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Abstract—We study the problem of random-assisted simulation
of discrete broadcast channel in one-shot and i.i.d. setups. We
derive one-shot inner and outer bounds of the set of attainable
message-size pairs for simulating Wyzx within some total varia-
tion distance (TVD) tolerance of ¢. The inner bounds are based
on the bipartite convex split lemma. Whereas the outer bounds
are based on the properties of the multi-partite max information.
Using these bounds, we establish a single-letter expression of the
simulation region of a broadcast channel.

I. INTRODUCTION

Channel simulation is a fundamental task in information
theory, and is the reverse of the task of channel coding (e.g.,
see [1], [2], [3]). It has been studied intensively in asymptotic
setups in the context of the reverse Shannon theorem [4],
[5], as well as in one-shot setups [6], [7]. In this paper, we
consider the problem of simulating broadcast channels with
unconstrained shared randomness between the sender and each
of the receivers.

Given a two-receiver broadcast channel Wyzx € P(Y x
Z|X) and a pair of shared random variables S and S’ on
set S and &', respectively, the task of simulating Wyzx
within a tolerance of ¢ in the total variation distance (TVD)
is to find a pair of sets of encoders &Y € P(1,..., M|X),
€% € P(1,...,N|X) and a pair of sets of decoders DY €
P|L,...,M), D% € P(Z|1,...,N) for each s € S and
s’ € & such that, for all input distributions px € P(X), the
induced joint distribution

> ps(s) - psi(s) - px(x)-

s€S,s'eS’
&) (mlx) - €% (nlx) - DY (ylm) - DZ(2|n)

ﬁXYZ(‘ra Y, Z) =

6]

is e-close to the original joint distribution pxyz(z,y,z) =
px(x) - Wiyzx(y,z]z) in TVD. We call the 5-tuple
(€ Vees (€2 ves ASY ues (SZves,S)  a  size-
(M, N) e-simulation code for Wyzx (see Fig. 1).

A message-size pair (M, N) is said to be e-attainable if
there exists a size-(M, N) e-simulation code, and we denote
M (Wyzix) the set of all e-attainable message-size pairs.
In Section II, we propose a pair of subset and superset for
M (Wyzx). The inner (achievability) bound is based on the
bipartite convex split lemma [8], and the outer (converse)
bound is based on various properties of multipartite max-
information.
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Fig. 1. The task of simulating a bipartite broadcast channel with the help of
common randomness between the sender and the two receivers, respectively,
under the worst case error criteria given by the channel TVD.

We are also interested in the problem of simulating n
identical copies of a broadcast channel, i.e., W\%\LX' In Sec-
tion III, we study the first-order asymptotic limit of the
points in M:(W\%rx)* ie., the set containing the limits of

(£ log M, L log N) for e-attainable message-size pairs (M, N)
for W\(?z?/x (known as the simulation region as defined in (21)).

In contrast to the channel coding problem of broadcast chan-
nels, using the one-shot results in Section II, we manage to
derive a single-letter expression of the simulation region.

A more comprehensive version of this paper is available
at [9].

Notations

o Bold symbols are vectors, e.g., :zg’f = (T1,...,Zn)-
« Given two channels Wy x and Wy|x, the TVD between
them is defined as

HWY|X — Wy ix

= sup | Fgecle) — W),

2
o The (truncated) spectral divergence of distributions p v.s.q
on a same alphabet X is defined as

tvd

€ . p(X)
D = >0: o TV
s+(P||fI) inf {G/O Prxp {IOg a(X) >a] <e}

where € € (0,1).
o The max-divergence of distributions p w.r.t. ¢ on a same
alphabet X is defined as

Dmax(pllg) = jtelg {log Zg;} : 4)



o Let XY be random variables jointly distributed according
to pxy, the max information between X and Y is defined
as

Imax(x : Y) = lqnf Dmax(pXYHpX X QY) (5)
Y

o Let XYZ be random variables jointly distributed accord-

ing to pxyz, the common information among X, Y, and

Z is defined as

I(X:Y:2Z):=H(X)+ HY)+ H(Z) — HXYZ). (6)

The max information among X, Y, and Z is defined as

Irnax(x Y Z) - uz}yf lgf Dmax(pXYZ ||pX X qy X TZ)- (7)
o For bipartite broadcast channel Wyz|x, we define
O(Wyzp() = sup I(X:Y:Z)pewiyy )

pxEP(X)

II. ONE-SHOT SIMULATION REGION OF BROADCAST
CHANNELS

A. One-Shot Achievability Bound

Lemma 1 (Bipartite Convex Split Lemma [8, Fact 7, slightly
modified]). Let €,81, 02,03 € (0,1), such that 62 + 63 + 63 <
€2 Let (X,Y,Z) be jointly distributed over X x Y x Z with pmf
pxyz. Let gy and rz be two pmfs over Y and Z, respectively.
Let M and N be two positive integers such that

log M > DZ (pxv|lpx X qv) — log 63, )
log N > si(plelpx x rz7) — log 63, (10)
log M +log N > Zi(pxyzllpquY XTz)—IOg(Sg, (1)

for some ej,ea,e5 € (0,1) such that €; + €2 + €3 <

62 + 02 + 03. Let J and K be independently uniformly
distributed on {1,...,M} and {1,..., N}, respectively. Let
Jjoint random variables (J,K, X Y1,...,Yn,2Z1,...,ZN) be
distributed according to

7Z]\]|J,|'((',an17 ey YMmy 21y e '7ZNU7 k) =

vaz(%yj, 2k) - HQY(yi) : H TZ(ZIZ)-(lz)
i#] £k

PXY1,... Y, Zy,...

Then,

[Px,Y1,....
px X gy, X
Theorem 2. Let Wyzx be a DMC from X to Y x Z, and let
€ (0,1). For any €1,€2,€3 > 0 such that €; + €3 + €3 < ¢,
0 € (0,61), o € (0762), 03 € (0,63), qQy € 7?(3)), and
rz € P(Z), the following set is a subset of M} (Wyzx)

YniZiyeoIN T

13)
X qQyy XTzy Xooee .

X 17y |ltvd < €

MI(Wyzix) = {(M,N) € Z%,
log M > Dg!™ o (px- Wy ix|lpx < av)
log N > D&% (px- Wox||px x7z)
log MN > D% (px- Wyzx||px x @y x72) — log 03
Vpx € P(X)

— log 67

— log 63 (14)

where the reduced channels Wy|x and Wz|x are defined as

Wy x(y|z) = Z Wyzix(y, z|2), 15)
z€Z

Wzx(ylz) = > Wyzix(y, 2[x). (16)
yey

Proof. For arbitrary ¢v € P(Y), rz € P(Z), we present
a protocol for simulating Wyzx by sending messages with
alphabet sizes M and N to each of the receivers, respectively,
where (M, N) is any integer pair satisfying the conditions on
the RHS of (14). The protocol is as follows:

1) Let the sender and first receiver share i.i.d. random
variables (Y1,...,Ys) where Yy, ~ gy for each k.

2) Let the sender and second receiver share i.i.d. random
variables (Z1,...,Zx) where Z, ~ rz for each k.

3) Upon receiving input X = z, the sender generates a pair
of random variables J, K (distributed on {1,..., M} X
{1,..., N}) according to the following conditional pmf
Pykxy zv (G, ko, yit 21

Wyzix (v, zile) - [ [ av (i) - [] rz(z0)-
i#j £k
4) The sender sends J and K losslessly to the first and
the second receiver using log M-bits and log N-bits,
respectively.
5) Upon receiving J, the first sender outputs Y.
6) Upon receiving K, the second sender outputs Zg.

It suffices to show the joint pmf of the random variables
XY,;Zk generated by the above protocol is e-close (in TVD)
to pxyz = px - Wyz|x for any input distribution px.

Let p denote (joint/marginal/conditional, depending on the
subscript) pmfs of the random variables J, K, X, Y1, ..., Yy,
Zi, ..., Zy as in the above protocol. Define the joint pmf

PIKXY1,...Yrr,Z1,.... 2Ny aS

pX,Y{”,Z{\’U,K(%y% 24, k)

M-N ’
where py ya zn|) k has been defined in (12). For any input
distribution, by definition, it holds that px = px. As a direct
result of the protocol, we have

. M _N
pJ,K,X,Y{”,Z{V(]a k,x,yi,zy ) =

HQY Yi) HTZ z)-

Wyzix (s 2l2) - Tlig; QY(yz) Hz;&ﬂz(zz)
2w Wzix (Wi 2wl @) - Tlizgr av (i) - Tlpns 72(20)°

By Lemma 1 and the requirements we imposed on M and N at
the beginning of this proof (note that €1 — 1 +€2—Jo+€2—02 <
8% + 02 + 62), it holds that

M N
X HQY,i : Hrzz
DX ZWY zox - [ av. [z

i#£] C#£k

Pykx,yM zv (J k, @ it 27)

HPXY{WZ{V — PxyMzN vd

< e

tvd



Since pj k|x,yM, zv = Py kx,yM z~ (as deliberately designed),
we have

<e
tvd

HpJKXY{WZ{V —PykxyMzN od prvffziv —DPxyMzN

Using the data processing inequality for the total-variation
distance (on the channel (JKXY17Z}) — (XY,Zk)) we have

€ 2 |IPxv,ze — Pxvszellewa = ||Pxviz — Dx - WYZ\X||Wd~

Since the above discussion holds for all input distributions px,
we have finished the proof. O

B. One-Shot Converse Bound

Lemma 3 (Special case of [10, Cor. A.14]). Let (X,Y,Z) be
Jjoint random variables distributed on X XY x Z. In particular,
suppose the set Z is finite. Then,

Inax(X : YZ) < Imax(X 1 Y) + log | Z|. (17)

Lemma 4. Let (X,Y,\?J Z, Z) be_joint random variables
dNistributed on X XY x )Y x Zx Z. Suppose the set Y and
Z are finite. Then,

I (X 2 YY : ZZ) < Lo (X Y = Z)4log ‘5)‘+1og ‘2’.(18)
Proof. See [9, Lemma 14]. ]

Lemma 5 (Partially inspired by [11, Eq. (48)] and [12,
Eq. (I7)]). Let Wy|x be a DMC from X to Y where both
X and Y are some finite sets. It holds for all € € (0,1) and
0 € (0,1 —¢) that

. _inf max D (W x H )
WY\X:”WY\X*WY\th max | PYY[X (- qvy ) =

e zeX (19
pxil;?l()X) DY (px - Wy x|[px % gv) + logd

for any qv € P(Y).

Proof. See [9, Lemma 16]. ]

Theorem 6. Let Wyzx be a DMC from X to Y x Z, and let
€ (0,1). For any 41, 82, 63 € (0,1 —€), the following set is
a superset of M (Wyzx)

Mgm(Wyzp() = {(M, N) S ZQ>0

log M > inf sup D;I‘Sl (px~Wy|Xpr><qy) + log 01
Px

qy

log N > inf sup D;i‘s2 (px-Wz‘prxxrz) + log 2
logMN > 1nf sup DE+53( x-Wyz|Xpr><qy><rz)+log 03
qy,Tz PXx

(20)

Proof. Let (M, N) € M*(Wyzx), i.e., suppose there exists a
size-(M, N) e-simulation code for Wyzx. Let S and S’ denote
the two shared randomness between the sender and the first
and the second receivers, respectively. Let M and N denote
the two codewords transmitted from the sender to the first and
the second receivers, respectively. Then, for any input source
X ~ px, we have a Markov chain Z — NS’ — X — MS - Y
where

e X, S, and S are independent.

o The distribution of XYZ, denoted by pxyz, is e-close (in
TVD) to pxvz = px - Wyzx-

o The marginal distribution ) _pxvz(z,y,2) = px(z)
Vo € X.

e M and N are distributed over {1,...,
{1,..., N}, respectively.

M} and

Pick px to be some pmf with full support. The following
statements hold.

1) By Lemma 3 and Lemma 4, we have

S) +log M

: MS);

:S') +log N
X :NS');

:S5:S ) +logM +log N
MS : NS').

log M = Ipax(X:
/ max(
log N = Imax(
2 Imax(
log M +log N = Imdx(
> Imax(x :
2) By the data processing inequality of I,.x, i.e.,
Tmax(A: B) = Inax(A : C)
for any Markov chain A — B — C, we have
Tnax(X 2 MS) > Lyax(X 1Y)
Tnax(X 0 NS') = Lax (X : Z)
Inax(X: MS : NS') > Ly (XY 1 Z).

3) By the definition of I},.«, and noting that px = px, we

have
Tnax(X 1Y) = inf Dinax(Pxv [[px % gv)
quvf max Dijax (py‘x HQY)
>inf inf max Dyax (WY\X('|$)HQY)
av ||[Wyvix=Wyix||, ,<¢ =
Inax (X : Z) = inf Dinax (Pxz|lpx x rz)
1£sz maxDmax(pz|x |) HTZ)
> inf inf max Dyyax (Wz\x('|x)HT2)
rz [ Wa-Wa[, ,<e @
Inax(X:Y:Z) = mf mf Dimax (Pxvzllpx % qv % rz)
ltgf 17{1Zf max Dax (pyz‘x |x) ||qy ><7“z)
> inf inf inf max D ax

v rz HWYZ|X—WYZ\XHW(1<€ z
(WYZ|X('|$)HQY X T‘z)-

The theorem can be proven by combining the above three steps
and Lemma 5. [

III. SIMULATION RATE REGION OF BROADCAST
CHANNELS

In this section, we consider the task of simulating WYZ|X
In asymptotic discussions, one is usually more interested in
admissible rates instead of admissible messages sizes. For our
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) - i o _
sup £ 13D Wyzx (o) |[ [ D Wazx (5 218) - fap () | x | D Wz (i, |E) - fap (2)
T1 i=1 z,2 i
1 T ) ) ()
b | V[ WAzl |[ [ D Wazx (5 21E) - fap () | < | D Wz (i, |&) - fap (2)
n(es —d3) \[ " io 2.2 o
——log(52 10g‘A ‘

task of simulating Wyz|x asymptotically, a rate pair (ry,72)
(of positive real numbers) is said to be e-attainable if there
exists a sequence of size-(|2"" |, |2""2]) e-simulation codes
for W\%LX for n sufficiently large. We denote R (Wyz|x) the
closure of the set of all e-attainable rate pairs, i.e.,

RE(Wyzx) = cl({(rl,rg) e R;O‘HN € N s,

(1271 ], 2" ]) € M? (W\?ZTX) for all n > N})

Theorem 7. Let Wyzx be a DMC from X to Y x Z, and let
€ (0,1). It holds that

ey

r1 2 C(Wyx)
R:(Wyz‘x) = (7“1, 7"2) S Rio T9 > C(sz() . (22)
ri+re = C(Wyzix)

We need the following lemma to prove the above theorem.
Lemma 8. For any pxy € P(X x Y x Z), € € (0,1), and
§ € (0,159), it holds that

inf De X qy X T
qv€P(Y),rz€P(Z) H—(pXYZ”pX o 2) (23)
> DI (pxvllpx % py % pz) + 2log 6.
Proof. See [9, Lemma 18]. ]

A. Achievability Proof of Theorem 7

Applying Theorem 2, we have the following set being a
subset of M*(WZ. )

YZ|X
MEWE) = {(M,N) € Z%,
log M > D (pxy W;‘?Z px;p X avy ) — log 8}

wan

log N > D270 (pxn o

pxy X ’I"ZIL) — log 62

10g MN > l)63 93 (p)(?lz 'WYZ\XHpX? Xqyr XTZ{") —10g 5%

Vpxgb € P(Xn)
for any €1, €, €3 > 0 such that €] + €3 + €3 < €, 01 € (0,61),
0o € (0762>, 03 € (0,63), qyn c P(y”), and rzyp S P(Z").
We pick qvy and rzy as

Xn
avy = Z A ZWYZ\X("5|53)'PA(5?) ;
AEA, T 7,2
XN
1
rzy = Z A ZWYZ\X ,-12) - pA(2)
AeA, T Z,§

We have the following chain of inequalities.
inf 1 Dﬁsﬂsz ®n _11 52
t - sup = pxy Wyzix||Pxy X avy XTzp 0g 03
ayp .tz pxp T n

a) 1
< inf sup — D63 93 (W?ZTX( |w?)qu? X 7“211) - log 03

ayp.rzp @

b) 63 o3 ®mn n
< sup D Wizix (|2T)

zy

AEA i,z
QRn
'px(i‘)> x> |A | > Wazx(§,-1%) - pa(@)
AEA, 9
——log 63
Xn
C) 1 63‘63 ®n =~
<5UP D YZ|X |.’131 WYZ|X Z|m)f:c;b( )

®n
fw”( )) >

Z|X y7
z,y
—— log53 log |A,,|
d)
< (%) at the top of this page
e) 1 -
<sup I(X: Y Z)pwing, x + ———="V(px)
Px n(es — d3)
1 2
——1log 03 + = log |A,,|
n n

where for a) we use the quasi-convexity of Dy (px - pyx||px -
qvy|x) in px, for b) we pick a pair of specific gyp and rzn
as aforementioned to upper bound the infimum, for c) we
use [13, Lemma 3], for d) we use the Chebyshev-type bound
in [13, Lemma 5], and e) is a result of direct counting and the
definition of the common dispersion V as

> p(x) - Wyzx (-, 2[2)

X ZP(I) Wz (7, '|5)>-

z,9

V(p) =Y plx)- V<WYZ|X(’7 Ja)




Notice that V is bounded. Thus, it holds that

1
limsup inf sup —DZ??SB (pxg 'W\?ZT\LX ‘pxy X qyn X ’I"ZT)

n—00  qyp,Tzp Pxy n

1 s

- ﬁlog 85 <supI(X:Y: Z)pwiy = C(Whzix).  (A)
pXx

Similarly, one can show

. . 1 o
lim sup inf sup ngﬁr o (px;t . Wﬁ;”px? X CIY?)

n—00  gyn pxn (B)
1
——logdf < C(Wyx),
Jim sup inf sup ~ D% wen
pint sup =L = pxy - Wz ||Pxy X Tzp
n—oo Tzn pxyp n (©)

1
—log 5 < C(Wzpx).

Combining (A), (B), and (C) with the expression of
MW ) at the begining of this proof, it is straightforward

YZ|X
to check that any integer pair ([2" ], [2""2]) with
r1 > C(Wyix)
(Tl, 7‘2) S (Tl,TQ) S Rio To > C(Wz‘x) s (D)

14712 > C(Wyzpx)

must be in ML“(W?ZT‘LX) for n sufficiently large, i.e., RHS
of (D)C R?(Wyzx). This proves the RHS of (22) being a
subset of R*(Wyzx) since the latter is a closed set.

B. Converse Proof of Theorem 7

Let (r1,72) be arbitrarily pair of non-negative numbers such
that (2L7m) 2lnr2]y ¢ M:(W\%\lx) for n sufficiently large,
ie., (ri,r2) is an arbitrarily interior point of R*(Wyzx).
Applying Theorem 6, we have the following set being a
superset of M:(W?Z"LX)

M W) = {(M,N) e Z%, :

log M > inf sup D;I‘Sl (pxgb : W\%QHPX? X qy;L) +log 61

v Pxy

log N > inf sup DZi‘sQ (pxiz . W?')QHPX? X Tz;l) ~+log 2

rzn n
z P

log MN > inf sup Djfg’ (px»f ~W§ZTX pr’f’ X qyn X 7‘2717/)

n,T'zn n
ayn,Tzp Px7

+ log 53
for any 47, do, 83 € (0,1 — €). Thus, we have
a) . 1 e+d1 RN 1
r1 2 inf sup —D ™  pxp 'WY|x pxy X qyr ) +—logd
vy Pxyp n n
t;) inf l e+02 XN l §
ro 2 inf sup — DT pXI"WZ\x pxyp Xrzp |+ log 42
Tz'iz pxil n
C) . l e+d3 XN
ry+1r9 > inf sup nDs+ Xz -WYZ'X DXy Xqyn XTzn

n,rzn n
ayp Tz PX7

1
+—log s
n

for n sufficiently large. By Lemma 8, we can rewrite c) as

1
. +6-
ri 472 2 sup inf —D{% (px;z 'W\%r\lXpr? X qyn X rpf)

Pxy qyp.Tzp
1
+—log d3
n

> sup lDi63 (px’; 'W\%‘LX pr? X pyyp szy) + §log d3.(E)
pxp n n

Using the information spectrum method [14], we know
lim,,_,oc RHS of (E) = C' (Wyzix). Since (E) holds for all n
sufficiently large, the inequality is maintained as n — oo, i.e.,
r1 412 = C(Wyzix).

Similarly, using [11, Lemma 10] with a) and b), one can
show 71 > C(Wy|x) and 73 > C(Wg|x), respectively.

Since (r1,79) are picked arbitrarily, we have shown

{(m,rz) € R%,|3N € Nst. (|21, 2772 ) € M (W)
for all n > N} C LHS of (22).

Finally, taking closure of the sets on both sides we have
R:(Wyzp() C LHS of (22).

C. Numerical Example

The mutual information and multi-partite common infor-
mation can be computed via a Blahut—Arimoto type algo-
rithm [15], [16]. We refer to [9, Section V-D] for details.

IV. CONCLUSION

In this paper, we investigated the task of simulating discrete
broadcast channel in both one-shot and i.i.d. setups. The one-
shot results are based on the bipartite convex split lemma and
multi-partite generalizations of some of the popular tools in
the finite blocklength information theory. Based on the one-
shot results, we managed to obtain a single-letter expression of
the simulation region of the broadcast channels, which is very
different from the corresponding channel coding problem. We
would like to point out that all work presented in this paper
can be generalized to K-receiver broadcast channel rather

straightforwardly.
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