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Abstract
This paper investigates generalized thermodynamic relationships in physical systems where
relevant macroscopic variables are determined by the exponential Kolmogorov–Nagumo average.
We show that while the thermodynamic entropy of such systems is naturally described by Rényi’s
entropy with parameter γ, an ordinary Boltzmann distribution still describes their statistics under
equilibrium thermodynamics. Our results show that systems described by exponential
Kolmogorov–Nagumo averages can be interpreted as systems originally in thermal equilibrium
with a heat reservoir with inverse temperature β that are suddenly quenched to another heat
reservoir with inverse temperature β ′ = (1− γ)β. Furthermore, we show the connection with
multifractal thermodynamics. For the non-equilibrium case, we show that the dynamics of systems
described by exponential Kolmogorov–Nagumo averages still observe a second law of
thermodynamics and the H-theorem. We further discuss the applications of stochastic
thermodynamics in those systems—namely, the validity of fluctuation theorems—and the
connection with thermodynamic length.

1. Introduction

In ancient Greece, three classic types of averages were extensively studied: arithmetic mean 1
n

∑
i xi,

geometric mean (
∏

i xi)
1/n, and harmonic mean n(

∑
i
1
xi
)−1, which played various roles in physics,

geometry, and music. These so-called Pythagorean means found a natural generalisation via functional
analysis and measure theory into the well-known one-parametric class of Hölder means ( 1n

∑
i x

p
i )

1/p. A
different generalization of the notion of average was independently proposed by Kolmogorov [1] and
Nagumo [2] in 1930, which took the form of f−1

(
1
n

∑
i f(xi)

)
for any continuous and injective function f.

These Kolmogorov–Nagumo means—also known as quasi-arithmetic means or f-means—have triggered
numerous theoretical developments by several researchers, including de Finneti [3], Jessen [4], Kitagawa [5],
Aczél [6], or Fodor and Roubens [7].

Kolmogorov–Nagumo averages have found applications in many fields, including machine learning [8],
random fields [9], or fuzzy sets [10]. A particularly important application of Kolmogorov–Nagumo averages
is the introduction of Rényi entropy [11], which in turn have found many applications in quantum
systems [12–14], strongly coupled or entangled systems [15–17], phase transitions [12, 18, 19], multifractal
thermodynamics [20, 21], and time series analysis [22, 23], among others. Another important application of
generalized means have been the development of the thermodynamics of complex systems [24]. In addition
to concepts such as deformed calculus [25, 26], escort means [27–29], or non-linear dynamics [30, 31],
Kolmogorov–Nagumo means served as a natural framework for generalized entropies [32]—with the Rényi
entropy being a special case. Furthermore, connections between the maximum entropy principle and Rényi
entropy have been established in [17, 33].
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In this paper we investigate the thermodynamics of systems whose relevant macroscopic variables are
determined by the exponential Kolmogorov–Nagumo average. The pioneering work of Czachor and
Naudts [32] on the thermodynamics of exponential Kolmogorov–Nagumo averages discusses aspects of
equilibrium thermodynamics, such as a generalized internal energy and its relationship with Tsallis
entropy [34]. Bagci and Tirnakli [35] studied a generalized maximum entropy principle for the exponential
Kolmogorov–Nagumo averages, while leaving its thermodynamic interpretation unclear. A first
thermodynamic interpretation of Rényi entropy was given by Baez [36], who noted that the Rényi entropy of
a Boltzmann distribution is equal to the change of Helmholtz free energy divided by the change of
temperature. The first goal of this paper is to develop a framework that unifies and extends these previous
results, enabling a unified interpretation of all thermodynamic quantities as well as the maximum entropy
principle in such scenarios.

A second set of relevant results is related to the Légendre structure of thermodynamics [37]. Scarfone
et al [38] showed that the Légendre structure of equilibrium thermodynamics remains valid for
Kolmogorov–Nagumo averages on the level of macroscopic quantities. Additionally, Wong [39, 40]
introduced a generalized Légendre structure that corresponds to the Rényi entropy. A second goal of this
paper clarify the thermodynamic interpretation of this generalized Légendre structure. Furthermore, Peng
et al [41] have recently discussed non-equilibrium thermodynamics with non-extensive quantities.
Investigations on non-equilibrium thermodynamics and multifractals related to dielectric breakdown was
carried out by Enciso et al [42]. We will show that these results are closely related to non-equilibrium
stochastic thermodynamics based on exponential Kolmogorov–Nagumo averages, while deriving a
non-equilibrium version of the second law of thermodynamics, a generalized H-theorem, and proving the
validity of detailed and integrated fluctuation theorem. Finally, several authors have studied generalized
statistical mechanics from the point of information geometry [43–46]. In particular, Eguchi et al have
investigated the geometry of generalized e-geodesic and m-geodesic in terms of Kolmogorov–Nagumo
means [47]. We extend their results to the case of a generalized divergence, and calculate relevant quantities
such as Fisher–Rao information and thermodynamic length.

The rest of the paper is organized as follows. Section 2 defines the exponential Kolmogorov–Nagumo
means and summarizes its main properties. Section 3 then establishes equilibrium thermodynamics based on
Kolmogorov–Nagumo averages of both entropy and internal energy. Section 4 describes the application of
this framework to multifractal systems. Section 5 is focused to the discussion on non-equilibrium
thermodynamics. Section 6 is then focused on thermodynamic length. Finally, section 7 summarizes our
main conclusions.

2. Exponential Kolmogorov–Nagumo averages

Our line of inquiry focuses on systems governed by constraints that can be expressed in terms of non-linear
averages. A natural extension of linear (arithmetic) averages is the Kolmogorov–Nagumo average [1, 2]

〈X〉f = f−1

(∑
i

pi f(xi)

)
, (1)

where f is a continuous injective function. Without loss of generality, we focus on cases where f is an
increasing function. Note that the average is invariant to affine transformations of the function
f(x) 7→ fa,b(x) = af(x)+ b, i.e. 〈X〉f = 〈X〉fa,b .

The linear average is recovered by setting f(x) = x, which can be shown to be the only one that satisfies
two properties:

1. Homogeneity: 〈aX〉= a〈X〉 ,
2. Translation invariance: 〈X+ c〉= 〈X〉+ c .

In [48], it is shown that the first condition alone leads to functions of the form f(x) = xp, which
corresponds to the well-known class of Hölder averages. In contrast, the second property has been shown to
lead to the class of so-called exponential Kolmogorov–Nagumo averages [49], which corresponds to
f(x) = expγ(x) = (eγx − 1)/γ and inverse function lnγ(x) =

1
γ ln(1+ γx).

The property of translation invariance is of particular interest for statistical mechanics, as it guarantees
that thermodynamic relations are independent of the specific value of the ground state energy. Also, the

2
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standard arithmetic mean is recovered for γ= 0. These considerations make us focus on the
Kolmogorov–Nagumo averages, which lead to the following type of averages:

〈X〉γ = lnγ

(∑
i

pi expγ(xi)

)
=

1

γ
ln

(∑
i

pi e
γxi

)
. (2)

A key property of the exponential mean is a weaker version of the additivity of the expectation value, which
reads

〈X+Y〉γ = 〈X〉γ + 〈Y〉γ ⇐ X⊥⊥ Y, (3)

where⊥⊥ denotes statistical independence. In the general case, it is possible to express the expected value of
sums as

〈X+Y〉γ = 〈X+ 〈Y|X〉γ〉γ , (4)

where 〈Y|X〉γ is the conditional average, i.e.

〈Y|X〉γ =
1

γ
ln
∑
i

pi exp(γ〈Y|X= xi〉γ) . (5)

2.1. Connection with cumulants
The exponential Kolmogorov–Nagumo averages are closely related to the cumulant-generating functions,
which are given by

Mγ(X) = ln〈eγX〉= γ · 〈X〉γ . (6)

By considering the well-known Taylor expansion of the cumulant-generating function, one can find that

〈X〉γ =
∞∑
n=1

κn(X)
γn−1

n!
, (7)

where κn(X) is the nth cumulant. This shows that the exponential Kolmogorov–Nagumo averages combine
all cumulants weighted by the factor γn−1/n!.

The relationship between cumulants and Kolmogorov–Nagumo averages can be used to provide a
complementary view of the properties of the latter. For example, the additivity property of the
Kolmogorov–Nagumo average can be understood as a consequence of the additivity of the cumulant
generating function for independent random variables.

2.2. Connections with large deviation theory
When considering the sum Sn =

1
n

∑n
i=1Xi of n i.i.d. random variables X1, . . . ,Xn, large deviation theory [50]

states that the probability of observing Sn = s can be expressed as

lim
n→∞

1

n
logP(Sn = s) = I(s) (8)

with I(s) corresponding to the so-called rate function. Cramér’s theorem states that the rate function can be
obtained from the cumulant-generating function [50], which—via equation (6)—can be expressed in terms
of γ-average using γ = nk as follows:

I(s) = sup
k
k(s−〈Sn〉nk) (9)

where the nk-average can be expressed as

〈Sn〉nk =
1

nk
ln

ˆ
ds enksP(Sn = s) . (10)

A connection between large deviation theory and statistical mechanics can then be drawn using equation (9)
by considering k=−β being the inverse temperature and Xi = hi being the energy of ith subsystem. Then,
one can find that

〈Sn〉β =− 1

βn
〈e−βnhn〉=Ψ(β) , (11)

withΨ = S−βU being the free entropy (also known as Massieu function), with S being the thermodynamic
entropy and U being the internal energy. For more details about this relationship, we refer the interested
reader to [50].

3
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2.3. Rényi entropy as the exponential Kolmogorov–Nagumo average
The Rényi entropy can be naturally formulated in terms of the exponential Kolmogorov–Nagumo average of
Hartley information ln1/pk [51], also known as the Shannon pointwise entropy [52]. To show this, let us
consider X to be a random variable with probability distribution pk and calculate the following:

1

1− γ

〈
ln

1

pk

〉
γ

=
1

1− γ
lnγ

(∑
i

pi eγ(ln1/pi)

)
=

1

γ(1− γ)
ln
∑
i

p1−γ
i =: Rγ(X) , (12)

where Rγ(X) denotes the Rényi entropy of order 1− γ. This result should not be surprising since the Rényi
entropy appears in the Campbell coding theorem as the minimal price that one must pay to encode a
message, where the price is the exponential function of the message length [53].

Note that the definition of the Rényi entropy that we are using includes a factor 1/(1− γ) that is often
not considered. We include this factor in this paper as its addition greatly simplifies the calculations presented
in the next sections, which in turn will endow it with a clear thermodynamic meaning. Additionally, by
including this factor the limit γ → 1 of Rγ(X) leads to the well-known Burg entropy R1 =−

∑
i lnpi [54].

Let us finalize this section by noting that the joint Rényi entropy can be decomposed as follows:

Rγ(X,Y) =
1

1− γ

〈
ln

1

pij

〉
γ

=
1

γ

〈
ln

1

pi
+

〈
ln

1

pj|i

∣∣∣∣∣pi
〉

γ

〉
γ

=
1

γ(1− γ)
ln
∑
i

p1−γ
i +

∑
i

pi
1

γ(1− γ)
ln
∑
j

p1−γ
j|i

= Rγ(X)+Rγ(Y|X) , (13)

where Rγ(Y|X) is known as the conditional Rényi entropy.

3. Equilibrium thermodynamics

Let us now consider a system whose internal energy at state i is given by ϵi. Then, the Kolmogorov–Nagumo
γ-average energy of the system is calculated as U= 〈ϵ〉γ = ln

∑
i pi exp(ϵi). However, as discussed in the

previous section, this quantity is not invariant to rescaling by a factor (i.e. ϵi 7→ λϵi), and furthermore, it
does not have properly defined units of energy. Therefore, it will be convenient to focus our analysis on the
following rescaled internal energy:

Uβ
γ :=

1

β
〈βϵ〉γ =

1

β
lnγ

(∑
i

pi eγ(βϵi)

)
, (14)

where β is the inverse temperature of the system. Note that the units of β are 1/Joules, and hence βϵi is
dimensionless, making Uβ

γ a properly defined mean energy. This type of average energy function has already
been considered in previous research, e.g. in [32]. A summary of thermodynamic quantities studied in this
work is presented in table 1

Similarly, our analysis will consider the thermodynamic entropy as defined by the Kolmogorov–Nagumo
average of ln1/pk, which gives us Rényi entropy, as discussed in the previous section. Interestingly, for the
case γ= 0 this formalism recovers the standard definitions of average energy and Boltzmann–Gibbs entropy,
while for γ 6= 1 it accounts for different scenarios—which we study in the following.

3.1. Maximum entropy principle
Let us now focus on distributions that correspond to a given value of mean energy as given by Uβ

γ , according
to the maximum entropy principle. The distribution πi that maximizes the Rényi entropy while satisfying a
given γ-average level of energy can be found by using the method of Lagrange multipliers on the following
Lagrange function:

L = Rγ −α0

∑
i

pi −α1
1

β
〈βϵ〉γ . (15)

A direct calculation shows that πi is the solution of the following equation:

1

γ

π−γ
i∑

kπ
1−γ
k

−α0 −
α1

βγ

eγβϵi∑
kπke

γβϵk
= 0 . (16)

4
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Table 1. Comparison of the relevant quantities for Shannon’s and Rényi’s framework. Quantities from standard the Shannon framework
can be recovered by taking γ → 0.

Quantity Shannon thermodynamics Rényi thermodynamics

Entropy S(p) =−
∑

k pk lnpk Rγ(p) = 1
γ(1−γ)

ln
∑

k p
1−γ
k

Cross-entropy S(p,q) =−
∑

k pk logqk Rγ(p,q) =− 1
γ
ln
∑

k pkq
−γ
k − γRγ(q)

Csiszár divergence DKL(p||q) =
∑

k pk ln(pk/qk) Dγ(p||q) = 1
γ
ln
∑

k p
γ+1
k q−γ

k

Bregmann divergence DKL(p||q) =−S(p)− S(p,q) Dγ(p||q) =−Rγ(p)−Rγ(p,q)

Link function C(x,y) =
∑

k xkyk Cγ(x,y) = 1
γ
ln(1+ γ

∑
k xkyk)

Kolmogorov–Nagumo function g(x) = x= g−1(x) g(x) = eγx−1
γ

, g−1(x) =
1
γ
ln(1+ γx)

Internal energy U=
∑

k pkϵk Uγ = 1
γ
ln
(∑

k pke
γϵk

)
Heat rate Q̇=

∑
k ṗkϵk Q̇β

γ = 1
βγ

∑
k ṗke

γβϵk∑
k pke

γβϵk

Work rate Ẇ=
∑

k pkϵ̇k Ẇβ
γ =

∑
k pk ϵ̇ke

γβϵk∑
k pke

γβϵk

Equilibrium free energy F(π) =− 1
β
ln
∑

k e
−βϵk Fγ(π) = 1

β(γ−1) ln
∑

k e
(γ−1)βϵk

Non-equilibrium free energy F(p) = F(π)+ 1
β
DKL(p||π) Fγ(p) = Fγ(π)+ 1

β
Dγ(p||π)

Entropy production ∆Σ= DKL(P(x(t))||P̃(x̃(t))) ∆Σγ =Dγ(P(x(t))||P̃(x̃(t)))

By multiplying the equation by πi and summing over i, one obtains that α0 =
1−α1
γ , which leads to

π−γ
i∑

kπ
1−γ
k

− 1=
α1

β

(
eγβϵi∑
kπke

γβϵk
− 1

)
. (17)

Above, the Lagrange parameter α1 can be chosen such that one recovers standard thermodynamic
relationships. To this end, we identify that α1 = β (which is the standard relation between the Lagrange
multiplier and inverse temperature), which gives us

πi =

(∑
kπke

γβϵk
)1/γ(∑

kπ
1−γ
k

)1/γ exp(−βϵi) =
exp(−βϵi)

Zβ
(18)

which is just the Boltzmann distribution with inverse temperature β. We can rewrite the previous
relationship as

lnπi =−β(ϵi −Uβ
γ (π))− (1− γ)Rγ(π) (19)

and using the fact that
∑

kπk = 1 one finds that

ln
∑
k

e−βϵk =
1

γ
ln
∑
k

π1−γ
k − 1

γ
ln
∑
k

πke
γβϵk

= (1− γ)Rγ −βUβ
γ

=Ψγ − γRγ , (20)

whereΨγ = Rγ −βUβ
γ is the free entropy (also called Massieu function). Finally, one can derive the free

energy by plugging in the equilibrium distribution into internal energy and Rényi entropy as

Fβγ (π) = Uβ
γ (π)−

1

β
Rγ(π) =

1

(γ− 1)β
ln
∑
k

e(γ−1)βϵk . (21)

Thus, one finds that Fβγ (π) = Fβ(1−γ)(π). This result shows that the Kolmogorov–Nagumo average is
effectively a rescaling of the free energy from inverse temperature β to (1− γ)β. Note that equation (21)
recapitulates the standard relationship between the free energy and the partition function for γ= 0.

These results reveal that, perhaps surprisingly, the obtained equilibrium distribution in equation (18)
(obtained via the maximum entropy principle) is Boltzmann, while the thermodynamic quantities at play are

5
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nonetheless different from the case of ordinary thermodynamics based on Shannon entropy and linear
averages. In fact, equation (20) implies that the free entropy and the logarithm of the partition function
generally are not equal but differ by the term−γRγ , which vanishes only for γ= 0.

3.2. Thermodynamic interpretation
Let us now focus on the thermodynamic interpretation of equilibrium thermodynamics with the exponential
Kolmogorov–Nagumo average. We denote the equilibrium versions of thermodynamic potentials by
calligraphic symbols, i.e.

U β
γ = Uβ

γ (π) , (22)

Rβ
γ = Rγ(π) , (23)

F β
γ = U β

γ − 1

β
Rβ

γ . (24)

Let us start with equation (23). As already shown in [36], the equilibrium Rényi entropy can be expressed as

Rβ
γ =

1

γ(1− γ)
ln
∑
i

(
e−βϵi

Zβ

)1−γ

=
1

γ(1− γ)
ln
∑
i

e−(1−γ)β − 1

γ
lnZβ

=−β

γ

(
F (1−γ)β −F β

)
. (25)

By defining

β ′ = (1− γ)β ⇒ γ = 1− β ′

β
, (26)

we obtain

Rβ
γ = β2 F β ′ −F β

β ′ −β
, (27)

which is the β rescaling of the free energy difference. This can be interpreted as the maximum amount of
work the system can perform by quenching the system from inverse temperature β to inverse temperature
β ′. Note that γ → 0 corresponds to β ′ → β and we recover the ordinary relation between entropy and free
energy

S β = β2

(
∂F β

∂β

)
. (28)

where S β is the ordinary thermodynamic entropy.
Since F β

γ = F (1−γ)β , the Kolmogorov–Nagumo energy can be expressed as

U β
γ = F β

γ +
1

β
Rβ

γ = F β ′
+β

F β ′ −F β

β ′ −β
=

β ′F β ′ −βF β

β ′ −β
. (29)

By denoting free entropy asΨβ =−βF β = S β −βU β we find that

U β
γ =−Ψβ ′ −Ψβ

β ′ −β
. (30)

Again, in the limit γ → 0 we recover the classic relationship

U β =−
(
∂Ψβ

∂β

)
. (31)

6
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4. Connection with multifractal thermodynamics

Let us now focus on the connection of Kolmogorov–Nagumo averages with multifractals. The multifractal
analysis provides a powerful tool for investigating the self-similarity of complex systems, including physical
and chemical systems [55], weather forecast [56] or financial systems [57]. It has been shown that the Rényi
entropy plays a crucial role in the theory of multifractals [20]. We will show that the presented framework
based on Kolmogorov–Nagumo averages establishes a connection between two distinct multifractal
formalisms.

4.1. Fundamentals in multifractal theory
Following the standard approach in the theory of multifractals [58], let us consider a physical system whose
state space is parceled into distinct regions ki(s) indexed by i ∈ I , with the partition depending on a
characteristic scale s. Such partitions can be studied with respect to positional, spatiotemporal, or energetic
state space. Consider the probability of observing the system within region ki(s), which is denoted by pi(s).
Let us assume that this probability observes a scaling property of the form

pi(s) =
sαi

z(s)
, (32)

where αi is a scaling exponent and z(s) =
∑

i s
αi is a normalization constant.

For small scales, i.e. s→ 0, let us assume that the frequency of the scaling exponent αi is given by a
continuous probability distribution, whose density ρ has the form

ρ(α, s)dα= c(α)s−f(α)dα. (33)

Above, c(α) is a slowly varying function of α and f(α) is the so-calledmultifractal spectrum of the system,
being the fractal dimension of subset which scales with exponent α.This means that the number of sets ki(s)
that have the scaling exponent αj scale as

card{ki(s)|pi(s) = sα/z(s)}= N(s)s−f(α) (34)

where card denotes cardinality (i.e. the number of sets) and N(s) is the normalization constant.
Systems that satisfy equation (33) are called multifractals, and the scaling exponent of the Rényi entropy,

denoted by Dγ , is known as the generalized dimension [58], i.e. [59]

lim
s→0

(1− γ)Rγ(s)

ln s
= Dγ . (35)

4.2. Multifractals and Rényi’s entropy
A direct calculation shows that the Rényi entropy can be rewritten as

Rγ(s) =
1

γ(1− γ)
ln

´
s(1−γ)αc(α)s−f(α)dα(´
sαc(α)s−f(α)dα

)1−γ . (36)

In the limit of s→ 0, both integrals can be approximated by the steepest descent approximation, i.e. it is
possible to find a value αγ (resp. α1) that maximizes the exponents in the integrals. To this end, we define

αγ = argmin
α

{
(1− γ)α− f(α)

}
, (37)

α1 = argmin
α

{
α− f(α)

}
, (38)

and obtain that, for small s, the Rényi entropy can be approximated as

Rγ(s) =

[
αγ −α1

γ
− f(αγ)− (1− γ)f(α1)

γ(1− γ)

]
ln s+O(1), (39)

where we omitted the constant term coming from the normalization function c(α). By introducing the
Légendre transform of f(α),

τγ = (1− γ)αγ − f(αγ) , (40)

7
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one can express the generalized dimension as

Rγ =
τγ − (1− γ)τ1

γ(1− γ)
ln s+O(1) . (41)

As a result, we find that the connection between the multifractal spectrum and generalized dimension can be
established as

Dγ =
τγ − (1− γ)τ1

γ
. (42)

Thus, by calculating Rényi entropy, one can obtain the multifractal spectrum and vice versa.

4.3. Turbulence cascades
Let us now focus on an alternative approach to multifractal based on turbulence cascades on the scaling of
the energy field [60]. The fundamental assumption at the base of this approach is that the average energy ϵ(s)
scales as 〈ϵ(s)γ〉 ∼ sMγ(ϵ), which can be formally written as

lim
s→0

ln〈ϵ(s)γ〉
ln s

=Mγ(ϵ) = γ〈ϵ〉γ = γUγ . (43)

Interestingly, this approach can be connected with the previous one by noting that the distribution
obtained from maximization of Rényi entropy with the constraint on the cumulant generating function leads
to p(ϵi)≡ πi, i.e. Boltzmann distribution (18). By comparing equations (18) and (32), we find the following
correspondence:

αi ln s=−βϵi . (44)

Therefore, ϵi = αi relates the energy to the characteristic scaling exponent, and β =− ln s connects the
inverse temperature with the characteristic scale. Furthermore, the parameter γ plays the role of the rescaling
of the characteristic scale, where β ′ = (1− γ)β leads to

s ′ = s1−γ . (45)

This implies that using the γ-exponential Kolmogorov averages implies a change of the characteristic scale
s 7→ s1−γ . Finally, we obtained that

βUγ
β(s) =

τγ − τ1
γ

ln s+O(1) , (46)

βFγβ(s) =
τγ

γ− 1
ln s+O(1) , (47)

Mγ = γUβ
γ (s) = τ1 − τγ + o(1) . (48)

We note that the relation between cumulant generating function has been described in [60].
These results show that the connection between the two formalisms naturally leads to thermodynamics

with exponential Kolmogorov–Nagumo averages. Our results imply that, for the case of multifractal systems,
the maximization of Rényi entropy under the constraint of Kolmogorov–Nagumo average naturally gives us
the Boltzmann distribution, where the energy can be translated to the scaling exponent of the equilibrium
distribution.

5. Non-equilibrium thermodynamics

In this section we investigate the thermodynamics of non-equilibrium systems subject to constraints in the
form of Kolmogorov–Nagumo averages. We focus on their Légendre structure, H-theorem, entropy
production, and detailed and integrated fluctuation theorems.

8
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5.1. Légendre structure
The Légendre transform establishes several key relations in thermodynamics, connecting the internal energy,
entropy, temperature, and Helmholtz free energy—which is defined as F= U−TS. It also establishes a
natural link between extensive variables (e.g. energy, entropy) with intensive variables (e.g. temperature).
Interestingly, while the Légendre transform arises naturally in the classic Boltzmann–Gibbs framework, it has
been shown that a more general Légendre structure can still be applied to more general scenarios [37] in the
context of thermodynamics and [61] in information geometry.

Following this line of reasoning, we now derive thermodynamic relationships that lead directly to a
generalized Légendre structure. The Légendre structure for the case of Kolmogorov–Nagumo averages has
also been investigated by Scarfone et al [38]. Let us start by calculating the change of Helmholtz free energy
from the equilibrium distribution to an arbitrary state. Using equation (21), this can be expressed as

Fγ(p)− Fγ(π) = ∆Uβ
γ − 1

β∆Rγ . (49)

The difference between non-equilibrium and equilibrium internal energy can be expressed as

Uβ
γ (p)−Uβ

γ (π) =
1

βγ
ln

∑
i pi e

γβ0ϵi∑
i πi e

γβϵi
=

1

β
γ ln

(
1+

∑
i (pi −πi)π

−γ
i∑

i π
1−γ
i

)

=
1

βγ
ln(1+ γ∇Rγ · (p−π)) , (50)

where∇Rγ is the vector of partial derivatives of the Rényi entropy expressed in the equilibrium state, which
can be written as

∂Rγ

∂πi
=

1

γ
∑

i (πi)
1−γ

π−γ
i . (51)

Thus, the free energy difference can be expressed as

Fγ(p)− Fγ(π) =
1

β
Rγ(π)−

1

β
Rγ(p)+

1

βγ
ln(1+ γ∇Rγ · (p−π))≡ 1

βDγ(p||π), (52)

where Dγ(p||π) is the Rényi–Bregmann divergence [39]. Hence, the divergence between non-equilibrium
and equilibrium distributions can be re-written as

Dγ(p||π) = Rγ(π)−Rγ(p)+C(∇Rγ ,(p−π)) = Rγ(π)−Rγ(p)+
1

γ
ln
∑

piΠ
(γ)
i , (53)

where Π(γ)
i =

π−γ
i∑

i π
1−γ
i

, and C(x,y) = 1
γ ln(1+ γ x · y) is a generalized link function, which becomes the

ordinary dot product x · y for γ → 0. The fact that Dγ(p||π)⩾ 0 [40] implies that∆Fγ is always positive, and
therefore the free energy is minimized by the equilibrium distribution—generalizing the classical result to
the cases of non-linear averages. The implications of this result for thermodynamic scenarios are developed
in the next section.

To conclude, let us note that while the standard free energy is obtained by a regular Légendre transform
on the macroscopic level (i.e. as F= U−TS), the more general free energy Fγ is obtained as a generalized
Légendre transform on the mesoscopic (i.e. probability) level. This can be seen by comparing equation (21),
where free energy difference is obtained as∆Fγ =∆Uβ

γ −β−1∆Rγ , with equation (52), where the free
energy difference is obtained as∆F= β−1 [−∆Rγ + lnγ(∇Rγ ·∆p)] .

5.2. Second law and H-theorem
Let us now focus on the case of non-equilibrium stochastic thermodynamics of systems that follow
constraints given by Kolmogorov–Nagumo averages. Stochastic thermodynamics [62] recently became an
important topic of non-equilibrium statistical physics. While there have been several attempts to derive
stochastic thermodynamics associated with generalized entropies (see, e.g. [30, 31, 41]), there have been no
studies focused on the stochastic thermodynamics of Kolmogorov–Nagumo averages.

Before starting, let us consider a general formula for a time derivative of a γ-exponential average:

d

dt
〈Y(t)〉γ =

d

dt

(
1

γ
ln
∑
i

pi(t)e
γyi(t)

)
=

1

γ

∑
i ṗi(t)e

γyi(t) +
∑

i pi(t)γẏi(t)e
γyi(t)∑

i pi(t)e
γyi(t)

. (54)

With this expression at our disposal, let us start investigating non-equilibrium thermodynamics.

9
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We begin by focusing on the second law of thermodynamics. For this, let us use equation (54) to re-state
the first law of thermodynamics for the total energy measured as a Kolmogorov–Nagumo average, which
reads as follows:

dUβ
γ

dt
= Q̇β

γ + Ẇβ
γ , (55)

where the work and heat flow into the system of interest are given by

Ẇβ
γ =

∑
i ϵ̇i pi(t)e

γβϵi∑
i pi(t)e

γβϵi
and Q̇β

γ =
1

βγ

∑
i ṗi(t)e

γβϵi∑
i pi(t)e

γβϵi
. (56)

Using these expressions, we can now derive the second law of thermodynamics for the case of Rényi entropy
and an arbitrary non-equilibrium process driven by linear Markov dynamics. To this end, let us consider a
standard master equation given by

ṗi(t) =
∑
j

(
wij(t)pj(t)−wji(t)pi(t)

)
, (57)

where ṗi(t) :=
dpi(t)
dt is the time derivative of pi(t), wij is the transition rate between states i and j. Let us

consider a control protocol λ(t) which controls the energy spectrum ϵi(t)≡ ϵi(λ(t)). Let us also introduce
the Boltzmann distribution as πi(t) =

1
Z exp(−β(ϵi(t)). We assume that the transition rates satisfy satisfies

detailed balance, i.e.

wij(t)

wji(t)
=

πi(t)

πj(t)
= eβ(ϵj(t)−ϵi(t)). (58)

The time derivative of entropy and heat flow can then be expressed as

Ṙγ =
1

γ

∑
i (pi)

−γ ṗi∑
i p

1−γ
i

=
1

γ

∑
ij

(wijpj −wjipi)P
(γ)
i , (59)

βQ̇β
γ =

1

γ

∑
i ṗi e

γβϵi∑
i pi e

γβϵi
=

1

γ

∑
ij

(wijpj −wjipi)Φ
(γ)
i , (60)

where we are using P(γ)i (t) =
p−γ
i (t)∑
i p

1−γ
i (t)

and Φ
(γ)
i (t) =

π−γ
i (t)∑

i pi(t)π
−γ
i (t)

as shorthand notations. In the rest of the

text, we will often omit the explicit dependence on time for the sake of clarity. Then, the entropy production
rate can be calculated as

Σ̇γ := Ṙγ −βQ̇β
γ =

1

γ

∑
ij

(wijpj −wjipi)(P
(γ)
i −Φ

(γ)
i )

=
1

2γ

∑
ij

(wijpj −wjipi)([P
(γ)
i − P(γ)j ]− [Φ

(γ)
i −Φ

(γ)
j ]). (61)

Thus, it is possible to write the entropy production rate as

Σ̇γ =
1

2

∑
ij

JijFij , (62)

where Jij := wijpj −wjipi are the thermodynamic fluxes and Fij = σbath
ij +σ

sys
ij the thermodynamic forces with

σbath
ij :=− 1

γ

(
Φ

(γ)
i −Φ

(γ)
j

)
=

Φ
(γ)
i

γ

[
exp

(
γ ln

wij

wji

)
− 1

]
, (63)

σ
sys
ij :=

1

γ

(
P(γ)i − P(γ)j

)
=

P(γ)j

γ

[
exp

(
γ ln

pj
pi

)
− 1

]
. (64)

For the case of γ → 0, the thermodynamic force reduces to the ordinary thermodynamic force Fij = ln
wijpj
wjipi

.

Using this derivation, one can show that the entropy production satisfies the second law of thermodynamics,
which in this case, reads as

Σ̇γ = Ṙγ −βQ̇β
γ ⩾ 0. (65)

10
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Let us now define a generalized H-function as Hγ(p) := Dγ(p||π) = β(Fγ(p)− Fγ(π)), where the
second equality is based on equation (52). Then, one can show that for the case of pure relaxation, i.e. where
wij does not depend on time and satisfies the detailed balance

wij

wji
=

πi
πj

= eβ(ϵj−ϵi). (66)

Hγ fulfills a generalized H-theorem given by the fact that Hγ(p)⩾ 0 and

Ḣγ =− 1

γ

∑
ij

(wijpj −wjipi)
(
P(γ)i −Π

(γ)
i

)
⩽ 0 , (67)

with Ḣγ = 0 if and only if p= π. This implies that Hγ(p) is a Lyapunov function of the dynamics, i.e. a
non-negative quantity that monotonically decreases with time until equilibrium is attained. The proof of
both the second law and H-theorem is provided in appendix.

Interestingly, the H-function (i.e. the distance from equilibrium distribution) and the entropy
production (i.e. the maximum amount of reversible work) generally differ if γ 6= 0, contrary to the case of the
standard Boltzmann–Gibbs framework (γ= 0) where both are equal to the Kullback–Leibler divergence. The

difference between Σ̇γ (equation (65)) and Ḣγ (equation (67)) is in the replacement of Φ(γ)
i by Π(γ)

i , i.e. a
different averaging in the denominator. In fact, by combining the first and second laws of thermodynamics,
one can find that

Ẇβ
γ = Ḟβγ +

1

β
Σ̇β

γ =
1

β
(Ḣβ

γ +Σ̇β
γ ) =

1

βγ

∑
ij

(wijpj −wjipi)
(
Π

(γ)
i −Φ

(γ)
i

)

=
1

βγ

∑
ij

(wijpj −wjipi)

(
π−γ
i∑

i πiπ
−γ
i

−
π−γ
i∑

i piπ
−γ
i

)
. (68)

To conclude, it is important to note that both equations (65) and (67) reveal a family of
inequalities—indexed by γ—that hold for any stochastic system whose dynamics are governed by a master
equation (as in equation (57)) and satisfy detailed balance (as in equation (58)). Said differently, our results
reveal that any process following a master equation and satisfying detailed balance will satisfy those
inequalities for all values of γ. It is then the constraints of the system that determine which values of γ are
physically meaningful: systems obeying linear constraints yield to a Shannon-type second law (with γ= 0),
while non-linear Kolmogorov–Nagumo constraints lead to a Rényi-type second law (with γ 6= 0).

5.3. Fluctuation theorems
We now show that trajectory thermodynamics remains in the same functional form as in ordinary stochastic
thermodynamics. Throughout this section, we will be denoting trajectories and their functionals by bold
symbols. We will be denoting probabilities of observing a trajectory by uppercase, bold symbol PPP, which is
the probability of observing a state x at time t by a lowercase symbol p.

Let us consider a trajectory xxx= (x0, t0;x1, t1, . . . ;xf, tf) starting at t0 and finishing at tf. We denote the
trajectory state at time t as xxx(t). The trajectory dwells in state xxx(t) = xi−1 for ti−1 ⩽ t< ti and then jumps to a
state xi at time ti. Let us define j(xxx) as the number of trajectory jumps. The probability of observing a
trajectory xxx can be obtained from the master equation (57) as

PPP[xxx] = px0(t0)
∏
j∈j(xxx)

e
−
´ tj
tj−1

wxj−1xj−1
(τ)dτ

wxjxj−1(tj) . (69)

The energy corresponding to the state x is controlled by a time-dependent protocol λ(t), so ϵx(t)≡ ϵx(λ(t)).
Similarly to the previous section, we assume that the transition rates satisfy the detailed balance (58).

Let us now introduce an operation of time reversal t̃= tf − (t− t0). The time-reversed trajectory can be
defined as x̃xx(t) = xxx(̃t) = xxx(tf − (t− t0)). This concept is crucial for understanding the connection between
the irreversibility of mesoscopic systems and entropy production. By considering the time-reversed dynamics
with time-reversed control protocol λ̃(t), the probability of observing the time-reversed trajectory x̃xx in the
time-reversed dynamics determined by the time-reversed protocol λ̃ can be expressed as

P̃PP[x̃xx] = pxf(tf)
∏
j∈j(xxx)

e
−
´ tj
tj−1

wxj−1xj−1
(τ)dτ

wxj−1xj(tj) , (70)
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where P̃ denotes the fact that the probability is calculated in the time-reversed dynamics. By calculating the

log ratio of the trajectory probabilities, we get that the waiting probabilities e
−
´ tj
tj−1

wxj−1xj−1
(τ)dτ

cancel out
and we end with

ln
PPP
[
xxx
]

P̃PP
[
x̃xx
] = lnp

(
x(t0)

)
− lnp

(
x(tf)

)
+ ln

∏
j∈j(xxx)

wxjxj−1(tj)

wxjxj−1(tj)
. (71)

Let us now define the entropy of state x at time t as the Hartley information of px(t), i.e.
sx(t) =− logpx(t). From this definition, it is possible to define a trajectory entropy
sss[xxx](t)≡ sxxx(t)(t) =− lnpxxx(t)(t). By using the condition of detailed balance, we can express the log-ratio as

ln
PPP
[
xxx
]

P̃PP
[
x̃xx
] = sxf(tf)− sx0(t0)+

∑
j∈j(xxx)

β
(
ϵxj(tj)− ϵxj−1(tj)

)
. (72)

Above, the first difference is equal to the change of the trajectory entropy from the beginning of the
trajectory to the end of the trajectory, and is denoted by∆s[xxx] := sxf(tf)− sx0(t0). Please note that while∆s
formally depends on the trajectory, it actually only depends on the starting and ending point (and hence we
do not use the bold symbol for it). The second term is equal to the β times the heat exchanged with the
reservoir during the trajectory and is denoted by qqq[xxx] :=

∑
j∈j(xxx)

(
ϵxj(tj)− ϵxj−1(tj)

)
. Thus, the log ratio of

forward and reversed probabilities is equal to

ln
PPP
[
xxx
]

P̃PP
[
x̃xx
] =∆s[xxx] +βqqq[xxx] = σσσ[xxx] , (73)

which is the trajectory entropy production.
To show the relation between trajectory quantities and ensemble quantities, we calculate the time

derivative of the entropy production. The time derivative of trajectory entropy can be expressed as

∂sss[xxx](t)

∂t
=−

ṗxxx(t)
pxxx(t)

−
∑
j∈j(xxx)

δ(t− tj) ln
pxj(t)

pxj−1(t)
, (74)

where the first term is due to the change in the probability distribution, and the second term is due to
trajectory jumps. Similarly, the time derivative of trajectory heat is

∂qqq[xxx](t)

∂t
=
∑
j∈j(xxx)

δ(t− tj)(ϵxj(t)− ϵxj−1(t))

=
1

β

∑
j∈j(xxx)

δ(t− tj) ln
wxjxj−1(t)

wxj−1xj(t)
. (75)

In both cases, the time derivative depends only on x− = xxx(t−) and x+ = xxx(t+). By introducing

ṡx−x+ = log
px+(t)

px−(t)
, (76)

q̇x−x+ =
1

β
log

wx+x−(t)

wx−x+(t)
, (77)

the ensemble entropy production rate (equation (62)) can be expressed as

Σ̇γ =
1

2

∑
x−x+

Jx−x+

(
Φ

(γ)
x−

exp(γβq̇x−x+)− 1

γ
+ P(γ)x+

exp(γ ṡx−x+)− 1

γ

)
. (78)

In this case, the relation between trajectory quantities and ensemble quantities is not so straightforward due
to more complicated averaging.

Let us now focus on another aspect of the entropy production, i.e. the measure of irreversibility. We
define a Kolmogorov–Nagumo average of all trajectories for a functionalGGG

[
xxx
]
defined for each probability as

12
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〈
〈GGG〉
〉
γ
= lnγ

ˆ
DxxxPPP

[
xxx
]
expγ

(
GGG[xxx]

)
, (79)

whereDxxx is the path integral measure. Using this, one can find the ensemble entropy production as given by

〈〈σσσ〉〉γ =
1

γ
ln

ˆ
DxxxPPP[xxx]exp

(
γ ln

PPP
[
xxx
]

P̃PP
[
x̃xx
])=

1

γ
ln

ˆ
Dxxx(PPP[xxx])γ+1(P̃PP[x̃xx])−γ

=Dγ

(
PPP[xxx] ||P̃PP[x̃xx]

)
⩾ 0 , (80)

whereDγ(p||q) = 1
γ ln
´
dxp(x)γ+1q(x)−γ is the Rényi–Csiszár divergence.

Furthermore, one can use equation (73) to show the validity of a detailed fluctuation theorem that holds
in the common form [63]. Let us define the probability of observing trajectory entropy production as

P(σ) =

ˆ
DxxxPPP[xxx]δ (σ−σxxx) (81)

i.e. we sum over all trajectories that result in entropy production equal to σ. By a simple manipulation, we
obtain

P(σ) =

ˆ
DxxxPPP[xxx]δ

(
σ− ln

PPP[xxx]

P̃PP[x̃xx]

)
= eσ

ˆ
DxxxP̃PP[x̃xx]δ

(
−∆σ− ln

P̃PP[x̃xx]

PPP[xxx]

)
= e∆σP̃(−∆σ). (82)

Here P̃ again denotes that probability is calculated for the time-reversed dynamics. As a result, we obtain the
detailed fluctuation theorem

P(σ)

P̃(−σ)
= eσ, (83)

Therefore, on the trajectory level, the relations remain exactly the same as in the case of the ordinary
Shannon–Boltzmann–Gibbs framework. Finally, the integrated fluctuation theorem can then be
formulated as ˆ

dσP(σ)eσ = 1 , (84)

where the integral takes place over the values of trajectory entropy production. An application of Jensen’s
inequality yields

´
dσP(σ)σ ⩾ 0.

6. Thermodynamic length

Thermodynamic length is a well-known metric that characterizes the distance between thermodynamic
states. More specifically, this metric is related to the dissipation in a thermodynamic system due to
finite-time transformations [64, 65], and has important connections with the Jensen–Shannon
divergence [66], Fisher information and Rao’s entropy differential metric [67]. Therefore, thermodynamic
length is of great interest for out-of-equilibrium analyses.

Let us consider a collection of thermodynamic states that can be parametrized by (θ1, . . . ,θn) ∈Θ. Then,
the thermodynamic length of a path s(t) =

(
s1(t), . . . , sn(t)

)
: [0, τ ]→Θ can be calculated as

L :=

ˆ τ

0

√(
ds

dt

)2

dt=

ˆ τ

0

√∑
ij

gij ṡi(t)ṡj(t)dt, (85)

ṡi(t) :=
dsi(t)
dt is the time derivative of si(t) where g ij is a metric tensor corresponding to the well-known Fisher

metric [43], which is given by

gij(q) =−∂2D(p||q)
∂pi ∂qj

∣∣∣∣∣
p=q

. (86)

Above, D(p||q) corresponds to a divergence, a central quantity in information geometry from which all other
geometrical properties—including the metric tensor (86) and connections—can be derived. It is worth
noting that there are two fundamental types of divergences:
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(1) Csiszár divergences, of the form:

Df,g(p||q) = g

(∑
i

qi f

(
pi
qi

))
.

(2) Bregmann divergence, of the form:

Df,g(p||q) = Sf,g(p)− Sf,g(q)− g
(
〈∇Sf,q(q),p− q〉

)
.

Both families of divergences are closely related to a trace-class generalized entropy Sf,g(p) = g
(∑

i f(pi)
)

[68], where f is an increasing function and g is a concave function. For the case of g(x) = x and f(x) = x lnx,
both divergences reduce to the well-known Kullback–Leibler divergence. This shows that the Fisher–Rao
metric corresponding to the Cziszár divergence is equivalent to the Fisher metric corresponding to the
Kullback–Leibler divergence [45]. Furthermore, as elaborated in equation (52) (see also [44]), the Bregmann
divergence corresponds to the difference of free energies—i.e. the amount of reversible work between two
states. These facts motivate us to focus on the Rényi–Bregman divergence.

To recapitulate, equation (52) shows that the Rényi–Bregmann divergence can be expressed as

Dγ(p||q) =−Rγ(p)−Rγ(p,q), (87)

where Rγ(p,q) is the Rényi–Bregmann cross entropy given by

Rγ(p,q) =− 1

γ
ln
∑
i

pi q
−γ
i − γRγ(q). (88)

This generalizes the standard relationship between Kullback–Leibler divergence, Shannon entropy, and
cross-entropy D0(p||q) =−H(p)−Hcross(p,q), which corresponds to the case of γ= 0. By leveraging the
structure of the Rényi–Bregmann divergence, one can find the following expression for the metric tensor
valid for arbitrary γ:

gγij (q) = Q(γ)
i Q(γ)

j +
Q(γ)

i

qi
δij (89)

where Q(γ)
i =

q−γ
i∑
i q

1−γ
i

has been adopted for brevity. Using this expression, one can then evaluate ds2 as

follows:

ds2 =
∑
i

Q(γ)
i

qi
(dqi)

2 +
∑
ij

Q(γ)
i Q(γ)

j dqi dqj. (90)

7. Conclusions

This paper presents a description of the thermodynamics of systems that follow non-linear constraints in the
form of Kolmogorov–Nagumo averages. Our results provide a first step towards a deeper understanding of
the thermodynamics of such systems, opening the door to the analysis of systems with long-range
correlations and/or multifractal properties, which are naturally described by the Rényi entropy [17, 20].
Furthermore, recent applications of non-equilibrium thermodynamics based on Rényi entropy (and
consequently exponential Kolmogorov–Nagumo averages) to utility theory have been investigated [69],
opening the possibility to apply the presented formalism in the context of game theory.

The thermodynamics of Kolmogorov–Nagumo averages was found to be naturally centered around the
notion of Rényi’s entropy and a generalized Légendre transform, which lead to a novel form of free entropy.
Our results show that this free energy, in turn, is directly related to the entropy production of the system. The
presented framework allows to extend of most thermodynamic relations to these non-linear
systems—including the second law of thermodynamics and fluctuation theorems—if their relationships are
adequately recast in terms of the deformed Légendre transform, as summarized in table 1.

In the context of current attempts to apply generalized entropies known mainly from information theory
in thermodynamics, it is worth mentioning that generalized entropies—such as the Rényi entropy—do not
only emerge in the case of systems under non-arithmetic means as constraints but also emerge in the
description of systems that obey a non-linear master equation with ordinary arithmetic average [31]. In the
context of equilibrium thermodynamics, it has been argued—perhaps surprisingly—that different entropies
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and constraints can lead to the same equilibrium distribution [70]. Our results can be seen as extending these
ideas for non-equilibrium processes, as they imply that different combinations of particular dynamics
(i.e. the precise form of the Fokker–Planck/master equation), detailed balance (identifying stationary
distribution with the equilibrium distribution), and energetic constraints can also lead to the same entropic
functional. The precise choice of thermodynamic and dynamic relations depends on the particular choice of
a physical system that one intends to describe. The investigation of how to better characterize classes of
dynamics and constraints that lead to similar phenomena is an important topic that deserves further
investigation in future work.
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Appendix. Proof of the second law of thermodynamics and H-theorem for systems
described by Kolmogorov–Nagumo averages

The time derivative of the entropy and heat rate over temperature can be found to be given by

Ṙγ =
1

γ

∑
i (pi)

−γ ṗi∑
i p

1−γ
i

=
1

γ

∑
ij

(wijpj −wjipi)
p−γ
i∑

k p
1−γ
k

(A1)

βQ̇β
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1

γ
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γβϵi∑
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γβϵi
=

1

γ
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ij

(wijpj −wjipi)
eγβϵi∑
k pke

γβϵk
. (A2)

Above, the explicit dependence of pi(t) on time is omitted for simplicity. The entropy production rate can
then be expressed as
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1

γ
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(
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. (A3)

Furthermore, by using equation (51) one can find that∑
kπke

γβϵk∑
k pke

γβϵk

π−γ
i∑

kπ
1−γ
k

=
π−γ
i∑

k pkπ
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. (A4)

By denoting P(γ)i (t) =
p−γ
i (t)∑

i pi(t)p
−γ
i (t)

and Φ
(γ)
i (t) =

π−γ
i (t)∑

i pi(t)π
−γ
i (t)

, we can then find that
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1
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∑
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wjipi
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Φ
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Similarly, an analogous derivation shows that the time derivative of H-function Ḣγ can be expressed as

Ḣγ =− 1

γ

∑
ij

wjipi

[Π(γ)
i

Π
(γ)
j

P(γ)j

P(γ)i
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. (A6)
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To conclude the derivation, let us consider now, instead, consider a more general expression

Ẏγ =
1
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∑
ij

wjipi
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i
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(γ)
j
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, (A7)

and show that it is non-negative forΥ(γ)
i =Π

(γ)
i andΥ

(γ)
i =Φ

(γ)
i (t). By using the inequality

γ(x−1/γ − 1)⩾ log(1/x) for γ > 0, one can find that
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For bothΥ
(γ)
i =Π

(γ)
i orΥ(γ)

i =Φ
(γ)
i cases one can use the fact that the processes satisfies the detailed

balance, i.e.
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and
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respectively, and express Y as

Y =
1

γ

∑
ij

wjipi log

(
wjipi
wijpj

)
(P(γ)i −Υ

(γ)
i ) . (A11)

Then, by using log(1/x)⩾ 1− x, one can obtain the following inequality:

Y ⩾ 1
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(γ)
i )− 1
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wijpj(P
(γ)
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which is equal to−Ẏγ . Thus, one finally finds that Ẏγ ⩾−Ẏγ , which in turn leads to Ẏγ ⩾ 0. This proves
both the second law (Σ̇γ ⩾ 0) and the H-theorem (Ḣγ ⩽ 0).
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