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Abstract— Solutions to optimal control problems can be
discontinuous, even if all the functionals defining the problem
are smooth. This can cause difficulties when numerically
computing solutions to these problems. While conventional
numerical methods assume state and input trajectories are
continuous and differentiable or smooth, our method is able to
capture discontinuities in the solution by introducing time-mesh
nodes as decision variables. This allows one to obtain a higher
accuracy solution for the same number of mesh nodes compared
to a fixed time-mesh approach. Furthermore, we propose to
first solve a sequence of suitably-defined least-squares problems
to ensure that the error in the dynamic equation is below a
given tolerance. The cost functional is then minimized subject
to an inequality constraint on the dynamic equation residual.
We demonstrate our implementation on an optimal control
problem that has a chattering solution. Solving such a problem
is difficult, since the solution involves infinitely many switches
of decreasing duration. This simulation shows how the flexible
mesh is able to capture discontinuities present in the solution
and achieve superlinear convergence as the number of mesh
intervals is increased.

I. INTRODUCTION

Solving a sequence of constrained optimal control prob-
lems (OCPs) in real-time is a very powerful technique
typically used in model predictive control (MPC). However,
it can also be challenging in practice to reliably compute
a solution since the continuous-time, infinite-dimensional
OCP is solved using finite-dimensional numerical solvers.
Since we are solving a discretized version of the original
problem, the obtained solution is not guaranteed to be
feasible for the original continuous-time OCP. Additionally,
it can also be difficult to preserve the accuracy of the solution
and obtain superlinear convergence as the number of mesh
nodes is increased, especially in problems with discontinuous
solutions.

The most commonly used direct transcription method
for solving optimal control problems is direct collocation,
which is considered to be the current state of the art [13].
While collocation has the advantage of being able to handle
complex dynamical models, collocation has the fundamental
drawback of not guaranteeing an acceptable accuracy in
between the collocation points.
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The idea of using integrated residuals as part of the
transcription process overcomes some of the limitations of
collocation [9], [10]. Compared to classical time-marching
schemes (shooting methods) or point-wise residual minimi-
sation (collocation), integrated residual methods have the
benefit of producing a solution with a more uniform error
over the whole time domain.

State-of-the-art mesh refinement methods are hp-adaptive
methods [7], [12]. Some advanced methods have discontinu-
ity detection schemes, but most current refinement strategies
rely on knowing beforehand whether the solution will be
discontinuous and cannot provide an efficiency comparable
to the continuous case for general problems. By adding a
flexible mesh, as in this paper, it is possible to develop a
method that has similar convergence properties for problems
with discontinuous or continuous solutions.

This paper extends the work in [11], which used the
integrated residual method for solving differential equations,
feasibility problems and constraint satisfaction problems with
a flexible mesh. The central contribution of this paper is to
extend such integrated residual methods to the solution of
OCPs. In the transcription process, a flexible time-mesh will
be introduced in order to achieve superlinear convergence for
discontinuous problems during the mesh refinement phase.
Moreover, the proposed algorithm is able to solve difficult
problems to a user-defined accuracy. A numerical example
shows how our method performs on a control problem with
an optimal chattering solution.

In Section II, we introduce the optimal control problem
formulation. In Section III-A we present the integrated resid-
ual method for transcribing the constrained optimal control
problem. Section III-B describes the concept of a flexible
time mesh and how this method can improve convergence.
Section III-C presents an algorithm for solving an OCP to
a user-specified accuracy. Section IV demonstrates how the
proposed algorithm from Section III-C can be used jointly
with a flexible mesh scheme to solve an optimal control prob-
lem and construct a Pareto front between solution accuracy
and a lower bound on the optimal cost. Section V provides
a summary of the main findings presented in this paper and
discusses potential improvements and future works.

II. PROBLEM DEFINITION

The objective functional of many optimal control and
estimation problems can be written in the general Bolza form



min
x(·),u(·)

ϕ(x(t0), x(tf ), t0, tf ) +

∫ tf

t0

L(x(t), u(t), t) dt

(1a)
s.t. F (ẋ(t), x(t), u(t), t) = 0 ∀t ∈ [t0, tf ], (1b)

G(ẋ(t), x(t), u(t), t) ≤ 0 ∀t ∈ [t0, tf ], (1c)

where x : R → RNx are the state variables and constrained
to be continuous, ẋ : R → RNx are the time derivatives
of the state x, and u : R → RNu are the control inputs.
The function F : RNx × RNx × RNu × R → RNF , which
contains the dynamical model of the system, defines a set
of NF equality constraints that have to be satisfied by the
controlled system. G : RNx×RNx×RNu×R→ RNg defines
Ng path inequality constraints. ϕ : RNx×RNx×R×R→ R
is the Mayer cost functional, also called the boundary cost,
with t0 ∈ R and tf ∈ R being the initial and final times,
respectively. L : RNx × RNu × R → R is the Lagrange
cost functional, also known as the path cost. Additionally,
the problem may have one or more boundary constraints of
the form

ΨE(x(t0), x(tf ), t0, tf ) = 0, (1d)
ΨI(x(t0), x(tf ), t0, tf ) ≤ 0, (1e)

where ΨE : RNx ×RNx ×R×R→ RNE are the boundary
equality constraints, and ΨI : RNx × RNx × R× R→ RNI

are the boundary inequality constraints.

III. SOLUTION METHOD

In most real-time control applications we are heavily
constrained by the computational time. As a result, solving
the entire problem (1) using direct collocation has two
fundamental drawbacks. Firstly, the designer is not able to
control the solution accuracy over the entire time interval
without a posteriori computing the error and conducting
mesh refinement procedures. Consequently, existing state-
of-the-art methods may fail to ensure constraint satisfaction.
Secondly, existing schemes cannot terminate early and return
the best feasible solution that was achieved in the given
amount of computational time. Since one often wants to
focus on fast constraint satisfaction, we propose to initially
solve a feasibility problem and refine the mesh until the
dynamic constraints are satisfied to a given accuracy. We
will then use the obtained solution as an initial guess to the
optimal control solver, which optimizes a transcribed version
of the original problem (1).

A. Integrated residual transcription

In the transcription process the infinite-dimensional
OCP (1) has to be converted into a finite-dimensional nonlin-
ear programming problem (NLP). In order to achieve this, the
state x(·) and input u(·) trajectories need to be parametrized
by a finite number of decision variables sji and cji where the
subscript i denotes the interval number and j denotes the
index of the nodal point in interval i, as will be described
later. Using a linear combination of these decision variables,

approximating functions x̃ : R → RNx and ũ : R → RNu

can be constructed.
Before aiming to minimize the objective, in most applica-

tions it is critical to ensure the constraints are satisfied to a
user-defined accuracy. For this purpose we will introduce an
error metric ϵR ∈ R defined as

ϵR :=
1

(tf − t0) ·NF

∫ tf

t0

∥∥F ( ˙̃x(t), x̃(t), ũ(t), t)
∥∥2
2
dt (2)

based on the integral of the 2-norm squared of the dynamic
equation residual. The residual

∥∥F ( ˙̃x(t), x̃(t), ũ(t), t)
∥∥2
2

in-
dicates how well the numerical solution (x̃(·), ũ(·)) satisfies
the dynamic constraint (1b) over the whole time interval. In
contrast with direct collocation that enforces constraint (1b)
exactly, but only at a finite number of nodes called colloca-
tion points, our method uses quadrature rules to integrate the
residual over the whole interval [t0, tf ], thus guaranteeing a
certain level of accuracy in between the collocation points.
Note also that the above error metric is a scaled version of
the integrated residual where the scaling factor 1

(tf−t0)·NF
is

introduced to average out the residual over the interval [t0, tf ]
and over all components of the dynamics function F .

Lagrange polynomial basis functions are often used to
express the approximating functions x̃ and ũ [2, Sect. 1.17.1].
The possible solution space is defined by the basis functions
used to represent approximation functions (x̃(·), ũ(·)). As a
consequence, the exact solution (x(·), u(·)) may not be rep-
resentable in that solution space, which implies that an exact
representation of the constraint (1b) can never be achieved
in finite time (the integrated residual ϵR can asymptotically
converge to zero only in the limit as the time-mesh is refined
and the number of discretization points is increased).

To reduce the approximation error (as quantified by ϵR)
there are two fundamental refinement strategies:

• h-refinement involves splitting the entire time domain
[t0, tf ] into N subdomains, i.e. subintervals [ti, ti+1]
such that

Ti := [ti, ti+1] ⊂ [t0, tf ], ∀i ∈ {0, . . . , N − 1}, (3a)

∪N−1
i=0 [ti, ti+1] = [t0, tf ], (3b)

ti < ti+1, ∀i ∈ {0, . . . , N − 1} (3c)

where tN = tf . The refinement variable is therefore the
number of subdomains N .

• p-refinement relies on constructing a polynomial ap-
proximation χi of degree a inside each subdomain
[ti, ti+1] such that for all i ∈ {0, . . . , N − 1}:

x̃(t) := χi(t), ∀t ∈ [ti, ti+1] (4a)

χi(t) =

∑a
j=0

wj
i

t−τj
i

· sji∑a
j=0

wj
i

t−τj
i

, (4b)

where sji = χi(τ
j
i ) = x̃(τ ji ) are NLP decision variables,

wj
i are polynomial weights and τ ji are polynomial

nodes [1]. In this case, polynomial refinement means
increasing the polynomial degree a. Note a similar



expression for ũ(·) can be derived with b denoting the
polynomial degree of ũ(·).

Note that these elementary methods can both be used during
the mesh refinement process leading to the so-called hp-type
refinement method.

To enforce state continuity at mesh nodes ti, the additional
constraints

χ̃i(ti+1) = χ̃i+1(ti+1), ∀i ∈ {0, . . . , N − 2}, (5)

are enforced by using the same variable sai = s0i+1 to
represent both χ̃i(ti+1) and χ̃i+1(ti+1),∀i ∈ {0, . . . , N−2}.

B. Residual minimization problem: Improving accuracy to
ensure feasibility

To efficiently solve feasibility and control problems with
discontinuous solutions, which are otherwise difficult to
solve, we will use an integrated residual method to tackle
the dynamic constraints. The idea is similar to what [3], [8]
have proposed for solving differential equations and what has
been used in [11] for solving dynamic feasibility problems.

The first step of our approach is to solve a feasibility
problem that aims to satisfy constraints (1b)–(1e) to a
given tolerance. This feasibility problem is converted into a
minimisation problem that minimizes the integrated residual
of the dynamics model ϵR below a user-specified value.

In numerical simulations, integrals from (1a) and (2) have
to be approximated using a Q-point Gaussian quadrature
rule. Since F is a general nonlinear function, the approxima-
tion of the above integrals will not be exact. Apart from the
residual error ϵR appearing as a result of the discretization,
another numerical error is introduced, namely the quadrature
error

ϵQ :=
∣∣∣ϵR − N−1∑

i=0

Q∑
k=1

σk
i ·

∥∥F ( ˙̃x(ρki ), x̃(ρ
k
i ), ũ(ρ

k
i ), ρ

k
i )
∥∥2
2

∣∣∣
(6)

where σk
i for k ∈ {1, . . . , Q} are the Q quadrature weights

associated with the integration interval [ti, ti+1], appropri-
ately scaled by NF and interval length to include the initial
factors in (2), while ρki are the quadrature nodes for the
interval [ti, ti+1].

In order to validate the obtained solution, we need to check
whether ϵQ is sufficiently small by recomputing the integrals
with a higher quadrature order. If the difference between the
new value and the solution obtained from the optimization
problem is above a certain tolerance εquad,tol, the problem
needs to be resolved using a higher value for Q.

We rely on mesh refinement to select appropriate values
for N , a and b. Note however that conventional mesh
refinement strategies applied to a fixed time-mesh with nodes
at predefined locations may not always achieve superlinear
converge to the solution as the number of nodes is increased.
Consider for example the case when a discontinuity in the
solution u(·) is located in the interval (ti, ti+1). In this case,
a numerical approximation of this discontinuous function is
obtained using a continuous polynomial basis (as described
in Section III-A). In general, unless a mesh node is located

exactly at the point of discontinuity, a Gibbs phenomenon
can occur when interpolating a discontinuous function with
a continuous one. This leads to interpolation overshoots that
cannot be eliminated in general by mesh refinement schemes
and will cause the error to plateau and not decrease beyond
a certain level.

In order to achieve superlinear convergence in cases where
discontinuities are present and produce an accurate solution,
we propose including mesh points ti as decision variables in
the NLP formulation. As a result, time nodes are allowed to
move towards regions non-smoothness.

Recall that standard direct collocation methods compute
an integral of the residual only after the NLP has been
solved [2]; they do not directly constrain the integral of the
residual while computing a solution to the NLP. It follows
that introducing mesh nodes as decision variables in standard
collocation methods can result in less accurate solutions
than those with fixed nodes, unless care is taken. This
argument also motivates the interdependence between the use
of a flexible mesh and the integrated residual transcription
method proposed here.

In an ideal scenario where no quadrature error is present,
nodes can be allowed to move freely in the domain according
to (3). However, since quadrature error increases as the
intervals expand, we still need to constrain the allowed
flexibility of the nodes. For a fixed parameter ϕ ∈ [0, 1)
we impose upper and lower bounds on the interval length

ti+1 − ti ≤ (1 + ϕ) · tf − t0
N

, ∀i ∈ {1, . . . , N − 1}, (7a)

ti+1 − ti ≥ (1− ϕ) · tf − t0
N

, ∀i ∈ {1, . . . , N − 1}. (7b)

Since ϕ ∈ [0, 1) by definition, the order of nodes is preserved
and intervals do not overlap, as required by (3c).

For a better sparsity structure of the Hessian along with
the ease of implementing continuity constraints (5) and
boundary constraints (1d), (1e) the decision vector z ∈
RN ·(Nx·(a)+Nu·(b+1)+1)+Nx+1 is ordered as

z := (s00, t0, s
1
0, . . . , s

a−1
0 , c00, . . . , c

b
0, s

a
0 , t1, s

1
1 . . . , s

a
N−1, tN ).

(8)
Hence, the minimum residual solution along with the op-

timal node locations can be computed from the optimization
problem

min
z

N−1∑
i=0

Q∑
k=1

σk
i ·

∥∥F ( ˙̃x(ρki ), x̃(ρ
k
i ), ũ(ρ

k
i ), ρ

k
i )
∥∥2
2

(9a)

s.t. G( ˙̃x(τ ji ), x̃(τ
j
i ), ũ(τ

j
i ), τ

j
i ) ≤ 0 ∀τ ji ∈ τ, (9b)

ΨE(s
0
0, s

a
N−1, t0, tf ) = 0, (9c)

ΨI(s
0
0, s

a
N−1, t0, tf ) ≤ 0, (9d)

(1− ϕ)
tf − t0
N

≤ ti+1 − ti ≤ (1 + ϕ)
tf − t0
N

, (9e)

χ̃i(ti+1) = χ̃i+1(ti+1) ∀i ∈ {0, . . . , N − 2}, (9f)

where path inequality constraints (9b) are implemented at
the support time points τ ji . Note that, since time-mesh nodes
are added in the decision vector, quadrature points ρki and



Algorithm 1: Algorithm for solving OCPs in
form (1)

Require: ϵtol, εquad,tol and initial values for N , a, b, Q
and z∗.

1: repeat
2: z0 ← z∗

3: z∗ ← argminz (9a) s.t. (9b), (9c), (9d), (9e), (9f)
4: if ϵQ ≤ εquad,tol then
5: ϵR ← minz (9a) s.t. (9b), (9c), (9d), (9e), (9f)
6: increase N
7: else
8: increase Q
9: end if

10: until ϵR ≤ ϵtol
11: z0 ← z∗

12: z∗ ← minz (10a) s.t. (10b), (10c)
13: x̃, ũ← interpolate(z∗)

internal supports τ ji become functions of ti and ti+1. Hence,
these values need to be shifted and scaled accordingly.

C. Cost minimization problem: From constrained control to
optimal control

In this paper we will focus on h-refinement. Starting from
a coarse mesh (small N ) problem (9) is solved repeatedly
until a desirable user-defined tolerance ϵtol on (2) has been
reached. Even if the convergence is superlinear with respect
to the number of subdomains N , the performance can further
be improved by providing a good initial guess obtained from
interpolating the solution obtained from the previous solution
with a coarser mesh.

After the desired tolerance has been reached, the mesh
parameters N and a are fixed and the cost functional is
minimized by solving

min
z

ϕ(x(t0), x(tf ), t0, tf ) +

N−1∑
i=0

Q∑
k=1

σk
i L(x(ρ

k
i ), u(ρ

k
i ), ρ

k
i )

(10a)

s.t.
N−1∑
i=0

Q∑
k=1

σk
i ·

∥∥F ( ˙̃x(ρki ), x̃(ρ
k
i ), ũ(ρ

k
i ), ρ

k
i )
∥∥2
2
≤ ϵtol

(10b)
(9b), (9c), (9d), (9e), (9f), (10c)

Since we have successfully solved (9), we know the
dynamics constraint (10b) should be feasible. We also have
an upper bound on the cost and a sufficiently good initial
guess needed to efficiently warm-start problem (10).

The proposed algorithm for solving optimal control prob-
lems using integrated residual transcription method is out-
lined in Algorithm 1. In the initialization phase, mesh
variables N , a and b are set to small values. The integrated
residual minimization problem (9) is then solved using warm
starting and the solution checked if the obtained residual
is below the threshold tolerance ϵtol. Note on line 2 of

Algorithm 1 the pseudo-code notation is simplistic, but the
initial guess z0 is not directly set to z∗ since the size of
z increases as the mesh is refined. However, z0 will be
an expanded and interpolated version of z∗ as previously
explained. Any suitable method can be used for increasing
Q and N ; we chose to double N and Q every time in
our example in Section IV. Once problem (9) has been
solved and the residual minimized, problem (10), which is a
transcribed version of problem (1), is solved using available
NLP solvers.

IV. NUMERICAL RESULTS

An optimal control problem solver based on the integrated
residual method was developed in the Julia v1.6 program-
ming language. The package makes use of barycentric inter-
polation routines as described in [1] to parametrize the state
and input variables. Numerical integration was performed
using Gaussian quadrature as detailed in [6]. Derivative
information was obtained using automatic differentiation
(AD) tools [5] and supplied to the solver as the gradient and
Hessian of the Lagrangian function. The solver includes an
implementation of the flexible mesh scheme of Section III-
A along with a fixed mesh version, where time nodes ti
are chosen to be in predefined locations and not included as
decision variables. In our implementation, Chebyshev type 2
interpolation nodes and weights were used, since we want
internal supports τ0i , τai to coincide with interval boundaries
ti and ti+1 ∀i ∈ {0, . . . , N − 1}. The default values for the
number of intervals, state and input polynomial degree and
quadrature order are N = 5, a = 2, b = 1 and Q = 3.

In order to demonstrate the effectiveness of our method,
we showcase the two main features of our proposed method,
namely superlinear convergence and the ability to control
the accuracy of state and input trajectories, on an optimal
control problem with a chattering solution. While solving
optimal control problems is the main focus of our work, the
capabilities of the implemented method can be used to solve
feasibility problems and complex differential equations as
well (such as high index DAEs and differential inclusions).
Algorithm 1 was implemented using the interior point NLP
solver Ipopt [14] with a relative convergence tolerance set to
10−10. All tests were performed on a laptop with an Intel®

Core™ i7-4600U CPU at 2.10 GHz with 16 GB of RAM.

A. Fuller problem description

We propose the numerical experiment to be an optimal
control problem with a discontinuous solution at non-trivial
times in order to underline the capability of our flexible-
mesh optimal control solver to capture these discontinuities.
Additionally, we will analyse the impact of the desired
accuracy on the cost value for the numerically computed
solution (which is a lower bound for the exact optimal
solution cost).

The chosen problem is a variation of the Fuller problem [4]



Fig. 1. Numerically computed control solution to Fuller problem using
flexible meshes with N = 20 intervals, polynomial degrees a = 2 , b = 1,
flexibility parameter ϕ = 0.5 and desired accuracy ϵtol = 10−8. Blue dots
indicate the location of mesh points.

min
p(·),u(·)

∫ T

0

p2(t) dt (11a)

s.t. p̈(t) = u(t), ∀t ∈ [0, T ] (11b)
u(t) ∈ [−0.01, 0.01], ∀t ∈ [0, T ] (11c)
p(0) = p(T ) = ṗ(T ) = 0, ṗ(0) = 1, (11d)

with T = 300 seconds, where p(t) ∈ R is the position and
u(t) ∈ R the control input at time t.

Since the chosen time T was sufficiently large, the optimal
control input trajectory has a bang-bang structure with values
alternating between −0.01 and 0.01 and then reaching the
steady state with u(T ) = 0. These switching times are
difficult to be captured by a numerical solver. Figure 1
displays the state components p, ṗ and the control input u
as obtained by implementing Algorithm 1. Another relevant
feature to observe is how the mesh automatically becomes
denser in the regions of sudden changes near the switches
and coarser where the solution is smoother.

Another aspect which motivates this choice of illustrative
example is the chattering phenomenon. As can be observed,
instead of getting infinitely many switches, we only capture
a finite number of switches between values that are not all
on the input bounds. This behaviour is due to the specified
tolerances, as explained in Section IV-C below. The lower the
tolerance, the more accurate the numerical solution becomes.

B. Superlinear convergence for discontinuous solutions

Note that in this problem the solution can be represented
by piecewise polynomials of a sufficiently high degree.
As a result, when setting a ≥ 2 the minimum in (9)
converges to 1.8729 · 10−15. In general, solutions cannot be
represented exactly using piecewise polynomials, hence we
set the polynomial degree to a = b = 1 in order to reproduce
the convergence behaviour generally encountered for most
practical problems.

Fig. 2. Convergence of the Fuller problem as the mesh is refined with N
between 5 and 60 intervals, first order polynomial approximation a = b = 1
and flexibility parameter ϕ = 0.5.

Fig. 3. Impact of the desired accuracy on the cost value for the numerically
computed solution of the Fuller problem using flexible meshes with ϕ =
0.5. Green dots denote solutions to problem (9) for different N and when
the cost is not minimized. Blue dots represent the solutions to problem (10)
for fixed parameters N = 60, a = b = 1 as the tolerance ϵtol is varied.

Figure 2 presents the performance of our flexible mesh
idea and compared to a fixed mesh refinement procedure. The
plot shows the variation of the minimum integrated residual
attainable for a certain number of mesh intervals N . Note the
scale is logarithmic and on the horizontal axis is plotted the
inverse of N . The slope of the blue line is approximately 2
which is an indicator of superlinear convergence. In contrast
with our flexible mesh, the red dots form a line of slope
approximately equal to one for low values of N and then
start to plateau at a certain value.

C. Between accuracy and optimality

Figure 3 presents in green the solution for problem (9)
using an increasing number of mesh nodes N . Blue denotes
the solution for (10) using an increasing tolerance ϵtol.
The green dots represent what happens to the minimized
integrated residual as the number of intervals is changed.
As can be observed, the cost does not change significantly
as the mesh is refined. However this is not always the case



Fig. 4. Impact of the desired accuracy on the cost value for the numerically
computed solution for the Fuller problem using flexible meshes with ϕ =
0.5. The green dot shows the solution to (9) for N = 20, a = 2, b = 1.
Blue dots represent the solutions to problem (10) as the tolerance ϵtol is
varied.

and there can be situations where the solution of problem
(9) is very far away from the numerical solution computed
from (10). Such an example is shown in Figure 4. The blue
dots are points on the Pareto front between numerical lower
bounds on the optimal cost value and discretization error for
a fixed number of intervals N = 20.

Having an integrated residual based transcription allows
the user to generate an approximate numerical solution using
a finite number of discretization intervals N and visualize the
impact of different ϵtol tolerance values on the computed
solution. As one would expect, the objective value increases
as the tolerance is decreased, since the solution is captured
more accurately by our numerical scheme and a tighter lower
bound to the exact solution can be produced.

The Pareto front shown in Figure 4 uses a logarithmic
scale for the y-axis and a linear scale for the x-axis. In this
example, decreasing the tolerance ϵtol means that more full
switches will be captured in the region t ≈ 280 seconds, thus
improving the solution accuracy. However, reducing ϵtol will
increase the computational time. As can be noticed, below a
certain accuracy threshold the cost value no longer changes
significantly, meaning that the gap between the numerical
and exact optimal cost cannot be further reduced without
increasing the number of mesh nodes N . In general, we aim
to find a value for ϵtol that can maintain a good balance
between solution accuracy and computational time.

V. CONCLUSIONS AND FUTURE WORKS

Numerically solving optimal control problems for a given
discretization mesh involves a trade-off between computa-
tional time and solution accuracy. In our example, we can
use the change in cost value as a function of the residual
tolerance ϵtol as a metric to determine whether a satisfactory
solution has been found. While in most transcription methods
this trade-off cannot be easily ensured a priori, our proposed
algorithm explicitly includes the residual tolerance ϵtol as a
parameter and is able to construct the Pareto front between

the cost value and residual tolerance ϵtol. This opens up the
possibility for early termination in real-time control appli-
cations. As discussed, it is important to use a transcription
method that relies on error measures that are integrated along
the entire solution trajectory to assess convergence, instead
of measured error at a finite number of sampled locations.
In this way, the error between mesh nodes can be accounted
for.

When discontinuities are present in the solution, nu-
merically approximating state and input trajectories to an
acceptable tolerance is especially challenging. Our method
proposes the use of a flexible mesh for capturing disconti-
nuities by including time mesh nodes in the decision vector.
The efficiency of this method was demonstrated through an
illustrative example.

The implementation of the method is in an early devel-
opment stage and many improvements are possible in order
to demonstrate its full capabilities. Further research could
be conducted on improving the mesh refinement process
by including early termination procedures, thus increasing
the computational efficiency of the overall solution process.
Other future work could aim at automatically increasing the
quadrature order such that the constraints in (7) can be re-
moved. Theoretical convergence and performance guarantees
also need to be investigated.
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