is inter

polated to the next finer level. Usually the operator used to interpolate the solution is 

denoted by nLl and is of higher accuracy than the interpolation operators used within 

the multigTid iteration. 

Typically, the FMC scheme is the most efficient multigrid version. In Algorithm 5 

we detail this scheme where r is the number of MGCYC cycles to be used. 

Algorithm 5 Full Multigrid 
For h = 0, 
Solve Louo = 10, providing ub'MG = uo. 
for h = 1 to e do 
u~ = n~_luf~G 
ufMG = MGCYCr(h + 1,"Y,u~,Lh,jh,Vl,V2)' 

end for 

Here ufMG denotes the resulting FMC approximation on grid Oh. 

In FMC tlchemetl, utlually an appropriate interpolation operator n~_l itl the Bicu

bie operator [110] since it provides enough accuracy and is not computationally very 

expensive. 

/= Full Multignd interpolation 

Figure 2.12: The scheme illustrates the typical structure of a full multigrid algorithm. 

2.15 Local Fourier analysis 

Local Fourier analysis ,(LFA) is a powerful tool for the analysis of multigrid methods. 

Due to the use of Fourier functions, this technique can he regarded as restricted to 

the analysis of only linear problems with constant coefficients defined on an infinite 

grid. However, as remarked by tlomc authors [139, 152], LFA is still a very useful tool 

for the analysis of nonlinear with nonconstant coefficients prohlems. It is the locality 

assumption which precisely let us relax the strong assumptions of the linear coefficients 
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and the infinite grid and extend the applicability of LFA to a more general range of 

problems. In [139] the local nature of LFA is described as follows: 

Under general assumptions any general discrete operator, nonlinear, with nonconstant 

coefficients can be lineariZFA locally and can be replaced locally (by freezing the coeffi

cients) by an operator with constant coefficients [139]' 

The above assumption let us transform a nonlinear problem with nonconstant co

efficients into a linear problem with constant coefficients at least locally and therefore 

applying Fourier analysis to this new linear problem is now valid. 

Thus we have tackled the first two difficulties: nonlinearity and noncomitant co

efficients. The third difficulty related to the finite grid and its associated boundary 

conditions can be avoided by assuming that: 

Relaxation is a local process and therefore the update 'of the unknown is carried out using 

information from nearby neighbors. This allows to neglect the effect of the boundary 

conditions by rep/acing the finite domain (or grid) of the problem by and infinite domain 

[22j. 

So we have already justified the validity of LFA for both linear problems with 

constant coefficients and under some assumptions its validity for nonlinear problems 

with nonconstant coefficients. For the latter type of problems (precisely the ones we 

are interested in this thesis), the results obtained from LFA must be interpreted as 

an indication of possible good or poor performance of the multigrid algorithm under 

analysis. Usually a set of carefully designed experiments need to be carried out to 

obtain trustable and significative results. 

We proceed now to explain with certain amount of detail the foundations of the 

LFA. Plenty of information in this respect can be found for instance in [139, 22, 152,20] 

and references therein. 

In the two-dimensional case, the one of our interest in this thesis, LFA studies the 

actions of linear operators over grid functions characterized by 

(2.95) 

where x = (X},X2) = (x,y), 9 = (0},02) and h = (h},h2) = (hx,hy) is the vector of 

mesh size a'lsociated to the infinite grid 

(2.96) 

The operator to be analyzed Lh is defined on G h and is represented as a linear 

combination (or stencil) of elements of the grid function Uh. That is, 

LhUh(X) = L SkUh(X + kh) 
kEY 
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with constant coefficients Sk E R (or q and V a finite index set. Assuming that () 

varies continuously in R2, it is not difficult to see that 

cp( (): x) = cp( ()f , x) x E G h (2.98) 

when the difference between lh and 8~ and the difference between 82 and 8~ are multiples 

of 271'. Thi:,; periodic nature of the grid function:,; cp( 8, x) make:,; enough to con:,;ider 

cp(8,x) with 8 E [-71',71')2. (2.99) 

Lemma 2.15.1 For -71' ~ 8 ~ 71', all grid functions cp(8, x) are eigenfunctions of any 
discrete operator which can be described by a difference stencil as in [139]. The relation 

(2.100) 

holds with 

(2.101) 

The proof of this lemma can be found in [139]. Lh(8) is known as the formal eigenvalue, 

or the symbol of the operator Lh' 

Example 2.15.2 Assuming h = hx = hy , the symbol for the discrete Laplace operator 
Lh = -6h defint'A by the stencil 

-1 ) 4 -1 
-1 

is computed as follows: 

Lht.p((),x) = Lhei8x/h = {;2 (4 - (e iB1 + eiB2 + e-iB1 + e- iB2 ))} ei8x/ h 

= L,,(())ei8x/ h = L,,(())cp((),x). (2.102) 

Therefore the symbol of the standard discrete Laplace operator is given by 

Lh (()) = 1~2 (4 - (ei01 + ei02 + e-
i01 + ei02

)) = 1~2 (2 - (cos(81) + COS(B2)))' (2.103) 

2.15.1 Smoothing analysis 

In the smoothing analysis, one tries to estimate how fa.<;t the high frequencies of the 

error are eliminated by a given iterative :,;olver. When applied in the context of a 

multigrid algorithm an extra and important factor to consider is the type of coarsening 

being used by the multigrid method under consideration. This is, how the coarse grid 

G H is constructed. The most common and easiest to implement type of coarsening is 

:,;tandard coar:,;ening. In this the:,;is we only use this method. 

ThuR, aRsllming that we apply thiR Rtandard coarsening to Gh , the .obtained coarse 
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grid G H is defined as 

G H = {x = kH with k E Z2 }. (2.104) 

Recall from Sections 2.10 and 2.11.2 that due to coarsening only high frequency 

components are distinguishable on the coarser grid. In particular , standard coarsening 

partitions the frequency interval e = [-71" , 71")2 in the two sub-intervals 

e low [71" 71") 2 ehigh [ )\[ 71" 71")2 - = -"2 ' "2 and - = -71",71" -"2' 2 . (2.105) 

That is, e = elow u e high as illustrated in Figure 2.13. 

9 

1 

9 

Figure 2.13: Standard coarsening partitions the e frequency interval (white plus shaded 
region) in two sub-intervals: elow (white region) and e high (shaded region) . For a given 
low frequency 8(0) the three high frequencies 8 for which the corresponding cp(8 ,x) 
coincide on G h are marked bye. 

For the smoothing and the two-grid analysis this phenomenon is important since 

only those frequency components 

cp(8 , ·) with [-n/2,71"/2)2 (2.106) 

are distinguishable on G H. That is, for each 8' E [- 71"/2,71"/2)2, three other frequency 

components cp( 8, .) with 8 E [_71" ,71")2 coincide on G If with cp( 8', .) and are not distin

guishable on G H. 

One thing we must com;ider i1:l that to be able to apply Fourier 1:lmoothing analY1:li1:l 

to a given relaxation method when solving the system LhUh = fh, we need to assllme 

that this relaxation method can be written locally as 

(2.107) 
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where Uh corresponds to the approximation of Uh before relaxation and ilh the ap

proximation after relaxation has been applied. Thus, the relaxation is characterized 

by 

(2.108) 

Example 2.15.3 Using as relaxation method Gauss-Seidel with lexicographic order ap
plied to the Laplace operator Lh = -f).h, the splitting reads, 

Lt ~ ~, ( -1 !1 0) and L' ~ ~2 ( 0 ~1 -1 ). 
Lemma 2.15.4 Under the assumptions (2.107) and (2.108), all 'P(9,.) with it(9) =f 0 
are eigenfunctions of Sh 

(2.109) 

with the amplification factor 

(2.110) 

The proof can be found in [139]. 

Example 2.15.5 For the Laplace operator using Gauss-Seidel with lexicographic or
dering as relaxation method 

it(9) = ~2 (4_e-ilh_e-i82), ih(9)=-~2 (ei81+ei82) , 

_ L-(9) eiOl + ei02 

Sh(9) = --P-- = . .. Lt (9) 4 - e-iOl - e~82 
(2.111) 

Based on Lemma 2.15.4 we can now introduce the concept of smoothing factor, 

firstly proposed by Brandt in [18]. 

Definition 2.15.6 The local smoothing factor J.tloc(Sh) of a given relaxation operator 
Sh is defined as 

(2.112) 

Example 2.15.7 The local smoothing factor for the discrete Laplace operator Lh = 

-f).h using as relaxation the lexicographic Gauss-Seidel method is given by 

(2.113) 

The supremum of (2.113) is attained precisely at 9 = (81.82) = (n/2,cos- 1(4/5)) 
and therefore the local smoothing factor is 

(2.114) 
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2.15.2 Two-grid analysis 

The smoothing analysis described in the previous section is helpful in analyzing the 

performance of the relaxation method or smoother being used within the multigrid 

algorithm. However, in order to calculate convergence factors of the two-grid operator 

(2.115) 

with Kf! the standing for the coarse grid operator, we now need to include into the 

analysis the action of the operators Lh,If!,I'H and Sh over the grid function <p(0, x). 

In this section, we explain the basics of the two-grid analysis. A detailed explanation 

can be found in [139, 152]. We represent by Lh and L2h the discrete operators on grids 

Oh and 02h of size hand 2h respectively and assume that L;:; exists. Similarly, we 

represent the smoother operator by Sh . Then the iteration operator for the (h,2h) 

two-grid cycle is given by 

~f2h - SV2K2hSVJ. wI'th K2h I Ih L-1R2h L 
it h - h h h h = h - 2h 2h h h· (2.116) 

Now, to calculate convergence factors of M~h, we use again the fact that quadruples 

of <p( 0, .) coincide in 02h with the respective grid function <P2h(20(0,0),.). 

Lemma 2.15.8 For any low frequency 0(0,0) E elow , we have 

Each of these four Fourier components 

<p( oOt, .) = <Ph (oOt, .) with 0: E {(O, 0), (1, 1), (I, 0), (O, In 

coincides on G 2h with the respective grid function <P2h(20(0,0), .). This is, 

<Ph (oOt,x) = <P2h{20(0,0),x), x E G 2h. 

Proof of this lemma can be found in [139]. 

(2.117) 

(2.118) 

In simply words, the above lemma says that for any low frequency 0 E elow it is 

enough to consider the frequencies 

(2.119) 

where 

(2.120) 

The corresponding four <p( (JOt, .) with a = (frl, fr2) are called harmonics of each 

other and for 0 = 0(0,0) E elow they generate the four-dimensional space of harmonics 

E~ = span[<p( oOt, .)j 0: E {(O, 0), (1, 1), (1,0), (0, 1 n]. (2.121) 
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Thus everything reduces to analyze how a function 1/1 E Ef is transformed due to 

the action of the operator Af~h. We can represent 1/1 as a linear combination of the grid 

functions in (2.119). This is, 

Hence assuming that Ifh' L2~' R~h and Lh can be approximated on Oh, and 02h 

and Eg remain invariant under Sh, the two-grid operator Af~h can be represented on 

Ef for each () E elow by a {4 x 4)-matrix. The following theorem, which is proved in 

[139], summarizes everything: 

Theorem 2.15.9 Under the above assumptions, the coarse grid correction operator 
K~h is represented on Ef by the (4 x 4)-matrix k~h{() 

for each 0 E 8 low . Here, 

ih = diag{l, 1, 1, I} E C4X4 , L2h (() = L2h (2()(O,O» E c1XI, 

Lh(() = diag{Lh(O(O,O», Lh(o(l,l», Lh(o(l,O», Lh(o(O,l»)} E c 4X 4, 
k~h{() = [R~h{()(O,O» R~h{()(l,l» R~h{()(l,O» R~h(()(O,l»] E C1X4 , 

i;h{() = l[l;h{()(O,O» l;,,{()(l,l» l;,,{()(l,O» l~,,{()(O,l»f E C4X1 . 

(2.123) 

In other words: if we apply K~h to any 1/J E Ef, the corresponding coefficients Aa 
in (2.122) are transformed according to 

(2.124) 

Further, if the spaces Eg are invariant under the smoothing operator Sh, 'We can 
also represent Mlh on Eg by a (4 X 4)-matrix Mlh{() with respect to Ef. Here, 

(2.125) 

with k~h(() from (2.123) and the (4 x 4)-matrix Sh{() which represents Sh. This 
means that Af~h can be written as 

M~h = B(O,O)r.p(O(O,O),.) + B(l,l)r.p(O(l,l),.) + B(l,O)r.p(O(l,O),.) + B(O,l)r.p(O(O,l),.) 

(2.126) 

where 

(2.127) 
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Based on the (4 x 4)-matrix representation of M~h given in (2.125), we can calculate 

its asymptotic convergence factor defined as 

(2.128) 

where 

(2.129) 

and Ploc(!~1~h) is the spectral radius of the (4 x 4)-matrix M~h((}). 
The symbols [139, 152J in Theorem 2.15.9 depend on the selection of their corre

sponding operators. For instance, if we select full weighting for the R~h operator and 

bilinear interpolation for the I~h operator, their symbols are defined by 

R~h((}o:) = ~(1 + cos(On(1:t cos(Of), 

j~h((}O:) = (1 + cos(B?)(1 + cos(Bf). (2.130) 

Formulas for other popular transfer operators can be found in [139, 152J. The 

symbols for specific Lh and L2h will be computed in Chapter 6. 

2.16 Nonlinear multigrid: the full approximation scheme 
(FAS) 

Similar to the linear cas~, we may want to solve a nonlinear system of discrete equations 

of the form 

(2.131) 

where Nh is a nonlinear discrete operator acting on Uh. This type of systems of equa

tionR uRually ariRes from the diRcretization (over a diRcrete domain Oh) of nonlinear 

partial differential equations. For nonlinear problems we still can implement a multi

grid method defined recursively on the basis of a two-grid method. There are of course 

Rome iRsues that need to be sorted out before doing that. This multigrid method for 

nonlinear problems is known as the Full Approximation Scheme (FAS). 

In the nonlinear ease (2.131) the residual equation on Oh is defined by 

(2.132) 

Clearly due to the nonlinear operator Nh this equation cannot be reduced as it was 

done in the linear case (2.77). Therefore, the error e cannot be computed explicitly 

and transported to the coarser grid OH. Because of this, the whole residual equation 

(2.132) needs to be approximated on the coarse grid OIl and therefore, in contrast to 

the linear case, not only the rel:iidual r~ is transported to the coarse grid OH but the 
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relaxed approximation u~ as well. 

On the coarse grid OH, we deal with the problem 

(2.133) 

where 

and the right-hand side fll is defined as 

(2.135) 

In Algorithm 6 we describe in detail the FAS multigrid cycle. Here SMOOTH 

(1) Pre-smoothing 
Obtain u~ by applying VI smoothing steps to u~. That is, 

(2) Coarse grid correction 
Compute the residual r~ = fh - NhU~. 
R . h ·d I -k Rh- l -k estnct t e reSl ua Th-l = h T h · 

Restrict the approximate solution u~, by uLI = R~-lu~. 
Compute the right-hand side fh-l = rLI + Nh-luLI 
Compute an approximate solution wLI of the residual equation on nh-l. 

if h = 1 then 
URe a direct or fast iterative Rolver for (2.137). 

else if h > 1 then 

(2.136) 

(2.137) 

solve (2.137) approximately hy performing'Y FAS h-grid cycles using uLI as initial 
approximation 

end if 
Compute the correction ilLI = wLl - uLI 
Interpolate the correction iI~ = Itl ilLI· 
Compute the corrected approximation on Oh, u~ = u~ + iI~. 
(3) Post-smoothing 
Compute u~-tl by applying V2 smoothing steps to u~. 

u~+l = SMOOTIr2(u~,Nh,fh). 

means a nonlinear relaxation method with suitable smoothing properties. 
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Chapter 3 

Review of Variational Models for 
Image Restoration 

3.1 Introduction 

In this chapter we introduce the two image restoration problems this thesis is concerned 

with: digital image denoising and digital image inpainting. Both are fundamental 

problems of image processing since real life images are almost always polluted with 

some quantity of noise making denoising tools relevant here and occlusions of objects 

in images occur everywhere being in painting a highly desired tool to recover (up to 

some degree of accuracy) the occluded part. 

For these two problems, there exits many different approaches. Our interest however 

. centers on variational techniques. They not only have proven to deliver excellent results, 

but from the mathematical point of view they are very interesting as well. Further a 

large amount of research topics have been opened from them and many still remain 

unsolved. 

Most the time these two techniques are required at the same time so a good model 

must be able to cope with this requirement. Of course, one possibility may be to 

first applying a denoising procedure and then inpainting if needed, but usually the 

computational time consumed hy this two-stage algorithm is much larger than that of 

a one-stage technique. 

We proceed now to explain the way variational techniques are formulated. For easy 

of explanation we. consider the denoising case where the noisy image uO is the only 

available data. In variational methods an energy-type functional is defined and then 

minimized. For instance, one option would be to minimize the L2-norm of the noise 

1] = uO - u (assuming we are considering additive noise), this is 

(3.1) 

However, (3.1) is an ill-posed problem since many solutions (images) could satisfy 

the above equation. Therefore, a regularizer is needf'd to select the class of solutions 
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we want. That is we would like to solve a problem of the form 

(3.2) 

where usually <1>( u) ;?: O. The regularization term is expected to bring stahility to 

the problem and might guarantee uniqueness of the solution provided the resulting 

functional is convex. The selection of such a regularizer plays also a very important 

role since it imposes some properties to the resulting denoised image u. 

For the inpainting case the variational model is not very different to (3.2). Since 

we do not have any information in the occluded part or missing region, only the reg

ularization term is minimized inside this region. We will present with more formality 

theRe two prohlems later on this chapter. 

3.2 Denoising 

Image denoising is a research topic that has been consistently around within the last 

decades. Digital images are exposed to noise since the very' first moment they are 

captured, for instance through the use of a digital camera. Noise comes from many 

possible sources and no imaging procedure is free of noise. It can be visually perceived 

as variations of random distribution or no particular pattern in the brightness of a 

- displayed image. Thus, a noisy image looks grainy or with snowy appearance. These 

variations in brightness reduce the quality of the image making particularly difficult to 

identify small and low contrast objects. 

There are many different types of noise and they may be classified as follows: 

Gaussian noise 

This type of noise is independent at each pixel and independent of the signal intensity. 

It is caused primarily hy thermal noise in the electronic components of digital cameras. 

Uniform noise 

Here the noiRe may he Rignal dependent and has an approximately uniform distrihution. 

It is caused by quantizing the pixels of a sensed image to a number of discrete levels. 

Salt and pepper noise 

Also called impulsive or spike noise. Visually it can be easily identified since an image 

containing it will have dark pixels in bright regions and bright pixels in dark regions. 

This type of noise can be caused hy dead pixels in the CCD digital camera, analog-to

digital converter errors, error concealment, etc. 
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Shot noise 

This noise is mainly due to variation in the number of photons sensed at a given 

exposure level. It has a Poisson distribution, which is usually not very different from 

Gau:,;:,;ian. 

N on-isotropic noise 

As its name suggests, non-isotropic noise shows up with a significant orientation in 

images. Examples are: row noise or column noise commonly found in image sensors 

and scratches in old films. 

In this thesis we consider only images polluted by additive Gaussian noise. By 

representing a clean image as a two-dimensional function u = u(x,y) Ene 1R2, a 

noisy image uO = uO(x,y) is defined as 

UO(X,y) = u(x,y) +1](x,y), (3.3) 

where 1] = 1](x,y) is the unknown additive noise. The task of removing noise can 

be accomplished by traditional ways such as linear filters wh~ch, though very simple 

to implement, may cam;e the restored image to be blurred at edges. A much better 

technique is to use nonlinear PDE's as anisotropic diffusion filters because they apply 

different strength of diffusivity to different locations in the image. 

c 
. 3.2.1 PDE-based anisotropic filters 

The first class of anisotropic filters we present are the so called PDE-based filters. Here 

we look for a solution u(t) of a nonlinear partial differential equation that is evolved in 

time t with the noisy image uO as the starting point or initial guess, this is u(O) = uo. 

After a number of k-iterations the process is stopped and the current iterate u(k!:lt) is 

taken as the denoised image. 

The Perona-Malik model 

The most known anisotropic filter is the Perona-Malik PDE [108] which u:,;e:,; an edge

stopping function g(IVuI2) as diffusion coefficient. Their model evolves the following 

problem: 

: = \1. (g(J'VuI 2 )\1u) on n x (0, (0), 

u(x,y,O) = uO(x,y) on n x (0,00) 

\1u·v=O on an x (0,00) with g= 1 + (l;ul/K)2 

(3.4) 

and K a fixed constant and v the unit outward normal. Unfortunately, this model is 

regarded as ill-posed since the filter behaves like a backward diffusion across edgE'1>. The 
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Perona-Malik fil ter might have weak solu tions but one should not expect uniqueness 

nor stabili ty [109]. The problem (3.4) is unstable with respect to perturbations on the 

initial data as showed in [80] and may have a unique weak olution only for a fini te 

time. 

Besides all these theoretical problems the discrete version of (3.4) is mo t of the 

time stable and more importantly yields excellent denoising results [149]. On its time 

this model opened a completely new area of image processing and since its appearance 

a lot of effort has been carried out to analyze its properties. 
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Figure 3.1: (a) Original (red) versus noi y (blue) image in one spatial dimension. otic 
th riginal signal is piece-wise con tanto (b) Origin al vel' us TV l' cover d image, 
r · on tru tion i very good. (c) Original versus noisy image. This tim th original 
imag is a pi ewi e m th [unction. (d) Original v l' us TV l' cov red image. The 
pi c wi mooLh [un cLion was tran form d in a piece-wise constan t [unction. 

3 .2 .2 Variational denoising models 

T he su c of PDE-b d m thod and in particular the on of the Perona-Malik 

model in l' moving noise without dam aging edges brought the at tention to the u e 
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of anisotropic filters as an excellent option for image denoising. However, the Perona

Malik model, as we have already mentioned is initial guess dependent, might be unstable 

and in general its properties are difficult to analyze. 

3.2.3 The total variation model 

As a variational model, the TV model proposed in [114] not only yields astonishing 

results by preserving edges and removing the noisy high-frequency components from 

the image, but its variational setting makes it perfect to analyze its mathematical 

properties as well. This model proposes to minimize the following functional: 

(3.5) 

where .A is a positive parameter which selects the qua,ntity of noise to be removed. To 

begin with, (3.5) is a well-possed problem so existence and uniqueness of its minimizer 

is guaranteed [31]. 

Minimization of (3.5) can be done directly as in [33], or by solving the nonlinear 

second-order PDE 
Vu o. 

-V'
IVul 

+'x{u-u )=0 In n, (3.6) 

with homogeneous Neumann boundary condition Vu·v = 0 on 8n and with v the unit 

outward normal as before. There are interesting connections of this energy minimization 

,model (3.5) with the Perona-Malik model (3.4); see [135]. For the numerical solution of 

(3.6) there exists very good solvers, for instance see [145, 118, 119, 35] and references 

therein . 

. TV denoising model shortcoming 

The main prohlem with the TV model is that it transforms piecewise smooth func

tions into piecewise constant functions a phenomenon known as staircase effect. Stair

case makes de noised images to look blocky. An illustration of this effect over a one

dimensional signal is presented in Figure 3.1. 

3.2.4 High-order models 

Although some effort has been made (see for instance [95, 118, 46] and the references 

therein) to numerically reduce the staircase effect in second-order models, some re

searchers have turned ttl higher order models trying to avoid this problem; see for 

example the nice results obtained in Figure 3.2 by using the curvature-based model 

of [159]. In this direction are for instance the works presented in [157, 92, 91, 159]. 

However, high-order models involve to solve higher-order PDE's which numerically are 

more difficult to solve than the low-order ones. This difficulty has prevented in some 

way the popularization of these models. In Chapter 6, we will study a high-order and 
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Figure 3.2: (a) Original (red) vel' u curvature-based (blue) restored image. This resul t 
outperforms the one of the TV model since piecewise smooth functions are pre erv d . 
(b) Original versus curvature-based recovered image for t he piece-wise constant case. 
Here the curvature-based model delivers a result as good as the one of the TV mod I. 

curvature-based denoising model for which we show how to constr uct a fa t and ffi i nt 

mu ltigrid method, first of its kind . 

3.3 Inpainting 

We tart by stating what i understood as image inpain t ing. In words of th author 

who recently populariz d thi ' topic in the im age processing community, 

Image inpainting i defined as lh process of r con tituting lhe missing or damaged 

por'lions of an imag , in ord T' lo make it moT' l gible and to r: slore ils unity. The aim 

oj inpainting is lh n lo modiJy an image in a way lhat i non-delectable Jor an ob rv r 

who do s not know lh original image [10]. 

J r ly t h above d ,fin it i n Jeav he door op n to many po ible olu tions of 

th inpaintin g PI' bl m. It u s th word non-d l lable m aning that m anwhile the 

observ r is n t abl to ay with eItainty if the inpaint imag has b n modiA d r 

not, w an n icl r t II appl i d inpain ting pro as su c . -fill. W will s e that thi ' 

non-uniqu n of the ijolu t i n is perf t ly mbra d by va.riati nal formul ation. 

T h r a1' a va1'i ty or r asons why imag an hav damag d parts, for in ' tan 

be a us f 'ome phys i a l degradaLi n like aging, w ath I' or in ntional crat hing. N t 

ollly that, we al would lik to recov r parts f bj t of an im age 0 Iud d by oth ' 1' 

obj cts r to r onstru t part· that have been mi ing e1u t digital mmuni ati II 

pI' ss 

We an al 0 imagin a numb r [ appli ations of thi t chniqu . B I w w m ntion 

om of th th m: 
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1. The restoration of old pictures with scratches or missing patches [10, 61]. 

2. Text removal [121, 10, 125]. 

3. Digital zooming or superresolution [121, 38]. 

4. Error concealment [41]. 

5. Disocclusion in computer vision [97, 136]. 

6. X-Ray CT artifacts reduction [69]. 

7. Attacking visible watermarking schemes [76]. 

8. Inpainting Images on Implicit Surfaces [155]. 

9. Video inpainting [99, 151, 142, 126, 77, 105, 128, 127, 106]. 

10. Video stabilization [98]. 

Considering that the study of this technique is relatively new, it started no more 

than 15 years ago, the above list is pretty long although by. no means exhaustive. 

Further, many other applications appear every year in many different branches of tech

nology and science. 

Thw'!, inpainting techniques deal with these kinds of problems trying to reconstruct 

in the best possible way the missing or damaged parts of an image from the available 

information. 

There are basically two main approaches for the image inpainting realization: the 

variational or energy-ba.'led approach and the one (non-variational) we call here as the 

computational approach. We start by reviewing the latter, also known as fragment- or 

patch-based image completion, in the following section. 

3.3.1 Patch-based image completion 

Patch-based, or Fragment-based image completion is a technique based on the very 

successful texture synthesis algorithm of Efros and Leung [52]. Texture synthesis al

gorithms are designed to replicate texture or fill-in large regions of an image with a 

given sample texture pre-selected by the user. This is, the user provides the algorithm 

with a seed or patch of texture and the algorithm automatically fills-in a user-sclected 

region of the image of size much larger than the size of the patch. Information ahout 

this kind of algorithms can found in [52, 117, 88, 86] and references therein. 

In [47] this idea was adapted to filling-in missing regions of an image not only with 

texture, but also structure and texture at the same time. The algorithm developed 

in [17J has, since its appearance, suffered some modifications and adaptations. For 

instance, extensive work has been done to adapt this algorithm to vidc'O inpainting. 

Some good references on this technique are [156, 50, 134, 84, 124, 107]. 
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Patch-based image completion is very popular among the inpainting communi ty 

since sometimes it can deliver astonishing resul ts, is very easy to implement and is 

relatively very fast . This technique is also highly apprecia ted because it recovers not 

only the structure or car toon par t of the missing section of the image, bu t the texture 

par t as well. There are however some drawbacks in this technique; we point out the 

following: 

1. In order to obtain such good results the user must carefully select the size and 

shape of the patch. If not the resul t may be completely wrong, see Figure 3.4. 

2. It relays on the assumpt ion (not always satisfi ed ) that t here is plenty of informa

tion's redundancy wi thin the image, meaning that for every missing patch there 

exists a very similar patch within the available region of the image so that by 

applying a simple copy and paste procedure Ol~e patch at a time we can fill-in 

satisfactorily the whole missing region. 

f2\D f2\D 

D D 

Figure 3.3: Here D is t he in painting domain or target region to be filled-in and it \ D 
is the source region. LEFT: A point p with the highest priority P(p) is selected on th 
front , then a patch \li (p) surrounding this point is created and filled-in using information 
from it \ D . RIGHT: The unknown part of the patch \li (p ) has already been fi lled-in. 

W now pro eed to describe this technique: giv n an imag u(x, y) defined on 

it C ]R2, th u r s lects the region D of the image to be fi lled-in and the size of the 

patch window \II . The algorithm automatically selects t he fill front aD and, [or the 

purpose of having a filling-in order the algorithm computes prioriti P (p) = C(p )D(p) 

for each patch wp center d a t point p in th front. The priorities ar com pu ted using 

two t rms: the confidence term C(p ) and the data t rm V (p). During initial ization , 

the fun ction C(p) i t to C(p) = 0 Vp E D, and C(p ) = 1 Vp E it \ D. The idea of the 

confidence term is to have a measure of the reliabili ty of the information surrounding 

the pixel p. T he data term D(p ) on the other hand, is used to identify edges arriving 

at the front and to give pr ference to th ir propagation into D. They are computed 
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Figure 3.4: (a) Image to be inpainted, the inpainting domain in this case is the orange 
r ctangle. (b) By selecting the patch-size equal to 24 pixels the inpainting result ob
tained is perfect. (c) With a wrong selection of the patch-size, 12 pixels this time, the 
resul t is totally wrong. (d) Again a bad selection of the patch-size, 6 pixels this time, 
yields a visually incorrect solution. 

54 



using the following formulas: 

n~ .... 
V(p) = v up' n p , 

a 
(3.7) 

where IWpl is the area of 'lip, a is a normalization factor and V~up gives the isophote 

direction and inten~ity at point p, ~ee Figure 3.3. 

After P(p) has been computed for all p in the front, the patch with the highest 

priority 'lip is located. Then the most similar patch W q to 'II p is found in n \ Dusing 

the distance function d( W q, 'lip), this is 

(3.8) 

Usually the distance function is defined as the sum of the square differences (SSD) 

of the already filled-in pixels in the two patches. Finally, having found the source W q, 

the value of each pixel p' E wpnD to be filled is copied from its corresponding position 

inside 'lip. 

The whole process we just finished describing is expressed in algorithm form in 

Algorithm 7. 

Algorithm 7 Patch-Based Image Completion 

1: Manually select the initial front aDo or boundary of the missing section D. 

2: while Dk '" 0 do 
3: Identify the fill front oDk. 
4: Compute prioritie~ P(p) Vp E oDk. 
5: Find the patch 'lip with the maximum priority, i.e., Wp ~uch that 

p = min P(p). 
pE8Dt 

6: Find the exemplar 'lip E n\ 1) that minimizes d(wp, Wq). 
7: Copy image data from Wq to 'lip. 
8: Update C(p) Vp such that p E 'lip n D. 
9: end while 

3.3.2 Variational inpainting 

In the variational approach for image inpainting, a damaged image uP defined in n c ]R2 

is considered as a collection of curves broken at some region D within the image and 

the goal is to find thebe~t interpolant to recover the mi~ing parts of tho~e broken 

curves in D. The missing region D, which may have complicated topology, is known 

as the inpainting domain and n \ D may contain noise "l as well, see Figure 3.5. 

Typical interpolation technique~ ~uch as polynomial interpolation, ~plines, etc. fail 

here to deliver good results mainly for one simple reason: they are too smooth for 

image interpolation, hence jumps (edges) cannot he reconstructed. 
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Q\D 

Figure 3.5: Illustration of a typical inpainting problem. 

In the variational approach, a functional defined ' as the sum of an energy-image 

term E(u) plus a fitting term is minimized 

min {aE(U) + r (u - uO)2 dXdY} . 
uEBV In\D 

(3.9) 

Here the first term E(u) decides the class of the interpolant in D and the second 

fixes the ends of the image-curves of u in aD to be close to the values of uO. 

The mathematical interest on variational inpainting became increasingly active in 

the last decade since the very first works on image interpolation by Mumford et al. [100J, 

Ma~mou and Morel [97], and Cru:;elle::; et al. [30J. However, it wa::; the pioneering work 

of Bertalmio et al. [lOJ who proposed an algorithm to imitate the work of in painting 

artists who manually restore old damaged pictures which mainly motivated all the 

subsequent research in this field [121,40]. 

Bertalmios's et al. [10J algorithm cleverly transports a smoothness image measure 

(namely the Laplacian of the image) along the level lines (contours of the same image 

intensity) directed into the inpainting domain; in their paper, they also showed that 

some intermediate steps of anisotropic diffusion are necessary to avoid blurring of edges. 

This algorithm was created mostly intuitively, but later on turned out to be closely 

related to the Navier-Stokes equation, as showed by Bertozzi et al. [11J. Since then, 

many other author have proposed different models for digital inpainting. 

Chan and Shen [121 J introduced the TV model for local inpainting based on the cel

ebrated total variation bil'sed image denoising model of Rudin, Osher and Fatemi [114]. 

Later on, the same authors modified this model to improve its performance for large 

scale inpainting, and created the so-called Curvature-Driven Diffusion (CDD) model 

[123]. Furthermore they, together with Kang, introduced a higher-order variational 

model [125J based on the Euler's elastica which connects the level lines by using Euler 

elastica curves [90J instead of using straight lines as the TV model does. Unfortunately, 

for the latter two models there appear to exist no fast methods to find the numerical 
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solution. The aim of this thesis is to develop such a kind of fast algorithms. 

A related inpainting model was proposed by Esedoglu and Shen [54] and is based on 

the very successful Mumford-Shah image segmentation model. This model is also good 

for local inpainting, but shares the same problem as the TV model in that it cannot 

reconnect separated parts of broken objects far apart. To fix this problem, the same 

authors of [54] proposed the Mumford-Shah-Euler inpainting model which, in the same 

fashion of the Euler's elastica model, uses the information encoded in the curvature to 

reconnect smoothly the level lines. More recently, in separate works, Bertozzi et al. [13] 
proposed a model to inpaint binary images based on the Calm-Hilliard equation and 

Grossauer and Scherzer [68] proposed a model based on the complex Ginzburg-Landau 

equation. It remains to develop fast multigrid methods for these models. 

Each one of the above models has its own particular features which may not suit all 

applications. However, as rightly remarked in [122], one of the most interesting open 

problems in digital inpainting (whatever the model) is the fast and efficient digital 

realization. 

We remark that measuring the quality of restoration is non-trivial, as physical 

perceptions can be different and the 'true' solutions may not be unique [40]. 

3.3.3 Energy image models 

The good performance of image restoration techniques based on variational methods 

strongly relies in the designing of a good energy image model. In order this energy 

,model to be good, it must be able to capture in the best possible way the hidden 

energy of the image. In variational techniques this energy is part of the functional to 

be minimized and usually plays the role of regularizer for the inverse problem. 

Using the level-set image representation, it is very easy to construct image models 

by direct functionalization [40]. To this end, at each 'Y>.-level-set the energy is captured 

by selecting a curve model able to represent a relevant geometrical feature of the level 

curve. In the following we will review how to construct two of the most widely used 

image models: the total variation and the Euler's elastica models. 

To construct a curve energy model first we need a good way to catch up the energy 

of the curve in the best possible way. The most simple way to do it is the first order 

length energy defined as 

b'b>.] = length( 1'>.) = 1 ds, 
"I>. 

(3.10) 

where ds stands for the arc-length element of the level set. 

From here, what follows is to construct the energy image model E[u] by adding up 

the energy of all the 'Y>.-level-sets contained in r u (the set containing all 'Y>.-curves). 

That is, 

E[u] = rEb>.] d>' = r 1 dsd>'. Jru Jru "I>. 
(3.11) 
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By noticing that along any level-set of 'YA, 

d>" = IVulrl17 

with dn standing for the projection of rl>" onto the 'YA-Ievel-set plane and therefore 

normal to ds, finally obtain that 

b'tv[u] = r r IVul dsdn = r IVul dxdy, 
ir" i-y>. in (3.12) 

which is known as the total variation energy image model. In particular, dsdn = dxrly 

is the area element. 

Similarly, we could have chosen 

(3.13) 

with a, b,p > 0 and", = V . I~~I the curvature of 'YA as our curve energy and obtain 

this time the Euler's elastica energy image model 

Eelastica[U] = r r {a + b",P)IVul dsdn = 1 {a + b",P)IVul dxdy. 
ir"i-y>. n. 

(3.14) 

The ela.'ltica functional Eelastica[U] captures better the energy of the image, but leads 

to more difficult to solve partial differential equations. 

3.3.4 The total variation model 

In this section we review very briefly the TV inpainting model [121], which was con

structed based on three principles that according to its creators a good inpainting model 

must satisfy. These arc: 

Locality. Meaning that to carry out the inpainting process only the information sur

rounding the inpainting domain must be used. 

Restoration of narrow edges. Meaning that the model must be able to reconstruct 

the missing parts of the edges which give the most visual information in an image. 

Robustness to noise. Meaning that it must get rid of any noise present and restore 

the missing part at the same time. 

As usual assume that u and rt are respectively the true image and the unknown 

additive Gaussian noise '~atisfying Uo = u + rt in O\D. Following Rudin et al. [114], 

the TV inpainting model is 8.<; follows: 

min { r IVul dxdy + ~ r {u - uO)2 dxdY} . 
uEBV in 2 in\D 

(3.15) 
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Although direct minimization ideas [32, 33] could be applied, so far the above 

minimization is mainly solved via its associated Euler-Lagrange equation: 

(3.16) 

where v iil the unit outward normal on the boundary an and AE is defined as 

AE = { A> 0 (x,y),E n\D 
o (x,Y)ED. 

(3.17) 

In D alone, where AE = 0, equation (3.16) reduceil to an ill-poiled boundary value 

problem with non-unique solution as it was shown in [30]. There the authors gave the 

following example: consider an inpainting domain with circular shape, this is D is a 

diilk of radiuil equal to one and therefore itil boundary aD is defined by x2 + y2 = 1. 

Assume that outside the disk, U is defined by a function 'P(x,y) = AIX2 + A2y2 with 

Al > A2. Therefore, the following equation is satisfied 

'P(x,y) = 'P(-x,y) = 'P(x,-y) 

and the functionil 

Ul (x,y) = 'P( VI - y2, y) and U2(X, y) = 'P(x, VI - x2) 

are both solutions of equation (3.16). 

\ 
TV model shortcomings 

The main two drawback!> of the TV inpainting model are: (1) itil inability to reconnect 

far apart separated parts of broken objects, and (2) its inability to smoothly reconstruct 

the curvature of the level sets. 

For (1), the explanation can be found by looking at the energy values for the problem 

pOilcd in Figure 3.6. Thiil very illuiltrative example wail preilcnted in [121]. Aililume that 

the intensity value of the horizontal black bar is Ub and the intensity value of the gray 

vertical bar is Uw = Ub + € for some € > o. It is not difficult to see that the solution U of 

(3.16) mUilt be coniltant, ilay c. Thus, we only need to find the value of that constant c 

which minimizes (3.15). The functional gives us the correct clue; heing all the intensity 

values constant, the total variation on the closure of D concentrates along aD. This is, 

TV(u) = 2(I1tb - cl * L + l1tb + E - cl * M). 

Now, the maximum principle [39] tell us to select c on the interval Ub ~ c ~ Ub + E. 

Thus, to minimize (3.15) we have two possihilities (other values increase the cost of the 

functional) : to ilelect c = Ub which yieldil 
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LJ 
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(b) 

Figure 3.6: (a) LEFT: Broken bar with a gap small in size compared with the char
acteristic feature of the image, this is M < L. RlGHT: The expected TV inpainting 
result, the gap is filled-in with the right intensity value achieving reconnection. (b) 
LEFT: Same broken bar as above but this time with the gap large in size compared 
with the characteristic feature of the image, this is M > L . RIGHT: This time the 
expected solution from the TV model is a broken bar since the cost of no-connection 
is less than the one of reconnection. 

or to select C = Ub + E which yields 

TV(u) = 2(1ub - Ub - EI * L + IUb + E - Ub - EI * M) = 2EL. 

Clearly if M < L, C = Ub will be the correct solution achieving reconnection of the 

broken bar. However, with M > L, C = Ub + E will be preferred keeping the gap open. 

Two real life examples of this drawback are illustrated in F igures 3.7 and 3.8. 
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Figure 3.7: (a) An image with two broken bar~. The mi~~ing region of both i~ large in 
~ize compared with the width of the bar~. (b) The mask of the inpainting domain (c) 
The true ~olution. (d) The vi~ually incorrect ~olution of the TV inpainting model. It 
cannot reconnect the bars as a human being would have expected. 
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Figure 3.8: On one hand, at the top, we tihow a TV inpainting tiatitifying the connec
tivity principle [123, 121]. Here the inpainting domain D repretiented by the horizontal 
noitiy barti iti relatively timall in tiize compared with the characteristic feature of the 
image, therefore the TV model performti very well and carrieti out a visually pleUtiant 
inpainting. On the other hand , a t the bottom, D (represented by the noisy triangle) is 
relatively large and therefore, the TV model gives an unpleasant result. 

For (2) , t here is a very simply explanation: in D, equation (3.16) reduces to I'\, = 0 

(remember to, = \1 . I~~I is the curvature of the level sets) . Therefore, curves used to 

inpaint are always straight lines creating this way very often artificial corners in the 

reconstructed image, see Figure 3.9. 

3 .3 .5 The Euler's elastica inpainting model 

As defined in [125]' a curve r is said to be Euler's elastica if it is the equilibrium curve 

of the elasticity energy: 

E2 bJ = r (a + bl'\,2 ) ds, J-y (3.18) 

where ds denotes the arc length element , I'\,(s) the scalar curvature, and a, b two positive 

com;tant weightti. Euler obtained the above energy when studying the steady shape of 

a thin and torsion-free rod under external forces [90J. 

Even though this is a model for plane curves, it is possible to extend its use to an 
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Figure 3.9: (a) A circle with a mi~~ing part. (b) The inpainting ma~k. (c) The true 
solution . (d) The TV inpainting result . 

image model as we already have shown in Section 3.3.3. 

A~ we know, variational model~ achieve their objective by minimizing ~ome cho~en 

energy functional. In particular , the Euler's elastica model [125J proposes the foll owing 

minimization: 

(3.19) 

where a and b are arbitrary positive constants, ). > 0 is a p nalty parameter , p = 2 

is usually chosen, u is the true image to be restored and K = K(X,y) = \1 . I~~I is the 

mean curvature. The above model allow~ uO to have additive Gau~~ian noi~e rJ pre~ent 

in O\D. The virLue of (3.19) is that it penalizes the integral of the square of the 

curvature along edges instead of only penalizing the length of edges as the TV model 

does [40, 24J. Consequently, t he model can reconnect contours along large distances 

and recover the curvature of objects at the same time. 
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The derivation of the Euler-Lagrange equation 

In [125] the Euler-Lagrange equation for the Euler's elastica model was derived in 

a geometrical form and for a general function cP = cP("') of the curvature, i.e. the 

regularization term was written as In cPlVul dxdy. Here we pre~ent a ~imilar, but more 

detailed derivation of the Euler-Lagrange equation for the particular case cP = a + b",2. 

Further, we introduce a different way to write this equation which in a future section, 

will let u~ implement a promi~ing primal-dual method for thi~ model. 

Theorem 3.3.1 Let cP = a + b",2 E C 1(0) and E(u) defined as in (3.1.9). Then the 
Euler-Lagrange equation is given by 

with the boundary conditions along ao 

au = ° d a((a + b",2)IVul) = ° 
av an av ' (3.21) 

here as usual A.E is defined as in (3.17), Vu is a vector normal to the level sets and 
V.lu the corresponding tangential vector to them. 

Proof. As it is well-known the Euler-Lagrange equation is found by computing the first 

variation, or optimality condition, of the functional E(u) defined as in (3.19). That i~, 

~J:)(u+ecp)1 =: {aJ:)1(u+ecp)+bE2(u+ecp)+~b'3(u+ecp)}1 =0, 
£->0 e 2 £->0 

(3.22) 

where to ~implify we have ~plit the energy in three part~ El (u), E2 (u), and E3(U). 

These parts are defined as follows: 

El(U + ecp) = 10 IV(u + ecp)1 dxdy, (3.23) 

r ( V (u + ecp) ) 2 
E2(U + Ecp) = in V· IV(u + Ecp)1 IV(u + ecp)1 dxdy, (3.24) 

b'3(U+ecp) = 1o(u+ecp-uO)2 dxdy. (3.25) 

We need to compute the first variation for each one of these functionals, so we start 

with the first energy E1: 

: El(U + ecp)1 =! r IV(u + ecp)1 dXdyl 
e €->O in €->O 

r V(u + ecp) I r Vu 
= in IV(u + E<p)1 . Vcp dxdy £->0 = in IVul . Vcp dxdy 

= - In (v. I~~I) cp dxdy + Ian I~~I . v ds. (3.26) 
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Here, to drop the boundary integral from integration by parts the following bound

ary condition needs to be satisfied 

Vu . v = 0 along an. (3.27) 

We now move to compute the first variation for the second energy E2: 

r ( Vu )2 d + in V· IVul de IV(u + €'P)I dxdy. 
0-->0 

(3.28) 

For the sake of clarity we proceed again by splitting this process in two parts. For 

the first integral, we have 

r d (V V(u + €'P) )2 IVul dxdy 
in de: . IV(u + €'P)I 

0-->0 

r d ( V(u + €'P) ) I . 
= in 2K;IVulde v· IV(u + €'P)I 0-->0 dxdy 

= In 2~IVuIV . C~:I - 1;~3 VU· vcp) dxdy (3.29) 

= In 2K;IVuIV . (I~ul (v'P - ~~~~uvu)) dxdy. 
\ ~. ~ 

In the integral in the last line, we observe that the term n ® n = 1~~T2uVU is the 

orthogonal projection onto the normal direction which satisfies n ® n + t ® t = I with 

t ® t the tangential projection and I the identity projection. This means that we can 

rewrite the last integral as 

In 2~IVuIV· C~ul {t ® t}V'P) dxdy 

=-In V(2~IVul)'I~ul{t®t}V'PdXdY+ Ian2~V.{t®t}V'PdS. (3.30) 

Again we need to drop the boundary integral. To this end, we note that the first 

boundary condition (3.27) implies that v = ±t along an, so applying this into the 

second integral in (3.30) .we get 

(3.31) 

Now noticing that {t ® t} is a symmetric operator we can rewrite the first integral 
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in (3.30) as 

In V{2,..IVul) . I~ul {t ® t}V<p dxdy = In {t ® t} I~ul V{2,..IVul) . V<p dxdy (3.32) 

and by integrating by parts 

-In {t ® t} I~ul V{2K,IVul) . V<p dxdy = 

In (V. {t ® t} I~ul V{2"'IVUI)) <p dxdy -lan {t ® t} I~ul V{2,..IVul) . v ds. (3.33) 

The required boundary condition to drop the boundary integral in (3.33) is given 

by 

1 
{t ® t} IVul V{2"'IVul) . v = o. (3.34) 

Here, as in (3.30), we can use the fact that v = ±t along 80, so (3.34) can be 

expressed simply as 

V{2,..IVul) . v = o. (3.35) 

Coming back to the ~econd integral in (3.28), we proceed in a ~imilar way. That i~, 

where ,..2 ~ 0, ~o requiring again (3.27) i~ enough to drop the boundary integral. 

Finally, we compute the first variation of the third energy E3 as follows: 

.!iE3 {u + e<p)1 = .!i r {u + e<p - z)2 dXdyl = r 2{u - z)<p dxdy. (3.37) 
de 6-+0 dE in 6-+0 in 

As final step, we only need to put all the results together to make the Euler-Lagrange 

equation explicit. Thu~, from (3.26), (3.33), (3.36) and (3.37) and u~ing the boundary 

conditions (3.27) and (3.35), the Euler-Lagrange equation for the Euler's-elastica model 

if! given by 

(3.38) 

(3.39) 

Since n = Vu = (ux,uy) and t = V.lu = (-uy,ux) it is then possible to rewrite 
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(3.39) as (3.20) D. 

To write (3.20) in a more compact form, define a vector field V = (VI, V2) by V = 
(a + b",2) I~~I - IJ~13 V.LuV("'IVuI)V.Lu, that is, 

VI = (a + b",2) I~:I + 1;~13 [-Oy?.t ox(",IVul) + oxu Oy(",IVul)] OyU, 

V2 = (a + b",2) I~:I - 1;~13 [-OyU ox("'IVul) + oxu Oy("'IVul)] oxu . (3.40) 

Here Ow denotes the derivative with respect to any variable w. Then with the above 

notation, equation (3.20) becomes V· V + )..E(UO - u) = ° or 

if we let 

aV· V + x(uo - u) = 0, 

a = {* in O\D 
1 in D {

I in O\D 
and X = ° in D. 

(3.41) 

By splitting V = oN' + T further (along normal and tangent directions) with oN' = 
(a+b",2)1~:1 and T = -1-i!13V.iuV("'IVuI)V.iu, the above PDE (3.41) can be written 

as 

a (V· N + V . T) + x(uO - u) = 0, (3.42) 

which has a geometry interpretation on the transporting mechanisms of the level sets 

information [125]. In (3.42) two competitive terms transporting the information in 

different directions, V· oN' across the level sets as in [122] and V . T along the level sets 

as in [10]. 

Remark 3.3.2 The elastica PDE can be written in a different form. This is done by 
starting from the general geometric form (3.38) and replacing the tangential projection 
term by I - n ® n, where 

1I ence we obtain 

Vcp·Vu 
n®n = IVul2 Vu. (3.43) 

(
(a + b",2)Vu 2bVu· V(",IVul) V 2bV(",IVul)) \ ( 0) _ ( ) 

-V· IVul + IVul3 u - IVul + /\E u - u - O. 3.4·1 

This equation shall be used in a future chapter to develop a promising primal-dual 
method for the Euler's elastica formulation 

Virtues of the Euler's elastica inpainting model 

As an illustration of the advantages of using the elastica model we show in the Figures 

3.10 and 3.11 the results obtained from using the elastica model on the' two problems 
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we have already presented and where we know that the TV model fails. 
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Figure 3.10: (a) An image with two broken bars. The missing region of both is large 
in size compared with the width of the bars. (b) The mask of the inpainting domain 
(c) The true solution (d) The visually correct solution from the Euler's elas tica model. 
The broken bars are reconnected. 

3.3.6 Level lines continuation 

The Euler 's elastica model of Chan et al. [125] was actually not the first to introduce 

the elastica energy in the variational image processing community. The elastica energy 

J~ (a, + 1K, IP) d'H with r a C1Il've, fl, its curvature and 'H the one-dimensional Hausdorff' 

measure is mainly known by the work of Mumford et al. [lOOJ on disocclusion, although, 

as detailed in [30], it hoo 'been previously used by others in different contexts. 

One of these works closely related to inpainting was presented by Masnou and 

Morel for the first time in [97] and later explained in more detail in [96]. There the 

authors follow the amodal completion technique studied by Kanizsa [79] consisting on 

the smooth continuation of object boundaries between T-junctions (points where the 

image edges form a "T") to reconstruct partially hidden objects. 
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Figure 3.11: (a) A circle with a mbsing part. (b) The mask of the inpainting domain. 
(c) The true solution. (d) The Euler's elast ica inpainting result. Notice this time the 
curvature of the circle is restored. 

There are delicate differences between the approach of [96 , 97] and the elastica 

model. For instance, Masnou-Morel's technique cannot recover curvy level lines as 

the ela.stica model (3.19) can do and it is also not rohust when noise is added to the 

image. On the other hand, Masnou and Morel presented a practical algorithm which 

makes use of dynamic progntmming to carry out the disocclusion process. Advantages 

of this algorithm are: eas ily recovering of sharp edges and low order of complexity; see 

below. However , one strong limi tation is that it is not topology free since it a.ssumes 

the occlusion to be without hole. A very detailed explanation of this method can be 

found in [9G] and here we' just reproduce its basic steps in Algori thm 8. 

The complexity of Masnou and Morel algorithm, as reported in [96], is 

O(V2 + VT2 + '['3 + P) which can be reduced to O(V2 + V'TlogT + ,/ ,3 + P) , 

where V is the number of vertices in the occlusion boundary, T is the number of T

junctions and P is the nllmher of pixels within the occlusion . 
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Algorithm 8 Level lines disocclusion algorithm 
1: Compute the polygonal line corre8ponding to the occlu8ion boundary. 
2: Computation of the T-junction8 on the occlu8ion boundary. 
3: Triangulation of the occlu8ion. 
4: Use of dynamic programming to compute the optimal set of level lines pairwise 

connecting T-junctions. 
5: Drawing of the geodesic paths. 
6: Use of the geodesic propagation to restore the image. 

3.3.7 Filling-in through vector fields and gray levels 

The second related work we review here is the filling-in model of Balle8ter et al. pro

posed in [9]. For convenience we shall refer to this model as the BBCSV model. The 

BBCSV model differs from the ela.stica model (3.19) in that it diffuses a vector field 

and gray levels at same time within the missing regions. The functional 

min {f(a+bIVK*UI)IV.IWdXdY + f(IVul-O,VU)dXdy } (3.45) 
uEBV, OEWl,p } D } D 

is minimized by evolving in time a pair of PDE's, of second and third order respectively. 

Here a, b are positive parameters as before, p > 1, D the inpainting domain, K a 

convolution kernel and 0 a new variable representing the vector field in D. 

The first term in (3.45) which can be rewritten as 

(3.46) 

by using the change of variables 0 = I~:I' can be seen as a relaxation of the elastica 

energy fD(a + bl~IP)IVul a8 8tated in [9] and hence its relation with the ela8tica model 

(3.19). The major two differences between these two models are: 

• The elastica model leads to morphologically invariant flows, [125] . 

• The numerical solution of the BBCSV model i8 more friendly 8ince a 8y8tem of 

three second order PDE's have to be solved. This compared with the elastica 

model where the solution of a fourth-order PDE (3.20) has to be found. 

On the other hand, it is not clear from [9] if the BBCSV model or a modified 

version of it by adding a fitting term similar to (3.19) is robust when noiRe is added to 

the image. 

3.3.8 The Cahn-Hilliard model 

Due to the success of previous variational methods for image inpainting, in particular 

the Euler's elastica model, researchers started looking for possible different models 

with similar characterh,tic8 to the ela8tica model but with the additional aim of having 

a faRt numerical solver. Under these requirements, a slightly modified Calm-Hilliard 
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equation was proposed and studied in [13, 12, 27]. Although the Cahn-Hilliard model 

sati.'3fies these conditions for the case of binary images (two gray-level values only), its 

performance for general gray-level images is not as good as for the binary case. 

This model proposes to minimize the following functional 

min { r -2€ IVul2 + ~W(u) dxdy +...\ r CuD - u)2 dXdY} , 
uEL2 ln € lnw (3.47) 

where W(u) is a nonlinear potential with wells or zeros corresponding to values of u 

that are taken on by mo~t of the gTay-~cale value~. An example i~ 

(3.48) 

with minima at u = 0 and u = l. 

By u~ing the interpolation inequality [12] 

in IVul dxdy ~ 6in (~U)2 dxdy + ~ in lul2 
dxdy, (3.49) 

where 0, C are positive constants. It is possible to show [12] that the corresponding 

Euler-Lagrange equation for the modified Cahn-Hilliard functioI.lal (3.47) is given by 

1 
-~(€~U - - W'(u)) + ...\(uD 

- u) = O. 
€ 

(3.50) 

A convexity splitting semi-implicit method can he easily implemented together with 

the Fast-Fourier transform method. The Cahn-lIilliard model can reconnect separated 

parts of objects through long distances and is able to recover curvature as well. 
l. 

3.3.9 The Mumford-Shah and Mumford-Shah-Euler models 

These two models are based on the object-edge Mumford and Shah image model 

b'[u, r] =:r r IVul2 dxdy + ('<HI (r), 
2 In\r 

(3.51) 

where r denotes the collection of edges in the image and HI the one-dimensional 

Hausdorff measure. Computationally, III (r) is substituted by length(r) since it is a 

generalization of the notion of length of regular curves. 

Mumford-Shah inpainting model 

In the Mumford-Shah model for image inpainting it is proposed to minimize with 

respect to u the following functional: 

(3.52) 
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where 

E[u, rJ = 12 r IVul 2 dxdy + alength(r). 
in\r 

(3.53) 

The minimization however is not straight forward since the three terms in (3.52), via 

(3.53), are defined on different domains. The functional may be reformulated using the 

level-set representation [103J, or approximated using gamma-convergence techniques. 

Here we present only the latter. 

To this end, the r set is approximated by its signature function z£ : 0 -+ [0, 1 J which 

is nearly 1 almost everywhere within the image except on a tiny tubular neighborhood 

of r of radius E where it is close to 0. Using the signature function z£ let us represent all 

terms in E[u, rJ on the 0 domain. Further, by using the approximation of the length(r) 

function given in [3, 4J, the new representation of E[u, rJ is ac; follows: 

.• 2 

E€[zluJ = 1 r z21Vul2 dxdy +a r (Elvzl2 + (1- z) ) dxdy. 
2 in in 4E 

(3.54) 

The Mumford-Shah inpainting model is finally defined as the minimization of 

o Ai 02 Jms[U, rJu ,DJ = - (u - u) d:r;dy + E€[zl·uJ. 
2 n 

(3.55) 

Taking variations on u and z respectively yield two second order nonlinear partial 

differential equations for which semi-implicit methods can be implemented [54]. 

Unfortunately, this model shares the same drawbacks of the TV model: (1) failure 

of reconnect ion across long distances, and (2) emerging of artificial corners due to the 

lack of curvature information in the energy functional (3.55). 

Mumford-Shah-Euler inpainting model 

The Mumford-Shah-Euler model wac; created to fix the problems of the Mumford-Shah 

model. Similar to the Euler-elastica inpainting model [125J, it proposes to replace the 

length function in (3.53) by the Euler's elastica curve model e(r). This is, 

where 

E[u: rJ = 12 r IVul 2 dxdy + e(r), 
in\r 

(3.56) 

(3.57) 

As before, we need all the integrals to be defined in the same domain O. In [54], 

the authors showed how to do this using the level-set method for a two-pha.'le prohlem. 

However by doing so we are automatically limiting the inpainting model to binary 

or high contrast images, in similar situation to the Cahn-Hilliard model. Although 

multi-phase methods may be implemented they do not appear to be a viable option for 
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general gray-scale images. The f-convergence approximation therefore looks again as 

the better approach. 

To this end, considering a signature function Ze as before and using the following 

De Giorgi's approximation [64, 93) to (3.57), 

Ee[z) = a 10 (flVzl2 dxdy + ~~Z)) dxdy + ~ 10 (2d~Z - W~~z) r dxdy (3.58) 

with the potential function W (z) defined this time as 

(3.59) 

The f-convergence approximation of the Mumford-Shah-Euler inpaiting model is 

expressed 8.'1 the separately minimization of 

(3.60) 

with respect to u and z, yielding second and fourth-order nonlinear PDE respectively. 

The Mumford-8hah-Euler model because of its own nature shares the nice prop

erties of the Euler's elastica inpainting model. However, its minimization through 

r-convergence approximation introduces an extra second order 'PDE to solve. Recall 

from 8ection 3.3.5 that in the Euler's elastica model only one fourth-order equation 

had to be solved. Further, Jm.ge[u, fiuo, D] has many minima so numerical solvers can 

eaRily get stagnated at local minima. 
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Chapter 4 

Multigrid Method for a Modified 
Curvature Driven Diffusion 
Model for Image Inpainting 

As a brief note, the work presented in this chapter has already been published [24] 

in the Journal of Computational Mathematics under the title Multigrid Method For a 

Modified Curvature Driven Diffusion Model for Image Inpainting and it is coauthored 

together with my supervisor Professor Ke Chen. 

4.1 Introduction 

In this chapter we study the curvature driven diffusion (CDD) model [123] for image 

inpainting. The CDD model may be regarded as an improved version of the total 

variation (TV) '[121] inpainting model which was designed for local inpaintings only. 

For the TV and CDD models, their associated Euler-Lagrange equations are highly 

nonlinear partial differential equations of second and third order, respectively. For the 

TV model there exists a relatively fast and easy to implement fixed point method, so 

adapting the multigrid (MG) method of [119] to here is almost immediate. For the 

CDD model however, so far only the well-known, but usually very slow explicit time 

marching method has been reported. Here we explain why the implementation of a 

fixed point method for the CDD model is not straightforward and consequently, the 

multigrid method as in [119] will not work here. This fact represents a strong limitation 

to the range of appiications of this model since usually fast solutions are expected. 

The main contribution we present in this chapter is a modification of the CDD 

model designed to enable a fixed point method to work and to preserve the features 

of the original model. As a result, a fast and efficient multigrid method is developed. 

Numerical experiments are presented at the end to show the very good performance of 

the fast MG algorithm. 

The rest of the chapter is organized as follows. In Section 4.2 we briefly review 

the image inpainting problem formulation, and two variational models, followed by the 
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revision of a commonly-used numerical method in Section 4.3. Then in Section 4.4, 

we describe first the modified CDD model followed by the framework of a nonlinear 

multigrid method with emphasis on two smoothers: the global smoother and the local 

smoother. A local Fourier analysis is also shown to give an indication of the effectiveness 

of both smoothen!. Next in Section 4.5 we present some testing results illustrating the 

virtues of the modification and the associated multigrid method. Finally in Section 4.6 

we present our conclusions. 

4.2 Problem formulation, the TV and eDD models 

We use this Section, to carry out a quick revision of the inpainting's formulation as 

a variational problem, the TV and CDD models. The first two have been covered in 

Chapter 3 so we do not extend ourselves again with extensive explanations. 

4.2.1 Inpainting formulation 

Recall that we are given an image uO = uO(x,y) defined on a domain n C]R,2 and one 

subset Den where the pixel values of uO are miRRing or damaged due to some rea.c;on. 

The inpainting problem is to try to reconstruct the values of UO in D from the available 

information on n\D which may contain noise. The subset D which is known as the 

inpainting domain may have complicated topology and be not necessarily connected. 

4.2.2 The total variation model 

Assume that u = u(x,y) and 1] = 1](x,y) are, respectively, the true image and the 

unknown additive Gaussian noise satisfying uO = u + 1] in O\D. Following Rudin et al. 

[114], the TV inpainting model is given by the minimization (3.15). 

Although direct minimization ideas [32, 33] could be applied, so far the above 

minimization is mainly solved via its associated Euler-Lagrange equation (3.16). 

Recall that limitations of the TV model are: 

Short distances reconnect ion only 

The TV model cannot reconnect separated parts of objects that are far apart becauRe 

the cost of the functional (3.15) in doing so is higher than the cost of no reconnection. 

No curvature recovery 

The TV model cannot re~onstruct the natural curvature of the missing parts. Recall 

that equation (3.16) reduces to '" = 0 in the inpainting domain D where", = V . I~~I is 

the curvature of the level sets meaning that the inpainting proceRS is carried out uRing 

straight lines only. 
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4.2.3 The curvature-driven diffusion model 

The CDD model which we review in this section was designed to correct the inability of 

the TV model in reconnecting separated parts of broken objects far apart. In looking 

for a solution to this problem, Chan and Shen [123J realized that in the TV model the 

diffusion coefficient given by 

A 1 
D= IVul' (4.1) 

only depends on the contrast or strength of the level lines and it does not depend on 

the geometric information of the level lines themselves. They found that the curvature 

could be used to modify the diffusion coefficient b by introducing a function 9 = g(lfi;1) 
within it. This way the geometric information encoded in fi; is used to strengthen the 

diffusion coefficient where necessary. The new diffusio~ coefficient iJ is then given by 

b = ~~If' with g{s) = { : 

> 0, 

s=O 
s = 00 (4.2) 

0< s < 00. 

On one hand, the choice of g{ 00) = 00 was selected to take advantage of those 

points with very high or infinity curvature and use them to encourage reconnect ion by 

increasing b as much as possible. 

On the other hand, the choice of g{O) = 0 is to avoid the CDD model degenerating 

to the TV model. According to Chan and Shen the choice of g(O) = a =f 0 could 

endanger the connectivity principle, see [123J. They suggested [123J 

g( s) = sP, with s > 0, p ~ 1. (4.3) 

We shall find another way to satisfy the connectivity principle by allowing g(O) =f 0 

in Section 4.4.4. 

To get rid of possible noise present in the initial image which could be propagated 

to the interior of the inpainting domain, a fidelity term is used as in the TV model. 

Thus, by defining the vector field V = (VI, V2) by V = GI~~I with G = G[(x,y), 1fi;1l 

G={l (x,y) EO\D 
1fi;IP (x,y) ED, 

(4.4) 

the CDD scheme is to so~ve the following third order nonlinear equation for u: 

v . V + .AE{UO - u) = 0 in n, (4.5) 

with homogeneous Neumann boundary condition as before. Since V contains the term 

IVul-I , to avoid the singularity at flat regions IVulp d;j VIVul2 + j3 is used instead of 
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Grid pixel 

Points used for 
Dy at (iJ+ l/2) 

Points used for 
Dx at OJ.1I2) 

Figure 4.1: On the left side an x-half-point and on the right side a y-half-point. 

lV'ul, where fJ is a small parameter. Equation (4.5) will become 

if we let 

aV' . V + X(1£O - u) = 0 

in n\D 
inD { 

1 in n\D 
and X = 0 

in D. 

4.3 Review of numerical methods 

(4.6) 

In this section, we intend to review t he state-of-the-art methods for numerically solving 

the CDD model. Surprisingly, the list is very short and it only has been solved using 

an explicit time marching scheme. 

4.3.1 Discretization 

We start by discretizing the CDD differential equation (4.5) for a general coefficient G 

as follows: 

(4.7) 

where hx and 11-y are the grid spacing in the x and y-direction respectively and t he 

discrete image 1£0 E ]Rmxnj we shall mainly consider the case of n = m hence h = hx = 

hy . 

We use staggered discretization so now we have to approximate VI and V2 at 

the half-points (see Figure 4.1) , for instance at (i + ~, j), 1£x is approximated by cen

tral differences ( 1£x)i+~,j = (1£i+ l ,j -1£i,j)/h, 1£y by average approximation (t£y) i-t-~,j = 

(Ui-t- l ,j+l - 1£i-I-I,j - l + Ui./H - 'lLi,j - I)/4h and 1V'1£ I,8 in the natural way: 

1 
h 
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lIenee equation (4.7) becomes 

(4.9) 

To approximate the curvature term /'i, in G or in (4.2), we use the same idea of the 

ghost half points to approximate the divergence operator 

( 4.10) 

By using again central differences and averages we have for example at (i + ~, j) 
that 

h.~ [~] = [~] + [~] ax IVul H!,j IVul HI,j IVul i,j' 

4h· ~ [1;:1] H!,j = [1;:1] HI,j+l - [1;:IL~I,j-1 
+ [I;:ILHI - [1;:ILj-I' 

Finally (4.5) becomes a system of nonlinear algebraic equations denoted by 

where the new CC·) notation represents the nonlinear terms. For instance, 

0'. C(.+! .) 
C.1.= ~2,J 

(~+2,J) hlVul. 1 . 
(tt 2,J) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

and C at the other three half-points is computed in a similar way. Here §i,j is defined 

as 

§i J' = C.+ 1 . + C. 1 . + C. '+ 1 + C.. 1 + X. 
.., t 2,J '-2" t,} 2 "'-2 ( 4.15) 

The homogeneous Neumann boundary condition on an is determined by the TV 

denoising model and therefore, is treated as 

U'i,O = Ui,I,Ui,ntl = Ui,n,UO,j = UI,j,Umtl,j = Um,j' (4.16) 

On the other hand, as in [123], the inpainting domain D is mathematically under

stood as an open set, i.e., not including its boundary and therefore away from a~. 
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4.3.2 Explicit time marching method 

In this method, solving (4.5) indirectly, one looks for the steady-state solution of a 

parabolic equation of the form: 

au 
at = r{u), with r{u) = V . V + .Ae(uo - u), ( 4.17) 

or, r(u) = a'V· V + X(uO - u), with the initial condition u(x,y,O) = uO(x,y) and 

appropriate boundary conditions and using an explicit Euler method for the left hand 

side, we get 

k+1 _ k ( k) k - 0 1 Ui,j - Ui,j - Tr Ui,j' -" ... (4.18) 

Here a size restriction on the time step T = !:::.t has to be imposed to guarantee the 

stability of the numerical solution. This is the main <)rawback of the time marching 

method, the problem being that due to its high nonlinearity, T must be chosen very 

small which implies a large number of iterations to reach a meaningful solution. One 

option is to accelerate this method using the ideas developed in [95]. However, even in 

that case the CPU-time consumed by the resulting algorithm is still not appropriate 

for large images. 

4.3.3 A possible fixed point method 

For numerically solving the nonlinear algehraic equation (4.13) at each (i,j) point we 

fix the nonlinear terms C at some k-step and solve for the k+1 step as in [7, 141] for 

other problems. We then have that 
( 

k+1~ k+1 (Ck ) k+1 (Ck ) k+1 (Ck ) u·· C»iJ' - u'+ 1 J' '+1' - U i - I J' '_1' - U iJ'+ 1 . '+1 l,1 ' .., .. 2,3 ,.. 2,3 I 1,3 2 

k+1 (Ck ) _ 0 -Ui,j-I i,j-~ - XUi,j' (4.19) 

and then such a fixed point method amounts to solving the linear system of equations 

(4.19) 

(4.20) 

where the vectors uk and UO are defined as uk = [utI' U~,I ... ,U~,I' ut2' ... ,u~,m] and 
0[00 00 0] u = XUI,I,Xu2,1 ... ,Xun,I,XUI,2,···,Xun,m· 

The selection of the diffusion coefficient G in D plays a crucial role on the feasibility 

of the implementation of the numerical scheme. According to Chan and Shen [123], on 

the inpainting domain, G must obey equations (4.3) and (4.4). Therefore, it must be 

{

OK = 0, 

G = 00 K = 00, 

IKIP, ° < IKI < 00 with P 2: 1. 

(4.21) 

79 



Since we allow G to be 0 when /'i, = 0, matrix A(uk ) is singular i.e., whenever /'i, = 0 

at one (i,j) pixel of the image then A(uk ) losses one degree of its rank. Therefore, the 

fixed point (FP) method (4.20) does not work for the CDD model with (4.21). 

One solution (motivated by numerical consideration) is to modify the above G to 

G = G + (;, where (; is a small and positive parameter. This idea will be tested shortly. 

4.4 Nonlinear multigrid for a modified eDD model 

Multigrid methods have proved to be very useful when solving many linear (and 

some nonlinear) partial differential equations (PDEs) such as those arising from image 

restoration problems and others, see [33, 34, 45, 119, 118, 139] for successful examples. 

Usually for a multigrid method to converge, a suitable smoother is the key and the 

task of finding one is nontrivial for a nonlinear problem. We now proceed to develop a 

multigTid algorithm for the CDD formulation (4.5): .. 

( 
(VU)i,j) ( 0 ) V· Gi,j IVul.. + AE Ui,j - Ui,j = O. 

t,J 

(4.22) 

4.4.1 The generic multigrid components 

First of all, we start by introducing new notation and rewriting the equation for the 

purpose of making it more tractable for computing implementation. Write (4.22) as 

( 
(VU)i,j) 0 

(NU)i,j = -aV· Gi,j IVul.. + XUi,j = XUi,j' 
t,J 

(4.23) 

( 

after we have denoted by Nu = xuo the main nonlinear operator equation; see (4.6). 

Since we have to approximate this equation on grids of different sizes we will denote 

by NhUh = xu~ the discrete equation (4.23) defined on the finest grid nh of size h 

and similarly by N2h U2h = xugh the same on the coarser grid 02h which is obtained 

by standard coarsening, i.e., the nonlinear operator N2h which results from defining 

equation (4.23) on the cell-centered grid n2h with grid spacing 2h. Likewise we can 

generate a sequence of L coarse levels 2h, 4h, 8h, ... ,2L h. 

Next we briefly mention the standard intergrid transfer operators. Denote by R~h 

(restriction) and Igh (interpolation), respectively, two transfer operators between Oh 

and 02h which on cell-centered grids are defined by the following equations [139]: 

The restriction operat?r is defined by R~huh = U2h as in (2.84) and the interpolation 

operator is defined by Igh U2h = Uh as in (2.86). 

4.4.2 Inpainting coarsening 

Here we discuss how to coarsen the interfaces, unique to inpainting problems. It suffices 

to discuss two consecutive grids. First define as Dh the inpainting domain in the finest 

grid Oh and D2h is the coarse grid counterpart to be constructed on 02h.· Basically, Dh 
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is identified using a binary mask matrix Mh composed of 1 's for points in Dh and O's 

for points in nh \ Dh. The question is then how to construct a similar Jl.;hh on D 2h . A 

simple way is by restriction M2h = R~h M h . The prohlem in doing so is that M2h will 

have some orphan entries due to the action of the operator R~h on M h . Those entries 

precisely identify those interface points in n2h which were not aligned to the coarse 

grid. In Figure 4.2 we give an example of such a case. There, the points a, b, c, d in nil. 

Figure 4.2: When applying standard coarsening to nh, some points in n2h are computed 
using partial information coming from Dh and thus we need to include those points in 
D 2h· 

are used to compute the coarse point e in n2h, however c and d belong to the inpainting 

domain D" and therefore, e will be an orphan. For that reason we decided to include 

such type of points into the inpainting domain D2h by setting their respective entries 

in M2h to 1 (Le. for M2h to take all orphan points if any). The problem in applying 

this strategy is that the mask starts expanding when moving in the coarsest direction 

and eventually (depending on the size and topology of Dh ) may reach the physical 

boundary an at some coarse level; in other cases where Dh is disconnected some of 

its disconnected parts can merge themselves as well. Cleill'ly for inpainting we have a 

very difficult interpolation problem and it is by no means an ea'3y task to approximate 

the error at coarse levels. Furthermore, we observed that for some problems additional 

errors were incorporated by coarse levels. Hence we decided to stop the mask generation 

at the level for which the mask is just one pixel away [rom the boundary. This decision 

obviously prevents using those coarsest levels with only a few points; however this was 

the one that worked best. 

We have also tried arlOVher strategy based on the idea of trying to reach the coarsest 

level using an adaptive mask generation. In this strategy the mask first starts growing 

till close to the boundary (like in our above idea), but then starts contracting or at least 

keeping one pixel away from the boundary. Unfortunately, this seemingly reasonable 

idea gave worst results than the above one (particularly [or inpainting binary images). 
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4.4.3 The MG algorithm and the FAS scheme 

To proceed, denote by FPS a general fixed-point type smoother; we shall define it 

shortly. Now use Algorithm 9 to state our V-cycling nonlinear MG, meaning that just 

one recursive call to the algorithm is made on each level to approximately solve a coarse 

grid problem. 

Algorithm 9 Nonlinear MultigTid Method 
Require: Select an initial guess Uh on the finest grid h 

1: k - 0 
2: err _ tol + 1 
3: while err < tol do 
4: u~+1 _ FAS(u~,N~,u~,Mh,lIO,lII,lI2,gsiter,a) 
5: err = Ilu~ - u~-11l2' 
6: k - k+ 1 
7: end while 

Here the full approximation scheme (FAS) is defined [119, 139) recursively in Algo

rithm 10 with gsiter representing the number of inner Gauss-Seidel iterations at each 

pre or post-smoothing FPS step. 

1: if nh = coarsest grid then 
2: solve NhUh = xu~ accurately (Le. lIo iterations by FPS) and return. 
3: else 

. 4: continue with step 6. 
5: end if 
6: Pre-smoothing: Do III steps of, Uh - FPS(uh,u~,Alh,gsiter,a,lId 
7: Restrict to the coarse grid, U2h - RhhUh 
8: Set the initial solution for the next level, U2h - U2h 
9: Compute the new right hand side xugh - Rhh(xu~ - NhUh) + N2hU2h 

10: Implement U2h - F AS2h (U2h, N2h , ugh' lIo, lit, lI2, gsiter, a) 
11: Add the residual correction, Uh - Uh + I~h(u2h - U2h) 
12: Post-smoothing: Do lI2 steps of Uh - FPS(Uh,U~,Ah,gsiter,a,lI2) 

4.4.4 The modified eDD model 

Although the Algorithm 10 appears applicable to solving (4.23), it requires a suitable 

smoother FPS. To this end, we have tried various choices of FPS, but failed to find 

a working smoother; the 'fixed-point method from Section 4.3.3 cannot be used as an 

efficient smoother. 

In trying to find a smoother that would work with Algorithm 10, our idea is to 

address the problem described in Section 4.3.3 by overcoming the singularity associated 

with the FP method. Motivated by the Euler's Elastica model [125), we decided to 

introduce two positive parameters a and b in the function g. Specifically our proposal 
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for the diffusion coefficient G is 

{

a K=O 

G= 00 K=OO 

a + bIKIP, with p ~ 1 and 0 < IKI < 00. 

(4.24) 

For a general p, our modified CDD takes the form 

(4.25) 

Since K -+ 0 in flatter regions, it is speculated in [123J that the connectivity principle 

is put at risk if the diffusion coefficient is not zero. We shall demonstrate via our 

numerical experiments that for the modified model (4.25), as long as a is sufficiently 

small, we can satisfy the connectivity principle, i.e., reconnect the contours across large 

distances. However, if we select a too small compared·with b we introduce instability 

to the linear system (4.13). Experimentally we found that 20 < * < 250 works well. 

Note that, setting b = 1 and a = 0 reduces the modified model to the original CDD 

model [123J. On the other hand, setting a = 1 and b = 0 transforms the modified model 

to the TV model [121J. Therefore, our inpainting model (4.25) is half way between the 

CDD model and the TV model. Moreover, as we shall see, it 'inherits the virtue of 

the original CDD model in recon::;tructing large scale missing part::; while sharing with 

the TV in painting model the advantage of having a working fixed point (FP) method 

which in turn can provide a fast and efficient smoother for a multilevel method. 

Remark 4.4.1 Note that the CDD equation (4.5) has an interesting relation with the 
Euler's elastica model. Recall from Chapter 3 that the elastica model inpaints in two 
directions: the tangential and the normal to the level sets directions. By selecting b = 1 
and p = 2 in the elastica model and by neglecting part of the normal direction setting 
a = 0 and also neglecting the tangential direction we obtain the CDD model of Chan 
and Shen. Actually, this omission of the tangential component is precisely the reason 
that prevents the CDD model to have the capability of denoising as weLL In our modified 
CDD model we followed a similar reasoning, but keeping the full normal direction by 
selecting a", O. 

4.4.5 A global smoother 

Now we can similarly consider a fixed point method for numerically solving the dis

cretized equations of (4.24-4.25) at each (i,j) point. To do this we fix the nonlinear 

term::; G and IVul at the <;urrent k-stcp and ::;olve for the new k+1 step. Thus we again 

obtain that 

u:,jl§i,j -u~:l,j (C~~,j) -u~~l,j (C;_~,J -U:.t!l (C~i+~) 
-U~J21 (Ci~j_~) = XZi,j 
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where 

(4.27) 

and so on, and 

(4.28) 

whose corresponding linear system A(uk )uk+l = xuo is now never singular and hence 

~olvable. 

We can check that in this case A(uk
) is a symmetric and sparse block-tridiagonal 

matrix with the important feature that it is weakly diagonally dominant. To show this, 

we can choo~e and arbitrary row of it and ~ee that all the ai,j with i =f j entrie~ but 

at most four are equal to zero. The nonzero entries in this row are given by c~ 1 ., 
'+2') 

c~ 1 ., c~. 1 and c~. 1, respectively, and all are positive. The diagonal entry ai i 
$-2') $')+2 $,)-'2 ' 

on the other hand i~ computed u~ing (4.28). Thu~, we have that ai,i 2: L~j jai,jj in 

n with strict inequality in n\D and therefore A(uk ) is weakly diagonally dominant. 

Furthermore, because G == 1 in O\D and G = a + bjx:jP with p 2: 1 in D we can deduce 

by u~ing the Ger~chgorin theorem that A(uk ) is positive semi-definite. 

Therefore, with A(uk ) having such a property, we can apply Gauss-Seidel (GS) 

iterations to solve the linear system (4.26): A(uk)uk+l = xuo. As a smoother, we 

shall name this fixed-point method with GS iterations the FPGS smoother, which can 

be ~tated by a~ follow~. 

Algorithm 11 FPGS smoother u +- FPGS'(Uh,U~,Ah,gsiter,h,a,l/) 
Require: On a grid with me~h ~ize h, choo~e an initial gues~ Uh for (4.26) 

1: for k = 1 to l/ do 
2: Apply gsiter Gauss-Seidel iterations to the linear system Ah(U~)U~+1 = u~ 
3: end for 

4.4.6 A local smoother 

Following from [7, 45, 118] for solving other PDEs, we also considered a local-type 

fixed point smoother. The difference of this smoother from the global one is that we 

apply the relaxation steps locally. The scheme is the same as that of (4.26) with k 

representing the kth ~tep:. The idea i~ to update Ui,j with the nonlinear term~ C k fixed 

at each k local step meaning that when we apply relaxation to the next (i,j) point, 

some C nonlinear terms have been updated. We call this smoother FPLS and is defined 

as follow~: 
Here Ci~j means Ck evaluated at Ui,j and the same applies to §i,j, as in (4.28). 
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Algorithm 12 FPLS smoother u f- FPLS(u, UO,Mh, gsiter, h, Ct, 1/) 
Require: On a grid with mesh size h, choo8e an initial guess 

1: for i = 1 to m do 
2: for j = 1 to n do 
3: for k = 1 to g8'iter do 
4: uh f- Uh and update 'Il'i,j by solving the linear equation 
5: 

k+I§- k+I (C-k ) k+l (C-k ) k+l (C-k ) u i JO i,j - ui+l JO o+! 0 - u i - 1 JO o_! 0 - u i JO+1 0 0 1 
, ,1. 2,1 " 2,3 ' 1,1+'2 

k+l (C-k) ° -Ui ,j-1 i,j-! = XUi,jo 

6: end for 
7: end for 
8: end for 

4.4.7 Use of the smoothers as independent methods 

(4029) 

On their own, both smoothers are not always convergent; this situation is different 

from the image denoising case [141]. Consider the test problem illustrated at the top 

of Figure 4.3. In the middle and at the bottom of the same FiguJ;'e we show the results 

obtained from using FPGS and FPLS as independent methods. The failure of both in 

trying to solve the problem is evident. The PSNR mea8ure u8ed i8 as defined in Section 

4.5. 
However, our main interest is not on the convergence of both smoot hers, but in their 

smoothing capabilities. In this ca8e as we shall show, FPGS has better smoothing rates 

than FPLS and therefore, it is our preferred smoother for a nonlinear MG algorithm. 
\ 

4.4.8 Local Fourier analysis 

We jU8t have 8een that both FPGS and FPLS are not alwaY8 convergent. However, to 

be used in a multigrid algorithm we only need them to reduce (smooth) as much as 

possible the high frequency components of the error regardless the overall error itself. 

When dealing with nonlinear problems the local Fourier analysis (LFA) can still be 

used as a tool to check if a given smoother is effective in reducing the high frequency 

components; see [7, 139, 34]. For simplicity, we consider the case of a square image of 

size Tn X m. Let the local error functions efJt1 and ef
J

o be defined as e~t1 = tLi JO - tL~t1 
" t,J' 1,,1 

and (:k 0 = U,o JO - u~ o. 
"",J ' I,J 

Then LFA involves expanding them in Fourier components as 

m/2 

and ef,j = L t/J!1,¢>2 B¢>1,tP2(X, y) 
tPl,tP2=-m/2 

(4.30) 
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Figure 4.3: Test problem. 

e ·= (-7r, 7rj2 , OJ = 27rrPJ/m, O2 = 27rrP2/m and i = J=I. Now by substituting (4.30) 

into (4.26) we can obtain the error equation 

§ k cHI C k ck C k ck+J C k ck C k ck+J - 0 (431) - iJ· <' iJ· + ·+ !' · <'H JJ· + ·_ l.·<'i - lJ· + · ·+ l.<,iJ+l+ · ·- l.<'iJ· - I- ' . 'J t 2 ,J ' t 2 ,J ' t ,J 2 ' 1.,J 2 I 

and for the linearized system (freezing all C.~ - coefficients), the local amplificat ion 

factor is given by 

ICk 
1 . eith + C k

. 1 e i02 1 
S h ( (} ) i,j = ,------'-_'+--'2"-'_J ____ "J_+--'2'--_'-------. 

I
§k. - C k 

1 . e - iOI - C k . 1 e-i02 1· 
' ,J ' - 2,J ',J - 2 

(4.32) 

What follows is to compute the nonlinear coefficients CL) at each (i,j) point to 

find the smoothing factor at the kth-step and at each {i, j)-location of the image as 

- h · h 2 7r 7r 2 
{Li,j = SUp{!Sh{(}) i,j ! : (} E e ' g = [- 7r,7r) \[- "2'"2) }. (4.33) 

Recall that both (FPGS and FPLS) smoot hers on ly differ in when we update the 

C coefficients. 

Since our FPGS and FPLS smoothers are linearized at each step, their smoothing 

rates will change at every outer iteration. Then we have an m x m rate .matrix Mk> 
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for the kth step, with entry /-Li,j representing the local smoothing rates at (i,j) point. 

Unfortunately, our initial tests showed that the maximum is close to 1 and yet the 

practical performance of the smoothers appears quite good. This prompted us to look 

for a better explanation. 

In order to evaluate their effectiveness, it turned out that the (new) accumulated 

rate based on (old) consecutive smoothing rates is well below 1. That is to say, the 

above maxima are not achieved at the same location (otherwise LFA is not helpful)! For 

either I:lmoother, I:lupp0l:le we have completed K (accumulated) inner relaxation I:ltepl:l. 

Let !;!h denote the corresponding rate matrix (for 1 ~ k ~ K); then define 

(4.34) 

as the accumulated smoothing rate of a relaxation step (over K iterations). Clearly 

this is a reasonable definition as it takes care of all iterations within a relaxation step; 

we expect fi,K < 1 and of course fi,K « 1 if the underlying smoother is good. For linear 

problems, we have a com;tant value jli,j = jl so fi,K = jlK. 

Finally for completeness, we shall name the resulting global smoother based on 

modifying (4.21) by G = G+e al:l FPGS(e). Likewil:le we I:lhall denote the correl:lponding 

multigrid algorithm based on FPGS(e) as MG(e). 

As an example, we present in Table 4.1 the accumulated local smoothing rates 

computed for the first five iterations for the test problem of Figure 4.3. 

. Up to outer fi,K Left bar region fi, K Right bar region 
iterationl:l v FPGS FPLS F4 F8 FPGS FPLS F4 F8 

1 0.5891 0.9620 0.7898 0.7911 0.8354 0.9690 0.8558 0.8568 
2 

r 
0.5192 0.9448 0.7528 0.7538 0.2567 0.8986 0.7621 0.7651 

3 0.5183 0.9333 0.7160 0.7201 0.0420 0.8861 0.7465 0.7506 
4 0.4863 0.9327 0.6920 0.6958 0.0037 0.8804 0.6382 0.6337 
5 0.3867 0.9320 0.6445 0.6183 0.0016 0.8633 0.5622 0.6216 

Table 4.1: Illustration of accumulated smoothing rates for FPGS and FPGS(e) 
smoot hers with gsiter = 10 used for all tests. Here F4 means FPGS(1O-4) and F8 
means FPGS(1O-8). Note K = gsiter v, where gsiter is the number of inner itera
tions. 

From Table 4.1 we can argue that FPGS reduces the high frequency modes much 

faster than FPLS. Clearl,y the FPGS(e) method is not as effective. We also tested on 

other inpaiting problems with various inpainting domains and noticed a similar behav

ior; therefore FPGS is our preferred smoother. Furthermore, Table 4.1 also suggests 

that 3 to 5 fixed point iterations are sufficient to get a smoothing rate comparable to 

GS for the Poisson equation [139]. 
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I Problem I Image Size I initial PSNR I final PSNR I 
Child, Figure 4.5 128 x 128 46 95 
Bars, Figure 4.6 512 x 512 50 102 
Ring, Figure 4.7 512 x 512 27 82 
Lena, Figure 4.4 512 x 512 53 95 

Table 4.2: Initial and final PSNR values after applying the modified CDD algorithm 
to the problems presented in this work. 

4.5 Numerical results 

In this section, we shall first give results of five different in painting problems designed 

to test the performance of the multigrid algorithm, as illustrated in Figures 4.4-4.8. 

We use the problems in Figures 4.5 and 4.8 (tested in, the original CDD paper [123]) 

to compare the performance of our MG algorithm with the method used in [123] and 

the MG(€) method. 

To measure the restoration quality, we found it useful to use the Peak-Signal-To

NoiRe-Ratio (PSNR) to check how similar two images u and uO of size m x n are each 

other. The PSNR is defined as 

L' .{Ui J' - u9 .)2 ",1' '1,,1 

rnn 
(4.35) 

The larger a PSNR is, the better is the restored image. In real life situation, such a 

measure is not possible because uO is not known. 

In Table 6.1 we show quantitative measure of the PSNR values for the damaged 

and restored images, and in Figures 4.5, 4.6, 4.7 and 4.4 the respective images. Here 

we only used a few MG cycles to obtain the results. Clearly the restored images are 

good. 

4.5.1 Comparison with existent methods 

We now address the efficiency gains. It turns out that our multigrid algorithm is many 

magnitudes faster, even for inpainting small images. For instance, for the in painting 

problem in Figure 1.5 with only a 128 x 128 image, to reach the same accuracy, time 

marching requires 160,000 iterations and 7380 CPU seconds to converge, whilst our 

MG only requires 3 V-cycles and 9.6 CPU seconds. Therefore, it is not necessary to do 

extenRive compariRonR. 

4.5.2 Full multigrid and MG(E}. 

We observed that for very large scale inpainLing domains such as those of the ring 

problem illustrated in Figure 4.7, the rate of convergence of our MG algorithm is slightly 

dependent on the initial guess, even though our MG always converges no matter what 
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Image MG FMG MG(lO -4) MG(lO -IS) 
Problem Size v # CPU v # CPU v # CPU v # CPU 
Lena 128 6 2 7 6 1 6 12 2 17 12 2 17 

256 8 3 47 8 1 22 15 3 87 15 4 116 
512 8 4 290 8 2 159 15 5 635 15 5 610 

Bars 128 15 4 79 15 2 12 40 5 71 50 5 81 
256 20 6 350 20 3 193 50 7 667 50 8 760 
512 20 6 978 20 4 696 50 7 2871 50 8 3304 

Ring 128 15 4 61 15 1 16 30 4 69 40 5 96 
256 15 5 192 15 1 46 50 6 606 50 8 813 
512 15 5 1165 15 1 241 50 7 4151 50 8 4732 

Table 4.3: Further improvements of MG results by the FMG and comparisons with 
MG(t). Here '#' denotes the number of MG cycles and v the number of smoothing 
steps per grid needed. 

the initial guess is. In order to reduce this dependence and to improve even more the 

speed of convergence we adopted the Full Multigrid method (FMG), as described in 

[139]. Indeed, milch better results are obtained and can be seen in Table 4.3, where we 

also give the results of MG(t). Clearly, MG(t) is less efficient than MG and FMG. 

4.6 Conclusions 

The original CDD model of [123] improves on the total-variation norm based inpainting 

model [121, 40]. The only reported time marching scheme is slow in convergence and 

therefore, it is only suitable to process small-sized images. Moreover, the nonlinear MG , 
cannot be easily used to solve the model. 

In this chapter we developed a fast and efficient nonlinear MG algorithm for solving 

a modified eDD model. By first finding out why a fixed-point method is not feasible 

for the original CDD model, we then proposed a modified CDD model for which a 

fixed-point method is feasible and developed a nonlinear MG for the modified model. 

A LFA shows that the global smoother is faster than the local smoother. Numerical 

results confirmed that the modified model retains the desirable property of the original 

model in reconnecting the level lines across large distances, and our multigrid method 

is very efficient. 
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Figure 4.4: A practical text removal example. Notice the reconnection of the t hin piece 
of hair (2 pixels-width) ini t ially occluded hy the t hick letter C (4 pixels-width). T he 
CP U-time used by our FMC algorit hm was 22 seconds only. 
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(a) (b) 

( c) (d) 

Figure 4.5: (a) Noi~y Image. (b) Denoi~ed image u~ing curvaturc-ba~cd model and 
Algorithm 9. The CPU-time u~ed by our FMC algorithm Wi1.') 9.6 ~econd~ only. 
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( c) (d) 

Figure 4.6: (a) Noisy Image. (b) Denoised image using curvature-based modd and 
Algorithm 9. The CPU-time used by our FMC algorithm was 193 :,;econd:,;. 
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Figure 4.7: (a) Noii:iY Image. (b) Denoi::ied image ui:iing curvature-bai:ied model and 
Algorithm 9. The CPU-time used by our FMC algorithm was 46 seconds. 
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Noisy image to be in painted (SNR=4) Output from the modified CDD algorithm 
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~~--~--~--------~ 

20 40 60 80 100 120 20 40 60 80 100 120 

Figure 4.8: Our algorithm performs very well for noisy images. T he CPU-t ime used by 
om FMG algorithm was 13 seconds on ly. 
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Chapter 5 

Fast Numerical Algorithms for 
the Euler's Elastica Digital 
Inpainting Model 

The Euler's elastica digital inpainting model very well-known for its attractive features 

of reconnecting contours along large distances, reconstructing the curvature of missing 

parts of objects and its ability to denoise outside the inpainting region if necessary. Since 

the underlying Euler-Lagrange partial differential equation (PD'E) is of fourth-order 

and highly nonlinear, unfortunately, the usual numerical algorithm to find the solution 

is a very slow time marching method (due to stability restriction). In this chapter we 

address this fast solution issue by progressively proposing first, two new unconditionally 

stable time marching methods and then a novel fixed point method. The latter turns 

out to be two orders of magnitude faster than the explicit time marching method. 

Moreov~r, taking this new fixed point method as a smoother, we develop an even 

faster nonlinear multigrid method for optimal performance. Numerical results will be 

presented to illustrate the improved results obtained. 

5.1 Introduction 

Digital inpainting is a very usefull technique designed to restore the missing or damaged 

parts of digital images. The very first model of this technique was introduced by 

Bertalmio et ai. [10] back in 2000. In the last few years, a number of PDE-based 

variational inpainting models (similar to [10]) have appeared. These include the TV 

model [121], the curvature-driven diffusion model [123], the Euler's elastica model [125], 

the Cahn-Hilliard equatio'n based model [13], the complex Ginzburg-Landau equation 

based model [68], and the Mumford-Shah and Mumford-Shah-Euler models [54]. 

Of the above mentioned models, only the two by [125] and [51], respectively, can 

do the following at the same time: reconnection of level curves along large distances, 

curvature reconstruction and noise elimination. However, since the associated PDEs of 

both models are of fourth-order and highly non-linear, it is a non-trivial task to develop 
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fast algorithms to solve them. In this chapter, we show how to develop fast numerical 

algorithms for the Euler's elastica model [125]. 

5.2 The Euler's elastica inpainting model 

The Euler's elastica model recently introduced by Chan, Kang, and Shen [125] is re

viewed here, as it offers us the capability of inpainting delicate fine features by respect

ing curvature. 

For completeness we state here the inpainting formulation previously introduced in 

early chapters. Assume we are given a possible noisy image uO = uO(x,y) defined on 

a domain 0 ~ ]R2 and there exists one subset D c 0 where the pixel values of uO are 

missing or damaged. The inpainting objective is to reconstruct the values of uO in D 

from the available information on O\D, see Fig. 3.5. 

The elastica model 

Variational models achieve their objective by minimizing some chosen energy functional. 

In particular, the Euler's elastica model [125] proposes to minimize (3.19). This model 

allows UO to have the Gaussian noise 'T} = 'T}(x,y) present in O\D ~uch that uO = u + 'T}. 

The virtue of (3.19) is that it penalizes the integral of the square of the curvature along 

edges instead of only penalizing the length of edges as the TV model does [10, 21]. 

Consequently, the model can reconnect contours along large distances and recover the 

curvature of objects at the same time. As we showed in Chapter 3, the Euler-Lagrange 

equation for the elastica model is given by the equations (3.20) and (3.21); see also the 

description at the end of Section (3.3.5) in equations (3.40)-(3.41). 

5.3 Numerical solution of the elastica PDE 

Whilst the quality of reconstruction of the elastica model is out of discussion, its efficient 

numerical realization is still an open challenge. In this section, firstly we introduce the 

numerical discretization of the model (3.20) and (3.21), secondly we review the time 

marching scheme proposed in [125] for its solution and finally, we move to reviewing 

two possible, but failed methods: a fixed point and a primal-dual method. It shall be in 

Section 5.4 where we introduce our new successful numerical algorithms for this model; 

both delivering faster solutions than the ones of the explicit Euler scheme reported in 

[125]. Latter in Section 5.? we shall present an even faster nonlinear multigrid method. 

5.3.1 Discretization 

We start discussing the numerical approximation of the terms involved in (3.20) or 

(3.41), following [125]. In (3.41), to approximate V' . V = fx VI + !y v2 at some pixel 
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(i,j) we use central differences between ghost half-points; see Fig. 4.1. That is 

(5.1) 

where h is the spatial step-size that, for convenience, was chosen to be the same in 

both Cartesian directions. The next step is to approximate all the involved quantities 

at the half-points. First, to approximate V.l+ 1 . and v.l 1 ., we do the computations as 
• '2,J $- 2,J 

follows: 

Curvature terms. These are approximated by the min-mod of two adjacent whole 

pixels. 

K,.+1 . = min-mod(K,itlj,K,ij) and K,i--21,J' = min-mod(K,i,j,K,i_l,j), 
t 2,3 7 , 

where min-mod (0.,[3) = (sgn °t·gn .8) min(lal, I;?I). 

Partial Derivatives in x. By the central differencing of two adjacent whole pixels 

ox(uH!,j) = k(Uit1,j - U;,j), 

ox(ui _! J') = t(Ui,j - Ui-l,j), 
2 ' 

Ox(K,IVuI)H!,j = k (K,HI,jIVUlitl,j - ""i,jIVuli,j) and 

ox(K,IVul)i_!,j = k (K,;,jIVuli,j - K'i-l,jIVuli-l,j). 

Here IVu!i.j = A V(Uitl,j - Ui-l,j)2 + (Ui,j+l - Ui,j-l)2 + 4h2E, 

where a small parameter e > 0 is used to avoid division by zero when IVuli,j is 

in the denominator. 

Partial Derivatives in y. By the min-mod of Oy'S at two adjacent whole points 

Oy(uit!) = min-mod (~(Uitl,j+l - V,itl,j-l), ~(Ui,j+l - Ui,j-l)) , 

Oy(ui_!,j) = min-mod (A (Ui,j+l - Ui,j-l), 2
1
h (Ui-l,jtl - Ui-l,j-l)) , 

Oy(K,IVul)i+!,j = min-mod (a, [3) with 

a = ~ (K,i+l,j+lIVulitl,jtl - K,itl,j-lIVulitl,j-l) and 

fJ = :k (K'i,j+lIVuli,jtl - K,i,j-lIVUli,j-l). 

(')y(K,IVv.l)i_!d = min-mod (0.,[3) with 

a = ~ (K,i,j+IIVu!i.jtl - K,i,j-lIVUkj-I) and 

[3 = k (K,i-l,jtdVu,li-l,j+l - K,i-l,j-dVuli-l,j-d· 

Here IVul is approximated using 

IVul.+! . = (ox(uH ! J.))2 + (Dy(uijt !))2 + E and 
t 2,J 2' , 2 

IVuli_!,j = V(Ox(u i _!))2 + (Oy(ui ,j_!))2 + e. 
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Then, by a similar procedure we can obtain the approximations for V? 1 and 
~,J+2 

v.2. 1. Finally, the homogeneous Neumann boundary condition on an is treated as in 

(4:J16). 

5.3.2 An accelerated time marching method 

The first numerical method we study is the accelerated time marching (ATM) algorithm 

used in [125] to solve (3.20) and (3.21). The idea of an accelerating factor to speed 

up a time marching scheme was introduced in [95] for solving a nonlinear second order 

evolution equation. 

Firstly equation (3.20) can be solved indirectly by looking for the steady-state 

solution of a parabolic equation of the form (4.17) and (4.18). 

This numerical scheme which is accurate to O(~t) is known to have an stability 

restriction of ~t rv O(h4) for fourth-order equations suc:h as (3.20). In fact, for (3.20), 

due to its high nonlinearity, we have to use much smaller time-steps. 

Secondly, the ATM idea, based on [95], is to multiply the right-hand side of (4.17) 

by IVul with the purpose of reducing its stiffness [125]: 

au 
&t = IVulr(u), (5.2) 

where as before an explicit Euler method is then used. Although effectively the dy

namics is accelerated with this method, still a huge number of iterations are required 

to reach convergence. lIenee, this method is not appropriate in terms of CPU-time for 

l~rge images. As an example, for the circle problem of Fig. 5.1, the maximum stable 

time-step we were able to use was l1t = 10-5 (using € = 10-2
, A = 100, a = 1, b = 20) 

for which convergence was ohtained in 1.4 X 106 iterations and 20.7 hours of CPU-time 

for an image of size only 32 X 32 pixels. lIere the inpainting domain D has size of 

12 X 12 pixels and it was initialized with random noise. 

5.3.3 Failure of traditional fixed point methods 

Defore introducing our new numerical algorithms, we shall explain roughly what the 

challenges one faces are when trying to solve numerically (3.20) or (3.41). We have seen 

already that a time marching method even with acceleration techniques is very slow. 

Although we have not implemented Newton-type methods, they are also expected to be 

not useful because of their reduced domain of convergence due to the terms IVul and 

IVul3 in the denominators.of /II and T, respectively. This fact is very well explained and 

analyzed in [13] for a second-order equation of a similar type of singularity. Therefore, 

a natural idea to consider is a fixed-point-type method, as it was the case with second

order equations [144, 7, 118]. 
In looking for a fixed point method of the form A(u)71 = f(u) for a nonlinear POE, 

the standard procedure is to linearize it at some k-step to construct a linear system 
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of equations A( uk)uk+! = f( uk) and solve for uk+!. Here A( uk) usually consist of 

all linear components and part of the linearized differential operator of such a PDE, 

while f(u k ) gathers all other nonlinear components. Then, we repeat this procedure 

as many k-steps as necessary to reach convergence, this is to get /l u k+l - uk/l < tol, 

for given tolerance tol. If this fixed point procedure is convergent then for some k 
we take uk+! as the solution. One necessary condition A(uk) must satisfy is to be 

invertible and because of this we always look for a diagonally dominant matrix A( uk) 
which guarantees a unique solution uk+l. 

For (3.42), we can follow this idea and make A(uk ) weakly diagonally dominant if 

we collect all the contributions from T into f(uk). This suggests to solve 

(5.3) 

where V ·Nk+! needs to be linearized and f(uk) == o:V: Tk + xuo. Unfortunately, this 

apparently feasible fixed point algorithm is neither convergent nor a good smoother for 

the high frequencies of the underlying error, as numerical tests showed. 

There are two possible refinements on (5.3): one is to take some part from V . N 
into f(uk) and the other is to take some contribution from V . T into A(uk). Our 

experiments showed that the first option is not helpful, and the second is not much 

better because diagonal dominance cannot be guaranteed due to V(I'i:IVuJ) changing 

its sign and consequently A(uk) may not be even weakly diagonally dominant. 

In Se~tion 5.4.4 we will show by adding some stabilizing terms to both sides of (5.3) 

we can construct a fixed point method with weakly diagonally dominant matrix A(uk ) 

that not only seems to be always convergent to the true solution of (3.20) and (3.21) 

but also a good smoother for a multigrid method. 

5.3.4 A promising primal-dual method 

Introducing a new variable into a high-order PDE such as (3.20) with views to re

ducing its order and solving the resulting lower order system of PDE's is a numerical 

technique which has been tested in similar to (3.20) anisotropic equations. For in

stance, the primal-dual Newton's method proposed in [35] for the TV denoising model 

[114] is maybe the most known successful example in the variational image processing 

community. .. 
When designing primal-dual methods usually there is no unique way to introduce 

the new variable. Here we present a primal-dual method for the elastica PDE (3.20) 

which delivers very good results under suitable conditions, but fails for more general 

situations. To this end, we start by rewriting the elastica PDE (3.20) and (3.21) (see 

Chapter 3 for its derivation) in the form 

(
(a + bK,2)Vu 2bVu· V (1'i:1 VuJ) V 2bV{K,IVuJ)) ,X ( 0) (5.4) 

- V . IVul + IVul3 u - IVul + E U - 1.1, = 0, 
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and then introducing the change of variables e = ""IVul, which leads to solving the 

linear system 

A(U,A)f = b(u) == . ~ 
(

VV' 

AE 
-l/l~ul ) ( u ) = ( 0 ), 
V· /V'u/ 0 g(u) 

(5.5) 

h () n (a+b1<2)V'u 2bV'u·V'(I<IV'ui) n) , 0 'T' 1 () . were 9 u = v • lV'ul + lV'ul3 vU + AEU. .1.0 ~o ve 5.5 we ~lmple 
linearize it by lagging the nonlinear terms IVul-1 in the left hand side of the equation 

and iterate. 

A quick view to the ~y~tem (5.5) reveal~ that the matrix A(u, A) may become ill

conditioned depending on the size of D and the value of AEj recall AE can take values 

from [0,+00). For instance, in regions of n\D with step gradients and AE :» 1, all 

terms but AE in A will be very smallj hence its condition number [73] will be very large. 

On the other hand, even if AE i~ ~uitable ~elected f<.?r a particular problem there i~ 

still the need to carefully discretize the term -l/IVul to guarantee diagonally domi

nance of A(u, A). Following the discretization process described before we carried out 

some tests using 

IVul = max {IVuli+!,j' IVuli_!,j' IVuli,H!' IVuli,j_!}. 

This selection though it worked, it has a tendency to decimate the quality of the 

curvature of the restored missing regions, one of the main virtues of the elastica model. 

Although the primal-dual algorithm just described still has some challenges to over

c~me, when properly tuned, it delivers a very fast speed of convergence - as an example 

it takes less than two hundred of iterations to solve the problem of Fig. 5.1 - and 

therefore it deserves a deeper investigation. For instance, Newton's method for this 

scheme still needs to he tested and may be reported in a future work. 

Finally, we just quickly mention some other change of variables for (3.20) that we 

tested but did not work whatsoever: defining 0 = Vas in (3.40) yields an ill-conditioned 

system in D, or defining e = (a/tb:() did not yield systems of PDE's of reduced order 

at all. 

5.4 New methods for the elastica model 

In this section, we shall proceed to present our new and faster numerical schemes 

for the solution of the elastica PDE (3.20) and (3.21). We start by presenting two 

unconditionally stahle time marching (USTM) schemes. Here unconditionally stable 

means that there are no stability restrictions for the step-time D.t. 

5.4.1 Unconditionally stable time marching methods - foundations 

We haRe our USTM methods on a recently theorem by Eyre [55, 56] who proved the 

existence of unconditionally stable algorithms for gradient systems. Eyre showed that 
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it is possible to construct such kind of algorithms through what is called a convexity 

splitting (CS) technique. This technique consists on dividing an energy functional£(u) 

as the sum of two parts: one strictly convex El (u) and one strictly concave E2 (u). In 

doing so enables one to construct a gradient stable semi-implicit time marching method 

treating E t implicitly and E2 explicitly. Of course, finding a suitable decomposition of 

the energy E( u) is the essential part of the CS technique. 

We now shall provide the basic theory for the construction of unconditionally stable 

r:;chemer:; for gradient r:;yr:;temr:;. To thir:; end, asr:;ume a numerical method ir:; needed for 

the initial value problem 

au 
at = -v E(u), u(O) = uo· (5.6) 

It is assumed [55] that u : JR+ _ JRP is class Ct , E( u) : JRP _ JR is class C 2 , V E( u) 

is the gradient of E(u), and E satisfies the following three conditions: 

{ 

E(u) > 0 

E(u) - 00 

(H(u)u,u) ~J1-

VuE JRP 

as lIull- 00 

VuE JRP 

(5.7) 

Here lIul12 = (u,u) is the norm on JRP defined by the inner product (', .), H{u) is 

the Hessian matrix of E( u) and J1- E R 
Equationr:; of the type of (5.6) are called gradient r:;yr:;temr:;, their r:;olutionr:; gTadicnt 

flows and they satisfy the property 

: = (V E{u), Ut} = -11"1 E(u)1I2, 

meaning that e{u(t)) ::; £(0) for all t > O. 

(5.8) 

In the following, un will represent a numerical approximation of u(n~t), where 

~t is the time-r:;tep. The following definition clarifier:; what it ir:; underr:;tood as an 

unconditionally gradient stable scheme. 

Definition 5.4.1 A one-step numerical integration scheme { for {5.6} and {5.7} } is 
.'laid to be unconditionally gradient stable if there exists a function PO : JRP - JR, such 
that, for all ~t > 0 and all initial data: 

1. F(U) ~ 0 for all U E JRP. 

2. F(U) - 00 as 11U11 - 00. 

3. F(Un+1) ::; P(Un) for all un E JRP. 

4. If F(Vn) = F(Vo) for all n ~ 0 then Vo E A, the set of zeros of V F. 

The idea behind convexity splitting (CS), as we already have mentioned, is to split 

the energy E in two partr:; as E = El - E2 r:;o the new r:;chcme 

au 
&t = -VE1{u) - VE2{u), (5.9) 
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is implemented where the energies El (u) and ~ (u) are, respectively, strictly convex 

and strictly concave. 

Further, in [55], it is proposed to construct a gradient stable time marching method 

treating VEl implicitly and V E2 explicitly 

(5.10) 

The advantage of this CS method over the simple explicit Euler method is that tl.t 

in (5.10) does not have to be small due to stability requirements, but its size is only up 

to accuracy requirements. 

The detailed convergence proof of scheme (5.10) can be found in [56]. 

5.4.2 USTMI 

We turn now to develop our first new USTM scheme for. the elastica formulation (3.19). 

This method is not only newer but also faster than the accelerated time marching 

method [125] for the elastica PDE. 

The elastica energy (3.19) can be naturally divided (depending upon the norm) in 

two parts a"l J(u) = J1 (u) + J2 (u) with 

(5.11) 

We note that J1 (u) yields the gradient flow 

(5.12) 

and (.,.) denotes the inner product in the total variation space of functions. 

Similarly using the L2 norm in J2 ( u) yields the gradient flow 

However, .J(u) by itself is not strictly a gradient flow under any norm. Nevertheless, 

as we shall show, we still can apply the CS method successfully. As remarked, for the 

Cahn-llilliard inpainting model which is also not strictly a gradient flow, it was found .. 
that the CS method was successful [13]. To apply the CS method to our case, we start 
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by splitting 

J1(u) = Jll(U) - J12 (U) (5.14) 

with Ju(u) = a In IVul dxdy + C1 In IVul dxdy (5.15) 

and J12 (U) = -b In 1£
21Vul dxdy + C1 In IVul dxdy, (5.16) 

and likewise we split J2 (u) = J21 (u) - J22 (u) with 

J21(U) = C2 f lul2 dxdy and (5.17) 
2 In\D 

J22 (U) = -~ f (u - uO)2 dxdy + ~2 f lul2 dxdy. (5.18) 
In\D In\D 

Actually for convexity splitting to work on the elasti~a energy (3.19), there might no 

need to carry out the last splitting since J2(u) is already a convex functional, however 

to construct our USTM1 algorithm, we follow the method described in [13], where the 

fitting functional was split as in (5.17) and (5.18) and test it for the elastica model. To 

this end, our USTM1 scheme is to solve 

which leads to the numerical scheme 

In order to ensure that the energies J11 (u) and J21 (u) are convex for the range of 

u we are interested in, we need to select appropriate positive constants C1 and C2• 

Experimentally we found that a good choice is 50 ~ C1 ~ 200 and C2 rv ,\. 

To address the problem of solving (5.20) at each time-step, we opted for constructing 

a fixed-point-type method hy Iineari;;;ing the term IVul-1 on the left-hand side of (5.20). 

Therefore, after applying the discretization process described in Section 5.3.1 we get 

the following linear system of equations 

where 

(5.22) 
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The Circle Problem Euler's Elaslica Inpainling 

Figure 5.1: The circle problem. Reconstruction obtained by using the FPGS algorithm. 

and ::;0 on, and 

(5.23) 

Then, such a fixed point method amounts to solving the linear system (5.21) , i.e. 

(5.24) 

where uk = [u} l' u~ 1 ... ,1J,~ l ' u} 2' ... ,u~ ml and f is defined as the right- hand side of 
" " , 

(5.20). In this case, A(uk
) is a sparse, symmetric and positive definite matrix. 

The USTM ::;cheme (5.20) i::; te::;ted for a model problem, and comparative re::;uit::; 

with ATM are shown in Table 5.2; it is evident that the USTM scheme is many times 

faster than the ATM. 

5.4.3 USTM2 

As we have seen, convexity splitting guarantees unconditionally stabiliLy by treating 

the expand ing term of the elastica energy, i.e. - VJ12(11,) explicit ly. Here we shall show 

that J12 (11,) can be further partitioned in such a way that one section of that energy 

can be implicitly treated withou t losing the unconditionally stable properLy of the 

scheme. We also follow the more natural approach of treating .h(7J,) implicitly without 

applying any artificial splitting as in (5.17)-(5.18). Numerical experiments show that 

the resulting new scheme which we name USTM2 is fa<;ter to converge than USTM1, 

but more importantly there is no need to select appropriate C2· 

Theorem 5.4.2 If J11 (11.) and J I2 (11.) are strictly convex functionals given by (5.14)
(5.16) and J I2 (U) satisfies (5.7) with (H.J12(U)U,U) ~ -f.L when J..t < 0, then for' any 
initial condition, and provided C1 > 0 is sufficiently large, the numeric.al scheme 

Uk+1 = uk - /:).t {VJl1 (uk+1) - gl(uk+1)V92(uk+l) - g2(Uk)Vg1(Uk) - VJ12b(uk)} , 

(5.25) 
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where 

and .l12a (u) further written as 

J12a (u) = L gl{U)g2{U) dxdy with gl{U) = _b",2 and 92{U) = C11Vul, (5.27) 

is gradient stable for all At > O. 

Proof. Assuming J1{u) satisfies (5.7) and expanding it about un+! up to second order 

uRing Taylor's theorem, the following inequality holds 

From here and using (5.14)-{5.16) and (5.25) we ha:ve that 

Jl (uk+!) - J 1 (uk) ~ (V J ll (u
k+!) - V J12 {Uk+!), uk+! - uk) + Iflll\uk+1 _ ukl\2 

1 _ (_{uk+l _ uk) + VJll(uk+!) _ 91(uk+1)Vg2{Uk+!) 
At 

- 92(Uk)Vg1(Uk) - VJI2b (Uk),uk+l _uk) 

= -(91(Uk+!)V92(Uk+!) + g2(uk+l)Vgl(uk+l) 

+ VJI2b(Uk+1),uk+1 -1i) + (91(uktl)V92(uktl) + 92(1i)Vg1(Uk) 

+ V J12b(uk), uktl - uk) + (Ifll- ~t) I\uk+! - ukl\2 

= _(92(uk+l)Vg1{Uk+l) -92{Uk)V91(Uk),uk+l _uk) 

- (V J12b(uk+1
) - V JI2b (Uk), uktl - uk) + (Ifll- ~t) lIuk+l - ukl\2. 

Now from the convexity of J12b (U) there exiRtR p, such that 

where jL( C1) indicates that jJ, depends on C1• Hence, we have that 

.11 (uk+l) - .11 (uk) ~ -(gl (uk+l)V 92(Uk+l) - g2( uk)V gl (uk), uk+l _ uk) 

+ (1/l,I-lil,(C1)1- ~t) IIuk +1 - uk ll 2 ~ 0, 

.. 
where the last inequality is satisfied provided C1 is chosen large enough. 0 
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Using Theorem 5.4.2 in the elastica energy (3.19) we get the following scheme which 

we name it as USTM2 

uk+! _ b.t (aV . ((a + C + b/'i,2) VUk+l ) + XUk+!) 
1 IVUk+11 

k ( ( VU
k 

2b J. k J. k) 0) = u + b.t aV· -CIIVUkl - IVukl3 V uV("'IVu I)V u + XU . (5.28) 

Although USTM2 is just slightly faster than USTMl, as can be seen from Table 

5.2, in the USTM2 scheme there is no need to select C2 which, if wrongly selected, may 

cause the USTMI algorithm to diverge. 

5.4.4 A working fixed point method 

The main virtue of the USTM schemes is that the value of b..t is not an issue for stability 

matters. For similar, but different imaging problems see [146, 67, 129], however, b..t 

need8 to be bounded to obtain a given accuracy at every iteration. For the ela8tica 

formulation (3.19) the aim is to find its minimum, therefore the value of b.t is less 

relevant for this purpose. This observation prompts us to construct a fixed point 

method from (5.28) by taking an infinity time-8tep b.t (i.e. 8teady 8tate 8olution). 

This means to solve 

(5.29) 

, At the present time a rigorolls mathematical proof of the convergence of this fixed 

point scheme is not at hand although we expect this to be true since (5.29) is likely 

to inherit thb property from the USTM2 scheme. Nonetheless, numerical experiment8 

over a wide range of problems have always shown (5.29) to be a convergent and fast 

algorithm provided Cl is rightly selected. 

To obtain some numerical insight on the performance of thlli fixed point method, in 

Section 5.4.5 we shall follow the approach of using local Fourier analysis to study how 

fa.<;t does (5.29) eliminates the components of the error. In particular, we are mainly 

interested in the high-frequency interval ehigh = [-1l',1l'F \ [-1l'/2,1l'/2F since our aim 

i8 to U8C this method as a smoother in a multigrid algorithm framework. 

To solve (5.29), as with (5.21) for (5.20), we linearize the left-hand side and obtain 

the following linear system of equations 

ktl§ ktl (Ck ) ktl (Ck ) ktl (Ck ) u iJ' ij -ui+1J' 't1' -ui-1J' ,1, -UiJ'+1 "t1 
" " 2,1 I ,- ~ ,3 ' '" '2 

-u~j~l (C;'j_~) = !i.i(Uk,>..,C1) 
(5.30) 
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where 

(5.31) 

and so on, and §i,j given by (4.28). 

Denote the resulting system of equations (5.30) by A(uk)uktl = f{uk), with f 

defined as the right-hand side of (5.29), where the matrix A is semi-positive definite 

and weakly diagonally dominant. Further, we apply some Gauss-Seidel (GS) iterations 

and we call this fixed point method based on GS the FPGS algorithm. 

A remark is due here. By re-writing (5.29), with TV(u) == V . I~~I' as 

-a (V . Nktl + C1TV(uktl )) + xuktl = a (V. Tk + C1TV(uk)) + xuo, (5.32) 

we can see that basically what we really did in (5.32),was to add stabilizing terms to 

both sides of our first failed fixed point method (5.3). One explanation may be that the 

domain of convergence of (5.3) is very small and therefore, it fails to converge for a bad 

initial guess. On the other hand, in (5.29) or (5.32), the TV term drives to convergence 

the algorithm when lIuktl - Uk II is large (at the beginning of iterations), however once 

Iluktl - uk II starts decreasing then the TV terms on both sides of (5.32) tend to cancel 

each other and gradually (5.3) takes over. 

5.4.5 'Local Fourier analysis (LFA) for the fixed point method 

For nonlinear problems such as the elastica PDE (3.20) and (3.21), evaluating how 

much a given algorithm reduces the high frequencies of the error is not an easy task. 

A very useful tool for this purpose is the LFA, see [139]. Here we use LFA to show 

that the linearized fixed point algorithm (5.30) certainly reduces the high frequency 

components with a good rate and therefore, is a suitable smoother for a MG method. 

Note that although (5.30) was numerically tested to be a good standalone method for 

(5.37), to this point we do not know its behavior in the high frequencies regime which 

only LFA can reveal. 

For simplicity, we consider the case of a square image of size m x m. Let the local 

f . ktl d k b d fi d ktl - ktl d k k Th error unctIOns Ci,j an Ci,j e e ne as Ci,j - Ui,j - Ui,j an Ci,j = Ui,j - ui,j" e 
LF A involves expanding 

tn/2 m/2 

e~~+l) = L 1/J;~J~nol,02(Xi,Yj), e~k) = 
',J L 

8\,82=-m/2 8\,82=-m/2 

(5.31) 
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with al = 2B11r/m, a2 = 2B21r/m E [-1r,1rJ. From (5.30)-{5.31) we obtain that 

(5.35) 

Therefore, the local amplification factor Pi,j = l'¢t:JI/}~1,921 = pi,j{al, a2) i~ de

fined by 

Then we compute the nonlinear coefficients CC,) at each (i,j) point and find the 

maximum for the kth step Jii,j = maxa1 ,a2 Pi,j {aI, a2} in the high frequency interval 

(al,a2) E ehigh• 

Since our FPGS is linearized at each step, its smoothing rates will change at every 

outer iteration. Then we have an m X m rate matrix lv-h, for the kth step, with entry 

Pi,j representing the local smoothing rates at (i,j) point. As done in [24], in order 

to evaluate its effectiveness, we evaluate the accumulated rate -hased on consecutive 

smoothing rates Pi,j' That is to say, suppose we have completed K (accumulated) 

inner relaxation ~tep~. Let A1k denote the corre~ponding rate matrix (for 1 ~ k ~ K); 

then define {LK given by (4.34), as the accumulated smoothing rate of a relaxation step 

(over K iterations). As an example, we present in Table 5.1 the smoothing rates P 

and accumulated ~moothing rate~ P-J( in~ide the inpainting domain D and out~ide it 

in O\D, computed for the first five iterations for the circle problem of Figure 5.1 with 

20% of additive Gaussian noise. 

D n\D 
Outer iterations 1/ p, P-J( J1, PI< 

1 0.6267 0.6267 0.8850 0.8850 
2 0.7019 0.4117 0.8882 0.7861 
3 0.7559 0.3339 0.8680 0.6823 
4 0.8220 0.2715 0.8582 0.5856 
5 0.9115 0.2502 0.8115 0.4915 

Tahle 5.1: Illustration of smoothing rates for the FPGS smoother. (Note K = gsiter 1/, 

where gsUer is the num~er of inner iterations). Here a = 1, b = 20 and gsiter = 10 
were used. 

Clearly, the accumulated rates for FPGS are quite good for K ~ 5. In practice for 

other prohlems, however, a hit more than 5 outer iterations may he needed to guarantee 

a fru:;t and convergent MG algorithm. 
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Method # iterations CPU PSNR 
ATM 1.4 X 10 74,578 55 

USTMl 6,500 120 60 
USTM2 6,000 112 60 
FPGS 3,500 73 60 

Table 5.2: Performance of the two algorithms for the circle problem of Fig. 5.1 with 
m = n = 32. The following parameters were used for each one of them a = 1, b = 20, 
f3 = 10-2 , .A = 100. For ATM, ilt = 10-5 and for USTM, ilt = 1. Finally, 10 GS steps 
were used in FPGS. 

5.5 Comparison of unilevel methods 

In Table 5.2 we present a performance summary of the three working algorithms we 

have presented so far. Here we use the Peak-Signal-to-Noise-Ratio (PSNR) measure as 

defined in (4.35) between images u and ut of size m x n for a model problem where the 

true image ut is known and u is the restored image. The larger a PSNR is, the better is 

the restored image. Clearly, even for this small image of 32 X 32, the FPGS algorithm 

is many times faster than ATM. However, it still can take time t~ process large images. 

As an optimal algorithm, the multigrid method has proved to be successful in solving 

a number of different image processing problems, see [118, 7, 24], therefore, we now 

proceed to develop such a multigrid method for the Euler's elastica PDE. 

5.6 A nonlinear multigrid for the Euler's elastica model 

When constructing a convergent MG method for a nonlinear problem the key task is 

to find a good smoother and this is by no means trivial. Fortunately, as we already 

have shown in Section 5.4.5 our fixed point FPGS is a good smoother. To proceed, we 

shall denote the elastica formulation (3.20) i.e. 

(( 
2 ) VUi,j 2b .L (I I).L ) 

(NU)i,j = - aV . a + blii,j IVuli,j - IVul~.j V Ui,j V lii,j Vu i,j V Ui,j 

+ XUi,j = XU?,j' (5.37) 

by Nu = xuo (as a nonlinear operator equation); see also (3.41). 

5.6.1 The MG algorithm 

To approximate equation (5.37) on grids of different si~es we will denote by NhUh = xu~ 
the discrete equation defined on the finest grid Oh of size h and similarly by N2hU2h = 
xugh the same on the coarser grid 02h which is ohtained hy standard coarsening, i.e., 

the nonlinear operator N2h which results from defining equation (5.37) on the cell

centered grid 02h with grid spacing 2h. Likewise we can generate a sequence of L 
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coarse levels 2h, 4h, 8h, ... ,2L h. 

Next we briefly mention the standard intergrid transfer operators. Denote by RXh 

(restriction) and I~h (interpolation), respectively, two transfer operators between Oh 

and 02h which on cell-centered grids are defined by the following equations [139]: The 

Restriction operator is defined by R~huh = U2h a:; in (2.84) and Interpolation operator 

I~hu2h = Uh is defined as in (2.86). 

To coarsen the interfaces, which is unique for inpainting problems, we use the same 

method as described in [24]. Briefly, we represent the inpainting domain by a binary 

mask Ah and coarsen this mask similarly to grid coarsening. 

Multigrid schemes are designed to obtain fast solutions from numerical discretiza

tions of PDE's similar to (3.20). In particular, when the PDE to solve is nonlinear as 

here, the full approximation scheme (FAS) [139] is highly efficient. This FAS method 

which we have adapted for the inpainting case and is described in Algorithm 14, per

forms by constructing a hierarchy of discretizations where at each level the error equa

tion is partially solved or smoothed (step 2) and the new approximation transported 

to next coarser level (step 3). This process is recursively applied until reaching the 

coarsest level where an exact, but computationally cheap solution is obtained (step 1). 

Then the proce:;:; move backward:; on the hierarchical :;tructure tran:;porting the more 

accurate error (step 7) and updating the approximate solution at each level (step 8) 

then taking this new approximate solution as initial guess and smoothing again (step 9) 

repeating the process until reaching the finest level again. Usually standard coarsening 

is used to construct the hierarchical structure halving the number of variables on each 

dimension at each level. 

; Now we state our V-cycling nonlinear MG in Algorithm 13, meaning that just one 

recursive call to the algorithm is made on each level to approximately solve a coarse 

grid problem. 

Algorithm 13 [Nonlinear Multigrid Method] 
1: Select an initial gues!'l Uh on the finest grid h 
2: Set k = 0 and err = tol + 1 
3: while err < tol do 
4: u~+1 - FAS(u~, Nt,u~, Mh, 1I0,1I1,1I2,gsiter) 
5: err=lIu~+1-u~1I2' k=k+l 
6: end while 

Here gsiter represents the number of inner Gauss-Seidel iterations at each pre or 

post-smoothing FPGS step. 

Finally, we remark that when implementing the MG method, the parameter A and 

the balance at coarse levels between Nand T defined by the parameters a and b in 

(5.37) need to he kept the !'lame. 
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1: If Oh = coarsest grid, solve NhUh = xu~ accurately (Le. Vo iterations by FPGS) 
and return Else continue with step 2. 

2: Pre-smoothing: Do VI steps of Uh +- FPGS(Uh,u~,gsiter,Mh) 
3: Restrict to the coarse grid, lvf2h +- R~h lvh and U2h +- R~hUh 
4: Set the initial solution for the next level, U2h +- u2h 
5: Compute the new right hand side XZ2h +- R~h(xu~ - NhUh) + N2hU2h 
6: Solve N2hU2h = xugh by implementing 

U2h +- F AS2h(2h, U2h, N2h , ugh' lvf2h , vo, VI, V2, gsiter) 
7: Compute the error e2h = u2h -U2h and move it back to the next gTid by eh +- I~he2h 
8: Add the re~idual correction, Uh +- Uh' + e2h 
9: Post-smoothing: Do V2 steps of '/1'h +- F PGS( Uh, u~, gsiter, Mh) 

5.6.2 The global smoother 

As stated before, our fixed point smoother is simply' the FPGS algorithm (Section 

5.4.4), that i~, Gau~~-Seidel iteration~ to the lineari~ed ~y:stem (5.30). It i~ ~tated in 

Algorithm 15. 

Algorithm 15 [FPGS Smoother] Uh +- FPGS(Uh,u~,gsiter,Mh) 

1: Choo~e an initial gue~~ u~ for (5.30) 
2: for k = 1 to gsitcr do 
3: Apply gsiter Gauss Seidel iterations to the linear system Ah(U~)U~tl = U~ 
4: end for 

5. 7 Numerical results 

In this section, we test the performance of our MG algorithm on four different problems. 

The problems and the MG restored results are shown in Figures 5.2, 5.3, 5.5 and 5.6 

for m = 256. 

5.7.1 Quality of reconstruction 

Clearly, the re~toration obtained with MG i~ vi~ually plea:sing in all of them. For 

instance, Figure 5.2 shows a very good reconstruction of the missing edges in the ear, 

nose and cheek of the girl. In Figure 5.3 we remark the reconnection of the thin piece 

of hair initially occluded by the letter "G" and in general the fair recovering of the 

geometrical structure of , the missing regions. Figures 5.5 and 5.6 show the smooth 

reconstruction of curvy missing regions and, in particular, the latter illustrates the 

virtue of the Euler'~ ela:stica model in denoi~ing and inpainting at the ~ame the time; 

a feature only shared with the TV model. 

For completeness, in Table 5.3 we present the PSNR values obtained from the 

restored images. In the first two problems, the PSNR values are high indicating a 

very good recon~truction. In the la:st two, they are not that high due to texture not 

111 



recovered in the first case (grapes problem) and noise present in the second one (noisy 

circles problem). 

5.7.2 Convergence comparison 

We have already shown in Table 5.2 how slow the ATM can be (even for a small 

image), taking not thousands, but millions of iterations to converge. This kind of slow 

convergence is definitively not suitable for large images and barely enough for small 

ones. A quick review of Table 5.2 also reveals that our FPCS, as a standalone method, is 

two orders of magnitude faster than ATM for the circle problem and this relationship 

was confirmed through other experiments and different problems we tested. On the 

other hand, we present the results obtained with MC in Table 5.3, from which it can 

be seen that our MC can be used to obtain very fast inpaintings for large images. 

It is difficult and maybe not fair to compare our .MG algorithm for the elastica 

model against the numerical methods of the Masnou-Morel's and the BBCSV models. 

For instance, for the latter only a time evolution scheme for the system of PDE's has 

been reported. Also our MG method is designed to work over the whole 0 domain 

taking advantage of the denoising capabilities of the ela..'1tica model. Ma..'1nou-Morel's 

and BBCSV models on the other hand, only work over the inpainting domain D. In 

some situations like D being of small size and no noise present on the image maybe a 

better and faster solution is obtained by using our FPGS method instead of the MG 

scheme. 

There is also a recently proposed method [131] to carry out a fast minimization of 

the elastica energy using using exemplar-based inpainting techniques with similar ideas 

proposed in [28]. These two methods however are not robust when the image is noisy. 

5.7.3 Full muItigrid 

In order to provide an automatic and yet suitable initial guess, we adopted the Full 

Multigrid method (FMC) a..'1 described in [139]. FMC is based on the idea of nested 

iteration, this is, given the coarse grid Oh, one can apply a multigrid cycle (say a V

cycle) to obtain an approximate solution Uh at this h-Ievcl, then this Uh is interpolated 

to the next finer grid Oh+! to be used as initial guess for another multigrid cycle at the 

h + I-level. This pr~>cess is carried out until reaching the finest level. 

Notice that in FMC is the solution Uh and not the error eh which is interpolated to 

the next finer level. Usually the operator used to interpolate the solution is denoted by 

lILt and is of higher accuracy (cubic order in our Algorithm 16) than the interpolation 

operators used within the multigrid iteration. 

Here ufMG denotes the resulting FMG approximation on grid Oh. As expected, 

much better (fa..'1ter) results are obtained a..'1 can be seen from the 1a..'1t two columns of 

Table 5.3 from testing all four inpainting problems. 
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Algorithm 16 .Fulll\lultigrid 
For h = 0, 
Solve Nouo = ug, providing ub'MG = uo. 
for h = 1 to f do 
u~ +- nLluf~G 
ufMG +- FAS(h,Uh,Nh,U~,A[h,VO,vl,v2,gsiter). 

end for 

MG 
Problem Image Size MG cycles CPU 

128x128 10 '. 171 
Child 256x256 7 400 

512x512 6 1538 
128x128 7 59 

Lena 256x256 6 268 

FMG 
MG cycles 

2 
2 
2 
2 
2 

512x512 5 998 -. 2 
128x128 7 55 2 

Grapes (*) 256x256 5 219 2 
512x512 5 972 2 
128x128 6 125 2 

Noi::>y Circle::> 256x256 4 356 2 
512x512 4 1514 2 

CPU PSNR 
27 91 
130 90 
613 90 
23 95 
103 94 
502 96 
22 70 
101 70 
440 71 
57 70 
193 71 
851 70 

Table 5.3: MG results and further improvements by the FMG. (*) results from inpaint
ing the first (red) channel of the color image. 

5.7.4 Color images 

Our MG algorithm may be adapted to work with a new energy functional that involve::> 

all channels of a colour image. In [14J, a new and generalized definition of the TV 

norm was introduced to the multidimensional case and applied successfully to denoising 

vector-valued image::>. Thi::> b, for any function u(x) = (u1, ... , um) : jRn -+ jRm the 

multi-dimensional TV norm is given by 

m 

TVn,m(u) = L::[TVn,l(Ui )]2, (5.38) 
i=l 

which is invariant for functions with monotone components, and fixed end points [14J 

and reduce::> to the well-known one-dimen::>ional TV norm 

TV2,1(U) = In l\lul dxdy, n c jR2. (5.39) 

The above TVn,m norm enabled the authors of [14J to couple the 3 channels of a 

colour image and obtain better reRults than the Channel-by-Channel (CbC) approach. 

To extend this idea to the elastica inpainting, we may consider a coupling between 
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the colour channels by minimizing the functional 

(5.40) 

We al'e planning to test this idea in the near future. Other possible approaches for 

colour images are described in [140, 150]. 

In Figure 5.5 we give an example of inpainting a color image by the Euler's elas

tica model, using the simple CbC approach. That is, each of the RGB channels was 

in painted separately (Le. solved by our MG algorithm) and then combined to form the 

inpainted colour image as displayed. Clearly, the result is encouraging. 

5.8 Conclusions 

The Euler's elastica inpainting model has two very desirable features: reconnecting 

far apart parts of broken objects and recovering the curvature of the missing parts of 

objects. So far, the lack of a fast numerical algorithm for this model represented a 

strong limitation for the range of its applications and wider use. In this chapter we 

first introduced two faster numerical algorithms (USTM and FPGS) than the existing 

accelerated time marching method (ATM). Then adopting our FPGS as a smoother, we 

were able to develop a fast and efficient nonlinear MG algorithm for solving this Euler's 

elastica model. A local Fourier analysis was done to demonstrate the effectiveness of 

the FPGS smoother. Numerical results confirmed that our multigrid method is very 

efficient. 
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Figure 5.2: (a) Noisy Image. (b) Denoiscd image using curvature-based model and 
Algorithm 13. The CPU-time used by our FMG algorithm was 27 seconds only. 
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Figure 5.3: (a) Noisy Image. (b) Denoised image using curvature-based model and 
Algorithm 13. The CPU-time used by our FMG algorithm wru:; 103 seconds only. 
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Figure 5.4: (a) Noi::;y Image. (b) Denoi::;ed image u::;ing curvature-ba::;ed model and 
Algori thm 13. The CPU-t ime u::;ed by our FMG algori thm w a::; 29 ::;econd::; only. 
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The image to be inpainted Euler's Elastica inpainting by MG 
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F igure 5.5: This example illustr ates the recovering of the rounded parts of the objects 
(grapes). Also due to the fas t processing obtained by using MG, a color image can be 
inpainted in suitable CPU-time. In this example, our FMG algorithm took 101 seconds 
for each channel to get the image inpainted. 

The image to be inpainted Euler's Elastica inpainting by MG 
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F igure 5.6: Example of the very good performance of MG processing noisy images . 
The CPU-time used by our FMG algori thm was 193 seconds. 
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Chapter 6 

Multigrid Method for 
" 

High-Order Denoising 

Image denoising has been a research topic deeply investigated within the last two 

decade::;. Excellent re::;ult::; are obtained from u::;ing model::; like the Total Variation 

(TV) minimization by Rudin et al. [114] which involves solving a second order partial 

differential equation (PDE). In more recent years some effort has been made [157, 92, 

91,46] in improving these results by using higher order models an~ in particular to avoid 

the staircase effect inherent to the solution of the TV model. However, the con::;truction 

of stable numerical schemes for the resulting PDE's arising from the minimization of 

such high order models has proved to be very difficult due to high nonlinearity and 

stiffness. In this chapter, we study a curvature-based energy minimizing model [159] 

for which one has to solve a fourth order PDE. The material presented here has been 

submitted for publication in [26]. 

For this curvature-based model we develop two new algorithms: a stabilized fixed 

point (SFP) method and, based upon this, an efficient nonlinear multigrid (MG) algo

rithm. We will show numerical experiments to demonstrate the very good performance 

of our MG algorithm. 

6.1 Introduction 

Image denoising is a bu.~;jc, but very important image processing task that has been 

extensively investigated for many years. Although there exist different types of noi<;e, 

here we study only algorithms to remove additive, zero-mean Gaussian noise. This can 

be modeled as 

(G.l) 

where uO = uO(x,y) is the known noisy image, u = u(x,y) is the unknown true image 

and rJ = 7/(X, y) is the unknown additive noise all of which defined on a domain n ~ ]R2. 

The task of removing noise can be accomplished by traditional ways such as linear 

filters which, though very simple to implement, may cause the restored image to be 
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Figure 6.1: T he staircase effect in t he TV model transforms smooth functions into 
piecewise constant functions this causes restores to look blocky. (a) Noisy Image. (b) 
Restored image using TV model. (c) Smooth function and its noisy version. (d) After 
TV restoration the recovered function (in red) is now piecewise con tant o 

blurred at edges. A much b tter technique is to use nonlinear PDE's as anisotropic 

diffusion filter, because they apply different st rength of diffusivity to different locations 

in Lhe image. 

Usua lly anisotropic fil ters are implemented as second-order PDE's, se for in tance 

[114]. The main drawback of these models is that Lhey conv r t smooth functions into 

piecewise constant functions in a ph nom non known as staircase effect which cau es 

images to look blocky; see Figure 6.1 for two exam ples. 

Alt hough som ffort has been made (see for in, tance [95, 11 , 46] and the refer

ences therein ) to numerically r duce t he s taircase effect in second order models, som 

researchers have turned to higher-order models tryin g to avoid this problem. In this 

dir ct ion are for instance the works presented in [157, 92, 91 , 159]. However , very few 

papers have touch d on fast solvers for the high-ord r models and this work aims to 

par t ia lly fill in t his gap. 

T he outline of this chap ter i a follow'. In Section 6.2 we in troduce the mod I to 

solve. In S ction 6.4 we r view the existent numerical methods to olv thi model. In 

Section 6.5 the numerical discretization of the resulting Euler-Lagrange eEL) equation 
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is described. We use Section 6.6 to introduce our two new algorithms to solve this EL 

equation: a stabilized fixed point method and a nonlinear MG method. We introduce 

some early work on using MG algorithms for similar problems and explain the main 

difficulties to overcome. We also use this section to present a detailed LFA of the 

linearized problem to have an insight of the performance of the nonlinear MG algorithm. 

A complexity analysis is presented as well. In Section 6.7, we present numerical evidence 

to show the very good and fast performance of the MG algorithm and explain how it 

is affected by variations on the different parameters of the model and the numerical 

equation. Finally, in Section 6.8 we discuss how our algorithms can be adapted to solve 

similar high order problems and present our conclusions in Section 6.9. 

6.2 High-order denoising 

Additive noise in images is seen as random high frequency oscillations. Therefore, the 

key for its removal in energy based minimization techniques represented as 

min {aR(U) + r Iu - uOl2 dxdy } , 
ttEBV(!1) J!1 

(6.2) 

is to select a regularization term R( u) capable of efficiently measuring these oscillations. 

Different high order approaches for the regularization term R(u) have been proposed. 

For example in [157, 92, 91, 36] all use second-order information (Le. second-order 

derivatives) so it is expected them to be able to model noise better than those using 

only first-order information like, for instance, the TV model [114]. 

'6.3 The curvature-based denoising model 

In this paper, we study the model [159] resulting from selecting R(tt) = In <1>(",) dxdy 

with", the curvature of the image and <1> defined either as <1>(",) = 1/,\",1, <1>(/'\",) = ",2 or as 

in [159] as a combination of both. 

To minimize (6.2) one could be tempted to use optimization algorithms such as 

Newton's method. However, there is a problem with this approach. After computing 

the first order condition, the resulting algebraic system of equations is highly nonlinear 

and has a reduced domain of convergence. This causes Newton's method to fail since it 

requires a very good initial guess to guarantee convergence. This is not surprising since 

a similar problem was reported in [145, 43, 37] when solving a similar formulation (TV 

denoising model). Multilevel optimization methods [33] on the other hand still need to 

be tested for high order problems. 

Our approach instead, is to minimize (6.2) by solving its EL equation. This method 

has proved to deliver quality restoration results in a wide variety of image processing 
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applications, see [40, 6, 144] for references. The EL equation we aim to solve is 

(
V<1>'(I'C) Vu· V<1>'(I'C)) o. 

aV· IVulp - (IVulp)3 Vu + u - u = ° III n (6.3) 

with homogeneous Neumann boundary condition Vu . iJ = ° on an. Note that we 

already have applied regularization to avoid division by zero by replacing IVul with 

IVulp = JIVul2 + (3. For simplicity from now on we will write the derivative of <1>(I'C) 
just as <1>' instead of <1>' (I'C). 

A remark is in order here, in [159] an image is understood as a surface represented 

by (x,y,u(x,y)) where initially u(x,y) =uo. Then, the curvature term I'C that appears 

in (6.3) is the curvature of the image surface given by 

Vu 
I'C == I'Cs = V . -r.==~===== JIVv,12 + 1 

(6.4) 

One can adopt the more common understanding of an image as a collection of level 

sets and still obtain the same PDE, but this time with 

Vu 
I'C == "'LS = V . IVul (6.5) 

standing for the curvature of the image at every level line or isophote, see [40, 6]. Notice 

that when I'CLS is regularized using a (3-parameter as above, then I'CLS = V· I'rulJ3 equals 

"'8 for (3 = 1. 

The selection of (3 is actually of huge importance since for (3 « 1 the anisotropy 

of (6.3) is increased making this model less suitable for MG algorithms. Regardless of 

( this fact, the MG algorithm we develop here is in this sense very general allowing to 

select a small value for (3 or (3 = 1 and still obtaining a very good performance. 

An interesting discussion about the correct value of f3 for a similar second order 

problem can be found in [5]. There, the authors showed that there is a range of 

values of (3 for which the model delivers a good reconstruction and these values are not 

necessarily extremely small. 

6.4 Review of numerical methods 

First, we remark that to solve (6.3) only an explicit scheme has been proposed [159J. 

Second, before introducing our numerical algorithm, we start by briefly explaining the 

main difficulty to solve (~.3) and exploring possible options based upon ideas developed 

in [95,92, 143J. To this end, fin;t re-write the EL equation 8..<; 

(6.6) 

122 



where 

(6.7) 

are diffusion coefficients whose numerical values mainly depend upon the values of their 

respective denominators. Due to noise present in u and the edges of u itself, Dl (u) and 

D2{U) are usually discontinuous coefficients on n causing (6.6) to be highly anisotropic. 

We can find in the literature similar PDE's having only Dl{u)-type coefficients 

(TV denoising PDE for example [114]) and they have proved to be the main difficulty 

to implement fast and stable numerical algorithms, see [95, 145, 119] and references 

therein. For (6.3) things are even more difficult since it contains D2{u)-type coefficients 

as well. For example, fixing (3 = 10-2 in a plain region of the image yields Dl f'V 0{102) 

compared to D2 f'V 0(106 ). Hence depending upon the smoothness of the image and 

the level of noiRe this phenomenon can produce a very, unbalanced diRcrete operator. 

Solving (6.3) with an explicit method as in [159] has the drawback that the time

step needs to be selected very small for stability reasons. To implement this method, 

first (6.3) is transformed into the parabolic form 

au () 0_ &t = aV . V u + u - u = r{u), (6.8) 

with V = (D1{u)V<fI' -D2{U)VU) and initial condition u{x,y,O) = uO{x,y). Then this 

new PDE is evolved in time until reaching steady-state. An easy to implement, but 

yery slow to converge, explicit Euler method is used yielding 

U:,jl = uL + ~t r{u)ti' with k = 0,1, ... and ~t the time-step. (6.9) 

One way to accelerate the convergence of the explicit method could be by multiply-

ing r{u) by IVul. This results in the scheme 

au k k 
- = IVul· .r{u) .. &t t,J t,J' (6.1O) 

where again an explicit Euler scheme can be used for the time derivative. This idea 

was applied to similar PDE's in [95, 125] with some success. Applying this idea to solve 

(6.3) gave UR however, very poor acceleration of the algorithm. 

In summary, the above two explicit methods have the inconvenience of having to 

obey a very restrictive numerical condition on the time step. Usually ~t f'V O((~x)4) 

for fourth order PDE's H,ke (6.3) implying that both Rchemes are practically of no URe 

for processing large images. 

A third option could be to find a suitable change of variables obtaining an easier to 

solve system of second order equations. This was done in [92, 143] for harmonics maps 

letting the authors to Rolve the problem indirectly. Unfortunately, thiR does not seem 

to be straight forward here. A last option based upon convexity splitting ideas [55, 56] 

will be studied in Section 6.6.3. 
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6.5 Numerical implementation 

We proceed to outline the discretization scheme we use. From now on, we assume I that 

the continuous domain 0 = [0, m] x [0, n]. By letting (hx, hy) to represent a vector of 

finite mesh sizes, we define the infinite grid Gh a.q 

Gh={(X,Y):X=Xi=ihx, Y=Yj=jhy; i,jEZ}. (6.11) 

For simplicity, assume m = nand h = hx = hy. We define the discrete grid as 

Oh = 0 n Gh and Uh = Uh(X,y) = Uh(Xi,Yj) = uh(ihx,jhy) the discrete version of any 

function U defined on Oh. Here U and uO take on scaled values in the interval [0,1]. We 

also denote the derivative with respect to any variable 1/1 as {-).p . 
For any V = (VI, V 2), to approximate V· V = (VI)x + (V2)y at some pixel (i,j) 

we use central differences between ghost half-points. This is, 

(VII' - VII') (V2
. 1 - V2

. 1) V . V. . - 0+2,J '-2,J ',J+2 ',J-2 
I,J - h + h ' (6.12) 

where h x h is the size of one cell on the cell-centered grid we use. When appropriate 

we use min-mod derivatives since a.q noted in [114,40] they help to recover sharp edges. 

The min-mod derivative is defined as 

(
sgn a + sgn b) . 

min-mod (a, b) = 2 mm(lal,lbl). (6.13) 

To approximate all the involved quantities at the half-points we proceed as follows. 

First consider VI 1 . and VI 1 .: 
'+2,J 1- 2 ,J 

Partial Derivatives in x by the central differencing of two adjacent whole pixels 

(ux)i+! J' = (Uitl,j - ui,j)/h, (ux)i_! J' = (Ui,j - Ui-l,j)/h, 
2' 2' 

(<p~)it!,j = (<p~ H,j - <P~,j /11" (<P~)i_! ,j = (<p~,j - <Pi-l,j) /11" 

IVuli+!,j = «UX)i+!)2 + «UY)i,j+!)2 + (j. 

Partial Derivatives in Y by the min-mod of {-)y'S at two adjacent whole points 

IThe choice of 0 = [0, mJ x [0, nJ ensures that h = 1 on the finest grid, without loss of generality. 
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(UY)i+!,j = min-mod C~(Ui+1,j+1 -Ui+l,j-l), 21h(Ui,j+1 -Ui,j-t}) , 

(UY)i-!.i = min-mod (~(Ui,i+l - Ui,j-l), ~(Ui-l,j+1 - Ui-l,j-t}) , 

(<J?~)i+!,j = min-mod ((,'!9) with 

( = A (<J?~+l,j+1 - <J?~+1,j-l) and '!9 = ih (<J?~,j+l - <J?~,j_l) . 

(<I>~)i_l,j = min-mod ((,'!9) with 

(= ! (<I>~,j+1 - <I>~,j_l) and '!9 = ! (<J?~-l,j+l - <J?~-l,j-l) . 

Then by a similar procedure we can obtain the approximations for v.2. 1 and v.2 
l' 

',J+ 2 ',J- 2 
Finally, the homogeneous Neumann boundary cO!ldition on an is treated as in 

(4.16). 

6.6 A nonlinear MG for the fourth-order denoising model 

Up to our knowledge no multigrid method has been reported. for the solution of a 

similar high-order denoising problem which presents at the same time the challenges 

to deal with nonlinearity, anisotropy and high-order derivatives. This situation is not 

surprising since the application of either standard linear or nonlinear MG with the 

known components do not converge. Below, in Section 6.6.3 we shall introduce a new 

non-standard smoother for a FAS multigrid algorithm. 

6.6.1 Early works and numerical difficulties 

First, we review some early works of MG algorithms mainly on the context of image 

processing techniques. This will help us to illustrate the main difficulties to implement 

optimal MG algorithms for these problems. 

We start by reviewing works on isotropic nonlinear problems. Here, the functionals 

to minimize, mostly have been regularized using Tikhonov's idea with In IVuI2 and 

therefore, their correspondent EL equations include Laplacian-like differential operators 

with the nonlinearity usually coming from the fitting term. It is well-known that these 

strongly elliptic operators are suitable for MG algorithms and very good performance 

can be obtained without very much effort. The approach used in these cases is usually 

to linearize the problem' and apply linear multigrid for the inner iterations. In this 

fll.'lhion are the works presented in [74, 133, 49, 85]. In [132]' however, a nonlinear MG 

was reported. 

In the context of anisotropic problems some work has been done as well. For 

example, the following developed MG algortihms for image processing prohlems: [75] 
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on image registration, [7, 104] on image segmentation, and [119, 118, 34, 59] on image 

denoising. All of the former, however, solve second-order PDE's. 

In particular, previous image denoising works are of our interest since they give us 

a glimpse of the difficulties to develop optimal multigrids for this kind of problems. All, 

[119, 118, 34, 59], reported difficulties to obtain an optimal performance of geometric 

MG algorithms when the anisotropy of the problem associated with the TV regularizer 

In l\lul reached high levels. The anisotropy on denoising problems, is mainly due to 

the value of the regularization parameter 13, the level of noise 1J and the smoothness of 

u itself, meaning the more strong edges present in u are the more anisotropic the PDE 

that need to be solved is. 

In [59], to overcome this problem 13 was selected initially very large and a continua

tion method with 13 ~ 0 was implemented. At every step of this continuation method 

a MG cycle was used to solve the problem. In [119, 118, 34], an small increment on 

the number of smoothing steps v of the MG algorithm was applied and 13 no less than 

10-2 was used. 

For the denoising model we study here, a first issue is the level of discontinuity of the 

coefficients 1)1 (u) and 1)2(U) in (6.3). This is, if they are moderately discontinuous then 

N(u) can be fairly approximated on coarser grids using standard coarsening. However, 

for strongly discontinuous coefficients (say 13 « 1) the performance of the MG algorithm 

will be strongly affected. Notice that in image denoising problems, since every image is 

different and because of noise, we do not have a priori information about the location 

of discontinuities so we do not know what variables (if any) are strongly coupled and 

in what direction. Hence, standard methods as line relaxation and semi-coarsening are 

( not useful here. 

To overcome this challenge, some authors have proposed to use algebraic MG meth

ods where the coarsening is adapted to the structure of the domain itself. Here, hecause 

the domain of every image is different, this type of coarsening has to be adaptive making 

it computationally very expensive, see [45] and references there in. In [153] a geometric 

MG algorithm with adaptive coarsening for the anisotropic Cahn-Hilliard equation wag 

developed. In [153], the authors used the simple rule of coarsening only where discon

tinuities were not present. We believe this technique can be adapted to MG algorithms 

for image clenoising by coarsening only at plain regions of the image. Although this idea 

looks promising it needs to be tested since it may not be efficient for images with many 

edges or high levels of noise. In this chapter, we adopted the geometrical MG scheme 

with standard coarsening due to its simplicity and focus on non-standard smoothers. 

A second issue for this model is the transportation of the error from one grid to 

another. Geometrical MG algorithms assume that the error is smooth enough so it 

can be well approximated onto the next coarser grid by using a simple transportation 

operator. Designing good smoot hers for anisotropic equations is however a very difficult 

task. We tackle this prohlem in Section 6.6.3 by introducing a new fixed point algorithm 
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which performs very well in homogeneous regions of the image domain reducing the 

high frequency components of the error and can guarantee its smoothness (up to some 

degree) close to edges (inhomogeneous regions). 

Solutions techniques for MG algorithms and interesting discussions related to linear 

anisotropic problems in a general context have been presented in [58, 42, 1, 112, 17]. 

Finally, MG's for high-order problems other than those for the bi-harmonic equation 

[139] are difficult to find, even more if the problem is anisotropic or nonlinear. I1igh

order brings numerical difficulties one needs to be aware at. For example, in [141] an 

algebraic MG was proposed for anisotropic second and fourth-order equations. In [81] 

however, it is argued that discretizations of high-order problems might not satisfy the 

M-matrix condition for multigrid convergence [139]. lIenee it is suggested to use instead 

geometric MG algorithms for these problems. In [81], the authors also reported to have 

observed that an inaccurate approximation of high-order derivatives at coarse levels can 

produce so poor representations of positive definite operators that they are no longer 

positive definite on coarser grids causing the MG algorithm to fail to converge. 

As it can be seen from the above discussion, there are many difficulties when 

developing MG algorithms for nonlinear high-order anisotropic problems as it is the 

curvarture-based denoising model given by equation (6.3). One.of capital importance, 

as we mentioned above, is to guarantee the smoothness of the error. As we shall show 

standard smoothers do not work for (6.3), hence we focus our efforts in developing a 

good smoother for this problem and test this smoother into the standard framework of 

a nonlinear MG algorithm. 

6.6.2 The MG algorithm 

In this section, we introduce a nonlinear MG algorithm for the fast solution of the 

high order denoising formulation (6.3). To this end, we denote the nonlinear operator 

equation by 

(Nu)· . == exV . (D1{u)· ·(V<1>') .. - D2{u)· ·(Vu)· .) + U· . = uo. <,J <,J '.J '.J <.J ',J ',J' (6.14) 

and construct a hierarchy of discretizations by approximating the operator (Nu)i,j at 

different grid levels. As it is common practice, we denote by Nhuh = u~ the discrete 

equation defined on. the finest grid Oh of size h and similarly by N2hu2h = ugh the same 

on the coarser grid 02h which is obtained by standard coarsening. We can carryon 

applying this process until generating a sequence of L coarse levels 2h, 4h, 8h, ... ,2L h. 

We state in Algorithm 17 our MG method 

Here FAS denotes the cycle of going through all fine grids (smoothing the iterates 

and passing on the residual information to next grid) to the coarsest grid, solving the 

equation on the coarsest grid accurately and coming through all coarse grids (interpo

lating to next grid and smoothing the iterates again) back to the finest grid, as shown 

below [20, 139, 44]. 
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Algorithm 17 Nonlinear Multigrid Method 
R equire : Select an ini tial guess Uh on the finest grid h 
l:kf-O 
2: err f- tol + 1 
3: while err < tol do 
4: u~+ l f- FAS(u~,Nk,u7" Vo , Vl ' V2 , gsiter,cx,'Y) 
5: TT = IIE(u~) - E(u~- 1 )112' 
6: k f- k + 1 
7: end while 

1: if nh = coarses t grid t hen 
2: solve NhUh = u7, accurately (i.e. va iterations by SFPGS) and return . 
3: e lse 
4: continue with step 6. 
5: end if 
6: Pre-smoothing: Do 1/1 steps of, Uh f- S FPGS(Uh,U7" gsiter, cx,'Y , vJ) 
7: Re trict to the coarse grid , U2h f- R~huh 
8: Set the ini t ial solut ion for the next level, U2h f- u2h 

9: Compute the new right hand id ugh f- R~h(u7, - NhUh) + N2hU2h 
10: Implement U2h f- F AS2h (U2h, N2h ,ugh, Va, VI , V2, 9 iter , cx,'Y) 
11 : Add the residual correction, Uh f- 'Uh + 1;h(u2h - U2h ) 

12 : Post- moothing: Do V2 teps of Uh f- SFPGS(Uh,U7"gsiter,cx, 'Y, v2) 

10 20 30 40 50 60 70 80 
iterations 

Figure 6.2: Compari on of peed of onv rg nc b tw n our tabilized fi xed point 
(SFP) algorithm again t the explicit time marching method. Clearly SFP i by far 
much faster. 
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6.6.3 The smoother - A new stabilized fixed point (SFP) method 

Fixed point methods are usually fa.'lt algorithms, hence the wish to develop one for 

the curvature-based model. Unfortunately standard ways to implement such a kind 

of algorithm for (6.6) simply do not work. For instance, following [145, 144, 118] a 

possible scheme would be 

This scheme is however, neither stable nor convergent, the reason being that D2 

can easily change its sign so neither positive-definiteness nor diagonally dominance can 

be guaranteed for schemes of the form A(uk)uk+l = 1(11,\11,°). In [23], the same sort 

of problem was observed in trying to develop a fixed point method for a fourth order 

PDE with similar structure to (6.6) giving already an indication that standard fixed 

point methods for this type of equations do not converge! 

In this section, we discuss how to develop a working fixed point algorithm for (6.6) 

that is not only much faster than the explicit time-marching methods reviewed in 

Section 6.4, but it has also shown to be always convergent a.'l a stand-alone algorithm 

in all the simulations we have carried out as well. Our aim however, goes further and 

it is oriented to develop and even faster multigrid algorithm; with this in mind we will 

not use our fixed point algorithm a.<; standalone method, but as smoother for such a 

nonlinear multigrid algorithm. 

To develop a working fixed point algorithm for (6.6), we will first analyze uncon

ditionally stable time marching schemes based on convexity-splitting ideas developed 

in [55, 56]. The resulting semi-implicit scheme (6.16) improves the stability of time 

marching schemes since this is guaranteed for all possible time steps. In simple words, 

we solve 

(6.16) 

where r(u) is as in (6.8), "I > 0 is an appropriate constant whose value depends on the 

selection of N and needs to be sufficiently large to bring the required stability to the new 

algorithm and N = N(u) is the differential operator arising from the minimization of a 

convex functional such as In IVul or In IVuI2
• If r(u) can be split in two parts (convex 

and non-convex) then the convex part is treated implicitly and the non-convex part 

explicitly. For more insight into convexity-splitting schemes and their implementation 

we refer the reader to [13, 116, 129, 23, 55, 56]. 

Based on the convexity-splitting scheme (6.16) we wlll refine the fixed point method 

(6.15) to make it stable. To start we borrow the idea of the stabilizing terms "IN k+1 

and "IN k and add them up to both sides of (6.15). Thus, our new proposed SFP 
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algorithm for a general N takes the form 

--yN ~-p - aV . ((D2(U))~TI(Vu)~TI) + u~TI = --yN k_ 
',J ',J ',J <,J ',J 

-aV· ((Dl(U))~ . (V<I>,)k .) + u~" 1,J 1,J 1,J (6.17) 

Now we address the selection of N since it plays an important role on the perfor

mance of this new SFP scheme. We consider three possible options 

u, 

6.u, 

TV(u) = V· I~~I' 

(6.18) 

In our experiments the first option N = u delivered very poor performance because 

very large -y needs to be selected resulting in very slow convergence. The second op

tion N = 6.u has been preferred by some authors for'time-evolution schemes such as 

(6.16) in other contexts; see for instance [13, 129]. The third option N = TV(u) is 

our recommended option, we illustrate the advantages of this selection using the two 

examples of Figure 6.3. First, Figure 6.3(a) from denoising a smoothly varying image 

(with no visible jumps in it) shows the performance for the fir~t ten iterations of our 

SFP algorithm; for this problem option 2 is almost the same as option 3 in perfor

mance. However, Figure 6.3(b) from denoising an image with a lot of jumps (edges) 

shows that option 3 is clearly better. We also tried other refinements of this option 3 

~ith TVM(U) = V· fV~ for M = 2,3. Then we found that the resulting SFP method 

is more sensitive to the selection of -y. 

Once the best N has been selected - in this case option 3 - it is useful to re-write 

(6.17) in the following way: 

-V. (C~7-I(u)(Vu)kTI) +gk.(u) +u~TI = u~. 
1,J 1,J >,J 1,J 1,J' (6.19) 

where the diffusion coefficient is defined as CUI == -y(Dl (u)):,r - a(D2 (u))tt l and 

k ( ) ( (Vu)k. (V<I>')k.) ) the nonlinear term gi,j u == V· -y IVulk'} + a~ . To solve (6.19 we consider the 
t,J '1.,3 

following two different methods: 

1. Gauss-Seidel-Picard method 

The first is a nonlinear Gauss-Seidel-Picard (GSP) method. That is, we represent 

the system of algebraic f3quations (6.19) as Ni(Ul,."'Ur ) = 0 with i = 1, ... ,r and 

unknowns Ul, . .. , Ur and apply nonlinear iterations. For instance, a nonlinear Gauss

Seidel iteration to solve the ith unknown from the ith equation reads as 

i=I, ... ,r (6.20) 
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which together with Picard's method, i.e. freezing all o.,.'s and gi,j(U) at the kth-step 

to solve the single nonlinear equation for a unknown uf+1 yield the Gauss-Seidel-Picard 

iteration. We will name this SFP algorithm solved by GSP the SFP1 method. 

2. Linearized fixed point method 

The second is a linearization of the fixed point method (6.19) by also freezing both all 

o.,.'s and gi,j(U) at the kth-step to obtain 

(6.22) 

and fi~j = u?,j - gf.j(u), Denote the resulting system by A(uk)uk+l = fi~j and notice 

that A is positive definite and diagonally dominant. If SFP is intended to be used as 

a stand-alone algorithm, then at each kth-iteration, the system can be solved using for 

instance peG or linear MG. However, in the context of a nonlinear MG with SFP used 

as smoother we found that partially solving the system with a few Gauss-Seidel or SOR 

iterations works better; we name this SFP algorithm solved up to some accuracy by 

any of the above linear solvers the SFP2 method. 

Remark 6.6.1 Notice in the SFP2 method with as as inner solver all G.,. 's and gi,j(U) 
remain frozen across a given number of GS iterations before being updated, whilst in the 
SFP 1 method they are updated after every GS sweep. Therefore, SFP2 can be reduced 
to SFPl by using only 1 GS sweep in this case. Since we will use LFA to study the 
smoothing properties of the SFPl method this similarity suggests they may have close 
performance reducing the high frequency components of the error. 

6.6.4 Local Fourier analysis (LFA) 

As stated in [139], LFA is a very useful tool for the quantitative analysis ofMG methods. 

Theoretically, LFA is designed to study linear problems with constant coefficients on 

an infinite grid. RegardleRR of thiR Rtrong limitation, LFA is still a recommended tool 

[20, 85, 1, 152] for the analysis of discrete nonlinear operators like (6.14). To this end, 

the first st~p is to neglect boundary conditions and to extend the discrete operator to 

an infinite grid, the second step aSSllmeR that any discrete nonlinear operator can be 

linearized locally' (by freezing coefficients) and can be replaced locally by an operator 

with constant coefficients [139J. This method has been successfully applied to obtain a 

better underRtanding of MG algorithms applied to nonlinear problems for inRtance in 

[85,-1, 31, 21, 7] for problems in different contexts. 

LFA for the SFP1 method 
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Although our intention is to analyze SFP2, its nonlinear terms are inconvenient to work 

with so we analyse instead a closely related variant of it - named as SFPl. The SFPl 

method allows the following iteration 

o 
§~, 

I,J 

o 
-C~'+l 

I,J 2 

o 
] (uk" j<l>t 1), 

(6.23) 

with c. .. , §i,j and gi,j defined as before and p = 0, 1, , .. ,gsiter -1 with (u~tl )(0) = Ui,j' 

To apply LFA to (6,23) we start by defining the error functions ef,jl and ef,j as it is 

common practice by e~1 = u~tl - (uk+l)~P,+l) and e, = u~tl - (uk)(pJ and expanding 
I,J I,J ',J I,J ',J ',J 

them in Fourier components as 

and 

(6.24) 

where 0 = (01,02) E e = (-71',71']2,01 = 271'(/Jt/rn, O2 = 271'<P2/rn and i = J=I. We also 

need to linearize (6.23) by freezing the c." coefficients and using the Taylor expansion 

gU I = 9i,j(utj) + Ci,j((U:.r ) (p+l) - utj) with Ci,j == ~(utj) which is reasonable when 

(u~r)(p+l) is sufficiently close to uti" After this has been done, we can substitute 

(6.24) into (6.23) to obtain the error equation 

§ k cp+l C k cP Ck cpt! Ck cP Ck cpt! "cP - 0 
- i J'c"i J' + 't!' "'it 1 J' + '-!' c"i-l J' + .. t! "'i J't 1 + "-! "'i J' -1 + c',J "'i J' - , " ... 2 ,3 ' ... 2'] , t,J 2 I "',3 2 ' , 

(6.25) 

and, provided lexicographic Gauss-Seidel (GSLEX) is used, to solve (6.25). The local 

amplification factor from iteration p to p + 1 is given by 

(6.26) 

and the smoothing factor at each (i, j)-location of the image is Ili,j = sup{ 1.5\ (Okj I; () E 

C-)high\ = [-71', 71')2\[-i, i)2}. 

A close examination of (6.26) reveals that J.li,j will increase at in-homogenous regions 

of the image due to the values of the c.,. 's there, but more importantly that the SFPl 

scheme might no be a good smoother if ci,jh2 is large enougli, a situation which is 
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likely to happen in a MG algorithm at the coarse levels. Fortunately for us, a number 

of experiments showed that provided enough noise has been removed, the value of gi,j(U) 

barely changes across iterations indicating that C;,j is also very small and suggesting 

the need of a good initial guess for this method. This however does not represent much 

a problem ~ince a ~imple convolution ~tep or a full multigrid (FMG) are enough to 

provide the required very good initial guess. 

lIence, we see that Ci,j h2 has negligible effect on the smoothing properties of the 

SFPl method if the above condition is satisfied. It is not the same for the C." 's 

coefficients which strongly affect the performance as smoother of this method so we 

expect a, fl, 'Y and the level of noise to have influence in this aspect. 

Numerical simulations carried out over different images with fixed a, (3 and different 

noise levels yielded very much related to noise levels results. For example, the problem 

of Figure 6.5(a) with SN R = 25 yielded values of /Li,j ~ 0.5 in plain regions, but values 

of /Li,j ~ 0.625 close to edges which is not that bad. Other problems with much bigger 

level~ of noi~e however, produced values a~ bad a~ /ti,j ~ 0.90 c1o~e to edges. In Table 

6.1, we present the worst values across Oh i.e. jj = sup {jl'i,j : (i,j) E Oh} for different 

noise levels at three different grids. 

Noi~e Level Iteration Grid Size 
h=l h=2 h=4 

k=l 0.8331 0.8006 0.5974 
SNR= 15 k=2 0.6653 0.6398 0.3617 

k=3 0.5204 0.5109 0.2206 

k=l 0.8325 0.8199 0.5765 
SNR = 10 k=2 0.6733 0.6714 0.3374 

k=3 0.5515 0.5491 0.1992 

k=l 0.9014 0.8182 0.5606 
SNR=3.5 k=2 0.7800 0.6699 0.3177 

k=3 0.6591 0.5485 0.1811 

Table 6.1: The values of jj for 3 iterations of the SFPl method with three different 
levels of noise are presented. 

An intere~ting ob~ervation i~ that the bigger value~ of /Li,j seem to alway~ gToup 

around edges as' illustrated in the Figure 6.4. This fact will prove to be important since 

we can use this a priory information to design an adaptive smoother which applies more 

relaxation at these difficult points. We will ~how how to do thi~ later on. 

Since 0.6253 ~ 0.244, this suggest using 3 iterations of the SFP1 method (in low 

noisy images) to obtain an smoothing factor comparable to 2 iterations of GS for the 

Poisson equation. Similar analysis can be done for different n~ise levels to obtain an 

optimal number of ~moothing iteration~. Although thi~ analy~i~ ~ugge~t a maximum of 
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13 SFP1 smoothing steps (since 0.913 
:::::l 0.25), when these bad smoothing rates appear 

the MG algorithm also starts experimenting problems to approximate the nonlinear op

erator at coarse grids due to strongly discontinuolls coefficients so extra local smoothing 

steps around the difficult points are recommended to partially overcome this problem. 

LFA for the SFP2 method 

Studying the smoothing properties of this method is much more complicated. We may 

try using LFA to obtain the smoothing factor of the linear problem for a fixed set of 

coefficients, but relating the linear with the nonlinear error is not an easy task. In 

particular partially solving (6.21) with GSLEX method provided good experimental 

results in the MG framework suggesting that the method may have good smoothing 

properties. We will provide more evidence t~rough an example in the next section. 

Criteria to select between the SPFI and SFP2 methods 

To address this we need to look at the computational costs of both methods. In each 

case, the action of computing/updating C(.,.) and g(u) is the most costly process and for 

both this cost is equal to 195 flops per grid point against only 13 flops per grid point of 

the cost of updating the unknown using GSLEX method. Moreover, they seem to share 

similar smoothing properties hence in this fashion, the SFP2 method is more attractive 

since we do not have to update Cc.) and g(u), as often a.c; in the SFP1 method. 

6.6.5 Two-grid analysis 

The two-grid analysis is a tool which helps to understand the convergence properties 

of a multigrid algorithm. Before proceeding to use such a tool in our Algorithm 18, 

first we will start by explaining its basic principles; a more detailed explanation can be 

found in [139, 152]. The notation we will use throughout this section is the following: 

Lh and L2h will represent the linearized operator (6.21) on grids Oh and 02h of size 

hand 2h, respectively; an important assumption is that L2"l exists. Similarly, we will 

repw:lent by Sh the smoother operator, i.e. the SFP1 algorithm. In this way, the 

iteration operator for the (h,2h) two-grid cycle is given by 

(6.27) 

It is important to note that AI~h above needs to be computed at each (i,j)-location, 

but in trying to 'keep notation simple we have not expressed this dependence explicitly. 

To calculate convergence factors for Mlh one needs to analyze how the operators It-h' 
L2"l, R~h and Lh act on the Fourier components Bh(O(O,O),.) = eiBIX/heifhv/h with 

0(0,0) = (81, 82 ); to this end we use the fact that quadruples of lA(O(O,O),.) coincide 

in 02h with the respective grid function B2h (29(0,0), .). Then, for any low frequency 
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() E elow = [-~, ~)2 we consider the frequencies 

where 

iii = { ()i + 7r if ()i < 0 . 
()i - 7r if ()i 2: 0 

(6.29) 

After defining a: = (al, a2), the corresponding four components B ((}Ot. , .) are called 

harmonics of each other and for () = (}(O,O) E elow they generate the four-dimensional 

space of harmonics E~ = span[B((}Ot.,·) : a: E {(O, 0), (1, 1), (1,0), (0, I))]. lIenee assum

ing that I~h' L2~' R~h and Lh can be approximated on Oh and 02h and b'~ remains 

invariant under Sh, the two-grid operator M~h can be represented on E~ for each 

() E elow by the (4 X 4 )-matrix 

M~h( ()) = Sh( (}t2 klh( (})Sh ((}t1 with k'ih( ()) = i h - ifh ((})£2~ ((})R~h( (})£h (()) 
(6.30) 

and each matrix defined by 

i h =diag{I,I,l,l} EC4X4 , £2h((})=£~h(2(}(O,O)) EClXl , (6.31) 

£h((}) = diag{£h((}(O,O)), £h((}(l,l)), £h((}(l,O)), Lh((}(O,l))} E C4X4 , 

R~h((}) = [R~h((}(O,O)) R~h((}(l,l)) R~h((}(l,O)) R~h((}(O,l))] E C1X4 , 

ifh((}) = ~[j~h((}(O,O)) j~h((}(l,l)) j~h((}(l,O)) j~h((}(O,l))]T E C4Xl . 

I3ased on the above representation, we can calculate the asymptotic convergence 

factor of Mlh a~ follow~: 

(6.32) 

where A = {() E elm/} : Lh((}) = 0 or L2h ((}) = O}. Again we will have different values 

for Ploc(M~hkj depending on the (i,j)-location so we define Ploc a~ the the maximum 

of Ploc(M~h) over all (i,j) and take this value as the asymptotic convergence factor of 
M2h 

h . 

In our Algorithm 18 the tran~fer operators we u~e are ~tandard full weighting (FW) 

and biline~ interpolation and their symbols [139, 152] are defined by 

R~h((}Ot.) = ~(1 + cos(()f)(1 + cos(()f), 

j~h((}Ot.) = (1 + cos(()f)(1 + cos(()f). 

(6.33) 

(6.34) 

The s~mbols for the linearized operators are obtained on the other hand from (6.21) 
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and they are defined by 

- Q: _ k k iOf k -iOf k i02' k -i02' Lh(8 ) - -§ij + C'+ l . e + C. 1 . e + C. '+1 e + C .. 1 e , 
, • 2,J <-2,J <,J 2 ',J-2 

(6.35) 

(Ck ) i202' (Ck ) -i202' + . '+1 2h e + . '_1 2h e , 
<,J 2 ',J 2 

(6.36) 

where in the last equation (§ti hh and (C.~. hh are the frozen coefficients at coarse grid 

02h. 

Due to the high-nonlinearity of (6.6) analyzing the behavior of Ploc(J..f~h)i,j for 

this equation is pretty challenging. From (6.30), we see that the its final value will 

depend on the product of three different factors: the pre-smoothing steps Sh( 8)V1, the 

post-smoothing steps Eh(8)V2 and the coarse' grid operator k~h(8). The latter will be 

affected by the level of noise, a,(3,"! due to the influence of £h(8) and £il(8) on it 

and on how well these two operators approximate the problem at coarse levels. It is 

also assumed that the residual and errors are smooth enough so the restriction and 

interpolation operators can do their job properly. Th~ pre- and post-smoothing steps 

are also influenced by the same factors and for them we already know that their Value 

will increase if one of the following situations happens: noise, a or "! increase or fJ 

decreases. 

We are now ready to apply two-gTid analysis to a real problem and to this end we 

selected the problem of Figure 6.5{a) to carry out our tests. Numerical simulations 

using a = 1/250, fJ = 10-2 , "! = 150,15% of noise added to the image, VI = V2 = 3 

and SFP1 as smoother yielded the value Ploc = 0.1289 for this problem. This result is 

perfectly in accordance with the performance of our MG algorithm to solve this problem 

since it predicts a relative residual of 0.128910 = 1.26 X 10-9 after 10 FAS-cycles which 

is congruent with the the residual of 5.7 x 10-9 that experimentally we obtained; see 

Figure 6.5(b). 

Notice that the problem of Figure 6.5 was designed (by keeping noise level low and 

few edges) to satisfy the requirements of LFA analysis: that is moderately discontinuous 

cocfficicnts. Although, we do not expect this analysis to be accurate for large levels 

of noise, we believe to have gathered enough information from LFA to expect a good 

performance of our MG algorithm. 

It is also imp,ortant to remark that for the same problem with the same parameters 

as above but using this time SFP2 as smoother with gsiter = VI = V2 = 3, experimen

tally we ohtained a relative residual of 4.9 x 10-11 after the same numher of FAS-cycles 

i.e. an extra reduction of two-orders of magnitude of the residual value! 

This experiment suggests that SFP2 has similar or may be slightly better smoothing 

properties than SFPl. Recalling also that extra GS iterations are relatively very cheap 

(13 flops) this method appears to be more attractive for the FAS-cycle. 
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Figure 6.5: (a) Denoised image. (b) MG iteration history with Vl = V2 = 3 and the 
GSP method as smoother. 

6.6.6 An adaptive SFP smoother 

Ini tial tests on our mult igrid algorithm with SFP2 as smoother showed very fast con

vergence on a wide range of problems when using gsit T = VI = V2 = 10. For some 

very noisy problems however VI and V2 had to be increased to keep the same fast con

vergence. Although with this selection our MG algori thm i by far much faster than 

the explicit method, it was a surprise to notice that our SFP2 wi th precondi tioned con

jugate gradient method (peG) , or GSLEX as inn r solvers, or even SFP1 were n arly 

as effic ient as the M a lgori t hm in many cases. 

A careful analysis of our algorithm revealed tha t the inter-grid transfer op rators 

were not working properly b cau e v ry close to the edges of the image the residual and 

the error were not smooth enough even though in other parts they really were! Recalling 

that LFA all' ady had warned us about thi ph nomenon for low noi y imag we 

conclud d that for medium and large noisy image the mooth ing factors close to edges 

w r much worse than ini tially we had thought. To solve this problem we consid red 

two options: (1) one was to construct adaptive high-order in ter-grid transfer operators 

as in [1], or (2) to apply extra smoothing steps locally around edges as in [19 , 8]. 

We s lec t d th econd option, the reasons being that: n one hand our code n eds 

only a li ttle mod ification and t he overall increment on th computational co t of the 

MG algorithm i very smal l; on the other hand onstru ting a successfu l adaptive 

int I'polation operator is not an easy task and many diff rent ways to do it need to 

be t ted, see [1, 48] for comments on this resp ct; furth r, they are compu tationally 

co. tly and t heir storage requirements are large [48]. 

To I t the r gions where extra relaxation will be appli ed, a set of v tor who 

entries ind icate t he difficul t pix I poin ts in each nhe grid needs to b onstru t d . 

Algorithm 19 below how how to construct uch an indicator vector for one grid only; 

bas ically t his a lgori t hm is used in the first leg of the very fir t FA -cycle (aft I' t P 3 in 
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Algorithm 18) and after that the vectors are not updated as redundant smoothing does 

no harm. The two scalar input entries to Algorithm 19, ~ and '1', define the percentage 

of the domain to be over-smoothed, i.e. edges and the initial threshold, respectively; 

we suggest to use ~ < 0.2. 

I: Set US = Uhf' [m n] = size(uS
). 

2: For i = 1 to m, For j = 1 to n, 

IVusli,j = (ui+1,j - Ui_l,j)2 + (ui,j+l - Ui,j_l)2/2h; 
End, End. 

3: Initialize a vector Qhf. 
4: For i = 1 to m, For j = 1 to n, 

If IVusli,j > T, add (i,j) to Qhp; End. 
End, End. 

5: If size(T) > ~ * size( US) increase de value of T and goto step 3 
Else, take Qht as the outcome; End. 

Because the size of each Qht is very small, the extra storage added to the FAS 

algorithm is practically negligible. Once the indicator vector has been constructed, we 

can use it to implement our adaptive smoother and the way to do this is shown in 

Algorithm 20. 

Algorithm 20 SFP u +- SF P( u, uo, gsiter, h, a, " v, Q, w) 
1: For k = 1 to v, 

Implement A(uk)uk+1 = f(uk,uO,a,,) using (6.21) and apply gsiter GSLEX 
iterations. 
End 
N arne the outcome of the above for loop as U. 

2: If Q is not empty, 
using Q, extract from u and uO those pixels where Q points out to construct the 
vectors uQ and uOQ' 

.For k = 1 to w * v, 
Implement A(u~)u~tl = f(u~,u~,a,,) using (6.21) and apply gsiter GSLEX 

iterations. 
End 
Replace uQ into u properly and take u as the outcome of SFP. 

3: If Q is empty, 
Take u as the outcome of SFP. 

6.6.7 Complexity analysis 

The main cost of our MG method is the cost of the smoothing steps. The cost of each 

outer iteration consists of the cost of each GSLEX step which is equal to 13 flops per 

grid point and the cost of the discretization which equals 195 flops per grid point. This 

makes the cost of every outer iteration equal to (195+ 13g8iter)N where N = nm is the 
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total number of grid points. The other costs to be considered are: (rhs) which stands for 

the cost associated with the construction of the right-hand-side of the residual equation 

at the next coarser level (steps 3,4 and 5 of Algorithm 18) and (ire) representing the 

interpolation plus residual correction procedure (step 7 of Algorithm 18). In 02h there 

are 1/4 the number of grid points that there are in Oh and in general if p = 21 there are 

p-2 = {1/4)1 as many grid points on Oph as there are in Oh . Hence an upper bound 

on the cost of one FAS-cycle is 

l~~ (p + <5W){VI + v2)~195 + 13gsiter)N, +~ +~) t{I/4t 
pre+post-smoothing .. hs ,rc n=O 

. N 1240N 
= (I + <5W){VI + v2){195 + 13gsder)0.75 + -3-' (6.37) 

Notice that this bound is strongly dominated by the cost of smoothing while the 

contribution from rhs and ire is relatively negligible. For instance, selecting 0 = 0.2, W = 

2, VI = V2 = 10 and gsiter = 2 we I>ee that the COl>t of I>moothing il> approximately 26 

times of that of the latter or put precisely the cost of 8250.6N E~=o{1/4)n versus 

310N E~=o(I/4)n. 

6.7 Numerical results and experiments 

In this section we present some results obtained with our MG algorithm to show that 

itl> convergence propertiel> are good, the quality of rel>toration by the high order model 

is good as well and it is much faster than previous explicit methods. We also present 

some analysis to show how our MG algorithm is affected by changes on the values of 

parameterl> CY., '"Y, h, f3 and the level of noil>e. All tel>ts reported here will use <1>(1\:) = 1\:2 

in the regularization functional. For the selection of the initial guess u~, there is no 

restriction whatsoever; we tested with u,~ = uO, u~ = 0 and u~ = G * u with G a 

Gaussian convolution operator. For all these options, our MG algorithm converged, 

but convergence wal> I>lightly fUl>ter if the convolved initial guesl> wal> ul>ed and further 

the computational cost in doing this is very low. 

6.7.1 Convergence tests 

To illul>trate the convergence performance of our MG algorithm we prel>ent in Figure 

6.6 the residua~ (R) and relative residual (RR) iteration results after 10 FAS-cycles 

when solving the three test problems of Figures 6.12, 6.13 and 6.14 with SN R = 3.5. 

Here the residual and relative residual measures are defined UI> 

and 

The MG algorithm was run with the following parameters: Il!. = 1/200, fJ = 10-2
, '"Y = 
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Figure 6.6: (a) Lena problem. (b) Peppers problem. (c) Brain problem. 

100 , III = lI2 = 10, gsiter = 2, <5 = 0.2, w = 2. Clearly our MG algorithm show very 

fast con v rgence in both cases. At the coarsest level we use lIo = 250 or stop when the 

residual is less than 1 x 10- 6 all tests in this section follow this approach. 

6.7.2 Computational cost and speed comparison 

T he closer competi Lors to our MG algoriLhm happen to be our SFP1 and SFP2 smoother 

used as standalone methods. Here we will analyze and compare the osts of both and 

MG when solving a r al probl m. The SFI 2 will be solved up to an a curacy of 10- 6 

using GSLEX method , and 10- 12 using PCG m thod. Another linear solver w con

sider d was the SOIl method; xp rimenLs showed that whilst SOR is quite good for 

li ghtly noi y imag , it is divergent for Lhe heavy noi y ones for any over-relaxaLion 

factor. P G on th other hand makes SFP2 to get stuck at orne point if each step is 

not olved very accurately and therefore, is very co tly. 

T h · 0 t of upd at ing t he unknown using G LEX is eq ual to 13 fl op per grid point, 

while the cost or u 'ing 1 G is 15 fl ops p r grid point. If we d nne a work uni L (W ) 

as t he cosL or Lhe GS upd aLing, i.e. 1 WU = 13 flop then Lhe co L o[ discretization 

wh ich is Lhe same [or every m thod is 195/13 = 15 WU. 
Our b nchm ark problem her consisted on denoising th problem f Figure 6.12(a) 

with Q = 1/200,,8 = 10- 2 ,1' = 100 ,SNR = 3.5 until r aching a relative residual b low 
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1 X 10- 9 . In Table 6.2 we present a summary of the results for different sizes of the 

image and for ea ier of visualization in Figure 6.7(a) we show the reduction in the 

relative residual per work unit for each method for the image size of 5122 . Clearly, our 

MG algorithm is by far the less costly. 

F igure 6.7(b) shows an extra advantage of our MG algorithm, while the cost per 

grid point grows in the SFP1 and SFP2 methods with the image size, the cost for the 

MG algorithm practically remains the same though it decreases indeed! 

SFP1 SFP2 SFP2 MG 
GSLEX(1O- 6) PCG(10- J2) 

inner iter. 1 21 36 10(2) 
1282 

outer iter . 982 716 517 8 FAS-cycles 

cost 15712 WU 25060 WU 29230 WU 5883 WU 

inner iter. 1 20 36 10(2) 
2562 

outer iter. 1576 827 62 7 FAS-cycles 

cost 25216 WU 29772 WU 35506 WU 5229 WU 

inner iter. 1 20 36 10(2) 
5122 

outer iter. 1747 974 859 6 FAS-cycles 

cost 27952 WU 34090 WU 48567 WU 4575 WU 

Table 6.2: Here GSLEX(10- 6 ) means SFP2 method ·olved by GSLEX up to an accu
racy of 10- 6 , similarly PCG (10- 12) means SFP2 method solved by conjugate method 
with zero level incomplete Cholesky factorization up to an accuracy of 10- 12 , fina lly 
10(2) in the last column mean that the MG algorithm u III = 112 = 10 and gsit l' = 2. 

10' 

10-1 '. 
~ 10-4 

~ 
'" ~ 10'" 

'" 
10-1 . . 

2 3 foo 150 200 250 300 350 400 450 500 550 
Work Unit. SIZe In plxels2 

(3) (b) 

F igure 6.7: (a) R d ucLion in the relative residual p r work unit for each meLhod. (b) 
In cr ase of the cost per size of Lhe image in pixel2 for each method. 

Las tly, we di cuss Lh ost rcduction with re p t to the explicit m thod. Updating 

the unknown with it h a cost of on ly 5 flops however, at every step all derivativ , 

coeffi cients, etc. need to be upd ated increasing the total cost for each explicit tep Lo 
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Figure 6. 8: h dependence test. 

195 + 5 flops = 15.4 WU. Remarking that the explicit method takes tens of thousands 

of iterations to converge, our MG algorithm is roughly two orders of magnitude less 

costly and faster than it. 

6.7.3 Computational analysis 

Here we analyze how the performance of our MG algorithm is affected when the value 

of any of the following: Cf.,/3 /, size, SNR is changed while values of the l' st are kept 

fi xed . 

h-dependence test 

In Figure 6.8 we illustrate the h-dependence of our MG algorithm, i.e. its performance 

with respect to different sizes of the image. The MG algorithm was run with the fol

lowing parameters: Cf. = 1/200 , /3 = 10- 2 , / = 100, VI = V2 = 10, gsiteT = 2, SN R = 3.5 

for all tests. Clearly, the performance of our MG algorithm is not only not decimated, 

bu t gets better as the size of the image increases. One possible explanation to this 

unusual behavior is that SFP1 and SFP2 are h-dependent due to the C .. ' . depending 

on h. This means that when h increases t he value of the coefficients decr ase mak ing 

§i,j the dominant term, hence obtaining better smoothing at coarser levels, s e Table 

6.1. In other words, the bigger the size of the image th more h grows at COal'S levels, 

hence t he better t he effic iency is. 

Noise level test 

In Figur 6.9 the RR history against MG iteration (FAS-cycles) is presented for 

d ifferent noise levels. T he MG algorith m was run with the following pal'ameter : 

Cf. = 1/200, /3 = 10- 2
, / = 100, vI = V2 = 10 , gsit T = 2 and size = 2562 for all 

tests. Although convergence is slower for noisier image, in general the numb l' of 

FAS-cycles does not incr ase very much. 
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Figure 6.10: , dependence test. 

In Figur 6.10, the dependence with r spect to the value of, is presented. The MG 

algorithm was run wit h the rollowing fixed parameters: a = 1/ 200 , (3 = 10- 2, 1/1 = 1/2 = 
10 gsiter = 2, S R = 3.5 and size = 2562 for all tests and, was varied from 100 to 

160. As can be 'een, a bad election of , tends to reduce the performance of the MG 

algorithm. 

a -dep e nde nce tes t 

In Figure 6. 11 we show how t he MG algori t hm is a ffected by selecting different values 

for the regularization parameter a. The IG algorithm was run with the following 

fixed parameter: = 10- 2" = 100 , 1/1 = 1/2 = 10 ,g it T = 2, SNR = 3.5 and 

iz = 2562 for all tests, and a was varied from 0.001 to 0.1. Usually the value of 

a needs to be incr ased as the level of noise get higher. Thi has the eff ct to mak 

the D(u)- oefficients more d i continuous affecting, as we already have mention d, both 

th approximation of the nonlinear op rator on rse grid and th smoothing factor. 

Nonethel s, the perfo rmance of our MG algorithm is still qu ite good obtaining very 

l.ow I' siduals with f w MG y 1 . 

T h resu lts showll in Figur 6.11 need to b arefu lly inLerpreted. lthough t h y 

how that the performance of the MG algorithm is worsened for large a it i al 0 t rue 

Lhat uch larg values are not used in practice. Th purpose of a is to select th amount 

f noi to b r mov d so there is no point in cho ing ither a very larg or v ry mall 

a. In Table 6.3 w ill ust rat the eff ct diff r nt valu or a have on th P I and 

Lhe numb r of FAS- ycle used by our algorithm to solve th problem. The maximum 

PSNR was for smal l a = 0.005 and on ly FAS-cy 1 wer n d d. 

{3-dep e nde nce te t 

The mo t rit ical param te l' a fT cting the perrorman or our MG a lgori t hm i d fini

t iv ly {3. On the benchmark problem we ran th M algorithm with the followin g fi x d 

pararneters : a = 1/200" = 100, 1/1 = 1/2 = 10, gsit T = 2, N R ::::; 3.5 and iz = 2562 
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Figure 6.11: 0: dependence test. 

0: I FAS-cycles I PSNR I 
0.001 5 56.8 
0.005 8 62.3 
0.01 10 62.1 
0.05 12 57 
0.1 14 52 

Table 6.3: Effect of 0: on the PS R and 
number of FAS-cycles. 

for all tests, while f3 was varied from 1 to 10- 2 . 

The resul ts are presented in Table 6.4 and show a much better performance of our 

MG for large f3 which is not surprising since f3 trongly influences the values of the D(u)
coefficients. Theoretically, when K, is the curvature of level sets, f3 should be as small 

as possible, however in prac tice this is not only not necessary, but not recommendable 

from a practical point of view as well. This has been discussed for instance in [5], where 

it was shown that a smaller f3 not necessarily leads to a better reconstruction in the 

TV denoising model. For the curvature-based model something very similar happens 

and f3 = 10- 2 is a fair selection which provides a good quali ty of reconstruction and 

makes our MG algorithm to perform well. 

Table 6.4 shows that decreasing f3 from 10- 2 to 10- 3 ror fi xed 0: does not improve the 

PSNR in a meaningful way, bu t there is a huge difference in the number of FAS-cycles 

used by our algorithm to solve both problems. 

Table 6.5 presents the PSNR values obtained using different values of f3 - with 

0: selected to deliver the best possible PSNR for that f3 value - and the number of 

FAS-cycles used by our MG algorithm to converge. 

f3 0: I }""'AS-cycles I PSNR I f3 0: I FAS-cycles I PSNR I 
1 1/200 3 48 1 1 3 59.3 

10 1 1/200 4 55.9 10 . J 1/40 5 59.9 
10 - ~ 1/200 10 60.5 10 -~ 1/200 10 60.5 
10 - .1 1/200 25 60.6 10 - .1 1/200 25 60.6 

Tab le 6.4: Effect of f3 on the PSNR and Tab le 6.5: Effect of (J on the PS R and 
number of FAS-cycles for fixed 0:. number of FAS-cycles ror diff rent 0: values. 

Quality of restoration test 

We show some quali tative resul ts in Figures 6.12, 6.13 and 6.14. The added Gaussian 

noise is large ·0 that all of images on the left column have SNR = 3.5. As can be 

appreciated the resulting denoised images do not show the und esirable stair ase effect 

as expected and noise is fairly removed. 
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FAS-cycles I PSNR I Energy I Residual I ReI. Residual 

0 49.38 223.4 20.655 1 
1 62.257 190.92 0.02419 10-3 

2 62.259 190.91 0.00386 10-4 

3 62.259 190.91 0.00074 10-5 

4 62.259 190.90 0.00014 10-6 

5 62.259 190.90 0.00002 10-7 

Table 6.6: Iteration history of the MG algorithm showing also the PSNR and residual 
values at each iteration. 

Stopping criterion 

We already have shown the convergence properties of our MG algorithm and now we 

propose a practical stopping criterion. Although, Rand RR defined in Section 6.7.1 

can be used to stop the algorithm, we found more useful to use the energy values 

to execute this task. Our observations indicate that PSNR stop increasing when the 

change in the energy between two consecutive iterations is below 10-1. Therefore, in 

practice, we suggest to stop our MG algorithm when IIE(uk) - E(u,k-l )112 < tol with 

tol = 10-1 • This is roughly equivalent to stopping the' algorithm when RR < 10-4 • To 

help the reader to understand our motives we show in Table 6.6 the data obtained from 

solving the benchmark problem with our MG algorithm using the following parameters: 

a = 1/200,P = 10-2
" = lOO,Vl = V2 = 10,gsiter = 2, SNR = 3.5 and size = 2562

• 

6.8 Generalization 

Fast algorithms for solving high-order PDE's are in high demand. In the image pro

cessing community some researchers have realized that using high-order models yield 

better results than second-order models. Two good examples are the curvature-based 

denoising model we studied here and the elastica inpainting model [125]. For the result

ing PDE's from these high-order models only explicit or semi-implicit time marching 

methods have been reported in the literature. One of the advantages of our SFP1 and 

SFP2 algorithms is that they can be very easily generalized to solve other PDE's similar 

to (6.3). This is, we can implement fast FP algorithms for other models by splitting 

their differential operators and adding up suitable stabilizing terms. Then these FP 

algorithms can be used as smoot hers in a MG context. For instance, we already have 

successfully applied this idea for solving the fourth-order PDE of the Euler's elastica 

digital inpainting model, see [23] for reported results. We also have encouraging results 

from using this method for solving a 3D denoising problem also known as surface fair

ing and studied by Elsey and Esedoglu [53]. For this we have implemented only the 

2-dimensional case also called curve denoising. 
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(a) (b) 

Figure 6.12: (a) Noisy Image. (b) Denoised image using curvature-based model and 
Algorithm 17. 

6.9 Conclusions 

In this chapter, we introduced two algorithms (SFPGS and MG) for solving the curvature

based denoising model [159], which is high-order and capable of effective noise removal. 

The resulting Euler Lagrange is of fourth-order, anisotropic and highly nonlinear so 

conventional algorithms struggle to find the solution quickly and efficiently. In con

trast, our MG algorithm is showed to be fast and robust to changes in noise level and 

parameters. We explained that a fixed point method using the Vogel and Oman [145] 

idea is unstable and simply does not work for this curvature-based formulation. We 

showed then how to stabilize this FP method and developed a stabilized fixed point 

(SFP) giving evidence through LFA of its smoothing properties. Based on this, we 

developed a fast nonlinear MG method. Finally, a generalization of our algorithms to 

similar problems was discussed. 

148 



100 200 300 400 SOD 100 200 300 400 SOD 
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Figure 6.13: (a) Noisy Image. (b) Denoised image using curvature-based model and 
Algori thm 17. 

100 200 300 400 SOD 

(a) (b) 

Figure 6.14: (a) Noisy Image. (b) Denoised image using curvature-based model and 
Algorithm 17. 
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Chapter 7 

High-Order Color Image 
Restoration Models and Fast 
Algorithms 

Denoising of gray-scale images has been extensively studied and investigated within 

the last decades. With the appearance of the total variation (TV) model of Rudin, 

Osher and Fatemi [114J back in 1992 became evident that variational approaches to 

the image denoising problem can yield excellent results. Hence, a lot of research to 

obtain improvements has been done around this model mainly looking for eliminating 

or minimizing the so called staircase effect inherent to it and which makes images to 

look blocky, see for instance [95, 118, 46J and references therein. Deep research has also 

been carried out to equip the TV model with fast and efficient numerical solvers. 

The extension of the very successful TV model to color or vector-valued images has 

been unfortunately, less investigated although interesting works about this subject do 

exist [117, 14, 21, 130J. The obvious and natural method is the channel by channel 

(CbC) approach with implies using the TV model independently for each channel. 

There exists however the feeling among researchers that there must be some kind of 

coupling among channels although what the type of this coupling should be, it is not 

clear yet. Regardless of this uncertainty, coupled models have proved to deliver better 

results than the simple CbC approach in a numher of situations. 

Coming back to variational models for gray scale images, some of the proposals 

to avoid the staircase effect consist of increa.'3ing the order of the regularization term 

from first-order (ba.sed on first-order derivatives) as in the TV model to second-order. 

Examples of these methods can be found in [157,36, 92, 91, 46, 159J and the references 

therein. 

By combining the above two idea.s: high-order regularization plus channel coupling; 

it would be nice to have a high-order color denoising model with coupling among 

channels. Surprisingly, and up to our knowledge, there is however no published work 

of such a kind of vector-valued high-order model. Of course, we expect such a model to 

deliver better results than its counterpart the CbC approach similar to what happens 
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with the lower-order vector-valued TV model. 

In this work, already accepted for publication in [25], we take the high-order and 

curvature-based gray-scale denoising model [159] as our starting point and introduce 

two different ways to generalize it to vector-valued images obtaining respectively what 

we call global and local coupling among the channels. We will analyze the properties 

of these two new models and will show some examples suggesting that our global high

order model is not only better than its correspondent CbC high-order competitor but 

also better than the TV based color models. Finally, we will show how to implement a 

fast multigrid algorithm for this model. 

This work is organized as follows: first in Section 7.1 we state the variational de

noising problem for vector-valued imags. Later in Section 7.2, Section 7.3 and Section 

7.4 three total-variation-based models for vector-valued image denoising are reviewed. 

Then in Section 7.5 our two new high-order,models (LM and GM) are introduced. In 

Section 7.6 the numerical implementation of these high-order models is presented and 

in Section 7.7 the proposed numerical algorithms with emphasis on a multigrid algo

rithm for the GM model are explained. Finally, numerical experiments Section 7.9 and 

conclusions (Section 7.10) will be presented. 

7.1 Problem formulation 

Define a vector-valued image as a function U = n c ]Rn -+ ]Rrn i.e., U = (Ul,"" urn) 

with UP. = U£(Xl, . .• ,xn ) 'if e = 1, ... ,m. In the widely used RGB image color model 

there are three channels (red, green and blue) and therefore n = 2 and m = 3. A 

noisy image Uo is obtained by adding up Gaussian noise '1] to U i.e., Uo = U + '1]. The 

variational approach to remove '1] from Uo is then 

mJn {R(U) + ~ In Iu - uol2 dX} (7.1) 

where dx = (d:Cl,"" dXn) and H(u) is a regularization term selecting the space of 

functions were u will belong. 

In the Figure 7.1 we show an example of a synthetic color image and the way each 

one of its channels looks in a one-dimensional space. We will use this image to test the 

models we review here. We now proceed to present in historical order three different 

ways to generalize the total variation model of Rudin et ai. [114] from gray scale to 

vector-valued iI:nages. This will prove to be helpful at the moment of introducing our 

high order color models. 

7.2 Vectorial model of Sapiro and Ringach - (SR) 

This denoising model for RGI3 color images is as follows: Let U(Xl' X2) : ]R2 -+ ]R3 

be a multivalued image with U£(Xb X2) : ]R2 -+ ]R, e = 1,2,3., Let P = (xy, xg) and 
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Figure 7.1: Mod I problem, an image with a weak piecewise constant channel on th 
left, a piecewise smooth channel in the middle a nd a strong piecewise constan t channel 
on the right. 

Q = (xl, x~) be two points in the 3D-dimensional image space, then Lhe d ifference of 

image valu es at t hese two points is deAned as 6 u = u(P) - u (Q) . When the E uclidean 

d i tance between two points tend to zero t he difreren becomes the arc 1 ment 

2 0 
du = L ~dXi (7.2) 

i= l OXi 

and its squared norm al 0 called the first fundamental fo rm [29,101] is defin ed by 

2 2 
2 LL OU OU du = ~~dxidXj. 

uX' uX ' 
i= 1 j= 1 • ) 

(7 .3) 

By also defining gi,j = OU/OXi . oU/OXj, equation (7.3) above can be r written a 

l 2 - ~ ~ . . d . .l . • . - [ dXi ] T [ gJ ,J g) ,2] [ dXi ] 
CU - D D g.,,) x.u.'l:J - . 

i = 1 j = 1 dX2 g2,1 g2,2 dX2 
(7.4) 

The first fund amental form a llow the m asurements of changes in the image. T he 
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extrema of (7.4) are obtained in the directions of the eigenvectors of the matrix [gi,j], 

and these are defined as (cos B±,sin B±), where B± are given by 

1 1 ( 2g12 ) 1l" 0+ = -tan- , and 0- = 0+ +-. 
2 g1,1 - g2,2 2 

The values attained at them are the corresponding eigenvalues defined by 

(7.5) 

Here B+ is the direction of maximal change and .A+ the maximal rate of change. As 

remarked in [117], by using this information it is possible to detect image discontinuities 

by defining a function f = f (.A+,.A_) that measures the dissimilarity between .A+ and 

.A_. In [117] it was proposed to use any decreasing function 9 = g(.A+ - .A_) and the 

evolution equation 

(7.6) 

to denoise color images, but no specific 9 was given. By noticing that 

for the gray-scale case, that is with m = 1, in [117] the authors proposed (7.7) as the 

possible analog total variation functional for vector-valued images. This proposition as 

later Blomgren and Chan suggested is not suitable from the variational point of view 

and In J.A+ +.A_ dx1dx2 was suggested instead. 

7.3 Vectorial TV model of Blomgren and Chan - (BLC) 

The second vectorial model we review is the Blomgren-Chan's model introduced in 

[14]. There, a generalization of the TV norm for gray-scale images was also proposed. 

Keeping similar notation to the one introduced in [14], we start by recalling that for a 

single channel or gray-scale image u : n c JRn -+ JR, the total variation norm TV n,1 is 

defined by 

(7.8) 

In [14], for any function u : JR2 -+ JRm the following multi-dimensional total variation 

norm was proposed: 

m 

TVn,m(u) = I)TVn,1(Uf)]2 = (7.9) 
f=1 

Using this norm in (7.1) as regularization term defines the BLC color de noising 
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model with corresponding Euler-Lagrange equations 

TVn ,l(Ue) Vue o. 
TVn,m (u ) V· IVuel - A(Ue - ue) = 0 In n, e = 1, ... ,m (7.10) 

and Vue · ve = 0, \Ie = 1, ... , m on the boundary an, where ve i the normal unit 

vector on the boundary of the eth-channel. 

CHANNEL 1 CHANNEL 2 CHANNEL 3 

0.8 0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 

o 0 

o 20 40 60 o 20 40 60 0 20 40 60 

(a) 

CHANNEL 1 CHANNEL 2 CHANNEL 3 

.... 

0.8 0.8 . 0.8 

0.6 0.6 

0.4 0.4 

0.2 

0 

20 40 60 0 20 40 60 

(b) 

h gurc 7.2: ResulLs from t h BL model fo r two d ifferent values of a : (a) a = 1/13 
and (b) a = 1/5 . 

By looking at (7.10) it is easy to ee how this mod I globally adjust through the fac

tor A(ue) = ~~: :~((~~ the quantity of r gularization appli d to ach chann el dep nding 

on the total variation of the chann 1 itself. This adju ting has the effect of pr v nt ing 

the wipin g out of w ak channels a problem that the total variation CbC approach do 

have. T his phenomenon is illu trated with the help of the Figure 7.2. 

7.4 Total Variation model of Bresson and Chan - (BRC) 

The last vectorial model we review i the Bre on- han ' mod I [21J. Actually more 

than a new model it provide a rigorous mathematical way to construct a TV v ctor-
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Figure 7.3: Res ults [rom th BRC model applied to a imple ID color image with a 
kink in two of its chan nels. Dirichlet boundary condition ' were used here. (a) Clean 
color image (b) BRC denoising resul t (c) ID plot of each channel, in red is the true 
data and in blue the obtained resul t . 

valued model that shows the th eoret ical link betw en the total variation CbC approach 

and the SR model wi th f = v!)'+ + A_. The BRC model propose to construct t he 

1 V-norm for vector-valued functions as follows: 

For a given vector valued function u : n c ]Rn ---+ ]Rm the vector ial TV norm is 

d noted by t he fini te posit iv measure 

r /Du/ := sup { r < u , \1 . P > dX} , in p EP in (7.11) 

wh r p:= (PI ,' " , Pm) : n ---+ ]Rmxn, Pe := (p~l, . . . ,p~n) : n ---+ ]Rn, ve E [I ,mj, \1. is 

th div rg nce operator such that \1 ' q := (\1 .q! , ... , \1 ·qn) : n ---+ ]Rm, Vq : n ---+ ]Rm xn, 

\1 . qe := 2:.:7=J 8xj q? : n ---+ ]R, ve E [I , mj, the product < .,. > i the Euclidean calar 

product d fined as < v ,w >:= 2:.:e:J < ve,we >, V(v , w ) E (Rm)2, which implies that 

< u , \1 . P >= 2:.:e: l < ue, \1 . Pe > and the £ 2 Euclid an norm I . I is natura lly defin ed 

by Ivl := J< v ,v > = J2:.:~= 1 vE, Vv E ]Rs. 
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Depending on the set P of functions of the dual variable P, the vectorial total 

variation norm (VTV) can be defined of different ways, in [21] Bresson and Chan 

considered the two sets1: 

where I . 100 in PI is the infinity norm such that Iploo = maxe=I, ... ,m IPel and I . I in P2 

is the L2 norm such that Ipi = J2::b:l < Pe,Pe > = J2::b:l 2::.7=1 (p?)2. 
By selecting the set PI it was proven in [21] that the vectorial TV norm can be 

expressed as 

(7.12) 

i.e., the sum of the TV norms of each channel. This vectorial norm used as regulariza

tion term in (7.1) yields the total variation CbC color denoising approach. 

On the other hand, by selecting P2 as the set of functions of the dual variable P, it 

can also be shown [21] that this time the vectorial TV norm reduces to 

m 

L IVuel 2 dx1dx2 (7.13) 
e=1 

which used in (7.1) yields the ERC color de noising model. 

Thus, by using either (7.12) or (7.13) for regularization in (7.1), we can recover the 

total variation CbC or the BRC color denoising models, respectively. The latter with 

Euler-Lagrange equations is defined by 

Vue 0 
V'IIVull-A(Ut-Ut)=O in 0, e=1, ... ,m (7.14) 

where IIVul1 = JIVutl2 + ... + IVum 12 , and homogeneous Neumann boundary condi

tions for each channel. 

From the above system of PDEs we can see that this time the coupling among the 

channels is obtained through the diffusion coefficient D(u) = IIVull- I
. Further, since 

D(u) takes different values across the image, the level of coupling varies from one region 

to another locally adjusting the level of regularization. The result of applying the ERC 

model to our test image can be seen in Figure 7.4. The quality of reconstruction is 

good but the st..aircase effect remains present. 

Remark 7.4.1 A connection between the BRG [14} and the SR [117} models can be 
obtained by selecting fO = JA+ + A_ in (7.7). This specific function was actually not 

_proposed in [117}, but in [14}, where the authors realized that norms of the form (7.7) 
with fO = JA+ - A_ does not work well within the variational framework. 

lThe notation Cc(Oj jRmxn) represents the space of scalar continuous functions with compact support 
in an open set 0 C jRmxn. 
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Figure 7.4: Result from the BRC model. 

Happens to be that the coupling among diannels in the BRC model is so strong that 

it tends to align all channels causing color smearing in the image. This is illustrated in 

Figure 7.3 where a very small A in (7.14) was selec ted to make the phenomenon more 

evident. 

In summary, and as remarked in [14, 21] the BLC model seems to be superior in 

quality of restoration to both the CbC approach and the BRC model although the 

latter is equipped with a faster numerical solver [21]. 

7.5 High-order vector-valued models 

We are ready to state our proposed models. As in the vectorial TV case we need to have 

a starting point and from there start moving on. In other words, we have to select a 

working high-order model for gray-scale images and upgrade it to vector-valued images. 

The idea is also to have couplin g among channels as in the vectorial TV models since 

this has proven to improve the quality of recon trud ion. 

To this end we decided to usc the curvat ur -based model [159] as our starting point. 

Our motivations are three fold: (1) this model ha ni ce properties like no stairca e effect 

and contrast and corners preservation [159], (2) there is a fast multigrid solver already 

available for thi s mod I [26], and (3) curvature is an intrinsic geometric feature so 

generalization is asier. 

First we review very briefl y what it would be the b approach of this curvature

based model for color image denoising. 

7.5.1 Channel by channel curvature-based model -(CbCM) 

Denote a usual u = (Uj , . .. , Um) the true v dor-val ued image, u 0 = (u~ , . .. , u~J the 

noisy image and", = (K;1 , .. . , K;m) the curvature vector with K;e = V 'I~~~I the curvature 
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of the elh-channel of u. Then minimize, 

(7.15) 

which may be done by solving the system of Euler-Lagrange equa tions 

CHANNEL 1 CHANNEL 2 CHANNEL 3 

O.B O.B 

0.6 0.6 

0.4 0.4 

0.2 . 0.2 . 

0 0 0 

0 20 40 60 0 20 40 60 0 20 40 60 

Figure 7.5: Resul t from the curvature-based CbC approach. The small step in the weak 
left channel has been almost wiped out. 

( 
VP~ V ue . VP~ ) o. 

V· IVuel - IVuel3 V ue + >,(ue - ue) = 0 In 0 , e = 1, . . . ,m (7.16) 

with boundary conditions I~::I . Ve = 0 for each channel. In particular we use here and 

throughout the rest of t his work Pe(ke) = ",~ so P~ = 2"'e. 
Here as in the CbC approach for the vectorial TV model, >. is the same for all 

channels so we ex pect to have difficulties when denoising a color image having weak 

channels. This is, by selecting the best >' for one channel we may over-smooth the weak 

channel. We illustrate th is effect in the F igure 7.5. 

7.5.2 Local curvature-based color denoising model -(LM) 

Here we in t roduce our fi rst high ord r denoising model for vector-valued images. We 

construct this model based on id as from the Bresson-Chan 's model. This model is to 

minimize 

min { r 
''I EBV(n), ... ,um EBV(n) in 

which leads to solve the Euler-Lagrange equ ation 
/ 

(
Viii e VUe ' Viii e ) 0 

V· IVuel - IVuel3 Vue + >,(ue - ue) = 0 in 0 , e= l , ... ,m 

158 

(7.17) 

(7.18) 



with boundary condi tions I~~:I . vi = 0 and \Ii e defined as 

(7.19) 

As it can be observed the amount of diffusion in this model, is mainly affected by 

V \Ii e, a vector that locally varies across the image. Due to this, we name thi model 

the local curvature-based model (LM). 

By analyzing the above equation we observe that here we do not have the same 

problem as in the BRC model (its equivalent local TV model). In the BRC model 

the coeffi cient IIVull -1 never stops diffusing across edges unless all are aligned. As 

a consequence color is smeared. In the LM model the two coefficients IVuel-1 and 

IVue l-3 only depend on ue so diffusion is properly stopped in every channel. 

Unfor tunately our experiments revealed that this model has a tendency to develop 

kinks (see Figure 7.6 channel 3) in the image no t only decimating the quali ty of restora

tion but making more difficult to constru ct stable numerical solvers as well. 

CHANNEL 1 CHANNEL2 CHANNEL 3 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 

o 

o 20 o 20 40 60 

F igure 7.6: Re ulL from the LM mod 1. The mall step in th weak left chann I is 
b tt r recovered but a kink appeared in the right chann I. 

7.5.3 Global curvature-based color denoising model -(GM) 

Our se ond n w high ord r model is inspired on the Blomgr n-Chall ' T V-norm. Here 

we propose to minimiz . 

mill { 
U I EBV(n), .. . ,um E BV(n) 

(7.20) 

wh i h I ads Lo solve LiI is Lime the Eul r-Lagrange equ ations 

( 
V (I>' V ue' 1?' ) 

. IVtt:1 - IVue l3 e Ue + '>' (ue - tt~) = 0 in [2 e= 1, ... , m (7.21) 
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with boundary conditions I~::I . ve = 0 and Q(u) and Qe(ue) defin ed by 

(7.22) 

Here as in the total variation BLC model, the amount of regularization or diffus ion 

is defined by the relat ion A(ue) = Q(ue)jQ(u ) which is the same for all pixels at each 

channel. For this reason we call this model the global curvature-based model (GM). 

Thus, we expect this model to reduce regularization for weak channels avoiding 

smearing them. This i a very imilar idea to the one used in the BLC model, however 

our experiments show that applied together with the curvature-ba ed model, it delivers 

much better resul ts. A cl ar example is given in F igure 7.7, where the reconstruction 

of the mall step in the weak left channel is very good and the quali ty in the others 

channels is preserved. 

An extra feature of thi mod I is that a fast nonlinear multigrid algorithm can be 

cons ructed as we will how in Section 7.7. 

CHANNEL 1 CHANNEL 2 CHANNEL 3 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 

0 0 

20 40 60 0 20 40 60 0 20 40 60 

Figure 7.7: Result from Lhe GM model. All channels, including Lhe weak one, are very 

w II pconstru ted. 

7.6 Numerical implementation 

Wnw pro eed to ou Liin th d i cr tization 'cheme we us for the three high ord r 

m del i.e., b M, LM and GM. We as urn the onLinuou ' domain n = [O ,p] X [O,q] 
a nd I L (ftx , hy) to r pr nL a v cLor of fini t m s h iz . We a lso define he infinite grid 

G" as ,,= {(x,y) : x = Xi = i hx , Y = Yj = jhy; i,j E Z } and for simpli city assum 

p = q and 11, = 11,x = 11,y . Then t he d iscrete grid is d fin d as nil = nnc" and a discr Le 

function on t he gr id nil as u" = u,,(x,y) = U,,(Xi, Yj) = u,,(ihx, jhy). Thes di r Le 

[unctions Lake on cal d value in th interval [0,1]. W a lso denoLe the derivative with 

r p ct to any variable 'lj; as (-) '" . 
1 2 Thus, for any vecLor V = (V , V ) it diverg n i approximat d u ing c ntral 
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differences i.e., 'V. Vij = (V.I+I . - VII .)jh + (V2. 1 - V2. I)jh, as described in 
, l 2,3 $-2,3 $,3+ 2 $,3- 2 

Section 6.5. . 

For the GM model Qe(ue) and Q(u) are computed the following way: 

p q 

Qe(ue) = LL<Pe(ke)i,j, Q(u) = (7.23) 
;=1 ;=1 

For the LM model'll e is computed by 

(7.24) 

7.7 The numerical solution for the high order models 

Here we present a general method to implement a fixed point algorithm for any of the 

high order models presented so far. Later in this section we will show how to modify 

slightly this method to obtain an optimal performance for the GM model. Then we 

will we introduce a nonlinear multigrid method for it. 

The Euler-Lagrange equations of all of the high-order models can be written in the 

general form 

A(ue)'V' (l3(ue) - C(ue)'Vue) + A(ue - u~) = 0, e = 1, ... ,m, (7.25) 

where 

To obtain a fast solution of the above PDE a fixed point method as the ones de

scribed in [115, 111, 40, 119] for the TV model would be desirable. Straight implemen

tation of such a FP method docs not work for PDE's like (7.25), so we use the method 

described in [23, 26], where a stabilizing term N(ut.) is included and the following fast 

fixed point scheme is used: 

-"YN (u,;t1) - A(u~)'V. (C(u~)'Vu;t1) + Au;t1 

= -"YN(uZ) - A(uZ)'V' (l3(uZ)) + Au~. (7.26) 

For the CbC and GM models N(w.) = 'V . I~:!I is selected as in [26]. For the LM 

model however N(ue) = V· (J~~u( ) provides a better performance of , IVuel e=1 cf>t)i,j(t>e) . 

the algorithm. 
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The fixed point scheme (7.26) leads to a linear system of equations of the form 

( )k+1§k ()k+I Ck ()k+1 Ck ()k+1 Ck Ue i,j i,j - ue HId H.! J' - ue i-I,j i-.! J' - ue i,HI 'J'+1 
2' 2' '" 2 

_( )k+1 Ck - f( k ° ) Ue iJ'-I " 1 - Uo,Uo,cr.,,",( iJ' , I,J-'2 .(..(. , 

(7.27) 

where for example for the CbC and GM models 

and so on, §7,j is given by (6.22), cr. = 1/>.. and f is defined as the right-hand side of 

(7.26). This linear system can be arranged in matrix form A(u;)u;+1 = f(u;,u~,cr.,'"'() 

with A a sparse, symmetric and positive definite matrix. To solve this system we use 

a simple lexicographic Gauss-Seidel method: The procedure is stated in Algorithm 21. 

Algorithm 21 CFPGS u ~ CFPGS(u,uO,gsiter,h,cr.,,",(,v) 
Require: On a grid with mesh size h, choose an initial guess u = (UI,"" urn) for 

(7.26) 
1: for e = 1 to m do 
2: for k = 1 to 1I do 
3: Apply gsiter Gauss-Seidel iterations to the linear system A(u;)u;+1 = f (u;) 
4: end for 
5: end for 

Algorithm optimization for the GM model 

From the evidence presented before there is clear indication that the GM method is the 

best among the high order models. Due to this we now concentrate on optimizing the 

Algorithm 21 for this model. For the GM model A(ue) = Q(ue)/Q(u), 8(ue) = VI~e~t 
() 

VUt,V<I>p(ltt) 
and C ue = (IV"tI)3 • 

The correct selection of the value of the stahilizing constant '"'( is very important 

for the good performance of the numerical algorithm (7.26), see [26J for a discussion 

about this subject, and the value of '"'( among others strongly depends on the value 

of the regularization parameter cr.. In the GM model, the term A(ue) is a constant 

that is varying as the iterative algorithm evolves and is directly affecting the value 

of a = cr.A(ue). This is we can see the GM model as the CbC model with varying 

regularization parameter a. 
We show in Figure 7.8 an example of the evolution of A(ue) for the GM and TILC 

models where for the latter variations are much more moderate. Clearly in our high 

_ order GM model A( ue) will affect the performance of the algorithm if a fixed '"'( is 

selected. This was confirmed in our initial experiments. In view of this, we use "Ie = 
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Figure 7.8: Evolu tion of the values of A(ue) in the GM and BLC models wh n solving 
t he probl m of F igur 7.1. In the GM model and within the first 40 iterations the 
value continuously and strongly change until reaching a stable tate. 

"i/ A(ue) and solve instead the equation 

-"ieN(u~+ l) - aA(u~) \7 . (C(u~) \7u~+ l) + U~+ l = 

-"ieN(u~) - aA(u~) \7 . (B(u~) ) + u~. (7.28) 

This method auLomatically in reases the value of "ie when a is mall and decreases 

it wh n a is large. W now proceed to introd uce a multigrid algorithm [or the GM 

model. 

7.8 Nonlinear multigrid algorithm 

We can go one st p fur t her and usc t h fixed point metho I (7.2 ) a the foundation 

for a nonlinear MG algoriLhm [139]. This algorithm has been uc s fulJy test d in 

a number f imaging problems, for in tance: [75] on image registration , [7, 104] on 

image s gm nLaLion [119, 118, 34, 59, 49] on image denoising-deblurring and [24, 23] 

on image inpaintin g. 

MulLigrid s hemes on id rably spee I up num rical pro e' achi ving fasL re 'ult 

by con 'Lruding a hierarchy of discr Lization wh r aL each level the ITor quation 

i parLia lly olved and Lhe n w approximation tran ported to next oarser I v 1. This 

proces i r cur ive ly app li d until r aching the oar est level wh r an exact, but com

puta tionally cheap 'olu Lion i obtain d, Then th pr e moves backwards on th hier

archi al tru Lure transporting the more accurat error and updating the approximaLe 

olu Lion aL ach level unLii reaching the finest I v I again . ually tandard oar ning 

is used Lo on LrucL Lhe hi erar hi a l tructur halving the numb r of variabl on ach 

d imension at each level. 

To a pp ly t h is , cherne to out' pr blem we sLart by d fin ing he nonlinear di cr te 
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equations (Neueki = (U~ki by 

for f = 1, ... ,m and define Nh = [NI , ... ,NmJ as the vector of nonlinear operators 

on the grid of mesh size h such that NhUh = [NIUI,'" ,NmumJ. Define the residual 

equations as r£ = Neue - u~ and the correspondent vector r = h, ... ,rmJ. Then the 

nonlinear MG scheme for the vector-valued problem is stated in Algorithms 22 and 23. 

Algorithm 22 Nonlinear Multigrid Method 
Require: Select an initial guess u = (UI," . ,um ) on the finest grid h 

1: k f- 0 
2: err f- tol + 1 
3: while err < tol do . 
4: u~+1 f- FAS(u~,Nk,u~,VO'VI'V2,gsiter,a'l) 

5: err = max {"(rl)~t1lb, ... , "(rm)~t1"2} 
6: k f- k + 1 
7: end while 

Algorithm 23 FAS Cycle Uh f- FA8(Uh,Nh,U~,VO,VI,V7.,gsiter,a)l) 
1: if Oh = coarsest grid then 
2: solve NhUh = u~ accurately (Le. Vo iterations by CFPGS) and return. 
3: else 
4: continue with step 6. 
5: end if 
6: Pre-smoothing: Do VI steps of, Uh f- CFPGS(Uh,u~,gsiter,a'l,vI) 
7: Restrict to the coarse grid, U2h f- R~hUh 
8: Set the initial solution for the next level, U2h f- U2h 
9: Compute the new right hand side ugh f- R~h(U~ - NhUh) + N2hU2h 

10: Implement U2h f- F AS2h(U2h, N 2h, ugh' Vo, VI, V2, gsiter, a, I) 
11: Add the residual correction, Uh f- Uh + I~h(u2h - U2h) 
12: Post-smoothing: Do V2 steps of Uh f- CF PGS(Uh, u~, gsiter, a, I, V2) 

7.9 Numerical results and experiments 

We now proceed to show some results obtained using the GM model and the multigrid 

algorithm outlined ahove. 

From the TV models, it seems to be a general agreement [14, 21J that the TILC 

model delivers the better results. Among the two high order models (LM and GM) 

_ we have introduced here and the CbCM approach, our experiments suggest that GM 

is hetter than the other two. Due to these facts, we start hy comparing the quality of 

restoration yielded by the BLC and GM models. 
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Quality of restoration 

The one dimenRional plots shown in Figures 7.2 and 7.7 already suggest that our color 

global curvature-based model outperforms the TILC model. Maybe a more accurate 

comparison can be carried out by computing the PSNR values between the true image 

u t and the denoised image u for each channel. The PSNR measure for one channel of 

size p x q is computed using the formula defined in (4.35). The larger the PSNR iR, the 

better restoration of the image is obtained. In real life situation, such a measure is not 

possible because ut is not known. 

From the obtained PSNR values for the model problem of Figure 7.1 and presented 

in Table 7.1, it is even clearer that the GM model de~ivers a much better restoration 

than the BLC model. 

PSNR 
Model Channell Channel 2 Channel 3 

BLC (0: = 1/13) 75.54 74.86 73.30 
BLC (0: = 1/5) 79.89 74.52 63.36 

GM 82.00 80.94 77.93 

Table 7.1: PSNR values from the BLC and GM models. 

Even more, carefully looking at Figure 7.9(b) we see that the denoiRed image coming 

from the BLC method with 0: = 1/13 looks a bit dirty. This is a combined effect of 

staircase plus noise still present on the weak channel, this is backed up by the results 

shown in Figure 7.2(a). By increasing the regularization to 0: = 1/5, now the denoiRed 

image in Figure 7.9(c) looks visually much better because noise has been removed from 

the weak channel which we can confirm in Figure 7.9(b). However by doing so, the 

third channel is over smoothed, see again Figure 7.2(b), and its correspondent PSNR 

value gets worsened as seen from Table 7.1. Also notice that the staircase effect still 

can be observed in Figure 7.9(c). After all, it seems to be that the BLC model cannot 

cope easily with unbalanced channels. 

Finally, in the Figures 7.11, 7.12 and 7.13 we present some qualitative results ob

tained by using our GM model. 

Multigrid performance 

Now we proceed to illustrate the fast performance of the nonlinear multigrid algorithm 

for the GM model. In Figure 7.10, we present the history iteration for solving each one 

of the prohlemR from FigureR 7.11-7.13 all with SNR ~ 20. For these problems we uRed 

the following parameters: "y = 40, f3 = 10--2 , 0: = 1/350, VI = V2 = 10, gsiter = 10. 

Clearly, the MG iteration is very good reaching very quickly very small residuals. A 

good Rtopping criteria for the MG algorithm is to stop when th~ relative residual is leRs 

than 10-4 • 

165 



10 

20 

30 

40 

50 

60 

10 20 30 40 50 60 10 20 30 40 50 60 

(a) (b) 

10 

20 

30 

40 

50 

60 

10 20 30 40 50 60 10 20 30 40 50 60 

( c) (d) 

F igure 7.9: (a) Clean image. (b) Denoised image using the BLC model with a = 1/ 13. 
(c) Denoised image using the BLC model with a = 1/5. (d) Denoised image using the 
GM model. 

In Table 7.2 we pr ent the number of V-cycles and CPU-time consum d for the 

a lgoriLhm when olving Lhe same problems with noisier imag i. , NR ~ 7 and u ing 

the stopping riL rion ju t described abov . All simulations were carried out usin g 

Matlab® 2008a on a DELL Intel-Xeon-bas d computer. 

7.10 Conclusions 

In thi . chapter we hav introduc d two new high-order mod I for color image denoi ing. 

These two new models were de igned from Lhe curvature-based denoi ing model for 

gray- ale imag original ly publish d in [159]. 

B Lh models were design d to have coupling among the channels of the color image a 

character istic tha t research f S have ident ifi ed as highly d irable. From th two mod I 

the gLobaL v rsion, i.e. th GM mod I showed Lo d li ver Lhe b t result. FUrLher, a 

fast num ri a l mu lLigrid a lg ri thm wa onstructed for this model. 

A ompari on between the new GM model and the BLC model was pr sented. The 
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Figure 7.10: Performance of the nonlinear multigrid algorithm when solving the prob
lems of (a) Figure 7.11 , (b) Figure 7.12 and (c) Figure 7.13, all wi th size 256 x 256 and 
SNR ~ 20. 

Image Mul tigrid 
Problem Size # of V-cycles CPU-time 
Hats 1282 7 79 

2562 6 332 
5122 6 1409 

Flowers 1282 7 78 
2562 6 325 
5122 6 1401 

Peppers 1282 8 91 
2562 7 383 
5122 6 1411 

Table 7.2: Number of V-cycl s and CPU-times from the MG algorithm when solving 
the probl ms of Figures 7.11 - 7.13 

BLC model ha been brand d on of the best among the TV denoi ing models for color 

imag . Th GM model an cop b tter with unbalanc d chann Is a ituation that 

eas ily 0 cur when different levels of illumination are present wh n a picture is taken. 
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(a) (b) 

Figure 7.11: Denoising example using the GM model. Our MG algorithm solved t his 
problem in 1411 seconds. 

100 200 300 400 500 100 200 300 400 500 

(a) (b) 

Figure 7.12: D noising example usin g the GM model. Our MG algori thm olved this 
probl m in 1409 s conds. 
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(a) (b) 

F igur 7.13: Denoising example using the GM model. Our MG algorithm olved this 
problem in 1401 s cond . 
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Chapter 8 

Future Work 

There are different directions we can take from the work presented in this thesis. In 

the following we mention some of them: 

1. Multi-resolution optimization methods would be interesting to test for the high 

order PDEs of Chapters 5, 6 and 7. 

2. Extensions of our multigrid methods to three-dimensional problems look promis

ing though not straightforward. In particular, some researchers have already 

started to study high-order models for surface denoising also known as fairing 

with very interesting results. No fast numerical methods for the solution of most 

of these models already exist. 

3. The high-order vectorial models introduced in Chapter 7 for colour image denois

ing could be extended to colour image inpainting with possible improvements to 

current channel by channel inpainting techniques. This shall have to be tested. 

4. The primal-dual method suggested in Chapter 5 for the Euler's elastica inpainting 

model deserves more investigation since our initial tests show very promising 

results, i.e very fast convergence. This technique could also be adapted to the 

image denoising problem of Chapters 6 and 7. 

5. Due to the excellent results obtained from using models with high order regu

larization in image denoising and inpaiting problems, we already have started 

deveioping and testing such kind of techniques on image registration problems. 

This work is currently undergoing in collaboration with our colleague Noppadol 

Chumchob. 

170 



Bibliography 

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The multigrid method 

for the diffusion equation with strongly discontinuous coefficients. SIAM Journal 

on Scientific and Statistical Comput'ing, 2(4):430-454, 1981. 

[2] L. Alvarez, F. Guichard, P.-L. Lions, ~nd J.-M. Morel. Axioms and fundamental 

equations of image processing. Archive for Rational Mechanics and Analysis, 

123(3):199-257, 1993. 

[3] L. Ambrosio and V. M. Tortorelli. Approximation of functionals' depending on 

jumps by elliptic functionals via ,),-convergence., Communications on Pure and 

Applied Mathematics, 43:999-1036, 1990. 

[4] L. Ambrosio and V. M. Tortorelli. On the approximation of free discontinuity 

problems. Bolletin Un. Mat. Ital., 6:105-123, 1992. 

[5] U. M. Asher, E. Haber, and H. Huang. On effective methods for implicit piecewise 

smooth surface recovery. SIAM Journal on Scientific Computing, 28(1):339-358, 

2006. 

[6] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing - Par

tial Differential Equations and the Calculus of Variations. Springer 1st edition; 

Applied Mathematical Sciences, New York, 2001. 

[7] N. Badshah and K. Chen. Multigrid method for the Chan-Vese model in vari

ational segmentation. Communications in Computational Physics, 4(2):294-316, 

2008. 

[8] D. Bai and A. Brandt. Local mesh refinement multilevel techniques. SIAM 

Journal on Scient'ific and Statistical Computing, 8(2):109-134, 1987. 

[9] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera. Filling-in 

joint interpolation of vector fields and gray levels. IEEE Transactions on Image 

Processing, 10(8):1200--1211, 2001. 

[10] M. Bertalmio, G. Sapiro, V. Ca.c;elles, and C. Ballester. Image inpainting. 

In SIGGRAPII '00: Proceedings of the 27th Annual Conference on Computer 

171 



Graphics and Interactive Techniques, pages 417-424, New York, 2000. ACM 

Press/ Addison-Wesley Publishing Co. 

[11] M. Bertalmo, A. L. Bertozzi, and G. Sapiro. Navier-Stokes, fluid dynamics, and 

image and video inpainting. IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition, 1:355-362, 2001. 

[12] A. L. Bertozzi, S. Esedoglu, and A. Gillette. Analysis of a two-scale Calm-Hilliard 

model for binary image inpainting. SIAM Journal on Multiscale Modeling and 

Simulation, 6(3):913-936, 2007. 

[13] A.L. Bertozzi, S. E~edoglu, and A. Gillette. Inpainting of binary image~ u~ing the 

Cahn-Hilliard equation. IEEE Transactions on Image Processing, 16(1):285-291, 

2007. 

[14] P. Blomgren and T. F. Chan. Color TV: total variation methods for restoration 

of vector-valued image~. IEEE Transactions on Image Processing, 7(3):304-309, 

1998. 

[15] T. Bonesky. Morozov's discrepancy principle a,nd Tikhonov-type functionals. 

Inverse Problems, 25(1):015015 (llpp), 2009. 

[16] R. S. Borden. A Course in Advanced Calculus. Elsevier Science Publishing, 52 

Vanderbilt Av. New York, USA, 1983. 

[17] J. II. Bramble and X. Zhang. Uniform convergence of the multigrid V-cycle for 

an ani~otropic problem. Mathematics of Computation, 70(234):453-470, 2001. 

[18] A. Brandt. Multi-level adaptive technique for fast numerical solution to boundary 

value problems. Proceedings of the 3rd International Conference on Numerical 

Methods in Fluid Mechanics. Lecture Notes in Physics, 18:82-89, 1973. 

[19] A. Brandt. Multigrid technique~: 1984 guide with applications to fluid dynamics. 

GeselZschaft fur Mathematik und Datenverarbeitung, (GMD-Studie Nr. 85), 1984. 

[20] A. Brandt. Multi-level adaptive solutions to BVPs. Mathematics of Computa

tions, 31(138):333-390, 1997. 

[21] X. Brc~~on and T. F. Chan. Fa~t dual minimization of the vectorial total variation 

norm and applications to color image processing. Inverse Problems and Imaging, . 
2( 4):155-181, 2008. 

[22] W. Brigg~, V. E. Hen~on, and S. F. McCormick. A Multigrid Tutorial. SIAM, 

Philadelphia, 2000. 

[23] C. Brito-Loeza and K. Chen. Fa.<;t numerical algorithms for the Euler's elastica 

digital inpainting model. Journal of Mathematical Imaging and Vision, Under 

review, 2008. 

172 



[24J C. Brito-Loeza and K. Chen. Multigrid method for a modified curvature driven 

diffusion model for image inpainting. Journal of Computational Mathematics, 

26(6):856-875, 2008. 

[25J C. Drito-Loeza and K. Chen. IIigh-order denoising models for vector-valued 

images. IEEE Transactions on Image Processing, Provisionally accepted with 

mandatory minor revisions, 2009. 

[26J C. Brito-Loeza and K. Chen. Multigrid algorithm for high-order denoising. SIAM 

Journal on Imaging Sciences, Under review, 2009. 

[27J M. Burger, L. He, and C. Schonlieb. Cahn-Hilliard inpainting and a generalization 

for grayvalue images. SIAM Journal on Imaging Sciences, 2(4):1129-1167, 2009. 

[28J F. Cao, Y. Gousseau, S. Masnou, and P. Perez. Geometrically guided exemplar

based inpainting. Submitted, 2008. 

[29J M. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, New 

York, 1976. 

[30J V. Caselles, J.-M. Morel, and C. Shert. An axiomatic approach to image inter

polation. IEEE Transactions on Image Processing, 7(3):376-386, 1998. 

[31J A. Chambolle and P.-L. Lions. Image recovery via total variation minimization 

and related prohlems. Numerische Mathematik, 76:167-188, 1997. 

[32J T. F. Chan and K. Chen. On a nonlinear multigrid algorithm with primal relax

ation for the image total variation minimisation. Numerical Algorithms, 41:387-

411,2006. 

[33J T. F. Chan and K. Chen. An optimization-based multilevel algorithm for total 

variation image denoising. SIAM Journal on Multiscale Modeling and Simulation, 

5(2):615-645, 2006. 

[34J T. F. Chan, K. Chen, and J. L. Carter. Iterative methods for solving the dual 

formulation arising from image restoration. Electronic Transactions on Numerical 

Analysis, 26:299-311, 2007. 

[35J T. F. Chan, G. Golub, and P. Mulct. A nonlinear primal-dual method for total 

variation-l?a.c;ed image restoration. Lecture Notes in Control and Information 

Sciences, 219:211--252, 1996. 

[36J T. F. Chan, A. Marquina, and P. Mulct. High-order total variation-based image 

restoration. SIAM Journal on Scientific Computing, 22(2):503-516, 2000. 

[37] T. F. Chan and P. Mulet. On the convergence of the lagged diffusivity fixed 

point method in total variation image restoration. SIAM Journal on Numerical 

Analysis, 36(2):354-367, 1999. 

173 



[38J T. F. Chan, M. K. Ng, A. C. Yau, and A. M. Yip. Superresolution image recon

struction using fast inpainting algor'ithms. Applied and Computational Harmonic 

Analysis, Special Issue on Mathematical Imaging, 23(1):3-24, 2007. 

[39J T. F. Chan, S. Osher, and J. Shen. The digital TV filter and nonlinear denoising. 

IEEE Transactions on Image Processing, 10(2):231-241, 2001. 

[40J T. F. Chan and J. Shell. Image Processing and Analysis: Variational, PDE, 

Wavelet, and Stochastic Methods. SIAM, Philadelphia, 2005. 

[41J T. F. Chan, J. Shen, and H.-M. Zhou. Total variation wavelet inpainting. Journal 

of Mathematical Imaging and Vision, 25(1):107-125, 2006. 

[42] T. F. Chan and W. L. Wan. Robust multigrid methods for nonsmooth coeffi

cient elliptic linear systems. Journal of Computational and Applied Mathematics, 

123:323-352, 2000. 

[43J T. F. Chan, H. M. Zhou, and R. H. Chan. Continuation method for total variation 

denoising problems. Advanced Signal Processing Algorithms, 2563(1):314-325, 

1995. 

[44J K. Chen. Matrix Preconditioning Techniques and Applications. Cambridge Mono

graphs on Applied and Computational Mathematics (No. 19), Cambridge Uni

versity Press, UK, 2005. 

[15J K. Chen and J. Savage. An accelerated algebraic multigrid algorithm for total

variation denoi:;ing. BIT Numerical Mathematics, 47(2):277-296, 2007. 

[46J Y. Chen, S. Levine, and M. Rao. Variable exponent, linear growth functionals 

in image restoration. SIAM Journal on Applied Mathematics, 66(4):1383-1406, 

2006. 

[47J A. Crimini:;i, P. Perez, and K. Toyama. Object removcLl by exemplar-ba:;ed in

painting. Proceedings of the 2003 IEEE Computer Society Conference on Com

puter Vision and Pattern Recognition, 2:721-728, 2003. 

[48J Jr. J.E. Dendy. Black box multigrid. Journal of Computational Physics, 48:366-

386, 1998. 

[49J M. Donate,lli. A multigrid for image deblurring with Tikhonov regularization. 

Numerical Linear Algebra with Applications, 12:715-729, 2005. 

[50] 1. Drori, D. Cohen-Or, and H. Ye:;hurun. Fragment-ba:;ed image completion. 

ACM Trans. Graph., 22(3):303-312, 2003. 

[51] R. Duits, L. FloracK, J. de Graaf, and Bart ter Haar Romeny. On the axioms of 

scale space theory. Journal of Mathematical Imaging and Vision, 20(3):267-298, 

2004. 

174 



[52J A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. 

ICCV'99: Proceedings of the International Conference on Computer Vision, 

2:1033-1038, 1999. 

[53J M. Elsey and S. Esedoglu. Analogue of the total variation denoising model in 

the context of geometry processing. SIAM Journal on Multiscale Modeling and 

Simulation, 7(4):1549-1573, 2009. 

[54J S. Esedoglu and J. Shen. Digital inpainting based on the Mumford-Shah-Euler 

image model. European Journal of Applied Mathematics, 13(4):353-370, 2002. 

[55J D. J. Eyre. Unconditionally gradient stable time marching the Cahn-Hilliard 

equation. J. W. Bullard, R. Kalia, M. Stoneham, L.Q. Chen (Eds.), Computa

tional and Mathematical Models of MiCIrostructural Evolution, 53:1686-1712. 

[56J D. J. Eyre. An unconditionally stable one-step scheme for gradient systems. Un

published article (http://www.math.utah.edu/flp/u/ma/eyre/stable.ps.gz). 1998. 

[57] A. Farcas, L. Elliott, D. B. Ingham, and D. Lesnic. An inverse dual reciprocity 

method for hydraulic conductivity identification in steady groundwater flow. Ad

vances in Water Resources, 27(3):223-235, 2004. 

[58] R. Fischer and T. Huckle. MultigTid solution techniques for anisotropic structured 

linear systems. Applied Numerical Mathematics, 58:407-421, 2008. 

[59] C. Frohn-Schauf, S. Henn, and K. Witsch. Nonlinear multigrid methods for total 

variation image denoising. Computing and Visualization in Science, 7:199-206, 

2004. 

[60J I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice-Hall, Inc., New 

Jersey, 1963. 

[61] I. Giakoumis and I. Pitas. Digital restoration of paintings cracks. Proceedings of 

the 1998 IEEE International Symposium on IEEE Transactions on Circuits and 

Systems, 4:269 -272, 1998. 

[62] M. Giaquinta and S. Hildebrandt. Calculus of Variations I, The Lagrangian 

Formalism. Springer-Verlag, 1996. 
-, 

[63] M. Giaquinta and S. Hildebrandt. Calculus of Variations II, The Hamiltonian 

Formalism. Springer-Verlag, 1996. 

[64J E. De Giorgi. Frol1tiere orientate di misura minima. Sem. Mat. Scuola Norm 

Sup. Pisa, 1960-61. 

[65] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Monographs 

in Mathematics, Vol. 80. Birkhauser, 1984. 

175 



[66J G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University 

Press; 3rd edition, Baltimore, 1996. 

[67J J. B. Greer, A. L. Bertozzi, and G. Sapiro. Fourth order partial differential 

equations on general geometries. Journal of Computational Physics, 216(1):216 

- 246,2006. 

[68J H. Grossauer and O. Scherzer. Using the complex Ginzburg-Landau equation 

for digital inpainting in 2D and 3D. Lecture Notes in Computer Sciences: Scale 

Space Methods in Computer Vision, 2595/2003:1080, 2003. 

[69J J. Gu, L. Zhang, G. Yu, Y. Xing, and Z. Chen. X-ray CT metal artifacts reduction 

through curvature based sinogram inpainting. Journal of X-Ray Science and 

Technology, 14(2):73-82, 2006. 

[70J M. Hanke. Limitations of the L-curve method in ill-posed problems. BIT, 

36(2):287-301, 1996. 

[71J P.C. Hansen. Analysis of discrete ill-posed pro~lems by means of the I-curve. 

SIAM Review, 34(4):561-580, 1992. 

[72J P.C. Hansen and D.P. O'Leary. The use of the I-curve in the regularization of 

discrete ill-posed problems. SIAM Journal on Scientific Computing, 14(6):1487-

1503, 1993. 

[73J M. T. Heath. Scientific Computing. The McGraw-Hill Companies, Inc.; 2nd 

edition, New York, 2002. 

[74J S. Henn and K. Witsch. A multigrid approach for minimizing a nonlinear func

tional for digital image matching. Computing, 64:339-348, 2000. 

[75J L. Homke. A multigrid method for anisotropic PDE's in elastic image registration. 

Numerical Linear Algebra with Applications, 13:215-229, 2006. 

[76J C.-H. Huaung and J.-L. Wu. Attacking visible watermarking schemes. IEEE 

Transactions on Multimedia, 6(1):16-30, 2004. 

[77J Y.-T. Jia, S.-M. Hu, and R. R. Martin. Video completion using tracking and 

fragment merging. The Visual Computer, 21(8-10):601-610, 2005. 

[78J W. Kahan. Gauss-Seidel Methods of Solving Large Systems of Linear Equations. 

PhD thesis, University of Toronto, Canada, 1958. 

- [79J G. Kanizsa. Organization in vision. Essays on Gestalt perception. 1979. 

[80J B. Kawohl and N. Kutev. Maximum and comparison principles for one

dimensional anisotropic diffusion. Mathematische Annalen, 311(1):107-123, 1998. 

176 



[81] S. L. Keeling and G. Haase. Geometric multigrid for high-order regularizations 

of early vision problems. Applied Mathematics and Computation, 184:536-556, 

2007. 

[82] J. Koenderink. The structure of images. Biological Cybernetics, 50:363-370, 1984. 

[83] J. Koenderink. Generic neighbourhood operators. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 14:597-605, 1992. 

[84] N. Komodakis. Image completion using global optimization. CVPR '06: Pro

ceedings of the 2006 IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, 1:442-452, 2006. 

[85] H. Kostler, K. Ruhnau, and R. Wienands. Multigrid solution of the optical flow 

system using a combined diffusion- and curvature-based regularizer. Numerical 

Linear Algebra with Applications, 15:201-218, 2008. 

[86] V. Kwatra, A. Schodl, 1. Essa, G. Turk, and A. Bobick. Graphcut textures: image 

and video synthesis using graph cuts. ACM Trans. Graph., 22(3):277-286, 2003. 

[87] D. Lesnic. Characterizations of the functions with bounded variations. Acta 

Universitatis Apulensis, 6:47-54, 2003. 

[88] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthesis 

by patch-based sampling. ACM Tram. Graph., 20(3):127-150, 2001. 

[89J T. Lindeberg. Scale-Space Theory in Computer Vi.~ion. Kluwer Academic Pub

lishers, Norwell, MA, USA, 1994. 

[90] A.E.H. Love. A Treatise on the Mathematical Theory of Elasticity. Dover Publi

cacions, Inc, New York, 1927. 

[91] M. Lysaker, A. Lundervold, and X.-C. TaL Noise removal using fourth-order par

tial differential equation with applications to medical magnetic resonance images 

in space and time. IEEE Transactions on Image Processing, 12(12):1579-1590, 

2003. 

[92] M. Lysaker, S. Osher, and X.-C. TaL Noise removal using smoothed normals and 

surface fitting. IEEE Transactions on Image Processing, 13(10):1345-1357, 2004. 

[93] R. March and M. Dozio. A variational method for the recovery of smooth bound

aries. Image and Vi.~ion Computing, 15:705-712, 1997. 

[94] L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen. Bound

ary element solution for the Cauchy problem associated to the Helmholtz equa

tion by the Tikhonov regularisation method. IV: International Symposi1Lm 

on Inverse Problems in Engineering Mechanics (ISIP2003), (ed. M. Tanaka), 

Elsevier, Amsterdam, 6:485-494, 2003. 

177 



[95] A. Marquina and S. Osher. Explicit algorithms for a new time dependent model 

based on level set motion for nonlinear deblurring and noise removal. SIAM 

Journal on Scientific Computing, 22(2):387-405, 2000. 

[96] S. Masnou. Disocclusion: a variational approach using level lines. IEEE Trans

actions on Image Processing, 11(2):68-76, 2002. 

[97] S. Masnou and J.-M. Morel. Level lines based disocclusion. Proceedings of 5th 

IEEE Inti Con! on Image Processing, 3:259-263, 1998. 

[98] Y. Matsushita, E. Ofek, X. Tang, and H.-Y. Shum. Full-frame video stabilization. 

IEEE Computer Society Conference on Computer Vision and Pattern Recogni

tion, 2005, 1:50-57. 

[99] W.-Q. Yan Mohan, W.-Q. Yan, and M. S. Kankanhalli. Erasing video logos based 

on image inpainting. Proc. Int. Con! on Multimedia and Expo ICME, 2:521-524, 

1998. 

[100] M. Nitzberg, D. Mumford, and T. Shiota. Filter:ing, Segmentation, and Depth. 

Springer-Verlag, New York, 1993. 

[101] B. O'Neil. Elementary Differential Geometry. Academic Pre~~, San Diego, 1997. 

[102] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations 

in Several Variables. Academic Pre~~, New York, 1970. 

[103] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. 

Springer 1st edition October, New York, 2002. 

[101] G. Papandreou and P. Maragos. Multigrid geometric active contour models. IEEE 

Transactions on Image Processing, 16:229-240, 2007. 

[105] K.A. Patwardhan, G. Sapiro, and M. Dertalmio. Video inpainting of occluding 

and occluded object~. IEEE International Conference on Image Processing, 2:69-

72, 2005. 

[lOG] K.A.· Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting under con

strained camera motion. IEEE Transactions on Image Processing, 16(2):545-553, 

2007. 

[107] D. Pavic, V. Schonefeld, and L. Kobbelt. Interactive image completion with 

perspective correction. The Visual Computer, 22(9):671-681, 2006. 

- [108] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7}:629--639, 

1990. 

178 



[109] P. Perona, T. Shiota, and J. Malik. Anisotropic diffusion. B.M. ter Haar Romeny 

(Ed.), Geometry Driven Diffusion in Computer Vision, Chapter 2:72-92, 1994. 

[110] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C. 

Cambridge University Press, USA, 2002. 

[111] A. Rap, L. Elliott, D. B. Ingham, D. Lesnic, and X. Wen. The inverse source prob

lem for the variable coefficients convection-diffusion equation. Inverse Problems 

in Science and Engineering, 15(5):413-440, 2007. 

[112] A. Reusken and M. Soemers. On the robustness of a multigrid method for 

anisotropic reaction-diffusion problems. Computing, 80:299-317, 2007. 

[113] F. Riesz and B. SZ.-Nagy. Functio'[!al Analysis. Dover Publications Inc., 

Reprinted edition, 1991. 

[114] L. 1. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise 

removal algorithms. Physica D, 60(1-4):259-268, 1992. 

[115] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Sci-

ence/Engineering/Math; 3rd edition, USA, 1976. 

[116] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, USA, 

2003. 

[117] G. Sapiro and D. L. Ringach. Anisotropic diffusion of multi valued images with ap

plications to color filtering. IEEE Transactions on Image Processing, 5(11):1582-

1586, 1996. 

[118] J. Savage and K. Chen. On multigrids for solving a class of improved total 

variation based titaircatiing reduction modek Image Processing Based On Partial 

Differential Equations, eds. x.-C. Tai, K.-A. Lie, T. F. Chan and S. Osher, 

82:69-91, 2006. 

[119] J. Savage and K. Chen. An improved and accelerated non-linear multigrid method 

for t~tal-variation denoising. International Journal of Computer Mathematics, 

82(8):1001-1015(15), Augutit 2005. 

[120J O. Scherzer. The use of Morozov's discrepancy principle for Tikhonov regular

ization for tiolving nonlinear ill-potied problemti. Computing, 51(1):45-60, 1993. 

[121J J. Shen and T. F. Chan. Mathematical models for local nontexture inpaintings. 

SIAM Journal on Applied Mathematics, 62(3):1019-1043, 2002. 

[122J J. Shen and T. F. Chan. Variational image inpainting. Communications on Pure 

and Applied Mathematics, 58(5):579-619, 2005. 

179 



[123] J. Shen and T. F. Chan. Nontexture inpainting by curvature-driven diffusions. 

Journal of Visual Communication and Image Representation, 12{ 4):436-449, De

cember 2001. 

[124] J. Shen, X. Jin, Z. Xiaogang, C. Zhou, and C. Wang. Gradient based image 

completion by solving the Poisson equation. Computers and Graphics, 31(1):119-

126,2007. 

[125] J. Shen, S. H. Kang, and T. F. Chan. Euler's elastica and curvature-based 

inpainting. SIAM Journal on Applied Mathematics, 63(2):564-592, 2003. 

[126] T. K. Shih, R.-C. Chang, and Y.-P. Chen. Motion picture inpainting on aged 

films. MULTIMEDIA '05: Proceedings of the 13th Annual ACM International 

Conference on Multimedia, pages 319-322, 2005. 

[127] T. K. Shih, N. C. Tang, W.-S. Yeh, T.-J. Chen, and W. Lee. Video inpainting and 

implant via diversified temporal continuations. MULTIMEDIA '06: Proceedings 

of the 14th Annual ACM International Conference on Multimedia, pages 133-136, 

2006. 

[128J T. Shiratori, Y. Matsushita, S. B. Kang, and X. Tang. Video completion by 

motion field transfer. CVPR '06: Proceedings of the 2006 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, pages 411-418, 2006. 

[129] P. Smereka. Semi-implicit level set methods for curvature and surface diffusion 

motion. Journal of Scientific Computing, 19{1-3):439--456, 2003. 

[130] N. Sochen, R. Kimmel, and R. Malladi. A general framework for low level vision. 

IEEE Transactions on Image Processing, 7(3):31O-318, 1998. 

[131J B. Song. Topics in Variational PDE Image Segmentation, Inpainting and 

Denoising, Ph.D. Thesis. CAM Report 03-27, 2003. 

[1321 R. S. Spitarcli, R. March, and D. Arena. A multigrid finite-difference method for 

the solution of Euler equations of the variational image segmentation. Applied 

Numerical Mathematics, 39:181-189, 2001. 

[133] M. Sturmer, H. Kostler, and U. Rude. A fast full multigrid solver for applications 

in image p'rocessing. Numerical Linear Algebra with Applications, 15:187-200, 

2008. 

[131] J. Sun, L. Yuan, J. Jia, and II-Y. Shum. Image completion with structure prop

agation. ACM Trans. Graph., 24{3}:861-868, 2005. 

[135] E. Tadmor. Separation and decomposition of scales in signals and images. Plenary 

talk, FoCM, City University of Hong Kong. (preprint), 2008. 

180 



[136J Z. Tauber, Z.-N. Li, and M. S. Drew. Review and preview: disocclusion by 

inpainting for image-based rendering. IEEE Transactions on Systems, Man. and 

Cybernetics, 37(4):527-540, 2007. 

[137J J. W. Thomas. Numerical Partial Differential Equations - Finite Difference Meth

ods. Springer-Verlag, New York, 1995. 

[138J A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. Wiston and 

Sons, Washington, D.C., 1977. 

[139] U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press; 1st 

edition, Orlando, 2001. 

[140] D. Tschumperle and R. Deriche. Vector-valued image regularization with PDEs: 

a common framework for different applications. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 27(4):506-517, 2005. 

[141] P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggre

gation for second and fourth order elliptic problems. Computing, 56:179-196, 

1996. 

[142J M. V. Venkatesh, S.-C. Cheung, and J. Zhao. Efficient object-based video in

painting. Pattern Recognition Letters, 30(2):168-179, 2009. 

[143J L. A. Vese and S. Osher. Numerical methods for p-harmonic flows and appli

cations to image processing. SIAM Journal on Numerical Analysis, 40(6):2085-

2104, 2002. 

[144] C. R.. Vogel. Computational Methods for Inverse Problems. SIAM, 1st edition, 

Philadelphia, PA, USA, 2002. 

[145J C. R. Vogel and M. E. Oman. Iterative methods for total variation denoising. 

SIAM Journal on Scientific Computing, 17(1):227-238, 1996. 

[146] B. P. Vollmayr-Lee and A. D. Rutenberg. Fast and accurate coarsening simulation 

with an unconditionally stahle time step. Phys. Rev. E, 68(6):066703, 2003. 

[147] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector 

quantizati~n. SIGGRAPII '00: Proceedings of the 27th Annual Conference on 

Computer Graphics and Interactive Techniques, pages 479-488, 2000. 

[148J J. Weickert. Anisotropic Di/Jusion in Image Processing. Teuber Verlag, Stuttgart, 

1998. 

[149J J. Weickert and H. Henhamollda. Why the Perona-Malik filter works? Tech

nical Report DIKU-TR-97/22, Department of Computer Sciences, Copenhagen 

Denmark, 1997. 

181 



[150] J. Weickert and T. Brox. Diffusion and regularization of vector and matrix-valued 

images. Technical Report, Preprint 58, Universitat des Saarlandes, 2002. 

[151] Y. Wexler, E. Shechtman, and M. Irani. Space-time completion of video. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 29(3):463-476, 2007. 

[152] R. Wienands and W. Joppich. Practical Fourier Analysis for Multigrid Methods. 

Chapman and Hall/CRC, Florida, USA, 2005. 

[153] S. Wise, J. Kim, and J. Lowengrub. Solving the regularized, strongly anisotropic 

Calm-Hilliard equation by an adaptive nonlinear multigrid method. Journal of 

Computational Physics, 226:414-446, 2007. 

[154] A. P. Witkin. Scale-space filtering. Pro.c. 8th Int. Joint Conf. Art. Intell., pages 

1019-1022, 1983. 

[155] C. L. Wu, J. S. Deng, W. M. Zhu, and F. L. Chen. Inpainting images on implicit 

surfaces. Pacific Graphics, pages 142-141, 2005. 

[156] H. Yamauchi, J. Haber, and H.-P. Seidel. Image restoration using multiresolu

tion texture synthesis and image inpainting. Computer Graphics International 

Conference, pages 120-125, 2003. 

[157] Y.-L. You and M. Kaveh. Fourth-order partial differential equations for noise 

removal. IEEE Transactions on Image Processing, 9(10):1723-1730, 2000. 

[158] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, New 

York, 1971. 

[159] W. Zhu and T. F. Chan. Image denoising using mean curvature. Unpublished 

article (http://www. math. nyu. edu/",wzhu/), 2008. 

182 


