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ABSTRACT 

As vital ecosystems across the globe enter unchartered pressure from climate change 

industrial land use, understanding the processes driving ecosystem viability has never been 

more critical. Nuanced ecosystem understanding comes from well-collected field data and a 

wealth of associated interpretations. In recent years the most popular methods of ecosystem 

monitoring have revolutionised from often damaging and labour-intensive manual data 

collection to automated methods of data collection and analysis. Sound ecology describes the 

school of research that uses information transmitted through sound to infer properties about 

an area's species, biodiversity, and health. In this thesis, we explore and develop state-of-the-

art automated monitoring with sound, specifically relating to data storage practice and spatial 

acoustic recording and data analysis.  

In the first chapter, we explore the necessity and methods of ecosystem monitoring, focusing 

on acoustic monitoring, later exploring how and why sound is recorded and the current state-

of-the-art in acoustic monitoring. Chapter one concludes with us setting out the aims and 

overall content of the following chapters. We begin the second chapter by exploring methods 

used to mitigate data storage expense, a widespread issue as automated methods quickly 

amass vast amounts of data which can be expensive and impractical to manage. Importantly I 

explain how these data management practices are often used without known consequence, 

something I then address. Specifically, I present evidence that the most used data reduction 

methods (namely compression and temporal subsetting) have a surprisingly small impact on 

the information content of recorded sound compared to the method of analysis. This work also 

adds to the increasing evidence that deep learning-based methods of environmental sound 

quantification are more powerful and robust to experimental variation than more traditional 

acoustic indices. 
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In the latter chapters, I focus on using multichannel acoustic recording for sound-source 

localisation. Knowing where a sound originated has a range of ecological uses, including 

counting individuals, locating threats, and monitoring habitat use. While an exciting application 

of acoustic technology, spatial acoustics has had minimal uptake owing to the expense, 

impracticality and inaccessibility of equipment. In my third chapter, I introduce MAARU 

(Multichannel Acoustic Autonomous Recording Unit), a low-cost, easy-to-use and accessible 

solution to this problem. I explain the software and hardware necessary for spatial recording 

and show how MAARU can be used to localise the direction of a sound to within ±10˚ 

accurately.  In the fourth chapter, I explore how MAARU devices deployed in the field can be 

used for enhanced ecosystem monitoring by spatially clustering individuals by calling 

directions for more accurate abundance approximations and crude species-specific habitat 

usage monitoring. Most literature on spatial acoustics cites the need for many accurately 

synced recording devices over an area. This chapter provides the first evidence of advances 

made with just one recorder. 

Finally, I conclude this thesis by restating my aims and discussing my success in achieving 

them. Specifically, in the thesis’ conclusion, I reiterate the contributions made to the field as a 

direct result of this work and outline some possible development avenues.  
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Glossary of Terms  

As with many developing fields, the terms used to describe concepts in sound ecology are 

undergoing constant development and occasional changes in their meaning. Further, several 

of these terms are used in other fields to explain slightly different things. The terms used in 

this thesis and their intended definitions are listed below.  

Term Definition in this Thesis 

Ecoacoustics  

The study of the whole soundscape to infer ecological phenomena. 
Ecoacoustics includes the use of acoustic indices and machine-learning 
soundscape descriptors.  
 
Note: Ecoacoustics is elsewhere used as an umbrella term to describe any 
instance where sound is used to describe ecological phenomena (i.e., including 
bioacoustics) 

Bioacoustics 

The study of individual sounds to study ecological phenomena. This includes the 
production, transmission, and detection of sounds by animals. This includes 
identifying species/ individuals from a soundscape, studying song learning and 
evolutionary histories and studying individual responses to sounds.  

Sound Ecology 
The umbrella term used to describe any instance where sound is used to 
explore ecological phenomena. Therefore, including both ecoacoustics and 
bioacoustics.  

PAM 

Passive Acoustic Monitoring 
 
The practice of using an acoustic recorder which does not require a researcher 
present.  
 
Note: PAM recorders can be left in the field for a long time, but this does not 
make them autonomous unless they require no external influence at all.  

ARU 

Autonomous Recording Unit  
 
Completely autonomous PAM. ARU recorders are self-charging and can transfer 
data autonomously. The defining difference between PAM recorders and ARUs 
is that PAM recorders can be left in the field for a long but fixed time, while 
ARUs can be left in the field indefinitely.  

Audible Sounds/ 
Audible Range 

Refers to the human audible range (20 – 20,000Hz)  

Acoustic Indices 
Abstract, numeric soundscape descriptors. Acoustic Indices reduce a 
soundscape to an individual or a set of numbers so they can be easily analysed.  

Analytical 
Indices 

“Traditional” Acoustic Indices refer to straight mathematical calculations on a 
soundscape to output descriptive characteristics.  

AudioSet 
Fingerprint 

A specific acoustic index derived from the VGGish CNN, which was pre-trained 
on an audio data ontology (AudioSet). The AudioSet Fingerprint has 128 values 
that can describe a soundscape.  
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1. CHAPTER 1: SOUND ECOLOGY 

 

1.1. CHAPTER OVERVIEW 

Ecosystem monitoring is revolutionising in terms of methods for data collection and analysis. 

This thesis appraises some of the emerging state-of-the-art methods in a subset of ecosystem 

monitoring which focuses on sound. This cross-disciplinary field is built on insight from 

computer science, engineering, physics, biology, and ecology. This introductory chapter aims 

to briefly highlight critical contextual information across these fields to ensure readers from 

any background can engage with the content.  

I will first give context to the necessity of environmental conservation and research (section 

2), moving to how ecosystems are currently monitored (section 3) with a later focus on sound 

(section 3.4). Beyond introducing the biological argument for sound as a species monitoring 

tool (section 4), I will introduce the physical properties of sound, with a specific focus on how 

sound is recorded in field monitoring (section 4.3). The following section will focus on recorded 

sound analysis (section 5), exploring both traditional and deep learning methods on a single-

species (section 5.2) or whole ecosystem level (section 5.3). I will then introduce some recent 

advances in the field and thoughts on where the field could be heading in the near and distant 

future (section 6). Finally, this chapter concludes by summarising this information (section 7), 

explaining the whole thesis objectives (section 8), and overviewing the research documented 

in the following chapters (section 9).  
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1.2. ENVIRONMENTAL RESEARCH  

1.2.1. The Need for Nature  

The importance of conserving ecosystems goes beyond an emotional attachment to a loss of 

charismatic fauna or a sense of duty and respect for the world we are part of. The environment 

provides us with irreplicable services necessary for humanity's sustainable continuation. 

Researchers have worked to comprehensively describe the benefits ecosystems provide 

humans, often attributing financial costs or worrying outcomes of loss. The formal discussion 

of these “Ecosystem Services” was popularised by the Millennium Ecosystem Assessment 

(MA) (Millenium Ecosystem Assessment , 2005), and has undergone continuous development 

and reframing. We now consider these as Nature Based Solutions, the use of existing natural 

processes to mitigate threats to development goals (explored further in 1.2.3).   

Table 1.1 outlines the main Ecosystem Services given by the Millennium Ecosystem Assessment. 

These services broadly cover the benefits humans receive and depend on from the environment. 

Regulating Services, e.g., Cultural Services, e.g., 
 

Purification of water and air 
Pollination 

Climate regulation and carbon 
sequestration 

Waste decomposition 
Natural disturbance regulation: resistance 

to floods/ strong wind 
Predator/ prey regulation 

Disease Regulation 
 

 

Food 
Water 

Materials (timber, fertiliser, organic matter) 
Genetic diversity (e.g., for crop stability) 
Medicinal resources (pharmaceuticals, 

study/ test organisms) 
Energy 

 

Supporting Services, e.g., Provisioning Services, e.g., 
 

Nutrient cycling 
Soil formation 

Primary production (photosynthesis) 
Habitat provisions 

 

Cultural motifs (symbols, folklore, media) 
Spiritual and Historical 

Recreation, healing, and Eco-therapy 
Science and discovery 

Education 
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As a brief overview, the MA looked to create a global human-centred appraisal of interactions 

between people and ecosystems, intending to guide "decision makers" to make decisions that 

benefit both the people and the planet. The MA is a policy document that assimilated science 

from a wealth of sources to draw general conclusions and provide guidance. The MA defined 

ecosystem services as "the benefits people obtain from ecosystems", explaining the role of 

ecosystems in regulatory, supporting, cultural and provisioning services (Table 1.1). It 

describes how these ecosystem services contribute to people's security, health, and beneficial 

social interactions—ultimately tying ecosystem services and biodiversity to people’s well-

being and fundamental freedom of choice and action (Millenium Ecosystem Assessment , 

2005).   

The overall conclusions synthesised and popularised by the MA were that: 

(1) Humans have caused irreversible damage to ecosystems as the demand for natural 

resources has increased. 

(2) Humans have enormously benefitted from the extraction of natural resources; 

however, the extraction rate is unsustainable and driving some groups into extreme 

poverty, with returns on extractions potentially diminishing. 

(3) The harm done to ecosystems may stop us from achieving the millennium 

development goals. 

(4) The MA outlines several methods that are necessary to reverse the damage already 

done and ensure the sustainability of people on the planet. These methods require 

significant changes in policies and practices beyond those that existed when the MA 

was written.  

Here intertwines human welfare with healthy environments, ecosystems and wildlife. Despite 

its publication nearly 20 years ago, anthropogenic expansion has threatened the environment 

and the delicate balance in which all life is a part.  
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1.2.2. Threats to the Environment 

The environment is currently under countless stressors, such as the climate approaching 

tipping points (Mckay et al., 2022), widespread pollution (Cousins et al., 2022), habitat 

destruction (Gatti et al., 2021), and global declines in biodiversity (Ceballos et al., 2015).  

A climate tipping point is an event in a climate-change-driven changing earth system. The 

systems with tipping points have a feedback relationship with the climate, which will cause 

further warming once reached, making the tipping point impossible to return from. As tipping 

points are seemingly approaching, they have increasingly become a source of public concern 

(Mckay et al., 2022). Further, if one tipping point is reached, it is speculated that this could 

cause a "tipping cascade", which could amplify global warming effects and potentially result in 

a global climate tipping point (Mckay et al., 2022). Six climate tipping points have been defined, 

spanning: the extent of ice sheets (Antarctica and Greenland), the continuation of ocean 

currents (AMOC), monsoons (the Sahara and West Africa), the El Niño southern oscillation, 

and forest extents (the Amazon and Boreal Forests) (Mckay et al., 2022). The form of these 

tipping points, along with their expected onset, varies between locations; however, early 

warnings of destabilisation have already been seen in the Greenland Ice Sheet, Atlantic 

Meridional Overturning Circulation (ocean currents), and the Amazon rainforest (Boers, 2021; 

Boers & Rypdal, 2021; Boulton et al., 2022; Mckay et al., 2022).  

In particular, the Amazon, previously a reliable sink of ~150-200Gt of Carbon, now acts as a 

net carbon source (Gatti et al., 2021). The drivers behind this are thought to be climate change-

induced drying, droughts and human-driven degradation (~17% since the 1970s (Mckay et al., 

2022) (SPA (Scientific Panel for the Amazon), 2021)). Climate and rainfall-driven dieback of 

the Amazon was not expected until 3 to 4°C of warming or ~40% deforestation (Mckay et al., 

2022; Nobre et al., 2016), but recent research, which includes tipping cascades into models, 
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has indicated this may happen much sooner (20-25% deforestation)(Lovejoy & Nobre, 2018; 

Mckay et al., 2022)). 

Deforestation, climate change, and species overexploitation have been credited with driving 

the planet's sixth mass extinction, even by highly conservative measures (Brooke et al., 2008; 

Butchart et al., 2006; Ceballos et al., 2015; Hoffmann et al., 2010). The natural world is in 

constant flux, where extinction is expected as desirable traits shift when the planet and its 

various biomes gradually change over the course of millennia. This pre-existing rate of 

extinction is known as "background extinction" and occurs at a rate of 2/MSY (Million Species 

per Year. AKA 2 extinctions, per 100 years, per 10,000 species) (Ceballos et al., 2015). 

However, a recent metanalysis found that actual species losses varied between 8 and 100 

times that amount  (Ceballos et al., 2015). The paper describes how under background 

extinction, it would be expected that just nine vertebrate species should theoretically have 

gone extinct since 1900; however, even under a conservative estimate, this number is actually 

at least 468 (69 mammals, 80 birds, 24 reptiles, 146 amphibians and 158 fish) (Ceballos et al., 

2015). Biodiversity is pivotal in sustaining ecosystem services, especially crop pollination and 

water purification. Beyond this, biodiversity has extreme sentimental and cultural importance 

for people across the planet. Earth is not a planet for humans that other creatures take up 

space in; instead, we must consider Earth as a natural system of which we are just a part.  

Our unsustainable exploitation of the environment is potentially irreversibly damaging natural 

systems, and the time we have left to mitigate this damage is rapidly diminishing. In this 

precarious time, it is necessary to act from a comprehensive understanding of ecosystems to 

protect, mitigate and make space for them as we enter unknowns in climate, extinctions, and 

anthropogenically reduced natural habitat extents.  
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1.2.3. Nature as a Solution 

Since the MA and the subsequent popularisation of the term ecosystem services, there have 

been vital developments in this school of thought, namely through the introduction of “Nature-

Based Solutions”. The theory of Nature Based Solutions NbS is built upon the understanding, 

popularised by the MA, that many vital processes can be moderated by healthy ecosystems 

(carbon sequestration, clean air, medicines, genetic resources, and stabilising shorelines) 

(Millenium Ecosystem Assessment , 2005). NbS involve addressing societal challenges purely 

by enhancing natural processes. NbS covers ecosystem-based adaptation (EbA), ecosystem-

based mitigation, eco-disaster risk reduction and green infrastructure (Griscom et al., 2017).  

NbS have been used as solutions to many practical problems. From agroforestry in Panama 

(where farmers grow multiple species, including trees, shrubs, crops and livestock in the same 

area), which increases carbon sequestration, local biodiversity and economic return (Paul et 

al., 2017). To the Gulf of Mexico, where “living shorelines” have been introduced that aid the 

recruitment of oyster reefs, stabilising the shoreline and reducing the effect of waves and 

erosion while increasing the abundance and diversity of economically important species 

(Scyphers et al., 2011). And finally, in cities, green spaces and increased canopy cover can 

reduce air temperature, which is especially vital on hot days (Bowler et al., 2010).  

Literature on ecosystem services and NbS allow us to quantify and discuss how the 

conservation of nature is vital for the continuation of humankind and how employing nature-

positive practices may also be the solution to some of the most significant problems we 

currently face. Moreover, while NbS provide tremendous potential, their uptake has been 

limited as there are substantial challenges involved with measuring and predicting their 

effectiveness, a range of flawed financial models, and inflexible and highly sectorised 

government (Seddon et al., 2020).  
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Generally, a greater area and variety of ecosystems will lead to a greater number and stability 

of species and ecosystem services. NbS balance this with socioeconomic trade-offs to better 

people's lives while minimising or restoring natural processes. Optimising outcomes for people 

and the planet requires a more nuanced understanding of ecosystem functioning (Dietze et 

al., 2018). 

 

1.2.3. Good Research Informs Good Practice 

To best optimise land management practices, we must develop an understanding of 

ecosystem function that is as comprehensive as possible. A recent review highlighted that 

good monitoring practice is vital to (1) compare and monitor communities temporally across 

the globe, (2) provide data to models to anticipate system responses better, (3) determine 

potential early warning signals prior to substantial ecosystem changes and (4) examine the 

stressors that are causing the most impact/ species that are most at risk (Besson et al., 2022).  

Environmental research has already informed the theory and success of NbS. For example, 

research quantifying the vitality of habitat connectivity, extent and diversity has inspired 

developments to be mindful of biodiversity hotspots and crossings such as hedgerows (Baudry 

et al., 2000) and protected forests along waterways (riparian reserves - Mitchell et al., 2018). 

By monitoring the success of these projects, we can inspire other landowners to spare land of 

plant environmentally important species voluntarily. Conversely, if a typically successful 

practice does not work, there could be unknown drivers, such as competition from invasives, 

disease, pollution or illegal behaviour, that may only be uncovered through ecosystem 

monitoring. The theory of the niches has inspired the idea that animal biodiversity can be 

conserved by diversifying orchards with mixed fruit trees (Round et al., 2006) and agroforestry 

systems (Harvey & González Villalobos, 2007). Agroforestry involves growing trees and shrubs 
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within land designated for crops and pasture. Trees planted in agroforestry systems can be 

harvested for timber, fruits, and nuts, while the whole system results in a more complex 

community assemblage than monoculture (Harvey & González Villalobos, 2007).   

Ecosystem monitoring is necessary to inform decision-makers on mitigating environmental 

and economic decline. Specifically, continuous monitoring is needed to understand what, 

when, where and how much change is occurring, to understand what causes change and use 

that to inform practice (Sparrow, et al., 2020). Specifically, the right type of data needs to be 

collected in sufficient detail at appropriate spatiotemporal scales. As the extent and variety of 

monitoring equipment develops, we are entering unchartered territory in the scale of 

ecosystem appraisals. This kind of work uncovers surprising and vital previously unknown 

processes governing the success of ecosystems and will ultimately help us to make smarter 

decisions about how to protect them.  

1.3. (AUTONOMOUS) ECOSYSTEM MONITORING 

Understanding, monitoring, and providing evidence of why and how sustainable management 

practice works is necessary for optimisation and uptake. Conservation practice relies on 

evidence-based science, which relies on good data from the field. Having sufficient data and 

asking ecological questions with solid statistical backing is pivotal for evaluating trends and 

drivers of population change and collapse, designing and assessing conservation plans, and 

biodiversity policy commitments (Honrado et al., 2016). Later work cites the importance of 

high-resolution, multidimensional, and standardised data (Farley et al., 2018).  

While many manual data-collection practices are still in widespread use today, there has been 

an explosion in the availability of machine-based data-collection that can be automated. This 

automated data collection quickly generates enormous amounts of data that surpass human 

inference. A recent review of automated ecological data collection described how recorders 
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fall into one of three categories: (1) Acoustic Wave Recorders (microphones, hydrophones, 

geophones, and sonars), (2) Chemical Recorders (environmental sample processors, DNA, 

eDNA), and (3) Electromagnetic wave recorders (cameras, LiDAR, and Radar)  (Besson, et al., 

2022)  

Beyond expanding data collection tools, scientists with ever-increasing computer and 

statistical literacy can draw from an increasingly broad toolbox of machine learning and deep 

learning-based analysis methods. Machine learning has revolutionised data analysis and 

consistently identifies features and patterns accurately and reliably in ecological datasets 

(Christin et al., 2019; Stowell, 2022). Data can now be collected and analysed autonomously, 

vastly reducing work hours and allowing researchers to ask a previously impossible range of 

questions in short time frames.  

1.3.3. Traditional Methods 

Traditional ecosystem monitoring is based on researchers regularly entering their study sites 

and manually collecting observations, data and specimens. These observations and 

collections could take the form of species counts (identified through sight and/or sound) (Huff 

et al., 2000), species capture for body condition testing, marking, tagging and/or tracking, 

sample collections and testing, or in-situ field experiments such as exclusion assays. While 

these methods have led to formative conclusions in natural history and ecology, they can be 

expensive, labour-intensive, and subject to experimental bias (Costello et al., 2016; Fitzpatrick 

et al., 2009). Not to mention that these assays require researchers to enter and potentially 

damage sensitive environments repeatedly. Additionally, many of these types of data collection 

do not retain "proof". An observation or behaviour may be observed in the field, but without 

any recorded evidence, it is impossible to prove that these recordings are not a result of an 

error. Even expert field identifiers get things wrong sometimes, and without a permanent 

record, important information could be erroneous or missed.   
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1.3.4. Chemical Methods  

All organisms are in constant flux with their environment through respiration, photosynthesis, 

digestion, decomposition, excrement or various hormones or bodily fluids. These processes 

leave traces of information in the environment about what organisms and processes are at 

play. Carbon and Nitrogen content in the soil and air have long been studied as proxies for 

forest respiration and carbon sequestration. Collecting mixtures of chemical compounds from 

a forest can also be used as a fast and cheap method of metabarcoding, which can be used 

to look for indicators of certain species. While theoretically interesting, chemical 

metabarcoding requires extensive reference libraries and is not yet suited to large-scale field 

deployment (and references therein). DNA, or more specifically environmental DNA (eDNA), 

is more widely used to determine species presence and community compositions, using 

samples from the soil and air (Besson et al., 2022; Boussarie et al., 2018; Clare et al., 2022; Li 

et al., 2021). Recently portable and autonomous Environmental Sample Processors (ESPs) 

have been developed to perform DNA amplification and storage without human intervention 

(Yamahara et al., 2019). Fully automated eDNA collection and sequencing is not yet possible, 

but recent work indicates it may be in the future (Besson et al., 2022; Huo et al., 2021)  

1.3.5. EM Wave Methods  

EM wave sensors can either be active (where data is recorded after a signal is emitted – LiDAR 

and radar) or passive (digital cameras/ camera traps) (Besson, et al., 2022).  

1.3.5.1. Camera Traps and Photographic Sensors 

Ground-level camera traps (including thermal and inferred cameras) are among the most 

popular autonomous species monitoring methods due to their relatively low cost and easy 

deployment. Camera traps are self-contained, often battery-powered units triggered to take 
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pictures (sometimes thermal and IR) by movement. The output of camera traps is usually 100s 

or 1000s of pictures of passing fauna (or falling leaves), which are frequently analysed 

manually or through deep learning algorithms. The success of camera traps may also be 

because, as visual animals, people are often more confident identifying an animal by its 

appearance than by how it sounds. As such, manual exploration and annotation of 

photographic data is perhaps more appealing. Alongside this, deep learning algorithms 

designed around image analysis are more developed than their acoustic counterparts. Some 

neural networks designed for acoustic scene classification are based on image analysis 

networks (Hershey et al., 2017)  

Machine learning methods that take data from camera traps as input and have been trained 

for species tracking, counting, measuring, and monitoring behaviours (Besson et al., 2022 and 

references therein). Labelled camera trap training databases for many fauna and flora are 

already considerably well documented.  

1.3.5.2. Remote Sensing (Hyperspectral Cameras and LiDAR)  

Remote Sensing describes EM sensors usually mounted on drones or aerial vehicles. They 

generally fly overhead an area of interest and capture images of the research site. 

Hyperspectral cameras take multiple narrowband images, which can be used to extract indices 

from captured images to infer data such as vegetation intensity or type. Comparing these 

indices over time scales makes it possible to observe growth rates. A notable downside of 

hyperspectral imaging is the low resolution, which can be somewhat countered by the 

inclusion of LiDAR and/ or digital photography (Besson et al., 2022, and references therein). 

LiDAR (Light Detection and Ranging) is a form of laser imaging that emits pulsed laser light 

and records the scatter (much like sonar). LiDAR images can reconstruct high-resolution 3D 

representations of targets and can be used to study an environment's vertical structure and 

3D complexity beyond just its canopy cover. LiDAR is known as Terrestrial Laser Scanning 
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(TLS) when employed at ground level. Satellite remote sensing and LiDAR can be combined 

for vegetation monitoring over huge-spatiotemporal scales (Pettorelli et al., 2016).  

Other EM wave sensing methods involve flow cyclometers and electromagnetic ray sensing 

devices but are less commonly used (See Besson et al., 2022). Individuals can also be collared/ 

tagged and tracked with GPS and radio sensors, although this is invasive and not autonomous.  

1.3.6. Acoustic Methods 

Acoustic wave methods, explored in more detail in section 4, cover the use of devices which 

record waves of pressure through a medium. Specifically, that is the use of microphones 

(pressure waves in air), hydrophones (pressure waves in water) and geophones (pressure 

waves through the ground).   

Sonar is an "active" alternative to the above, which uses sound-emitting recorders that use 

scattered returned echoes as measurements of organisms and the environment (much like 

LiDAR) (Besson et al., 2022). Sonar is almost entirely carried out in aquatic environments and 

can be used to pick up species as small as krill (Bernard & Steinberg, 2013) or fish and squid 

at depths of 800m (Dunlop et al., 2018). Recent machine learning developments in the use of 

sonar have also shown that sonar outputs can be used to distinguish between species (Porto 

Marques et al., 2021).   

1.4. SOUND ECOLOGY: THEORY, RECORDING, AND 

PROCESSING  

Sound has played an essential role in the development of humanity. While this is most notably 

using sound for communication, we have also used sounds to build community through music 

and dance, to hunt and avoid being hunted, to find water in the wilderness, and to cross busy 
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city streets. While sometimes overlooked as a resource, the sonic environment can provide a 

wealth of information that we, and all species, can and do exploit daily.  In this section, I explore 

how sound is used by animals, theories as to how the usage of audio communication evolved, 

introduce the physical properties of soundwaves, and how they are commonly recorded and 

analysed in the field.  

1.4.3. The Soundscape and Sound Ecology  

The soundscape was first defined in 1977 as "any portion of the sonic environment regarded 

as a field for study" (Schafer, 1977). Sound ecology refers to the acoustic relationship between 

organisms and the environment. This definition was taken further by Bernie Krause, who 

coined the term "biophony" for all sounds made by living organisms in 1998 (Krause, 1998). 

Stuart Gage, working with Krause at the time, later included geophony: non-biological sources 

of sound such as wind, rain, and running water (Krause, 2008). The anthropophony was 

defined later by Krause, Gage, Bryan Pijanowski and others as human-generated sounds such 

as speech, machinery, traffic, and music (Pijanowski et al., 2011). This paper also coins the 

phrase "Soundscape Ecology", which defines a framework of interactions between climate, 

humans (policies, activities, and values), landscape structure, natural species dynamics (life 

history, population and community dynamics, and geophysical motion), and ultimately patterns 

in the soundscape (Pijanowski et al., 2011). 

Sound is a rich, polluted, and potentially understudied resource in ecosystem monitoring and 

global change (Buxton et al., 2017). The following sections detail how geophony, 

anthropophony and biophony come together to form the soundscape (Figure 1.1).  

1.4.3.1. Geophony  

Geophony describes all the natural (non-animal) sounds in an ecosystem. Geophonic sounds 

fall into four categories: wind, water, weather and geophysical forces (Krause, 2008). Often it 
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is not these processes directly that are being heard but rather their effects, be that the sound 

of wind shaking trees and rustling through grasses or the sound of water crashing into rocks 

in waterfalls or splashing onto leaves as they fall from the sky. Geophony can shake the whole 

acoustic environment. A heavy thunderstorm, a thick blanket of snowfall, the eruption of a 

volcano or a gentle stream trickling near its source on a mountain created vastly different 

conditions in an acoustic environment that can vary enormously on a daily scale. Geophony 

often dominates a soundscape, and efforts have been made to identify and remove geophony 

from recordings (Metcalf et al., 2020).   

1.4.3.2. Anthropophony  

Anthrophony describes all the human-made noise in an ecosystem. Human-made noise can 

be separated into four categories: electromechanical, physiological, controlled sound and 

incidental (Krause, 2008). It has been speculated that industrialisation romanticised 

mechanical sounds as signs of authority and prosperity (Schafer, 1977). However, the expanse 

of the anthropophony is now having an adverse effect on vocal communication in terrestrial 

and marine environments (Derryberry et al., 2020; McCormick et al., 2018; Jérôme Sueur et 

al., 2019a).  

1.4.3.3. Biophony  

Most social species maintain relationships through preening, grooming, hugging and so on; 

however, close contact is not always possible, and acoustic communication can be used to 

maintain social connections at a distance (Chereskin et al., 2022). Further, sound can travel 

through substances and for distances that light cannot. Sound is often far more helpful than 

visual or tactile communication in densely vegetated, dark, or situations where calling 

individuals are far apart. This makes the sonic domain a precious resource for animals in 

dense, dark, or sparse habitats. 
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Animals use sound in courtship (Elise et al., 2019), bonding (Chereskin et al., 2022), threat 

alerting (McCormick et al., 2018), establishing hierarchies (Vanden Hole et al., 2014), 

establishing territories (Laiolo & Tella, 2006), echolocation (Jones & Teeling, 2006), parent-

offspring identification (Warren et al., 2006), and even as primitive languages (e.g. Bruck et al., 

2022; King & Janik, 2013). Animal noise emission is not just vocalisation; other properties such 

as stridulation, striking, wing clapping, chest-beating, and rattling are also used as non-vocal 

communication. Beyond just intentional sonic emissions, species also unintentionally create 

noise through breathing, moving, and feeding (Bradbury & Vehrenkamp, 1998). The amount 

of sonic information given by just a single individual over the course of a day is often 

overlooked but incredibly significant.  

Every year, more studies are emerging that previously thought unvocal species or unvocal 

genders do sing and with more complicated repertoires than previously thought (primitive 

language in rodents - Dent et al., 2018; "purring" spiders - Sweger & Uetz, 2016).   

 

Figure 1.1 details the components of the soundscape: Anthropophony (human-made sound), 

Geophony (non-biotic environmental sound) and Biophony (biotic sound).  

1.4.4. The Evolution of Song  

Darwin speculated in the origin of species that complex birdsong had evolved as sexual 

selection relating to female "standards of beauty" (Darwin, 1861). In songbirds, it was generally 

thought that females do not sing alone, and any functionality of female song has largely been 
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ignored or written up to hormonal imbalances. However, recent research has begun exploring 

the prevalence and role of singing females. Conversely, female Song has been found in 71% 

of examined songbirds (passerines), with analysis finding a 91.9% likelihood that ancestral 

female passerines were songbirds (Odom et al., 2014). Evidencing that the evolutionary basis 

for song and other means of vocal communication is still not widely understood. 

A recent review (Alcocer et al., 2022) explored two conflicting arguments for the use of 

acoustic space in vocal animals: the Acoustic Niche Hypothesis (ANH – Hödl, 1977) and the 

Acoustic Adaptation Hypothesis (AAH – Morton, 1975). The acoustic niche hypothesis (ANH) 

centres around the idea that acoustic space (in frequency, temporal, and perhaps spatial 

domain) is a finite resource that organisms have competed for millennia. It is proposed that 

evolution drives species to structure their signals in relation to each other, partitioning the 

soundscape and avoiding masking via signal overlap (Alcocer et al., 2022; Hödl, 1977; Krause, 

2008).  

This theory logically entails that as species richness increases in an area, the acoustic space 

will become more saturated, which is the foundational principle of acoustic indices (explored 

later). AAH, an alternate theory, works on the principle that songs from multiple species may 

converge to maximise signal transmission (Morton, 1975). It is already known that different 

types of signals propagate and degrade at different rates through different habitats, so it is 

possible that in optimising their transmission, calls from vocal species converge on similar 

properties. Multi-species convergence would result in a less partitioned soundscape and may 

suggest that direct soundscape to species richness relationships may be underestimating 

diversity. Evidence supporting either AAH or ANH is mixed, with a meta-analysis showing an 

overall weak effect size for both (Alcocer et al., 2022 and references therein). Until the drivers 

of acoustic niche occupancy are determined, considering soundscape partitioning as a direct 

link to species diversity may be misleading (Alcocer et al., 2022). 
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1.4.5. Sound Recording and Processing  

1.4.5.1. The Physical Properties of Sound 

Sound is perceived from oscillating waves of pressure travelling through air or another medium 

that are received/ recorded by humans, animals, or microphones. Sound is produced by 

sudden movements that physically compress air locally and cause the propagation of pressure 

waves outwards. Commonly used properties and descriptors of sound are given in Table 1.2  

Table 1.2 gives commonly used properties of sound, sound waves, sound recording and wave 

propagation. 

Property  Commonly 
used Unit  

Definition  

Speed  ms-1 The speed the wavefront of the sound wave travels in a 
medium. Speed depends on the medium's physical properties 
and can be affected by temperature/ humidity/ pressure. It is 
generally 343ms-1 in air and 1,480ms-1 in water (higher particle 
density).  

Frequency  (k)Hz The number of complete wave oscillations per second. The 
more oscillations, the higher the perceived frequency (or 
pitch). The lower bound of human hearing is 20Hz, and the 
higher bound of human hearing is 20,000Hz. Infrasound is a 
descriptor of sound too low frequency to be heard by people; 
ultrasound defines frequencies too high for human perception.  

Wavelength  m How long the complete cycle of a wave is spatially. In air, 20 
Hz is 17m, and 20,000 Hz is about 1.7cm long.  

Amplitude  dB dB is a logarithmically scaled measure of power. 10dB = x10, 
20dB = x 100, 30dB = x1000 and so on. As dB as a measure 
of power, it needs to be attached to a defined value to have 
any magnitude.  

dB SPL  dB SPL (Sound Pressure Level) is the magnitude of pressure 
oscillations relative to the quietest sound a human can hear 
(2x10-5 Pa). The dB SPL is proportionate to the wave's 
amplitude and can be considered as perceived loudness.  

dBFS dB FS (Full Scale) is the amplitude level compared to the 
maximum amplitude recordable before clipping occurs in 
digital recording.  

Sonic 
Attenuation  

-  The loss of signal as a sound wave propagates through a 
medium. Sound waves are attenuated more aggressively the 
closer the obstruction is in size compared to the signal's 
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wavelength. High-frequency (short-wavelength) sounds are 
therefore attenuated more easily (Russ, 2013).  

Sampling 
Rate 

Hz The number of samples (air pressure, voltage etc.) taken every 
second by a digital recorder  

Nyquist 
Frequency 
(Recording 
Frequency)  

Hz Exactly one-half of the sampling frequency. The Nyquist 
frequency represents the maximum frequency oscillation 
recordable by the microphone. If the target frequency is less 
than half the size of the sample rate, the signal will become 
distorted through a process known as aliasing 

(Temporal) 
Aliasing  

 A type of distortion that occurs when a signal's full extent 
cannot be captured. Aliasing happens in both visual and 
temporal mediums. An example of aliasing is when the 
spinning blades of a helicopter recorded digitally appear to be 
stationary (or even move backwards) as the shutter speed is 
not fast enough to capture more than a single frame per 
rotation. The same happens with acoustic recordings, where 
whole wave oscillations can happen within the time between 
samples. Waves can be reconstructed/ smoothed between 
sample rates, but there is no way of inserting a whole wave 
oscillation between samples. By ensuring that twice as many 
samples are recorded than oscillations, we can ensure waves 
can be reconstructed correctly. Aliased acoustic recordings 
sound lower pitch and distorted compared to the raw signal. 
Anti-Aliasing filters can be used to stop the reconstruction of 
waves with higher frequencies than half of the Nyquist 
frequency to reduce distortion.  

Bit-depth  bit The number of binary bits used to store each pressure 
sample—1-bit results in 2 levels (0 and 1), 2-bits in 4 levels and 
so on.  Bit depth is a discrete levelling used to rebuild the 
soundwave in playback. Larger bit depths take up more 
storage but can recreate the soundwave to a much higher 
resolution. Bit Depth affects the dynamic range of the 
recording.  

Frequency 
Modulation  

 Where the frequency of a signal or call changes during the call, 
often this happens very quickly. Frequency Modulation is 
perhaps more widely known for its use in radio transmission 
(e.g. FM radio), whereby changes in the frequency of a 
transmitted signal can be used to encode information.  

Dynamic 
range  

dB SPL/ 
FS 

The difference between the loudest and quietest sounds, 
either: recordable by a device, of a signal, or in a soundscape.  

In digital sound recording, a recorder takes air pressure samples (SPL) at a fixed rate (sample 

rate, typically 44100Hz) and stores those reading by a defined number of binary digits (bit 

depth, typically 16bit). Sampling involves transducing the sound pressure wave to an electrical 
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signal and then digitally sampling the electrical signal at regular intervals. Specifically, a 

transducer converts the mechanical pressure energy to electrical energy in the circuit. Then 

an Analog to Digital Converter (ADC) or a Digital Analog Converter (DAC) is used to 

periodically sample the electrical impulse and store that information in the digital domain.   

1.4.5.2. Autonomous Acoustic Monitoring  

A major subset of acoustic monitoring is Passive Acoustic Monitoring (PAM). PAM centres 

around small computers that automatically process acoustic data recording and storage. 

These recorders can take many forms and are often designed to be left in the field for extended 

periods. These can take the form of Semi-Autonomous or Autonomous PAM recorders, where 

the former still require external interference for changing batteries/data collection while the 

latter have autonomous powering and data transfer.  

Truly Autonomous Recording Units (ARUs) can mediate their powering and data transfer 

without external interference. Powering can be autonomised through renewable power 

sources or connection to the grid  (Saito et al., 2015; Sethi et al., 2018). Data transfer can be 

autonomised through connection to the cloud via mobile networks (Sethi et al., 2018) or to 

central hubs via data transfer nodes (Bruggemann et al., 2021)  

PAM has been employed in marine (Sousa-Lima et al., 2013), terrestrial (Roe et al., 2021) and 

freshwater (Desjonquères et al., 2020) habitats across the globe. Taxa-specific studies have 

been completed on birds (Shonfield & Bayne, 2017), bats (Gallacher et al., 2021), other 

terrestrial mammals (Spillmann et al., 2015), marine mammals (Zimmer, 2011), and insects 

(Jain & Balakrishnan, 2012). These autonomous and semi-autonomous soundscape recorders 

are being deployed as tools for continuous ecosystem monitoring across habitat and even 

continent-scale (Roe et al., 2021; Sethi et al., 2021; Sethi, Ewers, Jones, Signorelli et al., 2020).  
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Despite a recent deceleration of uptake, primarily credited to an international microchip 

shortage (Shead, 2021),  all PAM devices have begun to explode in their uptake, with acoustics 

consistently considered a solution in modern ecosystem monitoring (Table 1.3).  

Table 1.3 explains some of the emerging and commonly used commercial methods of PAM (including 

semi-autonomous and autonomous PAM, denoted here as ARUs) in sound ecology. AudioMoth, 

Wildlife Acoustics, HaikuBox and Beep.nl are available for purchase at the time of writing, while the 

others require self-building or are not yet in large-scale production.  

Device 
Name 

Image Importance/ Novelty Reference 

Beep.nl  
 
(PAM) 

 

Records temperature, sound, 
and weight 

Designed to monitor 
beehives  

Runs Autonomously. Sends 
data over networks. Can run 
for one year on AAA 
batteries   

(BEEP, 
2022) 

BUGG  

(ARU) 

 

Records audio (20Hz-80kHz) 

An autonomous recorder 
that uploads data via 3G/4G 
networks (offline mode 
optional). Works with grid or 
off-grid powering.   

Uploads to a web-based 
platform that performs 
soundscape feature 
extraction, species, and 
anomaly detection.  

(BUGG, 
2022) 

Swift and 
SwiftOne 

(PAM) 

 

Records audio (maximum 
sampling rate 96kHz)  

Battery-powered and SD 
card storage.  

Lightweight and cost-
effective  

(Cornell 
Lab of 
Orthinology
, 2022) 
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ecoPi:  

(ARU)  

 

Autonomous solar-powered 
and networked modular 
devices based on Raspberry 
Pis with several 
specialisations.  

EcoPi:Bird – automated 
audible range recording  

EcoPi: Bird2D – stereo 
audible range recording with 
some positional 
determination 

EcoPi:Bug – visual recording  

EcoPi:Bleep – detects bats 
fitted with a radio transmitter 
within 50m range 

EcoPi:Boom – Plays 
attractive recordings and 
records  

(OekoFor, 
2022) 

AudioMoth 
and 
derivatives 

(PAM) 

 

Low-cost, easy to use, widely 
used and available.   

Battery-powered and SD 
card storage.  

AudioMoth - records up to 
384kHz 

HydroMoth - optimised for 
underwater deployments  

Dev – exposed headers for 
users to customise  

μMoth – 32x24mm and 
weighs just 5g 

(Open 
Acoustics 
Devices, 
2022) 
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Wildlife 
Acoustics 
and 
derivatives 

(PAM) 

 

Recording and analysis 
platform (kaleidoscope). 
Extensive guides and 
training.  

Battery-powered and SD 
card storage.  

Widely used 

SM4* – optional stereo 
recording up to 96Khz, 
510hrs run time  

Mini* – smaller and cheaper. 
Optional stereo recording up 
to 96kHz, 210-1040hrs run 
time 

Micro – smaller and cheaper. 
Recording up to 96kHz, 
180hrs run time 

EchoMeter Touch – 
smartphone adaptor for 
ultrasonic recording up to 
384kHz 

* also have bat detector 
options which can record up 
to 500kHz 

(Wildlife 
Acoustics , 
2022) 

RFCx 

(ARU) 

 

Automated solar-powered 
and satellite networked audio 
recording up to 18kHz  

Real-time threat (poaching 
etc.) detection and reporting  

Dedicated app for 
biodiversity monitoring 

(RFCx 
Guardian 
Platform, 
2022) 
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HaikuBox 

(ARU) 

 

Designed for home 
recording, connects to Wi-Fi 
and reports species 
detections to users through 
push notifications on 
smartphones  

(Loggerhea
d 
Instruments 
, 2022) 

Raw audio recordings can quickly generate large amounts of data that can become costly and 

difficult to manage. Many sound ecologists use audio compression to reduce their file sizes. 

Compression takes two forms either lossy (where "inaudible" data is irreversibly removed from 

the recording) or lossless (where audio is encoded to be a string of repeating patterns instead 

of samples, resulting in reduced file size without compromising the acoustic content). Both 

compression methods have benefits and losses, which are explored further in chapter 2.   

1.4.5.3. Visualising Acoustic Signals 

More data than can be feasibly listened to is quickly generated using PAM. Visualisation 

through spectrograms is used to quickly observe the whole recording and look for patterns.   

A spectrogram visualises soundscapes with time on the x-axis and frequencies on the y-axis. 

The amount of energy (amplitude) in each frequency band for a particular timestamp is shown 

as a colour, usually darker for quieter amplitudes, approaching white as they get louder. This 

energy distribution is calculated through a Fast Fourier-Transform (FFT). FFT is a standard 

method of converting data from one domain (like time or space) to another scaled by 

abundance or the frequency of data occurring within a given range. 
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1.5. DATA ANALYSIS IN SOUND ECOLOGY 

Autonomous data collection, especially if recording from multiple locations simultaneously, 

quickly results in more data than can feasibly be examined by a human observer, even with 

spectrograms. As such automated methods of analysis have been developed. In the following 

section, I will outline popular automated methods for analysing field recordings in both 

Bioacoustics and Ecoacoustics (defined below). This section will focus on analysis to 

determine species richness and other measures of biodiversity. Information on automated 

methods for determining call functionality and behavioural neurology is beyond the scope of 

this brief overview, but information can be found at (Mouterde et al., 2017).  

Bioacoustics is the study of sound relating to the calls of individuals or specific species. 

Bioacoustics covers species-specific monitoring, studies of call functionality, and behavioural 

neuroscience involved with animal communication. 

Ecoacoustics covers studies which consider the soundscape and all its components together. 

Conversely, ecoacoustics revolves around quantifying and classifying whole soundscapes 

using descriptive statistics and more abstract descriptors such as convolutional neural net 

(CNN) embeddings.  

1.5.3. Machine Learning (ML) and Deep Learning (DL)  

Machine and deep learning are processes in data analysis whereby computer algorithms can 

“learn” and better themselves over multiple iterations to describe data optimally.  

Specifically, Machine Learning (ML) is a broad subset of statistics involving building models 

trained to represent data patterns. ML includes linear and logistic regression, (k-means) 

clustering, decision trees and random forests.   
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Deep Learning (DL) is a subset of ML, including models built from artificial Neural Networks 

(NN). Typically, NNs are built of node layers (or artificial neurons), each containing an input 

layer, at least one hidden layer and an output layer. The node layers interconnect and are 

associated with each other by different weights and thresholds. Nodes are activated, passing 

information to the next layer if the threshold of their output layer is reached. Unlike other ML, 

DL models can take in raw data (images, text, or audio).   

ML and DL can be supervised, unsupervised or semi-supervised. Supervised learning requires 

labelled datasets and involves the model learning through a stepwise adjustment of weights 

and thresholds. After each adjustment, the model's error function (accuracy) is assessed, and 

the subsequent adjustment is made, hopefully moving towards a reduction in error. This 

optimisation process usually happens over a specified number of steps or until the model is 

deemed sufficiently accurate. Supervised methods can fall victim to overfitting, which occurs 

when a model has been pushed to match a training dataset too closely. Overfitting results in 

the model picking up artefacts in the training data that are not represented in the broader 

context, making the model less accurate on unseen data. NNs, Logistic and linear regression 

are examples of supervised learning.  

Unsupervised methods do not require labelled data and are intended to pick up patterns and 

trends in the data and separate groups. This separation is often achieved by creating an 

artificial axis through the datasets, which creates the greatest separation between points – 

often revealing clusters in the datasets. Standard unsupervised methods are principal 

component analysis (PCA) and k-means clustering.  

Finally, semi-supervised methods use a small subset of labelled data to describe an unlabelled 

winder dataset. When the models reach labelled data, it behaves similarly to a supervised 

method; for unlabelled data, it works to minimise the difference between the unlabelled point 

and other similar points. Including unlabelled points in semi-supervised learning makes the 
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model more robust to variation in the data. Semi-supervised learning can be helpful when it 

becomes too costly or time-consuming to label the entire dataset.  

1.5.4. Bioacoustics 

Bioacoustics focuses on recognising species or individuals. Using bird calls to identify species 

is a traditional method, with notes on bird alarm calls and songs in almost every bird 

identification book. Retaining all target bird calls to memory requires many hours of training 

and skill and is not usually feasible. Fortunately, DL methods have been developed and are 

now widely used for detecting and classifying acoustic events.  

Extracting species data from continuous soundscapes can be messy as soundscapes are 

usually noisy, and more than one species may be calling at any time. Therefore, automating 

bioacoustic analysis with DL is a two-step process: Detect and Classify (Stowell, 2022).   

 Detection can occur as binary classification, sound event detection or image object 

detection (Morfi et al., 2021; Stowell, 2022; Stowell et al., 2019; Venkatesh et al., 2022). 

Binary classification returns yes/no across a time series of detections. Sound event 

detection involves the feature/ML-based detection and extraction of calls from a 

recording. Image object detection involves taking in spectrograms and using image 

boundary classifiers to separate individual calls (Stowell, 2022).   

 Classification can be achieved by creating and training a new DL model or using an 

established setup. Training datasets can be created from personal libraries or open-

source directories such as Xeno-Canto.org. Data augmentation, which involves 

artificially adding noise/ slight variations to labelled samples to increase training dataset 

size and variance, can also be employed (Stowell, 2022).  DL classifiers are trained on 

a library of labelled calls from a target region. Once the classifier accurately predicts 

the known data, it can be used to classify unknown data.  
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DL classification models can be RAM intensive and take a while to train, but training needs 

only occur once; once trained, models are lightweight and deployable. Bioacoustics DL models 

are widely available as off-the-shelf programmes. BirdNET is one example with a lightweight 

download, user-friendly GUI, and can analyse unseen recordings in a fraction of their time 

(Kahl et al., 2021).  BirdNET has an app, GUI and command line implementation for people 

with different skill levels and requirements. Bioacoustics-based species identification apps can 

be used to help twitchers, citizen scientists, and researchers identify and log the birds they 

see. These apps are easy to use and incredibly popular (BirdNet 1M+ downloads, Merlin Bird 

ID by Cornell Lab or Orthinology 1M+ downloads (Google Play, 2022)).   

While showing promise in successfully identifying many taxa, bioacoustics depends on well-

labelled training datasets, and under-represented species, especially insects,  in those 

datasets often go undetected (Baker & Vincent, 2019).  An alternative to bioacoustics that is 

less dependent on human-assigned value is an approach that considers the whole soundscape 

(ecoacoustics).  

1.5.5. Ecoacoustics  

Ecoacoustics considers the whole soundscape, combining biophony, geophony and 

anthropophony. In doing so, ecoacoustics gives space to less charismatic, unheard, or 

understudied species. Ecoacoustics can also monitor the anthrophony's manner, extent and 

perhaps impact. Ecoacoustics is broadly studied through two main routes: Acoustic Indices or 

DL-based soundscape embeddings.  

 Acoustic Indices are statistical interpretations of a whole soundscape based around 

uncovering biophony. Specifically, they work by quantifying aspects of the soundscape 

related to increased biophony via the ANH, such as the range of frequencies in the 

signal and the spread of energy across different frequency bands. Over 60 acoustic 
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indices have been developed since 2007 (Buxton, McKenna, et al., 2018). Examples: 

Acoustic Complexity Index (ACI) (Pieretti et al., 2011), Normalised Difference 

Soundscape Index (NDSI) (Kasten et al., 2012).  

 Instead, DL Embeddings run the whole soundscape through a pre-trained acoustic 

classification algorithm, stopping the process just shy of the classification. What is left 

is a vector of numbers that can be used as an abstract soundscape descriptor (like a 

barcode or fingerprint). These abstract descriptors can then be used to train and build 

models for downstream classification. Examples: VGGish, wav2vec (Baevski et al., 

2020; Hershey et al., 2017). 

Acoustic indices have widespread use, primarily accredited to their ease of use and the wealth 

of guiding information on their usage (Bradfer‐Lawrence et al., 2019; Browning et al., 2017; 

Gasc et al., 2013; Metcalf et al., 2021). Further, acoustic indices can be easily extracted 

through straightforward free packages in R: seewave (Jerome Sueur et al., 2008) and 

soundecology (Gasc et al., 2013; Villanueva-Rivera & Pijanowski, 2016). Their applications 

include monitoring species richness (Eldridge et al., 2018), community composition (Jérôme 

Sueur et al., 2008), the relative contributions of biophony, geophony and anthropophony to a 

soundscape (Kasten et al., 2012), approximating species abundance (Papin et al., 2019), as 

means of more intuitively visualising soundscapes (M. Towsey et al., 2018), or even as a means 

of mapping an area's biodiversity (Carruthers-Jones et al., 2019). 

Acoustic indices have long yielded mixed results, which a recent meta-analysis aimed at 

exploring their efficacy in biodiversity representation (Alcocer et al., 2022). The meta-analysis 

stated that there were "significant shortcomings in the theoretical framework", referring to 

ambiguity in the evolution of the soundscape (ANH and AAH) (Alcocer et al., 2022). The meta-

analysis also states a weak relationship and highly variable effect sizes between many of the 

most used acoustic indices and species diversity metrics (Alcocer et al., 2022). DL-based 
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methods are briefly mentioned in the review, but their "complexity" limits their uptake in the 

field (Alcocer et al., 2022).    

DL-based methods are being used as soundscape descriptors to a much smaller degree than 

acoustic indices. Models built from DL embeddings make for descriptive visualisations and are 

successful predictors of landscape, biomass, and species (Sethi, Jones, Fulcher, Picinali, 

Clink, et al., 2020). DL embeddings have been shown to outperform acoustic indices on 

landscape classification tasks and their robustness to experimental variation (Heath et al., 

2021; Sethi, Jones, Fulcher, Picinali, Clink, et al., 2020).  

These whole soundscape applications are lightweight, generalised models for exploring 

soundscapes but with unclear connections to ecological theory. No less because species vary 

in repertoire size, calling rate, calling behaviour, response to noise and detectability distance. 

Considering just whole community-level recordings does not take this variation into account. 

1.6. THE FUTURE OF SOUND ECOLOGY  

Bioacoustics and Ecoacoustics are exciting and developing fields, with studies increasing 

yearly (Alcocer et al., 2022). Development of hardware and software and increasing evidence 

of their applicability in the field of ecoacoustics are coming out regularly, with state-of-the-art 

changing at least every two years significantly (Stowell, 2022). A recent review of methods in 

ecosystem monitoring specifically cited that "technologies such as automatic recorders have 

not reached their full potential to support modern ecological monitoring" (Besson et al., 2022; 

Hampton et al., 2013; Tuia et al., 2022). In a maturing field, utilisation of the state-of-the-art 

requires a breadth of specialist research that may be off-putting for those unfamiliar (Besson 

et al., 2022). Updated guidelines in the field are regularly published; still, there is a lag between 

new applications emerging and this reaching common practice in the field. At the very least, it 
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will be exciting to see how existing tools are applied on a broader scale as they become 

commonplace in the field. 

1.6.3. Developments in DL  

DL is already commonly used in bioacoustics through easy-to-use, low-CPU software like 

BirdNET (Kahl et al., 2021). As computer literacy increases with user-friendly GUIs and the 

inclusion of DL methods in widespread bioacoustics and ecoacoustics guidelines, so will their 

deployment in broader research.  

Machine learning is a rapidly evolving field with new methodologies or applications coming out 

on an almost monthly basis. State of the art for computational bioacoustics was recently 

reviewed, highlighting possible avenues of development in the field, including Transformers, 

Active Learning and Few-Shot learning (Stowell, 2022 and references therein).   

Transformers are a type of Semi-Supervised Neural Network designed for translation via 

natural language processing (NLP) (Vaswani et al., 2017). Transformers work well for NLP for 

the same reason they might apply well to bioacoustics: they are built to analyse sequential 

(such as time-series) data.   Unlike RNNs, which also take in sequential data, they do not 

analyse it sequentially, meaning they lean well to parallelisation, allowing them to build 

sophisticated models from vast amounts of data quickly. Transformers benefit from positional 

encoding and self-attention, meaning that learning order information is built into the model, 

which can prioritise (give attention to) different aspects of data based on their importance 

training. Transformer models (wav2vec (Baevski et al., 2020)) have been applied to an 

enormous array of tasks and have been showing some promising early results in bioacoustics 

(Elliott et al., 2021; Stowell, 2022). 

Few-shot learning is where a model is pre-trained across multiple similar tasks, such that 

when introduced to a new (but similar) task, it already has the infrastructure to build a 
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classification model quickly. In bioacoustics, his new task could be introducing a new type of 

call to a model that has already learnt to classify several different calls successfully. (Stowell, 

2022; Wolters et al., 2021).  

Finally, Stowell suggests using Active Learning, which restructures the model to include more 

human-machine interaction (Stowell, 2022). The model shows some uncertain predictions to 

the user who feeds correct information into the system to assist optimisation. Active Learning 

requires fewer labelled data than a supervised model and makes better use of the researcher's 

time (Stowell, 2022 and references therein)  

A very recent development in DL is AudioLM, a language model able to generate passable 

audio (Borsos et al., 2022). Using sound generation algorithms could create a broader range 

of augmented recordings for ML and DL model training – perhaps resulting in fewer artefacts. 

It may also be interesting to see whether synthetically generated "bird calls" can fool machine 

or even human listeners.  

1.6.4. Determining Detection Ranges and Likelihood  

While it sounds straightforward, the distance an acoustic signal will penetrate through an 

environment depends on several situational qualities, such as signal amplitude, frequency, 

attenuation profile, environmental masking, reverberant properties of the environment, and 

how direct the path is. Therefore, the audible range of a device depends heavily on where it is 

and what it is hoping to detect (Browning et al., 2017). Knowing a species' detection likelihood 

and distance is pivotal for extending bioacoustic monitoring beyond yes/no occupancy 

monitoring and towards abundance.  
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1.6.5. Developments in Hardware 

The reduction in size and expense of micro-computers has been vital in the exploding tech 

available in sound ecosystem monitoring. As available technology develops further, we may 

see an influx in the capability of devices. I suspect the following developments will have 

significant impacts on the field in years to come: battery-free tech, low-latency satellite 

connection, terrestrial sonar, automated sensor deployment, biodegradable sensors, 

integrated sensors, and multichannel acoustic recording for sound-source localisation.  

When regular computers and microcomputers are switched off, they go through a set of "shut-

down" protocols that ensure the device enters the sleep phase safely. Immediately pulling the 

plug on battery-less devices causes them to lose power without running these protocols, 

sometimes corrupting the operating system and rendering the device useless. In ARUs 

powered by renewable (and often unpredictable) sources like sunlight, sudden power loss is 

a regular occurrence, meaning all devices using these power sources need to be equipped 

with clunky batteries and other power management hardware. These systems may only add 

to the issue as sometimes even sedentary batteries can drain power. A recent proposal for 

Battery-Free Technology (Lostanlen et al., 2021) explores a micro-computer that works 

“battery-free” and does not run into corruption in sudden power loss. Exploratory battery-free 

technology is promising and may be a valuable solution for all ecosystem monitoring practices 

requiring lightweight attachments, such as devices deployed by drones and devices used as 

animal tags or trackers.  

ARUs may also benefit from connections to widespread low-latency satellite 

communication networks such as Starlink (Starlink, 2022). Acoustic data can reach large 

volumes quickly, and at present, ARU placement is limited to areas of solid, fast connectivity if 

the devices transmit data at least at the speed it is generated. With widespread low-latency 

connectivity, such as that provided by Starlink (20ms vs 600ms+ of standard network 
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connectivity (Starlink, 2022)), it will be possible to deploy ARUs at a broader range of (remote) 

locations. Starlink currently covers large portions of Northern America, Australia and Western 

Europe but is hoping to expand to include the rest of the Americas, Europe, Africa, Australasia 

and some countries in North Asia and the Middle East in 2023 (Starlink, 2022). 

Underwater sonar was mentioned in an earlier section, capable of identifying species of fish 

and arthropods (Bernard & Steinberg, 2013; Dunlop et al., 2018). However, research in 

terrestrial applications of high-frequency sonar remains understudied. Parallel to 

echolocation in bats, terrestrial sonar could potentially be used in 3D habitat reconstructions 

in terrestrial landscapes.  

One drawback of even the most advanced ARUs currently available in ecosystem monitoring 

is that they require human interaction for deployment and removal. Recent speculative work 

has questioned whether biodegradable sensors, such as those used in the human body, 

could be used to collect data on enormous scales and pose that this would transform how 

natural ecosystems are managed and understood (Sethi et al., 2022). Outside of biomedical 

research, these sensors are in their speculative phase, but sensors of this type – deployed by 

drones, could lead to the automation of the entire fieldwork process.  

Currently, most remote ecosystem monitoring research revolves around developing 

specialised equipment for acoustic monitoring OR visual monitoring OR chemical monitoring. 

However, getting a complete view of the species and ecosystem processes within an 

environment could benefit from devices with Integrated Multimodal Sensors. Multimodal 

sensing has been deployed in weather stations and agricultural IoT to report real-time 

multimedia data about ammonia, CO2, temperature, and sometimes sound and image 

(Lohchab et al., 2018). In ecosystem monitoring, this is much less explored but would give 

valuable insight into the holistic functioning of the system. Occasionally multiple sensor types 
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are deployed simultaneously (Buxton, Lendrum, et al., 2018), but to my understanding, an 

integrated platform for ecosystem monitoring does not yet exist.  

1.6.6. Linking Sensors to Real-Time Action  

It was recently suggested that bioacoustics and ecoacoustics are going through the 

intermediate stages of an industrial revolution (Jones, 2022). The general four stages of the 

industrial revolution in any industry can be categorised as follows:  

(1) Industry 1.0: "Mechanisation and steam power",  

Akin to manual data collection, species traps etc.  

(2) Industry 2.0: Mass production, assembly line, electricity  

Electrical data collection and storage  

(3) Industry 3.0: Computer and Automation  

Automated data collection, transfer, and analysis pipelines 

(4) Industry 4.0: Cyber-physical Systems and Networks 

Automated intelligent (and potentially mediating) response to analytics  

Ecosystem monitoring, particularly with sound, has surpassed manual mechanistic data 

collection (Industry 1.0) and has comfortably been collecting data through electronic 

recordings and storage for decades (Industry 2.0). Automated data collection and analysis 

(Industry 3.0) in the field is becoming more widespread but not yet ubiquitous. Finally, the use 

of systems that autonomously collect, analyse and respond to data (Industry 4.0) is only just 

emerging and is not widely used.  

Integrated recording and response have widescale usage in agricultural IoT systems (Lohchab 

et al., 2018), including automated feeders, moisture control, feeding and ventilation. While not 

a fully integrated action station, an autonomous recording, detection, and alert system has 

been developed to report illegal behaviour in protected areas (RFCx Guardian Platform, 2022). 
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Wildlife Acoustics also recently announced a "Smart System", a networked bat detection 

system that enables wind turbine owners to respond to bat presence in real-time, hoping to 

reduce bat fatalities (Wildlife Acoustics , 2022). As PAM develops, we may see exciting new 

applications of real-time conservation responses as a direct result of ecoacoustic and 

bioacoustic triggers. 

1.6.7. Enhanced Data Sharing  

The scientific community already have a wealth of acoustic data across massive 

spatiotemporal scales, often belonging to just one lab or group of researchers. A 

comprehensive platform for acoustic data/ methods and research was recently suggested and 

is in progress (audioBLAST!, 2022), and would make such analysis possible.  

1.6.8. Spatial Acoustics 

Spatial Acoustics, explored in greater detail in chapters 3 and 4, describes an emerging 

methodology of enhanced recording and analysis that allows researchers to approximate the 

position of the origin of a sound. Knowing the position of an individual has many applications, 

including assessing the behaviour and movements of individuals, studying interactions, 

identifying individual identities, sub-setting (and beamforming) sounds for more detailed 

analysis, calculating species abundance more accurately, and inferring habitat usage/territory 

(Rhinehart et al., 2020). 

Sounds can be localised when the difference in the time it takes for a signal to reach multiple 

known points in space is known. Specifically, if a signal is recorded at multiple fixed positions, 

the time difference between the signal reaching those positions can be used to triangulate the 

signal’s position of origin. There are broadly two types of sound-source localisation: Hyperbolic 

and Direction of Arrival (DOA).  Hyperbolic localisation occurs when microphones are widely 

spaced in an array across a study area; sounds that originate within the array can be 
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approximately localised to a geographical position. DOA estimation instead centres around 

smaller microphone arrays, often on a single device, where external sound sources are 

localised to directions relative to the device rather than exact positions (Rhinehart et al., 2020). 

Multiple DOA recorders can also be used to determine positional information about a signal's 

location of origin. In both methods, localisation depends on ultra-fine scale temporal 

differences at each microphone. In ordinary (omnidirectional) recorders, the onboard clock of 

a device can drift slightly by a few seconds every day. While this does not have huge 

implications for omnidirectional recording, this can have a catastrophic effect on the ability of 

a multichannel recorder/ recording array to localise a signal.  

Multiple established recorders can be used in acoustic localisation; however, this can become 

expensive (Wildlife Acoustics: £700+/unit, AudioMoth: £60+/unit, SAFE Acoustics: £200+/unit) 

and require additional hardware and software adaptations for necessary cross-microphone 

synchronisation. For this reason, most recorders used in localisation studies are built 

especially for a particular study or lab. Notable recently developed examples include 

CARACAL, VoxNet, and the Dev-Net/TAMAGO system used by the team behind HARKBird. 

The CARACAL (Conservation at Range through Audio Classification and Localisation)  system 

consists of several units, each with four MEMS microphones and a GPS localiser and 

synchronisation (Wijers et al., 2021). The CARACAL system detects signals using 

thresholding; once detected and localised, signals are then beamformed and extracted to 

improve SNR. VoxNet, a development from Acoustic ENSBox (Girod et al., 2006), is a complete 

hardware and software system that centres around a wireless network of ARUs, each with four 

microphones, automated time synchronisation, localisation and network coordination (Allen et 

al., 2008). VoxNet was designed to be an “out of the box” tool for acoustic localisation, and 

the system houses internet connectivity for remote data transfer (Allen et al., 2008). The Dev-

Audio/TAMAGO system used by the lab which developed HARKBird consists of single units, 
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each with 7/8 microphones respectively (Suzuki et al., 2017), and the recording units are 

controlled by a laptop GUI (Suzuki et al., 2017).  

While short-term experiments have proven themselves as interesting proofs-of-concept within 

the field of ecoacoustic localisation, extended recording periods are necessary to understand 

an ecosystem more comprehensively. In practice, this is difficult, with devices still requiring 

attention for data retrieval when SD cards fill up (Wildlife Acoustics Song Meters, e.g. - (Mennill 

et al., 2012)) when batteries run out (VoxNet), or both (CARACAL, Dev-Audio/TOMAGO). More 

recently, Crunchant et al., 2022 presented a solar-powered, GPS-synchronised device that 

they demonstrate using for wildlife sound localisation – the device requires manual data 

collection after SD cards become full. A recent study resolves this by using a completely 

Wireless Acoustic Sensor Network, which autonomously uploads data to a server through a 

gateway node (Bruggemann et al., 2021).  Bruggemann et al., 2021  boast integrated real-time 

species ID and have expressed motivation to explore localisation in the future, but this has not 

yet been explored. This device also requires manual battery replacement.   

Adding a spatial dimension to soundscape recording opens up a whole new dimension of 

available data and analyses that may prove incredibly fruitful in future studies. Specifically, 

rather than just knowing what and when things are happening in an ecosystem, we can instead 

ask what, when, and where. 

1.7. CONCLUSION  

In this overview of state-of-the-art sound ecology, I hope to have restated the importance of 

ecosystems by evidencing their necessity for the continuation of humanity while advocating 

for their continued monitoring. I briefly explain the most up-to-date methods in ecosystem 

monitoring, specifically through camera traps, canopy imaging, eDNA, and acoustics. After 

exploring the physical properties of soundwaves, I describe how the field of sound ecology 



39 
 

has evolved from defining semantics and theory (including the ecological and evolutionary 

drivers of vocal communication) to large-scale automated monitoring. I introduce some of the 

most state-of-the-art methods in soundscape recording and analysis and speculate on how 

the field may develop in future. Specifically describing future and near future advancements 

in hardware development (specifically spatial acoustics), machine learning, cross-study 

standardisation, and automated action.  

I have identified three key literature gaps within this literature review that this thesis is designed 

around answering. The first investigates an increasingly prominent challenge in long-term 

ecoacoustic monitoring: data storage. Acoustic datasets can become massive, and data 

reduction strategies are often used without known consequences. In this thesis, I identify some 

of the most common data management strategies and explore how and why these practices 

may affect how soundscapes are quantified. Secondly, I have introduced the fascinating new 

field of spatial acoustics, highlighting some of the vital applications of this tech whilst examining 

why uptake has been limited. In this survey, I found that cost, difficulty obtaining and using 

equipment and lack of autonomy were key drawbacks. The second aim of my thesis was to 

design a recorder that addressed this gap, with applications to increase the uptake of spatial 

acoustics and allow a broader range of users to utilise spatial acoustics. The third and final 

gap I uncovered was twofold: the scarceness of single-device spatial acoustics,  and the lack 

of vertical axis spatial acoustics. Specifically, most spatial localisation requires three or more 

separate recorders, which can add up, even when the base recorders are low cost. It is 

underexplored whether useful ecological features can be derived from single-device spatial 

acoustics, so the third aim was to investigate what was achievable with just one of the devices 

I developed. Further, I noticed that spatial acoustics is almost exclusively considered on the 

horizontal axis, so I designed this study around exploring the vertical axis.  
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While this has been a largely high-level overview of the broad range of topics necessary for 

the development and usage of wildlife tech, I hope this has well contextualised the importance 

of the research area, the future landscape of the field, and ultimately the following chapters.   

1.8. RESEARCH OBJECTIVES  

This thesis aims to assess and develop methods in (spatial) sound ecology.  I achieve that by 

exploring three research questions over the following three chapters.  

(1) Investigate Whether Data Saving Practice in Ecoacoustics Affects the Quantification of 

Soundscapes 

 

(2) Develop an Autonomous Multi-Channel Acoustic Recorder Capable of Sound-Source 

Localisation  

 

(3) Explore Whether a Single Recorder Capable of DOA Estimation Can Be Used To 

Approximate Abundance and Monitor Behaviour 
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1.9. CHAPTER OVERVIEW AND OUTCOMES 

(1) Investigate Whether Data Saving Practice in Ecoacoustics Affects the 

Quantification of Soundscapes 

How Index Selection, Compression and Recording Schedule Impact the description 

of Ecological Soundscapes (Chapter 2) 

I begin chapter two by explaining common variations in data collection and analysis in sound 

ecology, focusing on whole soundscape monitoring. Specifically, I introduce experimental 

protocols commonly used to reduce data storage and transmission costs (temporal subsetting 

and compression). In the chapter, I highlight how it is currently unknown whether compression 

(which works through the irreversible removal of data) impacts soundscape quantification. 

Further, I explain how despite the increase in studies calling for standardisation, there is still 

much variation in ecosystem sampling efforts.  

I designed a study to investigate the impact of both compression and temporal subsetting on 

soundscape quantification. I highlighted analytical indices as the most used method of 

soundscape quantification and CNN-derived soundscape “fingerprinting” as a possible future 

solution. Both measures are investigated in this study. I used three days’ worth of high-quality 

audio recorded across a gradient of land use. I collected the data for this study in Malaysian 

Borneo at the Sustainability of Altered Forest Ecosystems (SAFE) project. All acoustic data 

were collected with AudioMoth recorders. 

The different experimental protocols were “simulated” post-fieldwork by creating 

augmentations of the collected audio with different recording lengths or were compressed to 

different rates. Acoustic Indices and the CNN-derived fingerprint were extracted from all raw 

and augmented acoustic datasets. I quantified the impact of compression by calculating the 

difference in the descriptive measures between each compressed recording and its raw 
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(uncompressed) counterpart. Whether compression and the other experimental protocols 

affected soundscape quantification was assessed by building and testing the accuracy of a 

random forest classification model for all combinations of experimental protocols.   

Overall, I found that both compression and recording length drove considerable variation in 

index values but that this had a more negligible effect on the model performance than whether 

Analytical Indices or the CNN-derived fingerprint was used. I found that the CNN-derived 

fingerprint was more robust to differences and worked better as a soundscape descriptor. I 

provide further evidence for the usability of CNN-derived soundscape fingerprinting but also 

provide evidence for its robustness which was previously only speculated. Finally, I use our 

findings to provide guidelines for future work, especially work which is restrained by data 

storage.  

This finding is valuable as it means researchers on data volume restrictions from server costs 

or limited SD cards can confidently choose to sample data from a larger range by minimising 

the per/time data storage requirements with compression. At the time, the use of CNN-derived 

soundscape fingerprinting was not especially widespread and adding to the now much larger 

body of research advocating for its usage (especially on low-quality data) provides evidence 

of use cases in a broader context. 

Contributions:  

(1) An open-access article in Ecology and Evolution presents our research and provides 

recommendations for users limited by data constraints (Heath et al., 2021). 

(2) Conference proceedings and presentation at Forum Acousticum 2020 (Heath et al., 

2020) 

(3) Talk at International Bioacoustics Congress (Heath, 2019 ) 

(4) Two open datasets: raw audio (Heath B. E., Sethi, Orme, Ewers, & Picinali, 2021), and 

soundscape descriptors (Heath B. E., Sethi, Orme, Ewers, & Picinali, 2021). 
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(5) An open Github repository containing data analysis pipelines and data visualisation.  

(2) Develop an Autonomous Multi-Channel Acoustic Recorder Capable of Sound-

Source Localisation  

Introducing MAARU – Multichannel Autonomous Recording Unit for Spatial 

Ecosystem Monitoring (Chapter 3) 

I shifted focus in the third and fourth chapters to spatial acoustics, which is increasingly 

garnering attention in the field. Reviewing the literature revealed many use cases of spatial 

acoustics but highlighted that almost every study used recorders only suitable for short-term 

deployments that required highly specialised/ expensive equipment and/or extensive 

expertise. My first aim was to create a multichannel acoustic recording platform that was 

autonomous and suited to long-term field deployment, built from relatively low-cost 

commercially available equipment.  

In my third chapter, I describe my process of developing MAARU, my low-cost, multichannel, 

autonomous recording unit. After considerable experimenting, I found that the best balance 

between ease of use, financial cost, and equipment availability came from the Seeed Studio 

ReSpeaker 6-Microphone Circular Array. I incorporated the sound card and different 

processing parameters into an established autonomised soundscape recording and data 

transfer platform. These new scripts and the necessary instructions are detailed in this chapter 

and on a GitHub repository (github.com/BeckyHeath/multi-mic-recorder-analysis). 

Weatherproofing and tethering used for this device required special consideration as for 

accurate sound-source localisation, the path between a signal and a receiver should be largely 

uninterrupted, voiding most usual methods of microphone cover. I developed the software, 

hardware and weatherproofing together and called this recorder MAARU (Multichannel 

Acoustic Autonomous Recording Unit). Getting a recorder that could record, process, and 
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upload six audio channels simultaneously was only half of the challenge. The next was to 

determine whether this setup could (1) be used for sound-source localisation and (2) how well 

this setup and the localisation could persist in the field.  

I explored several routes when determining how best to localise sound sources with my new 

device, landing on HARKBird. I worked with one of the developers of HARKBird (Reiji Suzuki, 

Nagoya University Japan) to create an install of HARKBird that was compatible with MAARU. I 

then tested how accurately audio recorded by MAARU could be localised with HARKBird. I 

tested the MAARU device's resistance to waterproofing and a six-month deployment in the 

field.  In all cases, sound sources could be localised to within ±10˚ of their actual direction. 

Two of the four field devices suffered some terminal damage in the field because of animal 

damage and powering issues; However, from these results, I have been able to provide 

mitigating advice. Overall, I have successfully created a non-expensive, completely open, and 

accessible platform capable of accurate audible-range, sound-source localisation in field 

environments, the likes of which had not previously been introduced in this field.  

The core work from this chapter is currently under review, but I hope this work will provide an 

accessible platform for others hoping to do spatial acoustics surveys without extensive funding 

or expertise.  

Contributions:  

 Article describing MAARU in review. 

 Research Presented at an international conference (Heath B. E., (Spatial) Ecoacoustic 

Monitoring, 2022) 

 I presented this work at two UK Acoustics Network workshops as a panellist (Heath B. 

E., Hardware Panel , 2022), and in two mini-talks  (Heath B. E., Sound Recording and 

Sound Analysis, 2022)  
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 Two open GitHub repositories. The first contains all the scripts that record, process, 

and transfer data through the Raspberry Pi (MAARU) recorder. The second contains 

all the scripts used in accuracy processing and data visualisation in the chapter. 

 

 

(3) Explore Whether a Single Recorder Capable of DOA Estimation Can Be Used to 

Approximate Abundance and Monitor Behaviour 

MAARU (Multichannel Acoustic Autonomous Recording Unit) in the Wild – Estimating 

Abundance and Exploring Vertical Stratification with Multichannel Acoustics (Chapter 

4).  

The literature has begun to explore the applications and success rates of using multiple nearby 

recorders to determine the locations of calling individuals. I instead opted to explore what a 

single multichannel recording unit could do and whether it could add anything to ecosystem 

recording beyond that which was possible with a single channel recorder, even without 

determining the exact calling locations of individuals.  

Therefore, the final aim of this thesis was to explore whether (and how) the recorder I 

developed in the previous chapter (MAARU) could be used to enhance ecosystem recording 

alone and what (if anything) we could learn from investigating the vertical axis. I determined 

two analysis routes here: firstly, to spatially cluster the direction of signals as enhanced 

abundance approximation and by using these directions as a coarse behavioural predictor for 

detected individuals. Over the chapter, I provide evidence for both use cases, showing 

reduced abundance approximations using DOA-approximated abundance and evidencing that 

different bird species call from different directions in the field test. This analysis relies on data 

from the MAARU recorder and an accurate classification algorithm. MAARU records at 16kHz, 
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limiting the detected species to strictly below 8kHz. Excluding everything beyond that wipes 

many groups of species from the analysis and will reduce how generalisable these results are; 

however, this simultaneously provides an exciting standpoint for future development.  

These kinds of analyses open a whole world of new questions that can be explored in future: 

whether morphology or diet influences vertical space usage, whether there is any link between 

functional traits and vertical height usage, do different forest management processes such as 

selective felling, agroforestry or rewilding influence the vertical space usage of species and 

could this perhaps be used to explain increases or relief of competition.  

Contributions:  

 Article describing the analysis pipeline in progress. 

 An open Github repository containing all the scripts necessary to join raw HARKBird 

and BirdNET outputs, perform directional clustering, and some of the early 

visualisations of species- and location-specific DOAs.  
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2. CHAPTER 2: THE IMPACT OF DATA SAVING PRACTICE IN 

ECOACOUSTICS 

2.2. CHAPTER OVERVIEW 

Acoustic indices derived from environmental soundscape recordings are used to monitor 

ecosystem health and vocal animal biodiversity. Soundscape data can quickly become very 

expensive and difficult to manage, so data compression or temporal down-sampling are 

sometimes employed to reduce data storage and transmission costs. These parameters vary 

widely between experiments, with the consequences of this variation remaining mostly 

unknown. 

I analyse field recordings from North-Eastern Borneo across a gradient of historical land use. 

I quantify the impact of experimental parameters (mp3 compression, recording length and 

temporal subsetting) on soundscape descriptors (Analytical Indices and a convolutional neural 

net-derived AudioSet Fingerprint). Both descriptor types were tested for their robustness to 

parameter alteration and their usability in a soundscape classification task. 

I find that compression and recording length both drive considerable variation in calculated 

index values. However, I find that the effects of this variation and temporal subsetting on the 

performance of classification models is minor: performance is much more strongly determined 

by acoustic index choice, with AudioSet fingerprinting offering substantially greater (12%–

16%) levels of classifier accuracy, precision, and recall. 

I advise using the AudioSet Fingerprint in soundscape analysis, finding superior and consistent 

performance even on small pools of data. For audible range studies (excluding ultrasound) 

where data storage is a bottleneck, I recommend Variable Bit Rate encoded compression 

(quality = 0) to reduce file size to 23% file size without affecting most Analytical Index values. 
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The AudioSet Fingerprint can be compressed further to a Constant Bit Rate encoding of 

64 kb/s (8% file size) without any detectable effect. These recommendations allow the efficient 

use of restricted data storage whilst permitting comparability of results between different 

studies. These results are, however, only relevant for soundscape level audible range 

monitoring, and further investigation should be taken if the study looks to investigate particular 

target species or include species that call outside of the audible range.  

2.3. INTRODUCTION  

Animal vocalisations come together with abiotic and human-made sounds to form 

soundscapes. These soundscapes can be recorded and quantified across large temporal and 

spatial dimensions to monitor species populations or infer community-level metrics such as 

biodiversity (Eldridge et al., 2018; Gómez et al., 2018; Roca & Proulx, 2016). Monitoring is 

crucial to effectively respond to threats such as disease, species loss and overlogging 

(Rapport, 1989; Rapport et al., 1998). Previously, the use of in situ expert listeners to monitor 

species presence and abundance was common (Huff et al., 2000), but: is costly and time-

consuming; can damage habitats; and is prone to narrow focus and observer bias (Costello et 

al., 2016; Fitzpatrick et al., 2009). Advances in portable computing now permit remote 

recording of soundscapes but produce a volume of data that is very time-consuming to review 

manually,  leading to the development of automated or semi-automated methods of analysis 

(Sethi, Jones, Fulcher, Picinali, Jane, et al., 2020; M. W. Towsey et al., 2016).  

Soundscape composition is primarily assessed using acoustic indices, which describe the 

soundscape in an abstract form. Analytical Indices are a type of acoustic index which are 

summary statistics that describe the distribution of acoustic energy within the recording (M. 

Towsey et al., 2014) –over 60 of which have been designed to capture aspects of biodiversity 

(Buxton, McKenna, et al., 2018; Jérôme Sueur et al., 2014). These are commonly used in 

combination to compare the occupancy of acoustic niches, temporal variation, and the general 
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level of acoustic activity (Bradfer‐Lawrence et al., 2019) across ecological gradients or in 

classification tasks (Gómez et al., 2018). These approaches have provided novel insight into 

ecosystems across the world ( Fuller et al., 2015; Buxton et al., 2016; Eldridge et al., 2018; 

Sueur, Krause and Farina, 2019) but are not without limitations and often have poor 

transferability  (Bohnenstiehl et al., 2018; Mammides et al., 2017). This may result from a lack 

of standardisation: differing index selection, data storage methods, and recording protocols, 

which all lead to unassessed variation in experimental outputs (Araya-Salas et al., 2019; 

Bradfer‐Lawrence et al., 2019; Sugai et al., 2019).  

The output vector from the AudioSet convolutional neural net (CNN; Gemmeke et al., 2017; 

Hershey et al., 2017) is an attractive replacement for Analytical Indices. This pre-trained, 

general-purpose audio classification algorithm generates a multi-dimensional acoustic 

fingerprint (AudioSet Fingerprint) of a soundscape which can be used as a more effective suite 

of acoustic indices (Sethi, Jones, Fulcher, Picinali, Jane, et al., 2020).  The AudioSet CNN is 

trained on two million human-labelled anthropogenic and environmental audio samples, 

potentially giving it both greater transferability and discrimination than typical ecoacoustic 

training datasets. Unlike Analytical Indices, however, extra analysis (such as training 

classifiers/ predictive models) is necessary to relate the AudioSet Fingerprint to ecological 

processes and states.  

In ecoacoustics, a continuous uncompressed or lossless recording is generally recommended 

(Browning et al., 2017; Villanueva-Rivera et al., 2011), but generates huge files. In this chapter, 

I considered two commonly used approaches to reducing storage requirements (M. Towsey, 

2018). Firstly, mp3 compression, which is widely used in ecoacoustic studies (e.g. Saito et al., 

2015; Zhang et al., 2016; Sethi et al., 2018): this lossy encoding removes acoustic information 

inaudible to human listeners (Sterne, 2012). Mp3 compression will therefore remove all 

ultrasonic data akin to the calling frequencies of an increasingly diverse range of species of 

bats, small mammals and some birds,  but is suspected of removing ecologically important 
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data in the audible range too (e.g. Towsey, Truskinger and Roe, 2016; Sugai et al., 2019). For 

this reason, Araya-Salas, Smith-Vidaurre and Webster (2019) have recently shown that audible 

range ecological information is lost under high compression from recordings of isolated animal 

calls. However, it is not known if this extends to recordings of noisier whole soundscapes.  

Secondly, recording schedules also vary in ecoacoustic studies (Sugai et al., 2019). Bradfer‐

Lawrence et al. (2019) showed that longer and more continuous schedules give more stable 

Analytical Index values. However, ecoacoustic composition varies with the time of day 

(Bradfer‐Lawrence et al., 2019; Fuller et al., 2015; Sethi, Jones, Fulcher, Picinali, Jane, et al., 

2020) and so reducing recording periods with temporal subsetting may reduce temporal 

variation and improve classification (Sugai et al., 2019) even with reduced data.  Similarly, 

index calculation on longer recordings may average away anomalous calls and short-term 

patterns.  

While clear standards are crucial for collaborative research in ecoacoustics, there is 

uncertainty in the literature on the impacts of the selection of index type, compression level 

and recording schedule on the quantification and classification of audible range ecological 

soundscapes. Here, we: 

1) Investigated the impact of index selection on the accuracy of a random forest classifier. 

2) Described the effects of compression, recording length and temporal subsetting on the 

values, variance, and classification performance of indices.   

In describing how well ecological information is stored in acoustic data under different 

recording decisions, I identified stronger standards to improve classifier accuracy, precision 

and recall and provided a basis for comparison among studies.  
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2.4. METHODS  

2.4.3. Study Area  

Acoustic samples were collected in Sabah, Malaysian Borneo, at the Stability of Altered Forest 

Ecosystems (SAFE) project: a large-scale ecological experiment on habitat loss and 

fragmentation effects on tropical forests (Ewers et al., 2011), which included sites in the 

Kalabakan Forest Reserve (KFR). Historically, logging within KFR has been heterogeneous, 

reflecting habitat modifications in the wider area (Struebig et al., 2013), with higher than typical 

timber extraction rates. This is a diverse forest type from which we have recorded at least 175 

species of bird and at least 50 species of amphibian from 26 sites (Sethi, Ewers, Jones, Picinali 

et al., 2020). Habitat ranges from areas of grass and low shrub to logged forest to almost 

undisturbed primary forest.  

2.4.4. Soundscape Recording 

Data were collected from three KFR sites representing a gradient in above-ground biomass 

(Figure 2.1a) (AGB: Pfeifer et al., 2016): primary forest  ( AGB= 66.16 t.ha-1),  logged forest 

(AGB = 30.74 t.ha-1), and cleared forest (AGB = 17.37 t.ha-1) (Appendix A: Table 1). I recorded 

continuously from a single recorder for a mean of 72 hours at each site (range: 70 to 75) during 

February and March 2019 (Appendix A: Table 2.1). No rain fell during the recording period, so 

no recordings were excluded due to confounding geophony (Zhang et al., 2016). In all three 

sites, I placed individual omnidirectional (AudioMoth, Hill et al., 2018) recorders, which were 

attached to trees (~ 50 cm diameter and 1-2 m above the ground) and recorded 20-minute 

samples with no break period and stored them as uncompressed files (‘raw’, .wav format) at 

44.1kHz and 16 bits.  
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Figure 2.1: Experimental structure. Soundscape Recording: (a) Soundscapes from different 

forest structures in Malaysian Borneo are recorded. Data Acquisition: (b) Recording length is 

altered to 20-, 10-, 5-, and 2.5-min chunks; (c) all audio is compressed using nine lossy nine 

mp3 encoding techniques; (d) Analytical Indices and CNN Derived AudioSet Fingerprint are 

calculated from audio of all lengths and compressions. Data Analysis: (e) Index covariance is 

found per index type, and correlation with maximum frequency is found; (f) like-for-like 

differences of indices calculated from compressed versus uncompressed counterparts are 

found; (g) intragroup variance compared for the recording lengths; (h) the indices of both 

types, lengths, and compressions are tested with a supervised random forest classification 

task; (i) the dataset is split into temporal sections, and classification accuracy is found 
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2.4.5. Compressing and Re-sizing The Audio  

Continuous 20-minute recordings were first split into recordings with a length of 2.5, 5.0 and 

10.0 minutes, using the python package pydub (Webbie et al., 2018) (Figure 2.1b), resulting 

in 8, 4 and 2 times as many recordings, respectively. The audio was then converted to lossy 

mp3 format using the fre:ac LAME encoder (Kausch, 2019) under two standard LAME mp3 

encoding techniques: constant bit rate (CBR) and variable bit rate (VBR) compression (Figure 

2.1c). CBR reduces the file size to a specified number of kilobits per second; VBR varies bitrate 

per second depending on the analysis of the acoustic content and a quality setting (0, highest 

quality, larger bitrate; 9, lowest quality, smaller bitrate). Since bitrates are not directly 

comparable between VBR and CBR – and because storage savings are often the principal 

driver of compression choices – I used compressed file size as my measure of compression 

level. I used VBR0 and CBR320, CBR256, CBR128, CBR64, CBR32, CBR16 and CBR8, which 

resulted in file sizes ranging between 41.6% (CBR320) and 1.04% (CBR8) of the original raw 

file size and some reductions in Nyquist frequency (Table 2.1). I have not considered lossless 

compression here, as the storage capacity is much higher, and the files are obligatorily the 

same post-decompression. Previous studies have also found that lossless compressed audio 

is largely identical to raw audio (Linke & Deretic, 2020). 

Table 2.1: Bitrate, percentage file size reduction and maximum encodable frequency for the 

experimental compression levels. 

Compression Level  Bit storage/s % File Size  Nyquist Frequency 
(kHz) 

RAW Constant: 768kb  100 22.05 
VBR0 Variable: ~ 127 – 250kb mean = 20.82 

range = 32.64 – 16.63 
22.05 

CBR320 Constant: 320kb 41.6 22.05 
CBR256 Constant: 256kb 33.35 22.05 
CBR128 Constant: 128kb 16.67 22.05 
CBR64 Constant: 64kb 8.33 22.05 
CBR32 Constant: 32kb 4.16 11.025 
CBR16 Constant: 16kb 2.08 8 
CBR8 Constant: 8kb 1.04 4  

2.4.6. Quantification of Soundscape Using Indices 
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2.4.6.1. Analytical Indices  

I used the seewave (version 2.1.6) (Sueur, Aubin and Simonis, 2008) and soundecology 

(version 1.3.3) (Villanueva-Rivera and Pijanowski, 2016) packages in R (version 3.6.1; R Core 

Team, 2020) to extract 7 Analytical Indices (Figure  2.4d): Acoustic Complexity Index (ACI, 

calculated per minute and averaged), Acoustic Diversity Index (ADI), Acoustic Evenness 

(AEve), Bioacoustic Index (Bio), Acoustic Entropy (H), Median of the Amplitude Envelope (M), 

and Normalised Difference Soundscape Index (NDSI) (Appendix A: Table 3). These have been 

shown to capture diel phases, seasonality, and habitat type (Bradfer‐Lawrence et al., 2019).  

These indices could not be calculated for all recordings due to file reading errors; however, 

this fault occurred in 0.3% of all recordings (Appendix A: Table 2.2). 

2.4.6.2. AudioSet Fingerprint  

The audio was converted to a log-scaled Mel-frequency spectrogram after 16kHz 

downsampling and then passed through the “VGG-ish” Convolutional Neural Network (CNN) 

trained on the AudioSet database (Gemmeke et al., 2017; Hershey et al., 2017) (Figure  2.1d). 

This generated a 128-dimensional embedding, and the 128 values in that embedding 

described the soundscape of a given recording in an abstracted form or fingerprint. Similarly, 

as in the Analytical Indices, some recordings could not be analysed by the AudioSet CNN; 

however, this was only in 0.2% of recordings (Appendix A: Table 2.2).  

2.4.7. Data analysis  

2.4.7.1. Impact of Index Selection: Auto-Correlation 

Analytical Indices often summarise similar features of a soundscape (e.g. dominant frequency 

and frequency bin occupancy): this overlap may reduce the descriptive scope of the ensemble. 

I compared the degree of pairwise correlation between the individual Analytical Indices and 
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between the individual values of the AudioSet Fingerprint. I also compared how well each 

index/feature correlated with the Nyquist frequency (Figure 2.1e).  

2.4.7.2. Impact of Compression: Like-for-Like Differences 

I used an adaption of Bland-Altman plots (Vesna, 2009, Araya-Salas, Smith-Vidaurre and 

Webster, 2019) to visualise the scaled difference (D) between raw (𝐼 ) and compressed 

(𝐼 ) index values, as a percentage of the range of raw values 𝑅  (Figure  2.1f) : 

𝐷 =
𝐼 − 𝐼

𝑅
× 100 

D was not normally distributed (Appendix A.5.1.x), so median and interquartile ranges were 

reported. I determined that an index has been altered as a result of compression to be when: 

i) the interquartile range of D did not include zero difference or ii) median D was more than +/- 

5% of the Raw. I used Spearman rank correlation to test for a consistent trend in D with 

increasing compression. Reflecting their common use cases, D for Analytical Indices was 

calculated from the univariate values, while for AudioSet Fingerprints – which is intended as a 

multidimensional metric – 𝐷 was calculated separately for each dimension and then given as 

a mean of all 128 values.   

2.4.7.3. Impact of Recording Schedule: Recording Length  

Recordings of longer length may have a reduced variance due to the smoothing of potentially 

important transient audio anomalies (such as nearby bird or cicada calls). I tested this by 

comparing the variance of the recording groups at different commonly used recording lengths. 

The index values are non-normally distributed, so I used Levene’s test for homogeneity of 

variance (Figure 2.1g).   
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2.4.7.4. Impact of Parameter Alteration on Classification Task  

I used random forest classification models to assess how well the soundscapes were 

represented by each index type under each different experimental parameter, using the 

RandomForest (version 4.6-14) (Liaw and Wiener 2002) package in R (Figure 2.1h). Models 

were trained on a 24 h period of data from each site and tested on the remaining 46+ h of 

audio. I used 2,000 decision trees to ensure accuracy had stabilised. The model was trained 

and tested separately for every combination of index type (Analytical Indices vs AudioSet 

Fingerprint), compression level and recording length. I determined the accuracy, precision 

and recall of each combination.  

2.4.7.5. Impact of Temporal Subsetting  

Soundscapes typically show considerable diel variation in both abiotic and biotic components. 

To assess the impact of this variance on model performance, I split my recordings into four 6-

hour sections centred on the key periods of Dawn (06:00), Noon (12:00),  Dusk (18:00) and 

Midnight (00:00) and then further subdivided these into 3 hour (8 sections) and 2 hour (12 

sections) blocks to test how further reductions affected the model (Figure 2.1i). I trained and 

tested the random forest model again on each of the temporally subset recordings, with each 

section used to build models individually, and determined accuracy, precision and recall as 

before. 

2.4.7.6. Modelling the Impact of Index Selection, Compression and 

Recording Length on the Accuracy Metrics  

As the accuracy metrics are bound between 0 and 100%, I used a beta regression to model 

the relationship between each of the experimental parameters and performance metrics 

(Douma & Weedon, 2019). The model was built using the betareg (version 3.1-3) package in 

R (Cribari-Neto & Zeileis, 2010). To avoid fitting issues when performance measures are 
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exactly 1, I rescaled all performance measures using m’ = (m (n-1) + 0.5) / n, where n is the 

sample size (Smithson & Verkuilen, 2006). The model included pairwise interactions between 

file size, temporal subsetting, and recording length, and then all interactions of main effects 

and those pairwise terms with the index selection. I observed that variance in performance 

measures varied as an interaction of both index choice and a temporal subsetting (Appendix 

A.8a), so tested the inclusion of these terms in the precision component of the model. I first 

treated recording length and temporal subsetting as factors, but also tested a model 

considering these as continuous variables. I found the Akaike Information Criterion (AIC) was 

markedly lower in a beta regression model using factors and including the precision 

component (Appendix A: Figure 9.1).  

2.5. RESULTS 

Although Spearman pairwise correlations of Analytical Indices and Nyquist frequency were 

low on average (mean = 0.32, IQR = 0.22), I found some strongly correlated sets of indices 

(Figure 2.2). ADI, Bio and NDSI all showed strong similarities and were closely correlated with 

maximum recordable frequency; AEve and H were also strongly correlated (Figure 2.2). Some 

features of the AudioSet Fingerprint correlated with each other and maximum frequency, but 

in general, these features were more weakly correlated (mean = 0.14, IQR = 0.18, Figure in 

Appendix A: Figure 4.2).  
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Figure 2.2: Pairwise Spearman correlation matrix for Analytical Indices (all recording lengths 

and all compressions) and maximum recordable frequency. The colour scale shows rho 

values. 

2.5.3. Impact of Compression  

2.5.3.1. Impact of Compression: Like-for-Like Differences 

Both index types showed both differences under compression and clear trends with increasing 

compression (Figure 2.3) (confirmed with Spearman’s rank correlation, all p < 0.001, Appendix 

A: Table 5.3). The mode of response showed three broad qualitative patterns, illustrated here 

using results from the 5-minute audio sample (other recording lengths in Appendix A: Figure 

5.2.x). (1) Indices which were only affected above a threshold level of compression (AudioSet 

Fingerprint: CBR16; M: CBR32; and NDSI: CBR8). These indices typically showed low absolute 

D (median D typically <15%). (2) AEve and H showed the largest differences at an intermediate 
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compression (CBR64) and relatively low absolute differences (median D typically < 30%). (3) 

The remaining indices showed a variety of responses: ADI showed a monotonic response 

above a threshold, ACI showed changes up to CBR64 and then stabilises, and Bio showed a 

stepped pattern of increase. However, all three showed increasing and large changes in 

absolute D (median D often > 75%) with increasing compression.  

 

Figure 2.3: Scaled 

difference in acoustic 

indices from raw audio 

with increasing 

compression in 5-min 

audio samples (see 

Appendix A. Figure 

5.2.x for 2.5- and 10- 

and 20-min examples). 

The horizontal green 

region shows the 

±5% D. Dots and 

whiskers show the 

median and 

interquartile range 

of D from different 

indices under 

increasing levels of 

compression. 
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2.5.3.2. Impact of Recording Schedule: Recording Length  

Three out of seven (43%) of the Analytical Indices (ADI, AEve and H) and a smaller proportion 

of the AudioSet Fingerprint values (46 out of 128; 36%) were found to have non-homogeneous 

variance in groups of different recording length (p < 0.05, Levene’s test for homogeneity of 

variance, Appendix A: Table 6).   

2.5.4. Impact of Index Selection 

Confirming prior findings (Sethi, Jones, Fulcher, Picinali, Jane, et al., 2020), I showed that 

habitat classifiers derived from 5-minute recordings using raw audio showed higher accuracy 

for AudioSet Fingerprint (93.8%) than Analytical Indices (80.9%, Table 2.2). This advantage 

was held across all recording lengths and performance metrics with performance gains of 

around 12-13% in accuracy, precision and recall (Appendix A: Table 7.1.2).  

Compression decreased accuracy for both AudioSet Fingerprint (CBR8: 90.8%) and Analytical 

Indices (CBR8: 75.1%, Table 2.2).  Classifiers trained on compressed AudioSet Fingerprint, 

however, still outperformed those trained on uncompressed Analytical Indices. For both index 

types, this reflected a decreased ability to differentiate between logged and primary forest. 

Interestingly, classifiers from both index types showed better discrimination between cleared 

land and logged forest under strong compression. These patterns were repeated across 

recording lengths (Appendix A: Table 7.1.1). 
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Table 2.2. Confusion matrices from random forest classifiers trained on AudioSet Fingerprint (a, c) 

and Analytical Indices (b, d) using uncompressed raw audio (a, b) and highly compressed CBR8 audio 

(c, d). 

 AudioSet Fingerprint   Analytical Indices 

Observed Predicted  Observed Predicted 

a) Raw Cleared Logged Primary  b) Raw Cleared Logged Primary 

Cleared 585 9 11  Cleared 484 67 49 

Logged 11 508 44  Logged 97 421 46 

Primary 17 14 521  Primary 9 61 486 

c) CBR8 Cleared Logged Primary  d) CBR8 Cleared Logged Primary 

Cleared 585 3 17  Cleared 484 23 98 

Logged 2 488 73  Logged 9 379 175 

Primary 11 53 488  Primary 9 115 428 

 

 

2.5.4.1. Impact of Temporal Subsetting  

Temporally subsetting poses a trade-off as when diel variation is reduced, so too are the 

recording hours available for analysis. Temporally subsetting the day into quarters (Figure 2.4) 

yielded a largely unpredictable effect on accuracy, precision and recall. There were clear 

differences in discrimination between pairs of sites. Notably, comparing cleared and primary 

forest had the highest precision across each temporal subset, index choice and compression 

(Figure 2.4 e,f), but the recall was not markedly different from other pairs (Figure 2.4 k,l). 

Temporal windows did not generally help discriminate between logged and primary forest 

(Table 2.2, Figure 2.4 g,h,m,n) and the performance difference between AudioSet Fingerprints 

and Analytical Indices was largely maintained.  
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Figure 2.4: Classification model 

performance as a function of 

temporal sectioning (x-axis), 

compression (raw audio, left 

column; CBR8 compression, right 

column) and index choice 

(AudioSet Fingerprint: blue; 

Analytical Indices: orange). Pale 

horizontal lines show performance 

without temporal sectioning. 

Precision and recall are 

partitioned into pairwise 

performance by site (C, cleared 

forest; L, logged forest; P, primary 

forest 

 

 

2.5.4.2. Combined Effects of Parameter Alteration on Classification 

Performance  

Confirming prior findings (Sethi, Jones, Fulcher, Picinali, Jane, et al., 2020), my model has 

demonstrated that performance measures were consistently higher when classifiers are 

trained on the AudioSet Fingerprint, rather than Analytical Indices (Accuracy: +16.9% 
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(z=10.381799 p<0.001),  Precision: +15.5% (z = 9.7171799 p<0.001), Recall: +16.9% (z=10.221799 

p<0.001), full model outputs Appendix A: section 9). Index type was by far the largest 

contributor to model accuracy (Table 2.3), although there was some effect of temporal 

subsetting, compression level and recording length. Despite the considerable impact of 

compression level on index values, it appeared to have a minor effect on model accuracy 

(Figure 2.5, Table 2.3). The effect of recording length appeared to increase as the days were 

cut into smaller temporal subsections. However, this effect was small compared to the 

contribution of index type (Figure 2.5). Temporal subsetting appeared to have minimal effect 

on the accuracy of the AudioSet Fingerprint classifier, which kept consistently high (70-100%, 

Figure 2.5). The classifier trained on Analytical Indices, however, became much more 

unpredictable when temporal subsetting was used (20-100%, Figure 2.5) 

Table 2.3. ANOVA table for the model terms in the beta regression model of the accuracy data. 

(Significance: *** p <0.001, ** p<0.01, * p<0.05). Equivalent tables for precision and recall are in 

Appendix A: section 9). 

 Df χ2 
log10(File Size)                        1    26.2128  *** 

Temporal Subsetting                                  3    31.6818  *** 
Frame Size                              3    15.7820  ** 
Index Type                              1  2985.9825 ***  

log10(File Size): Temporal Subsetting                                                   3    18.0278  *** 
log10(File Size): Recording Length                              3     2.9280   

Temporal Subsetting: Recording Length                              9     6.3156   
log10(File Size): Index Type                              1    59.0065  *** 

Temporal Subsetting: Index Type                              3     7.1061   
File Size: Index Type                              3    36.2699 ***  

log10(File Size): Temporal Subsetting: Index Type                              3 13.0715  ** 
log10(File Size): Recording Length: Index Type                              3     0.8071   

Temporal Subsetting: Recording Length: Index Type                              9     7.1524   
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Figure 2.5: Classifier 

accuracy model 

predictions as a 

function of file size (x-

axis), index type 

(columns), temporal 

subsetting (rows), and 

Recording Length 

(colours, see legend). 

Hexagon binning is 

used to show the 

distribution and 

density of the 

underlying data. 

 

2.6. DISCUSSION  

Ecoacoustics is a new and rapidly expanding field of ecology with great power to describe 

ecological systems (e.g. Sethi et al., 2020), but methodological choices have proliferated that 

have poorly known impacts on ecoacoustic analysis. I have shown that the choice of acoustic 

index is key and confirm (Sethi, Jones, Fulcher, Picinali, Jane, et al., 2020) that a multi-

dimensional generalist classifier (AudioSet Fingerprint) outperforms more traditional Analytical 

Indices regardless of the levels of audio compression or recording schedule.  
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Analytical Indices have been constrained to a limited set of features within soundscapes, 

leading to high degrees of correlation. For example, ADI, AEve and H indices are all summaries 

of the evenness of frequency band occupancy (Jerome Sueur et al., 2008; Villanueva-Rivera 

et al., 2011). This non-independence can further decrease the dimensionality of suites of 

Analytical Indices, which are already typically small.  Here, I use just the mean values of 

Analytical Indices, but other studies have incorporated both the mean and standard deviation 

(Bradfer‐Lawrence et al., 2019), which provides further dimensionality. Although the AudioSet 

Fingerprint clearly benefits from a large number of relatively uncorrelated acoustic features, 

most Analytical Indices have the advantage of being designed to capture ecologically relevant 

aspects of the soundscape. 

Compression affected the quantification of all indices in both index types (Figure 2.3), and – 

although the qualitative patterns were noisy – the groupings seen may reflect the underlying 

algorithms. The apparent threshold for AudioSet Fingerprint at CBR16 may be due to the 

obligatory loss in audio quality before samples pass to the CNN used to generate the AudioSet 

Fingerprint. The audio was down-sampled to 16kHz and then presented as a Mel-shifted 

spectrogram, which increases sensitivity in frequency ranges relevant to human hearing, akin 

to those frequencies favoured in commercial compression. Coupled with its variable quality 

training set (YouTube Videos), these factors may predispose AudioSet Fingerprint to perform 

as well with high-quality audio as with intermediate and low-quality mp3s. 

The M and NDSI were also largely unaffected by compression until the frequency range was 

reduced. When mp3 audio is compressed below 32kb/s, the audio swaps from being encoded 

as MPEG-1 Audio Layer III (which supports a max frequency of 16-24kHz) to MPEG-2 Audio 

Layer III (max: 8-12kHz). This change in format results in the removal of signals beyond the 

cut-off frequency threshold. Further reduction is seen where at CBR8 when encoding changes 

again to MPEG-2.5 Audio Layer III (max: 4-6kHz). The  M index is explicitly a measure of 

amplitude (Jérôme Sueur et al., 2014) and is largely unaffected until downsampling reduces 
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amplitude. Similarly, NDSI measures the proportion of sound in biophonic vs anthropophonic 

frequency bands: as downsampling progressively eliminates sounds within the frequency 

range (2 – 11 kHz) containing most biophony, NDSI is known to increase (Kasten et al., 2012). 

The ADI index also shows a marked increase in the magnitude of the difference at higher rates 

of compression (CBR64). However, a small but significant difference can be observed from 

CBR256. The ADI index measures the spread of frequencies above a certain loudness 

threshold; the effect of compression on ADI may therefore suggest that certain high-frequency 

bands are dominant in this soundscape.  

AEve and H, both of which describe the spread and evenness of amplitude over the full range 

of frequencies, showed a gradual increase in D that reversed when the Nyquist frequency 

reduced. The two measures differ in measuring dominance (AEve: Villanueva-Rivera et al., 

2011) and evenness (H: Sueur et al., 2014) across bands but may share a common 

explanation. In both cases, compression preferentially removed amplitude from some bands, 

initially decreasing evenness, but downsampling removes bands entirely, possibly restoring a 

more even distribution.   

ACI and Bio both shared a dependence on high-frequency or quieter sounds and were 

generally most severely affected by compression. ACI measures frequency band dependant 

changes in amplitude over time (Pieretti et al., 2011) and is reduced when there is minimal 

variation between time steps. Loss of “masked” sounds under low compression and then 16 

– 24 kHz sound under CBR16 may reflect the loss of ecoacoustic temporal variation: this band 

includes the calling range of many invertebrates, birds, mammals and amphibians (Browning 

et al., 2017). The Bio index similarly quantifies the spread of frequencies in the range 2kHz- 

11kHz, all relative to the quietest 1kHz band (Boelman et al., 2007): loss of quiet frequency 

bands, therefore, make it uniquely sensitive to compression. Despite both of these indices 

incurring alterations 200% larger than the uncompressed range, the Analytical Indices 

classifier accuracy still showed robustness to compression, perhaps suggesting these indices 
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are less important for classification than the others. Bradfer‐Lawrence et al. (2019) have 

already shown that the Bio index contributes little additional power when classifying 

soundscapes but found that ACI was the strongest individual contributor in this suite of indices 

(Bradfer‐Lawrence et al., 2019). my findings suggested this ranking may not be consistent 

across different levels of compression.  

My findings reflect those of an earlier study that explored the effect of mp3 compression (VBR0 

and CBR128) on indices describing specific bird calls (Araya-Salas et al., 2019). They found 

that compression did not cause a systemic deviation in all indices, but rather indices designed 

to capture extreme frequencies were less precise after compression, particularly with VBR-

encoded files (Araya-Salas et al., 2019). While some of these principles are present in my 

findings, the use of a wider range of compressions has allowed us to develop a more complete 

description of the action of compression on soundscape indices in audible range recordings.  

I found that even the highest rate of compression caused a comparatively small reduction in 

the overall accuracy of the classification task (5.8% and 3% for Analytical Indices and the 

AudioSet Fingerprint, respectively, for the 5-minute recordings without temporal subsetting). 

In both cases, the reduction in accuracy was explained by a higher degree of overlap between 

the primary and logged forest. When audio is compressed, the whole signal is altered, but 

higher frequencies and quieter sounds are more severely altered and reduced than others 

(Sterne, 2012). Higher and quieter frequencies (akin to specific animal vocalisations) may 

therefore be more important for separating logged and primary– but less so for discerning 

cleared from other forest types (which may be more dependent on overall amplitude). These 

proportionally small differences, while somewhat reassuring, should be considered with 

caution as they may be due to the large differences in habitat structure among my three habitat 

classes. Combining this with my relatively small sample size, I would like to emphasise that 

these findings may, therefore, not be generalisable to areas of more closely related forest.  
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Both Analytical Indices and AudioSet Fingerprint had similar changes in variance as a result 

of recording length. Transient vocalisers are, therefore, likely somewhat important in the 

determination of the AudioSet Fingerprint and variable importance in some Analytical Indices. 

The ACI index was not impacted by recording length despite specifically quantifying how the 

soundscape changes over time (Pieretti et al., 2011). The ADI, AEve and H all did incur an 

alteration in variance as recording length changed, interestingly these indices do not consider 

any temporal value but rather just the spread of frequency (Jérôme Sueur et al., 2008; 

Villanueva-Rivera et al., 2011), indicating that transient calls akin to short term anomalies in 

frequency are perhaps lost when recording windows are altered.  

Finally, I found that subsetting audio data temporally and analysing them separately had an 

unpredictable impact on classification accuracy, with the AudioSet Fingerprint classifier 

staying consistently high while the Analytical Indices classifier was returning accuracies 

anywhere between 20 and 100%. Temporal subsetting can reduce the impact of diel variation 

on analyses but poses a trade-off as it reduces the amount of data used to train the classifier. 

Analytical Indices may perform better over longer recording periods as > 120 h of recordings 

are required for Analytical Indices to stabilise (Bradfer‐Lawrence et al., 2019), yet in my study, 

I had just 70 – 75 h of recordings per site. Overall, I found that compression, recording length 

and temporal subsetting caused a small decrease in classifier accuracy, with the largest overall 

contributor being the choice of AudioSet Fingerprinting over Analytical Indices. The AudioSet 

Fingerprint classifier, temporally sectioned and trained on just 2 hours of data, was able to, on 

average, outperform the Analytical Indices classifier trained on the full 24h.  

It is important to note that the AudioSet Fingerprint and several of the acoustic indices employ 

temporal downsampling that limits the dynamic range of a recording. This immediately 

excludes any ecologically relevant information in ultrasound frequencies from the analysis. 

Any studies wishing to include the rich array of species that call in ultrasonic frequencies 

should not use mp3 compression and should perform further investigation. 
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2.7. RECOMMENDATIONS AND CONCLUSIONS  

This study was designed to compare distinct forest types in Malaysian Borneo and the 

recording periods used are relatively small. Based on the results of this study, I provide the 

following four recommendations in audible range monitoring; however, effort should be made 

to ensure they are generalisable to the desired area of deployment and not used when dealing 

with ultrasonic recordings:  

1) I provide additional evidence for the viability and stability of AudioSet Fingerprinting 

rather than Analytical Indices when classifying soundscapes. 

2) Lossless compression is always desirable, but if data storage/transmission becomes a 

bottleneck to a study, I advise using the VBR (quality = 0) mp3 encoder if using 

Analytical Indices, which will reduce the file size to roughly 23% of the original while 

having minimal impact on indices (other than ACI). The AudioSet Fingerprint, however, 

is more robust to compression and so can tolerate a minimum compression encoding 

of CBR64 (8% of the original file size) without significant effect.  

3) If further compression is a necessity, use indices which describe the general energy of 

the system rather than those which are dependent on high-frequency or quieter 

sounds, such as ACI. 

4) Temporal subsetting may be a useful alternative for capturing soundscape descriptors 

with AudioSet Fingerprinting when data storage costs are a bottleneck. However, 

temporal subsetting should be used with caution when using Analytical Indices owing 

to the variation in classification accuracy, precision and recall. 

There exists a trade-off between the quality and volume of data that can be stored in 

ecoacoustics. I have investigated the impact of compression along a gradient of habitat 

disturbance, providing evidence that compressed audio can be used without severely affecting 

either of the index types. The ability to use compression may reduce experimental costs, 
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remove bottlenecks in study design, and help remote ecoacoustic recorders reach true 

autonomy. Moreover, by providing a quantified description of how individual indices, and more 

broadly grouped index categories, respond to compression, I have enabled comparisons to 

be drawn between studies of compressed and non-compressed audio. Increasing 

comparability of studies will become progressively important as global ecoacoustic databases 

and recording sites grow and open up novel opportunities to explore datasets across huge 

temporal and geographic scales. 

2.8. DATA ACCESSIBILITY  

Acoustic Data: Available at 10.5281/zenodo.5159914 

Analytical Indices/ AudioSet Fingerprint Data: Available at 10.5281/zenodo.5153193 

Analysis Scripts: Available on Github at https://github.com/BeckyHeath/Experimental-

Variation-Ecoacoustics-Analysis-Scripts   
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3. CHAPTER 3: INTRODUCING MAARU (MULTICHANNEL 

ACOUSTIC AUTONOMOUS RECORDING UNIT for 

SPATIAL ECOSYSTEM MONITORING 

3.1. CHAPTER OVERVIEW 

Acoustic localisation is the process of adding positional information to recorded audio with a 

variety of applications in ecosystem monitoring. Specifically, its uses span: counting individuals 

for better abundance, locating illegal behaviour such as logging/poaching, and monitoring 

organism behaviour such as habitat use or species interactions. Acoustic localisation depends 

on simultaneous recording from multiple microphones at multiple known positions. Several 

studies have shown the advantage of multichannel recording for acoustic localisation, but 

uptake remains limited as the equipment is often expensive, inaccessible, or only suitable for 

short-term deployments.  

Here I present a low-cost, open-source device architecture built entirely from easily accessible 

commercially available equipment that is integrated into a solar-powered, networked system. 

my device, hereon MAARU (Multichannel Acoustic Autonomous Recording Unit), records and 

sends high-quality multichannel audio autonomously, removing the need for re-entry to the 

field entirely. Here I introduce MAARUs hardware and software, as well as the results of lab 

and field tests investigating localisation accuracy and durability.  

I found that MAARU has no additional power demands compared to a similar omnidirectional 

device. MAARU can record across much of the audible range (sample rate: 16kHz). All devices 

remained watertight throughout a 6-month deployment period, and even fully weatherproofed 

devices were able to accurately localise signals to ±10°. In the field, two devices suffered 

rodent damage and system failure due to issues with solar panel attachment; however, I outline 
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guiles to reduce the risk of reoccurrence in future work. Other on-board issues with energy 

distribution across microphones were also encountered. However, I designed a system of 

automatic error detection and correction.  

Our proposed device is an exciting, accessible, low-cost option for those looking to explore 

spatial sound ecology accurately and easily. I show a successful port of this device to 

HARKBird, a sound source localisation platform, and outline other avenues of analysis. 

Ultimately the added directional element of multichannel recording may uncover patterns of 

behaviour not detectable with single-channel recording.  

3.2. INTRODUCTION  

Passive Acoustic Monitoring (PAM) describes the use of remotely deployed acoustic 

Autonomous Recording Units (ARUs) to study ecosystems in a way that is cheaper, less 

damaging, and more applicable to large-scale, high-resolution wildlife surveys than human 

field data collectors (Darras et al., 2019). The applications of PAM are broad and have been 

reviewed (Blumstein et al., 2011; Browning et al., 2017; Gibb et al., 2019; Mcloughlin et al., 

2019), but include classifying individual calls to monitor species and biodiversity (Stowell 

2022), building predictors of whole ecosystem health (Sethi, Jones, Fulcher, Picinali, Jane, et 

al., 2020), and building predictive models of acoustic species distributions (Villén- et al., 2022). 

Beyond the one-dimensional appraisal of soundscapes, spatial information can be determined 

from signals recorded from multiple fixed positions simultaneously. Studies have increasingly 

investigated spatial acoustics applications in often short-term deployments. Here I present a 

fully autonomous, networked PAM device which can record and transmit multichannel 

recordings in almost real time, providing spatial acoustic data over longer and more 

ecologically relevant time scales. 



74 
 

The principles of acoustic localisation work similarly to the human auditory system, whereby 

slight differences in acoustic signals at multiple known points (the two ears, in the case of a 

human) can be used to triangulate either a position (hyperbolic localisation) or direction 

compared to the receiver/s (DOA). In DOA estimation specifically, inter-channel delays can be 

systematically manipulated (beamformed) to find the time delay resulting in maximal 

correlation across channels and therefore estimate the calling direction of the signal 

(Mitianoudis, 2003). Once locations are known, the inter-channel delays can be manipulated 

to beamform to that location. This beamforming uses the principles of constructive and 

destructive interference to amplify calls from a desired direction, increasing the signal-to-noise 

ratio (SNR). 

The applications of DOA estimation and acoustic localisation in an ecosystem monitoring 

context have been reviewed by (Blumstein et al., 2011; Rhinehart et al., 2020), with the latter 

identifying eight key purposes: Assessing the positions and movements of individuals, studying 

interactions, identifying individual identities, sub-setting (and beamforming) sounds for more 

detailed analysis, calculating species abundance more accurately, and inferring habitat 

usage/territory. Additionally, acoustic localisation has been used to locate illegal logging and 

poaching through chainsaw and gunshot sounds, respectively (Andrei, 2015; Wijers et al., 

2019).  

Several spatial ecoacoustic recorders have been developed that are showing promise.  

Currently, these devices largely suffer from issues that limit their easy adaptation to eco-

acoustic studies, such as being non- or semi-autonomous, requiring specialist/discontinued 

equipment, lacking full 360° localisation, or lacking necessary hardware/ software for extended 

deployment in the field (Bruggemann et al., 2021; Smith et al., 2021; Suzuki et al., 2017; Wijers 

et al., 2019) (Appendix B: Table 1).  
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Here I present an autonomous, self-powering, networked device capable of DOA estimation 

built from low-cost, commercially available components. I demonstrate successful lab and field 

tests of MAARU and explain software and hardware adaptations necessary for multichannel 

recording. While there are still advancements to be made, my device demonstrates a low-cost 

and accessible new possibility in continuous multichannel recording. 

 

3.3. DESCRIPTION  

MAARU is based upon an omnidirectional (single-channel) autonomous acoustic recorder 

presented by Sethi et al., 2018, re-designed to localise signal DOA through multichannel 

recording. Changing the recording mode from omnidirectional to multichannel involves 

modifying: 1) the core device hardware, 2) the device weatherproofing, and 3) the onboard 

software. The open-source code and step-by-step setup instructions are available at 

https://github.com/BeckyHeath/multi-channel-rpi-eco-monitoring, 

3.3.3. Core Device Hardware  

This ARU centres around a Raspberry Pi, a multichannel microphone array (Circular 6-

Microphone Seeed Studio ReSpeaker array), a (renewable) power source and a connection 

to cloud storage via a USB dongle (Figure 3.1).  
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. Figure 3.1 shows the schematic setup of MAARUs hardware. MAARU is centred around a Raspberry 

Pi with the following attachments: 1) a renewable power source, (a) a 60W solar panel, b) a 12V 24Ah 

deep cycle battery, and c) a 12V solar charge controller. 2) A ReSpeaker 6—Mic circular array 

connected via the ReSpeaker multichannel interface. And 3) a mobile dongle with a pre-paid mobile 

network sim card. 

 

The microphones used in the ReSpeaker array (MSM321A3729H9CP) are small (3.76 x 2.95 

x 1.1mm), omnidirectional, Micro-Electro-Mechanical System (MEMS), programmed to record 

at 16kHz. The six microphones are fixed in a circular array on a PCB, which attaches to the 

Raspberry Pi via a Seeed Studio Multichannel HAT Soundcard. Localisation/ DOA Estimation 

depends on small temporal differences between microphones, so recording must have highly 

accurate and consistent synchronisation (Mennill et al., 2012). In standard ARUs, microphone 

clock drift can cause delays from 1 to 10 seconds daily (Thode et al., 2006). To mediate clock 

drift, it is useful to have all recordings managed by the same internal clock (and sound card), 

which is most stable via a short cable connection on small DOA devices, such as this one. 

Other options include GPS (Crunchant et al., 2022), cable (Suzuki et al., 2017), network 

(Bruggemann et al., 2021) or through array self-organisation (Trifa et al., 2007).  
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Despite recording from multiple microphones, this device uses the same amount of power as 

the omnidirectional recorder (5W – Appendix B: Section 4). The powering system can be 

tailored to resources available at the study site (mains power/ exposure to wind/ hours of direct 

sunlight), provided 120Wh (5W x 24h) of energy is generated per day. At my woodland study 

site in the UK, solar panels were affixed in the forest canopy, where they were theoretically 

exposed to ~4h of direct sunlight daily. A 30W panel can generate a maximum of 120Wh in 4h 

of direct sunlight (120Wh ÷ 4h), and a 10Ah 12V power supply should store enough energy to 

charge MAARU for 24h without sunlight (120Wh = 10Ah x 12V). In practice, inefficiencies, 

fluctuations in sunlight, energy loss, and component degradation may make this setup 

unreliable, so instead, I use a 60W monocrystalline (higher efficiency) solar panel with a 24Ah 

12V LiFEPO4 deep-cycle battery. A 12V solar charge controller protects the battery and 

regulates the Raspberry Pi's current supply and draw.  

3.3.4. Weatherproofing 

The microphone array must be positioned at the same orientation as the desired spatial 

separation (vertically for height or horizontally for direction) to localise sounds usefully. Ideally, 

the path between the sound source and the microphone must be uninterrupted. Other ARUs 

use the solar panel to protect from overhead rain (Sethi et al., 2018); however, this interrupts 

the above sound path and would interfere with localisation. In this deployment, I instead keep 

the power source and recording hardware separate: the solar panel is connected via a heavy-

duty cable to a waterproof dry bag containing the battery and solar-charge-controller; an 

additional power cable then connects the solar-charge-controller to a separate container 

holding the Raspberry Pi, multichannel array, and dongle.  

I found that modified 450ml waterproof Sistema plastic containers were a viable option for 

weatherproofing while minimising interference with the signal. Holes were drilled in and 

sanded down for: the microphones, raised components on the front of the microphone array, 
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and cables to enter at the base. The microphone holes are covered by ePTFE Acoustic Vents, 

which have small pores that allow for the passage of air (sound) but are too small to permit 

water droplets (full details: Appendix B: Section 3).  

The microphone array is pushed flush to the top of the container using polystyrene, and 

absorbent silica is included to keep the recording components of MAARU dry in case of 

condensation. The other holes in the microphone component (e.g., the cable holes) are flexibly 

weatherproofed using sniper tape and a silicone-based sealant.  

3.3.5. Device Software  

As in the omnidirectional device, the software used here records, optionally compresses, and 

then transmits acoustic data on a user-defined schedule, as well as receiving updates and 

sending log information daily. The core scripts are essentially the same as those used by (Sethi 

et al., 2018), but with the following alterations: installing the multichannel recording software, 

changing the compression mode from lossy to lossless, and altering the setup scripts for 

compatibility. 

Using the Seeed multichannel software (Seed-voice card), MAARU records from all six 

channels of the ReSpeaker array simultaneously (16kHz, 16-bit per channel). The Seeed 

software installation requires a previous version of Raspbian (Buster, February 2020) and 

Python3 (Van Rosssum & Drake Jr, 1995). Several packages had to be altered or rolled back 

for compatibility.  

Lossy compression codecs remove data irreversibly and non-uniformly from the audio to 

reduce file size. While mp3 compression has minimal impact on soundscape-level analysis and 

birdsong descriptors/detections (Araya-Salas et al., 2019; Heath et al., 2021; Stowell & 

Plumbley, 2014), the analysis needed in DOA estimation requires a much finer-scale 

comparison between signals. In place of lossy mp3 compression, I reduce file size using Free 
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Lossless Audio Compression (FLAC) (Xiph.org, 2011-2016), which is stable, easy to use, and 

upon decompression, is identical to the pre-compressed signal. FLAC compression across 6 

channels takes longer than mp3 compression on a single channel, meaning (unlike in the 

omnidirectional device) compression occasionally takes longer than the audio recording. File 

locations were restructured to keep the "current sample", "finished raw samples", and 

"compressed files pending upload" separately and avoid tripping out the process.  

Other, more cosmetic changes included: log file alterations (with additionally feedbacks 

information about the recorders' compression status), the inclusion of a kill time in recording 

(which allows MAARU to move on from faulty recordings), as well as the addition of the multi-

mic config script, which enables MAARU to record from the sensors. Full details of the changes 

are traceable via GitHub. 

 

 

3.4. PROOF OF CONCEPT  

3.4.3. Lab Testing (Weatherproofing)  

A test signal was played at various points around MAARU with and without weatherproofing 

(Figure 3.2). The test signal contained a 50-20000Hz sinus-logarithmic sweep signal (hereon, 

sweep) and five test tones (either pink noise or a Eurasian Wren song (Karel, H. 2020)) at 15-

second intervals (Figure 3.2). The sweep and first test tones were played in position A, and 

the following four tones were played in order at each position until position E (Figure 3.2). Test 

tones were recorded from devices four times (twice with weatherproofing; twice without. Both 

recordings were conducted at 16kHz, 16-bit, all channels). 
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Figure 3.2 shows the setup of the lab tests. Devices were assessed (with and without weatherproofing) 

in the centre of the 2m test area (left). A 50-20000Hz sinus-logarithmic sweep signal (hereon, sweep) 

is played, followed by five test tones (original tones pink noise or Eurasian Wren, sweep and first test 

tone on right panels). The tones were played at 15 seconds intervals from positions (starting at A and 

continuing to E) 1m from MAARU. The power spectra of the sweep, as well as DOA estimation 

accuracy, were compared for devices with and without weatherproofing.  

 

3.4.3.1. Impact of Weatherproofing on Power Spectra 

Spectral data were analysed using MATLAB with the digital signal processing (DSP) toolbox 

(MATLAB, 2010). Weatherproofing caused a loss in the acoustic signal amplitude of 10-15dB 

between 1-4kHz, increasing to 15-20dB between 4.5kHz and 6kHz (Figure 3.3). The difference 

decreases at higher frequencies as the overall sensitivity to those frequencies also decreases 

(Figure 3.3). Other factors, such as test number and specific device used, also had an effect 

but to a much smaller degree (<3dB and <10dB, respectively, Appendix B: Figure 5.2.x).  



81 
 

 

Figure 3.3 compares the power spectrum of sinu-logarithmic sweep signals (sweeps) recorded from 

devices with weatherproofing (yellow line) and without (orange line); the difference in these spectra 

(blue line); Spectrograms on the right show the resultant difference in an exemplar sweep from each 

group. Data is smoothed using robust locally weighted smoothing. 

 

3.4.3.2. Impact of Weatherproofing on DOA Estimation 

DOA was estimated using the open-source software HARKBird (Suzuki et al., 2017). HARKBird 

is the bio-acoustic adaptation of an open-source software platform designed for robot audition: 

HARK (Honda Research Institute Japan Audition for Robots with Kyoto University) (Nakadai et 

al., 2017). HARK localises signals using MUSIC (Multiple Signal Classification) (Schmidt, 1979) 

which compares eigenvalues/ eigenvectors of covariance matrices across spectrograms from 

all 6-channels to determine how many signals are present and their locations. I run HARKBird 

in a dedicated Virtual Machine via VMWare with an Ubuntu 18.04 environment.  

Analysing a signal using HARKBird requires the input of both the array-specific transfer 

function and a configuration file. The HARKBird algorithm was configured to localise to the 
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nearest 5°. The only configuration difference between analysing signals from the 

weatherproofed vs un-weatherproofed signals was the power threshold (THRESH) used in 

signal tracking (24 for devices with weatherproofing, 29 for without) (Figure 3.4). THRESH 

refers to the MUSIC power. If THRESH is too small, unwanted noise is localised; if THRESH is 

too large, the signal will not be localised.  

Signals recorded by un-weatherproofed devices were all accurately localised to within 5° 

(average error: 0.41°± 2.04° and 1.43°± 2.31° for pink noise and birdsong, respectively, Figure 

3.4). Weatherproofing devices increased false detections (echoes) from 0 to 17% (Figure 3.4), 

possibly due to the decrease in the detection threshold. False positives were often at 

consistent angles for each test signal and were manually removed before analysis. 

Considering just the true detections, the weatherproofed device was able to localise all signals 

to within 10° (average error: 3.33°± 4.08° and 7°± 2.74° for pink noise and birdsong 

respectively, Figure 3.4, Full details including echoes in Appendix B: Figure 7.2.1). 
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 Figure 3.4 shows the predicted azimuth and error for all tested azimuths. WP/ No WP refers to 

whether the MAARU device being used has weatherproofing or not (respectively), and bird/pink noise 

refers to whether the test signal was birdsong or pink noise, respectively. Circle colours indicate 

different recorders. Excluding echoes, as in this figure, all detected signals were accurate to within ± 

10°.  

 

3.4.4. Field Testing  

3.4.4.1. Study Site  

Four acoustic recorders were deployed in two managed woodland areas with different forest 

structures in Southeast England: (1) Chalk Wood (London Borough of Bexley) is an area of 

Ancient Semi-Natural Woodland (ASNW), primarily used as a bridleway with relatively low 

footfall. (2) Joydens Wood (Woodland Trust, 2021) is an area of ancient woodland converted 

to Corsican pine by the Forestry Commission in 1956 (Plantation on Ancient Woodland, 

PAWS). The Woodlands Trust has been restoring the site since 1993, but large areas remain 
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as conifer forest (Woodland Trust, 2021). Joydens Wood is a popular public woodland. The 

two sites are adjacent; however, dominant tree species vary locally.  

Recorder locations were limited to areas with sufficient connectivity to mobile networks (5 

Mbps, 10 Mbps if uncompressed audio streamed, assessed by checking upload speeds). Two 

recorders were placed on large oak trees in ASNW in Chalk Wood (ASNW1 and ASNW2), and 

two other recorders were placed on Corsican pine trees in PAWS in Joydens Wood (PAWS1 

and PAWS2). All four recorders were deployed continuously between August 2021 and 

January 2022. 

3.4.4.2. Recording Hours and Recorder Longevity 

In pre-deployment trials, where the solar panels were completely exposed to sunlight, 24h 

recordings were consistently sent from the MAARUs. However, placement in field sites led to 

a drop-off in transmitted recording hours (Figure 3.5). As sunlight decreased when the UK 

entered the winter months, transmissions fell as low as one hour per day but rose again in the 

Spring (Figure 3.5). Despite reduced recording hours, I still acquired 1700+ hours (550+ GB) 

of data from the Woodlands. 

All four units remained watertight for the whole deployment period. Other environmental 

factors caused damage of varying degrees to a particular MAARU's longevity and led to early 

device terminations (Figure 3.5). Two devices suffered early termination due to a partial panel 

fall (ASNW1), shorting the device and requiring a complete system reset, and severely rodent-

chewed wires leading to an overload of the solar charge controller (PAWS2). PAWS2 returned 

to normal function when connected to a different power system post-deployment. ASNW2 had 

continuous onboard microphone issues leading to a mix of dead and unbalanced channel 

levels but remained powered for the whole deployment period. PAWS1 remained working well 

for the entire field deployment (Figure 3.5).  
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Figure 3.5 Device-specific longevity, two devices (ASNW1 and PAWS2) did not complete the 

deployment due to environmental factors. Solid lines represent the 5-day moving average. 

3.4.4.3. Sustained Audio Quality  

While sound-source localisation/ DOA estimation works primarily on slight temporal 

differences of a signal at each microphone, the longer-term overall spectra should be uniform 

for close-together microphones. I analysed microphone-specific spectra over 10-second 

windows in ten pre-deployment and ten mid-deployment recordings. During the pre-

deployment period, the PAWS1, PAWS2, and ASNW1 devices had largely uniform spectra 

across their microphones. ASNW2 already showed considerable anomalous behaviour 

attributed to channels (1,3:6) failing and switching. After three weeks of deployment, all 

devices except PAWS1 suffered some degree of non-uniform microphone degradation 

resulting in a loss of amplitude in some channels (Appendix B: Figure 6.2). 

I addressed the issues with amplitude by creating a script that autonomously detects and fixes 

issues with inter-channel discrepancy; it achieves the former by calculating the channel-

specific maximum absolute level, using thresholding to determine activity in each channel and 

then processing the audio for analysis. If any channel in a recording has no signal, the 
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recording is removed from analysis; if some channels have more amplitude than others, the 

difference in absolute peak amplitude is found, and the quieter channels are amplified by half 

of that difference; and recordings, where all channels are equivalent, are analysed as they are 

(full details: Appendix B: Figure 6.3). 

Post-deployment, all MAARU devices were assessed for recording quality and DOA estimation 

accuracy as before (Figure 3.2). I show how adjusting amplitude can restore DOA estimation 

accuracy to levels equivalent to pre-deployment (Figure 3.6). PAWS1 remained consistent 

without adjustment, with all tones being detected to within 5° (average: -0.5° ± 2.84°, and 0°± 

3.33° for bird song and pink noise, respectively). ASNW2 suffered considerable non-uniform 

microphone degradation, only detected 40% of signals in the DOA estimation task, and 

appeared to have random azimuth predictions, so it could not be used reliably. The amplitude 

adjustment algorithm automatically removed all ASNW2 recordings. Pre-amplitude 

adjustment, no signals were detected by PAWS2. However, post-amplitude adjustment, all 

signals were detected and accurate to within 10° (average: -2° ± 7.75° and -1° ± 6.87° for 

birdsong and pink noise, respectively). A notable difference in the pre-and post-deployment 

DOA estimation tests is the increase in false positives, ranging from 0-17% pre-deployment to 

17-29% post-deployment.  
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Figure 3.6 localisation tests completed on recorders post- 6-month field deployment. The predicted 

azimuth and error for all tested directions are shown. Raw/Adjusted refers to whether the localisation 

experiment was done pre- or post-adjustment (respectively), and bird/pink noise refers to whether the 

test signal was birdsong or pink noise, respectively. Filled circles are "detections", while empty circles 

are false detections (echoes). The adjusted amplitude algorithm removed faulty ASNW2 recordings 

and allowed for the inclusion of the previously uneven PAWS2. Post-amplitude-adjusting estimated 

directions across remaining recorders were accurate to within ±10° and ±5°for the PAWS2 and 

PAWS1 recorders, respectively. 

 

The deployment also slightly impacted the spectral information of sweeps recorded by PAWS1 

(Figure 3.6b – power spectra track strongly with differences of +/- 5dB). The PAWS2 incurred 

a slightly wider impact (broadly ±10dB), while ASNW2 incurred over 20dB difference (Full 

details: Appendix B: Section 8). 
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Figure 3.7 (i and ii) compare the spectra of a sweep recorded by the same device (PAWS1) pre- and 

post- 6-month deployment; the corresponding iii and iv show this as spectrograms. 

 

Two devices suffered terminal damage in the field, one of which only affected the battery and 

was working well on reboot. Of the remaining two devices, one worked well throughout the 

deployment period, and the other suffered continuous onboard faults resulting in unusable 

data. After repowering and postprocessing, two of the four devices worked well and detected 

all lab signals to within 10°. 

 

Table 3.1 summary of results from the 6-month field deployment  

Device Lasted Full Field 
Deployment? 

Postprocessing Sweep 
Response 
Difference 

Post 
Deployment 
Precision 

Post 
Deployment 
Recall 

PAWS1 Yes No +/- 5dB 5° 100% 

PAWS2 No (severely 
chewed wires) 

Yes (Signal 
boost) 

+/- 10dB* 10°* 100%* 

ASNW1 No (partial panel 
fall resulting in 
terminal system 
reset) 

NA NA NA NA 

ASNW2 Yes Yes (removed) 20dB + random 40% 

* Refers to the post postprocessing results  



89 
 

3.5. DISCUSSION  

I aimed to create a multichannel acoustic recording unit capable of DOA estimation made from 

readily available low-cost materials, which are robust and can survive extended field 

deployment. I evaluated MAARU for these properties in both lab and field tests. I report here 

the benefits and costs of using the proposed system, as well as considerations to be made for 

future deployments.  

Low-cost and readily available components were key design aims of MAARU. All components 

were available to purchase online at the time of writing and required only the addition of a 

power drill (for microphone holes) and screwdriver to build. My device combines autonomous 

PAM with usable multichannel recording for £26 more than the omnidirectional recorder 

(SAFE Acoustics: £190/unit (Sethi et al., 2018), This device: £206 – both without powering, 

Appendix B: Table 2.1 and 2.2). Due to differences in microphone power requirements, both 

devices run at ~5W (one externally powered electret capacitor microphone vs six passive 

MEMS microphones). Providing power is an additional cost dependent on local resources such 

as grid connection or hours of direct sunlight. My proposed setup consists of a solar panel, 

deep cycle battery and solar charge controller, costing an additional £256 total.  

An additional cost is in maintaining data transfer. Each device continuously generates and 

sends high-quality data (16.5GB/ day uncompressed, 7.2GB/day FLAC compressed), 

requiring a sufficient network upload speed (10/5 Mbps) and data plan. It is possible to run 

MAARU offline and manually collect data. However, this reduces autonomy and increases field 

revisit costs. I was able to cover my devices for £20/month/device using an unlimited data plan 

(SMARTY, 2022).   

Our device costs £462 + £20/month, including data transfer and renewable power in a 

temperate climate. This price comes out mid-range compared to CARACAL (£150/unit, non-

autonomous DOA) and other GPS synchronised single-channel devices whereby at least three 
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recorders are needed (AudioMoth Dev £225 for three, SM2+ £2,100 for three, SAFE Acoustics 

£600 for three excluding powering, Full comparison Appendix B: Table 1). However, I believe 

that the advantage of MAARU being autonomous and stand-alone DOA justifies this additional 

cost.  

The MAARU setup was also assessed for robustness to long-term field deployment. Despite 

the low-cost, accessible housing used, all devices remained watertight throughout the 

deployment. Two devices stopped recording data due to a solar panel partially falling from 

where it was tethered (ASNW1) and rodent damage to wires (PAWS2). While these factors 

caused the early termination of their devices, accounting for these issues with stronger/ more 

points of panel attachment and the use of armoured cable would reduce the risk of this 

reoccurring. Investigating how weatherproofing affected the sensitivity of MAARU, I found that 

weatherproofed devices had a loss of signal peaking at 20dB at 6kHz. This reduction in signal 

may be important, especially as it could make the device less responsive to species that call 

in that range. 

The multichannel array chosen here (ReSpeaker 6-Mic) was selected as a low-cost (£42) and 

easy-to-use solution, sacrificing microphone quality, sensitivity, and recordable frequency 

range. ReSpeaker also has another 6-microphone array integrated with a Linux platform 

(Seeed Studio, ReSpeaker Core v2, £90) which, although not currently available, may have 

interesting applications in future. Specialist soundcards can also be used to perform 

multichannel recording with externally powered microphones which boast better signal quality 

and sensitivity (Audio Injector Octo, £122 – not currently available, Elk Audio, £324 – not 

currently available). Users looking specifically for quieter organisms or those that call at higher 

frequencies would benefit from a setup with more specialist equipment. 

Beyond physical durability, I also investigated to what extent MAARU could accurately estimate 

DOA in the field. I found that weatherproofing resulted in an increase in maximum localisation 
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error from ±5° to ±10°, with the mean detection error being slightly higher for birdsong than 

pink noise. The increased loss of accuracy in the birdsong tests is likely due to the decrease 

in signal around the frequency of birdsong call that was used (5-10kHz). Using raw audio post-

deployment, I found that one of the MAARU devices was working as normal, localising all 

signals to within 5° (PAWS1). The second could not detect and localise any signals (PAWS2) 

reliably, and the fourth, which had considerable signal loss across all channels, detected only 

40% with localisation errors up to 155°.  

Spectral observations highlighted that some channels had lost amplitude. I was able to 

automate the detection and fixing of these issues with an algorithm that removes recordings 

with completely dead channels and fixes issues in recordings with uneven channel energy. 

Once amplitude was adjusted, the faulty recordings (ASNW2) were removed from the sample, 

and PAWS2 successfully localised all signals to within 10°.  

Considerations should also be made to false detections (echoes), which increased from 0-17% 

pre-deployment to 17-29% post-deployment, as microphones may have degraded slightly in 

the field. While the rate of false positives in recordings post-deployment increased, they 

remained within the expected range of false positives for the MUSIC method used by 

HARKBird, which is 3-27% (Suzuki et al., 2017). I reduced the rate of false positives by more 

finely tuning the threshold case by case; however, this would become time-consuming with a 

large amount of data and is unscalable. Acoustic Echo Cancellation (AEC) algorithms may 

reduce false detections.  

It is important to also consider that the sample rate used in MAARU recorders (16kHz) results 

in a somewhat limited dynamic range. While this will cover the majority of bird calls, this 

excludes all ultrasonic and some audible range sounds. While this has advantages, as it 

reduces the file size and necessary bandwidth, the target species should be considered 

carefully before MAARU devices are deployed.  
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While my lab localisation tests indicate device durability,  it should be noted that all tests were 

in the direct nearfield, whereas field signals may be affected by other factors (attenuation, 

vegetation, variable topography, temperature and humidity gradients (Darras et al., 2016)). 

Most popular microphone arrays focus on determining an exact position on large-scale field 

deployments rather than a lab directionality test, so they cannot be directly compared here. 

 

 

3.6. CONCLUSION  

For the field of acoustic localisation for ecosystem monitoring to gain traction, equipment is 

needed that is “widely available, inexpensive, self-synchronising and low maintenance” 

(Rhinehart et al., 2020). Here I present a device that is an easily accessible, relatively low-cost, 

low-maintenance solution for users hoping to start with autonomous, audible range, DOA 

(spatial) ecoacoustics. MAARU doesn’t include self-synchronisation at present, as it was 

designed to be a stand-alone unit. Alterations could be made to MAARU to allow for GPS/ 

cable synchronisation and apply this device in a multi-ARU to perform DOA intersections and 

estimate caller positions.   

I have demonstrated mixed efficacy of MAARU devices in a long-term field deployment 

showing good durability in cases that did not suffer external damage. I provide advice for future 

deployments to avoid these issues, specifically armoured cable and more tether points on 

solar panels in the canopy. As well as a successful port of audio from this device to HARKBird, 

I anticipate it would work well on other platforms such as HARKBird2 (Sumitani et al., 2019), 

PAMGuard or ODAS (Grondin et al., 2022). These platforms have their own additional features, 

such as echo/ noise reduction and t-sne signal clustering, which may reduce false positives 

and make data easier to appraise. 
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Localisation of signals in the field can describe patterns that single-channel acoustic ARUs 

alone cannot while having greater longevity and durability than human observers. Here I add 

a new dimension to acoustic studies allowing us to track more precisely the movement, 

interaction, and relation to the habitat of species in almost real-time. These considerations give 

us a complete 3D understanding of responses to environmental stressors and may help us 

more comprehensively understand the behaviour of at-risk organisms and environments. 

 

3.7. DATA ACCESSIBILITY 

GitHub: https://github.com/BeckyHeath/multi-mic-recorder-analysis 

Acoustic data available on request 
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4. CHAPTER 4: MAARU IN THE WILD – APPROXIMATING 

ABUNDANCE AND EXPLORING VERTICAL 

STRATIFICATION WITH MULTICHANNEL ACOUSTICS  

 

4.1. CHAPTER OVERVIEW  

Calculating vital metrics such as abundance, density, and population number with acoustic 

Autonomous Recording Units (ARUs) is limited, as it is often impossible to determine the 

number of calling individuals in a recording. In the following chapter, I introduce a means of 

approximating bird abundance by optimally clustering calls by their direction recorded by 

MAARU (Multichannel Acoustic Autonomous Recording Unit). I also use this calling direction 

to perform some exploratory analysis of vertically stratified calling behaviour of bird species in 

Ancient Semi-Natural Woodland (ASNW) and Plantation on Ancient Woodland Site (PAWS), 

both in South-East England. 

I introduce a novel pipeline whereby calls are recorded, localised, and classified using MAARU, 

HARKBird and BirdNET, respectively. Using spatial clustering, I could attribute the 5933 

detected calls to 1000 individuals (331 in PAWS and 669 in ASNW). I also determined an 

estimate of the call rate of species in the area, finding that Blue Tits, Coal Tits, Long-Tailed 

Tits, Magpies, Rose-Ringed Parakeets and Wrens had the most frequently calling individuals. 

I found that the vertical calling angle was dependent on the species. However, there was no 

effect on whether they were found in PAWS or ASNW.  

This novel application of spatial acoustics provides early insight into the abundance and calling 

behaviour of 19 species of British bird. In this chapter, I evidence that MAARU can be 
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combined with an easily deployable and open-source analysis pipeline, providing an exciting 

stand-alone platform for approximating abundance alongside monitoring directional 

information.  

4.2. INTRODUCTION  

MAARU, explained in more detail in the previous chapter, is a Multichannel Acoustic 

Autonomous Recording Unit which records 6 channels of audible-range audio from a circular 

array continuously. Audio signals recorded from multiple channels simultaneously can be 

compared, through sound-source localisation algorithms, to be attributed positional/ 

directional information (also reviewed in greater detail in Chapter 3). In this chapter, I present 

some novel use cases of sound-source localisation in sound ecology, specifically using 

MAARU as a stand-alone DOA estimation platform for approximating abundance and exploring 

species behaviour.  

4.2.3. Measuring Abundance 

Understanding abundance is necessary for enhancing monitoring efforts and appraising 

species populations, risk, and the influence of conservation efforts (Farr et al., 2019). This is 

especially important when predicting the influence of climate change and other anthropogenic 

stressors (Furnas et al., 2019). In-person point counts from the field are connected to 

abundance through well-defined modes that incorporate detection probability and range 

(Johnston et al., 2014; Stowell, 2022). Specifically, imperfect field detections can be mitigated 

and modelled through distance sampling (Buckland, Anderson, Burnham, & Laake, 1993), and 

repeated counts (Royle, 2004). While this methodology has been shown to work well for small-

scale wildlife monitoring wildlife  (Zipkin et al., 2014), they do not scale well owing to the cost 

and field-hours involved in data collection. Acoustic data collected through PAM or ARUs 
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seems an obvious solution, however the methodologies tying acoustic data to in-situ 

abundance are not clearly defined.  

At present, known vocalisations can be identified in sound recordings and be used to build 

detection/non-detection occupancy models and infer species distributions (Furnas & Callas, 

2015; MacKenzie et al., 2002). However, these methods are prone to false positives and do 

not give a clear reading of abundance. Several studies have looked to include the principles 

of distance sampling into acoustically detected counts using the “detection radius” of the 

recorder (Doser et al., 2021). While promising, calculating a detection radius is dependent on 

habitat type, background noise, vocalisation directionality and the target species (Pérez-

Granados & Traba, 2021).  While it may be possible to remotely model sound attenuation and 

signal-specific ARU detectability radii, it still remains impossible to determine whether two calls 

were made by the same individual with a single-channel recorder (Stevenson et al., 2015).  

Localising individuals to measure abundance and density is cited as one of the main 

advantages of performing sound source localisation in ecosystem monitoring (Rhinehart et al., 

2020). A limited number of studies have begun using spatial acoustics to population size in a 

way that echoes point counts based on the spatial human auditory system (Frommolt & 

Tauchert, 2014; R. W. Hedley et al., 2017; Spillmann et al., 2015; Wilson & Bayne, 2018). 

Hedley et al., 2017 used four microphones connected to two Wildlife Acoustics SM3s to test 

whether the location and number of simultaneous calls could be determined at varying 

distances from a recorder, finding that 95% of calls were detected and localised to within 12°. 

This setup, unfortunately, suffered some issues with inter-ARU clock drift and required regular 

(every 5 minutes) sonic re-synchronisation. To my knowledge, this setup has not been tested 

for long-term deployment in a more complex environment. Other studies have also had some 

success monitoring abundance with multichannel acoustics; however, these methods were 

applicable to just single species (Bitterns (Frommolt & Tauchert, 2014), Bornean Orangutans 
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(Spillmann et al., 2015), and Ovenbirds (Wilson & Bayne, 2018)). Individuals were detected in 

these studies using automated detection of a loud and distinctive long-call (Bornean 

Orangutan) or through visual inspection of spectrograms (Bitterns and Ovenbirds) which can 

be time-consuming.  

The first aim of the following chapter is to provide a low-complexity, easily deployable use case 

of multichannel recording for unmanned signal clustering and ubiquitous bird species 

abundance approximation.  

4.2.4. Vertical Stratification and the 3D Niche  

Species distributions and spatial niches are traditionally considered in two spatial dimensions 

(2D) distributions across the Earth’s surface and have long negated the vertical dimension 

(Chandler et al., 2020). Research has found, however, that a habitat’s structural complexity (in 

three spatial dimensions 3D) is a better predictor of biodiversity than canopy cover alone 

(Davies & Asner, 2014). The concept of the 3D niche was recently defined as "an extension of 

the classic ecological niche concept which considers spatial, temporal and dietary 

specialisations in a complex, 3D habitat" (Gámez & Harris, 2022). The 3D niche considers a 

new range of explanatory opportunities for species and may even be necessary for explaining 

the coexistence and persistence of competing species (Oliveira & Scheffers, 2019). The 3D 

niche relies on the theory of vertical stratification, whereby the vertical layering of biotic and 

abiotic environmental conditions can lead to differences in biotic community assemblages.  

Vertical stratification has been considered since the 40s (Allee, Park, Emerson, Park, & 

Schmidt, 1949)  and has been evidenced in terrestrial, aquatic and subterranean environments 

(Thiel et al., 2021). Terrestrial forests are especially complex, sometimes with six vertical strata: 

soil, forest floor, herbaceous shrub, tree, and up to two emergent layers (Allee, Park, Emerson, 

Park, & Schmidt, 1949). The layering of vertical strata is due to gradient (light, temperature, 
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humidity, pH, nutrient availability) and more discrete biotic and abiotic factors (substrate, 

habitat provisions, herbaceous structure). These variations can result in a vertical 

environmental turnover which occurs at a much faster rate than horizontal; in tropical forests, 

20-30m vertical differences can result in climatic differences of 4°C and 4% humidity, 

equivalent to over 400m in altitude or kilometres in latitude (Scheffers et al., 2013).  

Beyond just abiotic factors, vertical space provides variation in refugia for intra-/ inter-specific 

competition and predation pressure. Greater availability of niches in the vertical dimension 

could reduce the intensity of competition, which fundamentally shapes communities (Tilman, 

2004). Species' ability to move vertically to buffered conditions within (micro) habitats may 

also allow them to tolerate a wider range of stressors, including temperatures in new climate 

conditions (Scheffers et al., 2013, 2017; Thiel et al., 2021). The combined effect of differential 

abiotic and biotic pressures and opportunities has resulted in the vertical stratification of many 

terrestrial animals' ranges, specifically documented in insects (Leahy et al., 2022), birds 

(Bradfer-Lawrence et al., 2018), and mammals (Chandler et al., 2020). A better understanding 

of how species interact with 3D, vertically stratified ecosystems may enable us to understand 

how ecosystem functions will perform under global change (Thiel et al., 2021). 

Habitat threats such as selective logging, habitat loss, and fragmentation are driving species 

and biodiversity loss globally. When habitat is lost, species may respond by moving vertically 

or latitudinally, extending the extent of the threat. Practices such as mixed fruit orchards, 

keeping mixed strata of tree species within a plantation, agroforestry, canopy highways, and 

3D structured corridors all maintain biodiversity by maintaining vertical stratification (Gámez & 

Harris, 2022; Harvey & González Villalobos, 2007; Round et al., 2006; Thiel et al., 2021). 

Tropical plantations, which are built with consideration of structural complexity, provide 

corridors and habitats for a larger number of species than those which do not (Harvey & 

González Villalobos, 2007; Round et al., 2006; Thiel et al., 2021). Without these kinds of 
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considerations, unchecked deforestation pressures may disproportionately collapse 3D 

niches, lead to a higher degree of competition, and risk accelerating species loss (Levin, 1970).  

Despite being considered in the 1950s, vertical stratification was not dedicatedly explored until 

canopy access became more widely available in the 1970s (Thiel et al., 2021). Since the 1970s, 

information about canopy-dwelling species has largely been derived through canopy access, 

cranes, and ground-to-canopy mist nets (Thiel et al., 2021). Even now, monitoring efforts are 

often conducted solely from the understory, which can result in an underestimation of 

community resilience as a larger number of more mobile species have been observed in the 

canopy (Bradfer-Lawrence et al., 2018). As the availability of small, affordable computers has 

exploded, so too has the means of collecting data from the field autonomously. Technologies 

capable of monitoring 3D niches were recently reviewed (Gámez & Harris, 2022), advocating 

for the use of high-resolution forest structure renderings (Hermosilla et al., 2014), multi-

stratified camera traps (Moore et al., 2020), elevation-enabled GPS collars, and stratified eDNA 

measures via mosquitos (Gámez & Harris, 2022). Acoustic methods remain unmentioned in 

the review and, while underutilised in this area, provide some advantages (non-invasive, 

ubiquitous, low cost) that limit the above.  

The second aim of this chapter is, therefore, to determine whether it is possible to explore 

vertical stratification with MAARU.  

4.2.5. Chapter Aims 

The overall aim of this work was to develop and appraise a means of autonomous multichannel 

acoustic recording for application to field research. In this chapter specifically, I explore 

whether data from MAARU (Chapter 3) can be used to:  

(1) Use spatial localisation to give a more accurate indication of abundance and calculate 

relative biodiversity indices.  
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(2) Appraise vertical space usage of avian species in two different areas of managed forest 

The study site consists of vertically stratified Ancient Semi-Natural Woodland (ASNW) and 

canopy-dominant Plantation on Ancient Woodland Site (PAWS) in Southeast England. This 

study presents an analysis of the first field data recorded by MAARU (Multichannel Acoustic 

Autonomous Recording Unit), a single multichannel field recorder capable of extracting the 

relative directions of acoustic signals (Chapter 3).  

4.3. METHODS  

4.3.3. Study Site 

Two MAARU recorders were deployed in two managed woodland areas in Southeast England, 

Chalk Wood (Bexley Council, London) and Joydens Wood (The Woodland Trust). MAARU is a 

6-channel (6 x 16kHz, 16-bit) autonomous acoustic recorder made the low-cost, ubiquitously 

available equipment (Chapter 3). The two field sites are geographically close; however, 

variations in the dominant tree species lead to clear forest structure differences.  

(1)  Chalk Wood is an Ancient Semi-Natural Woodland (ASNW) area primarily used as a 

bridleway with relatively low footfall. The ASNW site is made of mature broadleaf 

species, including sweet chestnut, oak, sycamore, ash, and field maple, with holly and 

yew comprising the shrub layer (Woodland Trust 2021). One MAARU recorder 

(ASNW1) was attached to the trunk of a large Oak Tree 15m from the ground. 

(2) Joydens Wood is a popular public woodland mainly consisting of Plantation on Ancient 

Woodland (PAWS). Joydens wood was converted from natural oak woodland to 

Corsican Pine after the Forestry Commission gained ownership in 1956. In 1993, the 

Woodlands Trust bought the site, and despite felling efforts over the last 30 years, large 

areas of the woodland are still predominantly conifer forest (Woodland Trust, 2021). 

Currently, the PAWS sites in Joyden's Wood consist of a dense canopy of evergreen 
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Corsican Pine and a largely open understory with a few mixed ferns, several small Holly 

bushes, and some emerging saplings (Woodland Trust, 2021). The other recorder 

(PAWS1) was placed on the trunk Corsican Pine tree, also 15m from the ground.  

Both recorders were MAARU recorders (Chapter 3), powered by solar panels attached by 

climbing slings in the canopy and programmed to transmit. FLAC compressed audio data 

continuously over mobile networks. As a result, the specific recorder locations were limited 

mainly to areas with sufficient connectivity to mobile networks (5 Mbps, 10 Mbps if 

uncompressed audio streamed - found via speed checker).  

The deployment period was continuous between August 2021 and January 2022. However, 

inefficiencies in the power supply resulted in recordings that were not continuous over the 

experimental period. For standardisation, only days where over 16 hours of audio had been 

collected were used for testing. These recordings were manually screened to remove days 

where ongoing forest work occurred. The final study set consists of four 10-hour periods of 

continuous acoustic recording at each site (10 am-10 pm, 80 hours total).  

4.3.4. Data Extraction 

Beyond raw audio recording, the data used in the following analysis was extracted through 

two steps (Figures 4.1 and 4.2).  

1- The DOA and species information was determined through HARKBird, a sound-source 

localisation programme (Suzuki et al., 2017), and BirdNET, a bird call classification 

platform (Kahl et al., 2021), respectively (Figure 4.1). 

2- The localisation and species information is then used to approximate the species-

specific calling rate and the number of calling individuals per recording (Figure 4.2).  
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Figure 4.1 shows the steps in extracting 

localisation and species identifications 

from raw acoustic recordings, with 

essential software and settings for each 

step. Notably, as the detection range was 

limited to 2-8kHz in HARKBird, this was 

echoed by using a High-Pass filter prior to 

BirdNET classification.  

 

 

 

 

 

 

 

 

4.3.4.1. Sound Source Localisation with HARKBird  

HARKBird, explained in more detail in chapter 3, is a bioacoustic adaptation of software 

designed for machine listening: HARK (Honda research institute Japan Audition for Robots 

with Kyoto University (Nakadai et al., 2010, 2017)). HARK is an open-source platform which 

combines modules capable of speech detection (Missing Feature Theory), noise-robust 

localisation (MUSIC), and separation (GSS) and is designed to work on any microphone array 
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in both quiet and noisy environments (Nakadai et al., 2010). HARKBird is a portable, 

customisable implementation of HARK with a simple GUI that allows users to record, localise, 

separate, visualise and annotate (environmental) sounds (Suzuki et al., 2017), with later 

implementations also performing T-SNE-based signal clustering (Sumitani et al., 2019).  

HARKBird determines the calling azimuth (DOA) of a signal relative to a fixed array. MAARU 

recorders use a 6-channel 2D circular microphone array, so in my study, HARKBird localises 

recordings to the most likely 5° azimuth on a 360° circle. Prior lab tests, however, found that 

after waterproofing and extended deployment in the field, signals recorded by MAARU 

recorders could be localised to an accuracy of ±10° (Chapter 3).  

HARKBird 2.0 was used in this study and was installed on a dedicated Ubuntu 18.06 Virtual 

Environment. As data was collected on-device and annotation will be performed by BirdNET, 

I used HARKBird solely as a localisation tool. When running localisations on HARKBird, the 

user should set several parameters, which I determined experimentally by manually inspecting 

inputs and outputs (Table 4.1). All below features were altered systematically until HARKBird 

localised only bird calls. Notably, the detection range is small (2-8kHz) because the sample 

rate of the recorder was 16kHz, and <2kHz was removed as this band was dominated by 

anthropophony from a nearby busy A-road and overhead air travel.  

 

Table 4.1 shows parameters used for HARKBird in PAWS and ASNW 

Parameter ASNW1 PAWS1 

Event Detection Threshold 24.75 25.25 

Frequency Range 2-8kHz 2-8kHz 

Predicted Source Number 2 2 

Gain 0dB 0dB 

Array 
6-channel 
circular 

6-channel 
circular 
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4.3.4.2. Automated Species ID with BirdNET 

BirdNET is a dedicated deep neural network with 157 layers and more than 27 million trainable 

parameters that have been extensively trained on 226,078 labelled bird recordings 

(comprising 984 species from eBird, Xeno-Canto and the Macauley Library) and 15,000+ 

recordings of "non-bird noise" (found from AudioSet, Freefield1010, WarblR and the Macauley 

Library) (Kahl et al., 2021). Beyond this raw audio, augmented (warped, rolled, and artificially 

noisy) versions of the above were used to make the model more robust to differences in field 

recording protocols (Kahl et al., 2021). 

The BirdNET DNN is based on a ResNet which takes spectrograms with enhanced temporal 

resolution (beyond human listening capacity) as input (Kahl et al., 2021). BirdNET boasts 

automated detection of over 70% of signals with accuracy reaching up to 100% (R. Hedley & 

Bayne, 2020). Its applications are widespread within academia, but BirdNET also lends itself 

to citizen science, with more than 1.1 million participants in 2020 (Wood et al., 2022) and over 

1 Million downloads on Google Play. All recordings in this study were classified with the same 

BirdNET parameters (Longitude = 0.15, Latitude = 51.4, Week 34, Sensitivity = 1.5, and 2s 

overlap), with the outputs saved as .csv.  

Only BirdNET classifications with a confidence level of over 0.5 are used in the following 

analysis. Further, species detected just once across the entire recording period were removed 

as potential false positives.  

4.3.4.3. Abundance Approximation with DOA Estimation 

In omnidirectional soundscape recording, it is often impossible to assign ownership to calls 

meaning, particularly for frequently calling individuals, that it can be impossible to attribute any 

measure of abundance. Here I define an experimental method for using DOA estimation to 
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cluster calling azimuths and approximate the number of calling individuals from a soundscape 

(Figure 4.2).  

The joined data frame containing the combined HARKBird and BirdNET outputs is split per 

recording and per species. This results in a list of DOAs of signals for a particular species over 

a (10-minute) time window. The DOAs are clustered optimally using the smallest number of k-

means clusters, whereby the most extensive range of azimuths in each cluster is 20° (±10°) 

(Figure 4.2). The number of calls and average azimuth per group is then found and mapped 

from 2D (circular) azimuth to a pre-determined 1D height projection. These groups are used 

as an approximation of the number of calling individuals. Unless otherwise stated, all per-

species analysis that is based on abundance has been estimated through this method (hereon 

DOA-approximated abundance).  
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Figure 4.2 illustrates an example of the process of estimating abundance with spatial localisation.  

4.3.5. Data Analysis  

The following data analysis and visualisations are completed in R v.4.0.3 (R Core Team, 2022). 

These analyses work to highlight the advantages of using MAARU or other DOA recording 

units for enhanced environment appraisal. Here I highlight how DOA acoustics can be used to 

approximate species abundance and explore the calling locations of species.  

4.3.5.1. Abundance Approximation  

To demonstrate whether DOA estimation could be used to better approximate the abundance 

and calling rate of individuals, I compared the total number of detected calls per species per 
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location with DOA-approximated abundance (Figure 4.1). The number of detections was 

compared with the DOA-approximated abundance through a Paired-Wilcoxon Signed-Rank 

test.  

4.3.5.2. Diversity Indices  

I use measures of site-specific species count (α diversity), site-specific unique species count 

(β diversity), and cross-site species count (γ diversity) as a first-point comparison across the 

sites.  

I then calculate the Shannon Diversity at each site, comparing the use of DOA-approximated 

abundance and raw call volumes as proxies for species count. Shannon-Diversity measures 

the number of species and evenness of the population of each species in an area. I calculated 

Shannon Diversity with the diversity method in the “vegan” package (Oksanen, 2022). 

Shannon Diversity is calculated with samples determined hourly at each site. The difference 

in Shannon Diversity at each site, for each of the measures (DOA approximated abundance 

vs call volume), is compared pairwise through Welch’s T-Tests.  

4.3.5.3. Calling Rate Approximation 

The DOA- approximated abundance method records an estimate of the number of calling 

individuals but also the number of calls attributed to that individual. I show the median and 

quartiles of the number of calls per DOA-approximated individual per species. Using a one-

sample Welch’s T-Test, I determine the species where individuals call more than once over a 

10-minute period and therefore indicate the species most likely to be overestimated in just 

call-volume-related abundance approximations. I used a Bonferroni Correction of 19 species, 

making the p-value for 95% confidence p<0.00263. 
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4.3.5.4. Vertical Space Usage 

I split the vertical space, depending on the DOA (θ), into the upper canopy (30° < θ  ≤ 90°), 

mid-canopy (-30° < θ  ≤ 30°) or understory (-90° < θ  ≤ -30°) and describe species calling in 

each stratum. We also use a two-way ANOVA was used to test whether the DOA of a DOA—

approximated individual can be predicted by which species it is, which location it’s calling from 

or whether there is an interaction between the two.  

 

4.4. RESULTS  

4.4.3. Abundance Approximations  

A total of 5933 calls were detected, localised, and classified over the 80-hour recording period 

(ASNW: 3240, PAWS: 2693). It is estimated that these calls came from 669 individuals in 

ASNW and 331 individuals in PAWS (1000 total). The PAWS recorder collected 45.4% of 

detections. However, it is estimated that this was from 33.1% of the total detected DOA—

approximated individuals. Suggesting that PAWS may be made up of fewer, more frequently 

calling individuals 

However, I found that the calculating abundance reduced the mean number of independent 

detections in ASNW (Wilcoxon Signed Rank Test: V = 120, p=0.0007) and PAWS (Wilcoxon 

Signed Rank Test: V = 91, p=0.0017) (Figure 4.3).  
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Figure 4.3 shows the overall number of detections and approximated abundance in both ASNW and 

PAWS. Abundance approximates are less than the number of detections in both sites.  

 

4.4.4. Diversity Indices  

ASNW had an α diversity of 16 (including three Red and Amber list species), while PAWS had 

an α diversity of 15 (including four Red and Amber list species). β diversity across the sites is 

seven species (four unique species in ASNW and three in PAWS). The γ diversity across both 

sites is 19 (Figure 4.3).  
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The Shannon Diversity in ASNW was larger than PAWS when both abundance (t(60.9)=-2.93, 

p<0.0001) and call (t(64.8)=3.51, p<0.00081) measures were used. The Shannon Diversity 

Index was also reduced when abundance was used in place of the number of calls in both 

ASNW (t(71.9)=-4.68, p<0.0001) and PAWS (t(59.5)= -2.94, p<0.0048) (Figure 4.4). 

 

 

Figure 4.4 shows the Shannon 

Diversity Index (calculated hourly) 

at ASNW and PAWS, where either 

DOA-approximated abundance or 

call volume is used to count 

individuals. The Shannon Diversity 

is higher in ASNW than in PAWS, 

and using call numbers 

overestimates the Shannon 

Diversity when compared to DOA-

approximated abundance. 

 

4.4.5. Calling Rate Approximations  

There was considerable variation in the number of calls made by individuals of different 

species. The largest number of calls made by a single individual over the course of 10 minutes 

was found in Great Spotted Woodpeckers (340 calls), Rose-Ringed Parakeets (63 Calls), and 

Robins (62 Calls).  Considering detections across the entire experimental period, I found that 

six species call more than once (Table 4.2, Figure 4.5 – Full Details Appendix C: Table 3.1).  
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Table 4.2 shows the one-sample Welch’s T-Test outputs comparing the calling rates of individuals 

across both recording locations (just significant findings). 

Species Mean DF 
T-

Value Raw P 
Bonferroni 

Significance 
(p<0.00263) 

Blue Tit 3.92 26 4.45 0.000145 * 

Coal Tit 5.64 158 9.35 < 0.0001 * 

Long-Tailed Tit 3 16 5.50 <0.0001 * 

Magpie 6.36 35 4.94 <0.0001 * 

Rose-Ringed 
Parakeet 

5.50 580 17.13 <0.0001 * 

Wren 3.57 20 4.25 0.000384 * 

 

 

Figure 4.5 shows the per-species calling rate with median and inter-quartile ranges. The species 

found to call more than once (Bonferroni Corrected Welch’s T-Test, 95% Confidence) are 

indicated by stars. 
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4.4.6. Vertical Space Usage 

Of the 16 species in ASNW, six had median calling angles in the upper canopy (Blue Tit, Coal 

Tit, Jay, Magpie, Robin, and Treecreeper), one species had a median calling height from the 

understory (Great Spotted Woodpecker), and the rest from the mid-canopy. Of the upper 

canopy species, three were only detected in the upper canopy (Jays, Magpies and 

Treecreepers). Buzzards were only detected in the mid-canopy, and Nuthatches did not call 

from the understory, but the other 11 species were found to call from all three strata (Figure 

4.6).  

Conversely, all species in PAWS have median calling angles in the mid-canopy except for 

Nuthatches which were only detected in the upper canopy. Three species in PAWS were only 

detected in the mid-canopy (Buzzards, Long-tailed Tits and Willow Tits). Compared to the 11 

in ASNW, only six species called from all three strata in PAWS. With less than half of the 

species (seven of fifteen) calling from the understory at all (Figure 4.6).   
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Figure 4.6 shows the calling angles of all detected DOA—approximated individuals in the 

experimental period. The number of calls made by each DOA-approximated individual is given by the 

point size. The shaded area between -30° and 30° represents the mid-canopy; above this is the upper 

canopy, and below is the understory. Boxplots indicate the range, outliers, and interquartile ranges of 

the calling angles of each species at each location. Means are indicated by red squares and medians 

by blue triangles. 

 

Considering the overall dataset, a two-way ANOVA revealed that there was not a statistically 

significant interaction between species and location on the calling angle (F(11) =1.40, p=0.17, 

Table 4.3). The analysis shows that the location alone did not have a statistically significant 

effect o the calling angle (p=0.48, Table 4.3), but that species did (p=0.03).  
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Table 4.3 Two-Way ANOVA output for DOA ~ Location* Species 

 Df  
Sum 

Squared 
Mean 

Squared  F-Value  Pr(>F) 

Location 1 896 895.8 0.498 0.4807 

Species  18 55866 3103.7 1.724 0.0303 *  

Location x 
Species  11 27690 2517.3 1.399 0.1677 

Residuals 969 1744158 1800.0  

 

4.5. DISCUSSION  

The pipeline I present details data extraction and provides the scripts necessary to combine 

raw outputs from MAARU, BirdNET and HARKBird to approximate abundance and explore the 

use of vertical space. Sound-source localisation in the field usually requires devices to be 

precisely time-synced over GPS, wireless networks, or cable networks, making localisation 

expensive, unreliable, and occasionally faulty (Rhinehart et al., 2020). This pipeline requires 

just one relatively low-cost device, all synced by the same onboard clock, removing the need 

for cross-recorder synchronisation. While using just one DOA recorder sacrifices the ability to 

locate the exact location of a calling individual, it should not be overlooked as a low-cost, easily 

deployable means of enhanced ecosystem recording.  

I then explain using a simple k-means clustering optimisation process to group species-

specific calls by DOA as a proxy for the number of calling individuals (the DOA-approximated 

abundance). Here I was able to provide insight into species-specific calling frequency and 

highlight individuals that may be under-/over-estimated in the population. Bird populations in 

the UK are fortunately very well documented, but this method can be extended to systems 

which are not so well understood. Call classification in terrestrial sound ecology is generally 

just used for occupancy/ range assessments, as attributing ownership to a signal is often 
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impossible. Without knowing how many individuals are present, it is difficult to estimate 

population size, density or abundance. The number of individuals can be approximated from 

omnidirectional recording, but this is especially difficult for species without well-documented 

information on signal attenuation, signal directionality, or calling behaviour. My DOA-

approximated abundance can be applied to any species, with the only requirement being that 

they can be classified with BirdNET (or similar). This DOA-approximated abundance estimate 

should not be taken as an absolute value of abundance but rather as a more accurate proxy. 

This abundance estimate is based on spatial differences over a fixed recording window; 

however, extending this into the temporal domain may develop this approximation to account 

for moving individuals and individual estimates across multiple recording windows. Further, 

the approximation also uses an experimentally derived localisation error of ±10° as a maximum 

range for clusters, which would under-estimate abundances for close by individuals. While 

helpful in separating individuals over a short time window, this approximation should be used 

cautiously and may be developed.  

I found a similar number of species at each site (15 and 16 for ASNW and PAWS, respectively). 

It is possible that the species-specific detection radius at these sites differed, as sound often 

attenuates more quickly in more densely forested environments such as ASNW (Alcocer et 

al., 2022). Studies like this may benefit from determining the attenuation profile of the 

landscape before analysis. I found that for both PAWS and ASNW, using the call volume as an 

abundance measure caused an overestimate of Shannon Diversity than the DOA-

approximated abundance. ASNW has a marginally higher Shannon Diversity, no matter which 

of the abundance measures was used. It should be noted that this refers only to successfully 

detected and classified audible-range bird calls. Any animals that vocalise outside of this 

frequency range or cannot be accurately detected by BirdNET will not be included in this 

analysis. 
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At both locations, Rose-ringed Parakeets drove un-even populations between species.  In 

ASNW alone, 2630 Rose-ringed Parakeet calls were detected from over 480 individuals. Rose-

ringed parakeets are an invasive species in the UK, which are found to have detrimental effects 

on native wildlife and socio-economic activities, such as crop damage (Heald et al., 2020). 

Rose-ringed Parakeets are famously noisy, with exposure to their loud and frequent calls 

driving a sharp decline in human tolerance of their invasion (Mori et al., 2020). Whether this 

domination of the acoustic space has an impact on the vocal behaviour of other species has 

been speculated but is unknown at this time (Peck, 2013). As just one recorder was deployed 

at each site, it may also be possible that this data may be skewed if the recorder was placed 

near a Rose-ringed parakeet (or other species) roost. The reduced dispersal of Rose-ringed 

Parakeets in PAWS, combined with the unique occurrence of Bullfinches, Marsh-Harriers, and 

Willow Tits, may further evidence the need for heterogeneity of landscape type for maximising 

species richness.   

The data collection and processing pipeline had a few limitations regarding frequency range, 

species classification scope, and near-field DOA calculation. Due to a large amount of 

anthropogenic noise in the area, all data below 2kHz was removed. While this has benefits 

regarding privacy as this removes human speech (80-255 Hz), I also lose data from species 

that call in a lower range, such as Wood Pigeons and Collared Doves. This study and 

suggested analysis pipeline are also limited in terms of its species scope it just describes bird 

species classification and is by no means comprehensive. That being said, birds are vital 

indicator species owing to their sensitivity to environmental change and contributions to 

ecosystem services (Bradfer-Lawrence et al., 2018, and references therein). Should 

researchers want to extend this analysis to other taxa, frequency ranges can be altered, and 

other taxa-specific classification algorithms can be included. Finally, DOA estimation works 

well at a distance beyond a couple of metres, but as individuals approach the MAARU device 

in the mid-canopy, any call made in the mid-canopy but directly above/ below the MAARU 
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device would register as a call in the upper canopy/ understory. Incorporating species-specific 

attenuation information into the pipeline would not only resolve this but also approximate a 

distance and direction. This attenuation information may also allow researchers to perform a 

crude positional localisation without requiring cross-device synchronisation. To do so would 

be an exciting and incredibly useful application of this work but is beyond the scope of this 

chapter.  

Further, the analysis used in this pipeline are dependent on the accuracy of the associated 

software. While HARKBird worked well in lab tests, it is unknown how it would fare in a noisier 

environment such as a woodland. Similarly, bird detections are dependent on BirdNET. No 

ground-truth data was available in this study, so a degree of approximation was required. As 

such, I opted to use a somewhat conservative confidence level with BirdNET (0.5). However, 

some surprising species were still detected (Marsh Harrier and Short-Toed Treecreeper). 

Confirming or rejecting these detections requires the contribution of an expert listener, which 

does somewhat divert from the autonomy of the process. That being said, it would also be 

possible to avoid this kind of immediate inaccuracy with the use of a custom bird list built upon 

citizen science observations from eBird or similar.  

I used MAARU and the suggested pipeline to also explore the use of vertical space between 

species and locations, determining the different calling heights of species at either location. 

The examples I present in this analysis are crude but evidence of the usefulness of DOA 

estimation. The positional information from a single DOA recorder could also be applied to 

many novel investigations, including investigating species movement patterns, species 

interactions, communication networks, predictors of vertical space usage (such as diet/ size 

etc.) and perhaps a temporal variation of vertical space usage.  
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4.6. CONCLUSION 

In this chapter, I aimed to investigate whether data collected by a single DOA recorder 

(MAARU, Chapter 3) could be used to approximate species abundance and appraise the use 

of vertical space. Over the course of this chapter, I: (1) Document a pipeline for call detection, 

localisation, and classification using a novel combination of emerging technologies. (2) 

Approximate species abundance through novel calling azimuth clustering. And (3) Evidence 

using a single DOA recorder as a stand-alone means of enhanced acoustic monitoring, 

exploring the behavioural dynamics of 19 bird species – all without the need for any manual 

data annotation. 

4.7. DATA ACCESSIBILITY  

Data Available Upon Request  

Code Available at: https://github.com/BeckyHeath/DOA_HeightTracking 
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5. THESIS CONCLUSION  

5.1. AIMS, OUTCOMES AND LIMITATIONS 

This thesis aims to assess and develop methods in (spatial) sound ecology. I began the thesis 

by exploring the founding principles of sound ecology, exploring the necessity of research in 

this field and identifying key literature gaps. Through this current state-of-the-art review, I 

highlighted three important gaps in the literature and potential challenges in the field. These 

gaps were data storage limitations, low-cost spatial acoustics, and underexplored applications 

of single-device localisation. As the thesis concludes, I will explore how these gaps were 

addressed over the course of my PhD and some of the critical limitations.  

 

(1) Aim 1: Investigate Whether Data Saving Practice in Ecoacoustics Affects the 

Quantification of Soundscapes 

Here I explored two data-saving practices: lossy MP3 compression and temporal down-

sampling, and their effects on Analytical Indices and a CNN-derived AudioSet Fingerprint. In 

this chapter, I provided detailed patterns in index alteration as a result of compression and 

showed that the AudioSet Fingerprint was less susceptible to variations in experimental 

protocol than Analytical Indices. Considering just compression, the conclusions I drew largely 

agreed with other works that looked specifically at the impact of compression on targeted calls 

(Araya-Salas et al., 2019; Stowell & Plumbley, 2014), except on a whole soundscape scale. 

While I had initially wanted to assess this practice as I suspected it might be doing more harm 

than people expected, I was surprised and somewhat relieved to see that was not the case. 

While this provides evidence that mp3 compression (particularly low rates) can reduce data 

storage and transmission costs, these results should be treated with some critical caveats. 
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Firstly, these results are only relevant for audible range surveys, which immediately exclude 

many environmentally essential species from the analysis. Secondly, all acoustic data in the 

study was from one field site, and it is unclear whether these results are transferrable to other 

systems. Perhaps these results evidence that mp3 compression does not automatically render 

acoustic data redundant but rather that if you test for the use case, you may find it is possible 

to draw the same conclusions with compressed and uncompressed data.  

This work has also added to the increasing body of literature advocating for the use of DL-

based soundscape appraisals, owing to the evidence we found of its resilience to experimental 

changes. The DL methodology we used in this study was the AudioSet Fingerprint from the 

VGGish CNN (Gemmeke et al., 2017; Hershey et al., 2017). However, there have since been 

several key DL developments that may pose an advantage even over AudioSet. Primarily, 

BirdNET, an rNN species classification algorithm (Kahl et al., 2021), was recently released and 

has been met with increasing uptake and may be one of the main routes of monitoring species 

in countries within its range. Exploring whether compression impacts BirdNET would be crucial 

as the algorithm’s uptake becomes more popular. Similarly, it would be essential to consider 

the effects of data-saving practice on other DL algorithms such as wav2vec, NLP and others 

(Baevski et al., 2020; Stowell, 2022; Vaswani et al., 2017) as their use case in bioacoustics 

increases.  

Ultimately the results from this study pose the idea that perhaps the use of compression is not 

as immediately damaging as previously thought. But this should not be taken as a ubiquitous 

go-ahead, especially as methods continue to develop.  

 

 

 



123 
 

 

(2) Aim 2: Develop an Autonomous Multi-Channel Acoustic Recorder Capable of Sound-

Source Localisation  

The second aim of this thesis was to develop a low-cost, easily accessible alternative to the 

available multichannel spatial recorders, with a vital aim of this device being fully autonomous.  

The device itself, nicknamed MAARU, costs £205, excluding powering at the time of writing, 

under £20 more than an equivalent omnidirectional recorder (Sethi et al., 2018). Compared to 

broader literature, including non-autonomous systems, this costs more than an AudioMoth 

recorder (£75 (Hill et al., 2018)) but less than recorders offered by Wildlife Acoustics (£700 

(Wildlife Acoustics , 2022)). Both of these recorders have the advantage of working “out of the 

box” but lack the advantages of autonomy and single-device localisation. So, while MAARU is 

not the cheapest acoustic recorder currently available, I feel the novel analysis and deployment 

strategies it offers far outweigh its cost.  

Similarly, MAARU is somewhat intermediate in terms of ease of access. Specifically, it is not 

as easy to get running as a prebuilt recorder (AudioMoth/ Wildlife Acoustics) – but offers an 

advantage over specialist recorders developed just for science which relies on custom  

MAARU provides a truly exciting next step in autonomous acoustic recording and spatial 

acoustics as a version that is more widely available than many of the previous models. MAARU 

has many advantages, which I describe in detail in the chapter, but it also has some important 

drawbacks. Not least, MAARU has some onboard issues with microphone power, mitigated 

but at the cost of an increase in false positives.  Further, MAARU is currently limited to audible 

range acoustics (sample rate: 16kHz) and requires external effort to set up, which may be off-

putting for less technically minded individuals or researchers looking to include ultrasound in 
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their survey. Despite this, MAARU offers and relatively cheap and straightforward solution to 

an otherwise expensive and complicated problem.  

Since completing MAARU, AudioMoth (one of the largest equipment providers in sound 

ecology) has launched a GPS-synced adaptation of their base device. GPS-synced 

AudioMoths are an exciting development in large array-based spatial acoustics. MAARU 

answers a slightly different question that GPS-Synced AudioMoths in that the exact locations 

of individual vocalisations are not as important as their relative directions. MAARU also has the 

advantage of true autonomy over AudioMoths but lacks the “out-of-the-box” setup of 

AudioMoths. It will nevertheless be interesting to see how extensively this tech is taken up in 

the field in the coming years as the true breadth of application of spatial acoustics is realised.  

As may be expected from a somewhat low-cost microphone array, I also had some problems 

with the audio quality from MAARU. Not least is the sample rate and resultant dynamic range. 

MAARU is limited to 16kHz (8kHz dynamic range), which fails to cover even the full audible 

range. By comparison, most, if not all, other recorders sample at least CD quality (44kHz, 

22kHz dynamic range) which covers the entire audible range. This should be considered 

carefully by those hoping to use MAARU recorders as immediately many taxa of animals will 

go undetected. As I previously discussed, MAARU has been my first step in low-cost, easy-to-

use multichannel acoustics. As the technology continues to develop, more low-cost arrays 

may be released, potentially those which can record well into ultrasound.  

As an open and customisable piece of equipment, MAARU is open to switched and updated 

components, which may open the device to exciting future developments. For example, 

ReSpeaker has an integrated audio interface and processing platform (the ReSpeaker Core 

and Core V2.0 (Seeed Studio , 2022)). This platform is a dedicated wi-fi-enabled audio 

interface which can be used with other dedicated microphone arrays which boast slightly 
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higher sensitivity (-26dbFS compared to -22dBFS (Seeed Studio , 2022)). The Core has DOA 

algorithms, which could be used to run edge signal localisation.  

The current setup is also limited to areas of wireless connection via internet routers or access 

to mobile networks (3/4G). Even my field deployment, which was at a field site near a 

residential area, had minimal areas of sufficient connection, which largely influenced where I 

could place the recorders. Deployment ranges would increase dramatically if devices could 

connect to the internet through other means,  such as through widespread and low-latency 

satellites like Starlink (Starlink, 2022), low-power wide-area radio connectivity like LoRa  (LoRa 

Alliance, 2022), or together via a MESH network. Demonstrating usability through these means 

would be a compelling use case – especially as a considerable amount of ecological fieldwork 

takes place in some of the world’s most remote environments. 

The applications of a device like MAARU are many and may be even more in future. In this 

thesis and associated resources, I provide instructions to create simple, cheap and field-tested 

means of doing sonic localisation in sound ecology. While this tech may benefit from 

development in a few areas, MAARU is a great starting point.  
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(3) Aim 3: Explore Whether a Single Recorder Capable of DOA Estimation Can Be Used 

To Approximate Abundance and Monitor Behaviour 

Here I applied the findings and base analysis pipelines developed when lab testing MAARU to 

the field and began to explore the kind of additional information that MAARU could determine. 

Most importantly, here, I was able to provide a pipeline for spatially clustering detections for 

better abundance measuring alongside looking at what this meant for vertical space 

occupancy. This work was largely exploratory and did not compare directly to the wider 

literature. But offers some unique solutions to the questions of abundance and vertical 

acoustics.  

To fully understand the dynamics of an ecosystem, it is important to determine populations 

alongside presence/ absence (Farr et al., 2019). Overestimating the number of individuals is a 

unique challenge to sound ecology. In in-person field surveys, counts are often determined by 

sight through the number of individuals of the same species present simultaneously. It is easy 

for a person with binaural hearing to distinguish between 3˚ and 10˚ depending on where 

exactly the sound has come from (Risoud et al., 2018). In that sense, researchers can easily 

approximate how many calling individuals there are for close-by detections even without 

seeing an individual. Similarly, camera traps require a line of sight, so the minimum number of 

individuals can easily be determined.  

In sound ecology, particularly without directionality, the problem is more complex and requires 

researchers to factor in detection radius, and it is impossible to tell whether two calls from the 

same species are one individual calling twice or two individuals. While a coarse investigation 

into this, I was able to cluster a species' calls every 10 minutes and determine the number of 

10˚ clusters in the recording as an approximator of abundance. This also allowed me to 

approximate the calling rate of species, which may be useful to the wider field. A fundamental 

limitation of this spatially clustered abundance is the lack of temporal dimension. The measures 
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are taken every 10 minutes, but an exciting improvement would be to consider time more 

realistically as a continuous variable rather than 10-minute chunks.  

Another key limitation of this work is the absence of ground-truth species richness and 

abundance data. While most detections were logical, the pipeline identified that two surprising 

detections (Marsh Harriers and Short-Toed Treecreepers) were present despite a somewhat 

conservative confidence level. Validating the results of this survey would require external input 

from expert listeners but would be vital to confirm the results of this exploratory analysis, so 

these results should be treated with caution. In the pipeline I present, I just use BirdNET as a 

classifying algorithm which does limit the scope of the data analysis. The MAARU recorder 

already has a limited dynamic range, but using BirdNET as the sole classifier also removes 

other audible-range vocalising species, such as mammals, frogs, and insects, from the 

analysis, which all play vital roles in forest ecosystems.  

Altogether the pipeline represents a novel investigation into single-recorder spatial localisation 

and begins to unpick some interesting characteristics. We start to see some differences in 

vertical space use alongside differences in calling rates between species.  
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5.2. CONCLUDING REMARKS  

Over the course of this thesis, I have quantified the previously unknown impact of commonly 

used experimental variation on soundscape quantification, vouching for compression as a 

realistic and valuable solution to many of the data management problems sound ecology 

researchers face. I provide permanent access to the data and scripts used in this analysis and 

have presented this work in multiple formats. In the latter chapters of this work, I present an 

exciting, low-cost, and completely open-source platform for users who wish to get set up with 

spatial acoustic recording quickly and easily. I provide comprehensive testing procedures, 

scripts and data alongside novel applications of DOA acoustics and defined analysis pipelines.  

By enhancing research in sound ecology with these advances in data management and spatial 

acoustics, we can build an increasing wealth of nuanced understanding of some of the world's 

most sensitive ecosystems and ultimately aid in their protection.  
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7. APPENDIX A: Chapter 2 Supplementary Material  

 

Contents 

1 – AGB Information  
2 - Recording Period Information 
3 – Analytical Index Further Descriptions 
4 – Impact Autocorrelation (Figure 2) 
5 – Impact of Compression: Like-for-Like Differences (Figure 2.3)  
            5a – QQ Plots 
            5b – Bland-Altmann plots from all recording lengths 
            5c – Model Outputs (Spearman’s Rank Correlation Rho) 
6 – Impact of Recording Schedule: Recording Length  
7 – Impact of Index Type: Confusion Matrices Raw vs. CBR8 (Table 2) 
 7a – Confusion Matrices for all Recording Lengths 
 7b – Accuracy/Precision/Recall Statistics  
8 – Impact of Temporal Splitting (Figure 4) 
9 – Synthesis: Beta Regression Modelling the Contribution of all Parameters (Figure 5) 
            9a – Data Variance (ϕ component) 
            9b – AIC values for models 
            9c – Precision and Recall Figure Outputs 

9d – Accuracy Output Statistics (using Discrete Variables) 
9e – Precision Output Statistics (using Discrete Variables) 
9f – Recall Output Statistics (using Discrete Variables) 
9g – Accuracy Output Statistics (using Continuous Variables) 
9h – Precision Output Statistics (using Continuous Variables) 
9i - Recall Output Statistics (using Continuous Variables) 
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1 - Above Ground Biomass 

Table 1 shows the AGB data for points surrounding the recording locations. GPS locations 

are given to +/- 1.11km (0.01°). The average for each site was 66.16 t.ha-1 in primary forest, 

30.74 t.ha-1 in secondary forest at 17.27 t.ha-1 in logged forest.  

Location Co-Ordinates AGB (t.ha-1) 
Primary 117.53513, 4.66443 77.8151982458024 
Primary 117.53513, 4.65443 54.9446402261185 
Primary 117.52513, 4.66443 87.2290056404617 
Primary 117.52513, 4.65443 3.18829485141835 
Primary 117.53513, 4.67443 49.5375612006372 
Primary 117.54513, 4.66443 116.326089963978 
Primary 117.54513, 4.67443 74.0737999980781 
Logged 117.58118, 4.69372 13.3752792205534 
Logged 117.58118, 4.68372 4.77470660981513 
Logged 117.57118, 4.69372 61.6814645965346 
Logged 117.57118, 4.68372 67.7614569739226 
Logged 117.58118, 4.70372 42.4952102365264 
Logged 117.59118, 4.69372 18.5855492747789 
Logged 117.59118, 4.70372 6.5248825548366 
Cleared 117.59141, 4.70272 9.85390659254801 
Cleared 117.59141, 4.69272 7.9067100668437 
Cleared 117.58141, 4.70272 48.796127019185 
Cleared 117.58141, 4.69272 3.96428134965722 
Cleared 117.59141, 4.71272 5.65620070374987 
Cleared 117.60141, 4.70272 38.4582510289304 
Cleared 117.60141, 4.71272 6.92104474036953 
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2 – Recording Period Information 

Table 2.1 gives the total recordings, and total length of recordings at each of the sites. In 

total 648 20 minute recordings were collected equating to 216 hours of raw acoustic data.  

Site Recording Period 
(Feb-March 2019) 

Hours and 
Minutes in rec 
period 

Recording 
number (20min) 

Cleared 26th 8:40- 1st 11:07 74h 40min 224 
Logged 27th 10 – 2nd 9:00 71h 00min 213 
Primary 26th 11 – 1st 9:07 70h 20min 211 
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2.2 gives the number of recordings from which indices were successfully calculated from. This 

is out of 648, 1296, 2592, and 5184 for the 20-, 10-, 5- and 2.5- minute recordings respectively. 

The total number of recordings used in the study was 87,480. Of which, 0.17% of files were 

lost in AudioSet Calculation, 0.31% of files were lost in Analytical Index Calculation – Mostly in 

the 2.5-minute set. 

Compression Recording 
Length 

AudioSet 
Fingerprint 
Readings 

Analytical Index 
Readings 

Raw 20min 647 645 
CBR320 20min 648 646 
CBR256 20min 648 647 
CBR128 20min 648 648 
CBR64 20min 647 648 
CBR32 20min 648 648 
CBR16 20min 648 646 
CBR8 20min 648 648 
VBR0 20min 648 645 
Raw 10min 1292 1292 
CBR320 10min 1292 1292 
CBR256 10min 1292 1291 
CBR128 10min 1292 1292 
CBR64 10min 1292 1291 
CBR32 10min 1278 1292 
CBR16 10min 1275 1291 
CBR8 10min 1292 1292 
VBR0 10min 1283 1291 
Raw 5min 2584 2584 
CBR320 5min 2584 2583 
CBR256 5min 2584 2578 
CBR128 5min 2584 2579 
CBR64 5min 2584 2584 
CBR32 5min 2584 2584 
CBR16 5min 2584 2584 
CBR8 5min 2584 2584 
VBR0 5min 2584 2583 
Raw 2.5min 5184 5176 
CBR320 2.5min 5179 5160 
CBR256 2.5min 5184 5180 
CBR128 2.5min 5183 5168 
CBR64 2.5min 5184 5164 
CBR32 2.5min 5189 5168 
CBR16 2.5min 5184 5183 
CBR8 2.5min 5184 5168 
VBR0 2.5min 5184 5156 

TOTAL 87,329 87,211 
Files Lost: 151 269 
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  3 – Analytical Index Meanings 

Table 3 was adapted from (Bradfer‐Lawrence et al., 2019), provided here with permission. 

  
Index and 
Acronym 

Measures High Value 
Indicates 

Low Value 
Indicates 

Reference 

Acoustic 
Complexity 
Index (ACI)  

Frequency band 
dependant changes in 
amplitude over time. A 
measure to designed 
to quantify acoustic 
irregularity typical of 
birdsong.   

Storms and 
intermittent 
raindrops.  
 
High levels of 
avian vocalisations 
and insect 
stridulation 

Constant noise 
filling the whole 
spectrogram e.g. 
cicadas or wind 

(Pieretti et al., 
2011) 

Acoustic 
Diversity 
Index (ADI) 

A frequency band 
dependant measure 
of the proportion of 
signals above -
50dBFS, ADI is 
calculated from the 
Shannon index of 
each band 
 

High levels of 
geophonic or 
anthrophonic 
noise 
 
Very quiet 
recordings with a 
minimal signal in 
any frequency 
band 

The dominance of 
a particular 
frequency band 
such as insect 
noise 

(Villanueva-
Rivera et al., 
2011) 

Acoustic 
Evenness  
(AEve)  

A frequency band 
dependant measure 
of the proportion of 
signals above -
50dBFS, AEve 
calculated from the 
Gini index of each 
band 

The reverse of 
ADI, the 
dominance of a 
narrow frequency 
band relating to 
insect noise  

Large amounts of 
geophony or near 
silence 
 
Sometimes 
acoustically 
saturated 
soundscapes  

(Villanueva-
Rivera et al., 
2011) 

Bioacoustic 
Index (Bio)  

A measure of both 
amplitude and 
number of occupied 
frequency bands 
between 2 and 11kHz, 
relative to the quietest 
1kHz frequency band 

The greater 
dissimilarity 
between quiet and 
loud bands  
 
Loud tonal insect 
noise such as 
cicadas 

No sound in the 
given range, 
although some 
biophony does 
occur outside of 
this range 

(Boelman et al., 
2007) 

Acoustic 
Entropy (H) 

Measures spread of 
amplitude across 
frequency bands 
and/or time steps. 
Between 1 and 0, 
(diffuse and 
concentrated sound 
respectively) 

Near silent 
recordings and 
faint bird calls 
 
Rain and wind  

When insect noise 
dominates a 
single frequency 
band 

(Jérôme Sueur et 
al., 2008) 

Median of the 
Amplitude 
Envelope (M) 

Measure of recording 
amplitude  

High levels of 
geophony, 
particularly storms 

Quiet recordings (Jérôme Sueur et 
al., 2014) 

Normalised 
Difference 
Soundscape 
Index (NDSI)  

Ratio of anthrophony 
(1-2kHz) and 
biophony(2-11kHz)  

High levels of 
biophony, 
particularly insects 

When insect 
biophony 
dominates 1-2kHz 
range instead  

(Kasten et al., 
2012) 
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      4 – Index Autocorrelation (Figure 2)  

Figure 4.1 shows a correlation matrix of Analytical Indices, this is the same as the figure in 

the main test, provided here for comparisson.   

 

Figure 4.2  shows a correlation matrix of all the features given in the AudioSet Fingerprint 
(feat1, feat2, feat3…) etc.  
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      5 – Impact of Compression: Like-for-Like Differences  

AudioSet Fingerprint 

 

Figure 5.1.1 Q-Q plots of the like-for-like differences between AudioSet Fingerprint values from 
compressed vs. raw audio files.  
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Analytical Indices 

 

Figure 5.1.2 Q-Q plots of the like-for-like differences between ACI values from compressed vs. 
raw audio files.  
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Figure 5.1.3 Q-Q plots of the like-for-like differences between ADI values from compressed vs. 
raw audio files.  

 

 

Figure 5.1.4 Q-Q plots of the like-for-like differences between AEve values from compressed 
vs. raw audio files.  
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Figure 5.1.5 Q-Q plots of the like-for-like differences between Bio values from compressed vs. 
raw audio files.  

 

Figure 5.1.6 Q-Q plots of the like-for-like differences between H values from compressed vs. 
raw audio files 
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Figure 5.1.7 Q-Q plots of the like-for-like differences between M values from compressed vs. 
raw audio files.  

 

 

Figure 5.1.7 Q-Q plots of the like-for-like differences between NDSI values from compressed 
vs. raw audio files.  
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     5b – Bland-Altmann plots from all recording lengths  

 

Figure 5.2.1 Scaled difference in acoustic indices from raw audio with increasing compression 

in 2.5-minute audio samples. The horizontal green region shows the ±5% Difference. Dots 

and whiskers show the median and interquartile range of D (difference) from different indices 

under increasing levels of compression. 
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Figure 5.2.2 Scaled difference in acoustic indices from raw audio with increasing compression 

in 5-minute audio samples (same as in main thesis). The horizontal green region shows the 

±5% Difference. Dots and whiskers show the median and interquartile range of D 

(difference) from different indices under increasing levels of compression. 

 

 

 

 

 

 



166 
 

 

 

Figure 5.2.3 Scaled difference in acoustic indices from raw audio with increasing compression 

in 10-minute audio samples. The horizontal green region shows the ±5% Difference. Dots and 

whiskers show the median and interquartile range of D (difference) from different indices 

under increasing levels of compression. 
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Figure 5.2.4 Scaled difference in acoustic indices from raw audio with increasing compression 

in 20-minute audio samples. The horizontal green region shows the ±5% Difference. Dots and 

whiskers show the median and interquartile range of D (difference) from different indices 

under increasing levels of compression. 

 

 

 

 

 



168 
 

      5c – Model Outputs (Spearman’s Rank Correlation Rho)  

Table 5.3 gives the model outputs from a Spearman’s Rank Correlation.  

Index Recording 
Length  

p-value S rho Alternative 
hypothesis: 
Rho is not 
equal to 0  

ACI All < 2.2e-16 5.9908e+13 0.4528838 True  
ADI All < 2.2e-16 2.0076e+1 -0.8334471 True 
AEve All < 2.2e-16 1.0431e+14 0.04732955 True 
Bio All < 2.2e-16 2.7865e+13 0.7455166 True 
H All < 2.2e-16 1.1409e+14 -0.04198094 True 
M All < 2.2e-16 1.9495e+14 -0.7803825 True 
NDSI All < 2.2e-16 1.8306e+14 -0.6718236 True 
AudioSet (+/-) All < 2.2e-16 1.4664e+14 -0.3216693 True 
AudioSet 
(absolute) 

All < 2.2e-16 2.1968e+14 -0.9800273 True 

ACI 20min < 2.2e-16 2.3062e+10 0.2897066 True  
ADI 20min < 2.2e-16 5.7586e+10 -0.7736128 True 
AEve 20min < 2.2e-16 3.7679e+10 -0.1604924 True 
Bio 20min < 2.2e-16 6581545650 0.7972928 True 
H 20min 0.0001731 3.0867e+10 0.04930388 True 
M 20min < 2.2e-16 5.678e+10 -0.7487885 True 
NDSI 20min < 2.2e-16 5.4404e+10 -0.6756143 True 
AudioSet (+/-) 20min < 2.2e-16 4.3576e+10 -0.324907 True 
AudioSet 
(absolute) 

20min < 2.2e-16 6.5184e+10 -0.9818801 True 

ACI 10min < 2.2e-16 7.7613e+10 0.6993322  True 
ADI 10min < 2.2e-16 4.6993e+11 -0.820476 True 
AEve 10min 7.569e-05 2.4864e+11 0.03678488  True 
Bio 10min < 2.2e-16 7.1987e+10 0.7211259  True 
H 10min < 2.2e-16 3.011e+11 -0.1664376  True 
M 10min < 2.2e-16 4.5137e+11 -0.7485807  True 
NDSI 10min < 2.2e-16 4.3252e+11 -0.6755327  True 
AudioSet (+/-) 10min < 2.2e-16 3.4289e+11 -0.3224749  True 
AudioSet 
(absolute) 

10min < 2.2e-16 5.1372e+11 -0.9813791 
 

True 

ACI 5min < 2.2e-16 6.2663e+11 0.6977385 True 
ADI 5min < 2.2e-16 3.8019e+12 -0.8339001 True 
AEve 5min < 2.2e-16 1.7817e+12 0.1405795 True 
Bio 5min < 2.2e-16 5.7816e+11 0.7211196 True 
H 5min < 2.2e-16 2.4202e+12 -0.1674052 True 
M 5min < 2.2e-16 3.6248e+12 -0.7484442 True 
NDSI 5min < 2.2e-16 3.4694e+12 -0.6734986 True 
AudioSet (+/-) 5min < 2.2e-16 2.7754e+12 -0.3239534 True 
AudioSet 
(absolute) 

5min < 2.2e-16 4.1512e+12 -0.9802393 True 

ACI 2.5min < 2.2e-16 1.1169e+13 0.3289954 True 
ADI 2.5min < 2.2e-16 3.0666e+13 -0.8423228 True 
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AEve 2.5min 0.00296 1.6416e+13 0.01379665 True 
Bio 2.5min < 2.2e-16 4.0057e+12 0.7593467 True 
H 2.5min < 2.2e-16 1.5846e+13 0.04798813 True 
M 2.5min < 2.2e-16 3.0169e+13 -0.8124801 True 
NDSI 2.5min < 2.2e-16 2.7774e+13 -0.6686069 True 
AudioSet (+/-) 2.5min < 2.2e-16 2.2333e+13 -0.3199297 True 
AudioSet 
(absolute) 

2.5min < 2.2e-16 3.3499e+13 -0.979805 True 
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      6 – Impact of Recording Schedule: Recording Length on 

Variance 

Table 6 shows the outputs of a Levene’s test for homogeneity of variance. Whereby the 

variance each index/feature is compared across all recording lengths. For Analytical Indices 

3/7 has unequal variances across recording lengths. For the AudioSet Fingerprint, 46/128 

features have unequal variance across recording lengths.  

index P value  Index  P value  Index  P value 
ACI 0.841637  feat42 0.706519  feat90 0.15218 
ADI 1.78E-39  feat43 2.68E-05  feat91 0.932792 
AEve 0.028428  feat44 3.54E-07  feat92 1.96E-15 
Bio 0.794537  feat45 0.779526  feat93 0.906691 
H 0.004092  feat46 0.892285  feat94 1.01E-08 
M 0.067758  feat47 0.000662  feat95 0.86466 
NDSI 0.714233  feat48 1.05E-09  feat96 2.87E-09 
feat1 0.837382  feat49 0.000274  feat97 0.824457 
feat2 0.959618  feat50 9.91E-06  feat98 0.979221 
feat3 1.58E-06  feat51 0.999517  feat99 0.797975 
feat4 0.988474  feat52 0.002494  feat100 0.985947 
feat5 0.981484  feat53 0.723206  feat101 0.998016 
feat6 0.912722  feat54 0.820143  feat102 1.46E-07 
feat7 0.980983  feat55 0.462347  feat103 2.92E-05 
feat8 0.99822  feat56 2.27E-06  feat104 0.093257 
feat9 0.800522  feat57 4.58E-13  feat105 0.997949 
feat10 0.119387  feat58 0.99986  feat106 0.999947 
feat11 0.999692  feat59 0.987711  feat107 0.925252 
feat12 0.901465  feat60 0.005519  feat108 0.997711 
feat13 0.989909  feat61 0.522512  feat109 0.334764 
feat14 0.000972  feat62 0.968115  feat110 6.68E-05 
feat15 8.75E-06  feat63 0.970316  feat111 0.998584 
feat16 0.781888  feat64 0.996904  feat112 1.28E-08 
feat17 2.41E-14  feat65 0.001259  feat113 7.91E-14 
feat18 0.407886  feat66 0.002933  feat114 0.284966 
feat19 0.955162  feat67 0.73536  feat115 0.974201 
feat20 0.406722  feat68 0.000104  feat116 0.99686 
feat21 4.56E-11  feat69 0.999244  feat117 0.999671 
feat22 0.092009  feat70 0.993015  feat118 0.519933 
feat23 0.99988  feat71 0.934927  feat119 0.304281 
feat24 0.01768  feat72 0.03893  feat120 5.41E-11 
feat25 2.69E-12  feat73 0.930866  feat121 0.050387 
feat26 0.996596  feat74 0.972913  feat122 0.983873 
feat27 0.001689  feat75 0.563142  feat123 0.000172 
feat28 0.185621  feat76 0.000475  feat124 8.04E-10 
feat29 0.50037  feat77 7.73E-05  feat125 0.693315 
feat30 0.410133  feat78 1.63E-08  feat126 0.994528 
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feat31 0.255612  feat79 3.75E-14  feat127 0.004084 
feat32 0.974623  feat80 0.526298  feat128 0.553217 
feat33 0.01168  feat81 0.924814    
feat34 2.89E-10  feat82 0.800698    
feat35 0.867947  feat83 0.939481    
feat36 3.25E-09  feat84 0.320144    
feat37 0.995959  feat85 0.289219    
feat38 6.07E-06  feat86 4.56E-08    
feat39 0.092141  feat87 0.998176    
feat40 3.58E-05  feat88 3.07E-05    
feat41 5.58E-11  feat89 0.981046    
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7 – Impact of Index Type: Confusion Matrices (Figure 2) 

     7a – Confusion Matrices for all Recording Lengths 

Table 7.1.1.  Confusion matrices from random forest classifiers trained on AudioSet Fingerprint (left) 

and Analytical Indices (right) using uncompressed raw audio. Confusion matrices are organised in rows 

by recording length.   

 

Analytical 20min    AudioSet    
Grassland 124 22 6  Grassland 147 4 1 

Secondary 29 99 11  Secondary 2 126 13 

Primary 5 11 123  Primary 2 4 133 

         
Analytical 10min    AudioSet    
Grassland 235 49 13  Grassland 292 6 2 

Secondary 46 213 20  Secondary 3 253 26 

Primary 7 23 248  Primary 6 8 264 

         
Analytical 5min    AudioSet    
Grassland 484 67 49  Grassland 585 9 11 

Secondary 97 421 46  Secondary 11 508 44 

Primary 9 61 486  Primary 17 14 521 

         
Analytical 2.5min    AudioSet    
Grassland 1011 126 75  Grassland 1160 24 32 

Secondary 193 837 97  Secondary 28 996 104 

Primary 13 138 957  Primary 33 39 1040 
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     7b – Accuracy, Precision and Recall Statistics 

Table 7.1.2.  Accuracy, precision and recall of random forest classifiers trained on each test group using 

uncompressed raw audio.  

Index Type Recording 
Length 

Accuracy Precision Recall 

Analytical 20Min 80.47 80.45 80.43 
Analytical 10Min 81.50 81.53 81.56 
Analytical 5Min 80.87 80.79 80.91 
Analytical 2.5Min 81.38 81.28 81.35 
AudioSet 20Min 93.98 93.95 93.92 
AudioSet  10Min 94.06 94.06 94.00 
AudioSet 5Min 93.84 93.85 93.77 
AudioSet 2.5min 92.48 93.85 93.92 
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8 – Impact of Temporal Splitting (Figure 4) 

 

Figure 8.1.1 Classification model performance as a function of temporal sectioning (x-axis), 

compression (raw audio, left column; CBR8 compression, right column) and index choice 

(AudioSet Fingerprint: blue; Analytical Indices: orange). This includes just models train on 2.5-

minute audio recordings.  Pale horizontal lines show performance without temporal 
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sectioning. Precision and recall are partitioned into pairwise performance by site (C, cleared 

forest; L, logged forest; P, primary forest).  

 

 

     Figure 8.1.2 Classification model performance as a function of temporal sectioning (x-axis), 

compression (raw audio, left column; CBR8 compression, right column) and index choice 

(AudioSet Fingerprint: blue; Analytical Indices: orange). This includes just models train on 5-
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minute audio recordings.  Pale horizontal lines show performance without temporal 

sectioning. Precision and recall are partitioned into pairwise performance by site (C, cleared 

forest; L, logged forest; P, primary forest).  

 

Figure 8.1.3 Classification model performance as a function of temporal sectioning (x-axis), 

compression (raw audio, left column; CBR8 compression, right column) and index choice 

(AudioSet Fingerprint: blue; Analytical Indices: orange). This includes just models train on 10-

minute audio recordings.  Pale horizontal lines show performance without temporal 
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sectioning. Precision and recall are partitioned into pairwise performance by site (C, cleared 

forest; L, logged forest; P, primary forest).  

 

 

Figure 8.1.4 Classification model performance as a function of temporal sectioning (x-axis), 

compression (raw audio, left column; CBR8 compression, right column) and index choice 

(AudioSet Fingerprint: blue; Analytical Indices: orange). This includes just models train on 20-



178 
 

minute audio recordings.  Pale horizontal lines show performance without temporal 

sectioning. Precision and recall are partitioned into pairwise performance by site (C, cleared 

forest; L, logged forest; P, primary forest).  

 

9 – Synthesis: Beta Regression Modelling the Contribution 
of all Parameters (Figure 5) 

    9a – Data Variance (ϕ component) 
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Figure 9.1 shows the range of accuracies of models trained on either Analytical Indices or the 

AudioSet Fingerprint, for recordings across all recording lengths. Data in this figure is all from 

raw uncompressed recordings.  

 

 9b – AIC values of models 

Table 9.2 shows the Akaike Information Criterion (AIC) for different models used to explain 

variation in accuracy as a result of experimental variation. The best model is indicated by the 

highest AIC, in this case Beta Regression + ϕ.  

 

Model Df AIC 

Linear Model 47 -3428.738 
Beta Regression 47 -4368.424 
Beta Regression + ϕ 54 -4682.399 
Beta Regression + ϕ 
(continuous temporal splits 
+ recording length)  

18 -4516.453 

Maximal Model: accuracy ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type 
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9c Precision and Recall Figure Outputs 

 

Figure 9.3.1 Classifier precision for model predictions as a function of file size (x-axis), index 

type (columns), temporal subsetting (rows), and Recording Length (colours, see legend) 

Hexagon binning is used to show the distribution and density of the underlying data. 
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Figure 9.3.1 Classifier recall for model predictions as a function of file size (x-axis), index type 

(columns), temporal subsetting (rows), and Recording Length (colours, see legend) Hexagon 

binning is used to show the distribution and density of the underlying data. 
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     9d – Accuracy Output Statistics (using Discrete Variables) 

Table 9.4.1 AOV outputs for the multivariate linear model (accuracy) 

 df Sum Sq Mean Sq  F Value  Pr(>F)  
log10(file.size)                           1   0.000    0.000     0.000   0.99740     
chunks                                     3   0.243    0.081     9.644  2.59e-06 *** 
frame.size                           3   0.007    0.002    0.271   0.84646     

index.type                                 1  15.980   15.980  1899.11
9   

< 2e-16 *** 

log10(file.size):chunks                    3   0.049    0.016     1.947   0.12002     

log10(file.size):frame.size                3   0.008    0.003     0.301   0.82446     
chunks:frame.size                          9   0.016    0.002     0.215   0.99238     
log10(file.size):index.type                1   0.288    0.288    34.231  5.83e-09 *** 
chunks:index.type                          3 0.119    0.040     4.726  0.00274 ** 

frame.size:index.type                      3   0.076    0.025     3.009   0.02920 *   
log10(file.size):chunks: 
index.type         

3   0.040    0.013     1.599   0.18771     

log10(file.size):frame.size: 
index.type     

3   
 

0.016    0.005     0.634   0.59286     

chunks:frame.size:index.type              9   0.009    0.001     0.121   0.99919     

Residuals                               1753 14.751    0.008                        
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Betareg Anova of the Maximal Model:  

(accuracy ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type | index.type * chunks) 

Table 9.4.2 Analysis of Deviance Table (Type II tests) for the beta regression 

 Df Chisq Pr(>Chisq) 
log10(file.size)                         1    26.2128   3.058e-07 *** 
chunks                                   3    31.6818   6.107e-07 *** 
frame.size                               3    15.7820   0.0012568 ** 
index.type                               1  2985.9825   < 2.2e-16 *** 
log10(file.size):chunks                  3    18.0278   0.0004341 *** 
log10(file.size):frame.size             3     2.9280   0.4028558     
chunks:frame.size                        9     6.3156   0.7079609     
log10(file.size):index.type             1    59.0065   1.572e-14 *** 
chunks:index.type                        3     7.1061   0.0685927 .   
frame.size:index.type                    3    36.2699   6.566e-08 *** 
log10(file.size):chunks: 
index.type       

3    
 

13.0715   0.0044844 ** 
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log10(file.size):frame.size:inde
x.type   

3     0.8071   0.8477715     

chunks:frame.size:index.type            9     7.1524   0.6212537     

Maxima Model Summary:  

betareg(formula = accuracy_t ~ log10(file.size) + chunks + frame.size + index.type +  
  log10(file.size):chunks + log10(file.size):frame.size + chunks:frame.size +  
  log10(file.size):index.type + chunks:index.type +   frame.size:index.type +  
  log10(file.size):chunks:index.type + log10(file.size):frame.size:index.type+  
      chunks:frame.size:index.type | index.type * chunks, data = dat) 

 

Table 9.4.3. Standardized weighted residuals 2: 
Min 1Q Median 3Q Max 
-2.8771 -0.7693 -0.2106 0.5468 6.6999 

 

Table 9.4.4 ChiSq test for significance of relationship between accuracy, variables, and  
interactions. 

 

 Estimate  Std. Error  z  
value  

Pr(>|z|)     

(Intercept)                1.104521   0.100877   10.949   < 2e-16 *** 
log10(file.size)                                      -0.015526    0.072085   -0.215   0.82946     
chunks4                                                0.083034    0.130390    0.637   0.52425     
chunks8                                                0.138091    0.131426   1.051   0.29339     
chunks12                                              -0.058062    0.121445   -0.478   0.63259     
frame.size10min                                       -0.070346    0.124861   -0.563   0.57317     
frame.size5min                                         0.031137    0.125578   0.248   0.80417     
frame.size2_5min                                      0.055264    0.125603    0.440   0.65995     
index.typeAudioSet                                    1.334952    0.128606   10.380   < 2e-16 *** 
log10(file.size):chunks4                              0.046597    0.080474    0.579   0.56257     
log10(file.size):chunks8                             -0.138090    0.080784   -1.709   0.08738 .   
log10(file.size):chunks12                            -0.160987    0.074907   -2.149   0.03162 *   
log10(file.size):frame.size10min                      0.101558    0.079187    1.283   0.19967     
log10(file.size):frame.size5min                       0.038708    0.079340    0.488   0.62564     
log10(file.size):frame.size2_5min                     0.007661    0.079262   0.097   0.92300     
chunks4:frame.size10min                              -0.006499    0.139389   -0.047   0.96281     
chunks8:frame.size10min                               0.056064    0.139326    0.402   0.68740     
chunks12:frame.size10min                              0.061023    0.128661    0.474   0.63529     
chunks4:frame.size5min                               -0.043339    0.139628   -0.310   0.75627     
chunks8:frame.size5min                               -0.032370    0.139174   -0.233   0.81608     
chunks12:frame.size5min                               0.061505    0.129137    0.476   0.63388     
chunks4:frame.size2_5min                             -0.091839    0.139014   -0.661   0.50884     
chunks8:frame.size2_5min                             -0.025140    0.139089   -0.181   0.85656     
chunks12:frame.size2_5min                             0.082253    0.129125    0.637   0.52412    

log10(file.size):index.typeAudioSet                   0.202437    0.095711   2.115   0.03442 *   
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chunks4:index.typeAudioSet                           -0.234469    0.210918   -1.112   0.26628     
chunks8:index.typeAudioSet                            0.060060    0.176105   0.341   0.73307     
chunks12:index.typeAudioSet                           0.166156    0.178544    0.931   0.35205     
frame.size10min: 
index.typeAudioSet                     

0.002228    0.163241   0.014   0.98911     

frame.size5min:index.typeAudioSet                    -0.122698    0.163322   -0.751   0.45249     
frame.size2_5min:index.typeAudioS
et                   

-0.165346    0.162560   -1.017   0.30909     

log10(file.size):chunks4: 
index.typeAudioSet            

0.420832    0.130630    3.222   0.00127 ** 

log10(file.size):chunks8: 
index.typeAudioSet            

0.177120    0.106759    1.659   0.09710 .   

log10(file.size):chunks12: 
index.typeAudioSet           

0.273251    0.107516    2.541   0.01104 *   

log10(file.size):frame.size10min: 
index.typeAudioSet   

-0.085818    0.112621   -0.762   0.44605     

log10(file.size):frame.size5min: 
index.typeAudioSet    

-0.027098    0.112236  -0.241   0.80921     

log10(file.size):frame.size2_5min: 
index.typeAudioSet  

-0.077750    0.111174  -0.699   0.48433     

chunks4:frame.size10min: 
index.typeAudioSet            

-0.004506    0.233281   -0.019   0.98459     

chunks8:frame.size10min: 
index.typeAudioSet            

-0.240160    0.188273   -1.276   0.20210     

chunks12:frame.size10min: 
index.typeAudioSet           

-0.234850    0.188868   -1.243   0.21370     

chunks4:frame.size5min: 
index.typeAudioSet            

-0.171315    0.229595   -0.746   0.45557     

chunks8:frame.size5min: 
index.typeAudioSet             

-0.176300    0.187565   -0.940   0.34725     

chunks12:frame.size5min: 
index.typeAudioSet            

-0.315394    0.188434   -1.674   0.09418 .   

chunks4:frame.size2_5min: 
index.typeAudioSet           

-0.148262    0.227108   -0.653   0.51387     

chunks8:frame.size2_5min: 
index.typeAudioSet           

-0.227651    0.185826   -1.225   0.22055     

chunks12:frame.size2_5min: 
index.typeAudioSet          

-0.433908    0.186840   -2.322   0.02021 *   

 

Table 9.4.5 Phi Coefficients (model with log link) 
 Estimate  Std.Error Z Value  Pr(>|z|) 
(Intercept)                    4.9232      0.2351   20.944   < 2e-16 *** 
index.typeAudioSet             1.6943      0.3330    5.088  3.61e-07 *** 
chunks4                       -1.6147      0.2623   -6.155  7.50e-10 *** 
chunks8                       -2.4408      0.2487   -9.815   < 2e-16 *** 
chunks12                      -2.6482      0.2441  -10.851   < 2e-16 *** 
index.typeAudioSet:chun
ks4    

-1.7679      0.3741   -4.725  2.30e-06 *** 
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index.typeAudioSet:chun
ks8    

-0.6451      0.3532   -1.826    0.0678 .   

index.typeAudioSet:chun
ks12   

-1.5081      0.3476   -4.339  1.43e-05 *** 

 

 

Accuracy Model Outputs: 

Type of estimator:   ML (maximum likelihood) 

Log-likelihood:    2395 on 54 Df 

Pseudo R-squared:  0.427 

Number of iterations:  66 (BFGS) + 2 (Fisher scoring)  
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     9e – Precision Output Statistics (using Discrete Variables) 

Table 9.5.1 AOV outputs for the multivariate linear model (precision) 

 df Sum Sq Mean Sq  F Value  Pr(>F)  
log10(file.size)                           1   0.004    0.004     0.586   0.44408     
chunks                                     3   0.122    0.041     5.355   0.00114 ** 
frame.size                                 3   0.004    0.001     0.197  0.89841     
index.type                                 1  14.264   14.264  1883.934   < 2e-16 *** 
log10(file.size):chunks                    3   0.040    0.013     1.741   0.15658     
log10(file.size):frame.size               3   0.005    0.002     0.238   0.86978     
chunks:frame.size                          9   0.009    0.001     0.130   0.99892     
log10(file.size):index.type               1   0.276    0.276    36.392  1.96e-09 *** 
chunks:index.type                          3   0.075    0.025     3.323   0.01906 *   
frame.size:index.type                      3   0.066    0.022     2.893   0.03416 *   
log10(file.size):chunks:index.ty
pe         

3   0.022    0.007     0.987   0.39801     

log10(file.size):frame.size:index.
type     

3   0.017    0.006     0.748   0. 52322 

chunks:frame.size:index.type              9   0.007    0.001     0.101   0.99962     
Residuals                               17

53  
13.273   0.008                        

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Betareg Anova of the Maximal Model:  

(precision ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type | index.type * chunks) 

Table 9.5.2 Analysis of Deviance Table (Type II tests) for the Beta regression 

 Df Chisq Pr(>Chisq) 
log10(file.size)                         1    21.9304   2.827e-06 *** 
chunks                                   3    29.6890   1.604e-06 *** 
frame.size                               3    19.7551   0.0001908 *** 
index.type                               1  3047.6774   < 2.2e-16 *** 
log10(file.size):chunks                  3    16.5601   0.0008703 *** 
log10(file.size):frame.size              3     2.8885   0.4091298     
chunks:frame.size                        9     8.2666   0.5075198     
log10(file.size):index.type              1    70.1343   < 2.2e-16 *** 
chunks:index.type                        3    10.0553   0.0181017 *   
frame.size:index.type     3    37.7504   3.192e-08 *** 
log10(file.size):chunks:index.type 3    12.2136   0.0066863 ** 
log10(file.size):frame.size:index.typ
e   

3     1.2606   0.7385054     

chunks:frame.size:index.type             9     7.0018   0.6369337     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Maxima Model Summary: 

Call: 
betareg(formula = precision_t ~ log10(file.size) + chunks + frame.size + index.type + log10(fil
e.size):chunks +  
    log10(file.size):frame.size + chunks:frame.size + log10(file.size):index.type + chunks:index.
type + frame.size:index.type +  
    log10(file.size):chunks:index.type + log10(file.size):frame.size:index.type + chunks:frame.si
ze:index.type |  
    index.type * chunks, data = dat) 
 

Table 9.5.3 Standardized weighted residuals 2: 
 

Min 1Q Median 3Q Max 
-3.4204 -0.7584 -0.2320 0.5653 6.9159 

 
 
 

Table 9.5.4 ChiSq test for significance of relationship between precision, variables, and  
interactions. 

 Estimate Std.Error Z Val
ue  

Pr(>|z|) 

(Intercept)                                            1.181140    0.102133   11.56
5   

< 2e-16 *** 

log10(file.size)                                      -0.078810    0.072539   -1.086   0.27728     
chunks4                                                0.128346    0.132032    0.972   0.33101     
chunks8                                                0.162282    0.132533    1.224   0.22078     
chunks12                                               0.033704    0.122106    0.276   0.78253     
frame.size10min                                       -0.088089    0.125963   -0.699   0.48435     
frame.size5min                                         0.003497    0.126647    0.028   0.97797     
frame.size2_5min                                      0.035712    0.126740    0.282   0.77812     
index.typeAudioSet                                    1.258609    0.129528    9.717   < 2e-16 *** 
log10(file.size):chunks4                              0.048827    0.081153    0.602   0.54740     
log10(file.size):chunks8                             -0.095730    0.081253   -1.178   0.23873     
log10(file.size):chunks12                            -0.126488    0.074918   -1.688   0.09134 .   
log10(file.size):frame.size10min                      0.118991    0.079432    1.498   0.13413     
log10(file.size):frame.size5min                       0.069972    0.079556    0.880   0.37912     
log10(file.size):frame.size2_5min                     0.039836    0.079465    0.501   0.61616     
chunks4:frame.size10min                              -0.019950    0.140254   -0.142   0.88689     
chunks8:frame.size10min                               0.061675    0.140020    0.440   0.65959     
chunks12:frame.size10min                              0.042094    0.128671    0.327   0.74356     
chunks4:frame.size5min                               -0.058843    0.140566   -0.419   0.67550     
chunks8:frame.size5min                               -0.039343    0.139823   -0.281   0.77842     
chunks12:frame.size5min                               0.026060    0.129143    0.202   0.84008     
chunks4:frame.size2_5min                             -0.106103    0.140104   -0.757   0.44886     
chunks8:frame.size2_5min                             -0.055055    0.139700   -0.394   0.69351     
chunks12:frame.size2_5min                             0.020382    0.129112    0.158   0.87456     
log10(file.size):index.typeAudioSet                   0.262357    0.095836    2.738   0.00619 ** 
chunks4:index.typeAudioSet                           -0.225830    0.209074   -1.080   0.28008     
chunks8:index.typeAudioSet                            0.145267    0.175036    0.830   0.40658     
chunks12:index.typeAudioSet                           0.225946    0.177678    1.272   0.20349     
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frame.size10min: 
index.typeAudioSet                     

0.027811    0.163868    0.170   0.86523     

frame.size5min:index.typeAudioSet                    -0.100711   0.163807   -0.615   0.53868     
frame.size2_5min: 
index.typeAudioSet                   

-0.145433    0.163105   -0.892   0.37258     

log10(file.size):chunks4: 
index.typeAudioSet            

0.421647    0.129360    3.259   0.00112 ** 

log10(file.size):chunks8: 
index.typeAudioSet            

0.134391    0.105921    1.269   0.20452    

log10(file.size):chunks12: 
index.typeAudioSet           

0.236834    0.106627    2.221   0.02634 *   

log10(file.size):frame.size10min: 
index.typeAudioSet   

-0.105328    0.112208   -0.939   0.34789     

log10(file.size):frame.size5min: 
index.typeAudioSet    

-0.049108    0.111744   -0.439   0.66032     

log10(file.size):frame.size2_5min: 
index.typeAudioSet  

-0.106684    0.110651   -0.964   0.33497     

chunks4:frame.size10min: 
index.typeAudioSet             

0.005458    0.230916    0.024   0.98114     

chunks8:frame.size10min: 
index.typeAudioSet            

-0.262740    0.186811   -1.406   0.15959     

chunks12:frame.size10min: 
index.typeAudioSet           

-0.233415    0.187695   -1.244   0.21365     

chunks4:frame.size5min: 
index.typeAudioSet             

-0.154663    0.227259   -0.681   0.49615     

chunks8:frame.size5min: 
index.typeAudioSet             

-0.189694    0.186022   -1.020   0.30785     

chunks12:frame.size5min: 
index.typeAudioSet            

-0.310507    0.187116   -1.659   0.09703 .   

chunks4:frame.size2_5min: 
index.typeAudioSet           

-0.135128   0.224834   -0.601   0.54783     

chunks8:frame.size2_5min: 
index.typeAudioSet           

-0.224587    0.184237   -1.219   0.22284     

chunks12:frame.size2_5min: 
index.typeAudioSet          

-0.409874    0.185403   -2.211   0.02706 *   

 

Table 9.5.5 Phi Coefficients (model with log link) 
 Estimat

e 
Std.Error Z Value Pr(>|z|) 

(Intercept)                    4.9166      0.2351   20.916   < 2e-16 *** 
index.typeAudioSet             1.6912      0.3330    5.079  3.79e-07 *** 
chunks4                       -1.5953     0.2624   -6.080  1.20e-09 *** 
chunks8                       -2.4061     0.2488   -9.672   < 2e-16 *** 
chunks12                      -2.5716     0.2442  -10.532   < 2e-16 *** 
index.typeAudioSet:chunks4   - 1.6599      0.3740   -4.438  9.10e-06 *** 
index.typeAudioSet:chunks8    -0.4915     0.3533   -1.391     0.164     
index.typeAudioSet:chunks12   -1.3908     0.3477   -4.001  6.32e-05 *** 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Type of estimator:   ML (maximum likelihood) 

Log-likelihood:    2529 on 54 Df 

Pseudo R-squared:  0.4346 

Number of iterations:  66 (BFGS) + 2 (Fisher scoring)  
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     9f – Recall Output Statistics (using Discrete Variables) 

Table 9.6.1 AOV outputs for the multivariate linear model (recall) 

 Df Sum. 
Sq 

Mean. 
Sq 

F Value Pr(>F) 

log10(file.size)                           1   0.000    0.000     0.027   0.86948     
chunks                                     3   0.241    0.080     9.581  2.83e-06 *** 
frame.size                                 3   0.010    0.003     0.394   0.75750     
index.type                                 1  16.000   16.000  1904.901   < 2e-16 *** 
log10(file.size):chunks                   3   0.045    0.015     1.799   0.14531     
log10(file.size):frame.size               3   0.007    0.002     0.288   0.83382     
chunks:frame.size                         9   0.016    0.002     0.214   0.99248     
log10(file.size):index.type               1   0.300    0.300    35.664  2.83e-09 *** 
chunks:index.type                         3   0.131    0.044     5.198   0.00142 ** 
frame.size:index.type                     3   0.084    0.028     3.340   0.01862 *   
log10(file.size):chunks: 
index.type         

3   0.041    0.014     1.625   0.18156     

log10(file.size):frame.size: 
index.type     

3   0.017    0.006     0.662   0.57556     

chunks:frame.size:index.ty
pe               

9   0.009    0.001     0.116   0.99931     

Residuals                               1753  14.724   0.008          
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Betareg Anova of the Maximal Model:  

(recall ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type | index.type * chunks) 

Table 9.6.2 Analysis of Deviance Table (Type II tests) for the Beta regression 

 Df Chisq Pr(>Chisq) 
log10(file.size)                         1    21.9304   2.827e-06 *** 
chunks                                   3    29.6890   1.604e-06 *** 
frame.size                               3    19.7551   0.0001908 *** 
index.type                               1  3047.6774   < 2.2e-16 *** 
log10(file.size):chunks                  3    16.5601   0.0008703 *** 
log10(file.size):frame.size              3     2.8885   0.4091298     
chunks:frame.size                        9     8.2666   0.5075198     
log10(file.size):index.type              1    70.1343   < 2.2e-16 *** 
chunks:index.type                        3    10.0553   0.0181017 *   
frame.size:index.type                    3    37.7504   3.192e-08 *** 
log10(file.size):chunks:index.type       3    12.2136   0.0066863 ** 
log10(file.size):frame.size:index.type   3    1.2606   0.7385054     
chunks:frame.size:index.type             9     7.0018   0.6369337     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



191 
 

Maxima Model Summary 

Call: 

betareg(formula = recall_t ~ log10(file.size) + chunks + frame.size + index.type + log10(file.si
ze):chunks + log10(file.size):frame.size +  
    chunks:frame.size + log10(file.size):index.type + chunks:index.type + frame.size:index.type 
+ log10(file.size):chunks:index.type +  
    log10(file.size):frame.size:index.type + chunks:frame.size:index.type | index.type * chunks, 
data = dat) 

 

Table 9.5.3 Standardized weighted residuals 2 
 

Min 1Q Median 3Q Max 
-2.8994 -0.7530 -0.2073 0.5620 6.7930 

 

Table 9.5.4 ChiSq test for significance of relationship between recall, variables, and 
interactions. 

 

 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept)                                            1.098143    0.101391   10.831   < 2e-16 *** 
log10(file.size)                                      -0.015687    0.072412   -0.217   0.82849     
chunks4                                                0.090868    

 
0.131462    0.691   0.48943     

chunks8                                                0.141348    0.131676    1.073   0.28307     
chunks12                                              -0.043664    0.121815   -0.358   0.72001     
frame.size10min                                      -0.067906    0.125422   -0.541   0.58822     
frame.size5min                                        0.036177    0.126179    0.287   0.77433     
frame.size2_5min                                      0.061919    0.126215    0.491   0.62372     
index.typeAudioSet                                    1.330295    0.130164   10.220   < 2e-16 *** 
log10(file.size):chunks4                              0.041886    0.081174    0.516   0.60586     
log10(file.size):chunks8                             -0.136666    0.080990   -1.687   0.09152 .   
log10(file.size):chunks12                            -0.161706    0.075030   -2.155   0.03114 *   
log10(file.size):frame.size10min                      0.102739    0.079372    1.294   0.19553     
log10(file.size):frame.size5min                       0.038478    0.079556    0.484   0.62863     
log10(file.size):frame.size2_5min                     0.006807    0.079479   0.086   0.93175     
chunks4:frame.size10min                              -0.006198    0.140491   -0.044   0.96481     
chunks8:frame.size10min                               0.058158    0.139619    0.417   0.67701     
chunks12:frame.size10min                              0.051066    0.128978    0.396   0.69216     
chunks4:frame.size5min                               -0.038412    0.140795   -0.273   0.78499     
chunks8:frame.size5min                               -0.028125    0.139501   -0.202   0.84022     
chunks12:frame.size5min                               0.054384    0.129486    0.420   0.67449     
chunks4:frame.size2_5min                             -0.087356   0.140184   -0.623   0.53319     
chunks8:frame.size2_5min                             -0.022520    0.139418   -0.162   0.87168     
chunks12:frame.size2_5min                             0.071848    0.129468    0.555   0.57893     
log10(file.size): 0.201887    0.096762    2.086   0.03694 *   



192 
 

index.typeAudioSet                    
chunks4:index.typeAudioSet                           -0.245409    0.212017   -1.158   0.24707     
chunks8:index.typeAudioSet                            0.058168    0.176588    0.329   0.74186     
chunks12:index.typeAudioSet                           0.163712    0.179160    0.914   0.36083     
frame.size10min: 
index.typeAudioSet                     

0.003025    0.165081    0.018   0.98538     

frame.size5min: 
index.typeAudioSet                     

-0.130519    0.165120   -0.790   0.42926     

frame.size2_5min: 
index.typeAudioSet                   

-0.173535    0.164352   -1.056   0.29103     

log10(file.size):chunks4: 
index.typeAudioSet            

0.431582    0.131410    3.284   0.00102 ** 

log10(file.size):chunks8: 
index.typeAudioSet            

0.188465    0.107162    1.759   0.07863 .   

log10(file.size):chunks12: 
index.typeAudioSet           

0.288612    0.107881    2.675   0.00747 ** 

log10(file.size):frame.size10min: 
index.typeAudioSet   

-0.088741    0.113542   -0.782   0.43447     

log10(file.size):frame.size5min: 
index.typeAudioSet    

-0.024313    0.113140   -0.215   0.82985     

log10(file.size):frame.size2_5min:
index.typeAudioSet  

-0.075012    0.112071   -0.669   0.50329     

chunks4:frame.size10min: 
index.typeAudioSet            

-0.003125    0.234520   -0.013   0.98937     

chunks8:frame.size10min: 
index.typeAudioSet            

-0.242249    0.188956   -1.282   0.19983     

chunks12:frame.size10min: 
index.typeAudioSet           

-0.230048    0.189657   -1.213   0.22514     

chunks4:frame.size5min: 
index.typeAudioSet             

-0.173004    0.230870   -0.749   0.45364     

chunks8:frame.size5min: 
index.typeAudioSet             

-0.181134    0.188242   -0.962   0.33593     

chunks12:frame.size5min: 
index.typeAudioSet            

-0.316069    0.189201   -1.671   0.09481 .   

chunks4:frame.size2_5min: 
index.typeAudioSet           

-0.151230    0.228365   -0.662   0.50783     

chunks8:frame.size2_5min: 
index.typeAudioSet           

-0.229031   0.186516   -1.228   0.21947     

chunks12:frame.size2_5min: 
index.typeAudioSet          

-0.428817    0.187602   -2.286   0.02227 *   

 
Table 9.5.5 Phi Coefficients (model with log link) 

 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept)                    4.9081      0.2350   20.881   < 2e-16 *** 
index.typeAudioSet             1.6413      0.3330    4.929  8.26e-07 **

* 
chunks4                       -1.6202     0.2623   -6.176  6.56e-10 **

* 
chunks8                       -2.4222     0.2487   -9.740   < 2e-16 *** 
chunks12                      -2.6224     0.2441  -10.744   < 2e-16 *** 
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index.typeAudioSet:chunks4    -1.7007     0.3741   -4.546  5.47e-06 **
* 

index.typeAudioSet:chunks8   -  0.5817      0.3532   -1.647    0.0996 .   
index.typeAudioSet:chunks12  - 1.4477      0.3476   -4.165  3.12e-05 **

* 
Type of estimator:   ML (maximum likelihood) 

Log-likelihood:    2401 on 54 Df 

Pseudo R-squared:  0.4293 

Number of iterations:  66 (BFGS) + 2 (Fisher scoring)  
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     9g – Accuracy Output Statistics (using Continuous Variables) 

Linear Model:  

max_model <- accuracy_t ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type 
Linear Model (as in early analysis): mod_lm <- lm(max_model, data= dat) 

 

 

Table 9.7.1 AOV outputs for the multivariate linear model (accuracy) 

 Df Sum  
Sq 

Mean  
Sq 

F Value Pr(>|z|) 

log10(file size)  1 0.000 0.000 0.000 0.99738 
Chunks 1 0.194 0.194 23.308 1.50e-06 *** 
Frame.size 1 0.005 0.005 0.657 0.41767     
Index.type 1 15.980 15.980 1917.358 < 2e-16 *** 
Log10(file.size):chunks 1 0.026 0.026 3.091 0.07892 .   
Log10(file.size):frame.size 1 0.000 0.000 0.036 0.84963     
Chunks:frame.size 1 0.012 0.012 1.429 0.23213     
log10(file.size):index.type 1 0.288 0.288 34.563 4.91e-09 *** 
chunks:index.type                          1 0.103 0.103 12.356 0.00045 *** 
frame.size:index.type                     1 0.074 0.074 8.826 0.00301 ** 
log10(file.size):chunks: 
index.type         

1 0.035 0.035 4.236 0.03972 *   

log10(file.size):frame.size: 
index.type     

1 0.003 0.003 0.339 0.56030     

chunks:frame.size:index.type              1 0.006 0.006 0.763 0.38257     
Residuals 1785 14.876 0.008   
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Betareg Model:  
 
mod_br <- betareg(max_model, data=dat)  
mod_br_phi <- update(mod_br,  . ~ .  | index.type * chunks) 
 
betareg(formula = accuracy_t ~ log10(file.size) + chunks + frame.size + index.type + log10(file.size):ch
unks +     log10(file.size):frame.size + chunks:frame.size + log10(file.size):index.type + chunks:index.ty
pe + frame.size:index.type +    log10(file.size):chunks:index.type + log10(file.size):frame.size:index.typ
e + chunks:frame.size:index.type |  
    index.type * chunks, data = dat) 
 

Table 9.7.2 Standardized weighted residuals 2 

Min 1Q Median 3Q Max 
-2.9508 -0.7654 -0.2208 0.4747 6.2269 

 

 
Table 9.7.3 Coefficients of Mean Model with Log Link. 

 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept) 1.147e+00 1.121e-01   10.233 < 2e-16 *** 
Log10(file.size) 9.695e-02   8.097e-02    1.197 0.23121     
Chunks 5.030e-03   1.210e-02    0.416 0.67755     
Frame.size 4.086e-05   1.323e-04    0.309 0.75745     
Index.type 9.345e-01   1.762e-01   5.302 1.14e-07  

*** 
Log10(file.size):chunks -1.999e-02   8.032e-03   -2.489 0.01280 *   
Log10(file.size):frame.size -2.056e-05   7.761e-05   -0.265 0.79114     

Chunks:frame.size -1.010e-05   1.222e-05   -0.827 0.40822     
Log10(file.size):index.type 3.420e-01   1.315e-01   2.601 0.00929 ** 
Chunks:index.type -1.252e-03   1.908e-02   -0.066 0.94765     
Frame.size:index.type 1.300e-04   2.144e-04    0.607 0.54417     
Log10(file.size):chunks: 
index.type 

4.399e-04   1.299e-02    0.034 0.97298     

Log10(file.size):frame.size: 
index.type 

1.370e-04   1.269e-04    1.079 0.28045     

Chunks:frame.size:index.type 2.517e-05   2.027e-05    1.242 0.21435     
 

Table 9.7.3 Phi Coefficients (model with log link) 
 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept) 3.686964    0.129049   28.570    <2e-16 *** 
Index.typeAudioSet 0.384924    0.185972    2.070 0.0385 *   
Chunks -0.125049    0.013364   -9.357 <2e-16 *** 
Index.type:AudioSet -0.001346    0.019434   -0.069 0.9448     

--- 
 
Type of estimator:   ML (maximum likelihood) 
Log-likelihood:    2301 on 18 Df 
Pseudo R-squared:  0.4209 
Number of iterations:  30 (BFGS) + 3 (Fisher scoring)  
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Table 9.7.4 shows the Akaike Information Criterion (AIC) for different models used to explain 

variation in accuracy as a result of experimental variation. 

 df Estimate 
Mod_lm 15 -3491.238 
Mod_br 15 4401.508 
Mod_br_phi 18 -4565.338 

 
 

Table 9.7.5. Analysis of Deviance Table (Type II tests)  

 Df Chisq Pr(>Chisq)     
Log10(file.size) 1 14.6258   0.0001311 *** 
Chunks 1 17.2050   3.355e-05 *** 
Frame.size 1 8.6459   0.0032780 ** 
Index.type 1 1912.4822   < 2.2e-16 *** 
Log10(file.size):chunks 1 9.8664   0.0016832 ** 
Log10(file.size):frame.size 1 0.2492   0.6176605     
Chunks:frame.size 1 0.0097   0.9213576     
Log10(file.size):index.type 1 69.2583   < 2.2e-16 *** 
Chunks:index.type 1 2.0376   0.1534518     
Frame.size:index.type 1 34.8975   3.475e-09 *** 
Log10(file.size):chunks: 
index.type 

1 0.0011   0.9729774     

Log10(file.size):frame.size: 
index.type 

1 1.1649   0.2804523     

Chunks:frame.size:index.type 1 1.5418   0.2143490     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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     9h – Precision Output Statistics (using Continuous Variables) 

Linear Model:  

max_model <- precision_t ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type 
Linear Model (as in early analysis): mod_lm <- lm(max_model, data= dat) 

 

 

 Table 9.8.1 AOV outputs for the multivariate linear model (precision) 

 Df Sum Sq Mean  
Sq 

F Value Pr(>|z|) 

log10(file size)  1 0.004 0.004 0.592 0.44176     
Chunks 1 0.074 0.074 9.931 0.00165  

** 
Frame.size 1 0.002 0.002 0.207 0.64929     
Index.type 1 14.264 14.264 1903.190 < 2e-16  

*** 
Log10(file.size):chunks 1 0.023 0.023 3.072 0.07980 .   
Log10(file.size):frame.size 1 0.000 0.000 0.042 0.83792     
Chunks:frame.size 1 0.006 0.006 0.750 0.38654     
log10(file.size):index.type 1 0.276 0.276 36.768 1.62e-09 

*** 
chunks:index.type                          1 0.061 0.061 8.203 0.00423 

** 
frame.size:index.type                      1 0.064 0.064 8.533 0.00353  

** 
log10(file.size):chunks:index.type        1 0.021 0.021 2.741 0.09800. 
log10(file.size):frame.size: 
index.type     

1 0.007 0.007 0.939 0.33259     

chunks:frame.size:index.type              1 0.005 0.005 0.649 0.42042     
Residuals 1785 13.378 0.007   
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Beta regression model:  
 

mod_br <- betareg(max_model, data=dat)  
mod_br_phi <- update(mod_br,  . ~ .  | index.type * chunks) 
 
Call: 
betareg(formula = precision_t ~ log10(file.size) + chunks + frame.size + index.type + log10(file.size):ch
unks +    log10(file.size):frame.size + chunks:frame.size + log10(file.size):index.type + chunks:index.typ
e + frame.size:index.type + log10(file.size):chunks:index.type + log10(file.size):frame.size:index.type + 
chunks:frame.size:index.type | index.type * chunks, data = dat) 
 

Table 9.8.2 Standardized weighted residuals 2 

Min 1Q Median 3Q Max 
-3.2818 -0.7450 -0.2431 0.4942 6.4455 

 
 

Table 9.8.3 Coefficients of Mean Model with Log Link. 
 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept) 1.199e+00   1.134e-01   10.576 < 2e-16 *** 
Log10(file.size) 7.168e-02   8.170e-02    0.877 0.38030     
Chunks 6.611e-03   1.217e-02    0.543 0.58714     
Frame.size 6.663e-05   1.337e-04    0.498 0.61830     
Index.type 8.978e-01   1.742e-01   5.155 2.54e-07  

*** 
Log10(file.size):chunks -1.622e-02   8.077e-03   -2.008 0.04468 *   
Log10(file.size):frame.size -5.560e-05   7.791e-05   -0.714 0.47547     
Chunks:frame.size -6.978e-06   1.227e-05   -0.569 0.56964     
Log10(file.size):index.type 3.686e-01   1.298e-01   2.839 0.00452 ** 
Chunks:index.type 5.268e-03   1.880e-02    0.280 0.77928 
Frame.size:index.type 9.215e-05   2.118e-04    0.435 0.66345     
Log10(file.size):chunks: 
index.type 

-3.549e-03   1.280e-02   -0.277 0.78164     

Log10(file.size):frame.size: 
index.type 

1.709e-04   1.253e-04    1.364 0.17246     

Chunks:frame.size:index.type 2.604e-05   1.999e-05    1.302 0.19276     
 
 

Table 9.8.4 Phi Coefficients (model with log link) 
 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept) 3.667224    0.129159   28.393 <2e-16 *** 
Index.type 0.477444    0.185956    2.568 0.0102 *   
Chunks -0.118561    0.013389   -8.855 <2e-16 *** 
Index.type:chunks 0.002017    0.019442    0.104` 0.9174     

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Type of estimator:   ML (maximum likelihood) 
Log-likelihood:    2431 on 18 Df 
Pseudo R-squared:  0.4288 
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Number of iterations:  30 (BFGS) + 2 (Fisher scoring)  

Table 9.8.5 shows the Akaike Information Criterion (AIC) for different models used to explain 

variation in precision as a result of experimental variation. 

 df Estimate 
Linear Model 15 -3682.240 
Betareg Model 15 -4654.656 
Betareg Phi Model  18 -4825.003 

 
 
 

Table 9.8.6. Analysis of Deviance Table (Type II tests)  

 Df Chisq Pr(>Chisq)     
Log10(file.size) 1 13.3449 0.0002591 *** 
Chunks 1 4.4200 0.0355203 *   
Frame.size 1 12.0242 0.0005251 *** 
Index.type 1 2014.0679   < 2.2e-16 *** 
Log10(file.size):chunks 1 7.9126   0.0049092 ** 
Log10(file.size):frame.size 1 0.0297   0.8631529 
Chunks:frame.size 1 0.0855   0.7699322     
Log10(file.size):index.type 1 76.1929   < 2.2e-16 *** 
Chunks:index.type 1 3.2384   0.0719289 .   
Frame.size:index.type 1 36.4003   1.607e-09 *** 
Log10(file.size):chunks: 
index.type 

1 0.0768   0.7816436     

Log10(file.size):frame.size: 
index.type 

1 1.8614   0.1724631     

Chunks:frame.size:index.type 1 1.6964   0.1927592     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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9i – Recall Output Statistics (using Continuous Variables) 
 
Linear Model:  
 
max_model <- recall_t ~ (log10(file.size) + chunks + frame.size) ^ 2 * index.type 
Linear Model (as in early analysis): mod_lm <- lm(max_model, data= dat) 
 

Table 9.9.1 AOV outputs for the multivariate linear model (recall) 

 Df Sum  
Sq 

Mean  
Sq 

F Value Pr(>|z|) 

log10(file size)  1 0.000 0.000 0.027 0.868874     
Chunks 1 0.189 0.189 22.319 2.03e-06 *** 
Frame.size 1 0.008 0.008 1.008 0.315415     
Index.type 1 15.999 15.999 1922.764 < 2e-16 *** 
Log10(file.size):chunks 1 0.023 0.023 2.819 0.093339 
Log10(file.size):frame.size 1 0.000 0.000 0.024 0.876837     
Chunks:frame.size 1 0.012 0.012 1.445 0.229471     
log10(file.size):index.type 1 0.300 0.300 36.002 2.38e-09 *** 
chunks:index.type                         1 0.112 0.112 13.489 0.000247 *** 
frame.size:index.type                     1 0.082 0.082 9.880 0.001699 ** 
log10(file.size):chunks: 
index.type         

1 0.037 0.037 4.410 0.035864 *   

log10(file.size):frame.size: 
index.type     

1 0.003 0.003 0.312 0.576262     

chunks:frame.size: 
index.type               

1 0.006 0.006 0.765 0.381986     

Residuals 1785 14.853 0.008   
--- 
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Betareg Model: 
 
mod_br <- betareg(max_model, data=dat)  
mod_br_phi <- update(mod_br,  . ~ .  | index.type * chunks) 
 
betareg(formula = recall_t ~ log10(file.size) + chunks + frame.size + index.type + log10(file.size):chunk
s + log10(file.size):frame.size + chunks:frame.size + log10(file.size):index.type + chunks:index.type + fr
ame.size:index.type + log10(file.size):chunks:index.type + log10(file.size):frame.size:index.type + chun
ks:frame.size:index.type | index.type * chunks, data = dat) 
 

Table 9.9.2 Standardized weighted residuals 2 

Min 1Q Median 3Q Max 
-2.9469 -0.7504 -0.2228 0.4802 6.2298 

 
 

Table 9.9.3 Coefficients of Mean Model with Log Link. 
 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept) 1.158e+00   1.128e-01   10.262 < 2e-16 *** 
Log10(file.size) 9.237e-02   8.146e-02    1.134 0.25681     
Chunks 4.649e-03   1.216e-02    0.382 0.70212     
Frame.size 3.086e-05   1.330e-04    0.232 0.81649     
Index.type 9.083e-01   1.766e-01   5.142 2.71e-07 

 *** 
Log10(file.size):chunks -1.964e-02   8.068e-03   -2.435 0.01491 *   
Log10(file.size):frame.size -1.806e-05   7.780e-05   -0.232 0.81648     
Chunks:frame.size -1.033e-05   1.226e-05   -0.842 0.39970     
Log10(file.size):index.type 3.512e-01   1.318e-01   2.665 0.00769 ** 
Chunks:index.type -5.484e-04   1.908e-02   -0.029 0.97708     
Frame.size:index.type 1.406e-04   2.147e-04    0.655 0.51246     
Log10(file.size):chunks: 
index.type 

1.253e-03   1.300e-02    0.096 0.92325     

Log10(file.size):frame.size: 
index.type 

1.291e-04   1.269e-04    1.018 0.30884     

Chunks:frame.size:index.type 2.624e-05   2.029e-05    1.293 0.19587     
                                                  
 

Table 9.9.4 Phi Coefficients (model with log link) 
 Estimate Std.Error Z Value Pr(>|z|) 
(Intercept) 3.6677091   0.1290430   28.422 <2e-16 *** 
Index.typeAudioSet 0.3899579   0.1859748   2.097 0.036 *   
Chunks -0.1232328   -9.221    -9.221 <2e-16 *** 
Index.type:AudioSet:chunks 0.0003653   0.0194351   -0.019 0.985 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
Type of estimator:   ML (maximum likelihood) 

Log-likelihood:    2305 on 18 Df 

Pseudo R-squared:  0.4235 

Number of iterations:  30 (BFGS) + 2 (Fisher scoring)  
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Table 9.9.5 shows the Akaike Information Criterion (AIC) for different models used to explain 

variation in accuracy as a result of experimental variation. 

 df Estimate 
Linear Model 15 -3494.087 
Betareg Model 15 -4412.078 
Betareg Phi Model  18 -4573.955 

 

Table 9.9.6. Analysis of Deviance Table (Type II tests)  

 Df Chisq Pr(>Chisq)     
Log10(file.size) 1 16.0094 6.303e-05 *** 
Chunks 1 15.9911 6.364e-05 *** 
Frame.size 1 7.9690 0.004758 ** 
Index.type 1 1913.3500 < 2.2e-16 *** 
Log10(file.size):chunks 1 9.1696 0.002461 ** 
Log10(file.size):frame.size 1 0.2459 0.619967     
Chunks:frame.size 1 0.0057 0.939644     
Log10(file.size):index.type 1 73.0189 < 2.2e-16 *** 
Chunks:index.type 1 2.7647 0.096362 
Frame.size:index.type 1 36.5939 1.455e-09 *** 
Log10(file.size):chunks: 
index.type 

1 0.0093 0.923248     

Log10(file.size):frame.size: 
index.type 

1 1.0356 0.308839     

Chunks:frame.size:index.type 1 1.6729 0.195866     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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APPENDIX B: Chapter 3 Supplementary Material  

  

Contents: 

1- Popular/ Emerging Spatial ARUs 
2- Device Costs (incl. Sethi et. al.)  
3- Device Technical Information and Weatherproofing  
4- Powering Assay  
5- Power Spectra Tests  

a. Device/Test Details 
b. Spectral Information from Lab Tests  

6- Gain Adjustments 
7- Localisation Tests 

a. HARKBird Thresholds 
b. Pre and Post Localisation (No Gain Adjustment)  
c. Post Localisation (with Gain Adjustment)  
d. Localisation Error Data  
e. Localisation Analysis Outputs  

8- Pre- and Post- Deployment Sweep Comparisons 
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1 Popular/ Emerging Spatial ARUs 

Table 1 charts some of the emerging methods in spatial acoustics. These range from  

commercial “out of the box” solutions, to DIY and custom recorders. The MAARU recorder  

developed in this thesis is in the bottom row.  

 

Name Hyper
-bolic/ 
DOA  

Mics 
 
Num 
ARUs 

Base 
unit  

min 
cost for 
study 

Data 
transfer 

Mic 
Sync 

Power Ref 

Wildlife 
Acoustics 

Hyper-
bolic 

2 mic (1 
as 
failsafe) 
3+ 
ARUs 

SM2+  £700 
(£2,100) 

Manual  GPS  Battery (Mennill 
et al., 
2012) 

Audio 
Moth Dev 

Hyper-
bolic 

1 mic  
3+ 
ARUs 

Audio 
Moth 

£75 
(£225)  

Manual GPS Battery (Hill et al., 
2018) 

SAFE 
Acoustics  

Hyper-
bolic 

1 mic  
3+ 
ARUs 

Rasp-
berry Pi 

£200 Cloud NA  Self-
charging  

(Sethi et 
al., 2018) 

VoxNet  DOA+ 
Hyper-
bolic  

4 mics  
3+ 
ARUs 

Custom  ? Cloud  Network  Battery (Allen et 
al., 2008). 

CARACAL  DOA+ 
Hyper-
bolic  

4 mics 
3+ 
ARUs 

Custom £150 
(£450) 

Manual  ? Battery  (Wijers et 
al., 2019). 

TAMAGO/ 
Dev-Audio  

DOA+ 
Hyper 
bolic 

7/8 mics  
3+ 
ARUs 

Laptop 
GUI 

? Laptop 
required 

Cable  Laptop 
required  

(Suzuki et 
al., 2017) 

Crunchant 
et al. 2022  

Hyper-
bolic 

1 mic  
4 ARUs 

Rasp-
berry Pi 

? Manual GPS  Self- 
charging  

Crunchan
t et al., 
2022 

WASN Hyper-
bolic  

W mic  
5 ARUs 

Rasp-
berry Pi 
 

? Cloud  Network Battery   Bruggem
ann et al., 
2021 

This one  DOA 6 mics  
1ARU  

Rasp-
berry Pi  

£226 
(£226) 

Cloud  Short 
Cable 

Self-
charing  

This 
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2 Device Costs (Accurate as of July 2021)  

      Table 2.1. per component costs of the MAARU recorder. Solar panel and battery require

ments are location (sunlight) dependant so costs will vary depending on latitude of field site (

London, GB used here). SD card size is also variable, the price given is for a 128GB micro S

D.  

Item Price GBP 
Powering   
Battery * 119 
12v to 5v step-down converter 9.33 
10m of AWG10 cable (10m) 21.06 
Hooks and Slings (x4) 14.00 
10L Dri-Bag 5.99 
Electronics 
Raspberry Pi 4 (4GB) 54.99 
Respeaker 6 Mic Array (incl. soundcard)  36.20 
Huawei Mobile Dongle 38.98 
Memory Card** 14.99 
USB-USB extension cable 8.99 
Sistema Tupperware 2.50 
IPRO Vents (x6)  18.00 
Sniper Tape 14.99 
General 
Sniper Tape 4.99 
Sealant 7.95 
Polystyrene 0.00 
Silica Gel (each)  0.29 
Kwik-Lok Tie (each) 3.15 
TOTALS 
Powering Total 255.37 
Electronics Total  189.64 
Whole Device Total 461 
Whole Device (Excluding Powering)  205.63 
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Table 2.2. per component costs of an autonomous omnidirectional recorder  

(Sethi et al., 2018). Powering costs are excluded here as powering requirements across both 

devices are the same.  

Item  Cost GBP 
Electronics 
Rasberry Pi B 35.27 
Rode SmartLav+ Microphone 47.00 
TRRS to TRS audio jack splitter 6.59 
UASNW1 USB audio card 8.99 
Memory Card 64GB*** 11.99 
Huawei Dongle 38.98 
1m USB Extension Cable 3.30 
USB to Micro USB Cable  4.69 
Dri-Box  10.99 
Dry Bag 5.99 
General 
Cable Ties 5.39 
Kwik-Lok (x2) 6.30 
TOTALS 
Device Total (Excluding Powering)   185.49 
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3 Device Technical Information and Weatherproofing 

Table 3.1.1.  MAARU device technical specifications. 

Microphone Part Dimensions  15x15x13cm 

Microphone Part Weight <1kg 

Solar Panel Part Dimensions 84x58x15cm (+ suspension equipment) 

Solar Panel Part Weight  ~11kg 

Microphone Part Attachment Height 2/3m  

Solar Panel Part Attachment Height  Canopy where possible, dependant on Sun 
exposure  

Total Weight ~ 12kg 

Total Number Recorders 4 

 

Table 3.1.2.  IPRO vent details (B0.2). Data taken and adapted from 

 www.ipromembrane.com  

IP Rating  IP67, IP68 (5m water immersion for 1h) 
WEP (60s)  300kPA 
Maximum Trasmission Loss 
(Max Value 100 – 10,000 Hz) 

<1.5dB 

Material Type and Colour White ePTFE 
Characteristic Hydrophobic 
Reference Thickness (mm) 0.4 
Temperature Range (OC) -40 to 85 
Adhesive Type Acrylic 
Reccommended Orientation Internal Mount  
ROHS Compliance  Yes 
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Figure 3 The sound-permitting device weatherproofing. The full pink circles correspond to 

holes in the container lid covered by ePTFE waterproof acoustic vents, and these holes line 

up with MEMS microphones (dashed pink circles) on the array. The array is held flush to the 

container lid by additional holes made for other raised components on the PCB (green 

rectangles), which are instead sealed flexibly with an air-and-water tight sealant. 
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4 Powering Assay  

To determine the power usage of the multi-channel and omnidirectional devices, regular watt 

readings were taken from both devices (via a USB power reader) during continuous and non-

continuous recording. In one test, a screen (showing status information) was attached to the 

recorder so the exact status of the device could be determined; in another, the device was left 

as it would be in situ, and an average reading was found. In both cases, readings were taken 

every 15 seconds for 5 minutes. We found that the addition of multiple microphones had no 

significant impact on the power usage compared to the omnidirectional device, in all phases: 

start-up (PO), recording (REC), and simultaneous recording and upload (REC+UP) 

(Respectively: t= 0.8710.51, p= 0.400, t= 1.8820.5, p= 0.075 and t= 0.2539.39, p= 0.8054, Welch’s 

T-Test.). Data transmission is almost instantaneous in the omnidirectional recorder, so no 

measured time points fell during a period where recording and upload were happening 

simultaneously in the non-continuous test.  
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Figure 4 shows the comparative power usage between the 1- and 6- Mic recorders under 

different running conditions. The left panels show values averaged over a 5-minute 

period. The right panels show the individual running periods separately PO = Powering 

on, REC = Recording audio data, UP= Uploading data, REC+UP = Simultaneous 

recording and upload. Power consumption appears slightly higher for both in the 

continuous recording. Black dots show outliers. Overall, there is no significant difference 

in power consumption between the devices. 
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5 Power Spectra Tests 

1- Device Test Details:  

Table 5.1.1.  Lab tests codes and conditions 

Test Code Tone Type Weatherproofing? Device Number 
1a Pink Noise N 2 
1b Eurasian Wren N 2 
3a Pink Noise  Y  3 
5a  Pink Noise  Y 2 
5b  Eurasian Wren  Y 2 
7a Pink Noise  N 3 

 

 Table 5.1.2. Compared test groups and outcomes. 

Test Type  Devices Used 
Device Number 3a vs. 5a 
Waterproofing  1b vs. 5b AND 1a vs. 5a 
Signal Type  1a vs. 1b AND 5a vs. 5b  
Test Number 5a vs. 5b 
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2- Spectral Information from Lab Tests:  

 

Figure 5.2.1. shows the recorded power spectra of a sweep recorded in lab tests. Test 

codes shown above power spectra, and conditions can be determined through Table 

5.1.1 
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Figure 5.2.2. compares the power spectra recorded in the same test conditions from two 
different devices to determine the impact of the device on the quality of recorded signal. 

A >10dB difference is observed below 1kHz, but higher than that all differences are 
below 10dB. 

 

 

Figure 5.2.3. compares the power spectra recorded in the same test conditions from the 
same device at two different times to determine the impact of the test on the quality of 

recorded signal. The difference in spectra stays below 5dB across all frequencies.  
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Figure 5.2.4. compares the power spectra recorded from weatherproofed and un-
weatherproofed devices to determine the impact of weatherproofing on the quality of 

recorded signal. A <10dB difference is observed below 4kHz, and <20dB under 6.5kHz, 
beyond which the difference tends to zero. (Test 1) 

 

Figure 5.2.5. compares the power spectra recorded from weatherproofed and un-
weatherproofed devices to determine the impact of weatherproofing on the quality of 

recorded signal. A <10dB difference is observed below 4kHz, and <20dB under 6.5kHz, 
beyond which the difference tends to zero. (Test 2) 
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6 Gain Adjustments  

Table 6.1 Maximum absolute dB FS values in each channel and in each recording – scaled b

y colour. Used to determine an appropriate threshold for an appropriate gain shift.  

fileName ch1 ch2 ch3 ch4 ch5 ch6 
1a_pinknoise2_N_2.wav 0.31079 0.24704 0.25882 0.22009 0.2562 0.22284 

1a_pinknoise_N_2.wav 0.30157 0.31351 0.23456 0.24158 0.25079 0.25195 
1b_bird_N_2.wav 0.30795 0.24701 0.24536 0.24503 0.27225 0.26205 
3a_pinknoise_Y_3.wav 0.015961 0.018219 0.069366 0.015808 0.018341 0.26749 
5a_pinknoise_Y_2.wav 0.11502 0.14166 0.062836 0.065399 0.068756 0.14896 
5b_bird_Y_2.wav 0.11044 0.13443 0.052612 0.059875 0.066376 0.15988 
7a_pinknoise_N_3.wav 0.53217 0.65256 0.60669 0.72601 0.69006 0.6456 

       
fileName ch1 ch2 ch3 ch4 ch5 ch6 
ASNW2_PostMortemLoc_bird01.wav 0.0336 0.03717 0.000519 0.000488 0.024689 0.028503 
ASNW2_PostMortemLoc_bird02.wav 0.035217 0.030243 0.000549 0.000488 0.020172 0.027374 
ASNW2_PostMortemLoc_pink01.wav 0.029572 0.027222 0.000488 0.000488 0.016724 0.028473 
ASNW2_Repowered_bird01.wav 0.000488 0.000488 0.023163 0.049896 0.045471 0.038849 
ASNW2_Repowered_bird02.wav 0.000549 0.000488 0.020905 0.042633 0.034271 0.02948 

ASNW2_Repowered_pink01.wav 0.000519 0.000549 0.019897 0.045868 0.042145 0.041565 
ASNW2_Repowered_pink02.wav 0.000488 0.000488 0.021027 0.047913 0.052032 0.033508 
PAWS2_PostMortem_bird01.wav 1 1 0.019897 0.029358 0.032013 0.021545 
PAWS2_PostMortem_bird02.wav 1 1 0.022156 0.028992 0.030029 0.018524 
PAWS2_PostMortem_bird03.wav 0.98846 0.89392 0.015106 0.020599 0.019653 0.017761 
PAWS2_PostMortem_pink01.wav 1 0.92575 0.019165 0.027161 0.026794 0.018677 
PAWS2_PostMortem_pink02.wav 1 0.84131 0.017151 0.023529 0.024628 0.018433 
PAWS2_flipped_bird01.wav 1 1 0.020325 0.027344 0.027557 0.022339 
PAWS2_flipped_pink01.wav 1 0.87335 0.020477 0.026062 0.027344 0.019501 
PAWS1_PostMortemLoc_bird01.wav 0.06958 0.11835 0.13934 0.11206 0.084686 0.070709 
PAWS1_PostMortemLoc_bird02.wav 0.067444 0.099731 0.16461 0.14154 0.099518 0.079712 
PAWS1_PostMortemLoc_pink02.wav 0.055023 0.096924 0.14304 0.13043 0.091949 0.06662 
PAWS1_PostMortemLoc_pink03.wav 0.049805 0.0802 0.093475 0.091461 0.073853 0.0495 

Based on the Above the “AddGain.m” script does the following: 

Channel Status Range max(abs(x)) Outcome 
overpower 0.5=< max(abs(x)) If any channels have this run gain 

adjustment method 

ok 0.01< max(abs(x)) 
<0.5 

No action  

dead max(abs(x)) <= 0.01  Remove recording from sample 
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Figure 6.2 cross microphone power spectra for each recorder (colours). The top row of each 

recorder is a week after deployment while the bottom row is a month later. Several dead 
channels present and variation in level between microphones. 

 

 

 
Figure 6.3 cross microphone power spectra for each recorder (colours) after automated gain 

shifts. The top row of each recorder is a week after deployment while the bottom row is a 
month later. Several dead channels have been removed and the variation in signal between 

channels is reduced.   
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7 Localisation Tests 

1 – HARKBird Thresholds  

8 Table 7.1.1. Pre-deployment test conditions and HARKBird thresholds 

Test Code Tone Type Weatherproofing? Device 
Number 

Threshold 

1a Pink Noise N 2 29 
1b Eurasian Wren N 2 29 
3a Pink Noise  Y  3 25 
5a  Pink Noise  Y 2 25 
5b  Eurasian Wren  Y 2 25 
7a Pink Noise  N 3 29 

 

Table 7.1.2. Post-deployment test conditions and HARKBird threshold. 

Recorder Tone Type Test Number* Threshold 
ASNW2 Eurasian Wren 01 24 
ASNW2 Eurasian Wren 02 24 
ASNW2 Pink Noise 01 24 
ASNW2Repowered Eurasian Wren 01 24 
ASNW2Repowered  Eurasian Wren 02 24 
ASNW2Repowered Pink Noise 01 24 
ASNW2Repowered Pink Noise 02 24 
PAWS2 Eurasian Wren 01 24 
PAWS2 Eurasian Wren 02 24 
PAWS2 Pink Noise 01 24 
PAWS2 Pink Noise 02 24 
PAWS2Flipped Eurasian Wren 01 24 
PAWS2Flipped Pink Noise 01 24 
PAWS1 Eurasian Wren 01 24 
PAWS1 Eurasian Wren 02 24 
PAWS1 Pink Noise 02 24 
PAWS1 Pink Noise 03 24 
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2 –Pre and Post Localisation (No Gain Adjustment):  

 
Figure 7.2.1 localisation error for tests on recorders pre-deployment. Test conditions are 

given above each of the true/ error plots. (No Gain Adjustment) 
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Figure 7.2.2 localisation error for tests on recorders post deployment.  Each row denotes 
each of the recorders. The top row (PAWS1) is able to localise signals accurately, but the 
others are unable to detect or accurately localise any of the signals. (No Gain Adjustment).   

 
 3 –Post Localisation (with Gain Adjustment):  
 
 
 
 

 
 

Figure 7.3 localisation error for tests on recorders post deployment.  Each row denotes each 
of the recorders. After the autonomous gain adjustment is employed, all recorders were able 

to successfully detect and localise signals.    
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4 - Localisation Error Data: 

 

Table 7.4 compares the error between true sound source locations and HARKBird predicted 

directions for different conditions. In several tests a number of false positives were present.  

In the below table we provide mean accuracy with and without false positives included.   

 

  

test  group mean SD maxEr Mean 
(Echoes 
Removed) 

SD 
(Echoes 
Re-
moved) 

Max 
Error 
(Echoes 
Re-
moved) 

Prop of 
Calls 
Detected 

Tests False 
Detections 
(Echoes) 

pre WP bird 4.17 7.03 10 3 7.58 10 1 1 0.17 

pre NoWP 
bird 

1.43 2.31 5 NA NA NA 1 1 0 

pre WP 
pink 
noise 

-23.5 61.7 -175 1.67 5.16 10 1 1 0.17 

pre NoWP 
pink 
noise 

0.41 2.04 5 NA NA NA 1 3 0 

post PAWS1 
Bird 

35.35 59.2 145 -0.5 2.84 -5 1 2 0.29 

post PAWS1 
Pink 

9.58 34.93 -180 0 3.33 -5 1 2 0.17 

post PAWS2 
Bird 

27.62 84.48 180 -2 7.75 -10 1 3 0.29 

post PAWS2 
Pink 

33.33 72.51 180 -1 6.87 -10 1 3 0.29 

post ANSW2 
Bird 

-46.6 126.2 170 NA NA NA 0.4 3 0 

post ANSW2 
Pink 

-41.2 124.99 -150 NA NA NA 0.4 4 0 

pre WP -10.7 49.7 -175 2.27 6.07 10 1 2 0.15 

pre NoWP 0.8 2.36 5 0.83 2.41 5 1 4 0.04 

post PAWS1 23.46 50.33 145 -0.25 3.02 5 1 4 0.23 

post PAWS2 17.5 75.345 180 -1.5 7.21 10 1 6 0.29 

post ANSW2  -43.5 114.8 155 NA NA NA 0.4 7 0 
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5 – Localisation Analysis Outputs 

Table 7.5.1 mean and SD of localisation error of pre-deployment tests 

Waterproofing? Test Tone False Positive 
Removed? 

Mean SD 

No bird n 1.43 2.44 
No bird y 1.67 2.58 
No pinknoise n 0.56 2.36 
No pinknoise y 4.16 2.36 
Yes bird n 2.17 7.36 
Yes bird y 3 7.58 
Yes pinknoise n -23 66.99 
Yes pinknoise y 1.67 5.4 

    

Table 7.5.2 mean and SD of localisation error of post-deployment tests of ASNW1 

Tone Raw mean 
dif (+SD) 

Removed 
echoes raw 
mean (+SD) 

Gain Test? adjG mean 
dif (+SD) 

Removed 
echoes 
mean (+SD) 

bird -41.24 
(+107.7) 

NA remove NA NA 

Pinknoise -46.67 
(+126.2) 

NA remove NA NA 

  

Table 7.5.3 mean and SD of localisation error of post-deployment tests of PAWS1 

Tone Raw mean 
dif (+SD) 

Removed 
echoes raw 
mean (+SD) 

Gain 
Test? 

adjG mean 
dif (+SD) 

Removed 
echoes mean 
(+SD) 

bird 35 (+58) -0.5 (+2.8) No action Same as 
before 

Same as 
before 

Pinknoise 9.58 (+34.2) 0 (+3.24) No action  Same as 
before 

Same as 
before  

  

Table 7.5.4 mean and SD of localisation error of post-deployment tests of PAWS2 

Tone Raw mean 
dif (+SD) 

Removed 
echoes raw 
mean (+SD) 

Gain 
Test? 

adjG mean 
dif (+SD) 

Removed 
echoes mean 
(+SD) 

bird NA NA Added 
Gain 

27.61 
(+87.47) 

-2 (+7.75) 

Pinknoise NA NA Added 
Gain 

33.33 
(+72.51) 

-1 (+6.87)  

* PAWS2 flipped (both) and bird samples were actually generated at a THRESH of 23.5 
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8 – Pre- and Post- Deployment Sweep Comparisons  

 

Figure 8.1 compare the spectra of a sweep recorded by the same device (PAWS2) pre- and post- 6-

month deployment; the corresponding iii and iv show this as spectrograms. 

 

Figure 8.2 compare the spectra of a sweep recorded by the same device (PAWS2) pre- and post- 6-

month deployment; the corresponding iii and iv show this as spectrograms. 
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Figure 8.2 compare the spectra of a sweep recorded by the same device (PAWS1) pre- and post- 6-

month deployment; the corresponding iii and iv show this as spectrograms  
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8. APPENDIX C: Chapter 4 Supplementary Material  

 

Contents 

 

 

1 – Field Site Aerial View 

2 – HARKBird Parameters 

3 – Bonferroni Significance Tables  
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1 – Field Site Aerial View  

 

Figure 1.1 show clear forest differences between ASNW (light green/brown) and PAWS 

(darker green). Point colours represent signal strength as determined by mobile speed tests, 

2 – HARKBird Parameters 

Table 2.1 HARKBird config for ASNW Recorders 

Group 
Sensitivity 

THRESH 
(Detection 
threshold) 

Frequency 
Range 

Number of 
Sources  

Gain? 

High 24.5 2-8kHz 2 No 
Medium  24.7 2-8kHz 2 No 
Low  24.75 2-8kHz 2 No 

 

 

Table 2.1 HARKBird config for PAWS Recorders 

Group 
Sensitivity 

THRESH 
(Detection 
threshold) 

Frequency 
Range 

Number of 
Sources  

Gain? 

High 25 2-8kHz 2 No 
Medium  25.15 2-8kHz 2 No 
Low 25.25 2-8kHz 2 No 
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3 – Bonferroni Significance Table  

Table 2.1 Bonferroni significance table to determine whether per-individual call rate was non-

zero for each species. 

 

 

Species Mean DF T-
Value 

Raw P Bonferroni 
Significance 
(p<0.00263) 

Blue Tit 3.92 26 4.45 0.000145 * 
Bullfinch 2.33 5 1.87 0.121  
Buzzard 1 2 NA NA  
Coal Tit 5.64 158 9.35 < 2.2e-16 * 

Great Spotted 
Woodpecker 

19.38 46 2.26 0.0284  

Great Tit 3.68 24 2.77 0.0108  
Green 

Woodpecker 
4.18 26 2.44 0.0218  

Jay 2 1 NA NA  
Long-Tailed Tit 3 16 5.50 4.869e-05 * 

Magpie 6.36 35 4.94 1.907e-05 * 
Marsh Harrier 1.5 1 1 0.5  
Mistle Thrush 2.75 3 2.33 0.11  

Nuthatch 2.8 4 1.36 0.24  
Robin 6.19 25 2.19 0.0381  

Rose-Ringed 
Parakeet 

5.50 580 17.13 < 2.2e-16 * 

Short-Toed 
Treecreeper 

4.43 6 2.16 0.074  

Treecreeper 4.4 4 1.73 0.16  
Willow Tit 1 1 NA NA  

Wren 3.57 20 4.25 0.000384 * 


