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Abstract— The ability to track surgical instruments in real-
time is crucial for autonomous Robotic Assisted Surgery
(RAS). Recently, the fusion of visual and kinematic data has
been proposed to track surgical instruments. However, these
methods assume that both sensors are equally reliable, and
cannot successfully handle cases where there are significant
perturbations in one of the sensors’ data. In this paper, we
address this problem by proposing an enhanced fusion-based
method. The main advantage of our method is that it can adjust
fusion weights to adapt to sensor perturbations and failures.
Another problem is that before performing an autonomous
task, these robots have to be repetitively recalibrated by a
human for each new patient to estimate the transformations
between the different robotic arms. To address this problem,
we propose a self-calibration algorithm that empowers the
robot to autonomously calibrate the transformations by itself
in the beginning of the surgery. We applied our fusion and self-
calibration algorithms for autonomous ultrasound tissue scan-
ning and we showed that the robot achieved stable ultrasound
imaging when using our method. Our performance evaluation
shows that our proposed method outperforms the state-of-art
both in normal and challenging situations.

I. INTRODUCTION

Recent advances in Robotic Assisted Surgery (RAS) have
enabled autonomous execution of surgical tasks [1], [2]. A
typical autonomous task is tissue scanning, which is based
on Ultrasound (US) [3], [4], Optical Coherence Tomography
(OCT) [5] or Electric Bio-Impedance (EBI) [6]. Autonomous
tissue scanning, reduces surgical workload, since the robot
does the imaging characterization of the tissue autonomously.
Other autonomous tasks include suturing, debridement, and
others. For all these autonomous tasks it is crucial that the
robot estimates accurately the surgical instrument’s pose.
There are two main approaches for estimating instrument
pose during surgery, either by using vision only, or by
fusing vision and kinematics. Vision-based methods mainly
fall into two categories depending on whether they use
natural-features [7], extracted from the instruments directly,
or artificial-features, extracted from fiducial markers [8], [9].
As a supplement of vision, kinematic information is also
available in surgical robots, and can be used along with visual
data. These fusion methods typically use recursive filters,
such as Kalman Filter and its extensions [3], [8], [10].

The above fusion methods assume that both visual and
kinematic sensors are always equally reliable in tracking
the instruments. Hence, equal and constant weights of both
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sensors are used to fuse visual and kinematic data. In
practice, the accuracy of visual information deteriorates when
the instruments move fast, causing motion blur, or when
the instrument is far from the camera and visual details
(features) on the instruments cannot be detected. On the
other hand, inaccuracies in the calibrations and noise in the
robot joint readings introduce errors to the kinematic data.
However, the existing methods do not have a mechanism to
deal with above challenging conditions such as noise in the
data, poor illumination, and motion blur. Another limitation
of existing EKF-based fusion methods is that they assume
that the EKF noise covariance matrices are pre-defined and
fixed. However, the noise covariance matrices are crucial for
the good performance of the EKF, and should be updated at
each step to avoid divergence of the filter [11].

When fusing visual and kinematic data, the visual input
is calculated in the camera coordinate frame while the
kinematic input is in the robot’s base coordinate frame.
Therefore, calibrating the transformation from the robot’s
base to the camera’s coordinate frame, CTB, is crucial.
This transformation is not fixed and needs to be estimated
every time the surgeon adjusts the robot to a new patient.
The problem is that for a surgical robot to become truly
autonomous it would also need to self-calibrate CTB. This
would enable the robot to autonomously operate, without
requiring human assistance during the calibration process.

In this paper, the above challenges are addressed. First, an
enhanced visual and kinematics fusion method, based on the
Extended Kalman Filter (EKF), is proposed. This method
advances state-of-the-art by using fuzzy logic to attribute
weights to the vision and to the kinematic input separately.
The sensor measurement closer to the EKF prediction, is
more likely to be the most accurate one. Hence, when the
visual input is more accurate than the kinematic input, a
higher weight is attributed to the vision and vice versa.
These weights are updated automatically during tracking.
Therefore, even under challenging situations, such as when
the instrument is occluded, our fusion method adapts auto-
matically the weights which are used to accurately estimate
the instrument’s pose. In addition, to boost the performance
of the EKF, our noise covariance matrices are adaptively
tuned during tracking. Finally, to enable full autonomy
of the robot, we propose a self-calibration routine for a
surgical robot to perform at the beginning of the surgery.
Here, we apply our fusion and self-calibration methods for
autonomous tissue scanning.The contributions are:

1) A novel method for adaptive fusion of visual and kine-
matic information which dynamically assigns higher



Fig. 1: Coordinate frames: left endoscopic camera (C),
ultrasound probe (P), target scanning point (T), cylindrical
marker (M), and robot’s base (B), shaft (S), end effector (E).

weight to the more reliable sensor.
2) For the first time, self-calibration is introduced in

robotic surgery to estimate CTB automatically.

II. METHODOLOGY

A. Framework overview

Our proposed framework, illustrated in Fig.1, has been ap-
plied to autonomous scanning of tissue, using an endoscopic
Ultrasound (US) probe controlled by the da Vinci® robotic
platform. The tissue scanning framework can be mathe-
matically described by the minimization of the difference
between the desired probe pose w.r.t camera (P∗TC = P∗TT ∗×
T ∗TC) and the current probe pose w.r.t camera (PTC = PTE×
ETS× STC), which is calculated from vision and kinematics
measurements. PTE is a rigid transformation that is estimated
prior to the tissue scanning as explained in Sec.III-B. ETS is
the transformation between shaft and end effector of Patient
Side Manipulator (PSM), which can be calculated by joint
values and forward kinematics. STC is the pose of the shaft
w.r.t the camera.

Our main goal is to control the robot to be able to follow
in real-time a target scanning point located on the tissue
surface with pose w.r.t the camera denoted as T ∗TC. P∗TT ∗ is
the desired probe pose w.r.t tissue target point. To achieve
this scanning goal, P∗TT ∗ should be kept equal to the identity
matrix during the task. To minimize the difference between
PTC and P∗TC, E∗TB is used to control the PSM to the desired
end effector pose. E∗TB can be calculated as:

E∗TB = E∗TS∗ × S∗TS× STB

= P∗T−1
E∗ ×

P∗TT ∗ × T ∗TC× ST−1
C × STB

(1)

In our framework, STC can be accurately estimated by
fusing vision (ST v

C = STM × MTC) and kinematics (ST k
C =

STB × (CTB)
−1) information. ST M is the marker to shaft

transformation, which is obtained from the calibration before
any surgery, as explained in Sec.II-C. MTC is the marker pose
w.r.t the camera which is estimated using a state-of-the-art
cylindrical marker which encodes a series of binary codes

[9]. CTB, is camera pose w.r.t PSM base, which is automat-
ically estimated using our self-calibration as explained in
Sec.II-D.

B. Adaptive fusion-based surgical instrument tracking

The Extended Kalman Filter (EKF) is used to fuse ST v
C

and ST k
C defined in Sec. II-A, to accurately estimate the pose

of the surgical instrument.
1) EKF: The pose of an instrument is composed of two

parts: the location (x,y,z) and the orientation in quaternions
(qw,qx,qy,qz). Linear velocities (vx,vy,vz) and angular ve-
locities (ωx,ωy,ωz) captured from the dVRK are used to
establish a non-linear fusion model. Our model is based
on the assumption of constant linear and angular velocities.
A Time-Discrete EKF has been designed where the state
prediction process is defined as xk|k−1 = f (xk−1|k−1). The
prediction function f (x) is defined as:

l(k)
q(k)

qw(k)
v(k)
ω(k)

= f (xk−1)=


l(k−1)+∆t× v(k−1)

q(k−1)× (1+ ∆t
2 ×ω(k−1))

qw(k−1)
v(k−1)
ω(k−1)


(2)

where, l = [x,y,z]T , q = [qx,qy,qz]
T , v = [vx,vy,vz]

T , ω =
[ωx,ωy,ωz]

T . ∆t is the time difference between consecutive
timestamps. q(k) and qw(k) are updated using the 1st term
of Taylor series approximation, to reduce computation time.
The prediction covariance matrix, Pk|k−1, can be estimated by
using the state transition matrix, Fk, and the process noise
covariance matrix, Qk, as Pk|k−1 = FkPk−1|k−1FT

k +Qk where,
Qk represents the reliability of the prediction, as explained
in section II-B.3. Fk, is the Jacobian matrix of f (x):

Fk =
∂ f
∂x

=

(
Fk11 Fk12
Fk21 Fk22

)
(3)

where, Fk11 = diag(1,1,1,1 + ∆t
2 ωx,1 + ∆t

2 ωy,1 + ∆t
2 ωz,1),

Fk22 = diag(1,1,1,1,1,1), Fk12 is a 7× 6 matrix defined
as [diag(∆t,∆t,∆t, ∆t

2 qx,
∆t
2 qy,

∆t
2 qz); [0,0,0,0,0,0]], Fk21 is a

6×7 zero matrix.
The synchronized visual and kinematic data uses the same

prediction process, but different update processes. Hence,
different noise covariance matrices are used to update them
separately. For either vision or kinematics, the update process
is defined as:

rk = zk−h(xk|k−1) (4)

Sk = HkPk|k−1HT
k +Rk (5)

Kk = Pk|k−1HT
k (Sk)

−1 (6)

xk|k = xk|k−1 +Kk× rk (7)

Pk|k = (I−KkHk)Pk|k−1 (8)

where, zk is the measurement. The measurement function is
defined as h(x) = x. Hk is the Jacobian matrix of h(x), which
is the identity matrix in our EKF. Rk is the measurement
noise covariance matrix. rk is the residual between the pose
estimation and measurement. Sk is the residual covariance



TABLE I: Membership function of weight

Residual of k/v Relative weight of k/v
Fuzzy set Membership function Membership function

Z (0;0;0.325) (0;0;0.125)
S (0.25;0.35;0.45) (0.025;0.175;0.325))
M (0.375;0.5;0.625) (0.25;0.5;0.75)
L (0.55;0.625;0.75) (0.625;0.775;0.925)

VL (0.675;0.75;0.75) (0.875;0.925;0.925)

TABLE II: Fuzzy rules of weight for vision & (kinematics)

rk

rv Z S M L VL

Z M(M) M(M) L(S) L(S) VL(Z)
S M(M) M(M) M(M) L(S) L(S)
M S(L) M(M) M(M) M(M) L(S)
L S(L) S(L) M(M) M(M) M(M)
VL Z(VL) S(L) S(L) M(M) M(M)

matrix and Kk is the Kalman gain. xk|k and Pk|k are the
updated state and covariance matrices, respectively. Separate
EKFs are used for vision and kinematics resulting in the xk|k,v
and xk|k,k updated states, respectively.

2) Adaptive weight: After getting the updated states from
vision-based EKF (xk|k,v) and kinematics-based EKF (xk|k,k),
the weights weightv and weightk are used to fuse them as:

xk|k, f usion = weightk× xk|k,k +weightv× xk|k,v (9)

For efficient data fusion, an adaptive weight scheme has
been designed in our work to assign higher weight to
the sensor which provides more accurate instrument pose
estimation. To determine which sensor is more accurate,
a fuzzy logic algorithm has been adopted which takes the
residual information (rk,rv) estimated in Eq. (4) as input and
outputs relative weights (wk,wv). The fuzzy logic algorithm
uses the membership functions in Table I to calculate the
membership of a residual to one of the five fuzzy sets
namely, Zero (Z), Small positive (S), Middle positive (M),
Large positive (L) and Very Large positive (VL) [12]. The
fuzzy rules in Table II are used to estimate the membership
of a relative weight given the membership of a residual
pair. The Centroid Defuzzification method [13] is used to
calculate the relative weights using the above membership.
When there is no vision input, the relative weight will be
set as wk = 1,wv = 0. The relative weights are normalized to
absolute weights as:

[weightk,weightv] = [
wk

wk +wv
,

wv

wk +wv
] (10)

3) Adaptive noise covariance matrix: The measurement
noise matrix R is hard to define since it depends on the
sensor and the measurement process model. A solution for
defining R is to use the difference between the theoretical
residual covariance matrix Sk in Eq. (5) and its actual value
Ĉrk to constantly update R. This difference can be described

TABLE III: Membership function for the covariance matrix

DoM Membership adjQ/adjR Membership
Fuzzy set function Fuzzy set function

(S (0;0;0.75) D) (0;0;0.9)
(E (0.5;0.75;5) M) (0.75;0.9;1.25;1.5))
(L (2.5;10;10) I) (1.25;2.0;2.0)

by the Degree of Match (DoM) as [14]:

DoM =
Sk

Ĉrk
=

Sk
1
N ∑

k
i=k−N+1 ririT

(11)

where, in Ĉrk the residual ri can be calculated from Eq. (4)
and N is the number of timestamps that are used to calculate
Ĉrk. Ideally, Sk and Ĉrk are the same, and DoM ≈ 1.

In this work, a fuzzy logic algorithm is used to estimate
ad jR to tune R to satisfy the adaption rules below and the
membership function in Table III.

1) If DoM < 1, then Sk < Ĉrk, so R should increase: (S,D)
2) If DoM = 1, then Sk = Ĉrk, so R is not changed: (E,M)
3) If DoM > 1, then Sk > Ĉrk, so R should decrease, (L, I)

DoM has three fuzzy sets: Small (S), Equal (E) and Large
(L), and ad jR has three fuzzy sets: Increase (I), Maintain
(M) and Decrease (D). The current measurement covariance
matrix Rk is updated as Rk+1 = ad jR× Rk, so that the
discrepancy between Sk and Ĉrk in the next timestamp can
be mitigated.

The other noise covariance matrix that needs to be es-
timated is the process noise matrix Q which represents
the uncertainty of our kinematics model. This uncertainty
results from unknown linear (a) and angular acceleration
(α). Similar to the estimation of ad jR, Eq. (11) is used to
estimate the DoM and subsequently ad jQ. The Sk in Eq.
(11) can be calculated as Sk = Hk(FkPk|kFT

k +Qk)HT
k +Rk+1

where, Rk+1 is the measurement covariance matrix of next
timestamp defined above.

The update of matrix Q needs to be divided into two parts
Qtr and Qrt , for the translation and rotation, respectively. For
each translation state element (x,y,z) and its corresponding
linear velocity, the translation covariance matrix Qtr can be
derived by:

dtr =

[ 1
2 a∆t2

a∆t

]
=

[ 1
2 ∆t2

∆t

]
a

Qtr = E
[
dtrdT

tr
]
= σa

[ 1
4 ∆t4 1

2 ∆t3

1
2 ∆t3 ∆t2

]
(12)

where, dtr is the uncertainty of our kinematics model. a is
linear acceleration. For each rotation state element (qx,qy,qz)
and its corresponding angular velocity, the rotation covari-
ance matrix Qtr can be derived by:

drt =

[ 1
4 qα∆t2

α∆t

]
=

[ 1
4 q∆t2

∆t

]
α =

Qrt = E
[
drtdT

rt
]
= σα

[ 1
16 q2∆t4 1

4 q∆t3

1
4 q∆t3 ∆t2

]
(13)



Fig. 2: Robotic arms. The fixed transformations are repre-
sented with solid lines, the ever-changing transformations
with doted lines, and the transformation that can change but
is maintained fixed during a surgery (BETB) is shown in a
dashed red line.

where, drt is the uncertainty of our kinematics model. α is
angular acceleration. q is orientation in quaternions format.
σa and σα are scale factors which represent the uncertainty of
the linear and angular acceleration. They are challenging to
measure directly from the sensors. Hence, they are estimated
as σ(k) = ad jQ×σ(k−1).

C. Calibration before any surgery

As illustrated in Fig.2, both the transformation from the
marker to the shaft (STM) and from the camera to its holder
(HTC) are fixed. These transformations will always remain
fixed since the marker is rigidly attached to the surgical
instrument and likewise, the camera is rigidly attached to
the ECM camera holder. Therefore, STM and HTC can be
determined before any surgery, and are used during the
autonomous calibration (Sec. II-D and II-E). Both these
transformations are determined using a standard hand-eye
calibration method AiX = XBi [15]. When X = STM , then
Ai =

BTS and Bi =
MTC, and the Endoscopic Camera Manip-

ulator (ECM) remains static during this calibration. When
X = HTC, then Ai =

BETH and Bi =
CTM , and the PSM

remains static during this calibration.

D. Autonomous calibration during surgery

The main goal of the robot self-calibration is to determine
the transformation from the PSM’s base to the ECM’s base
(BETB), as illustrated in Fig.2. This transformation is changed
for each new patient, since there is no available kinematic
information in the set-up joints, which are the joints between
B and BE. It is calculated as:

BETB =BE TH ×H TC×C TB (14)

where, BETH is accurately measured using ECM kinematics,
HTC is determined before surgery (Sec. II-C), and CTB is
determined automatically by the robot as follows:

1) First, the surgeon adjusts the set-up joints and inserts
the surgical instruments inside the new patient. The
surgeon is instructed to position the tip of the shaft in

the centre of the endoscopic view, at least 5 [cm] away
from the tissue. This placement defines a safety volume
for the surgical instrument to move inside during the
self-calibration. To aid the surgeon’s perception of
distances, the safety volume around the shaft is shown
to the surgeon in the endoscopic image. After step 1,
the self-calibration is initiated;

2) The robot captures a new image and, using all the
images captured so far, performs a robot-world hand-
eye calibration [16] AiX = ZBi (where Ai =

B TS, X =
ST ∗M , Z = (CTB)

−1, and Bi =
CTM), to estimate CTB;

3) The solution of CTB is validated by comparing X =S

T ∗M with the ground-truth STM , which was determined
before surgery (Sec. II-C). If ST ∗M ≈S TM , i.e. if their
relative translation is smaller than 1[mm] and their
relative rotation smaller that 1[°], then the solution
is accepted, and the self-calibration is stopped. Oth-
erwise, step 4 is initiated:

4) The robot moves the surgical instrument to a new
position, inside the safety volume, that is at least
0.5[mm] away from the previous positions, to avoid
repetitions. Since a surgical instrument always enters
through a fixed entry point in the patient, we are only
concerned about avoiding collisions between the tip
of the instrument and the tissue. Therefore, a safety
volume is defined by the surgeon in step 1 and the
surgical instrument always remains inside the safety
volume. After moving the surgical instrument, the
robot goes back to step 2. Note that the ECM arm
remains static during the entire self-calibration process.

At the end of the self-calibration, we have an accurate
estimation of CTB and therefore BTBE can be calculated using
Eq. (14). Once BTBE is known, the transformation from the
camera to the PSM base (CTB) can always be estimated, even
when the camera moves to a new position, which happens
frequently in surgery.

CTB = (HTC)
−1× (BETH)

−1×BE TB (15)

As mentioned in the introduction, CTB is the fundamental
transformation for autonomous robots, since the robot per-
ceives the surgical scene using the endoscopic camera (C)
as reference, but operates using as reference the PSM’s base
(B).

E. Autonomous calibration during surgery using a single
image

We made a separate experiment, to test whether it is
possible to estimate this transformation CTB using a single
image. The advantage of using a single image is that it
would be faster than the method in proposed in Sec. II-D.
This single image captures the surgical instrument after being
inserted in the new patient by the surgeon. The motivation
for this experiment was that if it was possible to estimate
CTB using a single image, then BTBE could also be estimated
from a single image, using Eq. (14), without needing to
move around the surgical instrument for the self-calibration.
As explained in Sec.II-C, STM is accurately known and



fixed. Hence, it can be used as pre-knowledge for the self-
calibration. Using this fixed transformation (STM), and a
single image-kinematic pair, CT ∗B could be estimated as:

CT ∗B = (CTM)× (STM)−1× (BTS)
−1 (16)

However, the resulting CT ∗B is a rough estimation since it is
calculated using a single image-kinematic pair. At this stage,
the accuracy of CT ∗B depends mostly on the accuracy of the
visual method, which estimates CTM , since the other two
transformations, STM and BTS, are accurate. Consequently,
here we propose an optimization to refine CT ∗B without
using CTM . This refinement is done by minimizing the pixel
reprojection error between the detected feature points of the
cylindrical marker, and the reprojected points of the same
features but using kinematic information instead. The rough
CT ∗B is used for initial value of the following cost function:

argmin
CT s

B

m

∑
i=1

∥∥P(CT s
B× BTS× STM× x3di)− x2di

∥∥2
(17)

where, m is the total number of detected features in the
marker; each ith feature has a fixed 3D coordinate x3di,
in the marker’s coordinate frame, and a 2D pixel position
x2di, in the endoscopic image; (BTS) is measured directly
from the PSM kinematics; P( · ) is the projection function
of camera, which converts a 3D position in the camera’s
coordinate system into its corresponding 2D image pixel
position, using the camera intrinsic and distortion parameters.
STM is the transformation from the marker to the shaft, which
is know before surgery Sec.II-C; CT s

B consists of 6 parameters
that need to be refined, i.e. three translation parameters
(x,y,z) and three rotation vector (rx,ry,rz) parameters. This
refinement is achieved by minimizing the cost function in
Eq. (17), using a Trust Region Reflective algorithm (TRF)
[17], implemented using Python’s Scipy [18] library.

III. EXPERIMENT AND RESULT

A. Experiment setup

Our proposed framework is based on the da Vinci®

Research Kit [19]. This robotic platform allows us to control
both an endoscopic camera, with a resolution of 720×576,
and a 8[mm] surgical instrument. A state-of-the-art cylindri-
cal marker [9] was wrapped around the surgical instrument
which is used both in the proposed fusion and self-calibration
methods. The ultrasound images were captured using a UTS-
533 linear array Ultrasound Probe connected to a ProSound®

Alpha 10 ultrasound machine. The robot was controlled
by a computer using the Robot Operation System (ROS)
Kinetic. This computer was equipped with an Intel® Core
i5-3317U and 6 GB RAM. For collecting ground truth data
and tracking tissue motion, an OptiTrack® System was used.

B. Tissue tracking

Depending on the autonomous surgical task, the target
pose T TC is defined accordingly. For autonomous tissue
tracking, T TC will typically correspond to a 3D points on the
surface of the tissue that is tracked using stereo-vision data

[3]. Here, since the focus of the paper is the tracking of the
surgical instruments and not of the tissue, we used an external
OptiTrack® system. Any soft-tissue tracking approach can
be used instead. In our work, the tissue has been tracked
using three OptiTrack® sphere markers rigidly attached to
a kidney phantom, as illustrated in Fig.1 (P1). Therefore, a
rigid transformation from the optical spheres to a point on
the surface of the tissue can be used to set a target point
T TC to be scanned using the ultrasound probe. Ultrasound
scanning requires control of an Ultrasound probe, which is
rigidly attached to the PSM’s end effector. Therefore, PTE is
estimated before the autonomous tissue scanning task using:
PTE = PTT × T TC×CTB×ET−1

B . According to Sec.II-A, PTT
is an identity matrix. CTB is calculated from Sec.II-D. ETB
is the end effector pose w.r.t PSM base, which is directly
measured from the PSM’s kinematics.

C. Accuracy of data fusion

In our framework, the fusion node outputs the trans-
formation STC. To evaluate the fusion result, we used
the OptiTrack® System to collect ground truth data. The
OptiTrack® System has high accuracy with mean error of
0.044 [mm], and thus can be used to obtain the ground truth
of STC, given the rigid transformation between (S) and (P2),
as illustrated in Fig.1.

To evaluate our proposed fusion method, we estimated
the shaft pose in one normal situation and four challenging
situations including (1) occlusion (out of FoV), (2) high
instrument speed, (3) changing illumination and (4) a com-
plex situation including all the previous challenges. We also
compared our proposed fusion method with Zhang’s fusion
approach by using the framework in [8] to fuse our visual
and kinematic data. In all five situations, translation and
rotation errors shown in Table IV were calculated using
the Euclidean distance of translation vectors and the Inner
Product of Unit Quaternions, which shows that our method
has a lower translation and rotation error in both normal
and challenging situations, compared with method in [8].
This verifies that the proposed update of the EKF weights
improves tracking accuracy.

Finally, to evaluate the performance of our fusion method
in the presence of severe noise, artificial noise was added
to the kinematic and vision inputs for all the situations
described in Table. IV. In practice, we added random noise
between -10[mm] to 10[mm] in x,y,z and from -0.01 to 0.01
in qx,qy,qz of EKF state vector, which is mentioned in Sec.
II-B.1 separately. Table.IV shows that our method has an
overall higher accuracy compared with the-state-of-the-art
[8]. Specifically, in a complex situation with kinematic noise,
as shown in Fig.3, our fusion method was significantly more
accurate. This is due to our method, assigning a higher
weight to the more reliable sensor, which was the visual
input in this case.

D. Self-calibration Accuracy

1) Self-calibration using multiple images: The set-up
joints were moved five times to test the accuracy of the self-



Fig. 3: Translation error of fusion at complex situation with random noise on kinematics input.

TABLE IV: Translation and (Rotation) error for fusion (Mean±Std) [mm] and (°). DR is the detection rate for the vision

Raw experiment Kinematics w/noise Vision w/noise

Situation DR Vision* [9] Kinematics Zhang’s Fusion[8] Our Fusion Kinematics Zhang’s Fusion[8] Our Fusion Vision Zhang’s Fusion[8] Our Fusion

Normal 100 0.41±0.72 0.96±0.50 0.76±0.41 0.42±0.42 9.62±2.79 3.74±1.18 0.99±0.61 9.51±2.76 4.42±1.98 0.87±0.47
Speed (0.51±0.40) (0.79±0.43) (0.75±0.57) (0.47±0.57) (5.31±1.93) (4.35±3.81) (1.70±0.62) (2.58±2.47) (2.21±1.77) (0.84±0.55)

High 87 2.21±0.85 1.81±0.86 2.05±0.83 1.91±0.87 9.90±3.12 4.43±2.00 2.26±1.95 9.85±2.85 4.44±2.02 2.16±0.87
Speed (2.00±1.86) (0.87±0.39) (1.98±1.78) (1.21±0.82) (5.41±1.99) (4.74±2.34) (3.11±2.12) (3.21±3.21) (2.35±1.00) (0.92±0.21)

Marker 71 0.62±0.35 1.49±0.59 1.13±0.74 0.88±0.67 9.76±2.83 4.78±2.42 3.02±3.42 9.53±2.79 4.96±2.44 1.46±0.64
Occlusions (0.67±0.52) (0.91±0.51) (0.80±0.56) (0.78±1.08) (5.13±1.89) (4.54±2.48) (2.36±1.79) (2.59±2.97) (2.12±2.35) (1.08±0.73)

Changing 75 1.12±0.62 1.20±0.64 1.15±0.68 1.10±0.70 9.66±2.85 4.57±2.11 2.23±2.10 9.55±2.93 4.21±2.57 1.26±0.64
Illumination (0.47±0.15) (0.30±0.19) (0.35±0.46) (0.32±0.28) (5.28±1.82) (3.56±1.45) (2.47±1.79) (2.68±2.61) (2.08±1.34) (1.12±0.31)

Complex 75 1.18±0.67 1.48±0.67 1.36±0.81 1.22±0.60 9.57±2.75 4.86±2.33 2.90±2.75 9.67±2.84 3.37±1.48 1.53±0.70
Situation (1.77±2.15) (0.80±0.45) (1.99±1.93) (1.05±1.15) (5.28±1.96) (7.12±7.41) (3.07±2.20) (3.14±3.30) (4.59±3.42) (1.27±1.81)

calibration of CTB = Z, which was automatically estimated
by the robot as described in Sec.II-D. To get each of the
ground truth Zgt , the ECM was held at a static position while
the surgical instrument moved for a total of 300 different
poses. When capturing data from each new pose, we stopped
the surgical instrument for five seconds to avoid any motion
blur on the captured images which would negatively affect
the calibration. The average measured error between Zgt and
the prediction Z, was 0.99 [mm] for translation and 0.47 [°]
for rotation, indicating that the self-calibration achieves a
very similar calibration result when compared to the one
obtained with human assistance. This comparison was done
by calculating the Euclidean distance for the translation error
and the Inner Product of Unit Quaternions [20] for the
rotation error.

2) Self-calibration using a single image: Similarly, each
Zgt was compared to the predictions made using a single
image Zsingle. In single image calibration, the average trans-
lation error is 2.83 [mm] and the average rotation error was
1.81 [°].

E. Ultrasound Stability

For the ultrasound stability experiment, the ultrasound
probe was first placed over the target pose. At the ini-
tial target pose after calibration, an ultrasound image was
collected, which was used as template to compare sub-
sequently collected ultrasound images. The logic is that
if our framework is able to follow the target pose, and

therefore compensate the motion of the tissue, the ultrasound
image should look similar throughout the entire motion
of the tissue. This similarity was measured by computing
the Normalized Cross-Correlation (NCC) between the initial
ultrasound image and each of the other ultrasound images.
For this experiment, the tissue was moved up and down
along the camera’s Y-axis orientation. As shown in Fig.4,
when using our framework (green line) the ultrasound image
is stable, scoring an average NCC value of 96%. Without
motion compensation (red line), the ultrasound images are
not stable. Without motion compensation, the NCC score is
high when the tissue is back to the original pose, due to the
periodic motion, and the NCC is low otherwise. In the bottom
of Fig.4, some ultrasound images are shown, corresponding
to the initial ultrasound image and the subsequent ones
with index from 100 to 800 with a step of 100 frames in
between. With our motion compensation, it is clear that the
ultrasound image is stable. On the contrary, without motion
compensation the ultrasound images are not stable. When the
ultrasound image is mostly black it means that the ultrasound
probe is not in proper contact with the tissue.

IV. CONCLUSION AND DISCUSSION

Overall our fusion method was more consistent between
the different challenging situations. The fusion results could
have been improved by adding joint’s acceleration measure-
ments to the framework, since the constant velocity assump-
tion would not be required. However, the current acceleration



Fig. 4: Ultrasound stability with the tissue moving up and
down to simulate a patient’s breathing.

measurements provided by the dVRK are noisy. Regarding
the choice of the fusion method, EKF is used in this work but
other filters, such as the Unscented Kalman Filter (UKF) can
be applied. Deep learning could be used to replace our fuzzy
logic algorithm for weight estimation but this would require
big training datasets. We plan on getting even more accurate
results by using a endoscope with higher frame rate. A higher
frame rate would improve the accuracy of the poses provided
by the vision method since it would remove motion blur, and
it would also increase the sampling frequency of our fusion
method. Another improvement would have been to use both
stereo images, instead of the left image only, but this would
require accurate estimation of the transformation between the
left and right images. However, since there is still a large
usage of monocular endoscopic cameras in surgery, we have
decided to make our method as generalisable as possible
by using the left-camera images only. As future work, we
plan on validating our framework on ex vivo and in vivo
experiments.
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