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TURBULENT SHEAR FLOW RECOVERY BEHIND OBSTACLES

ON ROUGH AND SMOOTH SURFACES

SUMMARY

A turbulent shear flow recovery behind a two-dimensional obstacle
was investigated. The main experiment was performed for a turbulent
boundary-layer flow, with zero external pressure gradient in a low
speed wind tunnel. The main objective of this work was to study:

(i) the boundary-layer recovery downstream of a two-dimensional
obstacle;

(ii) the effect of the surface roughness on the mean f low'and
turbulence properties downstream of the obstacle;

(ill) the effect of the geometry of the obstacle on the recirculating
flow region near to the obstacle and on the recovery of the
flow downstream of the obstacle.

To study the flow recovery downstream of the obstacle, careful and
detailed measurements of both mean velocity and turbulence properties were
carried out at many stations in the recovery region. The study of the
effect of surface roughness was carried out by placing the two-dimensional
obstacle on different plane walls with different surface roughnesses.
Therefore, the entire experimental programme was carried out twice:

(i) for a smooth plate and (ii) for an irregularly rough surface (the
roughness was uniformly distributed over the plate). The study of the
effect of the obstacle geometry was carried out using two different
geometries for the obstacle - one being a rectangular cross-section bar
(ridge) and the other a single hump (hill). The obstacles were roughly
half the boundary-layer thickness.

The whole experiment was repeated in a fully developed turbulent flow
in smooth and rough pipes. The rough pipe was lined internally with the

same non-uniform (irregular) surface roughness. The dynamical similarity

between the wall regions of both the pipe and the boundary-layer flow was



arranged. The two-dimensional obstacles in the pipe flow were of the form
of suitably scaled internal (rectangular in cross-section) rings. No
simple-hump ring profile was used.

The measurements were carried out, in both the boundary-layer and
pipe flows, for: (i) mean velocity distribution, turbulent normal and
shear stresses downstream of the obstacle; (ii) static pressure distribution
around the obstacles and in the separated regions; (iii) turbulence spectra
and statistical properties (flatness and skewness factors) of the longitudinal
turbulent component across the shear layers and at several stations down-
stream of the obstacle.

From the above measurements, the following quantities were evaluated:
(i) wall friction and roughness function; (ii) typical boundary-layer
properties - absolute, displacement, momentum thickness, shape parameters,
mixing length and eddy viscosity; (iii) turbulence correlation coefficient
(by Fourier transforms); (iv) micro- and macro-scale of turbulence; (v) drag
on the obstacle.

It was found that'both the surface roughness and the geometry of the
obstacle affect the flow recovery downstream of the obstacle. Also it was
found that the turbulent quantities/ — \/ e, and the shear stress ag
need more distance downstream of the obstacle to recovery than the mean
velocity. In the boundary-layer flow, the boundary-layer thickness was
increased by about 30# for the rough plate and by about 50# for the smooth
plate due to the presence of the obstacle. This increase in boundary-layer
thickness affects the value of the displacement and the momentum thickness
5 and 9 as well as the shape parameter H. It was found that the shape
parameter was reduced by about 10# below the value of H for the rough and
smooth plate without the obstacle. In the pipe flow the recovery of the
flow downstream of the obstacle occurred at about half the distance needed

for the flow recovery in the boundary-layer flow.



A theoretical investigation was carried out to predict the flow around
and downstream of the rectangular cross-section bar (ridge). The main
flow was divided into two regions: (i) the recirculating flow region which
extends from 5 obstacle height upstream to 15 obstacle height downstream
of the obstacle and (ii) the boundary-layer region which prevails in front
of the obstacle and beyond the recirculating flow region. The stream
function ip and the vorticity a were the dependent variables in the present
investigation. The two equations k - e turbulence model was applied in
order to specify the turbulent viscosity y+. A finite difference technique
(Gosman et al (1969)) were used to solve the governing, partial differential
equations. A fair agreement was found between the predicted mean velocity
and kinetic energy and the experimental measurements for the smooth plate

as opposed to the rough plate.
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CHAPTER |

INTRODUCTION

.1 GENERAL

The behaviour of a turbulent boundary layer perturbed from its
equilibrium state has been the subject ofseveral investigations in recent
years. For the purpose of experimentation there are two methods of
introducing the perturbation into the equilibrium turbulent boundary
layer. One by means of a sudden change of pressure gradient or of wall
roughness, and the other by means of the introduction of an obstacle into
the flow or by the application of injection or suction over a short
distance of the wall. In the first method, the boundary layer will change
from one equilibrium state to another. In the second method the boundary
layer gradually returns to equilibrium as the perturbation declines to a
negligible level. Thus the processes that can be usefully studied by the
two methods are the response of the boundary layer to a stepwise perturbation,
as in the second method. Perturbations are applied to thewal | as changes
in surface conditions and to the free stream as step change in pressure
gradient. Perturbations at the wall; previous researchers have been
concerned with the response of a turbulent boundary layer to a step change
in surface roughness (e.g., Townsend (1965),(1966); Bradshaw, Ferriss and
Atweel (1967} Antonia and Luxton (1971)).

An important type of flow, and an obvious target for extension of the
study, is the type of strongly perturbed shear layer (perturbations strong
enough to invalidate the boundary-layer approximations. The most common
perturbations of this sort are those involving separation and reattachment,
which occur when an obstacle is placed on a wall along which a turbulent

boundary layer has developed. There have been many investigations of this



type of flow: Tillman 1945, Muellie.rand Robertson 1963, Good and Joubert
1968, and later by Mlkio et al 1975, for an individual roughness element
attached to a smooth surface. Most of these investigations have been
concerned with the correlation between the pressure and the drag force
acting on the obstacle and the local characteristies of the smooth-wall
turbulent boundary layer in which the obstacles were immersed, but a few
experiments on boundary layer recovery, after reattachment, all are some-

what incomplete.

| .2 REASONS FOR THE PRESENT INVESTIGATION

The flow about obstacles attached to a plane wall is of great
practical importance in connection with such diverse applications as the
wind loadon man-made structures on the ground, the oscillation character-
istics and noise of the high-speed vehicles. The structure of the separated
eddies behind the body are also of practical importance, especially as the
structure of the near wake behind the body is closely related to the
shielding effect of the body and the diffusion of heat or mass at the rear
of the body. In recent years, this problem has received considerable
attention in connection with the diffusion of radioactive release from
atomic-energy power plants. Moreover, the knowledge about the mean and
turbulent properties in the separated eddies is required to estimate the
behaviour of the exhaust fumes from automobiles on roads in built up areas
of towns and cities. Whereas the wake behind an immersed body is of basic
importance in such professions as marine engineering: Lackenby (1962), in
a review of the ship resistance, underlined the importance of this situation
which was produced on the hulls of ships by welded and riveted seams. The
review includes estimates made by Allan and Cuttand of the effects of
roughness on an Atlantic liner (length 294m, speed 29 knots). They showed

that there was an increase of 37% in the total resistance due to riveted



seams and only \{% for welded seams.

There have been many measurements of wakes behind two-dimensional
obstacles in turbulent boundary layers. Almost all of it has been made
for smooth surfaces, while fev?/E\econcerned with regular rough surfaces.

In practice the results are of limited use to the engineer who is
confronted with a flow problem associated with a natural ly-rough surface,
which may be due to manufacturing processes, deterioration or surface
coating, as might be found on a corroded plate or on the inside surface
of a concrete pipe line.

With these thoughts in mind, an experimental and theoretical investig-
ation has been carried out to study:

(1) the recovery of a turbulent shear flow downstream of a two-

dimensional obstacle;

(2) the effect of irregular surface roughness (uniformly distributed
over the plan wall) on the mean flow and turbulence properties
downstream of the obstacle;

(3) the effect of the geometry of the obstacle on the recirculating
flow region and the recovery of the flow downstream of the
obstacle;

(4) the possibility of predicting the flow around and downstream of

the obstacle.

It appears more practical, mathematically and experimentally, to
investigate the simpler forms of turbulent shear flow - such as fully
developed pipe and channel flow-,rhsetudy of these simpler flows may lead to
better understanding of the behaviour of the turbulent boundary layer.
Therefore, the experiments have been repeated within the present project
for smooth and rough pipes, to study the effect of a two-dimensional obstacle

on the fully developed turbulent pipe flow.



.3 THE PRESENT INVESTIGATION

There have been many measurements of wakes behind two-dimensional
obstacles in turbulent boundary layers, both in wind tunnel and in the
natural wind. However, the purpose of these measurements has usually
been practical rather than scientific and in particular, no detailed
turbulence measurements behind a two-dimensional obstacle on an aero-
dynamical ly rough surface have been published. Counihan, Hunt and
Jackson (1974) studied a two-dimensional obstacle attached to a rough
surface, but the roughness they used was the type of regular form
(lego sets). In the present investigation, the rough-surface has the
property of the irregularity of the distribution of the roughness over
the area of the plane. To study the effect of a two-dimensional obstacle
attached to the irregular rough surface, two different obstacles have been
used: one of a rectangular cross-section bar and the other has the shape
of a simple-hump (hill). The obstacles have been roughly half the boundary
layer thickness. The present investigation describes the mean flow and
turbulence characteristics downstream of the obstacle. The experiments
have been repeated for a smooth surface and the respective results are
compared and discussed.

The relevant literature is presented in Chapter 2. In Chapter 3 the
wind tunnel and the pipes used in the present investigation are described,
as well as the instruments and the equipments. The two-dimensional
obstacles used for the turbulent boundary layer and pipe flows experiments,
the method of investigations and the basic equations to determine the
characteristics of the flow downstream of the obstacle are also presented
in Chapter 3.

The results of the wind tunnel experiments and the pipe flow
experiments are presented in Chapter 4 and 5 respecitvely. Finally, the

theoretical study and the numerical solution of the problem are presented



in Chapter 6. The conclusions deduced during the whole invest gation

together w th the suggestions for future work are presented in Chapter 7.
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CHAPTER 2

SURVEY OF LITERATURE

2.1 INTRODUCTION

The flow of an Incompressible fluid over a bluff body is one of
the basic problems repeatedly drawing the attention of many research
workers. Especially, prediction of the drag and lift forces acting on
a body concerned is of great importance for practical purposes. There-
fore, a considerable effort has been devoted to this subject. The major
part of this effort is concerned with two-dimensional bluff bodies
located in a uniform stream of infinite extension. Because of its complex
nature, the flow around bluff bodies which are attached to a plane wall
still remain in the category of diffcult and interesting problems to
be further investigated. Recently the problem of reattachment and re-
development of boundary layers downstream of a separated region become
greatly intensified.

Since the present investigation had as its objective the study,
experimentally and theoretical Ily*fthe effect of two-dimensional, transverse,
blunt obstacles placed on an irregularly rough plate, the literature was

surveyed considering the experimental and theoretical investigations.

2.2 EXPERIMENTAL INVESTIGATIONS

Experimental investigations of the flows over two-dimensional
obstacle have been made for several geometries which are shown in
Figure (2.1). They include an obstacle of square cross-section (Tillman
(1945) and Arie et al (1975)), an obstacle that is fully surrounded by
fluid (Arie and Rouse (1956)); a backward facing step (Tani et al (1961)),
a wedge (Mueller and Robertson (1963) and Bradshaw and Wong (1972)), a

a forward facing step (Bradshaw and GAlea (1967)), and a sharp edged normal



plate (Plate (1964), Good and Joubert (1968), and Sakamoto et al (1977))
mounted downstream of the leading edge of a flat plate.

The characteristics of the flow over a two-dimensional obstacle
can be described for five regions illustrated in Figure (2.2).

In the far upstream region 1, a boundary layer on the plate develops
normally and is uninfluenced by the obstacle. In the near-upstream
region 2, an adverse pressure gradient will be produced by the deflection
of the flow by the obstacle. The boundary layer will be forced to
separate from the plane wall and will reattach on the front face of the
obstacle, thereby enclosing a front separation bubble. The flow inside
this separation bubble is steady (Good and Joubert (1968)). At the edge
of the obstacle the flow separates, and if the mean flow is steady, the
streamline which separates from the edge of the obstacle will reattach
on the plane wall downstream of the obstacle. Arie and Rouse's (1956)
experiments indicate that the rear separation bubble region 3, will be
gquite long; the bubble behind an isolated bluff plate with a downstream
splitter was 17 plate-heights long. In the mid-downstream region 4,
which starts at the reattachment line, the boundary layer recovers slowly
from the disturbance caused by the obstacle. In the far-downstream region
5, the boundary layer returns to its normal undisturbed behaviour, but it
has a greater thickness than the boundary layer which has developed along
the plate in the absence of an obstacle.

From an experimental aspect, the most accessib leparts of the down-
stream flow are regions 4 and 5 where no reverse flow exists. Thus reliable
measurements of axial mean velocity are possible using a simple pitot tube,
and turbulent quantities can be measured by a hot wire-anemometer.

Flow past an obstacle that is fully surrounded by fluid differs in

several ways from the above described flow. The formermay be considered



to lie in the path of essentially irrotational flow, where as later

will be immersed in a boundary layer of indefinite thickness. And

the flow in the wake of an isolated plate is free to oscillate about
the plane of symmetry, whereas such oscillation is wholly prevented in
the vicinity of a rigid longitudinal boundary. Arie and Rouse (1956)
considered a situation in which a sharp-edged plate was exposed to
uniform normal flow, but the vortex shedding was suppressed by attaching
a splitter plate at the mid-height of the back of the plate as shown in
Figure (2.1b). The total height, 2h, of the normal plate was 76mm, and
the length of the splitter plate, 20h, exceeded the length of the
recirculation zone to prevent eddies above and below the splitter plate
from joining. The quantities measured in this experiment were the
surface pressure on the normal plate, the mean velocity components, U and
V, the Reynolds stresses u2, v2, w2, and uv, and the static pressure
distribution within the flow behind the plate. The results of the
Reynolds stresses showed the region of maximum turbulence and maximum
shear to coincide at the outset with the mean streamline isolating the
main flow from that in the zone of recirculating flow. The pressure
results showed that the drag coefficient of this arrangement (Cq = 1.4)
was only two-thirds that of the isolated normal plate (C = 2.1), and
the pressure coefficient on the forward face of the normal plate with a
splitter plate (Cp = -0.57) was less than half that (Cp = -1.56) for the
isolated plate. Such reduction in drag and pressure drop was corresponding
to a considerable difference in the length of the mean eddy zone.

Tani et al (1961) carried out an experimental study for the flow
downstreamoFabackward-facing step, Figure (2.1c). The step had an
adjustable height (up to 6 cm) made on one side of a flat plate at a
distance of 80 cm from the leading edge. The flat plate was spanned

across a test section of a low-speed wind tunnel. Measurements of the



static pressure distribution on the step face and on the bottom
surface of the plate showed that the pressure distribution was rather
insensitive to the change in the step height as well as in the thickness
of the approaching boundary layer. In all cases, there was a negative
pressure on the step face (negative base pressure), followed initially
by a slight drag in pressure downstream of the step, and then by a
rather rapid rise of pressure indicating the reattachment of separated
flow. The distributions of turbulence intensity u2 and turbulent shear
stress -Puv showed the same behaviour as in Arie and Rouse (1956)
results in the recirculating zone. The turbulence and shear stress were
increased downstream in the mixing region and that the positions of
maximum turbulence and maximum shear stress approximately coincide at
the outset with the mean dividing streamline, but deviate outwards as the
reattachment was approached. The reattachment line for different step
height was at x/h =7. All measurements have been carried out only to
some distances near the reattachment, and no measurements made in the
region of the recovery of the flow downstream of the reattachment.
Bradshaw and Galea (1967) used the normal step flow as means for
studying the turbulent boundary layer developing towards separation under
a strong adverse pressure gradient caused by the step. The step used
in their experiment is shown in Figure (2.1d). A low speed wind tunnel,
with step height equal 1.75 times the initial boundary-layer thickness
has been used to study the response of the equilibrium turbulent boundary
layer approaching upstream of the step. The measurements have been made
only for the total pressure, static pressure, and surface shear stress
upstream the step and on the step face. The surface pressure gradient
decreased considerably just before the separation because of the effect
of the increasing displacement thickness on the outer flow. After

separation, the pressure gradient continues to decrease and becomes
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negative. Very near the step the pressure started to increase rapidly
again. This behaviour was consistent with the presence of a layer of
reversed flow, emanating from reattachment point part way up the step,
turning abruptly at the bottom of the step and then being gradually
re-entrained into the separated shear layer. The surface shear-stress
also decreased linearly to the value almost zero at the separation
point. The point of separation occurred at 1.2 step height upstream of
the step.

A similar flow as the one of downstream backward step is that
around a wedge mounted on a plane wall with its vertical face backward.
Bradshaw and Wong (19T2) carried out experiments on a low speed flow
downstream a wedge to demonstrate the complicated nature of the flow
in the reattachment region, and its effect on the slow non-monotonic
return of the shear layer to the ordinary boundary layer state. The study
carried out for both, the immediate response to the perturbation, and
relaxation back to the thin shear layer state. They defined three
strengths of perturbations:

(i) A weak perturbation; the velocity and length scales of the f?ow
are altered without significant change inthe dimensionless properties of
the turbulence structure.

(ii) A strong perturbation; the turbulence structure is significantly
altered and thin-shear layer calculation methods could not predict the
flow.

(in ) An overwhelming perturbation; the shear layer changes to one of

a different species, as in the change of a boundary layer into a wake or

mixing layer.



The authors classified those strengths in terms of h/6 (where h is
the height of the obstacle and 5 is the boundary-1ayer thickness). The
strength of the perturbation in the BradsKaw and Wong experiment was
strong and the conventional boundary-layer calculation methods were
inapplicable for many boundary-layer thickness downstream of the
reattachment. The velocity profiles presented in their experiments do
not follow the logarithmic inner law, not only in the region close to
the reattachment, but for many boundary layer thicknesses downstream.

The measurements have been made only of the mean velocity distribution
downstream the reattachment. The turbulence measurements have been made
at one position (x/h = 10), and no further measurements have been carried
in the region of the redeveloping of the flow. The reattachment point
took place at x/h = 6 downstream of the step and the last measurements
were at x/h = 52.

The more difficult perturbation in boundary layer flow is the one
shown in Figure (2.2), which involves two separation regions. The first
separation zone is upstream the obstacle, and the other is the separation
of the flow at the top edge of the obstacle. If the obstacle has a finite
width (as a rectangular cross-section obstacle) the separation of the flow
will occur at the top edge of the obstacle and the separated stream line
will either reattach on the top surface, or downstream the obstacle on the
plane wall.

A detailed study of the flow over a sharp-edged obstacle mounted
normal to a flat plate was made by Good and Joubert (1968). The experiment
was performed mainly for the condition of zero external pressure gradient.
The quantities measured included the static pressure distribution and
velocity profiles in the whole flow field of Figure (2.2) and the surface

pressure distributions on the front face of the normal plate and along the



flat plate. Good and Joubert showed that the drag coefficient of the
obstacle and the surface pressure on the front face could be correlated

by the independent, dimension less parameter ~ > — , and -"2.,, where

Ua> 5 v

uQ is the friction velocity and IV is the free stream velocity, both
measured at the obstacle position in the absence of the obstacle. The
wall-similarity correlation obtained for the pressure on the front face
of the normal plate (which was independent of the pressure-gradient
hisotry of the boundary layer) indicated that the separation process
upstream of the normal plate was sufficiently rapid to be of the type
postulated by Stratford (1959) and Townsend (1960), (1962).

For the values of plate height h, to boundary layerthickness <
ratio less than 0.5, the obstacle was immersed in a thin layer where the
law of the wall was valid and the drag coefficient then followed a
logarithmic behaviour. For larger h/S , the outer part of the velocity
profile deviated from the logarithmic law and then CD deviated from the
logarithmic behaviour. For zero pressure gradient flows, the correlations
obtained allow the form drag, and the actual pressure distribution on the
normal plate, to be predicted from a knowledge of the thickness and wall
shear stress of the reference profile. The velocity distributions at
different stations, upstream anddownstream of the normal plate were made.
Unfortunately these results were made for height of the normal plate more
than the boundary-layer thickness. No attempt was made to measure the
turbulent characteristics downstreamof the obstacle.

Sakamoto, Mariya and Arie (1975) re-examined the flow over a sharp-
edged normal plate attached to a long flat plate, in a field of zero
external pressure gradient. Measurements of the surface pressure
distributions, static pressure, mean velocity and drag forces acting on

the normal plate confirmed the general features shown by Good and Joubert,
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but showed a .number of detail differences. Sakamoto et al's results
reproduced the wall similarity law for the drag coefficient, but showed
that a logarithmic variation of Cq with h/5 was applicable upto h/5 = 1.2,
compared with Good and Joubert's limit of h/S = 0.5. Normalised pressure
distributions measured on the front face for 0.21 £ h/5 $ 2.13 showed
an even smaller dependence on Reynolds number than the results obtained

by Good and Joubert. The corresponding surface pressure coefficients
satisfied the wall law behaviour over the whole range of h/5 tested for
values of y/h less than approximately 0.7, in accordance with Good and
Joubert's findings. Sakamoto et al attributed to the discrepancies between
their own results and those of Good and Joubert to the existence of
significant flow blockage in the earlier work.

In support of the conclusions of Sakamoto et al, Ranga and Plate (1976)
carried out experiments to study the relation between the form drag on a
two-dimensional sharp edged normal plate and the properties of the turbulent
boundary layer. The measurements were performed at zero pressure gradient
of velocity profiles along smooth, rough and transitional flat plates.

They found that after suitable blockage corrections all form-drag coefficients
collapsed on a single curve, if they were calculated with the shear velocity
as the reference velocity, and plotted against the ratio of the obstacle
height to the characteristic roughness parameter of the approaching flow.
Ranga and Plate corrected the results obtained by Good and Joubert (1968)

for the blockage effect using the formula deduced by Ranga Raju and

Garde (1970).

cD =cD (I - h/g)2*85 (2.1)
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Sakamo+o et al (1977) extend their experiments, carried out in (1975),
to study the flow around two-dimensional sharp-edged plates attached to
a plane wall at different inclinations to the flow. Their experimental
data were collected to investigate the effects of (i) inclination of the
plate to the flow, (ii) the characteristic of the smooth wall boundary
layer in which the plates were immersed, and the pressure forces of the
inclined plates. Further, they examined the flow patterns around the
inclined plate. The correlations were obtained between the variation of
pressure forces and the inclined plate length h, which was analogous in
form to the law of the wall of a boundary layer velocity profi le.

Most of the obstacles used in the above experiments were of a sharp
edged normal plate, .whereas obstacles in most practical cases have a
considerable thickness. Although the data on the thin normal plates
immersed in the turbulent boundary layer may be used as a basic information
in this case, the quantitatively correct values of the drag coefficient
cannot be estimated from the data of the plate, since the interaction of
the separated flow with the after-part of the bodies is not included in
the case of the plate. To study this type of flow Mikio et al (1975a)
investigated experimentally the pressure distribution on a two-dimensional
rectangular cylinder immersed in a turbulent boundary layer, over a
smooth wall.

The rectangular cylinders, with variouswidth-to-height ratios, were
chosen in this investigation as a representative shape of the bodies which
have respectively an after-part behind the fixed separation point.

The pressure distribution and the drag on the rectangular cylinder
were correlated with the characteristies of the smooth-wall turbulent
boundary layer in which the cylinders were immersed. The correlations
obtained were similar in form to the law of the wall for the boundary

layer velocity profile.
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= Ajib/h) 1log1Q + Q1 (b/h) (2.2)

where h is the height of the obstacle, b is the width and the values of
Ai and Bi are functions of b/h alone.

As continuation of the last paper, Mikio et al (1975b) described
the flow patterns around the rectangular cylinders immersed in a turbulent
boundary layer. The distributions of the mean velocities, static pressures,
longitudinal turbulence intensities and stream functions around the
rectangular cylinder with b/h = 2.0 and 4.0 were clarified. The geometrical
shape of the rear standing vortex and the reattachment points of the
separated flows were also determined. The general shape of the static-
pressure distribution was similar to that reported by Good and Joubert
(1968). The reattachment point for the ratio of b/h = 2 was at x/h = 9,
downstream of the obstacle. The measurements of the mean velocity profiles
and the turbulence intensities were measured only for a few stations down-
stream the reattachment points and no measurements were made to study the

recovery of the flow (region 5 in Figure (2.)).

2.3 THEORETICAL INVESTIGATIONS
2.3.1 Review of Approximate Analytical Methods

Analytical methods reported in the literature can be divided into two
groups. In the firstgroup, conformal mapping of the velocity potential
and stream function are used to obtain stream lines and the pressure
distribution around a bluff body; this method is limited to two-dimensional
flows. The second group contains methods of analyzing the downstream wake
region by solving the linearized equations of motion, assuming small
perturbations of the velocity field. These methods have been applied to

two- and three-dimensional flows.
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The theoretical method developed by Kiya and Arie (1972) was based
on a mapping procedure in the complex z-plane. To predict the pressure
coefficient on the front surface of an obstacle attached to a flat plate,
the non-uniform velocity profile typical of a two-dimensional wall
boundary layer (a gradual velocity variation in the outer flow and a
steep velocity gradient near the wall) was modelled by a linear velocity
profile in the outer flow starting from a non-zero velocity at the wall.

The theoretical results for pressure distribution were compared with
the measurements of Good and Jouberf (1968) and satisfactory agreement
was obtained, although the theory included three or four constants which
should be determined on the basis of the experimental information. The
number of constants depending upon the shape of the obstacle.

Sakamoto, Mariya and Arie (1975) used a similar theoretical model to
predict the pressure distribution and separation streamline for the same
situation. In their theory, the front separation bubble, which was
predicted by Kiya and Arie, was replaced by a potential vortex. Although
this modification simplified the analysis, it introduced a fourth empirical
parameter which had to be fixed by experimental conditions. The pressure
distribution on the obstacle obtained by this analysis showed good agreement
with the authors' own experimental results.

Fol lowiing the approach used by Steiger and Bloom (1963) arid Kuo and
Badwin (1966) for the prediction of the far-downstream region of three-
dimensional turbulent free wakes, Sforza and Mons (1970) applied such a
theory to calculation of a wall wake. Their main interest was to describe
how wake-like disturbances from two- and three-dimensional obstacles
attached to the leading edge of a flat plate affected the development of
the boundary layer along the plate. The linearized equations were used
to calculate the velocity defect, defined as the difference in velocity

between the undisturbed boundary layer profile and the disturbed profiles
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in the wake of the obstacle. The theory used an eddy viscosity which was

a function of the streamwise coordinate only, but weighted in the three-

dimensional case by a factor proportional to the obstacle dimensions in
*

the cross-stream direction. The predicted velocity defect profiles

normal to the plate, and in the three-dimensional wake transverse to

the plate, were in good agreement with experiments.

A theory for the flow behind two-dimensional and three-dimensional
obstacles immersed in a turbulent boundary layer on a plane surface
(h << 5 ) has been developed and tested by Hunt (1971, 1974, 1980),

Smith (1973), Counihan, Hunt and Jackson (1974), Castro and Robins (1977).
The objectives of the theories are to predict the distributions of the
velocity defect, shear stress and turbulent intensity in the wake, and to
relate the velocity defect to the forces on the obstacle. A relation for
two-dimensional obstacles was first obtained by Hunt (1971) in Ilaminer flow.
A modification of this theory, in which some terms were simplified, was
discussed by Smith (1973).

Counihan et al (1974) presented a theory for turbulent flow behind
a two-dimensional body in a thick boundary layer. This was based on
the following assumptions:

(i) hS << h < 5 , where hs , hand & are respectively the
heights of the roughness elements (the mean height of the irregular rough
surface in the present investigation), the body whose wake is to be studied
and the boundary layer.

(i) Sufficiently far downstream of the body the velocity returns to
its value in the undisturbed boundary layer, defined as (U(y), V(y), 0).

(i) The mean velocity profile, U(y), in the upstream boundary layer

can be described by a power law

1U(y) = Uo (y/5)n (2.3)



-18-

Near the wall, a logarithmic profile is assumed

N\

0
Uy) = fn (y/y6) (2.4)
where yQ = the roughness length.

(iv) Far downstream of the body the small perturbations to the
incident flows caused by the body can be divided into three regions
namely: (a) a wall region (W in which it is assumed that turbulent
energy production locally balances dissipation; (b) an adjacent mixing
region (M) where the perturbation flow is self-preserving; and (c) an
external disturbed region (E) generated by Wand M, which can be regarded
as inviseid perturbation of the boundary layer flow. In regions (M) and
(E) the mean velocity and the mean stresses can be expressed as the sum
of an undisturbed mean values and a perturbation values.

Counihan et al predicted that the mean velocity defect would show
self-preserving profiles in which the perturbation velocity decays axially
as (x/h)-'. This self-preservation was confirmed by their own experiments
and by the results of Plate and Lin (1965) which involved a different
wall roughness and Reynolds number. The predicted behaviour was also
supported by the experiments of Sforza and Mons (1960) even though in their
case the obstacle was attached to the leading edge of a smooth flat plate,
rather than downstream of the leading edge.

Castro (1979) presented detailed measurements in the wakes behind
two-dimensional square section blocks mounted in thick wall boundary layer
for cases in which h/5 << I. The experimental data have been compared
with the theoretical predictions of Counihan et al (1974). Castro found
that, whilst the Counihan et al theory correctly indicates the way in
which the wake decay changes with the upstream flow characteristics, was

sufficiently realistic to give good predictions of the total flow downstream
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of reattachment. The mean velocity perturbations decay initially like
(x/h)-1, as predicted by the theory, but this decay rate gradually
decreases with increasing distance downstream. In the wall region the
flow recovered rather more rapidly than elsewhere, in contrast to the
theory, and in fact, at a rate which did not seem to depend strongly on
the outer flow.

From this review of theoretical treatments of bluff body flows, it
is clear that theirapplicability is very limited. The theory of Counihan
et al (1974) can describe cross-stream profiles and streamwise decay of
the mean velocity defect in the far wake behind bluff bodies in turbulent
boundary layers. The theories do not, however, adequately describe the
distribution of shear stress and turbulent intensity across the wake.
Postential flow situations using conformal mapping have been applied to
the flow immediately upstream of a two-dimensional bluff obstacle, but
these methods fail in the downstream wake region. The theories developed

are also not applicable to other geometries without major modification.

2.3.2 Review of Numerical Methods

Most of the numerical methods applied to the flow around a two-
dimensional obstacle were made for a laminar flow. The studies of
Greenspan (1969) and Friedman (1972) considered steady, incompressible,
laminar flow over a thick rectangular obstacle mounted on one wal | of a
plane channel. Greenspan solved the equations of motions using the stream
function, i) and vorticity, to, as dependent variables. He predicted the
flow for several ratios of obstacle height to channel height and several
Reynolds numbers, found that careful choice of finite difference grid
distribution was necessary to secure convergence of the solutions.
Freidman modified Greenspan's numerical scheme to extend the range of

Reynolds numbers for which convergence could be obtained.
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Kiya and Arie (1973) investigated the laminar far wake behind a
symmetrical two-dimensional body placed in a uniform shear flow. They
solved the equations of motion using the stream function, and the
vorttcity, @ , as dependent variables. The solution was different from
that used by Greenspan (1969), instead of the finite difference method
tf)ey used the Oseen type of successive approximation, in which the shear
was regarded as a small perturbation on a uniform stream. The expression
for the stream function was determined up to the third approximation
both in and outside the wake region. The stream function was found to
contain four constants which cannot be determined from the boundary
conditions for the far wake.

Numerical solution of the Navier-Stokes equations, for two-dimensional
viscous flow past semicircular and semiel liptical projections attached to
a plane wall was presented by Kiya and Arie (1975). Numerical solutions
were obtained for the range 0.1 - 100 of the Reynolds number, which was
defined in term of the approaching velocity at the top of the obstacle
and its height. They assumed that the flow was laminar and the height
of the obstacle was so small in comparison with the local boundary layer
thickness that the approaching flow could be approximated by a uniform
shear flow.

For a turbulent boundary layer flow Taulbee and Robertson (1972)
investigated such flow toward a normal step. They treated the flow of a
turbulent boundary layer into a step as a rotational flow one. The
frozen vorticity theory (Robertson (1965)) was used in their investigation.
The solution for the stream function and the vorticity was obtained by a
successive approximation finite difference method. The thoery used by
Taulbee and Robertson predict only the flow pattern upstream the step,

but it does not predict the behaviour of the turbulence properties.
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From the above review if can be seen that the computation of
laminar recirculating flows is possible by the simultaneous solution of
the Navier-Stokes and continuity equations in finite difference form.
In addition to the obvious difficulties imposed by limited computational
facilities, these early solutions were also confined to low flow rates
due to numerical instability at higher Reynolds numbers. This limitation
has recently been eliminated however, following the development by
Gesman et al (1969) and others of improved numerical methods which yield
stability and rapid convergence for any Reynolds number. On the other
hand, methods for calculating turbulent boundary layers and other thin
shear layers are now sufficiently realistic and reliable - Bradshaw et al
(1967),-Patankar and Spalding- (1967), (1972)' and Nee and Kovasznay (1969) -
for useful attempts to be made to calculate the more complicated flows.
There are a number of accurate numerical procedures, mostly finite
difference techniques, which have been shown to be successful, and most
of the difficulties associated with such predictions relate directly to
the lack of total physical understanding and consequent inadequacies in
the various turbulence models used. However, in the case of complex
turbulent flows, defined as those which fail to satisfy the boundary layer
approximation, and which are, therefore, in general elliptic, the situation
is not so clear. It is generally recognized that only methods based on
modelled forms of the full transport equations are likely to have sufficient
physical content to be able to cope with complex flows. Although such
models are now being developed - Hanjalic and Launder (1972) and Launder
et al (1975) - they have as yet only been extensively tested for the
calculation of thin shear flows or, at least, flows which are essentially

parabolic; their adequacy for more complex flows remains to be demonstrated.
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Vasllic-Melling (1976) solved numerically flows over two- and
three-dimensional rectangular obstacles. The method of the solution
consisted of a finite-difference procedure for solving the elliptic
form of the momentum equation, and two additional conservation equations
for the turbulence Kinetic energy and dissipation rate, with the continuity
equation. The particular method used was similar to that described by
Patankar and Spalding (1972), for solving two- or three- dimensional
elliptic equations using velocity and pressure as the main dependent
variables. The specific situations examined were two-dimensional turbulent
flows over a sharp edged normal plate or square cross section obstacle
mounted normal to a flat plate, and three-dimensional flow over a surface-
mounted cubical obstacle, oriented with one face perpendicular to the
direction of flow. Predictions of two-dimensional flow were compared with
measurements of the streamwise velocity component, static pressure, surface
pressure and turbulence Kinetic energy reported by some previous researchers
No measurements were made downstream of the square cross section obstacle
to compare the predicted flow with such measurements. Instead Vasilic-
Meiling (1976) made the comparison with Good and Joubert (1968) measurements
downstream of a sharp edged normal plate which is different in geometry
from an obstacle which has a finite thickness as the one mentioned above.
Also, the obstacle he used was partly immersed in the boundary layer which
is different than the present investigation.

The accuracy of a numerical prediction rests, however, not only on
the excellence or otherwise of the turbulence model but, even more basically
on the accuracy of the numerical techniques used to solve the equations
which embody the model. Castro (1979) discussed the numerical accuracy
of a finite difference technique typical of many used for the calculation

of elliptic turbulent flows. He investigated both analytically and by
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direct comparison between prediction and experiments the size of the
inevitable truncation terms. Flow down a rearward-facing step and

over a two-dimensional obstacle was investigated. A different mesh

size was used to performing grid dependency check. In the flow down a
rearward-facing step the effect of mesh spacing on mean velocity was
small, and the reattachment point was only about 16$ further downstream
for the finest grid than for the other grids. While for the flow down-
stream,of atwo-dimensional obstacle (sharp edged normal plate attached to
a plane wall), the point of reattachment was very sensitive to the mesh

size in the region of recircul ating flow.

2.4 CONCLUSIONS
The survey of experimental data for flow over bluff bodies revealed
extensive information for surface pressure, but comparatively little for
other quantities (velocity and turbulance intensity) of interest for
prediction procedures. At the same time, most of the experimental work
has been carried out for two- or three-dimensional obstacles attached to
a smooth surface is different from that actually found in the natural ground.
The theoretical treatments of flow around obstacles are basically
concerned with regions upstream and far downstream of the obstacle.
Analytical methods (Kiya and Arie (1972); Sakamoto et al (1975)) based on
conformal mapping have been proposed for two-dimensional flow over obstacle,
but they predict only the upstream flow and are not adaptable to other
geometries. The other thoeries based on perturbation methods (Hunt (1971);
Counihan et al (1974)) have been developed for the wake region downstream
of the obstacle. These, however, cannot be applied to the recirculating
region in the separation flow near the obstacle since the disturbances of
flow properties caused by the body are too large to be treated as linear

perturbations.
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The numerical solution, most finite difference techniques have been
shown to be successful for prediction of such flows. In the present
investigation the finite difference technique was employed to predict
the flow around the obstacle and downstream of the obstacle. The flow
domain can be divided into two regions; the recirculating flow region

and a boundary flow region downstream of the separated flow.
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CHAPTER 3

APPARATUS ANO EQUIPMENT

3.1 APPARATUS
3.1.1 Wind Tunnel

The measurements were made in an open circuit wind tunnel. The
tunnel had a 122 cms. wide x 61 cms. deep x 366 cms. long working section.
The turbulence level at the centre line of the working section was 0.7
percent at a free stream velocity of 21 m/s.

An axial flow fan driven by a 50 HP squirrel cage induction motor was
forcing the air to the wind tunnel entry. In order to obtain a condition
of zero pressure gradient along the plate, the passage between the tunnel
top wall and the plate was made sufficiently divergent to offset the
natural fall in pressure due to boundary-layer growth. This was accomplished
by an adjustable top wall which could be positioned by screws threaded into
the tunnel roof. This adjustment was repeated after placing the obstacle
inside the wind tunnel, to satisfy the condition of zero pressure gradient
in the whole experimental programme.

Figure (3.1) shows a diagrammatical sketch of the wind tunnel used in

the present investigation.

3.1.2 Rough and Smooth Plates

A 367 cms. long x 122 cms. wide, and 0.635 cms. thick hardboard was
used as a flat plate. A sheet of abrasive paper of grade 16, was affixed
to the plate and mounted on the floor of the working section of the wind
tunnel. In order to avoid any effect on the starting boundary-layer thick-
ness, a small rounded wooden piece was mounted parallel to the leading

edge of the rough plate.
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The wind tunnel was designed with a smooth floor made of a sheet of
formica. This smooth floor was used for the smooth plate experiment.

The dimension of the plate was 360 cms. long and NO cms. wide.

3.1.3 Dimensions of the Two-Dimensional Obstacles
(RIDGE and HILL)

Two obstacles of different cross-sections were used in the present
investigation: one was a rectangular cross-section bar known henceforth
as "ridge" and the other had the shape of a simple-hump known henceforth
as "hill", (Figure (3.2a). The ratio of the height, h, to the width, b,
of the "ridge" was 2.5, and the ratio of the bundary-layer thickness <§
to the height of the obstacle h, was 2 at the position of the obstacle
"ridge" or "hill". The height of the obstacle was 2 cms. in the case of
rough plate and 1.2 cms. in the case of smooth plate. The simple-hump

(hill) has the surface which satisfied the equation,

y/h = [I + (x/h)2] 1 (3.1)

where h is the height of the hump at x = 0. The spanwise length of the
obstacle was one metre. This length was a little bit shorter than the
width of the wind tunnel to leave some space, so that the rubber tubes
which were connected to the static-probes could be easily taken out to
the manometer.

The ridge was made of a plate of perspex with a thickness of 2 mm and
the hill was made of a fibre-glass coating with a thickness of 2 mm. The
upstream and downsteam edges of the hill were flashed with the plate
surface to avoid any step-roughness effect.

A considerable number of 0.5 nm diameter pizometer holes were
drilled at the centre portion of the "ridge" and the "hill", one side had

been drilled as well as the top side for the ridge to measure the pressure
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distribution on the two obstacles. The side of the obstacle which had
the holes can be used as upstream face or downstream face to measure the
upstream or downstream pressure distribution. The pressure holes were
connected to a multi-tube manometer through 0.7 nm. 1.D. stainless
tubes and polyvinychloride tubes of various diameters. Figure (3.2a)
shows the two obstacles (ridge and hill) used in the wind tunnel
experiment. Figure (3.4) shows the position of the obstacles inside the
wind tunnel and the boundary-1 ayer thickness developed on the rough

plate.

3.1.4 Rough and Smooth Pipes

A 5.08 cms. 1.0. (2 in.) and 732 cms. length split pipe was used in
the present investigation as a rough pipe. The pipe had three parts of
244 cms. each, with a rectangular cros-section area which could be split
to half, and each half contained a longitudinal semi-circular channel of
2.54 cms. in radius. The pipe was lined internally with the same abrasive
paper used in the rough plate. The static pressure drop along a length of
244 cms. of the pipe can be measured by means of two static pressure tubes
installed concentrically inside the pipe.

A three stage centrifugal blower was used to supply the pipe with the
air. The velocity of the air inside the pipe can be controlled by an exit
gate valve of the blower. Figure (3.3a) shows the parts of the rough pipe
as well as the positions of the static and total head tubes.

For a smooth pipe experiment, a 6 metre perspex pipe with an inside
diameter of 3.84 cms. was used. The static pressure drop along the pipe
length can be measured by different static pressure taps on the pipe wall.

A small centrifugal fan driven by a variable speed motor was used

to drive the air through the pipe. The velocity of the air inside the
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pipe can be controlled by changing the speed of the motor. Figure (3.3b)

shows the smooth pipe used in the experiment.

3.1.5 Dimensions of the Two-Dimensional Obstacle
(RING)

The obstacle in the pipe experiments had a form of suitably scaled
internal (rectangular in cross-section) rings. The ratio between the
width b to the height h of the ring was (I)’\r8€t This ratio was kept constant
for both the rough and smooth pipe. The ring was made of wood with a
diameter smaller than the internal diameter of the pipe by | nm  For the
rough pipe the gap between the ring and the pipe surface was sealed by
using a blue take, this also protected the irregu larity of the rough surface
of the pipe from any damage caused by the solid ring. For the smooth
pipe the gap between the ring and the pipe was sealed by a foam rubber
sealing compound, this made it easy to change the position of the ring and
protect the smooth surface of the pipe. Figure (3.2b) shows the rings used

for the rough and smooth pipes.

3.2 INSTRUMENTATION
3.2.1 Traverse Mechanism

A special instrument was desinged by El-Samanoudy (1974) for
measuring the boundary-layer growth at different stations inside the working
section of the wind tunnel. This instrument was used in the present
investigation to enable traversing at different positions downstream of
the obstacle.

The instrument was made of a stainless steel rod resting on a small
rectangular metal block with a rubber pad glued to its underside to

protect the surface roughness iregularities. The instrument had a sliding



-29-

head carrying the pftot tube which was held tightly by grab screws, the
sliding head guided by a groove along the road connected by the traverse
outside the wind tunnel by means of a ~ inch steel cord guided by a

small pulley and kept under constant tension by an over-hanging weight.

A dial clock guage read with an accuracy of 0.01 nm was used to measure
the displacement of the pitot tube or the hot wire probe from the surface
up to 50 mm. For boundary-layer thicknesses greater than 50 mm, the scale
reading of the traverse gear was used to an accuracy of .05 mm

The pitot tube had a hypodermic front tube of 0.71 nm O.D. The
static pressure measured by a 0.81 mm O.D. static tube provided with two
static holes. The static tube was held firmly by another head fixed on
the instrument road. Figure (3.5) shows in detail the instrument and
traverse gear used in the experiment.

A standard pitot -static tube was mounted at the exit of the wind
tunnel to measure the exit free stream velocity as well as to control the
speed of the working section.

In the pipe flow experiment the pitot tube head was made of a
hypodermic tube of diameter 0.57 nm and was used at the exit of the pipe
to measure the velocity profiles. The pitot tube was manually operated
by a traverse gear of 0.0l mm reading accuracy (micro-manipulator).

An inclined multi-tube manometer was used for measurements of

pressure. A methylated spirits (S.G. = .815) was used as a manometric fluid.

3.2.2 Hot Wire Equipment

Two different types of standard hotwire were used; one was a single
probe 5 micron tangston wire, and 1-1.5 mm. in length. The other was an
X - probe (type: DISA 55 A 38). The single probe was used for measuring

the skewness, flatness factor and spectrum function. The X-probe was used

to measure the turbulence intensities and the shear stress components.
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The single probe was connected via a 5 metre cable to a constant
temperature anemometer (type: DISA 55MOIl), the output signal voltage of
the anemometer was fed into a linearizer (type: DISA 55M25) to provide a
linear function between the output voltage signal and the measured flow
velocity. The voltage was read from a digital voltmeter (type: 500 MK III)
The output signal from the linearizer was fed to an R.M.S. voltmeter
(type: DISA 55D35) to read the fluctuating voltage (related to the
longitudinal fluctuation velocity). The square value of that signal could
be obtained by the R.M.S. voltmeter. This was squared again by using a
turbulence processor (type: DISA 55P25). In order to avoid the fluctuation
reading of the square values, the output of the turbulence processor was
fed to an integrator (type: DISA 52P30) to give an average value of
squared signal. This value was fed to the digital voltmeter to calculate

The output of the R.M.S. voltmeter and the

squared signal obtained by the R.M.S. voltmeter were fed to an analogue
correlator (type: DISA 55D70) to calculate the skewness factor
A frequency analyser and level recorder (Bruell and Kjaer types 2107 and
2305 respectively with a frequency response of 20HZ to 20KHZ) were used to
calculate the frequency spectrum of the longitudinal fluctuation component.
The two instruments were mechanically-synchronised by means of a drive cable.
The interconnections for the electronic equipment are shown in Fig. (3.6).

The X-probe was connected with two constant temperature anemometer units
and two linearizers. The output signals of the linearizers were fed into a
random signal correlator and indicator (type: DISA 55A06) to obtain the
signals addition and subtraction, which are proportional to longitudinal and

tranverse turbulence intensities.

3.3 EXPERIMENTAL MEASUREMENTS AND PROCEDURES
In order to establish a datum from which wall distances were measured

for the rough plate and the rough pipe, a flat-headed copper pin was
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introduced among the roughness excrescences in the measuring plane. The
top of the pin was approximately 0.5 mmabove the local peaks of the
roughness. The other end of the pin wasconnected to one side of a
transistorized continuity tester. The other side of the tester was
wired to the pitot tube so that when thepitot tube just made contact
with the pin the light of the tester came on. For the smooth surface
the measurements were started with zero distance from the surface. This
was obtained by placing the pitot tube adjacent to its image on the
surface.

The datum for the hot-wire traverse could not be established using
the above contact method because of possible damage to the probe. A
cathetometer, with a vernier scale accurate to within £10 microns, was
used for the pipe experiment in order to measure the distance between a
pre-arranged datum just above the surface and either the surface itself
lin the case of smooth pipe) or the top of the copper pin. Once the
datum had been determined the wall distances were measured using the
digital gauge of the traverse gear. For the wind tunnel measurements
it was difficult to use the above method. The wall distance was measured
as shown in Fig.. (3.6b).

The wind tunnel experiments were carried out with free stream
velocity in the working section equal to 21 m/s., and in order to take
into consideration the variation of the temperature and the atmospheric
pressure from one day to another the readings of temperature and the
barometric pressure were taken before starting the wind tunnel. The
mean velocity profiles and the turbulence quantities were measured for
the rough and the smooth plates before placing the obstacle inside the
tunnel. These measurements were used to determine the characteristics

of the turbulent boundary layer before disturbing the flow. The two-



-32-

dimensionality of the flow was checked after the obstacle was introduced
inside the working section of the tunnel-velocity and static-pressure
distribution were measured at different positions at the top of the
obstacle in spanwise direction. The results are shown in Fig. (3.7).
For the rough plate, the gap between the obstacle and the surface was
sealed by a foam rubber sealing compound. In the case ofasmooth surface
an abrasive tape was used to close that gap as well as to hold the "ridge"
on the surface.

Detailed measurements of the mean velocity and turbulence properties
were carried out for both the rough and smooth plates downstream of the
obstacle (ridge or hill) to the recovery region of the flow. Two
obstacles were used with the rough plate "ridge" and "hill" and only one
was used with the smooth plate "ridge" for a comparison. The ratio of
the boundary-layer thickness to the height of the obstacle was equal for
both the rough and smooth plate experiments. AM measurements were made
at the centre line of the wind tunnel to avoid the effect of the tunnel
side walls. The obstacle was placed at a distance of 135 cms. from the
leading edge of the rough and smooth plates.

In the pipe flow experiment the air supply was switched at least
30 minutes before the start of a measurement session for the apparatus to
reach equilibrium conditions. The values of the air density and kinamatic
viscosity were corrected for daily variations in barometric pressure and
air temperature. The value of the Reynold's number (\~/’n‘[g)vias approximately
5.8 x 105 for both the rough and smooth pipes, where h was the height of
the ring and Vpthe pipe average velocity.

e The smooth pipe was used to calibrate the hot-wire probe before the
probe was used for the rough pipe measurements. Additionally, the response
of the wire to a square wave input was checked on the oscilloscope so

that any necessary adjustments to the bridge balance of the anemometer
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could be made. The distribution of the turbulence shear stress — : was

measured in the smooth pipe and compared with the linear distribution:

(3.2)

as well as with some previous measurements as Lauf er (1955).

The mean velocity, the three components of turbulence normal
stresses and the shear stress distribution were measured at different
positions downstream of the ring to the recovery condition of the flow.
All the measurements were made at the exit section of the pipes. The
position of the ring could be changed with respect to the measurement
section by pushing the ring inside the pipe to the desired distance.

Measurements of the skewness, flatness and the spectrum function
of the longitudinal normal stress were carried out by using a single hot-
wire probe. The spectrum functions were measured at wall distances of

R equal to 0.02, 0.35, 0.68 and 1.0 for both the rough and smooth pipes.

3.4 METHODS OF INVESTIGATION

The main objective of the present investigation was to study how a
two-dimensional obstacle attached to a rough surface affect the turbulent
boundary-layer developed on the surface. The experiments were carried
out for rough and smooth surfaces as well as for a rough and smooth pipe
to study the recovery of the flow downstream of the obstacle. The mean
velocity profiles and the turbulence properties were measured before and
after placing the obstacle in the wind tunnel or in the pipe.

The measurements of the mean velocity profiles were used to determine
the wall friction coefficient ¢ for the disturbed and undisturbed flows.
The graphical method developed by Parry and Joubert (1963) was used to

determine the values of c™ for the rough surfaces. Using the usual law of
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the wal | Gorrbined with the law of the wake (Coles, 1956),

0 = In + A - - + % W(y/<5) 3.3)

Nl
c
O

a multiplication of both sides by » [w=(E c”)2] leads to the form

:1 Inw+ A AUy w (3.4)

Uoo K v uQ < 5

For a smooth surface (]J]y = o) the above equation gives a family of
straight lines of () versus (In-~0 - Clauser (1954) - each line
corresponding to a given value of w. Thus a chart may be constructed, and
by plotting.the experimental points on such a chart the line upon which
they fall gives the appropriate value of w. The accuracy of the result
may be confirmed by two properties of the line, these being its slope and
its placement on the chart. In the case of a rough surface difficulties
arise, these being that the origin for y is not known and also, since
the roughness of the surface causes a shift in the logarithmic profile,
the value of ¢~ is confirmed only by the slope of the logarithmic line
and not its position. Perry and Joubert (1963) assumed that the origin
was located at distance c, below the crests of the elements used to simulate
the rough surface. In the present investigation that distance was below
the crest of the artlfical datum (the top of the copper pin). The value
of, e, was determined by adding a small distance to the value of, y, such
that the experimental values of (yJ ) gives a best fit to a straight line
in the logarithmic inner region. Once the value of e was known, the
value of ¢ could be determined from the slope of the logarithmic line.

The values of the roughness function To could be determined for
different values of Reynolds numbers by plotting the equation (3.3) for
a smooth surface (— = 0) and for a rough surface, the results of the

uo
rough surface will shift from that of the smooth surface by value equal
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to — at a certain Reynolds number,
uo
Nikuradse (1933) used the logarithmic law in slightly different

form. He defined an alternative roughness function, x > such that
| 3.5
uQ « + X ( )

where X = - In ﬂsVU + A - TQ (3.6)

and hs is the equivalent sand roughness height of the rough surface, and
it depends on the roughness height and the roughness geometry of the
surface. For the fully rough flows function factor is independent of

Reynolds number) Nikuradse (1933) found that
f = (2 log §ns +  1.74)“2 (3.7)

The value of the friction factor f was determined for the pipe
experiments by measuring the pressure drop over a known length of the
pipe

AP D
To = 3.8
4 L (3.83)

where To is the value of the wall shear stress, the respective friction
factor is

f = 8To (3.8D)

where Vpis the average velocity of the pipe defined as

V w i URY) o 39

The value of the roughness height hs determined from equation (3.7)
was compared with that determined by the statistical examination of the
rough surface (see Appendix A) and it was found that no substantial
difference between the ten-point height and Nikuradse's equivalent sand

roughness height.
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The measurements of the turbulence normal and shear stresses were
used to determine the turbulent eddy viscosity and the mixing length
distribution downstream of the obstacle for both the boundary-layer

flow and the pipe flow. The formulae used for this purpose were

(t/p) (3.10a)
vt = (3U/3y)
and
(t/p /* (3.10D)
Am < (3U/3y)

The value of the mean velocity gradient (%l;), was calculated from
the local velocity distribution. The experimental values of the eddy
viscosity obtained from the above equation (3.10a) were compared with
Clauser's model of the eddy viscosity in the inner and the outer regions

of the boundary layer.

v . = kY W (3.11a)
and \>to = a Uo 6* (3.11b)

where a is an eddy viscosity proportionality constant, which assumed to
be equal 0.018 for an equilibrium boundary-layer. This value was
determined for the disturbed flow downstream the obstacle, where the flow
was in non-equilibrium condition.

The frequency spectrum of the longitudinal turbulence normal stress
was calculated for both boundary-layer and pipe flow. If u is the
component of the fluctuation velocity at a fixed point of turbulent
motion in the direction of the main stream resolved into harmonic
components, the mean value of u may be regarded as being the sum of
contributions from all frequencies and u2F(n) dn is the contribution
from frequencies between n and n + dn, then

/ F(n) dn = | (3.12)
0}
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If F(n) is plotted against n, the diagram so produced is a form
of the spectrum curve.

For two points in a turbulent flow, separated by a distance, Ax, in
the x direction, the longitduinal spatial correlation, R, is defined
to be

U(x),.-J"E * AX) (3.13a)

u2

where u(x) and u(x + Ax) represents the instantaneous values of the
longitudinal fluctuating velocity at x and (x + Ax) respectively. The
value of u(x) and u(x + Ax) can be measured using a two single hot wire
separated horizontally by a distance, Ax. This method is not accurate
because the wake of the upstream probe is bound to affect the flow near
the downstream probe.

Taylor (1938) postulated that the sequence of changes in u at a
fixed point is due to the passage of a 'rigid' turbulent eddy past the
point, and if the velocity of the air stream, U, which carries the eddies
is very much greater than the turbulent velocity, u, the fluctuations at
the point may be imagined to be caused by the whole turbulent flow field
passing that point with a constant velocity, U. Then the correlation
U(t) U(t + At) averaging with respect to, t, must then be identical with
the correlation u(x) u(x + Ax) averaging with respect to x. The advantage
of this model is the fact that the space correlations can be deduced from
time correlations. The latter can be measured either directly, using a
time-delay unit, or indirectly by calculating the Fourier transform of the
measured frequency spectrum function. The Fourier transform method was
used throughout the present investigation. The required relation between

the spatial correlation coefficient and the frequency spectrum function are
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= f F(n) Cos pp Ax dn (3.13b)
0
()
F(n) = -g /7 R. Cos pp Ax d(Ax) (3.13c)
0

The PDP8 computer program written by Musker (1977) was used to
calculate the values of and F(n).

The above calculations were used to determine the integral length
scales of the turbulence field downstream of the obstacle. Taylor (1938)
described two length scales of turbulence, macro-scale and micro-scale of
turbulence. The macro-scale of tur bulence is a measure of the size of
the largest eddies and it can be defined in terms of the longitudinal spatial
correlation coefficient by

lj = f R_ d (Ax) (3.14a)
0
The micro-scale of turbulence X is a measure of the size of smallest

eddies of the turbulent flows responsible for the dissipation of energy,

Taylor defined, X , in terms of the curvature of Rj curve at its vertex.
Lt 1 - rT
= 3.14b
2 Ax"™o (Ax)2 ( )

Using equation (3.13b) after applying a series of expansion for the

cosine term, as AX o, leads to:

00
—— = 2~ "~ n2 F(n) dn (3.14c)
X2 u o]

Hence X can be calculated from the second moment of the frequency
spectrum function.

In the homogenous turbulent flow, the probability density distribution
curve of the fluctuating velocity then shows a symmetry with respect to

an axis (in the case of a point source) or with respect to a plane (in the

case of a line source) the shape of these distribution curves will be
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determined by the characteristics of the turbulence and by spatial
distribution of the velocity. To study the homogeneity of the flow, two
factors are provided by measurements, skewness and flatness factor

defined by Klebanoff (1954) as:

u3 P(u) du

_?g us (3.15a)

—ED u2 P(u) du]”™2 (uve

@®

o ut P(u) du &

- b (3.15b)
1 of (U)z

o U2 P(u) duj2

where P(u) du is defined as the fraction of total time the fluctuation

spends between u and u + du and,

f P(u) du =1, (3.15c)
-@

Townsend (1947) has found that the probability density distribution
of all three fluctuating velocity components at an arbitrary point and at
a given time of decay in the turbulence flow behind a square-mesh grid are
approximately normally distributed. He found that the flatness factor,

F , lies between 2.9 and 3.0 as compared with the value 3.0 appropriate
to a normal distribution. The skewness factor, S”, is found to be zero
as the value for a normal distribution or any symmetrical distribution.

At last the force acting on the obstacles (for the boundary-layer
1flow) was determined by measuring the pressure distribution on the obstacle
walls. The values of the drag coefficient, Cg, were obtained by
integrating the areas under the curves of the static pressure coefficient

Cp versus y/h, where y is the distance on the wall of the obstacle. The



-40-

values of CD and Cp were calculated using the formulae

y/h

cD = / cp d(y/h) (3. 16a)
P - Po (3. 16b)
~i ’) uoo

where P® and U® are the free stream static pressure and velocity

respecti vely.
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CHAPTER 4

WIND TUNNEL EXPERIMENTS

4. INTRODUCTION

An experimental study of the effect of a two-dimensional obstacle
attached to a plane wall, on which a turbulent boundary-layer was developed,
is considered in this chapter. Two types of geometry were used in these
experiments. These two-dimensional obstacles were described in Chapter 3:
one was a rectangular cross-section bar (ridge) and the other was a single-
hump (hill). In the present study two different plane walls were used:
one was a rough plane and the other was a smooth plane. The comparison
of the results of these experiments are presented in due course.

The rough plate described in Chapter 3 was used in these experiments.
The average height of the irregular rough plate, hs, calculated from the
statistical examination of the surface was 0.98 mm (see Appendix A). This
average height is smaller than the height, h (= 20 mm), of the obstacles
used in the rough plate experiments. The boundary-layer thickness, < above
the obstacles (ridge or hill) was 40.5 mm

For both the surfaces (rough and smooth), the ridge used was of the
same width-to-height ratio (i.e., b/h = 2.5), and of the same height-to-
boundary-layer thickness ratio (i.e., h/5 = 0.5). The boundary-layer
thickness above the obstacle (ridge), attached to the smooth plate, was
25 mm  For both of the surfaces, the position of the obstacle was 1350 nmm
from the leading edge of the plate. The length of all the obstacles in
both cases was 1000 nm

The condition of zero pressure gradient in the working section of
the wind tunnel was checked before and after inserting the obstacle inside
the working section. The free stream velocity in the working section was

21 m/s for both the experiments rough and smooth plates. The measurements
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were carried out at different stations downstream of the obstacle, no
measurements were made in the separation regions because of the difficullies
of measuring the flow direction in such regions. The measurements were
taken at x = reattachment, 50, 69, 86, 116, 139 and 185 cms. from the

position of the obstacle.

4.2 STATIC PRESSURE DISTRIBUTIONS
The two-dimensional obstacle in these experiments can be considered

as a bluff body immersed in a turbulent boundary-layer, such that an

adverse pressure gradient will be produced upstream of the obstacle. The
boundary-layer will be forced to separate from the plane boundary wall
and will reattach on the front surface of the obstacle, thereby producing

a separation bubble on the upstream side of the obstacle. The mean flow
inside and outside the front separation bubble is quite steady (Good and
Joubert (1968) and Sakamoto et al (1975)). Figures (4.1) and (4.2) show
the static pressure distribution on the front and rear surfaces of the
ridge and the hill attached to the rough plate. It can be seen that the
point of the reattachment (the point of maximum pressure on the front
surface) occurs at the range of 0.5 < y/h < 0.6 in the case of the ridge.
This value is different from that in the case of the hill which occurs
at y/h = 0.25. This difference is due to the fact that in the case of
the ridge, the front surface behaves as a normal plate attached to the
rough surface creating a severe adverse pressure gradient (same as found
by Good and Joubert (1968) who carried out an experiment on normal plates
attached to a plane wall, or as found by Bradshaw and Galea (1967) on the
upstream forward facing step), which is much more than the one created by
a gradually increasing surface-height such as the hill used in the present
investigation. Moreover, the length of the front separation bubble in the

case of the ridge is bigger than that for the hill.
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The flow will separate again at the upstream top edge of the
obstacle, producing a free shear.layer, reattached on the plane wall
downstream of the obstacle. The static pressure distribution on the
rear surface (base pressure) for the ridge and the hill are substantially
constant as shown in Figs. (4.1) and (4.2).

The separation point in the case of the hill is not known and Fig.

(4.2b) represents the static pressure distribution on the front and rear

surfaces of the hill with respect to the non-dimensional streamwise
direction, x/h. It can be predicted that the flow will separate near the
top of the hill, at x/h = -0.3, which corresponds to y/h =0.9. At this

point the pressure decreased to the value of the base pressure on the
downstream surface of the hill.

The static pressure distribution, on the front and rear surfaces for
an obstacle (ridge), attached to the smooth plane are shown in Fig. (4.1).
It can be seen that the point of the maximum pressure (reattachment on the
front surface) occurs at 0.5 < y/h < 0.6 as in the case of the ridge attached
to the smooth plane. The values of the static pressure coefficient on the
front surface are higher on the ridge attached to the smooth plane than that
for the ridge attached to the rough plane. On the other side, the base
pressure is lower in the former case than the latter. Although the ratio,
h/6, is the same for both cases, the velocity components close to the ridge
on the rough plane are different than if the ridge is attached to the
smooth plane by the value of the velocity shift Au. In smooth surfaces
no velocity shift, Au , occurs and therefore, the ridge attached to
the smooth boundary will obstruct higher velocity components compared
to the rough wall boundary. It is expected then that the drag force
on the ridge attached to the smooth plate is higher than that on the
ridge attached to the rough plate. -The drag force on the obstacle was
calculated by integrating the pressure difference profile, from which the

values of the drag coefficient C”, were obtained. The drag coefficient,
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for the ridge attached to the rough plate was 0.48 and for the ridge
attached to the smooth plate was 0.629. For the hill attached to the
rough plate, CD was 0.41 which is less than that for the ridge attached
to the same plate. This is possible because the adverse pressure
gradient created upstream of the ridge is more than the one created
upstream of the hill. Moreover, the flow separates at the top edge of
the ridge (i.e., y/h = 1) whereas in the case of the hill, the flow
separates at y/h = 0.9.

These values of the drag coefficients were corrected for the

blockage effects, using Ranga Raju et al (1972) formula,

CD - cDu -~-s85
c 1
where, Di, is the height of the wind tunnel working section and, h, is
the obstacle height.

Figure (4.3) shows the static pressure distribution on the upper
surfaces of the ridge attached to the rough and smooth plates. The
pressure distribution on the upper surface has approximately similar shapes
for the ridge on the rough and smooth plate.

A static tube was used to measure the static pressure distributions
downstream of the ridge and the hill. In fact these readings are in
doubt because the actual direction of the flow is not known in the
separation bubbles, but it may give some indication about the behaviour
of the static pressure in such a region. However, these measurements
can be used to predict the point of reattachment of the flow on the plane
wall downstream of the obstacle (ridge or hill). Figures (4.4a), (4.4b)
and (4.4c) show the static pressure distribution in the separation bubbles
behind the ridge and the hill on the rough plate and for the ridge on the

smooth plate respectively. The static pressure distributions are shown

in the form of the static pressure coefficient at different stations



against the non-dimensional distance y/h. The edge of the shear layer
is marked on each curve, it can be seen that the pressure field caused
by the obstacle does not end at the edge of the shear layer.

Near reattachment, the static pressure is recovered and, thereby, is
returned to a constant value within the boundary-layer thickness. The
value of the static pressure downstream of the obstacle, in the
separation bubble, is dependent upon the geometry of the obstacle. This
can be seen from the measurements downstream of the ridge which show that
the ridge causesa severe effect in the static pressure more than in the
case of the hill. The distribution of the static pressure downstream of
the ridge, on the smooth plate, does not differ too much from that on
the rough plate; but it returns more readily to the free stream value.

The reattachment points predicted by using the static pressure
measurements, are 25.0>cms. and 18 cms. downstream of the ridge and the
hill on thelrough plate respectively. For the ridge on the smooth plate

the point of reattachment is 13.5 cms. downstream of the ridge.

4.3 BOUNDARY-LAYER MEAN FLOW CHARACTERISTICS
4.3.1 Mean Velocity Distributions

Mean velocity profiles at different stations downstream of the
obstacles (ridge or hill) were measured to study the local boundary-layer
characteristics after the shear layer was disturbed by the obstacles.
The measurements of the mean velocity in all the experiments, for the rough
and the smooth plates, were started after the points of the reattachment.
The reason for that is the difficulty of measuring the flow direction in
the region of the separated flow (inside the bubble). However, the main
aim of the present investigation is the study of the recovery of the

turbulent shear layer downstream of the obstacle.
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The characteristics of the turbulent boundary-layer on the rough
and smooth plates were determined before inserting the obstacle inside
the working section of the wind tunnel. Figures (4.5a) and (4.5b)
represent the mean velocity distribution on both of the rough and smooth
plates without the obstacle, the figures include the mean velocity
profile at the position of the obstacle, x = 135 cms. from the leading
edge of the plates.

The mean velocity profiles downstream of the ridge and the hill
attached to the rough plate are shown in Figs. (4.6a) and (4.6b). The first
three profiles measured at the top of the ridge and the hill, x = 7 cms.
and at x = 9 cms. are shown without the negative velocity values inside
the separated flow (bubble), where x is the distance downstream of the
ridge and the hill. These profiles give an idea about the size of the re-
circulated flow region downstream of the obstacle. The points of the
reattachment could be determined by moving the pitot tube very near to
the plane wall, downstream of the ridge or the hill, inside the recirculated
flow reg ion. The values of x (distance _from the obstacle to the
reattachment) were found to be equal to /2/l2I.r5 cms. and ;8 cms. in the case
of the ridge and the hill, respectively. From this result, it can be said
that the length of the separated region is affected by the shape of the
obstacle. Also it is expected then that the recovery of the boundary-layer

does depend appreciably on obstacle shape. It is found that the reattachment

downstream of the ridge attached to the smooth plate to occur at xr = 11.5 cms.

The measurements in the wake regions downstream of the reattachment
indicate that the turbulent boundary-layer exhibits x - wise stability
and the violent distortion in the velocity profiles disappear as the
boundary-layer proceeds downstream of the obstacle. It can be seen that

the inner portion of the boundary-layer returns much more quickly to its
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natural shape; this recovery depends on the geometry of the obstacle
(ridge or hill). It is faster for the hill than for the ridge. The
mean velocity profiles downstream of the ridge attached to the smooth
plate are shown in Fig. (4.6c). It can be seen that the inner portion
of the boundary-1 ayer returns more speedily to its natural shape than
in the case of the ridge attached to the rough plate. It can be
concluded that the recovery of the inner portion of the boundary-layer
depends on the geometry of the obstacle and the surface roughness which
the obstacle is attached.

The logarithmic profiles for the mean velocity distributions are
shown in Figs. (4.7a) to (4.7c). The redevelopment of the boundary-layer
downstream of the reattachment is clearly evident. The present results

for the smooth plate, approach closer to the Coles (1956) formula.

- = 5.75 log () +5. (4.2)
It is important to know that the value of traversing distance, VY,
the rough plate is equal to the displacement distance of the traverse
gear plus the virtual origin of the boundary-layer, e, determined using
the Parry and Joubert method (1963).

For the rough plate, it is known that the value of the roughness
function EO is constant for a certain Reynold's number in the working
section of the wind tunnel. This value was checked downstream of the
reattachment for the ridge and the hill attached to the rough plate.
Figure (4.8) shows the value of éu against x-wise Reynold's number (x EO),
the values of (-\§U°) are included in some stations. It is clear that

the value of " is high near the reattachment, where the value of uQ is
u

very low. The value of — reduces downstream of the reattachment to a
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minimum value for both ridge and hill experiments. Further downstream
of the reattachment the roughness function — increases towards the

uo

value of — for the rough plate without the obstacle. The rate of
uo

increase of — in the case of the hill is greater than for the ridge,
uo

which indicates that downstream of the hill, the wall friction velocity,

uQ, returns to its value for the rough plate without the obstacle faster

than for the ridge attached to the same plate.

4.3.2 Wall Friction Coefficient

The wall friction coefficient, determined from the local mean velocity
profiles is shownin Figs. (4.9a) and (4.9b). The values of the friction
coefficient for the rough and smooth plates without the obstacle are also
shown in the above figures. Because of the difficulties of measuring the
local velocity profile in the separated flow downstream of the obstacles,
the values of the friction coefficient was determined downstream of the
reattachment. Figure (4.9a) represents the friction coefficient downstream
of the ridge and the hill attached to the rough plate. It is clear that
the values of the friction coefficient, downstream of the hill are returned
more rapidly, than in the case of the ridge, to the ordinary turbulent
boundary-layer value on the rough plate. Figure (4.9b) shows the same
results for the friction coefficient values downstream of the ridge on
the rough and smooth plate. It can be seen that for the rough plate with
the ridge attached to it, the flow is not fully recovered at the end of
the plate, but for the smooth plate the flow has reached the recovery
condition.

The points of the reattachment downstream of the obstacles, on the
rough and the smooth plates, can be predicted by extrapolating the wall

friction curves. The values of xr (distance from the obstacle to the
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tO $
reattachment) determined by this method were 20 cms. and 16 cms. for the
ridge and the hill on the rough plate respectively. For the ridge on
9.0

the smooth plate the value of x*. was 10.8 cms. from the ridge.

4.3.3 Integral Quantities

The boundary-layer integral quantities for the rough and smooth
plates without the obstacle (ridge or hill) are shown in Fig. (4.10a).
The boundary-layer thicknesses, before and after the flow was disturbed
by the obstacles, are also included in the Figure. It can be seen that
the edge of the shear layer (boundary-layer thickness) is displaced
outward. Therefore, the boundary-layer developed downstream of the
obstacle has a thickness 5, greater than that developed on the rough or
smooth plates without the obstacles.

Figure (4.10b) shows the boundary-layer integral quantities downstream
of the obstacle (ridge or hill) attached to the rough plate. Since the
displacement thickness is that distance by which the external potential
field of flow is displaced outwards as consequence of decrease in velocity
in the boundary-layer, it is expected then that the value of the displace-
ment thickness, 6*, just behind the reattachment is very large. On the
other hand, the momentum thickness, 9 does not vary much. Thus the shape
parameter, H, has a very large value behind the reattachment. This value
of H, decreased to a constant value of 1.41, which is different than the
constant value of H, for the rough plate without the obstacle (H = 1.55).
This is because the boundary-layer thickness 5, is changed, also the
integral values of the displacement and momentum thicknesses 6* and 9 are
changed. The same results were shown for the case of the smooth plate,
and Fig. (4.10c) shows the shape parameter and the boundary-layer displace-

ment and momentum thicknesses. Also included are results from other
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investigations for different but related flow configurations (Muller
et al (1964) results for flow downstream a step; Ota and Itosaka (1976)
data for flow over a flat plate with finite thickness and blunt leading
edge). The constant value of H for the smooth plate downstream of the
ridge was 1.29, which is lower than the value of H for the flow on the
smooth plate without the obstacle (H =1.44), for the same reasons as
above.

The most useful single parameter for measuring the departure of a
turbulent boundary-1 ayer from equilibrium is Clauser parameter G. The
value of G for an equilibrium boundary-layer with constant pressure

gradient is 6.8. The value of G was calculated using the equation

G = (2/cf) L1(H - 1)/H (4.3)

Figure (4.11) shows the variation of G with downstream distance x/h.
It is very large just behind the reattachment and decreases sharply
downstream, becoming nearly constant at a distance of about 70 obstacle
heights for the rough plate and about 40 obstacle heights for the smooth
plate. The value of 6.9 obtained at x/h = 80 for the smooth plate is
almost equal to the accepted value of 6.8 for the equilibrium fully
developed constant pressure boundary-layer. For the rough plate the value
of 5.5 and 5.9 obtained at x/h = 100, for the hill and the ridge respectively,
are smaller than the value of 6.8. It may be concluded from these results
that the recovery of the boundary-layer occurs very slowly for the rough
surface and a sufficiently long test section is needed in order to observe
the increase of G at the long distance, downstream of the reattachment.

Further It seems plousible that G = 5.5 and 5.9, for the hill

and ridge, respectively, represent the corresponding states
of equilibrium being different from that for a ridge on a

smooth plate. ,

i #
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4.4 BOUNDARY-LAYER TURBULENCE MEASUREMENTS
4.4.1 Normal Stresses

Figures (4.12a) and (4.12b) represent the distributions of the
longitudinal turbulent normal stress,/"uVu0O, against the non-dimensional
distance, y/h, downstream of the ridge and the hill attached to the rough

plate. < Near the reattachment the values of, X u™/uq, are very high and

the maximum value occurs at non-dimensional distance y/h = 1.5 for both
the ridge and the hill. The maximum value is decreased downstream of
the reattachment, but the rate of changing of /5/uo0. in the streamwise

direction is very slow. This behaviour is the same for the transverse
turbulent normal stresses, X v~/uqg, which can be shown in Figs. (4.13a)
and (4.13b). Comparison of the results of the ridge on the rough plate
with those on the smooth plate are shown in Figs. (4.14a) to (4.15b) for
the values of,X"u2/u0, and Xv*/uQ, respectively. It is found that the
maximum values ofXu2/u0, and X v~/uq, for the smooth plate to occur at
y/h = 1.5, which is the same as the value of y/h in the case of the rough

pl ate.

4.4.2 Shear Stresses

Turbulent shear stress distribution at different stations downstream
of the reattachment is shown in Figs. (4.16a) to (4.16c). In these figures
a comparison between the results of the ridge and the hi Il attached to the
rough plate are shown. Near the reattachment the shear stresses rise from
a very small value, at the surface, to a maximum valuenear to the top of the
obstacle. This maximum value of the shear stress takes place at y/h = 1.5
for the ridge (attached to the rough or smooth plate), and at y/h = 1.4
for the hill. Downstream of the reattachment a new inner layer will
grow up until a fully developed turbulent boundary-layer having a maximum

shear stress at the surface is established
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at some distance from the reattachment. It can be seen that the values
of the turbulent shear stress downstream of the hill are much less than
that downstream of the ridge (at x/h = 25, 43, 58 and 69.5). At the

last station, x/h = 92.5; there is still some difference in the values
of the turbulent shear stress. Therefore, to reach a complete recovery
for the turbulent shear stress, more distance is needed downstream of the
ridge. It is clear that the geometry of the obstacle affects the
turbulent shear stress distribution downstream of it. Near the wall and
at the edge of the boundary-layer thickness the values of the turbulent
shear stress are equal for both the ridge and the hill. In the middle
portion of the boundary-layer, where the shear layer is spread at the top
of the obstacle, the values of the turbulent shear stress are different
for different geometry of the obstacle.

A comparison between the results of the turbulent shear stress
distributions for the ridges attached to the rough and the smooth plates
is shown in Figs. (4.17a) to (4.17c). The behaviour of the shear stress
distribution downstream of the ridge attached to the smooth plate is the
same as that downstream of the ridge attached to the rough plate, near
the reattachment. The maximum value of the turbulent shear stress for
both cases, occurs at y/h = 1.5. It can be seen that there is a change
in the values of the shear stress between the stations x = 139 cms. and
x = 185 cms. This change is very small for the smooth plate results.
Therefore, it can be concluded that, for the ridge attached to the smooth
surface, the flow recovery occurs in a distance less than that for the

ridge attached to the rough plate.
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4.4.3 Distribution Properties (skewness and flatness factors)

To study the probability density distribution of the longitudinal
velocity fluctuation, a series of flatness and skewness factor measure-
ment downstream of the reattachment were made. The measurements were
carried out only for a comparison between the effects of the two-
dimensional obstacle (ridge) attached to a different surface - rough or
smooth. For the isotropic turbulence, the probability density
distribution Is a Gaussian error curve. For turbulent shear flow -
generally when the mean velocity is not uniform but is a function of
the space coordinates - the distribution will be more or less skew. For
a normal distribtuion the flatness and skewness factors are equal to
3 and 0 respectively (Townsend (1947)).

Figure (4.18) shows the skewness factor distribution downstream of
the ridge. In the region of the recirculating flow (separated bubble),
the skewness factor is positive near the wal | and changes to a negative
value away from the wall. However, these measurements are in doubt because
of the reverse flow and the unknown direction of the velocity. Downstream
of the reattachment, the distribution of the skewness factors across the
boundary-layer thickness is not changing much for both the rough and
smooth plates. In the non-intermittent region - near the wall - the
distributions are very nearly Gaussian. Near the edge of the boundary-
layer the probability density is strongly negatively skewed because of
the lower velocity fluctuations within the turbulent regions.

The distrl butionsof the flatness factor are shown in Fig. (4.19).

It can be seen that the flatness factor has.a constant value for all the
stations, downstream of the reattachment, up to y/h = 3. The values
obtained are in the range of 2 - 2.5. These values are lower than the

corresponding Gaussian value of 3.0. The flatness factor is increased



-54-

in the outer portion of the boundary-layer, where the intermittency
value is low,"a small value of the intermittency factor, defined as
the fraction of time that turbulence occurs, yields a large value of

the flatness factor" Ueda and Hinze (1975).

4.4.4 Spectral Properties

A significant advance in dealing with the energy spectrum was made
in the domain of homogeneous and isotropic turbulence (Kolmegroff (1941)).
The basic concept underlying this advance is that energy enters the
spectrum through the large eddies and is then transferred through the
spectrum to the smaller eddies where it is finally dissipated. If the
lower wave numbers are excluded there exists a range in which the eddies
are in a state of equilibrium, governed by the rate at which they

transfer and dissipate energy. When the Reynolds number is high enough,

inertial forces will predominate in the lower wave numbers of this
equilibrium range, and a relatively pure transfer region will exist. By
dimensional reasoning Kolmogroff (1941) found that the spectrum will vary
as K'S/3 in this range. Heisenberg (1948) extended this concept by

assuming that the transfer of energy at wave number K was caused by a

turbulence friction produced by eddies with wave number greater than K.

He found that in the equilibrium range the spectrum will vary as K_5/3
for low wave number and for the high wave number end where viscous
forces predominate, as K 7. In the presence of shear flow the situation

is complicated by such factors as production, diffusions, convection and
the absence of isotropy and homogeneity. Any conclusions as to the effects
of the diffusion and convection are difficult to draw (Klebanoff (1954)).
It may be assumed that such effects are confined to the very low wave
numbers which lie outside the equilibrium range. In addition, the

convection may be considered negligible across most of the layer. An
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attempt to assess the influence of the production term in the equilibrium
range of the spectrum was made by Tchen (1953). By considering the
influence of the mean velocity gradient the conclusion is reached that

a range of K'I will exist, in the wave-number region where K'S/3 normally
exists.when there is no gradient.

The results of the spectrum function at different values of y/6 are
shown in figures (4.20a) to (4.21le). It can be seen that the -7 law is
approached asymptotically in all distances except at y/6 = 1.27 which
exhibits a severe disturbance near the ridge. The effect reduces gradually
downstream of the ridge. The spectrum curves for the points not too
close to the wall even contain a rather wide range where -5/3 lew is
closely followed. The curves for the points very close to the wall
contains a region where the -1 law is closely followed.

The measurements of the correlation coefficient R are shown in
Figs. (4.22a) to (4.22d). These measurements are used to calculate the
macro-scale of turbulence downstream of the ridge, on the rough and
smooth plates. The micro-scale of turbulence is related to the area
under the second-moment curve (Taylor (1938)). Figures(4.23a) to (4.23d)
show the values of the second-moments of the frequency spectra plotted in
the form of a product of the wave-number and the first-moment of the
spectrum function, against the wave-number. The results are obtained
for different values of y/6 downstream of the ridge attached to the

rough or smooth plates.

4.5 RESULTANT BOUNDARY-LAYER TURBULENCE PROPERTIES
4.5.1 Length Scales

Measurements of the macro-scale of turbulence - scale of the largest
eddies in the flow - are shown in Fig. (4.24). The measurements were

carried out in the streamwise direction and at different values of y/6.
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Near the reattaehment and at y/<6 = .06, the values of the macro-scale, L ,
are very small. These values are Increased in the case of the smooth
plate in streamwlse direction. For the rough plate the values of the
micro-scale, Lj.at y/<$ = .06, are almost constant in the streamwise
direction. The macro-scale measurements for other ratios of y/6 behave
similarly for both the rough and the smooth plates, where there are small
values near the reattachment which increase downstream to almost constant
values. These constant values are 30 mm for the rough plate and 20 nm
for the smooth plate.

The measurements of the micro-scale of turbulence - the size of the
smallest eddies in the flow - are shown in Fig. (4.25). Near the region

of the reattachment the values of the micro-scale of turbulence X, are

small. These values are increased in the streamwise direction to the
value of 2-3 nm. for both the rough and smooth plates. At y/6 = .06,

near the wall, for the rough plate the values of X are almost constant
and equal to about I mm. The high fluctuating values of X , at y/6 = 1.27

for both the rough and the smooth plates are expected, because the
measurements are in the intermittent region. In this region the boundary-
layer travels downstream with an outline constantly changing in an
irregular manner, and the intermittency is characterized by a large-scale

diffusion process, carrying with it small- scale turbulent motions.

4.5.2 Turbulent Eddy Viscosity

Measured Reynold's shear stress -uv, together with experimental mean
velocity gradient D were used to obtain the eddy viscosity and the
mixing length £m. Figures (4.26a) and (4.26b) represent the non-dimensional
turbulent eddy viscosity (vt/v), versus y/6 downstream of the obstacle

(ridge or hill) attached to the rough plate. For equilibrium boundary-

layer Clauser assumed that the eddy viscosity in the inner portion of the



-57-

boundary-1 ayer can bedetermined by the formula,

vt. =k y u0 (4.1)

This assumption for the eddy viscosity is also shown in the above
figures. It can be seen that near the reattachment the experimental
values of the eddy viscosity are higher than that calculated using the
above equation. This is due to the fact that Clauser assumed that the
mixing length hypothesis is valid, but in this case the size of the
eddies is not proportional,'to the distance from the wall, and the value of
T/Cau/3y) is different from that of Tw/(au/9y) which Clauser used to
get the straight line. Downstream of the reattachment, the inner region
is changing toward the equilibrium condition, where the experimenta
eddy viscosity is equal to the value determined using Egn. (4.1). In
this region a fully developed turbulent boundary-1ayer having a maximum
shear stress at the surface is established. This region starts at x = 86
cms. downstream of the hill and at x = 139 cms. downstream of ridge.

The turbulent eddy viscosity for the ridge attached to the rough
and smooth plates is shown in Figs. (4.27a) and (4.27b). The behaviour
of the inner layer of the boundary-1ayer for the smooth plate is the
same as on the rough plate, except that on the smooth plate the inner
layer.recovery is faster, at 116 cms. This is due to the fact that
the recovery of the mean velocity and shear stress for the inner layer on
on the smooth plate is faster than that on the rough plate. Since a new
inner layer will grow up downstream of the reattachment, the surface
roughness will affect this layer when its thickness is at the same order
as the average height of the surface roughness.

Study of the outer region of the flow carried out by calculating

the eddy viscosity proportionality constant a- from Clauser's assumption
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for the turbulent eddy viscosity in the outer layer of the boundary-

layer,

vtO

a U» 6* (4.2)

Figure (4.28) represent the values a at different distance Xx,
non-dimensionaljzed by the height of the obstacle. The value a (=.018)
calculated by Clauser for an equilibrium flow is also shown in the
Fig.(4.28). It can be seen that the outer flow region in the smooth
plate, is more disturbed and the value of a downstream of the ridge is
higher than the equilibrium ,value .018. The behaviour of a downstream
of the ridge and the hill on the rough plate is the same, except that
in the case of the hill, the value of a decreased to the equilibrium

value faster than in the case of the ridge.

4.5.3 Mixing Length

The measurements of the mixing length downstream of the reattachment
are shown in Figs. (4.29a) and (4.29b). The measurements are compared with
Prandtl's hypothesis Um= 0.4ly), which calculate the mixing length in
the constant shear stress region. The figures show that the distribution
.of the mixing length downstream of the ridge or the hill is the same for
all distances. Near the reattachment, the mixing length is completely
different from the value of 0.4ly. This indicates that the mixing length
is not proportional to the distance from the wall in such regions. The
mixing length distribution for the ridge on the rough and smooth plates
is shown in Figs. (4.30a) and (4.30b). The behaviour of the mixing length

is the same for the smooth plate.



-59-

4.6 SUMMARY AND CONCLUSION

The effect of the surface roughness on the recovery of the flow
downstream of a two-dimensional obstacle was studied. Two types of
geometry were used for the obstacle; one being a bar of rectangular
corss-section (ridge) and the other a single-hump (hill). The experiments
were once again repeated on a smooth surface. The characteristics of
the flow on both the rough and smooth plates were determined before and
after the obstacle was introduced onto the plate concerned. All the
experiments were carried out for a zero external pressure gradient with
a free stream velocity of 21 m/s.

The adverse pressure gradient created upstream of the ridge is
greater than that created upstream of the hill. Therefore the size of the
front separation region upstream of the ridge is greater than that upstream
of the hill. It may be concluded that the pressure distribution on the
obstacle and the front separation region depends on the geometry of the
obstacle itself. The drag force on the ridge attached to the rough
surface is less than that on the ridge attached to the smooth surface.
This is due to the velocity shift, Au/u0, caused by the plate surface
roughness.

Both the geometry of the obstacle and the surface-roughness affect
the recovery of the inner portion of the turbulent boundary-layer. For
different geometry of the obstacle (ridge or hill) attached to the same
rough surface, the inner layer recovers at x = 86 cms. downstream of the
hill while the ridge recovers at x = 139 cms. But with the same ridge
attached to the smooth surface, the recovery of the inner layer occurs
at x = 86 cms.

The coefficient of friction, c¢”, assumes an almost zero value near

the reattachment but at a far downstream region (i.e. downstream of the
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obstacle) it catches up the undisturbed value of the flow without the
obstacle. For example, in the case of the hill, the value of c¢” reaches
the undisturbed flow value at nearly x = 186 cms. but in the case of
the ridge an additional distance downstream of the ridge is needed for
c” to reach the undisturbed flow value.

The presence of the obstacle increases the absolute boundary-layer
thickness by about 30$% and 50% for the rough and smooth plates respectively.
This increase in the boundary-layer thickness affects the values of the
boundary-layer integral thicknesses 6* and 0 downstream of the obstacle.

2 [y vy

0o v 0 and qu
(Figs. (4.12) to (4.17))show that these quantities require a greater
distance downstream of the obstacle than the mean velocity to recover.
In the near wake region the shear stress distribution has a maximum value
at y/h = 1.5 for all the obstacles on the rough or smooth plate. This
maximum value depends on the shape of the obstacle itself. At x = 50 cms.
downstream of the ridge attached to the rough plate, the maximum value of
the shear stress is about 70% higher than that for the hill at the same
downstream position. In the far wake region the shear stress distribution
downstream of the hill reaches the full recovery at about x = 139 cms.,
while the shear stress downstream of the ridge needs a greater distance
to reach the same. For the smooth plate the recovery of the shear stress
occurs at distance x = 139 cms. downstream of the ridge. It can be
concluded that the recovery of the turbulent shear stress downstream of a
two-dimensional obstacle attached to a plane wall depends on the geometry
of the obstacle and the surface roughness of the plane wall.

Downstream of the reattachment the distributions of the skewness
factor in the non-intermittent region (near the wall) are nearly Gaussian

for both the rough and smooth plates. Because of the lower fluctuating



-61-

velocities in the outer region of the boundary-layer the probability
density distribution is negativel-y skewed. The distribution of the

flatness factor is found to vary between 2 and 2.5 which is less than
the Gaussian value of 3.0.

The macro- and micro-scales of turbulence show that the rough
surface has a smaller streamwise integral length scale in the inner
layer, than the smooth wall counterpart. In the outer region these
values lie between 5-30 mm and between | - 3 nm respectively, for
both the rough and smooth plates. This behaviour indicates that the
outer layer of the flow is unaffected by the surface roughness of the

plane wall.
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CHAPTER 5

PIPE FLOW EXPERIMENTS

5.1 INTRODUCTION

In Chapter 5 the effect of a two-dimensional obstacle attached to a
rough and smooth boundary was discussed. In this Chapter the experiments
were repeated in a ful lydeveloped turbulent flow in a rough and smooth
pipe. The rough pipe has the same background roughness as on the rough
plate in the wind tunnel experiment. The two-dimensional obstacles taking
the form of suitably scaled internal (rectangular in cross-section) rings,
are described in Chapter 4.

was

The pipe flow average velocity chosen such that the flow dynamic
similarity in the inner region of the pipe flow and that on the rough plate
is well preserved. This requires the roughness Reynold’s number (uOhs/v)
to be identical in both cases.

For a fully rough turbulent pipe flow the friction factor f as given
by Nikuradse (1933) s

f = (1.74 +2 log £ )72 (5.1)

hs

where f =8 /I;@p’( R = pipe radius, W = wal | shear stress,VP = pipe average
velocity, hs = equivalent sand grain roughness, and for a fully rough flat
plate the Prandtl -Schlichting (1934) relation for the local coefficient
of friction c” is

cf = (2.87 + 1.58 log j~)“2'5 (5.2)

Preserving the dynamic similarity

(~=-n- ) pipe = (- ) plate (5.3)
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The two relationships result in the following ratio of the pipe
average velocity to the free stream velocity in the wind tunnel,
(Preston and Lewkowicz (1973)):

Vp = (hs)pL _vopL 3,48 * 4 Iogpfhs_]_ pi (5<4)
Uo (hs)pi vpi [2.87 + 1.58 logl(")plL] 1'25

where X is the position of the obstacle on the rough plate from
the leading edge, the free stream velocity of the boundary-layer and
V the average velocity in the pipe flow.

The pipe, rough and smooth and the two-dimensional obstacle (ring)
used in these experiments were described in Chapter 3. The two-dimensional
obstacle that was used in the pipe will be referred to as 'the ring' during
this Chapter.

The measurements were carried out at the exit section of the pipe,
and the ring was placed at different positions, to monitor the flow properties
as they recovered downstream of the ring. Since the ring occupies a
considerable amount of area of the pipe section, the centre line velocity of
the pipe changed with the ring inside the pipe. The velocity on the
upstream side of the ring was less than that for the pipe without the ring.
So the upstream velocity was adjusted to the undisturbed velocity value
(velocity of the pipe without the ring), to make sure of the flow similarity
before and after putting in the ring.

All the characteristics for the rough and smooth pipes were determined
before the insertion of the ring in the pipes. For the flow recovery
investigation, only one ring of rectangular cross-section was used in both
the rough and smooth pipe. The same ratios of r/h and b/h (where h and
b are the height and the width of the rectangular cross-section of the
ring) were maintained for both pipes as well as the Reynold's number,

(= 4.5 x 10n) used was also the same for both pipes.
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5.2 AVERAGE VELOCITY

The average velocity for both the rough and smooth pipes are shown
in Fig. (5.1). This was calculated by integrating graphically the
velocity profiles using Simpson's rule. The ratio of the average
velocity to to the centre line velocity is about 0.76 for the rough

pipe and 0.87 for the smooth pipe.

5.3 FRICTION FACTOR AND ROUGHNESS FUNCTION

Figure (5.2) shows the graph of Reynold's number Rg versus f, the
friction factor for both the pipes. It is seen that the value of the
friction factor for the rough pipe is constant and equal to 0.058 for
Rs > 2.4 x 104, which indicates that fully rough regime was attained. In
this region Nikuradse's formula Eqn. (1.5) can be used to evaluate the
value of the equivalent sand grain roughness hs. The ratio of r/hs s
found to be 16. In the case ofasmooth pipe the friction factor is
decreased with the increasing Reynold number.

The alternative roughness function, x> defined by Nikuradse (1933),
for the rough pipe is shown in Fig. (5.2). The method of determining the
roughness function Eo is shown in Fig. (5.3). The values obtained from
this figure were used in Egn. (3.5) to evaluate the value of x < It is

found that the value of x is almost constant and equal to 7.5 in the

range of Reynold's numbers that were used.

5.4 MEAN VELOCITY DISTRIBUTION

The mean velocity profiles downstream of the ring in the rough pipe
for two-different Reynold's numbers based on the average velocity are shown
in Figs. (5.4a) and (5.4b). The mean velocity profiles downstream of the
ring, in the case of the smooth pipe are shown in Fig. (5.4c). The shape

of the disturbed mean velocity profiles in the pipe flow is the same as
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that downstream of the obstacle in the turbulent boundary-layer flow.

Violent distortions in the velocity profile's are observed immediately

after the ring, but they die out as the flow proceeds further downstream

of the ring. It can be seen that the reattachment occurs at 9.9 < x/h < 11.9
for the rough pipe and at 3.95 < x/h < 7.9 for the smooth pipe.

The undisturbed mean velocity profile for the rough and smooth pipe
is also included In the above figures. It can be seen that near the
reattachment (at x/h = 7.9 and 11.9) the velocity is smaller than the
undisturbed velocity in the pipe without the ring. Downstream of the
position x/h =11.9 the mean velocity increases to a value greater than
the undisturbed velocity profile. This increase in the velocity produces
a region of a negative wateeffect downstream of the ring in both the
rough and smooth pipe. This negative wake effect is explained by the
existance of secondary flow in this region. In the boundary-layer flow
the situation is different because of the increase in the thickness of
the shear-layer downstream of the obstacle. The influence of the secondary
flow in the mean velocity profile end at x/h = 126 for both the rough
and smooth pipes. Downstream of position x/h = 126 the mean velocity
profile returns to its undisturbed profile.

The logarithmic profiles of the mean velocity are shown in Figs. (5.5a)
and (5.5b). For the rough pipe the virtual origin of the profile, e, was
determined by using Perry and Jou bert (1963) method. It is clear from
the figures that the presence of the ring has distorted the outer part of
the velocity profile. The wake parameter is high nearer the ring, this is
due to the fact that the flow just reattaches from the separation condition.
Downstream of the reattachment the value of the wake parameter decreases
and reaches a negative value. This behaviour of the wake parameter

associates with the negative wake effect which is shown in the velocity
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profiles (see Figs. (5.4a) to (5.4c). Downstream of the position x/h =
94.9 the wake parameter increases, again to reach the value of the
undisturbed flow. Figure (5.6) shows the above mentioned behaviour of
the wake parameter.

As mentioned in section ( 5.1), the presence of the ring changes
the centreline velocity and this change is abrupt just downstream of
the ring. Further downstream, however, this change dies out and the
centreline velocity becomes equal to the reference velocity upstream of
the ring. Figure (5.7) shows the ratio of the centreline velocity down-
stream of the ring to that reference velocity upstream of the ring, Jr- ,

ref

against the non-dimensional distance, x/h. It can be seen that the
maximum value of the velocity-ratio appears near the ring, and this
reduces to a minimum value, below the value of 1.0, at a distance of
about x/h = 50. Further downstream of x/h = 50, the velocity ratio
increases to reach the value of 1.0, at this point the centre line velocity
is equal to the centre line velocity upstream of the ring. It can be seen

that for the same Reynold's number of 4.6 x 10\ the centreline velocity

for the smooth pipe recovers earlier than in the case of the rough pipe.

5.5 WALL FRICTION COEFFICIENT
The wall friction coefficient, c,, calculated from the local mean

velocity profiles are shown in Fig* (5.8) for the rough and smooth pipes.
The wall friction coefficient has a very low value near the reattachment
and attains a maximum value in the vicinity of the minimum velocity ratio

as shown in Fig. (5.7). The wall friction coefficient returns to a constant
value at the same x/h for the rough and smooth pipes. The point of the
reattachment downstream of the ring can be determined from the friction

coefficient distribution curve, by ascerting the value of x/h where c”

becomes zero. This can be accomp lished by extending the curve of ¢ versus
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x/h. The values of x/h = Il and 6 were determined to be the reattachment

points for the rough and smooth pipe respectively.

5.6 TURBULENCE MEASUREMENTS
5.6.1 Turbulent Normal Stresses

The measurements of the turbulence quantities were carried out for
the undisturbed rough and smooth pipes flow, and the results were
compared with those of some previous authors. Figure (5.9) shows the
comparison between present measurements in the rough pipe and those of
Townes et al (1972) and El-Samanoudy (1974). The smooth pipe measurements
were compared with the measurements of Laufer (1955). There is a good
agreement between all the measurements.

Then the turbulence quantities were measured in the flow recovery
after the ring was placed in the pipes. The distributions of longitudinal,
radial and peripheral turbulent normal stresses are shown in Figs. (5.10a)
to (5.12b). The measurements were carried out at different stations down-
stream of the ring and at the same x/h ratio for both the rough and smooth
pipes. Near the reattachment have maximum
values at y/R = 0.4, which is corresponding to y/h = 1.5 for the rough and
smooth pipe. This value of y/h is the same as in the turbulent boundary-
layer discussed in Chapter 4. Between x/h = 11.9, and x/h = 63.3, the
values of the normal stresses are different from one station to another.
Beyond are almost the same for all
downstream stations. Comparison of the results with that for undisturbed

pipe flow, the recovery of the normal stresses can be detected at 94.9< x/h <126.6

5.6.2 Turbulent Shear Stress
The turbulent shear stress distribution downstream of the ring for
both the rough and smooth pipes are shown in Figs. (5.13a) and (5.13b). The

results are shown with respect to the linear shear stress distribution:
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X =ty (I - y/R) (5.5)

Just downstream of the ring the flow behaves like a free jet. The
turbulent shear stress uv/u”, has a maximum value near the separated
stream line which isolates the jet flow and the recirculating flow region.
This maximum value decays downstream of the reattachment and the flow
reaches the equilibrium condition of Eqn. (5.5). The maximum values of
the shear stress takes place at y/R = 0.4 which corresponds to y/h = 1.5.
Downstream of the position x/h = 47.4 the distribution of the shear stress
is lower than the linear distribution of Eqn. (5.5), where the region of
the negative wake effect appears in the mean velocity distribution. More-
over thevalue of the wall shear stress reaches the maximum (c” is maximum).
Downstream of the position x/h = 47.4 the shear stress starts increasing

to reach a fully developed pipe flow distribution at x/h = 166.1.

5.6.3 Distribution Properties (skewness and flatness factors)

The probability density distribution of the longitudinal velocity
fluctuation can be studied by knowing the flatness and skewness factor.
A series of measurements of these two factors downstream of the reattachment
are shown in Figs. (5.14) and (5.15) for the rough and smooth pipes. It
is known that for the isotropic turbulence the probability density distribution
is a Gaussian error curve, and for turbulent shear flow (where velocity
gradient exist) the distribution will skew from Gaussian distribution. The
measurements of the skewness factor are shown in Fig. (5.14). It can be
seen that there is no substantial difference between the values of the
skewness factor for the rough and smooth pipes. At all values of x/h,
except near the reattachment (x/h = 11.9) the skewness factor has zero
value near the wall and changes to a negative value as the centre of the
line of the pipe is approached. At x/h = 11.9, the skewness factor is

positive near the wall; this is due to the presence of high values of the
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longitudinal turbulence intensity.

Figure (5.15) shows the values of the flatness factor at different
stations downstream of the reattachment. The values of the flatness
factor for both the pipes do not differ too much from the Gaussian value
of 3.0. The present values lie between 2.5 and 3.0 for the rough and

smooth pipes.

5.6.4 Spectral Properties

The frequency spectra of the longitudinal fluctuating velocity u2

are shown in Figs; (5.16a) to (5.17e). The results were obtained at the
relative distance y/R = 0.02, 0.35, 0.68 and 1.0 from the pipe wall. It
can be seen that the frequency spectra near the reattachment (x/h = 11.9)
follows the -5/3 law, where the energy is transferred from large to
small eddies without being influenced significantly by either the production
or dissipation mechanism. At the point y/R = .02 (inner region of the
flow) the frequency spectra follows the -7 law at high wave-numbers (small
wave lengths), where the energy received from lower wave-numbers (large
wave lengths) is dissipated by the action of molecular viscosity. Down-
stream of the reattachment the three ranges of the energy (production-
intermediate subrange-dissipation) are clearly defined at all stations.
In the rough pipe the range of -7 law is approached asymptotically in all
stations for a wider range of wave-numbers than in the smooth pipe. The
general figure of the frequency spectra does not differ from that for the
rough and smooth pipes without the ring.

The second moments of the frequency spectra are shown in Figs. (5.18a)
to (5.18e) for the rough and smooth pipes. The results are plotted in
the form of a product of the wave-number and the first moment of the
spectrum function against the wave-numbers. These results are used to

calculate the micro-scale of turbulence, which is related to the area
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under the second-moment curve (Eqn.(3.14b)). Near the reattachment for
both rough and smooth pipes the results show a poor collapse at y/R =
0.35, 0.68 and 1.0. This indicates that the micro-scale is affected by
the high turbulence and the large eddies of turbulence due to the flow
separation. The longitudinal spatial correl ation coefficient cal eulated

using Egn. (3.13b) are shown in Figs. (5.19a) to (5.19e).

5.7 RESULTANT PIPE FLOW TURBULENCE PROPERTIES
5.7. Length Scales (Micro- and Macro-Scale of Turbulence)

Figure (5.20a) shows the values of the micro-scale of turbulence
downstream of the reattachment. The results were obtained at relative
distance y/R = .02, 0.35, 0.68 and 1.0 from the pipe wall. The values of
the micro-scale of turbulence at the same relative distances, for the
rough and smooth pipes without the ring, are also shown in the above figure.
From these results it can be seen that at y/R = .02 (inner region) the
small eddies have a minimum value near the reattachment and reaches to
maximum value at x/h = 40. Downstream of position x/h = 40 the micro-
scale of turbulence reduce to reach the value for the pipe flow without
the ring. At y/R > .02 the values of the micro-scale have almost constant
values of 1.5 mm for both the rough and smooth pipes.

The macro-scales of turbulence are shown in Fig. (5.20b). The results

show the same trend as the micro-scale of turbulence.

5.7.2 Turbulent Eddy Viscosity and Mixing Length

From the mean velocity distribution and shear-stress distribution, the
turbulent eddy viscosity, v”~, and the mixing length , were calculated.
Figures (5.21a) to (5.21c) show the resultant turbulent eddy viscosity
calculated using Egn. (3.10a).

The values of the eddy viscosity are small near the wall, where the

molocular viscosity dominates. Away from the wall the turbulent shear
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stress increases and so the eddy viscosity is increased. Near the centre
line of the pipe the turbulent shear stress has a small value and the
velocity gradient is also decreasing, thus the eddy viscosity is reduced.
In all the stations downstream of the reattachment this behaviour of the
eddy viscosity exists, except that the maximum value of the eddy viscosity
is higher near the reattachment because of the high value of the shear
stress and low velocity gradient. Comparing the results with those for
the pipe flow without the ring, the distribution of the eddy viscosity is
returned to its undisturbed flow distribution at distance of x/h = 126.6
for the rough and smooth pipe.

The results of the mixing length distribution are shown in Figs. (5.22a)
to (5.22c) for the rough and smooth pipe. Near the reattachment the flow
is far from the equilibrium condition and the experimental mixing length,
in the inner layer, is higher than that calculated for equilibrium flow
(E = icy). Downstream of the reattachment the inner layer increased and

the flow returns to its original mixing length distribution at x/h = 126.6.

5.8 SUMMARY AND CONCLUSIONS

In this Chapter the effect of a two-dimensional obstacle on a fully
developed turbulent flow is studied. The experiments were carried out for
a rough and smooth pipe. The two-dimensional obstacles were in the form
of suitably scaled internal (rectangular in cross-section) ring. The
height-to-width (’h = .86) and the radius-to-height (fRf =4.0) ratios were
the same for both smooth and rough pipes. The same Reynold's numbers of
4.5 x 105 was also maintained for both the pipes. The rough pipe was
lined internally with the same background roughness used on the boundary-
layer flow experiments. The results of the friction factor, f, and the
roughness function,x , for the rough pipe, show that the experiments were

carried out for a fully rough region.
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The mean velocity distribution downstream of the position x/h = 23.74
has higher values than the undisturbed velocity distribution (pipe
without the ring). This due to the negative wake effect caused by the
secondary flow downstream of the obstacle. This effect does not exist
in the boundary-layer flow where the the flow has the tendency to increase
the absolute thickness downstream of the obstacle.

The recovery of the mean velocity distribution occurs between the
positions 94.9 < x/h < 126.6 for both the rough and smooth pipes. These
positions are corresponding to 59.8 cms. < x < 79.6 cms. for the rough
pipe and to 47.5 < x < 63.3 for the smooth pipe. These positions when
compared with those obtained for the boundary-layer flow, 116 cms. < x < 139 cms.
for the rough plate and 86 < x < 116 for the smooth plate, show that the
position of the recovery on the flat plate is about 1.8 times the distance
of the recovery in the pipe flow. It must be noted that the ratio of R/h
in the pipe flow is twice the ratio of 6/h on the boundary-layer.

The recovery of the shear stress distribution in the pipe flow occurs
at 126.6 < x/h < 166 which corresponds to 79.8 cms. < x < 104 cms. for
the rough pipe and to 63.3 cms. < x < 83 cms. for the smooth pipe. For
the rough plate this recovery occurs at 139 cms. < x < 185 cms.; for the
smooth pipe at 116 cms. < x < 139 cms. Comparing this recovery of the
shear stress for the pipe flow with that obtained for the boundary-layer
yields the same conclusion as obtained for the recovery of the mean velocity
distri bution .

The effect of the secondary flow in the pipe flow reduced the shear
stress below the linear distribution of the shear stress (t/t0 = 1 - y/R).
Near the reattachment the maximum shear stress occurs at y/h = 1.5 which

is the same for the boundary layer experiments.
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The results of the spectrum function downstream of the ring for
the rough and the smooth pipe show that the behaviour of the frequency
spectra is the same for ail stations downstream of the ring. The three
ranges of the energy (production - intermediate sub-range - dissipation)
are clearly defined at all stations downstream of the ring. This behaviour
is also shown for the boundary-layer results.

The distribution of the skewness factor downstream of the ring shows
that the probability density distribution is less skewed in the centre-
line of the pipe, than in the outer layer of the boundary-layer flow.

This is due to the fact that in the pipe flow there are two shear layers
whereas in the boundary-layer flow there is only one shear layer near the
flat plate. It is also found that the flatness factor is nearly Gaussian
(varies between 2.5 and 3.0) for both the rough and smooth pipe. The
values of the skewness and flatness factors near the reattachment are not
Gaussian where these values are affected by the separation and reattachment
of the flow.

The micro-scale of turbulence (small eddy size) downstream of the ring
has a constant value downstream of the position x/h = 40, which is similar
to the undisturbed flow distribution (pipe without ring). Upstream of x/h
= 40, the micro-scale of turbulence has high values because of the effect
of the separation of the flow. The macro-scale of turbulence (large eddy
size) has a different behaviour than that for the micro-scale. At the
position x/h £ 40 the values of the macro-scale are the same for all the
values of y/R (= 0.35,0.68 and 1.0). Downstream of x/h = 40 the values of
the macro-scale tend to catch up the undisturbed values. It can be concluded
from the above discussion that the presence of the ring inside the pipe
affects the large eddies more than the small eddies.

The recovery of the mixing length and the turbulent eddy viscosity

occurs at the same distance 126.6 < x/h < 166, for both the rough and the

smooth pipe.
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CHAPTER 6

EQUATIONS OF MOTION AND NUMERICAL PROCEDURE

6.1 INTRODUCTI ON

In the present chapter the differential equations which govern
turbulent flows and their finite difference forms are discussed. The
method of solution for the resulting algebraic equations are also
described. The velocity components U and V were replaced along with
the pressure by both vorticity and the stream function. The turbulent
flux terms which appear in the vorticity equation were calculated through
the use of a two-equation turbulence model consisting of differential
equations for the kinetic enegy of turbulence and its dissipation rate.

The predicted points of separation and reattachment, are compared
with the experimental results of the rectangular cross-section obstacle
(ridge) attached to both the smooth and rough plates. Similar comparisons
are made for the velocity distribution and turbulent kinetic energy

downstream of the reattachment.

6.2 DIFFERENTIAL EQUATIONS
6.2.1 Stream Function and Vorticity Equations

The dependent variables in the present numerical solutions are the
stream function ip and the vorticity w. The vorticity t is a measure of

the amount of antic lock-wise rotation and deformation which the fluid

possesses. Its definition is:
9V 3uU
6.1
Id 3y 3y (6.1)

where U and V are the velocity components at direction x and y respectively.
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The stream function is a scalar quantity defined by:

v = /pUdy = -/pVdx (6.2)

The relation between the vorticity and the stream function which
play a central part in the present calculation procedure, can be obtained
by combination of Eqns.(6.1) and (6.2); its simple form is:

dz\p 92ip

- 6.3
X2 +  ay7 P (6.3)

Equation (6.3) is the stream function equation. The vortfcity
equation is derived from the two differential equations which relate to

the momentum in x and y direction respectively:

°U 33 * pV 37 ax ay
o av -\ 3p + alxy (6.4b)
pU 33 * pv 37 ay 3x ¢
with the continuity equation
au t av
6.4
ax ax, ° (6.4¢)

By eliminating the pressure from the momentum equations (6.4a) and
(6.4b), the two equations can be replaced with one equation for the

vorticity. The result is:

30 0 a2 a2
U ax +pvay  ax Werr © at2 Oerr @ * 9 (6.5)
where

- | t 3V 3, . au. 0 az . av.
o] 3x3y lyeff ( 3y aX ax-1 eff 3y - 2w <Beff 37

fees

<6-6a)
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and yg” = y + yA (6.6b)

where y is the molecular viscosity and y+ is the turbulent eddy
viscosity, the value of is zero in the uniform viscosity flow and

boundary-layer flows (Wolfshtine (1967)). The final equations for the stream

function ~ , and the vorficity o>, are Eqns. (6.3) and (6.5).

6.2.2 Turbulence Model

The value of the turbulent eddy viscosity y”, which is needed to
calculate vy can be calculated in a number of ways (Launder and
Spalding (1972)). The necessary algebraic or differential equations
collectively constitute a ’turbulence model'.

The standard for the choice of a turbulence model include economy
of computer time, accuracy, width of applicability and simplicity. A
classification for tur bulence models and some examples of their applications
are provided by Launder and Spalding (1972). Turbulence models can be
classified according to the number of additional differential equations
which they contain. Most zero-, one- and two-equation models represent
the Reynold’s shear stress by means of the turbulent viscosity concept.

The turbulent viscosity is taken to be proportional to the product
of a velocity scale and length scale characteristic of the local turbulent
flow. Zero-equation models employ the mixing length hypothesis (Prandtl,

(1925)) in which the length scale is specified by a "mixing length" i

3U
3y

m
and the velocity1 scale is of the form Ir ; the velocity gradient

3U

3y is calculated from local mean flow conditions. This model is applicable

to simple two-dimensional boundary-layer flows (Patankar and Spalding (1970))
where £ is easily prescribed empirically and the predominant mean velocity

gradient does not change sign.



-77-

In one- and two-equation models, the turbulent eddy viscosity y+,
is related to the kinetic energy of turbulence, k = £ (u2 + v2 + w2) and

a length scale | , by the experssion:
y+ = Cy p kv2 I (6.7)

where Cy is an empirical coefficient. The value of k can be obtained by
solving the differential transport equation'for kinetic energy, but
sufficient knowledge of the length scale, | , distribution is required.
Two-equation models provide a more general approach by solving
transport equations for both k , and a quantity related to the length
scale H. In practice, it proves to be more satisfactory to solve for
the turbulent dissipation, e , rather than for the dissipation length
scale H. The two variables are related (Launder and Spalding (1974))

by the equation:

where is a constant to be determined from experimental data. By
combining equations (6.7) and (6.8) the turbulent viscosity can be linked

to k and e , thus:

yEr = Cy p -92 (6.9)

"Two-equation models are the simplest available means of calculating
turbulent stresses in recircul ating or separated flows where the length
scale distribution cannot be prescribed algebraically" (Launder and
Spalding (1972)). Such models have been applied to wall boundary-layers
(Pope and Whitelaw(1975)) and two-deminsional recirculating flows over
a backward facing step (Minh and Chassainy (1978)) and flow over a
rectangular cross section obstacle (Vasi lic-Mel ling (1977), Durst and

Rastogi (1979)).
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More elaborate turbulence models exist which do not employ the
turbulent viscosity concept, but solve differential equations for the
Reynold's stresses. In a study of a two-dimensional channel flow,

Hanjalic and Launder (1972), solved an equation for one shear stress
component in addition to equations for the kinetic energy and dissipation.
This model was later extended by replacing the turbulence energy equation
by transport equations for the three normal stresses and solving these
along with equations for shear stress and dissipation.

In the present study, the two-equation k-e turbulence model was
applied to predict the flow over a two-dimensional obstacle. This flow
is characterised by a region of recirculation and wake. Zero- and one-
equation models are inadequate for such flow because of their dependence
on prescribed length scale distribution.

As described above, the turbulence model used in the present invest-
igation is the two-equation model, for the transport equations for both
the turbulent kinetic energy k, and the dissipation rate e . The transport
equation for turbulent kinetic energy first derived by Kolmogorov (1942)
is obtained using the equations for the turbulent velocity and pressure
fluctuations in the momentum equations (Egns. (6.4a) and (6.4b) and averaging
with respect to time the two-dimensional turbulent flow equation can be

written as:

uv (6.10a)

uv (6.10b)

It may be shown that after some lengthy algebra, that the turbulence

energy equation is:
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8k ak — au _a_ , a2k + a2k
puU pv a7 ' puv a7 eax (P+hkv ¥ 3xz + 8yz
8u_ 3v. 3v

3x  3x  + 3y 3y (6.11)

The stepsto get the above equation are given by Hinze (1975). The
physical meaning of the various terms in the equation may be identified

as follows:

ak . .
— convection of the turbulence ener by the mean motion
pUS + prvay = S
-p uv the Reynold’s shear stress
-p uv Z; production of the turbulence energy

;ax_ P + KV turbulent diffusion of the turbulence energy

9 = viscous diffusion of the turbulence energy

8u 3u

— | = viscous dissipation
ax ax

The above terms have to be approximated in terms of quantities which
could be known or can be determined. These approximation forms are
presented by Launder and Spalding (1972) and when Eq. (6.11) is rearranged

the final equation becomes:

.l ak w ak | r U a_ a_k ) 512
pu ax + pv a7 ax (rk 3>2 ay (rL ay) + G -pe 12a
i s WE
where Tk is the exchange coefficient = y+ —
o
and
(3 + 9U)2 6. 12b

G-y, 232 2amz T
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By a similar procedure to that used above, the equation for the
dissipation rate, e , can be deri.ved. The resulting equation is long
and complicated, and it will suffice here to state a modelled form

(Launder and Spalding (1974)):

N

3 v3& _ 3 ,r 3e. 3 ,r * 6.13
pU35 pvw ' » (li S* W <t P S C2pf (6.13)
where
v o+ —
The values of the constants , ae , Cj and C2 appearing in

Eqns. (6.12a) and (6.13) were determined approximately from data for
simple turbulent flows. Then these constants were optimised by predictions
for a different flow situation. Details of the evaluation of these
constants were given by Launder and Spalding (1972). These constants

take the values given in table (6.1).

Table 6.1

The values of constants in the k ~ e model.

c cl c2 a

6.2.3 Conservation Equation for Property ¢

As shown in the last section (6.2.2), the differential equations
which control the flow are the Egns. (6.3), (6.5), (6.12a) and (6.13).
All of these equations can be regarded as possessing the common form for

dependent variable, 4 , (Gosman et al (1969)):
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f3 ,i 30 3 3iK-, r3 ,u 3°n 3.t 30 4 L5 -0 (6.14)
% {30~ 37}- 37T @W } " {3 % Tx " 37 % "ly P '

where the terms in the first curly brackets represent the transport
of & by convection. The terms in the second curly brackets represent
the diffusion of g~ The "source" term S”, contains quantities related
to the generation or destruction of <> as well as any other terms which
are not accounted for in the convection and diffusion expressions. The

new coefficients af, béb and c.. are shown in table (6.2):

Table 6.2

The functions a,, b., c¢. and S, associated with Eqn. (6.14)
? ? ? I

(o)]
3¢ ¢
9 1.0 1.0 ueff ' 2 3x3y I*eff < 3x>I * 2 3x2- <“eff 3y>
- 32, 3v.\ D)
2 3y2 yeff 3x '
' 0 1.0 1.0 -. 9
k 1.0 rk, " 1.0 - (G - pe)
e 1.0 re 1.0 - (Cif G- C2p &)

.2.4 Boundary Conditions

The differential equations of the form of (6.14) are second-order
elliptic equations. Therefore, information must be provided to specify
the value of each variable (or its first derivative, normal to the boundary)
on each boundary. The boundaries of the solution domain may coincide with

an upstream location at which a specified inflow, solid walls, a free

boundary and a downstream location where outflow takes place.
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At the upstream boundary, it is necessary to provide distributions
of all variables, including ip, @, k and e. The values of the stream
function and the vorticity were calculated using a mean velocity profile
whose outer region was modified by Moses (1964) and Finly (1966). This
mean velocity profile satisfies the condition that the cross-stream
mean velocity gradient should be zero at the edge of the boundary-layer:

A A Au o+ IL (6.15)
uo uo k

where n is the wake-strength parameter and 5 is the absolute boundary-layer
thickness. The value of EO is the roughness function, which is equal

to zero for smooth surface. The above values can be determined experimentally
in the upstream location.

The application of the boundary conditions at walls in turbulent flow
requires a more elaborate treatment than at the upstream boundary. Thus,
although the velocity components are zero (iji = const and (]Jy) = 0), special
formulae are necessary to calculate the resultant wall shear stresses.
These, together with the boundary conditions on the turbulence kinetic
energy, k , and dissipation rate e, are deduced from wall function approxi-
mation to the transport equations in the near wall region. Details of
these practices are shown in Appendix C.

At the free boundary, the conditions are known from the distribution
of velocity, turbulence energy, etc.. However, this information is not
always available in complete detail, especially if the flow was disturbed
by an obstacle. Therefore, it is required to locate the computational
free boundary sufficiently far from the obstacle. If this precau tion
is taken, constant values of stream-wise velocity (or constant stream
function ip), k and ecan be specified along the free boundary. The

vorticity and the normal velocity are set equal to zero.
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Finally, the outlet plane boundary was located downstream of the
obstacle, where the velocity normal to the boundary is directed every-

where outwards. All the derivatives with respect to the stream-wise

).

direction, x, were set to zero (3x

6.3 FINITE DIFFERENCE EQUATIONS

In section (6.2) the differential equations which have to be solved
are presented. Generally, there is only one practical method to obtain
solutions of these equations; this is by finite-difference techniques.
The control volume was covered with a mesh, which is rectangular in the
present work. In each mesh point the differential equation was replaced
with a finite-difference, algebraic equation. The control volume and the
mesh are shown in Fig. (6.19).

As mentioned in section (6.2), all the differential equations were
represented by the general conservation Egqm. (6.14). The finite-difference
form of this equation is then obtained by integration of Eqn. (6.14) over
small rectangles, surrounding each mesh point. These rectangles are so
defined that their sides lie half-way between the mesh points and the
paralilel to the x and y axes (see Fig. (6.1b)).

Details of the integration of Eqn. (6.14) over the control are given
by Gosman et al (1969). Here it will suffice to present the final result,
for the value of ¢ at point p surrounded by the points E, W, N and S as

fol lows :

tp = CE "E + CWK + CN + CS + D (6J6a)

where
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CE 1 (ae *+ be ATE)/EAB

Ccw (AW + BW vy w )/EAB

CN 1 (an + bn c+,n)/':ab

cs = (AS 4 BS ca,5,/1:08
D 7y - Jp.
> V o
ZAB Ae wlAw + an + As + Ca>p (be + Bw + bn + Bs)
ahd
VP " i <*E - xw) <W -V (6.16¢)
(6.17)
AE * 0 [<*SE **S * *NE 1 V * | WE * +S - *NE ' *N
and the A®, A®, AN are similar expressions.
(6.18)

The expressions of the terms Af£, A, A™ and Ag describe the transport
of ¢ by convection. Those of B”, B”, BN and B<, describe the < transport
by diffusion. A further discussion of the equation (6.16a) was presented
by Gasman et al (1969).

Equation (6.16a) represents the finite-difference, algebraic equations,
for all the dependent variables (§): o, ip, k and e . Once the algebraic
equations were derived, a procedure must be found for solving them. When

the equations are linear and few in number, standard matrix-inversion
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techniques can be used. Usually, either because the equations are very
numerous, or because of non-linearities, successive substitution
techiniques must be employed (Gosman et al (1969)). In these, initia |
guesses for the values of the variables are substituted into successive
substitution formulae which were derived from the algebraic equations and,
new values are computed; then these values are used as new guesses to the
solution. Such procedures are commonly referred to as iterative, and each
set of calculations of new values is terms a cycle of iteration.

As mentioned before (section (6.2.4)) the solution of these finite-
difference equations needs information for the boundary domain (boundary
conditions). At the upstream boundary, the appropriate conditions are
supplied by assigning the specified distributions of ¢ at all grid nodes
in the entry plane of the solution.

At the solid boundary the value of Yy was set to zero, the vorticity
was taken as varying linearly with the normal distance from the wall, this
assumption made by Gosman et al (1969), which give the vorticity at the

wall boundary as

3( Jnp - tn) + NP (6.19)
P Vnp" p 2
where ¢Np and “np are the value of the stream function and the vorticity
at the near wall boundary.
At the free boundary specific values were assigned to all variables

as described in section (6.2.4). At the outlet plane, the stream-wise

diffusion was set to zero, i.e., ax - 0, for all the properties ip, ®, k and e

The important boundary is the corner marked, p, in Fig. (6.1c). A
fixed separation stream line method was used. This method used by Gosman et al
(1969), and by Debenham and Dugglns (1977). It is based on the assumption

that the separating streamline leaving the corner continues forward to the
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next grid point (p in Fig. (6.1c)). The finite-difference equation for

joo using the notation of Egn. (6.16a) is:

i = CE 4 + Cw” + CN + Cs + Cp W (6.20)

where ilps = ilpp - ilpwail’ and the last term on the ri%ht-hand side
represents, D, in Egn. (6.16a). Utilising the above assumption, i]ip is
known ( = $ |l) and Eqn. (6.20) is rearranged to give an expression
for WP.

The complete flow domain can be divided into two regions: the recir-
culating flow region which extends from 5h upstream of the obstacle to 15h
downstream of the obstacle (where h is the height of the obstacle) and
the boundary-layer region which prevails in front of the obstacle
(x/h < -5) and beyond the recircul ating flow region. In the region around
the obstacle diffusion is equally important in both x- and y-directions;
there exists no dominant direction of flow, and the flow is influenced by
the downstream conditions. In the region beyond the separated flow,
there exists a dominant direction of flow and diffusion is important only
in the cross-stream direction. This region is governed by the differential
Eqns. (6.3), (6.5), (6.12) and (6.13) without the diffusion terms in the

x-direction.

6.4 CONVERGENCE AND ACCURACY OF THE SOLUTION

Gosman et al (1969) found that when Eqn. (6.19) is used explicitly
for the calculation of the wall vorticities, and when the spacing between
the grid lines parallel to the wall is non-uniform, divergence may occur.
The source of the divergence appears to be the linkage of the vorticity

and stream function equations throw the vorticity boundary conditions.
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This divergence may be averted by the following two measures:

(i) Near the wall, the ratio of the intervals between the nodes
would be kept as close to unity as possible.

(ii) The wall vorticity should be removed from the substitution
formulae for the near-wall nodes by once-and-for-all algebraic elimination.
Thus for example, if p is the interior node which lies adjacent to a
wall node S, and equation (6.19) is the vorticity boundary condition,
then the following modified substitution formula should be used

(Gosman et al (1969)):

W (6.21)

P

The divergence may also occur when the source term D in Egn (6.16a)
is a function of ¢ This can be seen in the kinetic energy equation and
the dissipation rate equation. To avert this divergence the source term
was modified. Pun and Spalding (1977) linearised forms for the source
terms in the kinetic energy and dissipation rate equations were used in
the present solution.

The factors which affect the accuracy of the predictions are the
degree to which the solution satisfies the differential equations, the
degree to which it satisfies the finite-difference equations, the location
of and conditions imposed on the boundaries and the adequacy of the
turbulence model.

The first factor results from truncation error which is the difference
between the solution of the differential equations and the solution of
the finite-difference equations. It arises because of the approximations
involved in the replacement of the differential coefficients by the
finit-difference ones. These errors can be minimised by reducing the

spacing between nodes to an acceptable level, preferably by using a non-
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uniform grid with modes concentrated in regions of high gradients.
Concerning the second factor, the extent to which the current solution
satisfies the finite-difference equations can be assessed by that the
difference between the variables at N and N + | iterations is very small.
Errors caused by inappropriate location of boundaries or specification
of boundary conditions can be detected by adjusting the location conditions
of the boundary and determining the sensitivity of the solution to such
changes. If all the l'atterfactors are eliminated, the adequacy of the
turbulence model may then be assessed by comparing the solution with the

experimental data.

6.5 COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENTAL DATA
6.5.1 Recirculating Flow Region

Computations were carried out to solve Egns. (6.3), (6.5) (6.12a) and
(6.13) upstream and downstream of the two-dimensional rectangular cross-
sectional bar (ridge) attached to the rough and smooth plates. The
computations were carried out to solve these equations at between 5 and 15
obstacle heights upstream and downstream of the obstacle respectively.
The recirculating flow program was used for this purpose. A 51 x 17
finite-difference grid for the smooth plate and a 48 x 20 finite-difference
grid for the rough plate was used. The initial conditions at x/h = -5
for \p, w, k were taken from the experimental data while the dissipation
rate was assumed to follow the mixing length hypothesis. About 6000
iterations and 500 secs, of computing time were required to obtain the
converged solutions. The time required for the solution of the rough
plate was 630 secs, for the same number of iterations.

Figures (6.2)=shows the computedistream line pattern- around the
obstacle attached to both the rough and the smooth plates. The separated

stream line determined experimentally is also shown in the same figure.
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Agreement between the predicted value of the reattachment length and
the experimental is not too good. This discrepancy may be attributed
to the unsteady flow in the reattachment zonj”S The experiments carried
out by Abbott and Kline (1962) for flow patterns over backward facing
steps showed that the overall length of the separation region was
unsteady and periodically changing in size. The above results were
obtained by solving the kinetic energy and dissipation rate equations
with the constants of table (6.1).

The recirculating flow region upstream of the obstacle is also
shown in the above mentioned figure. Due to the negative pressure gradient
created upstream of the obstacle, the flow will separate from the wall
boundary and reattach again on the front surface of the obstacle. The
agreement between the predicted and the experimental point of reattachment
on the front surface is good. The point of reattachment occurs at y/h = 0.6
for the ridge on the rough plate and at y/h = 0.55 for the ridge on the
smooth pl ate

The solution was repeated for different values of the constants
Ci C2, C, a and a in the kinetic energy and dissipation rate equations.
The effects of this change are shown in Figs. (6.3) and (6.4). These
results show that these constants affect the general behaviour of the
flow around the obstacle. The constants which give a reasonable agreement

are those recommended by Launder and Spalding (1974).

6.5.2 Boundary Layer Flow Downstream of Reattachment

Downstream of the reattachment, there exists a dominant direction
of the flow and diffusion is important only in the cross-stream direction.
This region is governed by the differential equations used in the
recirculating flow, without the diffusion terms in the x-direction. A

different computer program was used to obtain the solutions for this flow.
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The boundary condition for i, & k and ewere taken from the experimental
data. A 51 x 18 finite-difference and for the smooth plate was used.
For the rough plate, two finite-difference grids were used, one was

51 x 22 and the other 29 x 26. The solution was obtained for a ratio
x/h = 50 downstream of the reattachment.

Figure (6.5) shows the measured velocity distributions superimposed
on the theoretical ones. The latter were calculated from the stream
function results. For the smooth plate, the wall function (the law of
the wall is valid between the near grid points and the solid wall),
which is discussed in Appendix B, was used in the near-wall region. As
this figure shows, the numerical solution with and without the wall
function is almost the same for the mean velocity and kinetic distributions
The two solutions with the wall function and without it are in reasonable
agreement with the experimental results. The wall friction coefficients
determined from the wall function is shown in Fig. (6.6). It can be seen
that the agreement between the experimental and prediction distribution
is good in near region downstream of the reattachment.

The results of the mean velocity distribution obtained for the
rough plate do not agree well with the experimental results. To improve
the solution for the rough plate several computational attempts were made
and the following possibilities were considered:

(i) the effect of the finite-difference grid;

(ii) the effect of the number of iterations.

It was found that the solution was independent of the finite-
difference grids used in the present analysis. Also the solution was
independent of the number of iterations when the latter exceeded 6000.

The discrepancy between the theoretical and experimental results
was due to the fact that the surface roughness was not considered. Also

the wall function could not be used, except if the relationship between
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the constant E in Egn. (1.C) and the values of the wall friction
velocity u is known.

The kinetic energy distributions are shown in Fig. (6.7) for both
rough and smooth plates. It can be seen that there is a good agreement
between the predicted and the experimental profiles for the smooth
plate. However, the agreement for the rough plate proved to be less
satisfactory. Neither the change of the finite-difference grid nor the
number of the iterations improved the results.

The boundary-layer integral thicknesses S* and 9 and the shape
parameter H calculated from the theoretical and measured mean velocity
profiles are shown in Fig. (6.8). The smooth plate results are seen to
be in good agreement with their experimental counterparts. Because of
the poor agreement of the predicted and measured velocity profiles on
the rough plate, there is a notjcable difference between the theoretical
and experimental boundary-layer integral thicknesses 5* and 9. Inspite

of this, the shape parameter H, is predicted fairly well.

6.6 SUMMARY AND CONCLUSION

This chapter has presented the equations of motion and a method for
their solution for a two-dimensional turbulent flow of uniform property
fluid. The dependent variables in the solution were the stream function
Y and the vorticity t A two-equation k - e turbulence model was used
to calculate the value of A general conservation equation for any
property & was formulated. Then finite-difference version was derived by
integrating the partial differential equations over a small control volume
centred at a representative node of the finite-difference grid. The
flow was divided into two regions, a recircul ating flow region around

the obstacle, and a boundary-layer flow downstream of the reattachment.
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The prediction of the recirculating flow region is good compared
with the available experimental data. The solution can predict the
separation bubble upstream of the obstacle. The change in constants
Cj C2,C , a and a in the kinetic energy and dissipation rate
equations affect the solution of the recirculating flow region. Down-
stream of the reattachment the agreement between the predicted and
experimental results is acceptable for the smooth plate. For the rough
plate there is a disparity between the predicted and the experimental
results. This disparity is probably due to the omission of surface
roughness and must be taken into consideration if the solution is
to be improved. This may be achieved by using the wall function formula

in the near wall region.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7.1 SUMMARY

This thesis investigated, experimentally and theoretically, the
recovery of a turbulent shear flow downstream of a two-dimensional
obstacle, the effect of an irregular surface roughness on the mean flow
and turbulence properties downstream of the obstacle. The experiments
were carried out for turbulent boundary-layers developed on smooth and
rough plates. Two types of geometry were used for the obstacle: one
being a rectangular cross-section bar (ridge) and the other a single hump
(hill). The characteristics of the flow, on both the rough and smooth
plates, were determined before and after the obstacle was Introduced into
the working section of the wind tunnel. All the experiments were made for
a zero external pressure gradient with a free stream velocity of 21 m/s.

The experiments were repeated, within the present project, for a
fully developed turbulent pipe flow. Study of the pipe flow may lead to a
better understanding of the behaviour of the turbulent boundary-layer flow.
The shear stress distribution, is already known for a fully developed pipe
flow. The pipe flow experiments were carried out for both rough and
smooth pipes. An abrasive paper sheet, of grade 16, was used to simulate
the irregular rough background for both the boundary-layer and pipe flows.
The two-dimensional obstacle used with the pipe experiments was a rectangular
cross-section ring.

A theoretical investigation was carried out to predict the separation
zone upstream and downstream of the obstacle (rectangular cross-section bar)
in addition to the flow recovery downstream of the obstacle. The main flow

was divided into two regions: (a) the recirculating flow region upstream
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of the obstacle x/h > -5 to x/h g 15 downstream of the obstacle and (b)

the boundary-layer region which prevails in front of the obstacle

(x/h < -5) and beyond the recirculating flow region. The stream function ip
and the vorticity w» were the dependent variables in the present investig-
ation. The k-e turbulence model was employed to specify the turbulent
viscosity y.].. The avai lablefinite difference calculation procedures for
recirculating flow and boundary-layers (Gosman et al (1969)) were used to

solve the governing, partial differential equations.

7.2 CONCLUSIONS

The following important conclusions can be arrived at:

(a) Wind Tunnel Experiments
(1) The pressure distribution on the obstacle depends upon the shape of
the obstacle itself. For the ridge and the hill attached to the rough plate,
the adverse pressure gradient, created upstream of the ridge, is greater
than that created upstream of the hill. This pressure gradient affects
the size of the front separation bubble (upstream of the obstacle). Due to
this adverse pressure gradient, the flow separates from the plane boundary
and reattaches on the front surface of the obstacle. At this reattachment
the static pressure distribution on the front surface reaches Its maximum
value. For the same geometry (ridge), with the same aspect ratio (b/h = 2.5)
and the same boundary-layer-to-obstacle height (S/h = 2), attached to rough
and smoothplates the reattachment of the flow on the front surface occurs
at 0.5 < y/h < 0.6. For different geometry (ridge or hill) with the same
S/h, the reattachment on the front surface of the hill occurs at 0.2 < y/h < 0.3.
(2) The flow separates at the top of the obstacle and reattaches at
the wall boundary downstream of the obstacle. In the case of the rectangular

cross-section bar (ridge), the separated flow from the wall boundary
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(upstream of the ridge) is reattached on the front surface of the obstacle
and separates again at the top edge of the front surface of the obstacle.
The static pressure distribution on the front surface will be decreased
to the base pressure value (Cp = -0.26 ridge and -0.36 hill) on the rear
surface of the obstacle at the separation point of the flow. This
separation occurs at y/h = 1.0 for the ridge and in the case of the hill
the separation occurs at y/h = .9.

(3) For two obstacles, with the same boundary-layer thickness-to-
obstacle height - 6/h and the same aspect ratio-b/h, attached to smooth and
rough surfaces, the drag force on the obstacle attached to the smooth plate
is higher than that on the obstacle attached to the rough plate. This is
due to the velocity shift-Au/u0 - caused by the plate surface roughness.

(4) The size of the recirculating flow region, downstream of the
obstacle, depends on the geometry of the obstacle itself and the surface
roughness of the plane wall. The length of the recirculating flow region
downstream of the rectangular cross-section bar (ridge) is about 25% more
than that downstream of the hill-. For the same geometry of the obstacle,
the length of the recircul.ating zone on the rough plate is about 15% more
than that on the smooth plate.

(5) Downstream of the reattachment, the mean velocity distribution
recovery depends on both the geometry of the obstacle and the surface
roughness. For different geometries of the obstacle attached to the same
rough surface, the velocity recovers at 116 cm < x < 139 cms in the case
of the ridge, while in the case of the hill-shaped obstacle the recovery
occurs at 86 cms < x < 116 cms. For different surfaces and the same

61f
~ ?

. 5
obstacle geometry, the recovery of the mean velocity occurs at 116 cms< x < 139 cms

7/ Tk
for the rough surface and at 86 cms < x < 116 cms for the smooth surface.
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(6) The results obtained for the wall friction coefficient Cf, and
Clauser parameter G, confirms the above conclusion (5). Figure (4.9a)
shows the friction coefficient found downstream of the reattachment for
both the ridge andthehill. It is clearly noticeable that the value of
Of increases from a near zero value, near the reattachment, to reach
the value of cf, for the undisturbed flow in the case of the hill. In
the case of the ridge, an additional distance downstream of the reattach-
ment is needed for cf to reach the value of cf for undisturbed flow. A
similar behaviour occurs for the ridge on both the rough and smooth
surface (Fig. (4.9b)), with the exception that Cf reaches its undisturbed
value much earlier with the smooth plate than with the rough one. Clauser
parameter, G, (Fig. (4.11)) shows the same sequence of recovery which
occurs firstly, downstream of the ridge on the smooth plate, secondly,
downstream of the hill on the rough plate and, thirdly, downstream of the
ridge on the rough plate.

(7) The presence of the obstacle in a turbulent shear flow increases
the absolute boundary-layer thickness downstream of the obstacle.

(8) In the far region, downstream of the obstacle, the mean flow
characteristics are different than those for the flow without the obstacle.
The main changes in these characteristics are:

(a) the boundary-layer thickness is considerably increased. This

increase is about 30% for the rough plate and about 50$% for the

smooth plate.

(b) both the boundary-layer integral thicknesses <&* and 9 are

changed downstream of the obstacle. These changes affect the value

of the shape parameter H - which decreases from 1.55 for the rough
plate, without the obstacle, to 1.4 for the rough plate with the
obstacle. The same behaviour for the smooth plate occurs where the

value of H decreases from 1.44 for the smooth plate, without the
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obtacle, to 1.3 for the smooth plate with the obstacle. The decrease

In the value of H Is about 10$ for both the rough and smooth plates.

(9) The variation of the turbulent quantities plotted as a function
of the positions downstream of the reattachment (Figs. (4.12) to (4.17))
shows that these quantities require a greater distance downstream of the
obstacle than the mean velocity to recover.

(10) In the near wake region the turbulent shear stress increases from
low values, near the wall, to a maximum value near the top of the obstacle.
This maximum shear stress occurs at y/h = 1.5 for all the obstacles. This
is because the shear flow in this region is dominated by the turbulence
generated, in the initial mixing process, near the top edge of the obstacle.
The value of the shear stress in this region depends upon the shape of the
obstacle itself. At x = 50 cms downstream of the ridge attached to the

rough plate, the maximum value of the shear stress is about 70$% higher

than that for the hill at the same downstream position. In the far wake
region the shear stress distribution downstream of the hill reaches the
full recovery at about x = 139 cms., while the shear stress downstream of

the ridge needs a greater distance to reach the full recovery. For the
smooth plate the recovery of the shear stress occurs at distance x = 139 cms
downstream of the ridge. The main conclusion from this discussion is that
the recovery of the shear stress downstream of a two-dimensional obstacle,
attached to a plane wall, depends on the geometry of the obstacle and the
surface roughness of the plane wall.

(11) The skewness and flatness factors which are used to express the
probability density distribution of the fluctuating velocity component,
at an arbitrary point, were also measured. Downstream of the reattachment
the distribution of the skewness and the flatness factors in the non-

intermittent region (near the wall) are nearly Gaussian for both the rough
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and smooth plate, (flatness factor changes from 2 to 3 and the skewness
factor is zero). Because of the lower fluctuating velocity in the outer
region of the boundary-layer, the probability density distribution is
negatively skewed and the flatness factor increases to more than the
value of 3.

The behaviour of these two factors is the same for both the rough
and smooth plates with and without the obstacle.

(12) The distributions of the spectrum function downstream of the
reattachment show that there is no substantial difference between all
the measurement stations. This indicates that the energy transfer from
the large eddies to the small eddies and the production and the dissipation
of energy follow the same laws of k Y28 and k 1 and k 7 as the one without
the obstacle.

(13) The macro-and micro-scale of turbulence (Figs. (4.24) and (4.25))
show no substantial difference between the values determined for the rough
and smooth plates respectively. Except in the inner region y/5 = .02, the
rough surface has smaller streamwise values of macro- and micro-scales of
turbulence than that on the smooth surface.

(14) Clauser's assumption of the distribution of the turbulent eddy
viscosity in the inner layer is not valid near the reattachment - where
the experimental turbulent eddy viscosity is much higher than the one

calculated from:

VHi = <y
This invalidity is due to the high shear stress values near the reattachment
and low velocity gradient in the near wake region. Downstream of the
reattachment, the inner portion of the flow returns to the equilibrium ,
boundary-layer state and follows the distribution according to the above

equation. The variation of the mixing length is similar to that observed

for the eddy viscosity.
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(b) Pipe Flow Experiments

(1) The presence of the ring -increases the centre-line velocity by
about 100% just downstream of the ring. Further downstream, however,
this increase dies out.

(2) The measurements of the mean velocity profi les downstream of the
ring show that the recovery of the flow is almost at the same x/h for
both the rough and smooth pipes. This recovery occurs between the positions
94.9 < x/h < 126.6 for both the rough and smooth pipes. Comparison
between these positions with those obtained for the boundary-layer flow
shows that the position of the recovery on the flat plate is about 1.8
times the distance of the recovery in the pipe flow.

(3) The mean velocity distribution, downstream of the position
x/h = 23.74, has higher values than the undisturbed velocity distribution
(pipe without the ring). This is due to the negative wake effect caused
by the secondary flow downstream of the obstacle. This effect does not
appear in the boundary-layer flow where the.flow has the tendency to
increase the absolute thickness downstream of the obstacle.

(4) The friction coefficient has a minimum value near the reattachment
and increasesto a maximum value in the region of the negative wake effect.
It then decreases again to reach its value for a pipe flow without ring
at x/h = 100.

(5) The shear stress distribution and the turbulence intensities

have very high values near the ring where
the flow behaves like a free jet flow. The maximum value of these
intensities occurs at y/R = 0.4 which corresponds to y/h = 1.5 in the
boundary-layer flow. Downstream of the ring, these maximum values of the
turbulence quantities considerably decrease to reach the undisturbed value

for the pipe flow without the ring.
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(6) Due to the negative wake effect, the turbulent shear stress

distribution reduces below the linear distribution of equation

This effect appears at x/h = 47.4 and end when the flow recovers to the
fully developed pipe flow at x/h = 166.1.

(7) The measurements of the skewness and flatness factors is the same
for all measurement positions downstream of the reattachment as those
obtained for the pipe flow without the ring. These distributions are near
to the normal distribution where the flatness factor Is about 3.0 for the
rough and smooth pipes and the skewness factor is about zero in the
inner region of the flow. The probability density distribution is less
skewed at the centre-line of the pipe than in the outer layer of the
boundary-layer flow. This is due to the fact that in the pipe flow there
are two shear layers - whereas in the boundary-1ayer flow, there is only
one shear layer near the flat plate. Because of the hijgh velocity fluctuating
very near to the reattachment, (x/h = 11.9), the probability density
distribution is positively skewed near the wall and then changes to a
negative skew at the centre-line of the pipe where the law velocity
fluctuation is present.

(8) The frequency spectra of the longitudinal fluctuating velocity u2
are determined downstream of the ring for both rough and smooth pipes. The
three ranges of the energy (production k_I - intermediate sub-range k_5/3
dissipation k 7) are clearly defined at all stations. All the measurements
are also nearly collapsed in a curve similar to the frequency spectra for
the pipe flow without the ring. This behaviour shows that the transfer

of energy from the large eddies to the small eddies and the dissipation

of the energy into heat at high frequency is not changed by the flow
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disturbance caused by the presence of the ring.

(9) The micro-scale of turbulence (small eddy size), downstream of
the ring, has constant values downstream of the position x/h = 40 - which
is similar to the undisturbed flow distribution (pipe without ring).
Upstream of x/h = 40, the micro-scale of turbulence has high values because
of the effect of the separation of the flow which is expected to have
large eddies than the downstream positions. The macro-scale of turbulence
(large eddy size) has a different behaviour from that for the micro-scale
of turbulence. At the position x/h $ 40, the values of the macro-scale
are the same for all the distance from the wall (y/R = .35, .68 and 1.0).
Downstream of x/h = 40, the values of the macro-scale tend to catch up
the undisturbed values. It can be concluded the upstream of x/h = 40,
the flow has large eddies of the same order for the whole distance y/R.
Downstream of x/h = 40, the large eddies are related to the distance from
the wall. Also the presence of the ring inside the pipe affects the large
eddies more than the small eddies. The effect of the surface roughness
on the largeand small eddies is essentially near the wall y/R = .02 -
where the surface roughness reduces the size of the eddies in this region
compared to that near the smooth surface.

(10) The distribution of the mixing length and the turbulent eddy
viscosity behaves the same as the boundary-layer flow downstream of the
reattachment. The mixing length and the eddy viscosity return to the
fully developed distribution for the flow without ring at 126.6 < x/h < 166

for both the rough and the smooth pipes.

(c) Numerical Predictions
The results presented in Chapter 6 show that:
@) In the region around the obstacle diffusion is equally important

in both x and y directions; there exists no dominant flow direction. In
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+he region beyond the separated flow, there exists a dominant direction of
flow and diffusion is important only in the cross-stream direction. Thus,
for numerical convenience, the complete flow domain must be divided into
two regions: (a) the recirculating flow region which extends from about

5 obstacle heights upstream of the obstacle to 15 obstacle heights down-
stream and (b) the boundary-layer region which prevails in front of the
obstacle and beyond the recirculating flow region.

(2) The present numerical solution in the region of the recirculating
flow proves to be satisfactory in predicting the general flow behaviour
around the obstacle. The front separation (upstream of the obstacle) and
the downstream separation are quite clear in the present solution. However,
the length of the separated flow downstream of the obstacle (reattachment
length) is not the same as the one obtained .experiments lly. This disparity
exists in the case of both the rough and smooth surfaces. The numerically
predicted, reattachment length is about 40# more than the length obtained
experimentally, in the case of the rough plate and that of about 60# for
the smooth plate. This disparity could be due to the unsteady flow in
this region (Abbott and Kline (1962)). The point of the reattachment on
the front surface of the obstacle is in good agreement with the experimental
results.

(3) Any change of the constant C|, C7, and ce in the kinetic energy
and dissipation rate equations affects the stream line pattern around the
obstacle. This affect is seen in the length of the separation zones upstream
and downstream of the obstacle (Figs. (6.3) and (6.4)). The nearest
prediction to the experimental results is obtained by the constants
recommended by Launder and Spalding (1974).

(4) In the boundary-layer flow region the predicted mean velocity and

kinetic energy distributions for the smooth plate are in good agreement
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with the experimental results. In the smooth plate case, the wail

function (law of the wall) applied in the near wall region does not

affect the solution for the mean- velocity and the kinetic energy. The
value of the friction factor calculated, numerically from the wall

function is in good agreement with the experimental results up to x/h = 20
downstream of the reattachment. Further downstream x/h = 20, the disparity
between the predicted friction coefficient and the experimental one
increases. In this region the predicted value is less than the experimental
one by about 25$.

(5) The prediction of the velocity and kinetic energy distributions
for the rough plate is poor. This may be due to the omission of the effect
of the surface roughness in the present analysis.

(6) Considering the disparity between the calculated and measured mean
velocity profiles for the rough surface, the boundary-layer integral
thickness 6* and 9 are not well predicted (about 60% more than the
experimental results). The values of 6* and 9 for the smooth surface are
in good agreement with the experimental results. The predicted shape
parameter H for both the rough and smooth plates is in good agreement with
experimental data. It can be concluded that the present numerical solution
gives a satisfactory agreement with respect to the experimental data for

the smooth surface more than in the case of the rough surface.

7.3 SUGGESTIONS FOR FUTURE WORK

(I) To provide more complete experimental data against which to compare
predicted flow patterns and, thereby, enabling improvements in the
calculation procedures and turbulence modelling - extension of the experi-

mental study is recommended along the following lines:



- 104-

(a) In the recirculating flow region and inside the separated bubble,
measurments of all three meari velocity components be encouraged. A
laser-Ooppler anemometer is the convenient instrument for performing
these measurements. This laser-Doppler anemometer has the advantage
of not disturbing the flow and having a better response time for
detecting turbulent fluctuations. These measurements should be directed
to providing information on the boundary of the recirculating flow,
region flow, and the flow near the top edges of the obstacle where

the shear layer emanates from these edges.

(b) Experiments for different geometrical parameters, such as the aspect
ratio or the boundary-layer to the obstacle height ratio are recommended.
These experiments would provide a wide choice of data for testing the

predictions around the obstacle.

(c) The influence of the surface roughness on the recirculating flow
region and the recovery of the flow can be detected by using a different
surface roughness in both boundary-layer and pipe flow. Therefore, an
extension of the experimental study is recommended for different rough
surfaces (or different hs/h, where hs is the surface roughness height and

h is the height of the obstacle)

(2) In the present numerical solution the stream function ip and the
vorticity & were used as the dependent variables. It is interesting to use
the method proposed by Patankarand Spalding (1972) where the dependent
variables in their method are the velocities U, V and the pressure P. This

method may provide a better solution especially for the rough surface.
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APPENDIX A

Statistical Examination of the Rough Surface

Method for calculating the statistical properties of the rough
surface was made by Musker (1978) in the University of Liverpool. This
method can be evaluate four different roughness heights, skewness
and flatness of the surface profile. The method can be summarized in
the following paragraphs.

A thixotropic (free flowing) silicon rubber post was used to obtain
the profile of the surface roughness. The correspoinding rubber negative
was cut through the seam and laid out on a flat board with its rough side
uppermost. The rubber was then cut, with an unused surgical scalpel, along
the lines coded by zI, 12, Z3 and Z4 as shown in Fig. (A.1). By this
method there were two profiles in the direction of the flow and the other
two were perpendicular to the flow direction. The four rectangular
strips of the rubber containing the four profiles to be measured were
mounted individually on a flat blockboard. A thin film of adhesive was
used to hold the rubber on the blockboard.

A shadowgraph machine with a magnification factor of 25 was used
during the tracings of the surface profiles. The length of each sample
was 50mm corresponding to a trace of length 1.25m. The four profiles
are shown in Fig. (A.l). Digital records of the profiles were obtained
using a Marconi digitising table. A rectangular 'window' measuring
40mm by 1250 nm, was drawn around each tracing of a profile and the
tracing paper was then fixed to the digitising table. The table could
be regarded as a Cartesian mapping space and the coordinates of a point
were sent to a buffer register by means of a cross-wire cursor. Before

the profile was digitised the corner points of the rectangular window
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were sent to the registers using a push-button on the cursor. These were
used to apply a transformation from the table, coordinates to window-
coordinates. Each point registered by the cursor was sent automatically
to a tape-punching machine. A total of at least one thousand points were
recorded for each profile. The paper tape records were used to create
data files onto the disc storage system of the [906S computer.

The first part of the computer program used to analyse the profiles
consisted of the determination of a mean line through the profile. An
interpolation procedure was used to converfthe profile points so that they
corresponded to 1001 equally spaced intervals of length so microns in the

direction. Then a least-squares straight line was computed. The Y axis
referred to surface height in microns. Then all data needed to calculate
the roughness height of the surface was available. The peak-to-valley
height is defined as the difference between the highest peak and lowest
valley. The ten point height is the difference between the average of the
five highest peaks and the five lowest valleys.® The centre line average

height is defined to be the quantity:

1i=n

1 127 %L (A-D

where n is the number of sampled height coordinates per profile (= 1001).
Finally, the root-mean square height is simply the standard deviation of

the profile about the mean line:

(A.2)

The skewness of the heighfdistribution is the quantity,

(A.3)
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and the flatness Is the quantity,

L (A.4)

For a Gaussian height distribution the skewness and the flatness
are known to be 0 and 3.0 respectively. A positive skewness implies
that the peaks are more prominent than the valleys (and vice versa for
negative skewness). A flatness greater than 3 describes profiles with
exaggerated peaks and valleys. For flatness less than 3 the surface
is associated with rather flat profiles.

The results for the four heights of the surface roughness, the

skewness and flatness factors are shown in table (A.l).
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APPENDIX B

The Wafl Function

Close to the solid walls, since the variations of flow properties
are much steeper, the momentum transport processes were modelled through
the wall function (Launder and Spalding (1974)). The first feature of
the method is to locate all the finite-difference grid nodes in the
fully turbulent region. Thus the nearest - to wall node - is located
sufficiently far from the wall where the Reynold's number of the
turbulence ple where | = k™ /e) is much greater than unity.
It is then assumed that a logarithmic velocity profile prevails in the
region near the wall. For a smooth wall, this law can be expressed
(Schlichting, 1968) as:

- = -L £n (Ey") 3.1)

u
(0]

where E is a constant dependent on the surface roughness.

V.
uo 1 <Tw/p) 2

and y_u,

B .2)

B .3)

Here, u0 is the "friction velocity, L is the wall shear stress and y’r‘)
is the normal distance from the wall, «k is the von Karman constant with
a value of 0.4, E is a function of the wall roughness, approximately
equal to 9.0 for a smooth wall.

Further, in the uniform shear stress layer, the general and
dissipation of k are nearly in balance and can be shown that

_ \ B.4
= T c 'k (B .4)
Tp wo PS5
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where + and k are the values of the shear stress and the kinetic
P P
energy at the nearest node to the wall.
By the use of Egqn. (4-C) in conjunction with (I.B) the shear

stress can be related to the kinetic energy of the turbulence through the

relation
pkcyzkp*up._ (B.5)
An [E yP C}}" p kp" /y}I
The energy dissipation rate near the wall is fixed by the

requirement that the length scale varies linearly with the distance

from the wal | : thus:

(B.6)

The near wal i turbulence energy kP is obtained from the direct
solution of the regular energy equation, but with the following
modifjcations:

(i) the diffussion of k to the wall is set to zero: i.e.

GPwalr - O .7

(ii) the general term G, defined by Eqn. (6.14b) is modified to
account for the wall shear stress, as defined by Egn. (67-0, by noting

that for a finite-difference cell of volume 6V,
v X't (-SV + '§x')2dv - tW(Up - UW) 6V/¥p, (B.8)

where Up is the velocity at the near wall node and UW is the velocity

at the wall.



APPENDIX C

A COMPUTER PROGRAM FOR THE RECIRCULATING FLOW REGION

This Appendix presents a computer program for the calculation of
turbulent shear flow around a two-dimensional obstacle (rectangular
cross-section bar) attached to rough and smooth surfaces.

The following list contains information about only the more important

variables used in this program.

List of Fortran Symbols
Fortran Symbol Mean i ng

BNK, BSK, BEK, BWK Coefficients in the diffusion terms of
the finite-difference equation for the
turbulent Kinetic energy

BNE, BSE, BEE, BWE Coefficients in the diffusion terms of
the finite-difference equation for the
turbulent energy dissipation

CNS, CSS, CES, CwWs Coefficient in the general substitution
formula (Egn. (6.16a)) for the stream
function

CNK, CSK, CEK, CWK Coefficient in the general substitution

formula (Eqn. (6.16a)) for the turbulent
Kineti c energy

CNE, CSE, CEE, CWE Coefficient in the general substitution
formula (Eqn. (6.16a)) for the turbulent
energy dissipation

CKI, CK2, CM Constants Cj, C2 and Cy

DI alk Eqgn. (6.12a)

D2 a Eqn. (6.13)

EU, J) Turbulent energy dissipation

L Number of grid lines (in y-direction)

above the obstacle
MM Number of gride lines in y-direction

NN Number of grid lines in x-direction
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Fortran S'ymbol

SCI, J)
SE
SEP
SK
SKP
W(I, J)
Program Listing
The following Fortran statements
program of Appendix C.
Note:

The computer program shown below

the turbulent shear flow around the two-dimensional

to the rough plate.

Mean i ng
Stream function ip

Source term for the turbulent
energy dissipation

Coefficient in the linear form of the
source term appearing in the finite-
difference equation for the turbulent
energy dissipation

Source term for the turbulent Kinetic
energy

Coefficient in the linear form of the
source term appearing in the finite-
difference equation for the turbulent
Kinetic energy

Vorticity g

are a complete

listing of the used

is the one used for the calculation of

obstacle (ridge) attached
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JOB EH26AR.iRMJAP,CP7A(T01280#P2000,SP)
ATTACH(MY LIR,L IBNAGFTNSCM,IDsLIBAPPI.)
LIBRARY(MYLIB)
FTN(Rb 3)
(MAP=P/ZZZZMp7prESET=nG1n F)
LGO(PLb10000)

LDSET

HH#HHES

PROGRAM ABOAA(INPUT,OUTPUT iTAPES*INPUT,TAPE6 =OUTPUT)

DIMENSION K<48,?0),E<48,20),X(48)7Y(20),U(48,20),AQ<48,20)
DIMENSION S$<48,20),W<48,20),V<48,20),KE(48,20)7DKi48,20)
DIMENSION DE(A8,20) ,kt<48,20) ,QS( 48,20) ;QK( 48 720) ,"SE<43,20)
DIMENSION Q<48,20) ,DUX(48720) ,'DUY(48,20) ,DVX(48,20) 7dVY(48,'2C
DIMENSION SX(48,20),SKP(48,20),SEP(48,20),EK(48,20)

INTEGER H

REAL K,«e7KT,NE

KKKp6000
N=47

Mp 19

NN=N+1
ROUGH PLATE
MMaM+1

H=0

NULL VARIABLES

DO 12 1=17NN
DO 14 J=17MM
u(l,J)=0.0
S(1,3)s0.0
K(l1,J)a0.0
E(I,J)e0.0
u<l ,j)=0.0
v(17J)bo.o
DUX(1',J) =0.0
DVX(!'7J)b0.0
DUYCIvJ)=0.0
DVY(l,J)=0.0

14 CONTINUE
12 CONTINUE
C*****CONSTANTS

CK1=1.35
CK2pb1.85

CMPO.095

D1=1.0
D2=1.3

C*****GRID POINTS

X(T)=0.0 - -
YC1)=0.0
DO 1 1=7,6



15

17

19

21
23
24

25

26

27

28

29

30

Xm=x< i-i )*o0;o0i
CONTINUE

DO 2 1=7,13

Xin =X<1-1)*0'.'005
DO 3 1rl14718
X(I5ex (1-1)+07*00?
DO 4 1=19720
X(()pX(1-1>*0.004
DO 15 1r?1,22
XU)=X(1*1 5+07006
X(23)=X(22) ¥O;00ii
Do 17 l1a24,?5
XEI)«X(I™M1)+0;0n6
DO 19 1r?6,30
Xil)»X(I»*1)*0.002
X<31>*X<30>+0'.'004
DO 21 1r32,33
X<1)*X(1-1>*0:006
DO 23 1s34737
X(1)sX(li*1)+0."01
DO 24 1s38', 41
XEI)*X(1-15 +0.'02
DO 25 1r42,46
x(n=xc 1-1 >*0';03
X(47)bx<46)*0.*01
X(485®X(47)*0.01
DO 26 JR276
Y(J)rY(J'*1 )*07002
Y(7)bY(6)+0.004
DO 27 JRS8,12
Y(J)=V(J-15+07002
DO 28 Js13,15
Y(J)rYEJ-1)*0'.'004
YM65=YM 5)+07 006
DO 29 J=17,18
Y(J)=YCJ-15+07008
DO 30 J=19,20
Y(J)by( ) +0i01
Uui=21 .0

D=.042

DO 5 J=2*16

UM,J)p3.14*(ALOG(Y(J)*0.342 +1.E5)r-1.23+0"."'3*(6.*(Y(J)/D)+*2
1"4.%(V(j)/d)**3)+(Y(I)/d5**27(Y(J)/d5**3)
UEL1,J)=-(3.14*M7/V(J)+.3%<12,*Y(J)/d*+2-12.%(Y(j)/D)*+2/Q)
1+2.%Y(J)/D*+72p3.%(Y(J)/D5**2/D>)
5 CONTINUE
DO 6 Is17,MM
UM , 15s U1
W(1,15=0.0
6 CONTINUE



DO 34 Ja2iMMm
KM »J)=0.001*U1**2
34 EM7J)*<0.09)**0.'75*KM ,J)*SGRT<K M ,J))/<0,41*Y(J>
SM,1)=0 0
DO 444 Ja2|MM
444 SM .J)pS<1,Jpl)*U<1,J>*<Y{JI>»*Y<]p1l>>
WRITC <6.77) Ti7k(1,I5*E<L»I>#S<1,1)7uM »I1)7W(1 #I >, 1=1 , MM)
77 FORMAT(1H VI575F20.5)
DO 7 1=1,20
v(i,n«o0.0
7 CONTINUE
DO 8 1*1 ,NN
UM, MM)s U1
Vil,MM)«0.0
wil7mm)=0.0
S(I ,MM)*SM ,MM)
K(l,MM)eKM #MM)
E(lI,MM)=EM ,MM>
fi, CONTINUE
DO 9 I1=1,MM
V(NN,1>b0.0
9 CONTINUE
DO 10 I=1717
DO 16 J«28»NN
u(l,1)=0
U<J]1)s<).
V<1,1>*0.
V(J,1)bO0.
S(l,1)PO.’
s(J»l)=o0.
K(I,1>=0.
K(j,1 >=0.
F<l,1)«0.
E(J,1)=0.
16 CONTINUF
10 CONTINUE
DO 11 1=17,28
DO 18 J=1710
u(l,J)=0.o0

0o 9o

O ©oogo

V(I, j)*0.0
§Sd,J)=0.0
KM, J) =0.0
e<i,j)=0;0
u(l.J)=o0.0

18 CONTINUE

11 CONTINUE
DO 20 Ib17 NN
DO 22 J=17KM
KE (1 ,J) =1 .53 B»5
dk(i7j)=kem,j)



(@)

22
20

51

53

105

116

405

406

220

50

DE(!.J>b1.18Pr5
KT<I,J)«1. 53E*5
CONTINUF
CONTINUE

DO 51 15=2,N
K(!5*.18)«K(1,18>
K<I15,'19)*K<1,19)
CONTINUE

DO 53 14*2,N
E<IA.18)«EM .18)
F(14»19)sE<1 .19)
CONTINUE
SOLUTION
VORTICITY

DO 306 1*2 ,N

DO 307 Js2 .M

IF<1l 6E.?9) GOTO 116

IFil GE .17) GOTO 117

DV=0.25* (X( 1*1 >-X< 1-1 ))*(Y< J+1>i-Y(Jnl >)
AN1sS(1+1J*1)*S(1*1,J)-S(1»1/J3+1)-S(1«1,d)
AS1«S('.i;jBI)*S(Ipllj>BS(1*1EIwW1>BS<!I*1fJ>
AE1eS(1*1«JIb1>+S(1/3-1)»-S(1™M1»J+1)bS(1"J +1)
AU1=sCIrl1,J*1)+s(1/J-M)-S(Iri1<yBl>-s(17j-1)
AN=0.125*TAN1*ARS (AN1>)
AS*0.125*(AS1*ABS(AS1))

AE=0.125* <AE1*A3S(AE1>)

AW*0.125* (AW1*ABS (AW1)>

G=AN*AS* AE+AU
BN=0.S*<<X<I1+1)-X(I1-1))/(Y(J+1)bY(I)))
BSbO.5*((X<I1*1>-X(Ib1>)/(Y<I)bY<Ip1>>)
Bf50."5*((V{J*1)Bv J—l}g/gxgl+1)nX(l)%g
BUbO.5*((Y(I*1)-Y(I™1))/(X(1)bX(Ib1)
FbBN+BS+BE+UU

CN=(CAN*bN*KE<I.J +1>>/<G*F*KE<I#J)>

CSr (AS*BS*<E(1.J-1))/(G+F*KE(I;J>)

CE=CAE +RE*KE(1*17J)5/(G +F*<En»J)>
CU«(AW*BW*KE(1i.1TJ>)/iG*f*KE(1]J))
IF<J;E0.2)G0O TO 405 _
WIT.J)b CE*WII*1,j)*CU*WUm»l.JI>+cN*UIT.J*1)+CS*W<l._.JI-1>
GO TO 606
VDs3.'0*CS*<S<I#J)-S<i7J-1>>/<Y<I>rY<J«l>>**2
UFI»J)FCE*UCI*1,J>*CU*M<In1,J>*CN*W<l1"J*1>1«VD
u(r,J)=u(r,J)/@ 0p0.5*CS)

DO 220 Ls2 .M

U(CNN.L)=W(N,L)

CONTINUE

DO 50 13al,N

WU3.M) m«< 13.MM)

CONTINUE
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C STREAM
CSNsBN/F

CSSCBS/F
CSEsBF/F
CSU?BU/F

, Q(I»J)BU('iJ)*DV/F
S(1,J)BCSN*S(!,J*1>+CSS"*S(I,Jr1)+CSE*S(I+1#J)~MCSU*S(IBI*J)*Q<!.J
DO 260 LLB2iM
S(NN#LLiaS(N.LL)

260 CONTINUE

C VELOCITY

CY1ss(Y(J)s'Y(I*L ))/ (Y(JiIM) Y (J))
CyY2pl .'0/CY1
CY3pCYL/ (Y (J+1)-Y(J-1))
CY4=CY2/(Y(JI*1)-,V(Ib1l>)
UM .J)«CY3*(Stl #3*1>-S<r# J>)*CY4*(S<i 7J)-S<I| #J*11)
CX1b (X(I>~X( 1*1) )/ (X(1*1)pX (1))
CX2c1.0/CX1
CX3sCX1 / (X (1 +1)-X (1*1))
CX4pCX3/(X<I*D-.X(lpl>)
V((I»J)*(CX3»(S(1*1 #J)»S<l«J))*CX4*(S(I»J)ffS(1!,1»J)))
DO 41 | 11s2 *N
U<lllvM)aU( Il 11 ,MM)
Vtljl iHJ *V (1 11 »MM)

41 CONTINUE
DO 710 L1ls2»M
V(NN.L1)=0.0
V(N,l.1 JsO.0
V(N"i;H)“0.0
U(NM#L1)*U<N,L1)

710 CONTINUE
DO 44 J6*2,10

44 Ut16,J9)s0.0

C KINETIC ENERGY

IF(J.GE.18)GOTO 589
iFIiJ.LE.2)GOTO 58«
BNKa((DK(I,J+1)*DK(l,j))/4,'0)*(GN/0.5)
BsK®( (DK( I »J*1 )*DK(I ,J))/4,'0)*(BS/0.5) . ,
BEKb ((DK(I*1»J)*dK(1,J))/4,'0)*(BE/0.5)
BUKs ((DK(1*-1,J>*DK<1,4))/4.0)*(BW/0.5>
FKbBNK+BSK*BEK>BUK
Duxn7j)scx3*(u(i*i»j)eun,ji)y*cx4*(u(r.j>-»u(i-i,j>)
DVY(!'7J)"CY5*<V(i'.'"IJ*1)hV<I#I>) +CY4*<V (i 7I)bVM» J*»1>>
DUY<I7I)bCY3*(U{!»J*1)bU (1iJ>)*CY4*<U<I»I>«-U(I1#J"1>>
DVX(I17J)®CX3*(V(1*1,d)sV(lid)> +CX4*(V(I17J)rV(Ifl ,J))
CNK=(AN*BNK)/ (G*FK)
CSKs(AS*BSK>/( G+FK)
CEKp (aQ3>BEK) / (G*FK) E
CU<b (aW+BWK)/( G* FK)
QS<I,J)=2*((DUX(I *JW *2+0VY<I,J)**2)+(DUY(I»)>+DVX(I#
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QKCI»J>aKTCI,J>+0S (I ,J)
SK<17J3)«(1 ,S*QK<! » J'2%E<! »J)>*0V / (6*FK>
SKP{!17j)ar<CK2*1 .2*F (!»J>*0,5*QIC (! 7j >>*DV/(<KCI,J)+1.EaA0)* (G*FK>)
K<l«J)JiCNK*Kil»J +1>*CSK*K<1#Jn1)+CEK*K<I+1»J>.*CWK*K<IBI7j)*SIC<!".’j>
K(1,3) =K<l ,J)/(L>SKP(1»J) >
DO 8°° LL1=2,m
KCNN.LL1 >=K(n7LL1>
800 CONTINUE
C ENERGY DISI PAT 10N
BNEs ((DE<!7J*1>+DE<I.J>)/A,0>*<BN/0.5>
BSEb (<DE<I,J*1>+DE(I1,J))/A,' 0)*(BS/0,5>
BEE=(CDE(l+1»j)*DE(!,J))/A,0)*<BE/0.5)
BWEp C(DECIel .J>*DE(1,J))/A,0>*<BW/0.5)
FEPBNE+RSE*BEE+BWE
EK(i;j)*E(1,IJW (~A(1 *J>*1 .E*AO0>
SE( | .J>*(CK1 +OKC 1 7J) + £CK2b1.) *1 .'2*E< I'i J) ) *EK< | #J) *DV / (G+FEJ
SEP<i7j>««<1.2%<2*CK2»1.)+EK<IiJ>*DV/<B6*FE>J
CNEc CAN*BNE)/ (G+FF)
CSE=(AS*BSE>/( G+FE)
CEE=(AE*BEE)/ (G+FE)
CWE=CAW+b WE)/ CG+FE)
E(1»J)»CNE*EC!.J*1>+CSE*E<I,J!»1>+CEE*ECI+1»J)*CWE*E(Inl7Ji*SEil7J)
E(1,J)aECI,J)/Cl 0*SEP(I*J))
DO 900 LL2a2,m
FCNN,LL2>=E(n7112>
900 CONTINUE
KT(1.J>bCM*1,2*(1fCl1.J))**2/<E<i;j)*1 .E«-A0)
KECI7j)sKTCI»J>*1'753Es 5
DKCI,J)=<E Cl,J)/D1+1.53E-5
DEC | ,J)sKE(1j J)/02+1 .53Ef5
GO TO 307
589 KT(l.J)bl.53Er5
KECI.J)=KTCI.J)
DK (1 .J)*KECI ,J)
DE (17J) =KE(1,J)
GOTO 307
C******SOLUTI ON ABOVE THE RIDGE

117 DO 109 L=11tM
DVsO-25+(X CI+1)-X(Irl ))* CYCL+1 )“V(L-1>)
AN1=SCI*1VL+1WSCI*1«L)»*SCI'-1i L+1)>-S(Ib1lil)
AST«S(I-17L*f1I*S(1"1#L>"S<I*1»L"1)nS<I*1#L>
AE1sS(1*1 7171 >*S(1,L-1)nS(1+1;L*1>nS(I1fL>1>
AU13S(Ib171*1>*SClI»L*1)"SCl«lil-"1)»SCI*L'"1)
AN»0.125*CAN1+ABS(AH1>)
AS=0.125+(AS1*ABS(AS1>)
AEb0.125*CAE1+ABs <AE1Ll))
A11=0.1 25+ (AN1+APS (Aul))
g=antastaetau

BN=0.5*C(XCl+1)-Y(I-1>)/CYCL+1)rY(L)))



201

202

320

410
350

322

420
55

54
C

BSbO.'5*< (X< 1*1 )»X (1«1 >}/ (Y(L)»Y (LM )))
BE»O.5*((Y<L*1)-V(LnD)J/Z(Xil*1)nXEIl)))
BW*0:5*(<Y(1>1)i-Y(L~1))/<X(1)rX<!pbl)))

F=BN+BS+BE+RW

CN«(AN*BN*KE(!fL*1>>/<6*F*KE(liL>)
CSs(AS*BS*KE(!,Li.1))/<6*F*KE(I#L>>

cep<ae*re*kem*i 71>>/(g+tf*kelU , 1>

CWB(aW+bu*KE( Ib171))/(Q"NF*KE (I ,'L) >

IF(L.EQ.11)G0 TO 201
W(liL)aOE,KJ(I+1,L)+CW*W(In1/L)*CN*W(I7L +1)+CS*y(I7L*-1)
GO TO zoz,
vt>*3.0*C7*(S(IfLJpSEI7Li»1))/(Y(L)<!!'Y(Lnl))**2
W({l,L)BCE*W(UI.L)+CU*V(Irl#L>*CN*Vn7L +1>i-VD
W(l.L)bU<I71>/M,'0+0.5*CS)
U(l7.11>««(<CNS*S{lI7»12>+CES*S(18711)*CWS*S(16f11))*(F/DV)>
IFCI.EQ.17)Got0O 320

GOTO 350

DO A10 J1=2.9
U(l7.31)=r<(2'.'0/(X<I6>rX<17)>**2>*(5S<16,J1>-S(17,J1>))
CONTINUE

I F(Il .'"EQ.'28) GOTO 322

GOTO 55

DO 420 J2=2,9

U(28.32)=-( (2°'0/(X(29>pX<28>)**2>*CS<29, J2)rS<28. j2>)>
CONTINUE

DO 54 16=17n

ucie.M)=w( I 6, MM)

CONTINUE

STREAM FUNCTION

CNS=BN/F

CSS=BS/F

CES=BE/F

CUSaB®/F

O(I#L) SW(I »L)*DV/F
'SEI#L>BCNS*S<I.L*1)+CSS*S<I#Lr51)+CES*S<I+1fL)+CWS*S<Ia|7L)+Q<|7L)
S(17V11)=S<17710)

VELOCITIES

CYl=(Y(L)rY(Ls-1)W(Y(L*1)nYEL))

cy2=i ;o/cyi

CY3=CYL/(Y(1+1)-Y(Lr-1))

CY4=CY2:1 CY<L+1)pV(L-15)

U(IT#L>«CY3* <STl#L+1)-S<1 #L) )+CY4* (S(171)-S(lil*1>)
CX1=(X(1)sX('pl))/(X(I*1)bX<I>)

CX2=1.0/CX1

CX3=CX1 /(X (1+1)f-X <1-1))

CX4=CX2/(X(1+1)nX(lpl))

V(17n =(CX3*(sn*1.L)-S<Il.l))+Cx4*(s(l.L)rsM-1,L)))
DO 4? 112=17,28
U(li27M)su<lt | 2.MM)



42

585

109

307
306

338
339

¢0n
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V<I 12.M)SV<I 12, MM)

CONTINUE

KINETIC ENERGY

IF(L.GE.18)GOTO 585

IF<L.LE.11)GOTO 585

BNK=((DKIiI»L*1) +DK(I,L))/A,'0)*(2*BN)

BKKB( (DK (I#L*»1)*DK( 1il))/4,0)*(2*RS)

BEKb ((DK(1*1*L)+BK<l«L))/AiOQ)*(2*BE)

BUKs ((DK(l«1.L)+DK(I,I>)/A.0)*(2*BW)
FKpBNK+BSK*BEK*BUK
DUX(I7L)sCX3*iU(lI*1»L>nU<I#L>)*CX4*<1J<I7L>?1U(l-1«L)>
DVV(i 71)"CV3*<V(I#L*1>«V(I#L>)+CY4*(V(i71)"V(I»L"1>>
DUY <i 7L)«CY3* (U< | «L*1 >f»U< | #L) >*CY4* (UCI *L)«iU< | #L-1)>
DVX< I7L> 0 CX3*(V( 1*1 fL)«V( | #L> >*CXA*(V< I71L)iiV<1Ibl, L) >
QS (I'»L>»2."*{ <I»UXM ,L)**2*DVY( | eL)**2)*(0UY< | iL>*0OVX<i7L>)**2>
QK<I,L)cKT<I,i)«M5S(l,I>

SK<l.L)s(1 .5*0K( IVO +(CK2rl .)*1 f2*e (Il L) )*DV/(G +FK)
SKP<I7L)«b (1.2*Ck2*E(I#L)*0-,5*QK(!'7L))*DV/((K<I,L)*1.Ei»40>*<G*FK>)
CNKb (AN+BNK)/ <G*FK)

CSK=<AS+BSK)/( G* FK)

CEK=CAE+BEK)/ <G+FK)

CUKp (AU+BUK)/ (G*E<)
K(I.L)BCNX*K(l,L*1)*CSK*K<IfL«1)+CEK*KIil+1fL)*CWK*K(IBI.L>+SKIlI7L>
K(l,L)=K(T,L)/M OrSKP(Il,L))

ENERGY DI S1lpat | ON
BNE=(<DF(l,L+1)+nE(I»L>)/A.0)*(BN/0.5)
BRE=<(DF(Il,L'>1)*DE(I,I))/A,0)*<BS/0.5)
BEEs((DE<I*1.L)*OE(l.L>)/4.0)*iBE/Q.5>

BUE*( <DE M»*1 . 1.)*0E( 1iLT1/4.-0) * <bW/0.15)

FE =BNE +Ps E+ BEE*BUE

EK(lI,L)sE (I ,L)/CK(l,L)*1 .E~40)
SE<I7L)B<CK1*QK<I7L>*(CK2f*1 .)*1 .2*E(liL))*EK(I,L)*DV/(G+FE)
SEP<l«"L)a”(1l .2*(2*CK2M .)*EK(IliL))*DV /IiG+FE)

CNE = (AN +BNE) 7/ iG+FF)

CSEB<ASABSE)/ (G+FE)

CFEb CAEaBEE) / (G* FE)

CUEs(AU*BWE)/ (G*FE)
E(I»L>«CNE*E<!.L*1{*CSE*E(I»lel1>+CEE*EII+I7L>*CWE*E<!sr.'L)*SE(I7L>
Eil *L)=E<I7Li /(1 "OpSEP(I »L))
KT(1l.L)*CM*1.2*(K<!,L>)**2/CE CIVU +1.E-40)

KECI ,l)=KT (I #L)*1 53Ee5

DK<I7L>eKE<If'L)/Di+1.53E«5

DEM', L>bKECI.TWD2*1.53E"5

GOTO 100

KT(l ,L)s1.53Fr5

KE(I,L)BKT(I ,L) '

OKCl .1)*KEC1.L)

DE(I7L)bIfE (I «L)

CONTINUE

GOTO 306

CONTINUE

CONTINUE

IFCH.LE.KKK) GOTO 105

PO 339 1=1 #WN

DO 338 1=1,MM 3
WKITEC6,400)i:J,SCI1,J).E(1,J3),'3C1, 3>, K(I,I>7KT(I,J)
CONTINUE

CONTINUE

STOP
FORMAT(1H ,2110,5820.8)



APPENDIX D

A COMPUTER PROGRAM FOR THE BOUNDARY LAYER FLOW

This Appendix presents a computer program for the calculation of
turbulent boundary layer flow downstream of the recirculating flow region.
The Fortran symbols used in the program are the same as the ones used in

Appendix C.

Program Listing
(i) A computer program used for the smooth surface with the wall function
in the near wall region.

(I'i) A computer program used for the rough surface without the wall function.
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(1)

JOB EM28S&.]RHJAP,CP76<TD1000,P2000,'SP>
ATTACH(MYLII1«L!BNAGFTMSCM,IDisL!BAPPL)
LIBRARY(MYLIB>
FTN(Rb 3>
loset (map=h/zzzzmp7ppeset=nginf)
LGO(PLb10O0OGO)
nun*s
PROGRAM ABFFCINPUT,OUT PUT,TAPE Ss INPUT,TAPE6=OUTPUT>
DIMENSION K(51,18),E(51,18) ,X(51) 7Y(18)7Ui51,18)
DIMENSION S(51,18),W(51,18J,KE(51«13),DK(51718)
DIMENSION DE (51 ,18) ,KT(51 ,1S5>7QS<51,18) ,QK<51',18>". SE<51 713
DIMENSION Q(51 ,18),DUY<51il 8),TW(51 ,18)
DIMENSION SK<51,18)»SKP(51;18),SEP(51718)7EK(51,18>
INTEGER H
REAL K,KE7KT
KKKsAOOO
N=50
M=17
NNsfj +1
MMcM+1
H=0

C NULL VARIABLES *
C++*******************
DO 1? i=i 7nn
DO 14 J=17mm
u(l,J)s0.'0
s(i;j)*o.o
K(1,J>=0.0
E(1,J>=0.0
u(i,j)so;o
DUY(I7j>S0O.0
14 CONTINUE
12 CONTINUE

C BOUNDARY CONDITIONS *

READ (5.1 ><K(1 ,J) *,UM 7J> ,E<1 ,J) 7jsl ,MM) 9
1 FORHAT(3F10.4)

X(1>=0.0

YM >=0.0

DO 4 J=2,7
4 Y(J)eY(J-1>+07001

Y(8>=Y(7)+0.002

Y(9>sV(8>+0.002

DO 3 J=10,14

3 Y(J)=Y{j-1)+0.'004
Y(15>=Y(14>+07008
V<16)=Y (15>+07008
Y(17)=V(16)+07006
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Y(18)BY(17)+0*0flfi
DO 13 Ib2«l1l

X(1)»X(1-1)*07005

DO 80 Ib12 V1A

X(1)bX (M )*0.'01

DO 81 1b17i51

X<1)sX(1»’1)*0’02

DO 82 Js2VMM

XTM #j)b0.09*K(1 ,j)*x(1,J)/E<1 ,j)
Sil1 ,1)b0.0

DO 83 J=2,MM
01b<Y(JI)AY(J-1))/(Y<I*1)-Y(J >I
02s1./01

03*01 /(Y(JI*1 TrY<J«l))
04*02/<V(I*1>«Y (J*1))

W(L »J)Ss. (03* (U<1VJI*1 )rU(L11J))*04*(U<l JI>»U(1,J-1)))

S(L»J)»S(L*J-1)*U<l ,J)*<Y(J)-Y(J-1))
WRITE (6,77) (1 Tx (1 il),E@ »1)/S(171),U<1
FORMAT(1H VISTSFI10.S)
DO 8 1=1 »NN
U(l,MM)s U1
U(l,MM)s0.0

SM i MM)*S(1 .MM)
X(I»MH>sX(1,MM)
E(I,MM)bE(1,MK)
CONTINUE

DO 10 1s1VNN
u(i,l)so;o
S(1,1)a0.0
xM,n*0.0
e<i,1l>bo;o
CONTINUE

DO 20 1=11NN

DO 22 J=1iMM
KE(i;j)sl .53Er5
DK(!.'J)«KE(1#J)
DEM ,J)=1 .1 8E«5
KT(1»J)=1.53E»5
CONTINUE
CONTINUE

DO 72 1=2iNN

DO 72 J=2'iMM

K(1 ,J)b1.0

DO 51 15p2,N
K(15.15)«K<1*15>
X(15,16jatC(1 ,16)
K(15%17)=K(1»17)
CONTINUE.

DO 53 14=2,N
E(14,15i=E(1,15)

1YiW(L .1),1=1,MM
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E(U;16)«E<1 #16)
E(UiIl7)»E(1,17)
CONTINUF

DO 98 18s2»NN
Kij8«2)aK(1»2)
E(I8#2)*E<1]2>

SOLUTION OF FINITrDIFFERANCE EQUATIONS *
CALCULATION OF THE B"S AND A"S

DO 306 la2,N

DO 307 Je2VWM

DV=0."'25*(X(1+1).-X<I<-1 >>*<¥Y¥<J*1)*Y<IM>)
ANipsn*i7j+i)*sn +i,j>«s(i™i,j*i)l-s(ipi,J)

AE1bS(I*17j*1j*S (If j*1)«S<1,d +1>
AW1sS<I-17jM>+S<I#J*1)"S<J"1#J«1)*SU#’j"1)
BNSO.5+(<X{1*1>-X<l«1>>/<Y(J+1>nY<I> >>
BS=0.5+<<X<I+1>-X(I*1>)/<Y<J>sYCJel)>>
BEbO.5+((Y(J+1) Y (J«l)>/<X<I+1>bX(1>>)
BWPO.5*((Y (j*1)nY(J-1))7(X(1)-X(Iblyy)
BFp0.0

BWsO.0

F=8N+RS+ftE+BW

ANa0.125*(ANL+ ARR(AML))
ASa0.125*(AS1+ARRCAS1))

AEbO.’l 2s*( aE1*ABS CAE1) >
AWpO.'125+(AUL*APS(AW1>>

Gs AN+AS+AE+AU

VELOCITY *

CYIB(Y(J)»Y(@(JIr1))/(Y(J*1)nY<])>
CY2=1.0/C36
CY3pCYL/<Y(J+1)«Y UTrIl ))
CY4sCY2/(Y(JI*1)-v(JIpl))
U(!'»JI)BnY3*(S(IfI*1)»S(I»J>)+CY4*CS<l«J)-S<I.J*il>>
DO 41 11152iN

u(in 7m)bU<in, mm)

CONTINUF

DO 710 L1?2,M

UCNfJ,L1)=U(N,L1)

CUNTIHUE

*kkkkhkkkkkhkkkkhk kKK

KINETIC ENERGY *

IF(J.fiE.16)GOTO 589
BNKa((DK(1,J +1) +DK(1,j))/A.'0>*(2*BN)
BSK=((DK(I,J«1)+DK{1,J))/4i0)*(2*bS)
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BEKP(<DKCI*1.J)+r>K<I#J>)/4.0)*<2*
BUK* ( (DX (11>1 »J)+DK (I *J))7Ai0) +(2*
FKcBNK*nSK*BEI [FBUK
BUY(17j>»CY3*<U<r.J*1 >hU<l,J>>*CY4*<1J<I-7j>»U<l» J-1 >>

CNKb (AN*BNK)/ (6+FK)

CSke (AS*BSK) 7 (6* FK)

CEKp (AE*BEK)/ (G*FK)

CUKp (AW*BUK)/ <G*FK>

IF(J.*GT."2)60 TO <9

K<I»J)«CNK*K<I»J +M*GSK*K<I#Jw1>*CEK*K<| +1»J>*CWK*K<lali'j>
RSKsITi>SQRT(ABS(K<I#J>))

CYPTW=6.547*(V(J)rY(Jwl ))/1.53Er-5

YPUSTWeRSK*rYPTW

TU(I,J)p0.22A*U(1jIJ>*RSK/ALOG(0.0*YPUSTW>

ATUSABS(TW(I,J))

VOLGFs OV/<G*FK)

SK(1,J)aATW*U(l,J)aVOLGF

SKP( 1VJ 0.1 28*K< | tJ)*U< 1 fJ)*VO LGF/ (<Y (J>»Y <Jowl >) * (ATU+1 '."E-30
GO TO 8f>1

QS(1,3>=DUY(17j>**2

QK(1.J)b<TC!.J)*QS(I.J>

SK <l .J5s<1.5*QK(1,J>+1708(1,J))*DV/(G+FK)
SKP(i7J)««<2.A8*E(I1,J)+0.5*QKEI;J>>*DV/<(K<I, J>*1';Ef40>*(G+FIC)
K(1/J>bCNK+KM ,J+1)+CSK*K (I #J«1>*CEK*K(1+1,J)*CWK*K<1*17J)*SK £
<(l,d5ak<l,3>/( pSKP(1»J))

DO 800 LL132,M

KOIN,LL1>=KCN7LL1)

CONTIWUF

o o

E)
U)

ENERGY DISIPATION *

BNEb ((DF(I»J+1)+DE(I<J))/4.0)*(2*BN)

BSEp (IDE(17J«1)*DE(l *J))/A,'0)*(2*BS)

BEEs ((DE(I1*1»J)+DE('iJ))/4,0)*(2*BE)

BWEp ((DF(Ip1,J}*DE(Il ,J>)/4,0)*(2*BW)
fe*bne*bsetbee*bue

'F(J GT.2)GO TO 100

CDKb O.*3*K<j 7J>

VOLGF4 =DV/(G+FE)
E(I/7J5bCD<*((ABS(CD<)**0.5))/(0.41*(Y<j)-Y(J-1)))

GO TO 101

EK(!.J)»E(1."IW(K(I»J)*1.EbAO0>
SE(1.J)b<1."A4*QKM,J)*1.03*E<I#J))*EK(I7j)*DV/(G*FE>
SEP<i 7J1«*<3'. 36*EK<i »J)*DV/(G*FE)I
CnE=(AN+BNE)/i G*FE)

CSEs (AS*BSE) /(G* FE)

ceesiaetbee)/ (g* fe)

CWEB (AU*BWE)/ CG+FE)

Eil. J)»CNE*E(!,J*1) +CSE*E<I, Jf*1)*CEE*E(l +1,J)*CWE*E(lp1,'JJ+SEC
E(I,J>«F<Il ,J)/M'.'0rSEP<I ,J>>



900
101

589

300

405

220

50'

260
307
306

338
339

400

S

-126-

DO 900 LL2«2»M
E(NN#'IL2)I«E<N.LL2>
CONTINUE
KT(1.J)=0.108*CK(I#J)>**2/(ECI»J)*1.Ep40)
KE(i 7j)b<T(1,j)*1?53Er5
DK(I.J)*KE(I #J>

DE<I ,J)»KE(I .J>/1 3

GO TO 300
KT<i;j>p1.53Eb5
KE(I.J)*KT (I .J)
DK(1iJ>=KE <1 .J)
DECI.J>*<E<I| ,J)

CNb (AN»BN*KE(1«'J*1))/ (G*F*KE(1»J))
CSF<AS*BS*KE<I#J»1))/<G*F*KE<I#J)>
CE*<AE*BE*KE(!#17J))/<g* p*KE(I#J)>

CWp (AU*bW*KEMp17J3))/i6*F*<E(1#J>>

W(! »J)bCE*W (1*1 »J)+CW*W (Ib1fJ)*CN*U(l «J+1)+CS*W<! »Jr1)
DO 405 11B2.N
U<SH71>»-<(2.'0/Y(2)**2>*<S<11i2)AS(I1,1>>>
[50 220 1=2<M

W(NN»L)*W(N7L)

CONTINUE

DO 50 13=1,N

U(I3',M)bW(I3.MM)

CONTINUE

STREAM *

CNS=BN/F

CSSPPS/F

CESPO. 0

cus=070

Q(1,J>SU( I 7.n *DV/F
S(1idJ)=CNS*S(1.J*1)+CSS*S<I>Jr11)+CES*S(I +1iJ)*CWS*S(1*i17J)+(3(17])
DO 260 LL=2»M

S(NN,LL)=S (NjLL)

CONTINUE

CONTINUE

CONTINUE

HsH*1

if(h.le7kkk> goto 105

DO 330 1=1,NN

Do 338 J=1»MM

URITEI6,400) I TJ.S (1,J) #T»< 1 £>#U<1 73> .K(1,J) .ICT(!.J)
CONTINUE

CONTINUE

STOP

FORMAT <1 H #2110'. 5E20.8)
END
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JOB EM2MRD, iP.MJAP,Cp?6 (TD1 000 ,P2003 ,SP>
ATTACH (I1YUIB rLIRil GFT{ISC!11IPPLIRAPRU
LIBRARYCMYLI'O

FTN<p=3)

LDSFT <MAPs,B/ZZZZHP«PRESfcT»N'imF>
LGO(PL=1 '7000)

PROGRAM ADI|:j <INPUT,-JUrUIT ,TAPE 5«! NPUT »TAP e6«OUT PUT)
DIMENSION K(51,22),E(51,22),;<(51),Y(22),U(51,22>
DI MENSION 3(51 ,22) r-KSI ,22) ,<E<51 ,22) ,0K<51 ,22)
DMENS I N 0e<'»1,22),KT<51#22>f«S<51,22),QK<51#2?>*SE<51,22)
DIMENSION 11(51 ,22) ,PUY(51 ,22'*
DIMENSION Ss<5I1r22)fBK*><51,22)fSEP<51,22),EK<51,22)
integer H
REAL K,KE,KT
KKKs 6U00
N=50
1-1*21
NM=N+1
M’1* M+1
H=0
CH* 4% 4 4% Fokk Lok dkghghx
C NJLL variablen *
C*****+************>*V
do 12 1=1,NN
no 14 J=1 «M’l

w(l1,3)=0,0
SCI, J)=0.0
K(1,3)=0.0
E<I,J)50,0

n(1,3)=0,0
DOY (1 ,J)a0. )
1A CONTI NOE
12 CO ITINUL

£x1ticit-kk-kieKjrit' k( ititit” + < MakekAKAIK g
C BOOIJDARY CONDITIONS AND GRID POINTS
[qo* kK] kekkkkkkxk 4, J,aL-"a

REAP (5,1 ) Gi((1 ,j) ,0(1 ,3) ,J3*1 ,MM)
1 FORMATC2F1n,4)
x<D*n.o
Y(1)=0,0
DO 4 J=2,7
4 Y<J)=YCJ-1 )+0.0-11
DO J J=019
1 Y(JI)=Y(JI-1)+0.002
no is J=iiu,11
15 Y<J)*YCJ-1)+0.D04
DO 16 J=12,115
16 Y(J)*Y<J-1)+D,006
DO 17 J=14,16
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Y(J)=YCJ-1 )+1),008
Y<17)=Y(16)+0.01

Y(10)sY(17)+0,0.1

DO 18 J=19,20

Y(J)sYU'l >+0.008
v(21>=Y(20)+0.006
Y<22)=Y<21)+0,004

DO 19 1=2,11

X<I>*X(1-1>*n.0Q5

no 21 1=12,16

X< 1)=X(I1-1 J+0.01

DO 31 1=17,51

XCl )=XU-1 >+0.02

DO 24 J=2,MM

E(1,J>s0,4*-S<1 rJ)+*1«5/YU)

DO )2 J=2,0il

XT (@1 ,3)=0.09*K(1«J)*X(1,J>/EC1,])
S(1,1>=0.0

90 83 J=2ijm

01 =<Y(J)-Y<J-1))/CVCI+1)-Y(J >»)
02=1./01

03=01/CY(J+1)~Y(J-1>)
04=02/(YCI+l y-v (3-1>
W(1,3)=-(0s-(0( ,3+1)-0<1,3)1+04+(Ui1,d)-u( »3-1)))
§<1,J)=SC1,J >+0ClL,J)*(Y(J)-Y(JI-In
URI fR(6,77)Cl «KC1,1),EC1,1),SC1,3),0(1,17%,W(1,I>»I=1,M1
FORMAT UH ,15»5F20,5>

9 0 0 I=1,%0

0(1 ,MM)=U1

U(l,MM)=0.0

5 <l ,MM)=S (1 ,MM)

K(I,MM)=K(1,MM)

EC J,MM) =E<1, MM)

CONTINUE

DO 10 1=1, Nil
Uuc1,1>=0.0
scl,1>=0.0
XCl,1)=0,0
EC1,1)=0.0
CONTINUE

DO 20 1=1 ,Mj
DO 22 J=1,Mil
KECI, J)=1 .r,3C-S
DKCI'3)=KE(1,3)
DECI »J)=1.18E-3
KTCl ,J>=1.>3E-S

22
20

COdTINUE
CONTINUE

90 51 15=2,1)
KC15,2¢5=KC1,20)
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<<15,21)=K<1,21)
51 CONTINUE

Did 53 1432,N

E<14,20)=E<1 ,20)

E(IA,21)sE(1 ,.21)
5? CONTINUE

mkkkkk g kk Kk ******»*****+ ****l***+’***#*******

SOLUT IOt) OF FHIT-DI FENANCE equasigns?

* % .*I * % kkkkk ok *'****'*l ))+'*******| *****'«r********

CALCO CATION OF THE H"S AND AHS

r*** +nr*+vi«*+***/\v*******
DO (06 i=2,N
DO 307 J=2,1
DV=0.22%(X (1 +1)-X(1-1 >>*<Y(J+1)-Y(J-1))
ANIT“S (J+1,J+1)+S(1+1 ,I>-S(1-1 ,J+1)"S (1"1,J>

c:

ASI=Sn-1,-]-1)+S(Ir1,3)-S(I+1,3-1)-S(1+1,J)
AEL1=S(1+1,Jf1)+S(1,J-1)-S(I1+1,Jd +1)-+S<I,J +1)
A'n=s<i-1,j+i)+s<i,j+i)-s<i-i,j-i>-su ,j-i>

AN30,123*(AN1+ABS(ANL ))

AS=0.125%< \S1*AHS(AS1>)
AEaO.125*(AEL1+ACS(AE1>1

AOa0,1 25* C-VJ1 +Ab S (AN1 ))

G=AN+A5*AE+AU

Brla9,5* ((X( 1+1)-X< 1-1)) /7 (Y(J+1)-Y(J)))
RE=0.5*((X(l +D-X(1-1)>7(Y(J)-V<I-1)))

C BE=0.5*((Y<J+1)-V(J-1))/(X(I1+1)-X(1)))
C BOa0,5*((Y(J +1)-Y(JI-1))/ (X(1)-X(I1-1)))
REa0.0
GWaQ, 0

CaHU + GS +BE +iiO
CNa(an +DN*<E U ,J+1 ))/<~A+F*<E(I,J))
CS=(AS +US*KE(I,J-1>)/('T+F*KE(I,J)>
CES(AE+UE*<E(1+1 >J))/(3+F*KE(I J>)
COoa(A DW-Kc (I-l/J))/(3+F*KE( Wy
U(l,J)SCE+N(I+1,J)+CW*IKI"1,J)+ CN* (1,3+1)+CS*W (I,
DO AO5 11=2,N

405 W(11,1)=-<(2,0/Y(2)**2)*(S(1142)-S (11,1)))
DO 220 L=2,il
U(UN, L)"W (fl, L)

220 CONTINUE
DO 50 13=1;N
W(13,0)au<13,00)

50 CONTINUE

C*****_*«********»******

C STREAM FONCTION *
C***+***+************ *+
CNSsBN/F
CSS=RS/F
Cts=n,o0

CUS =0, i)
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8{%3338&%4%¥Py15>+CS'NSCI\L1)+CES*SCI+1J)+CWS*S<H*1J%+QKIJ)
DO 260 LL«2,M
SDNi LL)sS(N, LL)

260 CONTINUE

C VELOCITY *

CYL=(Y(JI)-Y(j-1))/7(Y(JI+1>-YCJ))
Cy2S1.0/CY1
CY3sCYL/(Y(J+1)-Y(J-1y)
CY4=CY2/(Y(J+1>-Y<J-1))
U(lI»J)aCY3*<S<]/J+1)-S<IfI>)+CY4*(S<1#J)-S(1#J-1)>
DO 41 I11=2/M
Gerrl ,M)=U< I 11 .11M)

¢l CONTINUE
DO 710 L1=?.M
urn:, ui )=uc;j, i)

71 0 COHTI :JUE

C*******"#****** +********W

C KINETIC ENERGY *

IF<J.GE.20)GOTO 530
iru, IE.2)GOTO 5.H9
HilK=f (OK( I ,g+1 )+I»K(1,J))/74.0) *(2*BN)
R3<=(C>K (I ,J-1 )+DK (Il .J))/4,0)*(2*BS)
REk~ (O K(I1+1,J)+DK(I.J))/A.0)* (2*BE)
RIfisf <:)K(I-12,3)-rP<(1,J))/4.DW2*RW)
FK3RNK+8SFK+:1EK* DHK
DUY (1 ,J3)=CY3* (M(T.2+")-U<l,J))*CYA~(0<I,J)-U<1»J-1))
CNK=(AN+BNK)/ (G* rK)
CS<=(AS+BSO/ (6 +FK/
CFKSsCAEfBEK)/ (G+FK)
CWK=r\'i +aUK) / CG+FK)
OS<l,J)=DUY(Il ,J)** 2
OK(1,J)=KTCI1,J3)*0S (1,3J)
SK(1,3)=(1,5*0KU,J>+1,08*E<I,J)>*DV/<G+FK)
SKP(1,3)=-(2.48*E<1,J)+0.5*QK(1,J3))*DV/((K(1,J)+1 .E-40)*(G +FK))
K(I,J)=CNK*K< 1 ,J+1 )+CSK*K (I ,J-1 )+CEK*K CI-t-1 ,J)+CWK*KC 11 ,J)+SK(Il ,J)
K(1,J)-K<1,J)/C1.-SKP(I»J))
DO 8D0O LL1=2,H
K(MN,LL1)aK(N,LH )
800 continue

iri™+ + 'kekK1ei(“reit v+ i KX+

C ENERGY DISI PATIUN *

E****l**+l +"'+**.****‘k* * * kx k%
RIEE=(('>E(I fJ+1)+0L (I ,J)) /=, 0)* (2»BN)
8SF3((O0E(I,J-1)+DE<I1,J))/~.0)*(2*8S)
RrLES (<0C(1+1 ,j)~BE(l ,3))/74,0)* (2*»E)
B.E=i (NE<1-1 ,J)+PR (1,J))/74.0>* (?*EU)
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FEoRKE +HSE +iJFE + uWE
EK<I»J>aE<I#J>/<KU,J>+1 .E-40)

SEU,J?=C1.44*qK(1,J)*1.08*E<ItJ)>*E<<!iJ>*0V/(G+FE)
SEP (I iJ>a-.<3.3ft*FK( 1,J) +DV/ (G+FE) )
CHEa(Ajl +BNE) / (n +FE)

CSE=(A3+nSE)/ (G+FE)
CEE=(AE +REE) / (G +FE)
C'JEa<A"+BWE>/ﬂG+FE)
E(1»J>5CHE*E(],J+1)+CSE*E(l,J-1>+CEE*E(1+1,J)+CWE+E(I1-1,J>+SE(I,J)
E(1/J)SE(I#J)/(1,0rSEP<I#J>)
DO 900 LL?a2,l1]
E(HN, LL2)«E<N, LLi?)
900 CONTINUE
r.T(1,J)a0.1 08*<K< 1iJ)>**?] <E( | »J)+1 , c+40)
KE<I»J)aKT<IrJ)+1.53E-5
DK(I1»J)=KE<I#J)
DE<I#J)aKF<I#J)/1.j
GO TO 307

b*9 KT<I»JJai.53E-3
KE(I1,J)=KT<I »J)

OK(1,J)=KE(I >
DE(1,J)=KE(1/J)

307 CONTIfJ'JE

306 CONTINUE
HsH +1
JF(rl. LE.KKK) GOTO 10b
on 339 1=1,0ON
on 333 Jsi,Mh
WRITE(G,4nn>1»J#S<IfI>IE<IiII)rU<I#I>HK<I#I?TKT<I#I>

333 CONTINUE

339 CONTINUE
STOP

AO? FORMATC1h ,2H 0,5E20,8)

END
fipfip S
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FIG.C2.2)

FLOW PATTERNS AROUND A NORMAL PLATE IMMERSED IN TURBULENT
BOUNDARY-LAYER
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(a) INTER CONNECTIONS FOR TURBULENCE MEASURING EQUIPMENT

Singe Wire Probe

Not Wire
Probe

Pin

Smooth Surface

(=b) MEASUREMENT OF THE WALL DISTANCE IN THE WIND TUNNEL
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MEAN VELOCITY 'AND STATIC PRESSURE DISTRIBUTIONS IN SPANWISE Fl G_(3_7)
DIRECTION ABOVE THE RIDGE
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STATIC PRESSURE DISTRIBUTION ON FRONT AND REAR FIG.(4.1)
SURFACES OF RECTANGULAR CROSS-SECTION OBSTACLE
(RIDGE) ATTACHED TO ROUGH AND SMOOTH SURFACES
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STATIC PRESSURE DISTRIBUTION ON FRONT AND REAR FIG - (42a)
SURFACES OF HILL SHAPED OBSTACLE ATTACHED TO
ROUGH SURFACE
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FIG. (4.2 b)

STATIC PRESSUR DISTRTIBUT ION ON FRONT AND REAR
SURFACES OF HILL SHAPED OBSTACLE ATTACHED TO
ROUGH SURFACE
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FIG

STATIC PRESSURE DISTRIBUTION ON UPPER SURFACE OF
RECTANGULAR CROSS-SECTION OBSTACLE (RIDGE)
ATTACHED TO ROUGH AND SMOOTH SURFACES
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FIG.( 4.4b)
STATIC PRESSURE DISTRIBUTION ON SEPARATION ZONE
DOWNSTREAM OF HILL ATTACHED TO ROUGH SURFACE
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MEAN VELOCITY DISTRIBUTIONS ON ROUGH PLATE
WITHOUT RIDGE
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MEAN VELOCITY DISTRIBUTIONS ON SMOOTH PLATE F10(45b)
WITHOUT RIDGE
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MEAN VELOCITY DISTRIBUTION DOWNSTREAM OF RIDGE ATTACHED TO FI Gj 4.6a)
ROUGH SURFACE
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MEAN VELOCITY DISTRIBUTION DOWNSTREAM OF RIDGE F|G_|4_6(;)
ATTACHED TO SMOOTH SURFACE
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MEAN VELOCITY DISTRIBUTION DOWNSTREAM OF RIDGE ATTACHED
TO ROUGH SURFACE IN "LAW-OF-THE-WALL"” CO-ORDINATES
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MEAN VELOCITY DISTRIBUTION DOWNSTREAM OF HILL ATTACHED FIG. (4.7 b)
TO ROUGH SURFACE IN "LAW-OF-THE-WALL" CO-ORDINATES
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DISTRIBUTION OF THE ROUGHNESS FUNCTION — FIG (4 Q)
DOWNSTREAM OF RIDGE AND HILL ATTACHED W° ) )
TO ROUGH SURFACE
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FIG.(4.10a)

1 - BOUNDARY-LAYER SHAPE PARAMETER WITHOUT OBSTACLE FOR
ROUGH AND SMOOTH SURFACES

2 - BOUNDARY-LAYER THICKNESS WITH AND WITHOUT OBSTACLE ON
ROUGH AND SMOOTH SURFACES

Distance From Leading Edge X mm



nondimensional distance



BL Shape Parameter

Integral Thickness 6*& e

BL

BOUNDARY-LAYER SHAPE PARAMETER AND INTEGRAL THICKNESSES F1 GJ4.10C
DOWNSTREAM OF RIDGE ATTACHED TO ROUGH AND SMOOTH

Dimensionless Distance From Ridge



F10(4.111

VALUES OF CLAUSER PARAMETER G DOWNSTREAM
OF RIDGE AND. HI LL ON SMOOTH AND ROUGH
SURFACES

nondimensional distance



FIG.( 4.12a)

LONGITUDINAL TURBULENT NORMAL STRESS DOWNSTREAM
OF RIDGE AND HILL ATTACHED TO ROUGH SURFACE
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FIG.14.12 b)
LONGITUDINAL TURBULENT NORMAL STRESS DOWNSTREAM
OF RIDGE AND HILL ATTACHED TO ROUGH SURFACE
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FIG.C 4.13a)

TRANSVERSE TURBULENT NORMAL STRESS DOWNSTREAM OF
RIDGE AND HILL ATTACHED TO ROUGH SURFACE

TURBULULENT  NORMAL STRESS

TRANSVERSE

N

in co CN

3ONVISIG  1VNOISN3WIQNON



TRANSVERSE TURBULENT NORMAL STRESS DOWNSTREAM
OF RIDGE AND HILL ATTACHED TO ROUGH SURFACE
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LONGITUDINAL TURBULENT NORMAL STRESS DOWNSTREAM OF FIG (4.14 a)
RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES
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LONGITUDINAL TURBULENT NORMAL STRESS DOWNSTREAM FIG-(414b)
OF RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES

Stress

Turbulent Normal
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TRANSVERSE TURBULENT NORMAL STRESS DOWNSTREAM OF FIG (4'15 a)
RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES

Stress

Transverse Turbulent Normal



TRANSVERSE TURBULENT NORMAL STRESS DOWNSTREAM OF FiG.14.15b)
RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES
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FIG.14.16a)

TURBULENT SHEAR STRESS DOWNSTREAM OF RIDGE AND
HILL ATTACHED TO ROUGH SURFACE
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= 1160 nmm

X

860 mMm

TURBULENT SHEAR STRESS DOWNSTREAM OF RIDGE
AND HILL ATTACHED TO ROUGH SURFACE
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TURBULENT SHEAR STRESS DOWNSTREAM OF RIDGE AND HILL
ATTACHED TO ROUGH SURFACE

un co csi

3ONV1SIQ IVNOISN3WIQNON

FIG.(4.16C)

STRESS

SHEAR

2
TURBULENT



J

TURBULENT SHEAR STRESS DOWNSTREAM OF RIDGE
ATTACHED TO ROUGH AND SMOOTH SURFACES
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TURBULENT SHEAR STRESS DOWNSTREAM OF RIDGE FHU 4_17b)
ATTACHED TO ROUGH AND SMOOTH SURFACES
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TURBULENT SHEAR STRESS DOWNSTREAM OF RIDGE FIG. (4_]_7(;)

ATTACHED TO ROUGH AND SMOOTH SURFACES
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SKEWNESS FACTOR DOWNSTREAM OF RIDGE ATTACHED TO

FIG. (4.18)

ROUGH AND SMOOTH SURFACES
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FLATNESS FACTOR

FIG.14.19)

FLATNESS FACTOR DOWNSTREAM OF RIDGE ATTACHED TO
ROUGH AND SMOOTH SURFACES

T vy "'
! 0
o 0
- 0

A A A %# A

J | |
* > a a A

J | | | L
NONDIMENSIONAL

SMOOTH PLATE

A
!
© x-= 90 mm
A
A =
A A X 500 mm
e x = 1390 mm
T WITHOUT RIDGE
J_ L b i I I
5 6 7

ROUGH PLATE

S © x= 90mm
A x= 500mMm
O x= 860nmm
* x = 1390mm

v WITHOUT RIDGE

DISTANCE FROM WALL g



WAVE  NUMBER



FUNCTION

SPECTRUM

NORMALISED

\4

FREQUENCY SPECTRA OF u2 at x = 500 nm
DOWNSTREAM OF RIDGE ATTACHED TO ROUGH

WAVE NUMBER K
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FIG (4 20b)
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SPECTRUM

NORMALISED

FREQUENCY SPECTRA OF u2 at x = 860 mm
DOWNSTREAM OF RIDGE ATTACHED TO ROUGH
SURFACE

WAVE NUMBER

K

FIG.(4.20c)



FIGJ4.20d)

FREQUENCY SPECTRA OF u2 at x = 1390 mm
DOWNSTREAM OF RIDGE ATTACHED TO ROUGH
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FUNCTION

NORMALISED SPECTRUM

FREQUENCY SPECTRA OF u2 at x = 500 mm
DOWNSTREAM OF RIDGE ATTACHED TO SMOOTH
SURFACE

FIG.14.21C)
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FIG. (4.22a)

LONGITUDINAL SPATIAL CORRELATION COEFFICIENT
AT x = 225 nm DOWNSTREAM OF RIDGE ATTACHED TO

ROUGH AND SMOOTH SURFACES
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FIG.14.22 b

LONGITUDINAL SPATIAL CORRELATION COEFFICIENT
AT x = 500 nm DOWNSTREAM OF RIDGE ATTACHED TO

ROUGH AND

SMOOTH SURFACES
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LONGITUDINAL SPACE CORRELATION COEFFICIENT RT

LONGITUDINAL SPATIAL CORRELATION COEFFICIENT
AT x = 860 nmm DOWNSTREAM OF RIDGE ATTACHED TO
ROUGH AND SMOOTH SURFACES

SEPARATION DISTANCE Ax mm

FIG.(4.220
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SECOND MOMENTS OF FREQUENCY SPECTRA OF u2 FIG( 4'23a)
AT x = 225 nm DOWNSTREAM OF RIDGE ATTACHED
TO ROUGH AND SMOOTH SURFACES
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SECOND MOMENT OF SPECTRA FOR LONGITUDINAL FLUCTUATING VELOCITIES

FIG. (4.23 b)

SECOND MOMENTS OF FREQUENCY SPECTRA OF u?2
AT x = 500 mm DOWNSTREAM OF RIDGE ATTACHED
TO ROUGH AND SMOOTH SURFACES
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FIG (4.230)

SECOND MOMENTS OF FREQUENCY SPECTRA OF u2
AT x = 860 mm DOWNSTREAM OF RIDGE ATTACHED
TO ROUGH AND SMOOTH SURFACES
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FIG (4.23d)

SECOND MOMENTS OF FREQUENCY SPECTRA OF u*
AT x = 1390 mm DOWNSTREAM OF RIDGE ATTACHED

TO ROUGH AND SMOOTH SURFACES
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FIG. (4.24)

MACRO-SCALE OF TURBULENCE DOWNSTREAM OF RIDGE
ATTACHED TO ROUGH AND SMOOTH SURFACES
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FIG.t4.25)

MICRO-SCALE OF TURBULENCE DOWNSTREAM OF
RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES
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EDDY VISCOSITY

NONDIMENSIONAL

FIG.(4.26a)

TURBULENT EDDY VISCOSITY DOWNSTREAM OF .
RIDGE AND HILL ATTACHED TO ROUGH SURFACE
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FIG.(4-29a)

MIXING LENGTH DISTRIBUTIONS DOWNSTREAM OF
RIDGE AND HILL ATTACHED TO ROUGH SURFACE
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EDDY VISCOSITY PROPORTIONALITY CONSTANT a F|G_t4_28)
DOWNSTREAM OF RIDGE AND HILL ON SMOOTH AND
ROUGH SURFACES
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FIG. (4.29Db)

MIXING LENGTH DISTRIBUTIONS DOWNSTREAM OF
RIDGE AND HILL ATTACHED TO ROUGH SURFACE
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FIG.1A-.30a)

MIXING LENGTH DISTRIBUTIONS DOWNSTREAM OF
RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES



MIXING LENGTH DISTRIBUTIONS DOWNSTREAM OF FIG.(4.30b)
RIDGE ATTACHED TO ROUGH AND SMOOTH SURFACES



AVERAGE VELOCITY IN THE ROUGH AND SMOOTH PIPES FIGX5.1)
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FIG] 5.2)

FRICTION FACTOR AND ROUGHNESS FUNCTION IN THE PIPE FLOW
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MEAN VELOCITY DISTRIBUTIONS DOWNSTREAM OF RING
PIPE: (RO = 1.06 x 105)

IN ROUGH

FIG.15 .4a)

VELOCITY

NONDIMENSIONAL



MEAN VELOCITY DISTRIBUTIONS DOWNSTREAM OF RING IN ROUGH FIG-( 5-4b)
PIPE (R, = 4.5 x 10%)

VELOCITY

NONDIMENSIONAL



FIG.( 5.4c)

MEAN VELOCITY DISTRIBUTIONS DOWNSTREAM OF RING IN SMOOTH
PIPE (R = 4.5 x 10%)

velocity

nondimensional
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MEAN VELOCITY DISTRIBUTIONS DOWNSTREAM OF RING IN ROUGH PIPE FlG'(5'5a)
IN *LAW-OF-THE-WALL' CO-ORDINATES
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FIG.( 5.6 )

VARIATIONS OF THE WAKE *PARAMETER II DOWNSTREAM OF RING IN
ROUGH AND SMOOTH PIPES
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VARIATIONS OF THE CENTRE LINE VELOCITY DOWNSTREAM OF RING FIG-( 5-7)
IN ROUGH AND SMOOTH PIPES



WALL FRICTION COEFFICIENT DOWNSTREAM OF RING IN FI G{58 )
ROUGH AND SMOOTH PIPE
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FIG.(5.9)
TURBULENT SHEAR STRESS DISTRIBUTION IN
ROUGH AND SMOOTH PIPES
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LONGITUDINAL TURBULENT NORMAL STRESS DISTRIBUTIONS Fl &( 5'10 a)
DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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LONGITUDINAL TURBULENT NORMAL STRESS DISTRIBUTIONS FlG- (5-10 b)

DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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RADIAL TURBULENT NORMAL STRESS DISTRIBUTIONS FIG. (5.114a)
DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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RADIAL TURBULENT NORMAL STRESS DISTRIBUTIONS FIG' (5-11 b)

DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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PERIPHERAL TURBULENT NORMAL STRESS DISTRIBUTIONS Iat 5.1 a)
DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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PERIPHERAL TURBULENT NORMAL STRESS DISTRIBUTIONS FIGLI 5.12 b)
DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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TURBULENT SHEAR STRESS DISTRIBUTIONS DOWNSTREAM OF RING Fl G(5 138.)
IN ROUGH AND SMOOOTH PIPES
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TURBULENT SHEAR STRESS DISTRIBUTIONS DOWNSTREAM OF RING FIG (5.13b)
IN ROUGH AND SMOOTH PIPES
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FLATNESS FACTOR DOWNSTREAM OF RING IN ROUGH AND SMOOTH

PIPES
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FIG. (5-16 a)

FREQUENCY SPECTRA OF u2 AT £n = 11.9 DOWNSTREAM OF
RING IN ROUGH PIPE



mm

FREQUENCY SPECTRA OF u2 AT £ = 35.6 DOWNSTREAM OF FIG(516b)
RING IN ROUGH PIPE









FIG.(5.16€)

FREQUENCY SPECTRA OF u2 IN ROUGH PIPE WITHOUT RING



FREQUENCY SPECTRA OF u2 AT x/h = 11.9 DOWNSTREAM FIG(5>17a)
OF RING IN SMOOTH PIPE
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FREQUENCY SPECTRA OF u2 AT x/h =63.3 DOWNSTREAM
OF RING IN SMOOTH PIPE

FIG (5 170



FIG.(5.17d)

FREQUENCY SPECTRA OF u2 AT x/h = 126.6 DOWNSTREAM
OF RING IN SMOOTH PIPE



FREQUENCY SPECTRA OF u2 FOR SMOOTH PIPE FIG'(5'17e)
WITHOUT RINQ



FIG (5 18 &)

SECOND MOMENTS OF FREQUENCY SPECTRA OF u2 AT
x/h = 11.9 DOWNSTREAM OF RING IN SMOOTH AND ROUGH .

PIPES
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SECOND MOMENTS OF FREQUENCY SPECTRA OF u2 AT

x/h =35.6 DOWNSTREAM OF RING
PIPES

IN SMOOTH AND ROUGH

FIG.( 5.18b)
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SECOND MOMENTS OF FREQUENCY SPECTRA OF u2 AT FIG '(5'18C)
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FIG. (5.18d)

SECOND MOMENTS OF FREQUENCY SPECTRA OF u2 AT
x/h = 126.6 DOWNSTREAM OF RING IN SMOOTH AND ROUGH

PIPES
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SECOND MOMENTS OF FREQUENCY SPECTRA OF u2 FOR

f-1G.(5.18e)
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LONGITUDINAL SPATIAL CORRELATION COEFFICIENT AT FIG(S-lga)
x/h =11.9 DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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LONGITUDINAL.SPATIAL CORRELATION COEFFICIENT AT

x/h ~ 35.6 DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES
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SPACE CORRELATION COEFFICIENT

LONGITUDINAL

LONGITUDINAL SPATIAL CORRELATION COEFFICIENT AT

FIG.(5.19C)

x/h =63.3 DOWNSTREAM OF RING AND ROUGH AND SMOOTH PIPES
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LONGITUDINAL SPATIAL CORRELATION COEFFICIENT AT FIG'15_19d)
x/h = 126.6 DOWNSTREAM OF RING IN ROUGH AND SMOOTH PIPES



LONGITUDINAL SPATIAL CORRELATION COEFFICIENT |N
ROUGH AND SMOOTH PIPES WITHOUT RING
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Fc(5.20)

MICRO-SCALE OF TURBULENCE DOWNSTREAM OF RING IN
ROUGH AND SMOOTH PIPES
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MACRO-SCALE OF TURBULENCE DOWNSTREAM OF RING
ROUGH AND SMOOTH PIPES
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TURBULENT EDDY VISCOSITY DOWNSTREAM OF RING IN

ROUGH AND SMOOTH PIPES
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TURBULENT EDDY VISCOSITY DOWNSTREAM OF RING
IN ROUGH AND SMOOTH PIPES
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TURBULENT EDDY VISCOSITY DOWNSTREAM OF RING IN FIG.15.2K)
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LENGTH

MIXING

NONDIMENSIONAL

MIXING LENGTH DISTRIBUTIONS DOWNSTREAM OF RING
ROUGH AND SMOOTH PIPES
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FIG.15.22 a)
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MIXING LENGTH DISTRIBUTIONS DOWNSTREAM OF RING
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LENGTH

MIXING

NONDIMENSIONAL

IN

FIG.15.22C)



FIG.(6.1)

FINITE-DIFFERENCE GRID AROUND THE TWO-DIMENSIONAL

OBSTACLE (RIDGE)
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STREAM LINE PATTERNS IN THE RECIRCULATING FLOW REGION FIG '(6'2)
UPSTREAM AND DOWNSTREAM OF THE OBSTACLE ATTACHED TO
ROUGH AND SMOOTH PLATES



-ROUGH PLATE

STREAM LINE PATTERNS IN THE RECIRCULATING FLOW REGION
UPSTREAM AND DOWNSTREAM OF THE OBSTACLE ATTACHED TO
ROUGH AND SMOOTH PLATES (WITH DIFFERENT VALUES OF THE
CONSTANTS C1# C2, ak AND af)

F1636.3)



STREAM LINE PATTERNS IN THE RECIRCULATING FLOW REGION FIG_16_4)
UPSTREAM AND DOWNSTREAM OF THE RIDGE ATTACHED TO
SMOOTH PLATE (WITH DIFFERENT VALUES OF THE CONSTANTS

Ci, C2, ok and af)



COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL MEAN 1 FIG.( 6. 5)
VELOCITY DISTRIBUTIONS DOWNSTREAM OF THE RIDGE ATTACHED
TO ROUGH AND SMOOTH PLATES



FIG.16.6)

COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL WALL
FRICTION COEFFICIENT cf DOWNSTREAM OF THE RIDGE ATTACHED
TO SMOOTH PLATE
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COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL KINETIC
ENERGY DISTRIBUTIONS DOWNSTREAM OF THE RIDGE ATTACHED
TO ROUGH AND SMOOTH PLATES

FIG.(6.7)
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COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL
BOUNDARY-LAYER INTEGRAL THICKNESSES.6*,
SHAPE PARAMETER H DOWNSTREAM OF THE RIDGE ATTACHED

TO ROUGH AND SMOOTH PLATES
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PROFILES FOR THE IRREGULAR ROUGH PLATE USED IN THE PRESENT F IG( A'll

Average Statistical Charactertistics
1 values in ym

Peak-to-Valley Height 1095 ELOW ?\Io
10-Point-Height 980 1=C> 1 71 1" Z2 (
Centre Line Av. Height 136

Std. Deviation 180 N

Max. Peak from Mean 608

Min. Valley from Mean 488

Skewness 0.72

Flatness 4.03






