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We show that the chiral modes in circular graphene pn junctions provide an advantage for spin
manipulation via spin-orbit coupling compared to semiconductor platforms. We derive the effective
Hamiltonian for the spin dynamics of the junction’s zero modes and calculate their quantum phases.
We find a sweet spot in parameter space where the spin is fully in-plane and radially polarized for
a given junction polarity. This represents a shortcut to singular spin configurations that would
otherwise require spin-orbit coupling strengths beyond experimental reach.

I. INTRODUCTION

Graphene has attracted exceptional interest as a quan-
tum material with Dirac cones at the Fermi energy and
other unique electronic properties [1-3]. One appealing
feature is the possibility of tuning electrostatically the
charge carriers’ polarity in pn junctions of linear [4-9]
and circular shape [10-18]. The latter have been created
by different means, such as the tip potential of a scan-
ning tunneling microscope [10, 14, 16, 18] or by placing
impurities in the substrate [11, 13]. In both approaches,
experiments have shown that it is possible to single out
and steer individual electronic eigenstates. Importantly,
pn junctions are essential building blocks for graphene-
based electron-optical elements and edge-state interfer-
ometers [14, 19-21] also exploiting the so-called snake
states [9, 22, 23].

The electronic spin degree of freedom is usually ne-
glected in the study of graphene pn junctions because of
the weak atomic spin-orbit coupling (SOC) of carbon [24-
27]. However, theoretical predictions followed by exper-
imental realizations proved that strong SOCs can be in-
duced, e.g., by proximity with transition metal dichalco-
genide (TMD) substrates [28-37]. These advances open
the exciting possibility of including the spin functional-
ity in graphene-based electron optics, with the further
benefit that the versatility of pn junctions allows for the
design of curved waveguides for spin and charge carri-
ers. This is particularly interesting in view of the intense
current theoretical and experimental research activity on
the spin dynamics triggered by SOC in curved geome-
tries [38-41]. The effects of SOC in graphene have been
also investigated in other geometries [42-45].

In this article, we investigate circular pn junctions in
the presence of (i) a perpendicular magnetic field, cou-
pled to the electronic charge (developing Landau levels
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in the quantum Hall regime) and spin (through Zeeman
coupling), and (ii) proximity-induced SOCs of different
types. We provide the exact solution of graphene’s Dirac
equation for this system and formulate an effective one-
dimensional (1D) model for the spin and angular dynam-
ics of the states localized at the pn interface. This resem-
bles the model for semiconductor rings subject to Rashba
SOC (RSOC) [46], with a meaningful difference: the chi-
ral nature of the propagating modes. We identify a re-
markable sweet spot in the parameter space, where the
spin eigenstates align locally with the effective magnetic
field produced by the SOC. This point coincides with the
Rabi condition for electronic spin resonance in a magnetic
field and represents a shortcut to adiabatic spin dynamics
unavailable in its semiconductor equivalent. We confirm
this result within the original full model and propose a
set-up to identify this sweet spot via spin interferometry,
opening a promising route to spin state manipulation in
graphene.

The article is organized in the following way: In Sec. II,
we introduce the model system. In Sec. III, we present
a low-energy model for the system under investigation,
where we show the presence of the sweet spot in the pa-
rameter space. In Sec. IV, we provide a proposal for an
interferometric experiment to detect the presence of this
sweet spot. We discuss in Sec. V the interpretation of
the experimental proposal and its range of validity. Fi-
nally, in Sec. VI, we provide our conclusions. All the
technical details are presented in the Supplemental Ma-
terial (SM) [47].

II. MODEL
The low-energy model for graphene with proximity-
induced SOCs reads
H= HO + 7'[spina (1)

where Hg is the Dirac Hamiltonian in a perpendicular
magnetic field

Ho = vr (To,1l, + oy 11,) + V, (2)
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Figure 1. (a) Sketch of the system, with p and n regions

drawn in yellow and blue. (b) Energy spectrum versus angular
momentum j for Vo = 0.51, & = 5.1, Ag = 0.5 and Az =
Axkm = 0. (c) Same as in (b) but for Az = 0.1. In (b) and (c),
the red dots highlight the zeroth Landau levels.

with Fermi velocity vp and kinetic momentum IT =
—ihV + <A, with A = g(fy, x) in the symmetric gauge.
Here, 7 = £1 denotes the valley index and o = (0, 0y)
are Pauli matrices in sublattice space [3]. The potential

V(r) = Vosign(R — 1), 3)

defines a circular pn junction of radius R, with a p-doped
region for r < R (the “dot”), and a n-doped region for
r > R. The system is sketched in Fig. 1(a). The spin-
dependent part Hgpin = Hz +Hr + Hixm + Hyz includes
both Zeeman and SOCs terms [28, 29, 48]:

Hy = Azsz, (4a)
A

Hr = 7R (TOzSy — 0ySa), (4b)

Hrkm = AKMTO52, (4c)

Hvz = /\V27'8Z. (4d)

Here Az = 252 B, and s = (sg,s,) denotes the Pauli
matrices in spin space. The terms Hgr, Hxwm, and Hyy
are the Rashba, Kane-Mele, and valley-Zeeman SOC, re-
spectively [24, 26, 49]. Precise estimates for the SOCs
depend on the specific heterostructure, e.g., the relative
orientation between graphene and substrate [35, 36]. The
RSOC and the VZSOC range from few hundredths of
meV up to few meV, while the KMSOC is typically much
smaller [35, 37]. We are mainly concerned with the effects
of the Zeeman and RSOC terms. The valley-Zeeman
term can be included by means of a valley-dependent
shift of the Zeeman coupling and will be considered sep-
arately in the discussion section below. For Ayz = 0,

the valley degree of freedom just leads to a degeneracy
factor, so we can focus on a single valley and set 7 = +1.
Throughout this paper, we measure lengths in units of
magnetic length {p = \/hic/eB = 25.65 nm/+/B[T] and
energies in units of cyclotron energy hw. = hvp/lp =
26 meV+/B[T], and assume a typical field B ~ 1 T [37].

In this model, the wave function is a four-component
spinor ¥T = (Wa4, Upt, ¥ay,¥p)). The Hamiltonian
‘H commutes with the total angular momentum J =
L. —1—% (02 + s2), with L, = —i0y the orbital angular mo-
mentum, hence its eigenstates ¥, (r), expressed in terms
of confluent hypergeometric functions [47, 50-52], can be
labelled by an integer j € Z. The spectrum is illustrated
in Figs. 1(b) and 1(c). In particular, we find two “zero-
energy” Landau levels (LLs), the “top” (T) and “bot-
tom” (B) zero modes, highlighted in red in the figures.
In the absence of SOCs, they have zero energy for Vy = 0,
but develop a dispersion in j for finite Vj [22, 47]. Their
energy at j = 0 and at 7 < —1 approaches the value
of the potential V' (r) inside and outside the dot, respec-
tively, see Fig. 1(b). In the presence of RSOC, the two
modes acquire a spin splitting, similar to the case of a
two-dimensional electron gas (2DEG) [27, 53]. A finite
Zeeman coupling produces an additional vertical split-
ting—see Fig. 1(c). We present in the SM [47] the exact
solution of the model (1), including a detailed analysis of
the spin splitting as a function of Ag.

I1II. EFFECTIVE 1D MODEL

In order to describe the low-energy physics around
the Fermi energy (set at the charge neutrality point,
Er = 0), we introduce an effective 1D Hamiltonian for
the zero modes localized at the pn interface. We follow
an analogous derivation for a semiconductor ring with
RSOC [54], see the SM [47] for details. We first per-
form a unitary transformation, H — H = UHU !, with
U =et5 (0+3)e 59 In this rotating frame, we factorize
the wave function as ¥ = v (r)x(6), where 1(r) is the
sublattice spinor for the (spin degenerate) zero mode of
the radial part of Hy, and {(0) is a spinor in spin space,
containing the angular dependence. The projection of
H onto the zero mode ¢y(r) leads to the effective 1D
Hamiltonian controlling the dynamics of x(6):

Hett = wo(L: + @) + (w7 — %)sz —wrSy.  (H)

The frequencies in Eq. (5) are defined by

wo = <&>07 (6a)

.

wz = Az + Axkm{(02)0, (6b)
A

WR = 7R<am>o, (6¢)

where (...)o denotes the (radial) expectation value in the
state 1o(r). (We note that o, is the azimuthal compo-

nent of the velocity operator in the rotating frame.) The
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Figure 2. Sweet spot identification in the full model. (a)
The angular frequency wo as a function of & = R?/2(%, at
a fixed magnetic field. The green and red horizontal lines
describe two representative values of 2wz, and the vertical
dashed lines the corresponding values of &y at which the res-
onance condition 2wz = wq is realized. (b)-(d) The exact
expectation values of the radial and perpendicular spin com-
ponents in the top and bottom modes as a function of &,
for Az = 0.047 and Ar = 0.2 in (b) and for Az = 0.033 and
Ar = 0.2,0.3 in (¢) and (d) respectively. In (b)-(d), the top
curve shows (s,)B, the bottom one (s.)T, and the two central
ones (s.)r and (s.)s. In all the panels, V5 = 0.51.

parameter ® ~ £ = BwR?/®, denotes approximately
the magnetic flux through the dot in units of the flux
quantum ®q. Since Hgpin is treated perturbatively, this
projection is justified as long as fiw,. is much larger than
the Zeeman and SOCs. The Hamiltonian (5) describes
a 1D spinful chiral mode propagating along the curved
pn interface, with angular velocity controlled by the gate
voltage difference across the junction. Importantly, the
polarity of the junction determines the signs of wg and
wr [55]. For Vi > 0 both are positive. Inverting the
polarity, Vo — —Vj, reverses the propagation direction,
changing both signs. This feature has crucial implica-
tions for the experimental setup discussed below.

Diagonalizing Heg, we obtain the eigenvalues

Enp+=wy(m+®)+ \/(wz - %)2 + wi, (7)

where m € Z under periodic boundary conditions. This
formula predicts a linear dependence of the energy on
m, which we observe in the exact solution close to zero
energy, and provides an approximate analytical expres-
sion for the slope of the dispersion. The corresponding

eigenstates are

eim@ cos X

v — 2
Xm,+ = m < sin% ’ (Sa)

eim@ sin 'y)
_= 2, 8b
Xm, V2r (cos; (8b)

where
T ks ik 2 9)
\/ (wz — 5 + Wiy

We find a sweet spot for wz = % (y = F), where

the spin eigenstates (8) point along the radial direction
in the xy plane for any value of wgr. This situation is
remarkable. It recalls the Rabi condition for spin reso-
nance in the rotating wave approximation (RWA), with
the difference that there is no Bloch-Siegert shift [56]
as a function of the driving amplitude (represented by
wr): here, the RWA is exact. Notice that an inver-
sion of the junction polarity, changing the chirality of
the propagating spin channels (wy — —wyp), would take
the system off-resonance. This is in sharp contrast to the
case of semiconductor-based Rashba rings [46, 57], where
counter-propagating channels coexist, and a full in-plane
alignment of the spinors is only achieved in the adiabatic
limit of very large RSOC (wgr > wy) [46].

The resonance condition, exact in the projected
model (5), holds with excellent accuracy also in the full
model (1). This is shown in Fig. 2, where for simplic-
ity we set Axkmy = 0. Here, we define the angular fre-
quency wqg as the expectation value (o, /r) z=0 on the
j-state closest to zero energy. From Fig. 2(a), we can
see that wy decreases as a function of the radius R and
presents a staircase behavior due to the discreteness of j.
In Figs. 2(b)-(d), we show the expectation values of the
perpendicular and radial components of the spin, s, and
Sy, in the top and bottom j-states closest to zero energy
for different sets of parameters. We observe that at the
value of &, where the resonance condition wy = % is re-
alized, (s.) is almost zero, whereas (s,.) is close to 1. The
results in Fig. 2 show an excellent agreement between the
prediction of the projected model and the full solution.
In particular, they confirm that the resonance condition
is independent of the RSOC. The small discrepancies are
due to the coupling of the zero modes to the higher LLs
via the RSOC, neglected in the projected model. We
present additional results, including the effect of Akyp, in
the SM [47].

IV. EXPERIMENTAL PROPOSAL

We propose two setups based on linear and circular
pn junctions to implement interferometric circuits for
spin carriers. Thanks to the chiral nature of the propa-
gating channels, we find that, depending on the junction
polarity, the interferometers respond differently to the



Zeeman coupling wz (assuming Axy = 0 for simplicity),
making possible a unique geometric characterization of
the propagating spin states.

Figure 3 depicts the circuits’ architecture built upon n
[Fig. 3(a)] and p [Fig. 3(b)] dots. Contact 1 at voltage
V' is the carrier source, while the grounded contacts 2
and 3 act as drains. The grounded contact 4 contributes
with an empty channel. Importantly, either setup can be
turned into the other by simply inverting the pn polarity,
relabeling the contacts, and swapping voltages, meaning
that a single sample could realize both interferometer in
the laboratory.

Carriers injected from contact 1 propagate along a lin-
ear pn junction. Traveling toward contact 2, they can en-
ter the circular pn junction with probability 0 < 71 < 1,
from which they can escape at the opposite end towards
contact 3 with probability 0 < 7 < 1. The tunnel bar-
riers 71 and 7o operate as beam splitters (BSs) for the
chiral modes. Their spin-dependent probability ampli-
tudes are determined by projecting the propagating spin
modes on the local basis [47].

We calculate the quantum conductance Ga; from con-
tact 1 to contact 2 for the zero modes following the
Landauer-Biittiker approach [58, 59]. (By unitarity,
Ga21 + G31 = 2¢%/h, since we are considering a single
valley.) Obtaining the quantum transmission requires
the combination of the BS scattering matrices [59], tak-
ing into account the spin-dependent phases mn gathered
by the carriers propagating between the tunnel barriers
along the circular junction [47]. These phases are ob-
tained by setting E,, s = 0 in Eq. (7), where m is not
necessarily an integer for open pn junctions, since peri-
odic boundary conditions do not apply in the presence
of contact leads. Figures 3(c)-(e) summarize our main
results. We plot the conductance Gy for the two op-
posite junction polarities, as a function of dimension-
less Rashba Qr = wr/wp and Zeeman @z = wz/wo
coupling strengths. Without loss of generality, we set
71 =To = 1/2 (50% BSs) and ® € N. Other settings can
modify the relative amplitudes and phases of the pat-
terns, but their general composition remains the same.
We observe that the patterns in Figs. 3(c) and 3(d) differ
by a relative AQyz = 1 shift along the Zeeman axis. This
shift reveals significant information on the spin-state ge-
ometry of propagating channels, as explained below.

In Fig. 3(e) we plot Ga; for Qz = 0 (solid line) and
Q7 = 1/2 (dashed line). For Qz = 0, the result holds
for both n and p polarities. Here we find quasi-periodic
oscillations as a function of Qr, which tend to be peri-
odic for Qr > 1. This limit corresponds to the regime
of adiabatic spin dynamics, where the local spin quanti-
zation axis is expected to point along the radial Rashba
field with v — 7/2 in Eq. (8). Moreover, after a round
trip around the dot, the spin carriers collect a geometric
phase p, = —Q/2, with @ = 27(1 — cos~y) the solid angle
subtended by the spin states on the Bloch sphere. In the
adiabatic limit, one finds ¢, — —m. Similar results have
been reported for semiconductor Rashba rings [46, 57].

empty

| 4 n - channel p
ON o <) ()l};-3=5

g =2

channel

Figure 3. (a) The circuit’s architecture with a n-doped dot.
(b)The same as in (a), but with opposite junctions’ polarity.
(c)-(d) Differential conductance Go; for the circuits in (a) and
(b), respectively, as a function of the dimensionless Rashba
and Zeeman coupling strengths. (e) Cut of the differential
conductance for the cases in (c) and (d) with Qz = 0 (blue
line) and for the case in (d) with Qz = 1/2 (red dashed line).

The two polarities respond very differently to Q7. For
the n dot [see Eq. (9) and Fig. 3(c)], we find that Q7 acts
to the detriment of in-plane spinor polarization, which
still requires large RSOC intensities r. On the con-
trary, for the p dot [see Eq. (9) and Figs. 3(d) and 3(e)],
at the sweet spot Qz = 1/2 we find perfectly periodic
oscillations corresponding to fully in-plane spin states
(v = 7/2) regardless of the RSOC intensity, picking up
a geometric phase @, = —.

V. DISCUSSION

All relevant features of Fig. 3(d) are captured by a
low-order semiclassical expansion of the conductance in
terms of Feynman paths corresponding to single windings
around the p dot [47]. In this approximation, we find

G21 ~ 1+ cos paB cos s, (10)



with

(11a)

(11b)

1 2
¢s=27r\/<Qz—2) + Q%

where ¢pap and ¢g are independent phase contributions
originating in the orbital and spin degrees of freedom, re-
spectively. Equation (10) reproduces well the pattern of
Fig. 3(d) showing circular wavefronts centered at Qr = 0,
Qz = 1/2. For Qz = 0, we find from Eq. (10) that
¢s = 2mQprsiny — wcosy = 2rQgrsiny — (7 + @g).
This phase reduces to ¢g ~ 27rQR in the adiabatic limit
Qr > 1, leading to periodic oscillations of Go; as a func-
tion of @Qgr. Thus, a strong RSOC drives the spin eigen-
states to be in-plane, such that v — 7/2 and ¢z — —7.
The physical realization of this formal limit is difficult in
the laboratory due to the required field intensities. Alter-
natively, we find here a shortcut by setting @z = 1/2. In
this sweet spot, the spin phase contribution reduces ex-
actly to ¢g = 2mQR even for weak RSOC fields, which as-
sures in-plane spin eigenstates that introduce a 7 phase-
shift of purely geometric origin.

We emphasize that this precise characterization of
the propagating spin channels boils down to their chi-
ral nature, in contrast to the case of semiconductor
Rashba rings, where counter-propagating modes coex-
ist [46, 57, 60]. The chirality also protects the sweet spot
from the effect of random impurities. Moreover, we ex-
pect that small deviations from a perfectly circular shape,
breaking the rotational symmetry might induce small os-
cillations of the out-of-plane component of the spin and
thus blur the sweet spot, but will not qualitatively alter
the physics discussed here [61].

Finally, we briefly address the effect of the VZSOC. In
the effective model (5), it leads to a valley-dependent
shift wz — wy + TAvz. Hence, at wz = wp/2, the
spin states (8) will have a residual out-of-plane compo-
nent, opposite at the two valleys. The valley-resolved
conductances will be periodic functions of g only for

AR > Avz [47], see Egs. (10) and (11b). The selection of
substrates inducing the weakest possible VZSOC [35, 36]
is thus essential to observing the effects described in this
work.

VI. CONCLUSIONS

We have shown that the chiral spin channels in curved
graphene pn junctions with proximitized SOCs can be
precisely characterized and controlled. We uncovered a
sweet spot in the parameter space enabling an efficient
manipulation of spin-state configurations without requir-
ing a strong RSOC, which is difficult to achieve exper-
imentally. This opens up new possibilities for explor-
ing quantum-state geometry and advancing spintronics
in graphene. Curved pn junctions thus offer a versatile
platform for investigating spin dynamics phenomena in-
duced by SOCs, providing an alternative to traditional
semiconductor systems.
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SUPPLEMENTAL MATERIAL
Chiral spin channels in curved graphene pn junctions

I. THE HAMILTONIAN

In this section, we illustrate the complete low-energy Hamiltonian for a graphene monolayer with proximitized
spin-orbit couplings (SOCs). Following [29] (see also [48]), the full Hamiltonian reads:

H=Ho+Har+Hz+Hr +Hxym + Hvz, (SE1)
where

Ho = vp (1,0, + o, IL,) + V, (SE2a)

Ha = Ao, (SE2b)

Hyz = AzSz, (SE2c¢)

Hp = %{ (T2028y — OySz) (SE2d)

Hrn = AKMT:0:52, (SE2e)

Hyz = AvzT2S,. (SE2f)

Here, vp ~ 10°m/s is the graphene’s Fermi velocity, IT = —ihV + ¢A the kinetic momentum, A = g(—y,x, 0) the
vector potential in the symmetric gauge (we assume B > 0), and V (r) the potential defining the circular pn junction.
The symbols 7/0 /s denote the valley/sublattice/spin Pauli matrices. The Hamiltonian (SE1) is diagonal in valley
space. It includes the sublattice-symmetry breaking term Ha, the Zeeman term Hz (with Az = 252 B), the Kane
and Mele (or intrinsic) SOC Hgkwu, the Rashba SOC Hg, and the valley-Zeeman SOC Hyyz. For completeness, we
include the sublattice-symmetry breaking term Ha, which we have neglected in the main text.

The wave function is an 8-component spinor

(War, Upp, WAy, Ugy, Uy, Uh W) | U ), (SE3)

where the unprimed and primed components are the amplitudes at the valley K (7, = +1) and K’ (1, = —1),
respectively. The Hamiltonian # is invariant under the time-reversal operation 7 = is,7,XC up to the inversion of the
magnetic field:

TH®B) T =H(-B), (SE4)

and commutes with the total angular momentum operator J = L, + % (120 + 82).

Since H is diagonal in valley space, we will focus on a single valley (7. = +1) and omit the valley index. Then, the
wave function ¥ is a four-component spinor in sublattice/spin space, T = (Wa+, Ups, Ua |, Up)). The single-valley
Hamiltonians are related by the unitary transformation

7‘[7—2=_1(A, )\vz) = inHTz=+1(—A, —)\vz)(—iO'y). (SE5)

Using this identity, one can find the eigenstates at the valley 7, = —1 once the eigenstates at the valley 7, = +1 are
determined.

Before closing this section, we notice that we express energy in units of the relativistic cyclotron energy fw,, length
in units of the magnetic length 5, and wave vectors in units of Egl, with

| hic 26 hop gsiB —2
lp=\—= hwe = — =264/ B|T|meV, hwz = B =58x10""B[T|meV.
B "z BT nm, " v/ B[T] me 7 5 X [T] me

We set e = h = vp = 1 unless specified otherwise.



II. EXACT MODEL SOLUTION

In this section, we provide the exact solution of the problem of graphene’s Landau levels in the symmetric gauge in
the presence of SOCs and a constant potential. (See [43, 53] for the solution to this problem in the Landau gauge.)
Since we work in a given valley, the valley-Zeeman term can be absorbed into the Zeeman term and will be omitted
below. The single-valley Hamiltonian (7, = +1) in the symmetric gauge commutes with the total angular momentum

o s

J=L,+ = +=2, SE6

+t5 TS (SE6)

with L, = —i0p, hence the eigenfunctions can be labeled by the eigenvalues of J, which span the set of integers, and

take the form
etli—%F—%)0

Wj(r) = T%’ (r), (SET)

where (r,6) are polar coordinates and j € Z. The radial spinor v;(r) is a solution of the equation

(M — E)¢; =0, (SE8)
where
M, = e~ i—F—F)0 9y i—F—5)0 (SE9)
is the radial Hamiltonian in a fixed j sector:
L —i(L +1+1) 0 0
HfJ%:ZPE+;r+9 Xg _:ﬁ —%$+l?+9 (SE10)
0 N A I
Here, we have introduced the auxiliary symbols
pr=E—-V - Azt xm £ A), (SElla)
vy =FE -V —(=Az £ xm FA), (SE11b)
and we will use the notation
p=ppp- = (E =V =X2)% = (Qxum + A)>%, (SE12)
v=viv_=(E-V+)* - Oxm — A (SE13)
In terms of the variable ¢ = r2/2, we find
s ~iVIE (& +1+4) 0 0
7QE¢¢%(13+;+Q;) . “idr o
0 iR v —iVIE (& + 5+
0 0 iV (- % +3+%) -
(SE14)

The general solution of Eq. (SE8) can be expressed in terms of confluent hypergeometric functions [50]. In the
following, we will present the solutions separately for 7 > 0 and j < 0.

A. Casej>0

First, we assume j > 0. The solutions of graphene’s Landau levels problem without SOCs (see, e.g., [22, 51, 52])
and with SOCs in the Landau gauge [43, 53] suggest the following ansatz:

d1€71/2M(a7j7§)

e idyM(a,j 4 1,€)
U&= e O G e |
idy& 2 M (a,j + 2,€)

(SE15)
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where d; are constant coefficients (for simplicity, we omit the index j on the coefficients), and M/(a,b,§) denotes the
confluent hypergeometric function of the first kind [50], regular at the origin. The parameter a will be determined
below. By using recurrence relations between confluent hypergeometric functions, Eq. (SE14) is converted into a
linear system for the coefficients d;:

—fit V2j 0 0 4
v2 (1 - %) e AR 0 o) (SE16)

0 —Ar —v_ V20(i+1) | | ds

a d

The existence of a non-trivial solution requires the vanishing of the determinant of the coefficient matrix:
2(a — ) + ul[2(a — j — 1) +v] — Napsvy = 0. (SE17)
The solution of the linear system (SE16) is (up to an overall constant)

d V2j

ds H+
= 2(a—j)+ . SE18
R e 18
dy V2(a—j—1)[2(a—j)+u])
Arv4 (j+1)

A second solution, singular at the origin, is built using the confluent hypergeometric function of the second kind
Ula,b,€) [50]:

41571/20;(0’7]‘75)
() = e 2/ Zj;g((i’ H :117’3 . (SE19)
i§1/2d4U(a7j + 27 é-)

The corresponding linear system for the coefficients d; is

—ps V2(j—a) 0 0 d
\/5 —H— —ARr 0 do
0 A —v- V2(+1-a)| |ds 0 (SE20)
0 0 V2 —vy dy

and the determinant equation is the same as in Eq. (SE17). The solution of this linear system gives

d; V2(j —a)

Hy
252 N T (SE21)
3 Y
dy VAR i) 4
ARV+

The solution for j = 0 can now be obtained by taking the limit j — 0 in the previous formulas and using the
following identities:

lim jM(a, j,§) = a&M(a +1,2,¢), (SE22)
1
U(a,0,§) = €¢U(a+1,2,8). (SE23)

B. Case j<0

In this case, the correct ansatz for the solution regular at the origin reads

di€Y2M(a+1,—j + 2,¢)
e idoM (a, —j + 1,€)
i) = e R L
ida& 2 M (a —1,—-4,€))

(SE24)
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Then, the algebraic equation for the coeflicients d; is

—p+ V2150 0 dq
ﬁ(yo 1) 7/;; j_R x/iqj“ Zz —o. (SE25)
0 0 V2 -u, da
The condition of vanishing determinant reads
(20 + p)(2a — 24+ v) — Ajpyvy =0, (SE26)
and the solution of the linear system (up to an overall constant) is
d ﬁi\i?a
o= || (sE20)
ds —V2j(2a + p)

The second solution, singular at the origin, is given by

di&PU(a+1, ) +2,€)
(€)= %0 Zj;g((i Y 11,’55)) : (SE28)
’L'd4£71/2U((1 - 17 7]7&)

The associated linear system is

—py —V2a 0 0 dy
\/Q —p— —AR 0 dy
0 —Ar —v_ V2(1-a)| |ds 0 (SE29)
0 0 V2 —vy dy
with the same determinant equation as in Eq. (SE26), and the solution given by
d1 —\/iARV+a
da | _ ARHAV+
ds | = | =vi(2a+p) |- (SE30)
dy —V2(2a + p)

We note in passing that, by taking the limit j — 0 in the formulas above, we recover the solution for j = 0 given
in Sec. ITA.

C. General solution

The two determinant equations (SE17) and (SE26) can be merged into a single equation:
[2(a = jOG)) + H[2(a = 7OG) = 1) +v] = Napyrvy =0, (SE31)

where O(z) is the Heaviside function. (We adopt the convention ©(0) = 1.) This condition admits the solutions
a = a4 given by

1
ar = j0O(j) — 1 [u+u—2i\/(u—u+2)2+4)\2Ru+u+ . (SE32)
We denote by d)j< (&) the wave functions regular at the origin, Eqs. (SE15) and (SE24), and by 1/Jj> (&) the wave functions
singular at the origin, Eqs. (SE19) and (SE28). The eigenspace of energy E and total angular momentum j is then
spanned by the linear combinations of the four solutions obtained by taking wj< and 1/}? with a = a1 in Eq. (SE32):

P;(€) = 195, (€) + caths, (&) +esvi,, (&) + cathi, (8).

As we will see below, the quantized energy eigenvalues (Landau levels) are obtained by imposing appropriate conditions
on this general solution. In Sec. III we consider the case of a uniform system, where the quantization condition
originates simply from the requirement of normalizability. In Sec. IV we consider the case of a circular pn junction,
where the quantization condition arises from the combination of the requirements of normalizability and continuity
of the wave function.
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Figure SF1. Landau level spectrum in the symmetric gauge. (a) Spin degenerate case, with Az = Axkm = Ax = A = 0. (b)
Case with only Zeeman splitting, with Az = 0.3. (c) Case with only intrinsic SOC, with Axm = 0.3. (d) Case with only Rashba
SOC, with Ag = 0.3. In panels (a) to (c), the arrows are associated with the eigenvalues of s,. In all panels, the color refers to
the radial quantum number n: red to n = 0, blue to n = 1, green to n = 2 and orange to n = 3.

III. UNIFORM SYSTEM

For a uniform system (V = 0) we have to select the solutions regular at the origin, Egs. (SE15) and (SE24), which
involve the functions M (a,b, ). Then normalizability requires that the first argument of M is a non-positive integer
—n, where n is interpreted as the radial quantum number. As a result, we find two sets of Landau levels, obtained
by solving the equations

(SE33)

ayr(E)=—-n n=0,1,2,..., forj >0
ar(E)—1=-n n=0,1,2,..., forj <0’

with a1 in Eq. (SE32). For the correct counting of the solutions, one should notice the following:

e Case j = 0: for n =0 (i.e., a = 0) the solution of Eq. (SE31) with g = 0 must be omitted, because all wave
function components vanish, see Eq. (SE18).

e Case j < 0: for n =0 (i.e., a = 1) only the solution of Eq. (SE31) with v; = 0 is allowed because the first three
components of the wave function (which are not normalizable functions if a = 1) have a vanishing coefficient,
see Eq. (SE27). For n =1 (i.e., a = 0) the solution of Eq. (SE31) with x4+ = 0 must be omitted for the same
reason as in the case j = 0 above.

The quantization equation (SE31) is quartic in the energy and can be solved explicitly. However, the general
expression of the solutions is cumbersome and not particularly illuminating. Below, we briefly discuss few special
cases and give the explicit formulas for the corresponding energy eigenvalues.

e If the Rashba SOC vanishes, Eq. (SE31) decouples into two separate equations, each giving a set of spin-polarized
Landau levels. From 2(a — jO(j)) + ¢ = 0 we find the spin-up levels

Enjo =M+ 020 +500) + Oxm + A2, n=0,1,2,..., j=0,+1,+2,..., a==l, (SE34)

where for n = 0 and j < 0 only the level Ey ; = Az — Axm — A must be kept. From 2(a — jO(j) —1) +v =0
we find the spin-down levels

Enjot ==z +a2n+(G+100() + Ok — A2, n=0,1,2,..., j=0+1,£2,..., a==+1, (SE35)

where for n = 0 and j < 0 only the level Ey; = —Az + Axkm — A must be kept. For Az = Axkm = A =0,
the expressions in Egs. (SE34) and (SE35) coincide with the Landau level formula in the symmetric gauge (see,
e.g., [22]) after the replacement j = j’ & 3 for spin up/down states, with j/ half-integer.

e If we have only a finite Rashba SOC and all the other couplings are set to zero, the Landau levels obtained by
solving Eq. (SE31) are given by (see also [53])

2

2
Enjap=0al|2n+(j+1)0(j)] 1+)\2§+ﬂ\/(1>\§> +2X4[n+ (G +1)03G)]| ., af ==l (SE36)
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Figure SF2. (a) Spectrum of the circular pn junction with & = 5.1 and Vp = 0.51 as a function of j for vanishing SOCs and
Zeeman coupling. (b) The same as in (a) but with the spin-down states translated by 1 along the j-axis, showing that they
coincide, as expected because of spin degeneracy.

For the correct counting of the states, one should keep in mind the remarks at the beginning of this section. It
is interesting to observe that at the lowest order in Ar one finds

Enjap=a (1 + B)\j{) V2[n+(G+1)03G)] +8 1. (SE37)

We see that the effect of a small Rashba SOC is essentially a renormalization of the cyclotron frequency. We
note in passing that the states corresponding to the two sets of levels in Eq. (SE37) are not eigenstates of s..

We illustrate in Fig. SF1 the exact Landau level spectrum in the symmetric gauge for four relevant cases. We
observe that, in all cases, at a fixed value of the radial quantum number n, the energy is independent of the angular
quantum number j for j < n or j < n — 1. In the first three panels, we set Ag = 0, hence the spin projection in
the z direction is a good quantum number and the eigenfunctions describe spin states polarized along the z axis. In
panel SF1(a) we present the spin degenerate case with Az = Axky = Ar = A = 0. The spectra of spin-up and spin-
down states appear to have a relative horizontal shift, because we label our states with the total angular momentum
j. They coincide if we plot the spin-up spectrum versus j' = j — % and the spin-down spectrum versus 7' = j+ % This
shift is the reason why the lowest-energy states with j > 0 appear singly degenerate. If only the Zeeman coupling is
active, see panel SF1(b), we observe the usual energy shift, upwards for spin-up states and downwards for spin-down
states. In the case that only the intrinsic SOC is active, illustrated in panel SF1(c), we see that the spin degeneracy
of the zero-energy Landau level is lifted, while all other levels remain spin degenerate.

Finally, in panel SF1(d) we show the spectrum when only the Rashba SOC is active. In this case, the projection of
the spin along the z axis is no longer a good quantum number, because the SOC mixes spin-up and spin-down states.
As a result, the spin degeneracy of all levels is lifted, with the exception of the zero-energy level, which remains doubly
degenerate at zero energy. This residual degeneracy is a result of the fact that the zero-energy states have support
on a single sublattice [43, 53].

IV. LANDAU LEVELS IN A PN JUNCTION

Next, we discuss the exact solution of the Landau level problem in the case of a pn junction. We assume that the
potential has the following profile:

V(r)=Vosign(R—r), Vo >0, (SE38)

namely, V = Vj within a disc of radius R and V = —V; outside the disc. We use £, = R?/2 as a measure for the size
of the circular junction. Using the solutions found in Sec. II, we write the radial wave function as

W 5) _ {Clw;Jr,Vo (6) + Cﬂﬁ,fﬂ,vo (6) &< &

. E
37 v (&) F ety (6 €& (SE39)
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Figure SF3. (a) The energy spectrum of the zero modes as a function of the total angular momentum j for several values of
the Rashba SOC. (b) The zero-mode splitting defined in Eq. (SE43) as a function of the total angular momentum j for several
values of the Rashba SOC. For both panels, the values of the Rashba SOC are indicated on the side of the panel (b).

Here we omit the index j, being understood that we work at fixed angular momentum, and we append two indexes
to indicate the values of the parameter a and of the potential V. The eigenenergies and the eigenstates are obtained
by matching the wave functions at the boundary of the disc & = &g:

e, v, (o) + 2ty v, (o) = catby, v, (€o) + cathy v, (o) (SE40)

In analogy to the case of a linear junction [22, 53], we obtain a linear system for the ¢;, with the matrix of coefficients
given by

W= [¥5 v (&) ¥s v (&) —¥a v (&) =g v (%)]. (SE41)
The allowed energy eigenvalues are found by solving the equation
det W = 0. (SE42)

Once the eigenvalues are determined, the corresponding normalized eigenstates can be calculated from Eq. (SE39)
using the solution of the linear system (SE40).

In Fig. SF2 we show the exact spectrum of the circular pn junction obtained from the numerical solution of
Eq. (SE42) in the absence of Rashba SOC for the spin-degenerate case. The effect of the potential step is that the
levels acquire a dispersion in j. As observed in the uniform case discussed in Sec. 111, the spectra for spin-up and
spin-down states appear horizontally shifted one with respect to the other, which results from labeling the states
with the total angular momentum j. As shown in panel SF2(b), when the spin-down spectrum is shifted to the
right by 1, they do overlap. This observation suggests defining the splitting of the energy levels as the difference
|En j.a+ — Enj—1,a,—|, which vanishes in the spin-degenerate case.

We now focus on the two lowest-energy levels, which we refer to as the top and bottom modes and denote as E;{ j
and EJ 0.; With corresponding radial wave functions z/)T(g) and wB(f). In Fig. SF3(a) we show their dispersion as a
function of the total angular momentum j for dlfferent values of the Rashba SOC. We see that the j-dependence
around zero energy is linear with good approximation. In Fig. SF3(b) we show the energy splitting of the zero modes,
defined as

0Eo,; = |E0T,j - E(]33,3>1|- (SE43)

We observe that dEy ; is not constant but depends quite strongly on the value of the angular momentum j. This
dependence can be rationalized by considering the Rashba SOC as a perturbation. As shown below, the spatial
location of the zero modes is essentially determined by j. For j = 0 and j > 1, the radial wave function is localized
far from the pn interface. In this case, the zero modes are supported on only one of the sublattices, so the Rashba
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Figure SF4. Radial profile of the observable densities defined in Eq. (SE44) for the bottom (solid lines) and top (dashed lines)
zero modes as a function of ¢ for different values of the Rashba SOC Ar (Ar = 0,0.1,0.2,0.3,0.4,0.5,0.6). Panels (a) to (c)
display the modulus square of the wave function for the lowest value of j (7 = —1/0 for top/bottom mode), an intermediate
value of j (j = —6/ — 5 for top/bottom mode), and a large value of j (j = —11/ — 10 for top/bottom mode). Panels (d) to (f),
(g) to (i), and (k) to (1) are the same but for the densities (cg¢), (sr), and (s.) respectively. In all panels, the plane at £, = 5.1
represents the position of the pn interface.

SOC matrix element is very small. For values of j at which the wave function is localized close to the pn interface,
instead, the zero modes have support on both sublattices so that the matrix element of the Rashba SOC is largest
and the splitting reaches a maximum. A similar effect was observed in the case of the linear pn junction [53].

In the panels of Fig. SF4, we present the radial profiles of various observable densities for the top and bottom zero
modes for several values of the Rashba SOC and for three different values of the angular momentum j. We denote
these quantities as follows:

(p) =il (og) = ¥Topll,  (s.) =yifs.ul,  (s,) =¢iTs,pf, i=T,B. (SE44)



16

They describe the radial probability density, the azimuthal probability current density, and the perpendicular and
radial components of the spin density. (See Egs. (SE46) and (SE46b) for the definition of oy and s,.) Because of
symmetry, the two densities (o,) and (sg) are identically zero. Panels (a) to (c) in Fig. SF4 clearly show how the
radial profile of the probability density changes with the angular momentum j: the wave function is localized at the
center of the circular region for {jT, B} = {—1,0}, it is located close to the pn interface for {jT, B} = {-6, -5},
and finally, it moves outside the circular region and away from the pn interface for {jT, 8} = {11, -10}. A similar
behavior is found in all the other observables we have considered. We note that in the absence of Rashba SOC, the
radial spin density (s,) vanishes, and it increases for increasing values of Ag. On the contrary, the perpendicular spin
density (s,) is finite also in the absence of Rashba SOC and decreases with increasing Ag. This can be understood
since for increasing Ag the spin will tend to align with the effective magnetic field generated by the Rashba SOC [46].

V. EFFECTIVE ZERO-MODE HAMILTONIAN

In this section, we provide the details of the derivation of the effective one-dimensional (1D) Hamiltonian governing
the spin and angular dynamics of the zero modes localized at the junction. We assume that the Fermi energy is at
the charge neutrality point, Fr = 0, and we aim at an effective model valid in the low-energy region around Er. We
follow the approach of [54], where the effective 1D Hamiltonian for the analogous problem of electrons in a mesoscopic
ring in the presence of Rashba SOC was derived. The approach is based on the projection of the full Hamiltonian onto
the zero-energy radial state, localized at the interface between the p and the n regions. This projection is justified
as long as the separation between the zero modes and the first Landau level is much larger than any other relevant
energy scale in the problem.

We start with the Dirac equation

HU = ET,

where the Hamiltonian (SE1) in the symmetric gauge is expressed in polar coordinates as follows:

L, A
H = o0,.(—i0,) + o¢ (r + Ag) +V(r)+ Ao, + Azs. + Axkmo:s. + 7R(0r39 — 09Sr), (SE45)
with Ag =71/2, V(r) = Vysign(R —r), L, = —i0p, and we have defined
. 0 e ¥
oy =cosbfo, +sinfo, = R (SE46a)
. 0 —ie ™
09 = —sinfo, +cosbo, = i 0 , (SE46b)
with analogous expressions for s, and sy. First, we make a unitary transformation in sublattice and spin space:
H=UHU?, (SE47a)
U =U0, (SE4Th)

where U = /7 (0+3)¢?5 ¢ The additional 7/2 rotation in sublattice space is included in order to obtain a real
Hamiltonian. Using

Uo, Ut = —0y, UogU™! =0y, (SE4R)
Us,U b =s,, UsgU ' =3, (SE49)
o, S,
UL U '=1L,— 5 "5 (SE50)
we arrive at
H= ioy (& + 1) + 04 (LZ + T SZ) +V(r)+ Ao, + A\zs. + Akmozs, — A—R(aysy + 048g)- (SE51)
2r r 2 2r 2

Note that under the unitary transformation U, the total angular momentum .J is mapped to UJU ! = L,. Next, we

separate the Hamiltonian into a radial part and an angular/spin part, H = H, + Hg, where the radial part is defined
as

~ . 1 oy (12
H, = ioy &A—Z —|—7 — —® | +V(r)+ Ao, (SE52)
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and the angular/spin part as

5 Oz Ox )\R
Ho = (L. + )+ (/\Z T AKMO- 5) 52— S (08, +0u5a). (SE53)

Here, ® is a parameter whose value is set in such a way that the zero mode of H, is at the Fermi energy Fr = 0.
In practice, ® is with good approximation the magnetic flux through the pn junction in units of the flux quantum,
® ~ R?/2(%. The radial Hamiltonian H, coincides, up to the 7/2 rotation in sublattice space, with the model of a
circular pn junction for spinless graphene solved in [22, 52], with the appropriate identification of the parameter ®.

We now project the full Hamiltonian onto the spin-degenerate zero mode of H,. To this aim, we write the wave
function as

W(r,0) = o (r)x(6), (SE54)
where the sublattice spinor 9o (r) is the zero mode of H,., which satisfies
Hy 1o (r) =0, (SE55)

and we choose to be real, and x(6) is a two-component angular spinor in spin space. From the equation HY = EV
we find that y(0) satisfies the equation

Her¥(6) = EX(0), (SE56)

with the effective 1D Hamiltonian

HEH = <,}:l>0 = WO(LZ + (I)> + (wZ - ?) Sz — WRSz- (SE57)

Here, the brackets (...)o denote the expectation value in the radial zero mode:
(..o :/ rdr 93 (r) .. 4y (r),
0

and we have used (7,)o = 0, which holds because 1)y (r) is a real spinor. In Eq. (SE57) we have defined the angular
velocity wg and the Zeeman and Rashba frequencies wyz and wg, as follows:

(o )\R
wo = <7:1:>07 wy, = Az + )\KM<Jz>07 WR = 7<Ux>0. (SE58)
Since o, before the unitary transformation was oy, see Eq. (SE48), we recognize the coefficient of L., {(o,/7)o, as
the angular velocity of the circular motion along the junction, and the coefficient that renormalizes Ar, (0:)o, as the
azimuthal component of the velocity. Similarly, the vanishing of ()¢ expresses the vanishing of the radial velocity.
We note that if we undo the unitary transformation in spin space, we obtain the effective Hamiltonian

Het = wo(L, + ) + wzs, — wrSy, (SE59)

which explicitly shows that the Rashba SOC acts as an effective magnetic field that pushes the spin in the in-plane
radial direction. ~
It is straightforward to diagonalize Heg. Its eigenvalues read

wa 2
Eom+ =wo(m+P) £ \/<wz - %) + wi, (SE60)
where m is an integer if we impose periodic boundary conditions. The corresponding eigenstates are
eim9 cos X eimG sin X
~ _ 2 v _ 2
Xer(e) - \/ﬂ <_ sin% s Xm,f(a) - m COS% ’ (SE61)
where we define
WR wyz — wo/2

siny = , Ccosy= (SE62)

0wz =)+ 0wz — )7+
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Figure SF5. (a) The angular frequency wo in Eq. (SE58) (yellow plane) and the effective Zeeman frequency given by Eq. (SE63)
(green plane) as functions of junction size & and the Kane-Mele SOC Axm. The intersection of the green and yellow planes
corresponds to the sweet spots where the resonance condition occurs. For a given value of Axm (Akm = 0.01 in the figure),
illustrated by the black dashed line, the value of £ at which the resonance occurs is indicated by the red dashed line. (b) The
exact expectation values of the radial and perpendicular spin components in the top and bottom modes as a function of &, for
Az = 0.048 and Agr = 0.2 and Akm = 0.01. The top curve shows (s,)s, the bottom one (s,)T, and the two central ones (s.)r
and (s;)p. In all the panels, Vo = 0.51.

Equations (SE60) and (SE61) provide useful approximation to the SOC coupled zero-mode energies and wave func-
tions, which hold as long as transitions to higher Landau levels due to Hy can be neglected, and for angular states
with m ~ —®, where it predicts a linear dependence of the energy on m.

We note that in the uniform system (V5 = 0), the zero mode of H,. has only one non-vanishing sublattice amplitude
(the sublattice pseudo-spin is down-polarized). As a consequence, both wg and wgr vanish, and the eigenstates are
spin-polarized along the z direction and orbitally degenerate (i.e., the energy is independent of m). In the presence
of the potential step (Vo # 0), both sublattice amplitudes in 1/;0 are finite. Then wy and wg are finite, the zero modes
acquire a dispersion, and the Rashba term is activated and pushes the spin polarization in the planar radial direction.
The spin dynamics is therefore controlled by the potential step amplitude Vj.

VI. RABI CONDITION FOR GENERAL SPIN-ORBIT COUPLING

In the main text, we have investigated the Rabi condition for the full model in Eq. (SE1) under the assumption
that only the Rashba SOC is non-vanishing, and that effects due to the VZSOC can be neglected — single-valley
model. We now relax this condition and include the Kane-Mele (Axy) SOC terms. In general, the angular frequency
associated with the Zeeman term can then be expressed as:

wz = Az + Axm{02)o- (SE63)

Notice that here the brackets (...)o denote the expectation value in the j-state with energy closest to zero energy at
the given value of &;. As already mentioned in the main text, in the single-valley approximation, the valley-Zeeman
SOC just produces a shift of the Zeeman term. The Kane-Mele SOC gives a nontrivial contribution to wy that
depends on the expectation value of o, over the spinless system. In Fig. SF5, we present the effect of the Kane-Mele
SOC on the shift of the Rabi condition. From Fig. SF5(a), we observe for fixed Ay that the position of the sweet spot
&o for increasing values of Ay moves at larger values of the radius.

VII. S-MATRIX APPROACH

Here we introduce the scattering approach [59] used to obtain the quantum transmission and conductance of the
interferometers discussed in the main text. We begin by discussing a spinless model and then generalize it to the
spin-dependent case. Without any significant loss of generality, we stick to the p-dot-based interferometer depicted
in Fig. SF6(a).
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Incoming and outgoing chiral modes are described in Fig. SF6 by fermionic annihilation operators {a;,as} and

{b1, b3}, respectively, such that
b r t a
() =(2) (%) s

The conductances G2 and G3; are determined from the scattering amplitudes r and ¢, respectively, by following the
Landauer-Bittiker approach.

The scattering matrix on the r.h.s. of Eq. (SE64) can be obtained by combining the scattering blocks S; and Sy
corresponding to the barriers 71 and 7o, as depicted in Fig. SF6(b). These block are connected by channels {ag, bo}
propagating around the central p dot by accumulating additional phases ¢, satisfying

()= () (5): s
(Z;) - (Z 2)(2@) (SE66)

Y A

with

ho= tym, 1= ety To g
ro = 1—7’2, té:\/TQ,

tg = \/E7 7‘/2:—\/].—7'2.
After a little algebra, from (SE64)-(SE66) we find

ro= 1+t (1 - 1"27"1)717“2151, (SEG67)
= to(1—rira) "' (SE68)

Notice that expanding (SE67) and (SE68) as geometric series supplies the Feynman paths contributing to the quantum
amplitudes due to multiple reflections between the barriers. Moreover, when the barriers are placed symmetrically on
opposite sides of the dot we find that ¢, = ¢_.

The results of Egs. (SE67) and (SE68) can be generalized to the spin-dependent case by choosing convenient spin
bases along the linear and circular pn junctions and calculating their local projection at barriers 1 and 2. For the
circular junction, the natural choice is the spin-eigenstate basis, which evaluated at the barriers reads

cos Z
- 2
X+, 0) = ( fsinY ) ; (SE69)
sin 2
- 2
|X—a£> - ( —ZCOS% ) ’ (SE?O)
with £ = 1 for barrier 1 and ¢ = —1 for barrier 2. For linear junctions (acting as incoming and outgoing leads) we can

simply choose the canonical z-basis

|T>=(é>,|¢>=<é). (SET1)

The use of a field-dependent, spin-eigenstate basis has no practical advantage here since the conductance is independent
of the spin phases gathered along the leads. As for the phases ¢4, they can be obtained by setting F,, s = 0 in
Eq. (SE60) and finding the corresponding spin-dependent m (which is not necessarily an integer any longer due to
the open boundary conditions introduced by the barriers). As a result, we find

2

with Qr = wr/wo, Qz = wz/wp, and where we have dropped the + subindex due to symmetry.
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Figure SF6. (a) Sketch of the electronic circuit for the case of a p-doped circular region. We present the corresponding circuit
for the n-doped circular region in the main text. (b) Generic representation of two scattering regions S1 and Se separated by
a region where the carriers can gain a geometrical phase e‘®+.

The spin-dependent scattering amplitudes are determined by the projections (1 |xs,¢) and (| |xs,£), and by the
phases (SE72), accordingly. In this way, we find

1

tq

th

to

T2

1 0) , (SET3)

o idT iy
Ccosg —e' sing ) (SET4)
sin 4 eld cos 3

(SE75)

20"
(= 2) s

e Jin X
v (mE hE). (sE77)

oY ) . (SET8)

Here we omit the spin-dependent expressions for 5 and r) since they do not contribute to the scattering amplitude
matrices t and r in Egs. (SE67) and (SE68). By following the Landauer-Biittiker approach, we find the expression
for the linear conductances in terms of ¢ and r that we use in the main text:

2

Gy = %tr[rﬁ], (SET9)

2
Gy = %tr[tﬂ]. (SE80)
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Figure SF7. Differential conductance G21 = G3; + G5, for the circuit of Fig. 3(b) including a valley-Zeeman Qvz = 0.25. The
solid line at Qz = 1/2 corresponds to a symmetry axis in the pattern.

VIII. FIRST-ORDER EXPANSION

The scattering amplitudes (SE67) and (SE68) can be expanded as
r = r—+ tlngtl + tll’f'g’l‘lngtl + ... (SE81)
t = toty + toriraty + ... (SE82)

These expansions have a simple interpretation in terms of Feynman paths: each term corresponds to a possible
scattering history through barriers 1 and 2, comprising a different number of windings around the central dot. Previous
works in semiconductor-based rings [46, 60] have shown that the first two terms in the expansions (SE81) and (SE82),
corresponding to zero- and single-winding path contributions, are sufficient to capture all relevant features of the
conductances (SE79) and (SE80). This also facilitates further physical insight by discriminating the role that different
quantum phases play in the interference. By setting 71 = 75 = 1/2 and neglecting higher order contributions, we find

Go1 ~ 1+ cos paR oS Ps, (SE83)
with
oap = 27D, (SE84)

2
¢s = 2#\/ (Qz - %) + Q% (SES85)

where ¢ap and ¢g are independent phase contributions with origin in the orbital and spin degrees of freedom,
respectively.

IX. EFFECTS OF VALLEY-ZEEMAN COUPLING

The introduction of the valley-Zeeman coupling leads to a valley-dependent shift in the Zeeman term (a valley
splitting), such that Az — Az + 7Avz, with 7 = £1 the valley index. This implies that the sweet spots corresponding
to in-plane spin eigenstates and m geometric phases shift as well, in a valley-dependent way. By assuming no valley
mixing (due to the separation between lattice and pn-junction length scales), the conductance turns valley-dependent.
The 1st order expansion of Sec. VIII generalizes to

G}, ~ 1+ cos pap cos ¢, (SE86)
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with

2
o5 = 2”\/(@2 +7Qvz — ;) + Q% (SE87)

and Qvyz = Avz/wo. The valley-resolved conductances for circuits with n— and p—doped central regions would then
look like those of Figs. 3(c) and 3(d) with additional +£Qv7 shifts along the Q7 axis, respectively. As for the total
conductance, it is the sum of the corresponding valley conductances, Go; = G5, + G5;. In Fig. SF7 we illustrate this
situation for the p-doped dot circuit of Fig. 3(b), with the same setting used to produce Fig. 3(d) and an additional
valley-Zeeman coupling Qvz = 0.25. The composed pattern is symmetric with respect to the axis Qz = 1/2. Although
this axis does not correspond any longer to a sweet spot in the strict sense discussed above, we notice that the average
spin projection along z vanishes at Qz = 1/2, i.e., (s.) = (s,)+ + (s,)— = 0, due to the opposite valley-Zeeman pulls.
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