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Abstract— Legged robots are a promising technology whose
use is limited by their high energy consumption. Biological and
biomechanical studies have shown that the vibration generated
by elastically suspended masses provides an energy advantage
over rigidly carrying the same load. The robotic validation of
these findings has only scarcely been explored in the dynamic
walking case. In this context, a relationship has emerged
between the design parameters and the actuation that generates
the optimal gait. Although very relevant, these studies lack
a generalizable analysis of different locomotion modes and
a possible strategy to obtain optimal locomotion at different
speeds. To this end, we propose the use of articulated legs in
an extended Spring-Loaded Inverted Pendulum (SLIP) model
with an elastically suspended mass. Thanks to this model, we
show how stiffness and damping can be modulated through
articulated legs by selecting the knee angle at touch-down.
Therefore, by choosing different body postures, it is possible to
vary the control parameters and reach different energetically
optimal speeds. At the same time, this modeling allows the
study of the stability of the defined system. The results show
how suitable control choices reduce energy expenditure by 16%
at the limit cycle at a chosen speed. The demonstrated strategy
could be used in the design and control of legged robots where
energy consumption would be dynamically optimal and usage
time would be significantly increased.

I. INTRODUCTION

Legged robots are a rising technology for moving over
rough terrain. They show a dexterity far superior to wheeled
or tracked vehicles, especially on natural terrains with dis-
continuities, asperities, or obstructions [1]. Despite their
promising performances, their usage in real-world scenarios
is still limited by several challenges, including their short
operational time [2], [3]. To tackle this problem, energy
efficiency has to be optimized. In this regard, embedding
compliance into the leg’s structure has proved beneficial as
springs contribute to impact absorption and energy return [4].
Moreover, springy legs also help to stabilize the motion [5],
therefore becoming of paramount importance in dynamically
stable locomotion [6], [7], [8].

Beside leg compliance, biological and biomechanical stud-
ies showed that wobbling masses, such as soft tissues and
visceral mass, contribute to power absorption and return [9],
[10]. Particularly, the visceral mass, which is elastically sus-
pended in the abdominal cavity, moves harmonically during
walking and running, providing an energetic advantage [11]
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with respect to rigidly carrying the same load [12], [13].
Although these evidences have been employed for the smart
design of carriage systems (e.g., backpack [14]), it is not
yet common to design legged robots with a load suspension
system to carry electronics, batteries, and more.

To date, only a few studies dealt with the subject. In [15],
the effects of an additional mass-spring-damper mechanism
on the self-stabilizing properties of a SLIP model have been
investigated. The authors reported an increase in self-stability
and robustness to perturbation with respect to the SLIP
model, but they did not investigate the effect of the suspended
load on energy efficiency. They used a step-to-fall analysis
[16] to assess stability and perturbations in the landing
velocity to quantify robustness. They fixed most of model
parameters to values compliant with the human body. In [17],
[18], two masses oscillating in the vertical direction (as in
dynamic walking gait) were used to investigate the energy
saving based on the selection of the suspended load stiffness,
damping, and leg actuation frequency. This investigation
was used as design criteria for selecting the legs and the
suspended load on a RHex robot [19] performing a dynamic
walking gait. The results reported a significant decrease in
energy consumption up to 24% compared with a rigidly
attached load.

Although the results were promising, this conceptual idea
is limited to a specific design (stiffness, damping) and
actuation frequency, therefore to a specific forward speed,
impairing the versatile use of this approach. However, in
articulated legs (i.e. legs with a knee joint) stiffness and
damping could be modulated by selecting a specific knee-
angle at touchdown [20], with advantages in terms of stability
and controllability [21], [22]. By building upon the idea of
elastically suspended load on springy legs, we hypothesize
that articulated legs could be exploited to optimize energy
efficiency. In fact, by controlling the angle of attack and the
knee angle at touchdown, it is possible to obtain optimal lo-
comotion at different speeds without mechanically changing
the body of the robot.

Therefore, in this work we propose a practical design
strategy to exploit the energetic advantage of the elasti-
cally suspended load when moving at a selected speed. We
demonstrate the concept by extending the simplest running
model, i.e., the Spring-Loaded Inverted Pendulum (SLIP)
[23], [16], [24], to include leg actuation and damping in an
articulated leg as well as an elastically suspended load. The
model is presented in dimensionless terms to simplify the
translation of results for different design choices and gaits.
To our knowledge, this is the first work showing the effect



Fig. 1. (a) A modified SLIP model which include a suspended load, leg actuation and damping. Position variables, control and design parameters are
shown. (b) Equivalent model with the articulated leg’s additional degree of freedom θ0.

of suspended loads in a running model.

II. MATERIALS AND METHODS

A. Coupled Spring Mass Damping Model with flight Phases

The Equations of Motion for a SLIP model enriched with
damping, actuation, and a load suspension system are pre-
sented in this section, and supported by Fig.1. With reference
to Fig.1a, during dynamic gaits the system undergoes phases
of ground contact and flight phases. These can be described
by four differential equations each, the main difference
between the two sets is a term of elastic interaction with
the ground, featured in the stance phase and lacking in the
flight phase. The system state is defined by the horizontal and
vertical positions of the main mass M1, the horizontal and
vertical positions of the suspended load mass M2 and their
velocities. To get untied from a specific parameterization and
make the description as generic as possible, the equations
are presented in dimensionless form by normalizing the
length quantities to the resting leg length l0 and the time
to tc =

√
l0/g.

The stance phase begins when the foot touches the ground
in position xtd. We impose the leg to be at its rest length l0,
tilted of an angle α from the vertical axis (angle of attack),
right before the touch-down event (TD). Therefore the TD
is geometrically defined by:

y1 = cos(α) (1)

Afterwards, the leg compress and re-extend, according on
the evolution of the state variables, under the effects of both
active and passive forces. Specifically the state variables are
ruled by the following equations of motion:

ẍ1 = B2,x(ẋ2 − ẋ1) +K2,x(x2 − x1)+

B1(L̇x − ẋ1) +K1(1− l + L)
x1 − xtd

l

(2)

ÿ1 = B2,y(ẏ2 − ẏ1) +K2,y(y2 − y1)+

B1(L̇y − ẏ1) +K1(1− l + L)
y1
l
− 1

(3)

ẍ2 =− B2,x

M1,2
(ẋ2 − ẋ1)−

K2,y

M1,2
(x2 − x1) (4)

ÿ2 =− B2,y

M1,2
(ẏ2 − ẏ1)−

K2,y

M1,2
(y2 − y1)− 1 (5)

The resulting system is fully described by five dimensionless
groups, which represent the leg stiffness and damping K1

and B1, the suspension system stiffness and damping K2

and B2, and the ratio between the suspended mass and the
main body mass M1,2. The dimensionalization is described
in Tab.I, where the corresponding dimensional variables are
represented with a tilde (Fig.1(a)).

Unlike the classical SLIP model, which is energy conser-
vative and therefore does not include any active force term,
our model also includes leg actuation, realized by means
of a serial elastic actuator (SEA), with actuation law L(t).
The actuation function L can be any function of time. In
this case, we employed a sinusoidal law, represented by the
dimensionless parameters A and ω, as already proposed in
[17]. According to this function, the amount of energy that
can be injected into the system through the SEA is restricted.

L = Asin(ω(t− ttd)) (6)

The lift-off (LO) condition occurs when the elastic element
gets unloaded:

l(t) = 1 + L(t) (7)

resulting in the disappearance of the relative terms during the
flight phase, which is equivalent to set K1 = 0 and B1 = 0 in
Eq.(2)-(3). At each LO event, the leg length is immediately
restored to l0, ready for the next TD.

Again, with respect to the SLIP model our model requires
two extra equations ( Eq.(3)-(4) ) and two extra force terms,
to describe the dynamics of the suspended mass and the
interaction forces between the two masses, respectively. The



interaction forces are the same for both masses, but with
opposite directions, and the resulting acceleration is scaled
by the ratio between the two masses.

TABLE I
DIMENSIONLESS PARAMETERS AND VARIABLES

l0[m] Resting leg length

g[m/s2] Gravity acceleration

tc =
√

l0/g[s] scaling factor

x1 = x̃1/l0 M1 Horizontal position

x2 = x̃2/l0 M2 Horizontal position

y1 = ỹ1/l0 M1 Vertical position

y2 = ỹ2/l0 M2 Vertical position

A = Ã/l0 Oscillation Amplitude

ω = ω̃tc Oscillation frequency

α angle of attack

θ0 initial inter-segment angle

B1 = (B̃1/M̃1)tc Leg damping

K1 = (K̃1/M̃1)t2c Leg stiffness

B2,y = ( ˜B2,y/M̃1)tc Suspended Load damping

K2,y = (K̃2,y/M̃1)t2c Suspended Load stiffness

M1,2 = M̃2/M̃1 Load-Body weight ratio

TABLE II
RANGES OF PARAMETERS

AND INITIAL CONDITIONS TESTED

Control Parameters

Ã 6e-2 m

ω̃ 21 rad/s

Design Parameters

B1 [0-0.2],[0.6-17] B2,y [0.011-0.572]

K1 [0-82], [400-500] K2,y [1.25-6.26]

M1,2 [0.14-0.51]

Initial Conditions

ẋ2,0 [-5.5 5.5] ẋ2,0 ≡ ẋ1,0

y1, 0 [cos(α), 1.05/l0] y2,0 ≡ y1,0

ẏ1,0 0 ẏ2,0 0

It is worth mentioning that this system is similar to a
double pendulum, and therefore it might exhibit chaotic
behavior. Under the assumption that we can constrain the
oscillations of the suspended load only to the vertical di-
rection y, we can avoid chaotic behaviors by imposing high
stiffness and damping values in the x direction. In our specific
simulations, we imposed K2,x = 10K1 e B2,x = 10B1,
as in [18]. We consider this assumption acceptable based
on feasible implementations, i.e. with leaf springs, and with
controllers that minimize the pitching angle of the main body
[25], [17].

Fig. 2. Leg Force against Leg compression for different knee-angles at
TD. Axis are normalized at 10% of leg compression (l10%) and the corre-
sponding force (F10%), to better show the behavior for small deformations.

B. Leg Articulation

We hypothesized that the use of an articulated leg, which
offers a modulation of the stiffness along the direction of
elongation, will allow to select an energetically optimal gait
at each locomotion speed.
According to Fig.1b, we can consider an articulated leg,
made by two segments l1 and l2, and a torsional spring of
constant stiffness krot at the joint between the two. Then the
stiffness k of an equivalent non-segmented leg is a function
of the angle between the two segments θ0 at the TD event
according to:

k = krot
(θ − θ0)l

l1l2sin(θ)(l − l0)
(8)

with l and l0 related to θ and θ0 by the cosine rule. We
aim to directly extend the results and the model of [17] by
adopting Eq. (2)-(5) and to include an articulated leg by using
the leg stiffness obtained as linearization of krot under the
selection of θ0 according to Eq. (8). In Fig.2, we show the
leg force against the leg compression, for different values of
θ0, the x-axis is normalized at 10% of leg compression and
the y-axis for corresponding leg force. The linearization of
Eq. (8) holds only in a working interval of θ0 and for small
deformations of knee-angle. We will focus on these for the
analysis, but we will report also results out of this range for
completeness of description.

C. Parameter Selection and Model Analysis

The dynamic system in Eq. (2)-(5) features 6 periodic state
variables q = [ẋ1, y1, ẏ1, ẋ2, y2, ẏ2], 5 design
parameters D = [B1, B2,K1,K2,M1,2], and 3 control
variables C = [A,ω, α]. Each set S = [D, C] completely
describe a dynamical system, whose fixed points (FPs) and
their stability can be investigated.
Therefore, we firstly spanned different combinations of S
to broadly describe the system, and to find limit cycles,
i.e. stable periodic orbits, corresponding to different stable
locomotion modalities. Subsequently, we focused only on
combinations of S that were consistent with human parame-
ters. With respect to these we analyzed the influence of α and



θ0 on the average positive power (APP) with the objective of
confirming our hypothesis. The APP is computed from the
leg force and the actuator speed as in [17]:

F = K1(∆l(t)− L(t)) +B1(∆̇l(t)− L̇(t))

V = L̇(t)

P = FV

APP =

∫
P (P ≥ 0)2dt

T

(9)

Concerning the first objective, i.e. providing a comprehensive
overview of the model, we started by feeding the system of
Eq. (2)-(5), completely defined by a set S, with 100 initial
conditions. For each of these, we searched FPs as intersec-
tions of q with a Poincarè section orthogonal to ẏ1, and
passing by the apex state ẏ1 = 0. FPs are found numerically
as zeros of the function g(q) = f(q) − q, with f(q) the
stride function of q, using the Newton-Raphson algorithm
(as in [26]), with an error of |g(q∗)| ≤ 1e-6. Stability was
assessed from the maximum Floquet multipliers, i.e. the
absolute value of the maximum eigenvalue (|λmax|) of the
Jacobian of f(q∗) for a number of perturbations of q∗. When
a limit cycle is found for a given Si it was used as initial
condition for the search in Si + δS to fasten the search.
The ranges of parameters and initial conditions used for S
are reported in Tab.II.
Throughout the analysis, we fixed the dimensional control
variables Ã and ω̃ according to reasonable values for the
visceral mass oscillations and time duration of the stance
phase [12], [13]. The angle of attack α was varied according
to the leg stiffness K̃1 as expected from SLIP model [16],
according to:

K1 =
const

1− sin(α)
(10)

with const = 1700.
In Section III-A we show model outcomes under variations
of D. The second contribution, whose results are described
in Sections III-B, shows the energy advantage of a suspended
load and an articulated leg during running dynamics. As
this analysis is related to the control aspect of locomotion
rather than on the design, we set the design parameters of
the main body to human compliant values. Particularly, the
dimensional stiffness K̃1 in the range 19 − 50 · 104N/m,
the leg length l1 + l2 ∈ [0.9− 1.05] m, as in [16], the total
body mass M̃1 + M̃2 ≃ 70kg with M1,2 = 0.14, according
to [27], [12]. Without loss of generality, we assumed l1 = l2.

III. RESULTS AND DISCUSSIONS

A. Model analysis under variations of design parameters

The model we introduced with Eq.(2)-(5) allows to analyze
how dimensionless parameters affect the locomotion, and
also to investigate a gait variability which was not reported
by the previous model [17], [15]. In particular, we found
different limit cycles which correspond to qualitatively dif-
ferent gaits, namely running [16], punting [28], and hopping.

Fig. 3. (a) A typical running trajectory in the x-y plane. In blue the
main body trajectory, in orange the suspended load oscillation. (b) A typical
punting trajectory. The initial velocity can be either positive or negative
(within the basin of attraction) as only the angle of attack defines locomotion
direction.

As shown in Fig.3(a), the running dynamics features a
significant leg swing about the touchdown point xtd, i.e.
the angle of attack changes from negative to positive values.
Instead, the punting gait, Fig.3(b), is characterized by a small
swinging of the leg about xtd, with the angle of attack
not changing sign. Hopping is characterized by the same
leg behavior, with the significant difference that the body
experiences longer flight phases and higher vertical excur-
sions. As another difference between hopping and punting,
in the former, the initial velocity dictates the direction of
locomotion, which depends only on the angle of attack in
punting, as shown in the highlight panel of Fig.3(b).

Fig. 4. Different gaits discovered when the leg parameters K1, B1 were
changed. showing qualitatively different gaits for different ranges of leg
parameters.

Fig.4 gives an overview of the gait discovered in the
different region of the B1 −K1 plane. Different color areas
represents sets among which major qualitative differences
allow the classification into the three different gaits pre-
viously described (see also the Multimedia Materials). In
all the conditions showed, the value of the suspended load
stiffness K2 is varied so that the ratio with respect to
K1 is held constant to 0.2. We highlighted, with red and
blue squares, the regions that represents human proportions



Fig. 5. The suspended load stiffness influences on performances is
marginal. The velocity is almost unvaried. The influence on power saving
can be due to the higher out-of-phase motion between the main body mass
(in blue) and the suspended load mass (orange).

between parameters in D and control parameters in C, when
moving on land (red) and underwater (blue). The range of
K1 ∈ [30− 80] and B1 ∈ [0− 0.2] revealed the presence of
a ”running” dynamics. In fact the stiffnes values are in line
with those of pure SLIP in [16], while a small damping is
required to compensate the energy injected through actuation.
In the region K1 ≥ 400 and B1 ∈ [0.5 − 16] we found the
”punting” dynamics, typical of the underwater locomotion,
whereas for further higher values of B1 the punting evolves
into the ”hopping” dynamics.

These findings are coherent with the emergence of punting
instead of running in the underwater scenario. Due to the
buoyancy force, the apparent gravity perceived by an im-
mersed body is reduced. The consequences of this is that if
the same body moves underwater the adimensional stiffness
K1 will be increased as a result of K̃1l0 >> M̃1g. The
emergence of punting over running for increasing values
of damping has been reported also by previous studies on
locomotion in resistive environments [29]. In their analysis,
the authors hypothesized that despite less efficient in term of
locomotion speed, the punting could emerge spontaneously
as a result of increasing damping forces from the environ-
ment in completely submerged legs. Here we complement
their results with ours, which highlight how an increasing
leg damping can also guide such a gait transition.

Concerning stability, we observed that it increases when
both K1 and B1 increase. In fact, for the three conditions
marked with stars in Fig.4, the system’s |λmax| moves from
0.979 in the running dynamics (lowest B1) to 0.910 during
punting, down to 0.158 in the hopping (highest B1). This
agrees with previous results on single mass systems where
local stability is improved by damping [28].

Furthermore, in accordance with previous works [17], we

found that the suspended mass negatively affects the loco-
motion stability, especially for the low values investigated
(K2 =0.2K1 in our analysis), even though we were still
able to find converging behaviors (|λmax| < 1). On the
other hand, we ignored higher values of the suspended load
stiffness (K2 >= 0.7K1), as they have shown to negatively
affect the power saving [17].

Moreover, we showed that the suspended load parameters
do not affect the type of gait, that is determined mainly by
leg parameters, and also their influence on the performances
(e.g., forward velocity) is almost irrelevant. As an example,
in Fig.5 we report the effect of variations of K2 on velocity.
By increasing K2 from 10% to 100% of the leg stiffness the
induced velocity variation is just 0.35 m/s over an average
speed of 8.25 m/s. On the other hand it has a significant
effect on power saving allowing to reduce up to 10% the
energy requirements in the three examples shown.
This can be explained by the variation of the out-of-phase
oscillation of the suspended mass [17], which is maximized
at lower K2 values, and it is for the first time associated
also with the speed of locomotion. In fact, if we want a
legged robot to be always energetically optimal, it is required
that the power consumption can be defined by a controllable
variable, without affecting the forward velocity. The design
parameters of the suspension system should be thought as a
pure design choice and they should not be varied during the
locomotion, as their effect on performances has been showed
here to be marginal with respect to leg parameters.

B. Energy saving promoted by suspended loads can be
modulated by leg articulation

Once we found parameter ranges allowing a stable running
gait, we investigated the dependence of performances and
power requirements for an articulated leg with respect to
control variables α and θ0. For our in-depth investigation,
we used sets S coherent with human parameters, without
lack of generality to extend the results to other animals or
robots.

In Fig.6(a) we show the isovelocity lines over-imposed to
the APP curve. For the tested set, we did not find a global
minimum as both the energy and velocity have monotonic
trends. Particularly, the APP decreases when the knee angle
θ0, and according to Eq.(8) the stiffness, increases. The effect
of α in the variation of APP seems marginal. On the other
hand, the speed is mainly influenced by α, in the tested
ranges, and only slightly by θ0.

The result seems to suggest that higher postures, i.e.
high values of θ0, are preferred from the energetic point
of view, and therefore that a leg design that only offers
modulation of α would be disadvantageous in the context
of energy optimization. This confirms our initial hypothe-
sis that articulated legs could be used to optimize energy
consumption at different speeds. As highlighted in Fig.6(a),
once a specific speed is selected by α, θ0 can be increased
up to a certain level which minimizes energy consumption.
As can be observed in Fig. 6(d), higher postures, featuring
higher stiffnesses, result in gaits with smaller duty factors



Fig. 6. (a) APP and iso-velocity lines in the α-θ0 plane. (b) Corresponding maximum Floquet multiplier for each gait in (a). (c) Amplitude ratio between
suspended mass and main mass and Phase Difference between the trajectory of the two masses, as a function of control parameters α and θ0. (d) Isovelocity
solutions for moving at 9m/s with different control parameters. The energy efficiency improves moving from left to right.

(ratio between stance period and whole gait period).
It has to be noted that by increasing θ0 we are corre-
spondingly slightly decreasing the stability of the system,
Fig.6(b), and that maximum stability has been found in the
neighborhood of α = −15deg and θ0 = 125deg. Very high
postures and more horizontal angle of attack, as well as very
low postures and vertical angle of attack, result in unstable
gaits. It appears that energy saving can be optimized at the
expense of the stability of the system. This might be related
to the dynamic of the suspended load with respect to the
main body.
In Fig.6(c), we reported the oscillation amplitude of the
suspended mass relative to the main body mass and the phase
shift between the two normalized over the gait period. Our
results show that the velocity (and therefore the angle of
attack) defines the phase shift between the two masses. At
the same time, a wider amplitude of oscillations seems to be
related to more stable gaits. This result is partially in contrast
with literature results [17], which sustained that the energy
efficiency was due to a 180 deg phase-shift between the two
masses. We attribute this discrepancy to the presence of long
flight phases in our model, that were completely ignored in
previous investigations on dynamic walking locomotion. In
fact, flight phases do not play a role in power management
as they are purely passive except for forces between the

two masses under the effect of the spring and damper of
the suspension system. Therefore even a slight phase shift
occurring within the stance phase can be beneficial for energy
saving, as well as the reduction of the duty factor.
The initial condition spanned throughout the analysis may
also play a role in the emerging trends, as we only inves-
tigated the evolution of the system from initial conditions
where the suspended mass and the main body mass were
moving in the same way, (initial velocity in x is the same
and in y is at rest). Due to the complexity of the system
under analysis, we did not extract a general rule for these
behaviors. Previous works [17], showed an energy optimum
as a function of K2 and M2 when fixing the actuation. The
interdependence of these variables can explain the lack of
minimum in our investigation: as we vary K1, under the
variation of θ0, we also modify the ratio K2/K1 in a way that
can be sub-optimal, if we consider all the control parameters
that have an effect on speed and power. Of course, this
analysis can be complemented with additional investigations,
for instance on the actuation strategy, to further optimize the
power consumption and its saving.
Eventually, we computed the APP saving with respect to
rigidly carrying the load. The maximum saving is 22% for
the configurations α = −20deg and θ0 = 135deg, while it
reaches 16% at α = −24deg and θ0 = 113deg (reported



as a green star in Fig. 6(a)). It is worth mentioning that the
latter value falls within ranges of θ0 where the linearization
introduced in Eq. 8 (see Fig.2) is acceptable, and therefore
our results found direct application. On the other hand, for
the former value, comparable energy savings can be achieved
by employing a different actuation strategy. Future directions
of this investigation require the translation to a robotic system
to verify the demonstrated trends in energy saving. Despite
the increased complexity of a robotic implementation with
respect to the mathematical description addressed in this
work, we are confident that simple controllers employing the
same control law of the model and acting within the stability
regions of the modeled dynamics will prove the results, at
least qualitatively, as already demonstrated in previous works
[21], [30], [19].

IV. CONCLUSIONS

In this paper, we showed how articulated legged robots
could benefit from a suspended load design. By significantly
extending the existing model and by performing in-depth
computational analysis, we confirmed that, in a suspended
load configuration, small values of K2 promote energy
efficiency while higher values of B2 improve stability. Both
parameters are part of the design specifications, that cannot
be altered easily after fabrication.

In contrast, leg control parameters play a significant role:
their choice allows to decrease energy consumption, up to
16%, without affecting the speed neither requiring mechan-
ical modification of the system. The stiffness modulation
offered by an articulated leg design allows the selection
of the optimal stance (i.e. θ0) for a desired speed. Our
linearization holds in the range 45 ≤ θ0 ≤ 120 deg and can
be directly employed in articulated legged systems, while
for θ0 → 180 deg the non linear behaviour would require a
different elongation law.

The proposed approach can be used to design versatile
articulated legged robots, which operational time would
be increased by selecting the optimal actuation strategy
dynamically.
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