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Verifiable Key-Aggregate Searchable Encryption
with a Designated Server in Multi-Owner Setting

Jinlu Liu, Zhongkai Wei, Jing Qin, Bo Zhao, Jixin Ma

Abstract—Key-aggregate searchable encryption (KASE) schemes support selective data sharing and keyword-based ciphertext
searching by using the constant-size shared key and trapdoor, making these schemes attractive for resource-constrained users to
store, share, and search encrypted data in public clouds. However, most previously proposed KASE schemes suffer from our proposed
"off-line keyword guessing attack (KGA)" and some other weaknesses. Consequently, they fail to gain the keyword ciphertext
indistinguishability and trapdoor indistinguishability, which are vital security goals of searchable encryption. Inspired by the relationship
of public key encryption with keyword search (PEKS) and KASE, we design a new KASE scheme called key-aggregate searchable
encryption with a designated server (dKASE). The dKASE scheme achieves our proposed keyword ciphertext indistinguishability
against chosen keyword attack (KC-IND-CKA) and keyword trapdoor indistinguishability against keyword guessing attack
(KT-IND-KGA) security models, where the latter model captures off-line KGA. Then, we extend the dKASE scheme to verifiable dKASE
in multi-owner setting (dVKASEM) scheme. With dVKASEM, when multiple data owners authorize a user to access data, the user
merely needs to store his single key and generate a single trapdoor to query these owners’ data. Besides, the adoption of the
aggregate signature significantly reduces the overhead of verifying whether data has been tampered with. Performance analysis
illustrates that our schemes are efficient.

Index Terms—Selective data sharing, key-aggregate searchable encryption, KGA, multi-owner, verifiable
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1 INTRODUCTION

S ERVICE computing plays an important role in modern
computing and has a profound impact on building flex-

ible, scalable, and reusable distributed applications and sys-
tems. Cloud computing plays a pivotal role in the realm of
service computing, enhancing its capabilities and enabling
the realization of its principles. It offers the necessary infras-
tructure, tools, and services that align with the principles of
service computing, enabling the creation, deployment, and
management of reusable and distributed software services.
With the popularity of cloud computing, large amounts
of local data are increasingly being outsourced to remote
cloud servers to reduce the burden of data management and
maintenance [1], [2]. Besides, to protect data privacy against
untrusted servers, users opt to store their encrypted data
on the cloud, thereby presenting a challenge in achieving
efficient data utilization. The proposal of searchable encryp-
tion (SE) technology [3], [4] solves the problem of ciphertext
retrieval. This technology enables data owners to upload
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encrypted data to the cloud securely. The cloud server
then conducts searches based on trapdoors provided by
authorized users. Subsequently, the server returns matched
documents to users without compromising the confidential-
ity of the underlying plaintext data.

In addition to providing users with convenient data
storage services, another vital function of the cloud system is
data sharing. To ensure the effective utilization and manage-
ment of data resources within the proper scope, the ability
to selectively share encrypted data becomes an essential
part. In essence, this entails allowing the data owner to
share distinct subsets of ciphertext with different users. The
desired selective sharing demands distinct encryption keys
for individual documents. This implies that the expenses
associated with securely distributing the key by the data
owner, the secure storage of the key and the computation of
the trapdoor by the user all escalate proportionally with the
count of shared documents. This approach will be imprac-
tical as the quantity of shared documents grows. To further
illustrate this problem, we consider the following concrete
collaborative data sharing scenario.

Multiple hospitals intend to use a cloud service to share
patients’ data for collaboration. For example, hospital A1

uploads all of its patients’ data to cloud storage. Suppose
all data is divided into the following classes based on dis-
ease type: contagion, nervous system, digestive system,
circulatory system, and dermatosis. Since these data con-
tain highly sensitive information of patients, A1 encrypts
distinct data classes using different keys before uploading
to cloud. Additionally, keyword ciphertext is generated
based on the disease name, enabling efficient data searches
when needed. At some point, A1 aims to share data subset
S1 = {contagion, digestive system, circulatory system}
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with hospital R to collaborate (Subsequently, A1 may also
need to share data subset S′

1 to hospital R′, share data subset
S′′
1 to hospital R′′, and so on). It needs to distribute keys of

these classes to R, and R must store these keys securely and
generate trapdoors for each class in set S1 using the received
keys.

We observe that key-aggregate searchable encryption
(KASE) [5] is an excellent mechanism to address the above-
mentioned challenge. In KASE, the data owner can extract
an aggregate key from any number of different classes using
his/her secret key. This aggregate key is a single key but
aggregates the ability to search ciphertexts of these different
classes. With KASE, to share data subset S1, hospital A1

just securely provides a single aggregate key KS1
to R.

Subsequently, R solely submits a single trapdoor generated
by KS1

to the server to query these shared data.
However, we find that most previous KASE schemes

suffer from the security vulnerability caused by the off-
line keyword guessing attack (KGA). Specifically, when
the channel between the user and the server is public,
the trapdoors that the user submits to the server are also
publicly available. Since keywords are usually chosen from
low-entropy spaces, an attacker, after obtaining a trapdoor,
can exhaustively guess the keyword and off-line determine
whether the guessed keyword is correct or not through
some equations to reveal the keyword corresponding to
the trapdoor. After revealing the keyword, the attacker can
proceed to compute the aggregate key used to generate
the trapdoor, to access the data classes corresponding to
the aggregate key. Besides, Kiayias et al. [6] showed that
the ciphertexts of most KASE schemes are vulnerable to
the cross pairing attacks, so the ciphertext cannot achieve
indistinguishable security. Further, if many other hospitals,
like A2, A3, and A4, also separately share patients’ data
subset S2, S3, and S4 with hospital R, then R must securely
store aggregate keys sent by these hospitals and generate
separate trapdoors to access each hospital’s data. That is, in
the multi-owner setting, the user’s overhead increases lin-
early with the number of data owners, which is challenging
for resource-constrained users. In addition, due to financial
incentives, the server in a commercial cloud computing
environment may temper with the data. Thereby, the patient
data received by hospital R might have been tempered with.
Therefore, it is necessary to design a mechanism to verify
the correctness of returned data by the server. A trivial
way is that the data owner generates a signature for each
ciphertext data and outsources these signatures along with
the keyword ciphertexts to the cloud server. When the cloud
server returns matched ciphertexts to the user, it also returns
the corresponding signatures. Then, the user can verify the
correctness of each data in turn using signatures. However,
the computation and communication overhead is linearly
related to the amount of matched data, which is impractical.

Therefore, it is imperative to propose a KASE scheme
that can uphold the following properties simultaneously: (1)
resist off-line KGA and meet ciphertext indistinguishability;
(2) keep the user’s overhead at a constant size in multi-
owner setting; (3) can efficiently verify whether the server
has tampered with the ciphertext in the commercial cloud
computing environment. Regrettably, no such KASE scheme
has been proposed thus far.

1.1 Our Contributions
To achieve secure keyword searching and selective data
sharing, we propose a novel KASE system named key-
aggregate searchable encryption with a designated server
(dKASE). We also present two security models to capture the
security of keyword ciphertext and trapdoor respectively,
and a concrete KASE scheme. Further, to reduce the over-
head of users in multi-owner setting and efficiently verify
the correctness of returned data when the cloud server
may maliciously tamper with the data, an extended scheme
named verifiable key-aggregate searchable encryption with
a designated server in multi-owner setting (dVKASEM)
is proposed. The formal security analysis proves that our
schemes are secure under the proposed security models. Fi-
nally, we conduct performance analysis to demonstrate the
efficiency of our schemes. Compared with previous KASE
schemes, our study mainly has the following contributions:

• Ciphertext indistinguishability and trapdoor indistin-
guishability. Our schemes overcome the security
weaknesses discussed earlier. Concretely speaking,
they are provably secure under the proposed "key-
word ciphertext indistinguishability against chosen
keyword attack (KC-IND-CKA)" and "keyword trap-
door indistinguishability against keyword guessing
attack (KT-IND-KGA)" security models. We formally
define the security against off-line KGA executed
by outside attackers (unauthorized users) for the
dKASE system. Our KT-IND-KGA security model
captures this attack, and analysis indicates that if a
dKASE scheme is KT-IND-KGA secure, it can resist
off-line KGA.

• Constant-sized user’s overhead in multi-owner setting.
Our extended dVKASEM scheme efficiently reduces
the overhead of key management and trapdoor gen-
eration in the multi-owner setting. No matter how
many data owners authorize access to the data, a
user only needs to store his single key and use
that key to generate a single trapdoor to search on
multi-owner’s data. Therefore, the user’s overhead
is independent of the number of data owners.

• Efficient verifiable functionality. In dVKASEM, we in-
troduce the aggregate signature to verify the correct-
ness of returned data. Consequently, regardless of
how many matched data there are, the server only
returns an aggregate signature to the user for veri-
fication. This approach eliminates the need to return
individual signatures for each data, thus significantly
reducing the computation and communication over-
head of verification.

Fig.1 depicts the above hospital collaborative data sharing
scenario using our dVKASEM.

1.2 Related Works
1.2.1 Public Key Encryption with Keyword Search against
Keyword Guessing Attack
Boneh et al. [7] introduced the notion of PEKS and a
concrete scheme. Since then, many PEKS schemes [8], [9]
have been proposed. Byun et al. [10] raised that the recent
PEKS schemes are vulnerable against the off-line KGA:
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Fig. 1: Hospital collaborative data sharing with dVKASEM

since keywords are usually selected from a low-entropy
space, an attacker can recover the keyword from a given
trapdoor by exhaustively guessing the keyword off-line.
Rhee et al. [11] defined the concept of "trapdoor indistin-
guishability" and proved that trapdoor indistinguishability
is a sufficient condition for resisting off-line KGA of outside
adversaries. They also designed a searchable public-key
encryption scheme with a designated tester (dPEKS) scheme
that satisfies ciphertext indistinguishability and trapdoor
indistinguishability. Xu et al. [12] proposed a public-key
encryption with fuzzy keyword search scheme to resist off-
line KGA from outside adversaries. However, these schemes
can not resist the KGA from inside adversaries.

In 2016, Chen et al. [13] proposed a dual-server PEKS
scheme to solve the KGA problem from malicious server.
Huang and Li [14] introduced a primitive called public
authenticated encryption with keyword search (PAEKS) and
a corresponding concrete scheme. In PAEKS, the generation
of keyword ciphertext needs the secret key of the sender,
so that the server cannot encrypt a keyword. Noroozi and
Eslami [15] showed that the Huang and Li’s PAEKS scheme
cannot resist the KGA in the multi-user setting. They also
proposed new security model and concrete scheme to fix
the problem. Qin et al. [16] revisited the security model of
[14] and pointed out that this model did not capture the
chosen multi-ciphertext attacks. Therefore, they proposed
an improved security model that captures the KGA and
chosen multi-ciphertext attacks. They also constructed a
PAEKS scheme meeting the proposed security model. In
2022, Liu et al. [17] proposed a quantum-resistant PAEKS
scheme based on lattices.

In addition to off-line KGA, how to effectively resist
on-line KGA by malicious data senders is also a research
hotspot of PEKS [18], [19].

1.2.2 Key-Aggregate Searchable Encryption
KASE [5] is a novel cryptographic primitive proposed based
on the key-aggregate cryptosystem (KAC) [20]. Recently,
Chu et al. [20] first proposed a KAC scheme using the
broadcast encryption scheme [21]. In KAC, the data owner
encrypts each document class using different keys. When
the owner intends to share multiple classes with a user,
the corresponding keys can be aggregated and sent to the
user. This aggregated key empowers the user to decrypt any
documents in these classes. But Chu et al.’s scheme doesn’t
permit searching. In 2015, Cui et al. [5] combined the SE
with KAC and presented the KASE.

Li et al. [22] devised a verifiable KASE scheme using
bloom filter (BF) [23] to verify the correctness and complete-

TABLE 1: Functionality and Security
Comparison with [25], [26].

Multi-
Owner Cipher-ind Trap-ind Verifiable

[26] ! # # #

[25] # # # !

dKASE # KC-IND-CKA KT-IND-KGA #

dVKASEM ! KC-IND-CKA KT-IND-KGA !

Cipher-ind: Ciphertext indistinguishability;
Trap-ind: Trapdoor indistinguishability.

ness of search results. However, as keyword ciphertext and
BFs are generated without utilizing secret keys, the server
can forge the search results at will. This renders the verifica-
tion of search results unfeasible [24]. In 2020, [24] proposed a
verifiable KASE using BF and Merkle hash tree. Considering
that the aggregate key may be used by unauthorized users,
a verifiable and authenticated KASE scheme using digital
signature was proposed [25]. However, the user needs to
interact with the server through two rounds to verify. Liu
et al. [26] constructed a verifiable KASE scheme under
multi-owner setting based on [22]. The user only needs to
securely keep his secret key locally, even if numerous data
owners share documents with him. However, its verification
mechanism is the same as [22].

Although [5], [22], [24], [25], [26] all realize the function-
ality of KASE, they did not give security proofs. Moreover,
the underlying schemes of [22], [24], [25], [26] are all [5].
Whereas, Kiayias et al. [6] show that [5] is vulnerable to
cross pairing attack, so the ciphertext cannot achieve in-
distinguishable security. Zhou et al. [27] present a trapdoor
attack on [5] in which one user can get the aggregate key of
another user if two users have search permission for a same
document class. This attack is more restrictive than our pro-
posed KGA because anyone can execute the off-line KGA.
Additionally, [27] introduced a new aggregate keyword
searchable encryption system. The system parameters of the
above KASE schemes have a linear relationship with the
document class number. The computation cost is large. To
address this drawback and the trapdoor attack mentioned
in [27], Wang et al. [28] proposed a scheme where the
size of system parameters is constant. But there is a linear
relationship between the size of keyword ciphertext and the
number of document classes, and there is no formal security
proof. The aforementioned schemes only supports single
keyword search. Recently, Liu et al. [29] proposed a KASE
supporting conjunctive queries (KASE-CQ) framework and
a concrete KASE-CQ scheme.

We show the comparison between our scheme and ex-
isting related KASE schemes in terms of functionality and
security in TABLE 1.

2 PRELIMINARIES

2.1 Notations

We let λ denote the security parameter, n denote the max-
imum number of document classes belonging to a data
owner, and PPT denote the probabilistic polynomial time.
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2.2 Bilinear Pairings
Let G and GT be two cyclic multiplicative groups of prime
order p. Let g be a generator of G. A bilinear pairing is a
map e : G × G → GT with the following properties:

• Bilinearity: For any g, h ∈ G, α, β ∈ Zp, e(gα, hβ) =
e(g, h)αβ is true;

• Non-degeneracy: e(g, g) ̸= 1;
• Computability: For any g, h ∈ G, there is an efficient

algorithm to calculate e(g, h).

2.3 Hardness Assumptions
Definition 1 (BDH). The BDH (Bilinear Diffie-Hellman) prob-
lem in G is as follows: given a 4-tuple (g, ga, gb, gc), where a, b, c
are randomly chosen from Z∗

p , compute e(g, g)abc. The BDH
assumption holds in G if for any PPT algorithm A, there is a
negligible function negl(·) such that

Pr[A(g, ga, gb, gc) = gabc] ≤ negl(λ).

Definition 2 (HDH). The HDH (Hash Diffie-Hellman) problem
in G is stated as follows: given the hash function H : {0, 1}∗ →
{0, 1}hLen and a 4-tuple (g, ga, gb,H(gc)), where hLen is a
number, a and b are randomly chosen from Z∗

p , output "1" if
c = a · b, output "0" otherwise. The HDH assumption holds in G
if for any PPT algorithm A, there is a negligible function negl(·)
such that

|Pr[A(g, ga, gb,H(ga·b)) = ”1”]

− Pr[A(g, ga.gb, η) = ”1”]| ≤ negl(λ),

where η is a random bit string of length hLen.

2.4 Aggregate Signatures
A digital signature that permits aggregation is known as
an aggregate signature [30]. We briefly recall the bilinear
aggregate signature (BAS) introduced by Boneh et al. [30].

Definition 3 (BAS). A BAS scheme contains the following PPT
algorithms, where h : {0, 1}∗ → G∗ is a hash function.

• KeyGen. For user ui, select βi ∈ Z∗
p at random and

calculate vi = gβi . Finally, set ui’s public key to vi and
secret key to βi.

• Sign. For user ui, given βi and a message mi ∈ {0, 1}∗,
calculate hi ← h(mi) and the signature σi ← hβi

i .
• Verify. Given a message m, a signature σ, and a public

key v, the verifier calculates h ← h(m) and verifies that
e(g, σ) = e(v, h) holds. If so, then σ is valid.

• Aggregate. Each ui in aggregate user set U = {ui}ki=1
offers a signature σi of mi. The mi must all be different.
Compute the aggregate signature as σ ←

∏k
i=1 σi.

• AggregateVerify. Given an aggregate signature σ for an
aggregate user set U , and original message mi and public
key vi for each user ui ∈ U , verify σ:

a) check whether mi are all different, reject if there is
the same, otherwise

b) compute hi ← h(mi) for 1 ≤ i ≤ k, and if
e(g, σ) =

∏k
i=1 e(vi, hi), then σ is valid.

Remark 1. The k signatures can be issued by the same public key
v. In this case, one just needs to verify e(g, σ) = e(v,

∏k
i=1 hi),

and the "AggregateVerify" is faster.

Remark 2. The "Aggregate" can be done incrementally, which
means that other signatures can be aggregated based on the already
obtained aggregated signature.

3 KEYWORD GUESSING ATTACK ON CUI ET AL.’S
SCHEME

3.1 The Brief Description of Cui et al.’s Scheme

• Setup(1λ, n). Initialize system as follows:

a) Generate a bilinear map group system PG =
(p,G,GT , e(·, ·)), where p is the order of G.

b) Randomly select a generator g ∈ G and
α ∈ Z∗

p , and compute gi = g(α
i) for i =

1, 2, ..., n, n+ 2, ..., 2n.
c) Pick a hash function H : {0, 1}∗ → G∗.

Finally, the system parameter is:

param = {PG, (g, g1, ..., gn, gn+2, ..., g2n),H} .

• KeyGen. The data owner randomly selects γ ∈ Z∗
p ,

and sets his master secret key as msk = γ and public
key as pk = v = gγ .

• Encrypt(pk, j). For a document belonging to class
j (j ∈ [1, n]), the data owner computes its keyword
ciphertext {c1, c2, cw} as follows:

a) Pick a random t ∈ Z∗
p .

b) Compute the auxiliary value

∆j = {c1, c2} =
{
gt, (v · gj)t

}
.

c) Compute keyword w’s ciphertext

cw = e(g,H(w))t/e(g1, gn)
t.

• Extract(msk, S). The data owner computes the ag-
gregate key for a subset S ⊆ [1, n] to be KS =∏

l∈S gγn+1−l and securely sends {KS , S} to the user.
• Trapdoor(KS , w). The user generates the trapdoor

Tr = KS ·H(w) for keyword w and submits {Tr, S}
to the server.

• Adjust(j, S, Tr). The cloud server adjusts Tr to
actual trapdoor Trj = Tr ·

∏
l∈S,l ̸=j gn+1−l+j of

document class j (j ∈ S).
• Test(Trj , j). For each document in class j, the cloud

server determines whether cw =
e(Trj ,c1)
e(pub,c2)

(where
pub =

∏
l∈S gn+1−l) is true and outputs "1" if so,

"0" otherwise.

3.2 Security Vulnerability

Lemma 1. Cui et al.’s scheme is vulnerable to off-line KGA.

Proof: An attacker A performs off-line KGA as fol-
lows:

1. A captures a trapdoor Tr = KS · H(w) and its
corresponding document class index set S.

2. A selects a keyword w′ and computes
e(g,H(w′))e(pk,

∏
l∈S gn+1−l).

3. A tests if e(g,H(w′))e(pk,
∏

l∈S gn+1−l) = e(g, Tr)
is true. If so, output w′; Otherwise, go to step 2.

4. A computes Tr/H(w′) to get the aggregate key KS .
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Since keywords are always picked from space with low
entropy, the attacker will be able to accomplish off-line KGA
in a reasonable time.

Remark 3. We notice that anyone (inside/outside attackers) can
carry out the above keyword guessing attack.

Remark 4. The trapdoors of [22], [24], [25], [26] are identical to
that of [5], so the attack works for them as well.

4 PROBLEM FORMULATION

4.1 System & Threat Model

data owner user

Keyword

Trapdoor

Ciphertext

Classes

Matched

Documents

Aggregate Key

Fig. 2: System Model of dKASE

The dKASE system model is shown in Fig. 2. A dKASE
system consists of three types of entities: data owners, users,
and the cloud server. We introduce each entity as follows.

• Data Owner. The entity classifies its documents and
encrypts different classes using different keys, then
outsources the ciphertext to the cloud server. In ad-
dition, the entity also generates the aggregate key of
the shared document classes set and sends it to the
user through the secure channel.

• User. After receiving the aggregate key, this entity
can issue search queries based on its interested key-
words for the ciphertext classes corresponding to this
aggregate key.

• Cloud Server. The entity stores ciphertexts from the
data owner, performs the search operation for the
user, and returns the matched ciphertext.

The data owner is credible. Data users may collude to get
as much as possible secret information by combining the
aggregate keys they received. Regarding the cloud server,
in the basic dKASE scheme, we consider it to be a semi-
trusted entity that honestly conducts the protocols but tries
to spy out as much secret information as possible. In the
extended dVKASEM scheme, we consider the more realistic
commercial cloud computing environment, where the cloud
server may maliciously tamper with the data.

4.2 System Definition of dKASE
Definition 4 (dKASE). The dKASE system, as illustrated in
Fig. 3, contains the following algorithms:

• param← Setup(1λ, n) : On input λ and n, the
data owner initializes the system parameter param.

• (PKo,MSK)← KeyGeno : The data owner out-
puts his public key and master secret key pair
(PKo,MSK).

• (PKs, SKs)← KeyGens : The cloud server out-
puts its public key and secret key pair (PKs, SKs).

• CTj ← Encrypt(PKo, PKs, j, w) : On input
PKo, PKs, and a document belonging to j-th class
and its keyword w, the data owner generates keyword
ciphertext CTj of this document.

• KS ← Extract(MSK,S) : The data owner inputs
MSK and a set S ⊆ [1, n], and then outputs the
corresponding aggregate key KS . Finally, the data owner
securely transmits {KS , S} to the user.

• Tr ← Trapdoor(KS, PKs, w) : On input KS ,
PKs, and a keyword w, the user generates a trapdoor
Tr and transmits {Tr, S} to the cloud server.

• 1/0← Test(SKs, CTj, T r) : On input Tr, SKs,
and a ciphertext CTj (j ∈ S) under keyword w′, the
cloud server outputs "1" if w′ = w, and "0" otherwise.

4.3 Security Model
Security of dKASE Ciphertext

Now, we define dKASE’s ciphertext security as "key-
word ciphertext indistinguishability against chosen key-
word attack (KC-IND-CKA)". This security model considers
two types of attackers: cloud server and outside attacker
(including users authorized by the data owner). The aim
is to ensure that the server cannot distinguish between the
ciphertexts of two challenge keywords, under the situation
that it is allowed to query trapdoors for any non-challenge
keywords; the outside attacker without SKs unable to dis-
tinguish the ciphertexts of two challenge keywords even
though the attacker has the trapdoors of all keywords.

Definition 5 (KC-IND-CKA). Let Ai (i = 1, 2) be a PPT
attacker. We define the following two games between A1 (or A2)
and a challenger C:
Game 1: Suppose A1 is the cloud server.

Phase 1-1: C runs Setup(1λ, n), KeyGeno, and KeyGens

algorithms to generate param, (PKo,MSK), and (PKs,
SKs). Then it gives param, PKo, and (PKs, SKs) to A1.

Phase 1-2: A1 outputs set S∗ ⊆ [1, n] to attack. C randomly
picks j ∈ S∗ and sends it to A1.
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0

Fig. 3: The dKASE system framework
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Phase 1-3: A1 makes keyword trapdoor queries over the
challenged set S∗. Each keyword queried is denoted as w and
the trapdoor obtained is denoted as Trw.

Phase 1-4: A1 sends C two challenge keywords (w∗
0 , w

∗
1).

The constraint is that neither w∗
0 nor w∗

1 is queried in Phase 1-3.
C randomly picks β ∈ {0, 1} and computes a challenge ciphertext
CT ∗

j = Encrypt(PKo, PKs, j, w
∗
β) and returns it to A1.

Phase 1-5: A1 makes keyword trapdoor queries as in Phase
1-3 on condition that w ̸= w∗

0 , w
∗
1 .

Phase 1-6: A1 outputs its guess β′ of β.
We define the advantage of A1 winning Game 1 as

AdvGame 1
A1

(λ) = |Pr[β′ = β]− 1/2|.

Game 2: Suppose A2 is an outside attacker (including users
authorized by the data owner)

Phase 2-1: C runs Setup(1λ, n), KeyGeno, and KeyGens

algorithms to generate param, (PKo,MSK), and (PKs,
SKs). Then it gives param, PKo, and PKs to A2.

Phase 2-2: A2 outputs set S∗ ⊆ [1, n] to attack. C randomly
picks j ∈ S∗, computes KS∗ , and sends {j,KS∗} to A2.

Phase 2-3: A2 sends C two challenge keywords (w∗
0 , w

∗
1). C

randomly picks β ∈ {0, 1} and computes a challenge ciphertext
CT ∗

j = Encrypt(PKo, PKs, j, w
∗
β) and sends it back to A2.

Phase 2-4: A2 outputs its guess β′ of β.
We define the advantage of A2 winning Game 2 as

AdvGame 2
A2

(λ) = |Pr[β′ = β]− 1/2|.

We say that a dKASE scheme is KC-IND-CKA secure if
AdvKC−IND−CKA

dKASE,Ai
(λ) = AdvGame i

Ai
(λ), where i is ei-

ther 1 or 2, is negligible in λ.

Security of dKASE Trapdoor
In the following, we define dKASE’s trapdoor security

as "keyword trapdoor indistinguishability against keyword
guessing attack (KT-IND-KGA)". The security model guar-
antees that an outside attacker (excluding the cloud server
and authorized users) cannot distinguish the trapdoors of
two challenge keywords, under the situation that it is al-
lowed to collude with other outside attackers and query
trapdoors for all non-challenge keywords.

Definition 6 (KT-IND-KGA). Let A3 be a PPT attacker. We
define the following game between A3 and a challenger C.
Game 3: Suppose A3 is an outside attacker (excluding the cloud
server and the authorized users).

Phase 3-1: C runs Setup(1λ, n), KeyGeno, and KeyGens

algorithms to generate param, (PKo,MSK), and (PKs,
SKs). Then it gives param, PKo, and PKs to A3.

Phase 3-2: A3 outputs set S∗ ⊆ [1, n] to attack. C computes
KS∗ and sends it to A3.

Phase 3-3: A3 makes keyword trapdoor queries over the
challenged set S∗. Each keyword queried is denoted as w and
the trapdoor obtained is denoted as Trw.

Phase 3-4: A3 sends C a pair of keywords (w∗
0 , w

∗
1). The

restriction is that neither w∗
0 nor w∗

1 is queried in Phase 3-3. C
randomly picks β ∈ {0, 1} and computes a challenge trapdoor
Tr∗ = Trapdoor(KS∗ , PKs, w

∗
β) and returns it to A3.

Phase 3-5: A3 makes keyword trapdoor queries as in Phase
3-3 on condition that w ̸= w∗

0 , w
∗
1 .

Phase 3-6: A3 outputs its guess β′ of β.
We define the advantage of A3 winning Game 3 as

AdvGame 3
A3

(λ) = |Pr[β′ = β]− 1/2|.

We say that a dKASE scheme is KT-IND-KGA secure if
AdvKT−IND−KGA

dKASE,A3
(λ) = AdvGame 3

A3
(λ) is negligible in λ.

Trapdoor security vs. off-line keyword guessing attack
Next, we will show that a dKASE scheme is secure

against off-line KGA of the outside attacker if it is KT-IND-
KGA secure. This is similar to dPEKS [11]. What is different
is that in dPEKS, outside attackers refer to users other than
server and receiver, while in our dKASE, outside attackers
refer to unauthorized users, and these users may collude.
We first define the security against off-line KGA in dKASE,
and then explain its relationship with KT-IND-KGA.

We assume thatA4 is an outside PPT attacker. It attempts
to collude with other unauthorized users and perform off-
line KGA on a dKASE scheme. In TABLE 2, we give a formal
description of A4’s off-line KGA. We define A4’s success
probability of off-line KGA as

Succoff−line KGA
dKASE,A4

(λ) = Pr[Exp off−line KGA
dKASE,A4

(λ) = 1].

TABLE 2: Off-line KGA in dKASE

Exp
off−line KGA
dKASE,A4

(λ)

param← Setup(1λ, n);
(PKo,MSK)← KeyGeno;
(PKs, SKs)← KeyGens;
KS∗← Extract(MSK,S∗);
Tr ← Trapdoor(KS∗ , PKs, w);
KS∗ ← Extract(MSK,S∗);
w′ ← A4(PKo, PKs, T r,KS∗ );
if w′ = w then return 1 else return 0

Definition 7 (Security against off-line KGA of dKASE). A
dKASE scheme is secure against off-line KGA if for any outside
attacker A4, Succoff−line KGA

dKASE,A4
(λ) is negligible.

Theorem 1. If dKASE is KT-IND-KGA secure, it is secure
against off-line keyword guessing attack.

Proof: This proof is almost the same as that of dPEKS
[11], so we omit it here.

5 THE PROPOSED DKASE SCHEME

5.1 Design Rational

In PEKS, the sender uses the receiver’s public key PKr to
encrypt keywords, and the receiver uses his secret key SKr

to generate trapdoors. In KASE, the data owner uses his
public key PKo to encrypt keywords, and the user utilizes
an aggregate key KS to generate trapdoors. As shown in
Fig. 4, we observe that the user who obtained the aggregate
key in KASE can be regarded as the receiver in PEKS, the
operation of generating keyword ciphertext using PKo in
KASE can be viewed as generating keyword ciphertext us-
ing PKr in PEKS, and the operation of generating trapdoor
using KS in KASE can be viewed as generating trapdoor
using SKr in PEKS.

Inspired by the above relationship between KASE and
PEKS, it is to think of directly using the standard technology
of PEKS to solve the off-line KGA of the outside attacker of
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Fig. 4: Design rationale of dKASE

KASE, that is, using PKs to encrypt trapdoors. However, as
we mentioned earlier, the keyword ciphertexts of [5], [22],
[25], [26], and [24] don’t satisfy the indistinguishability, so
it is not feasible to use the standard technology of PEKS in
such a trivial way. To achieve the ciphertext indistinguisha-
bility while solving the off-line KGA, we introduce another
pair of public key and master secret key of the data owner
into KASE, which are regarded as the public key and secret
key of the receiver in PEKS. Then we use this public key to
encrypt keyword to make the keyword ciphertext achieve
indistinguishable security. The master secret key is as part
of the aggregate key to generate trapdoor.

5.2 Concrete Construction
• Setup(1λ, n) : Initialize system as follows:

a) Generate a bilinear map group system PG =
(p,G,GT , e(·, ·)), where p is the order of G.

b) Randomly select a generator g ∈ G and
α ∈ Z∗

p , and compute gi = g(α
i) for i =

1, 2, ..., n, n+ 2, ..., 2n.
c) Specify hash functions H : {0, 1}∗ → G∗, H1 :

{0, 1}∗ → G∗, H2 : GT → {0, 1}λ.

Finally, the system parameter is:

param = {PG, (g, g1, ..., gn, gn+2, ..., g2n),H,H1,H2} .

• KeyGeno : The data owner randomly chooses
γ, y ∈ Z∗

p , computes PKo,1 = gγ and PKo,2 = gy ,
and sets

PKo = {PKo,1, PKo,2} , MSK = {γ, y} .

• KeyGens : The cloud server randomly chooses x ∈
Z∗
p and Q ∈ G∗, computes X = gx, and sets

PKs = {PKs,1, PKs,2} = {Q,X} , SKs = x.

• Encrypt(PKo, PKs, j, w) : On input PKo,
PKs, and a document belonging to class j and its
keyword w, the data owner randomly chooses t ∈ Z∗

p

and computes

cj,1 = gt, cj,2 = (PKo,1 · gj)t, cj,3 = e(g1, gn)
t,

cwj = H2((e(H1(w), PKo,2) · e(PKs,2, PKs,1))
t).

Finally, he sets CTj = {cj,1, cj,2, cj,3, cwj} .

• Extract(MSK,S) : On input MSK and a set
S ⊆ [1, n], the data owner computes

KS,1 =
∏
l∈S

gγn+1−l, KS,2 = y.

Finally, he sets KS = {KS,1,KS,2}.
• Trapdoor(KS, PKs, w) : On input KS , PKs,

and a keyword w, the user randomly chooses r ∈ Z∗
p

and computes

Tr′ = KS,1 ·H1(w)
KS,2 ·H(PKr

s,2), T r
′′ = gr.

Finally, he sets Tr = {Tr′, T r′′}.
• Test(SKs, CTj, T r) : On input SKs, CTj , and

Tr, the cloud server performs the search as follows:

• It adjusts Tr to trapdoor Trj for class j:

Trj =
Tr′

H((Tr′′)SKs)
·

∏
l∈S,l ̸=j

gn+1−l+j ;

• Next, it computes

Tr′j =
cj,3 · e(Trj , cj,1)

e(
∏

l∈S gn+1−l, cj,2)
;

• Finally, it verifies whether Formula 1 holds.

H2(Tr
′
j · e(cj,1, PKs,1)

SKs) = cwj (1)

If Formula 1 holds, the cloud server returns
"1", else it returns "0".

Correctness. Let CTj be a valid ciphertext for w′ and Tr be
a valid trapdoor for w. It follows that,

Trj =
Tr′

H((Tr′′)SKs)
·

∏
l∈S,l ̸=j

gn+1−l+j

= KS,1 ·H1(w)
y ·

∏
l∈S,l ̸=j

gn+1−l+j ,

T r′j =
cj,3 · e(Trj , cj,1)

e(
∏

l∈S gn+1−l, cj,2)

=
cj,3 · e(KS,1 ·H1(w)

y ·
∏

l∈S,l ̸=j gn+1−l+j , g
t)

e(
∏

l∈S gn+1−l, (gγ · gj)t)

=
e(g1, gn)

t · e(H1(w)
y, gt) · e(

∏
l∈S,l ̸=j gn+1−l+j , g

t)

e(
∏

l∈S gn+1−l, gtj)

= e(H1(w)
y, gt),
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H2(Tr
′
j · e(cj,1, PKs,1)

SKs)

=H2(e(H1(w), g
y)t · e(gx, Q)t)

=H2((e(H1(w), PKo,2) · e(PKs,2, PKs,1))
t),

Clearly, if w = w′, then Formula 1 holds.

6 THE PROPOSED DVKASEM SCHEME

In this section, based on the above dKASE scheme, we con-
sider two more realistic scenarios. One is that multiple data
owners share documents with a user, in such a condition, it
is desirable to reduce the cost of storing aggregate keys and
generating trapdoors. Another is that in a commercial cloud
computing environment, the cloud server may maliciously
tamper with the data, at which point it is necessary to verify
the correctness of the returned data. We design an extended
scheme dVKASEM to address these problems.

6.1 Design Rational
Inspired by the scheme of [26] (but as previously stated, it
is insecure), to decrease storage and computation burden in
multi-owner setting, we introduce the user’s key uk. After
getting aggregate keys sent by multiple data owners, the
user encrypts each aggregate key with uk to convert it to
a value that can be stored publicly in the cloud, while the
user merely stores uk securely locally. When searching, the
user can generate the trapdoor using only uk, and then the
server adjusts the trapdoor to the actual trapdoor for each
data owner’s data by using the encrypted aggregate key.

For verifying the correctness of data, the signature is a
good choice. But for the ordinary signature, we need to ver-
ify each returned result, in turn, to know whether the server
has tampered with the data, which is not practical. Fortu-
nately, we found that using aggregate signatures can greatly
improve efficiency. Data owners encrypt each document
with KAC and sign it with the Sign algorithm of Definition
3. When a user accesses multiple data owners’ documents,
the server searches for each data owner’s documents in
turn to obtain the matched encrypted documents and cor-
responding signatures. After searching for a data owner’s
documents, the server can aggregate the obtained signatures
into a single signature because signatures can be produced
by the same public key (the same user) in BAS system.
Thus multiple aggregate signatures can be obtained after
searching for documents of multiple data owners. Further,
due to the aggregation can be done incrementally, the server
can then reaggregate these aggregate signatures to obtain
one aggregate signature. With this aggregate signature, the
user can effectively verify search results.

6.2 System Definition of dVKASEM
Definition 8 (dVKASEM). The dVKASEM system consists of
the following algorithms:

• param← Setup(1λ, n) : On input λ and n, the
data owner initializes the system parameter param.

• (PKoi,MSKi)← KeyGenoi : The i-th data
owner outputs his public key and master secret key pair
(PKoi,MSKi).

• (PKs, SKs)← KeyGens : The cloud server out-
puts its public key and secret key pair (PKs, SKs).

• (CTi,j,k, ci,j,k, σi,j,k)← Encrypt(PKoi,MSKi,
PKs, fi,j,k, di,j,k, w) : The i-th data owner inputs
PKoi, PKs, MSKi, and the k-th document fi,j,k of
his j-th class and document identifier di,j,k and keyword
w, and outputs keyword ciphertext CTi,j,k, document
ciphertext ci,j,k , and signature σi,j,k.

• KSi ← Extract(MSKi, Si) : The i-th data owner
inputs MSKi and a set Si ⊆ [1, n], and then outputs the
corresponding aggregate key KSi

. Finally, the i-th data
owner securely transmits {KSi

, Si} to the user.
• EKSi ← EncKs(uk,KSi) : After receiving KSi

,
the user encrypts KSi

with his secret key uk to get EKSi

and sends {i, Si, EKSi
} to the server.

• Tr ← Trapdoor(uk,w) : On input uk and key-
word w, the user creates a trapdoor Tr, and transmits
Tr and the corresponding document class sets to server.

• Tri ← Adjust(SKs, T r, EKSi) : On input SKs,
Tr, and EKSi

, the server adjusts the Tr to the trapdoor
Tri about document class set Si of the i-th data owner.

• 1/0← Test(SKs, CTi,j,k, ci,j,k, σi,j,k, T ri) :
The cloud server first initializes C , Σ as two empty sets.
Then, on input SKs, Tri, and CTi,j,k under keyword
w′, if w′ = w, the cloud server outputs "1" and adds
σi,j,k to Σ, {di,j,k, ci,j,k} to C , otherwise outputs "0".
We denote DO = {i|(di,j,k, ci,j,k) ∈ C}.
When all documents related to Tr are searched, the cloud
server computes the aggregate signature σ of all signatures
in Σ and returns σ, C to the user.

• 1/0← V erify({PKoi}i∈DO , σ, C) : To test the
correctness of C , the user runs this algorithm. If C passes
the verification, output "1", otherwise output "0".

6.3 Concrete Construction

• Setup(1λ, n) : This algorithm is the same as that of
dKASE, except a hash function h : {0, 1}∗ → G∗ also
needs to be specified.
Finally, the system parameter is:

param = {PG, (g, g1, ..., gn, gn+2, ..., g2n),H,H1,H2, h} .

• KeyGenoi : The i-th data owner randomly chooses
γi, yi ∈ Z∗

p , computes PKoi,1 = gγi and PKoi,2 =
gyi ., and sets

PKoi = {PKoi,1, PKoi,2} ,MSKi = {γi, yi} .

• KeyGens : The algorithm is the same as that of
dKASE.

• Encrypt(PKoi,MSKi, PKs, fi,j,k, di,j,k, w) :
On input PKoi, PKs, MSKi, and the k-th document
fi,j,k belonging to class j and its keyword w, the i-th
data owner randomly chooses t ∈ Z∗

p and computes

cijk,1 = gt, cijk,2 = (PKoi,1 · gj)t, cijk,3 = e(g1, gn)
t,

cwijk = H2((e(H1(w), PKoi,2) · e(PKs,2, PKs,1))
t).

In addition, for the ciphertext ci,j,k obtained by
using KAC to encrypt fi,j,k, the i-th data owner
generates a signature σi,j,k = h(di,j,k||ci,j,k)γi

(di,j,k is the identifier of fi,j,k). Finally, he sets
CTi,j,k = {cijk,1, cijk,2, cijk,3, cwijk} and sends
{CTi,j,k, ci,j,k, σi,j,k} to the cloud server.
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• Extract(MSKi, Si) : On input MSKi and a set
Si ⊆ [1, n], the i-th data owner computes

KSi,1 =
∏
l∈Si

gγi

n+1−l,KSi,2 = yi.

Finally, he sets KSi
= {KSi,1,KSi,2}.

• EncKs(uk,KSi) : On input secret key uk =
{uk1, uk2} and aggregate key KSi

, user computes

EKSi,1 = KSi,1 · g−uk1·KSi,2 ,

EKSi,2 = uk1 · uk2 ·KSi,2.

Finally, he sets EKSi
= {EKSi,1, EKSi,2} and sends

{i, Si, EKSi
} to the server.

• Trapdoor(uk,w) : On input uk and a keyword w,
the user randomly chooses r ∈ Z∗

p and computes

Tr′ = (g ·H1(w)
1

uk1 )
1

uk2 ·H(PKr
s,2), T r

′′ = gr.

Finally, he sets Tr = {Tr′, T r′′}.
• Adjust(SKs, T r, EKSi) : On input SKs, Tr, and

EKSi , the cloud server computes

Tri = EKSi,1 · (
Tr′

H((Tr′′)SKs)
)EKSi,2 .

• Test(SKs, CTi,j,k, ci,j,k, σi,j,k, T ri) : The cloud
server first initializes C , Σ as two empty sets. Then,
on input SKs, CTi,j,k, and Tri, it performs the
search:

a) it adjusts the Tri to the trapdoor Tri,j for the
document class j of the i-th data owner:

Tri,j = Tri ·
∏

l∈Si,l ̸=j

gn+1−l+j .

b) Next, it computes

Tr′i,j =
cijk,3 · e(Tri,j , cijk,1)
e(
∏

l∈Si
gn+1−l, cijk,2)

.

c) Finally, it verifies whether Formula 2 holds.

H2(Tr
′
i,j · e(cijk,1, PKs,1)

SKs) = cwijk (2)

If the Formula 2 holds, then the cloud server
outputs "1", and adds σi,j,k to Σ, {di,j,k, ci,j,k}
to C , otherwise outputs "0".

We denote DO = {i|(di,j,k, ci,j,k) ∈ C}; for ∀i ∈
DO, DOi = {j|(di,j,k, ci,j,k) ∈ C}; for ∀j ∈ DOi,
DOi,j = {k|(di,j,k, ci,j,k) ∈ C}. When all documents
related to Tr are searched, the cloud server computes
the aggregate signature of all signatures in Σ:

σ =
∏

i∈DO

∏
j∈DOi

∏
k∈DOi,j

σi,j,k.

Then, it returns σ and C to the user.
• V erify({PKoi}i∈DO , σ, C) : On input the pub-

lic keys {PKoi}i∈DO , aggregate signature σ,
identity-ciphertext set C , the user verifies whether
Formula 3 holds.

e(g, σ) =
∏

i∈DO

e(PKoi,1,
∏

j∈DOi

∏
k∈DOi,j

h(di,j,k||ci,j,k))

(3)
If the Formula 3 holds, then the user outputs "1",

otherwise outputs "0".

Correctness. We show the correctness of the "Test" algorithm
and the "Verify" algorithm respectively.
Test: Similar to the dKASE scheme, so we omit it here.
Verify: Let C be a valid identity-ciphertext set returned by
the cloud server and σ be the aggregate signature corre-
sponding to C . Consequently,

e(g, σ) =
∏

i∈DO

e(g,
∏

j∈DOi

∏
k∈DOi,j

h(di,j,k||ci,j,k))γi

=
∏

i∈DO

e(PKoi,1,
∏

j∈DOi

∏
k∈DOi,j

h(di,j,k||ci,j,k))

that is, Formula 3 holds. Therefore, our dVKASEM scheme
can correctly verify the search results.

7 SECURITY ANALYSIS

7.1 Security Analysis for dKASE Scheme
Theorem 2. The dKASE scheme is KC-IND-CKA secure in
the random oracle model (ROM) assuming the BDH assumption
holds in G.

Proof: By Lemma 2 and Lemma 3, it is proved.

Lemma 2. The dKASE scheme is KC-IND-CKA secure in Game
1 under the ROM assuming the BDH assumption holds.

Proof: Suppose that there exists a cloud serverA1 that
can break the dKASE scheme with AdvGame 1

A1
(λ) ≥ ε

(Assume that A1 queries random oracle H1, random oracle
H2, and trapdoor at most qH1 , qH2 and qt, respectively). We
construct a simulator B that can solve the BDH problem at
least with probability ε′ = ε/(eqtqH2) (where e is the base
of the natural logarithm). Therefore, if the BDH assumption
holds, then ε′ is negligible and consequently ε must be
negligible. Thereby, the dKASE scheme is KC-IND-CKA
secure according to Definition 5. Below, we describe in detail
how to construct simulator B.

Given a BDH problem instance (p,G,GT , e(·, ·), g, ga, gb,
gc), B simulates the challenger C and interacts with A1 to
run each phase of Game 1 as follows.
Phase 1-1: B first chooses α ∈ Z∗

p at random and computes
gi = g(α

i) for i = 1, ..., n, n + 2, ..., 2n. Then, it chooses
γ ∈ Z∗

p at random, computes PKo,1 = gγ , and sets
PKo,2 = gc. It also randomly chooses Q ∈ G∗ and x ∈ Z∗

p ,
sets PKs,1 = Q, and computes PKs,2 = X = gx. It returns
{p,G,GT , e(·, ·), (g, g1, ..., gn, gn+2, ..., g2n),H,H1,H2} as
system parameter (where H is a hash function randomly
chosen by B), (PKo,1, PKo,2) as the public key of the data
owner, and (PKs,1, PKs,2) and x as the cloud server’s
public key and secret key. The random oracles H1 and H2

are controlled by B in the following way.
H-Query. A1 makes hash queries at this stage. B creates

two hash lists, H1List and H2List, to keep track of all
queries and responses, both of which are initially empty.

• For H1, let wi be the i-th query. If wi already belongs
to H1List, B responds according to H1List. Other-
wise, do the following:

– Randomly choose δi ∈ {0, 1} such that
Pr[δi = 0] = 1/(qt + 1).

– Choose li ∈ Z∗
p at random and set H1(wi) as

H1(wi) =

{
gb · gli if δi = 0,

gli if δi = 1.
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– H1(wi) is returned in response to this query,
and (wi,H(wi), li, δi) is added to H1List.

• For H2, let zi be the i-th query. If zi is already in
H2List, B responds according to H2List. Otherwise,
it randomly chooses Zi ∈ {0, 1}λ, responds H2(zi) =
Zi as the answer, and adds (zi, Zi) to H2List.

Phase 1-2:A1 sends B a set S∗ ⊆ [1, n] to attack. B randomly
picks j ∈ S∗ and returns it to A1.
Phase 1-3: A1 makes trapdoor queries in this phase. B
first computes KS∗,1 =

∏
l∈S∗ g

γ
n+1−l. Then, for a trapdoor

query on keyword wi, B does the following:

• Let (wi,H(wi), li, δi) be the corresponding tuple. If
δi = 0, abort. Otherwise, go to the next step.

• According to the simulation, we can get H1(wi) =
gli . B randomly chooses r ∈ Z∗

p and computes:

Twi =
{
KS∗,1 · PKli

o,2 ·H(PKr
s,2), g

r
}
.

Note that the Twi
is a valid trapdoor over the

challenged set S∗ as KS∗,1 · PKli
o,2 · H(PKr

s,2) =

KS∗,1 ·gc·li ·H(PKr
s,2) = KS∗,1 ·H1(wi)

c ·H(PKr
s,2).

Phase 1-4: A1 sends B a pair of keywords (w∗
0 , w

∗
1). The

restriction is that neither w∗
0 nor w∗

1 is queried in Phase 1-3.
Then, B performs the following:

• The tuples (w∗
0 , H(w∗

0), l
∗
0 , δ

∗
0) and (w∗

1 , H(w∗
1), l

∗
1 , δ

∗
1)

are obtained by running the algorithm of simulating
random oracle H1. If both δ∗0 and δ∗1 are 1, abort.
Otherwise, go to the next step.

• Randomly choose β ∈ {0, 1} so that δ∗β = 0.
• Randomly pick R ∈ {0, 1}λ and creat a ciphertext

CT ∗
j =

{
c∗j,1, c

∗
j,2, c

∗
j,3, cw

∗
j

}
=
{
ga, (ga)γ · (ga)α

j

, e(ga, gn)
α, R

}
= {ga, (gγ · gj)a, e(g1, gn)a, R} .

• Set R = H2((e(H1(w
∗
β), PKo,2)·e(PKs,2, PKs,1))

a).

By the definitions of PKo,2, PKs,1, and PKs,2, we can get

(e(H1(w
∗
β), PKo,2) · e(PKs,2, PKs,1))

a

=(e(gb · gl
∗
β , gc) · e(gx, Q))a

=e(g, g)abc · e(ga, gc)l
∗
β · e(ga, Q)x.

Phase 1-5: A1 makes keyword trapdoor queries as in Phase
1-3 on condition that w ̸= w∗

0 , w
∗
1 .

Phase 1-6: Finally, A1 outputs its guess β′ of β. By this time,
B selects a tuple (z, Z) from H2List at random and returns

z

e(ga,gc)
l∗
β ·e(ga,Q)x

as its solution for BDH problem.

The simulation and solution are now complete. Next, we
analyze the probability that B outputs e(g, g)abc correctly
is at least ε′. For this purpose, we begin by examining the
probability that B will not "abort" in this simulation process.
The following events are defined:
E1 : B does not abort due to A1’ trapdoor query.
E2 : B does not abort in Phase 1-4.
E3 : A1 makes an H2 query for either
H2((e(H1(w

∗
0), PKo,2) · e(PKs,2, PKs,1))

a) (shorthand
for H20) or H2((e(H1(w

∗
1), PKo,2) · e(PKs,2, PKs,1))

a)
(shorthand for H21).

Now, we show that all three events E1, E2, and E3 occur
at a high enough probability.

Claim 1. Pr[E1] ≥ 1/e.

Proof: In general, we assume that A1 does not make
trapdoor queries for the same keyword twice. The proba-
bility that a trapdoor query of a keyword wi causes B to
abort is equal to the probability of δi = 0, that is, 1/(qt +1),
and since A1 makes at most qt trapdoor queries, we get
Pr[E1] ≥ (1− 1/(qt + 1))qt ≥ 1/e.

Claim 2. Pr[E2] ≥ 1/qt.

Proof: If the keywords w∗
0 and w∗

1 generated by A1 in
Phase 1-4 satisfy δ∗0 = δ∗1 = 1, B will abort in this Phase.
The δ∗0 and δ∗1 are independent of A1’ current view because
A has not asked the trapdoors of w∗

0 and w∗
1 . As a result,

Pr[δ∗i = 0] = 1/(qt + 1) for i = 0, 1 and since these two
values are unrelated, we get Pr[δ∗0 = δ∗1 = 1] = (1−(1/(qt+
1)))2 ≤ 1− 1/qt. Consequently, Pr[E2] ≥ 1/qt.

Claim 3. Pr[E3] ≥ 2ε.

Proof: Let ¬E3 denote the event thatA1 does not issue
a query for either one of H20 and H21 in real attack. If ¬E3
occurs, then β ∈ {0, 1}means thatA1’s view has no bearing
on whether CT ∗

j is w∗
0 ’s or w∗

1 ’s ciphertext. So Pr[β′ = β] =
1/2. Then, we have

Pr[β′ = β]

=Pr[β′ = β|¬E3]Pr[¬E3] + Pr[β′ = β|E3]Pr[E3]

≤Pr[β′ = β|¬E3]Pr[¬E3] + Pr[E3] (4)

=
1

2
+

1

2
Pr[E3],

P r[β′ = β]

=Pr[β′ = β|¬E3]Pr[¬E3] + Pr[β′ = β|E3]Pr[E3]

≥Pr[β′ = β|¬E3]Pr[¬E3] (5)

=
1

2
− 1

2
Pr[E3].

In addition, based on the assumption of A1, we know:

|Pr[β′ = β]− 1/2| ≥ ε. (6)

Combining Formulas 4, 5 and 6, we can obtain ε ≤ |Pr[β′ =
β]− 1/2| ≤ 1

2Pr[E3]. Therefore, Pr[E3] ≥ 2ε.
Assuming B doesn’t abort, B precisely simulates the real

attack until A1 submits a query to H20 or H21. According to
Claim 3, after simulation ends, A1 will query for either H20

or H21 with probability at least 2ε. Hence, A1 makes query
for H2((e(H1(w

∗
b ), PKo,2)·e(PKs,2, PKs,1))

a) with a prob-
ability of at least ε. That is, the value H2((e(H1(w

∗
b ), PKo,2)·

e(PKs,2, PKs,1))
a) will appear in H2List. The probability

that B chooses the right is 1/qH2
. Thus, if B does not

abort during the simulation, the probability that B outputs
the correct solution of BDH problem instance is ε/qH2

.
Moreover, the likelihood of A1 not aborting the simulation
is Pr[E1 ∧ E2], and since A1 does not query the trapdoors
of w∗

0 and w∗
1 , events E1 and E2 are independent. So,

Pr[E1 ∧ E2] ≥ 1/(eqt). Finally, we get the probability that
B can solve the BDH problem correctly is ε/(eqtqH2

).

Lemma 3. The dKASE scheme is KC-IND-CKA secure in Game
2 under the ROM assuming the BDH assumption holds.
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Proof: Suppose that there exists an outside attacker
(including users authorized by the data owner) A2 that
can break the dKASE scheme with AdvGame 2

A2
(λ) ≥ ε

(Assume that A2 queries random oracle H1, random oracle
H2, and trapdoor at most qH1

, qH2
, and qt, respectively).

We construct a simulator B that can solve the BDH problem
at least with probability ε′ = ε/qH2

. Therefore, if the BDH
assumption holds, then ε′ is negligible and consequently ε
must be negligible. Thereby, the dKASE scheme is KC-IND-
CKA secure according to Definition 5. Below, we describe in
detail how to construct simulator B.

Given a BDH problem instance (p,G,GT , e(·, ·), g, ga, gb,
gc), B simulates the challenger C and interacts with A2 to
run each phase of Game 2 as follows.
Phase 2-1: B first chooses α ∈ Z∗

P at random and
computes gi = g(α

i) for i = 1, ..., n, n + 2, ..., 2n.
Then, it chooses γ, y ∈ Z∗

p at random and
computes PKo,1 = gγ , PKo,2 = gy . It also sets
PKs,1 = Q = gb, PKs,2 = X = gc. It returns
{p,G,GT , e(·, ·), (g, g1, ..., gn, gn+2, ..., g2n),H,H1,H2}
as system parameter (where H is a hash function randomly
chosen by B), PKo = (PKo,1, PKo,2) as public key of
the data owner, and PKs = (PKs,1, PKs,2) as public key
of the cloud server. The random oracles H1 and H2 are
controlled by B in the following way.

H-Query. A2 makes hash queries at this stage. B creates
two hash lists, H1List and H2List, to keep track of all
queries and responses, both of which are initially empty.

• For H1, let wi be the i-th query. If wi already be-
longs to H1List, B responses according to H1List.
Otherwise, it randomly chooses li ∈ Z∗

p , computes
H(wi) = gli and returns it as answer. Finally, B adds
(wi,H(wi), li) to H1List.

• By the same method as Lemma 2, B can simulate H2

queries. We omit the details here.

Phase 2-2: A2 sends B a set S∗ ⊆ [1, n] to attack. B
randomly picks j ∈ S∗, computes KS∗ = {KS∗,1,KS∗,2} ={∏

l∈S∗ g
γ
n+1−l, y

}
, and returns {j,KS∗} to A2.

Phase 2-3: A2 sends B a pair of keywords (w∗
0 , w

∗
1). B

randomly chooses β ∈ {0, 1}, generates a ciphertext

CT ∗
j =

{
c∗j,1, c

∗
j,2, c

∗
j,3, cw

∗
j

}
=
{
ga, (ga)γ · (ga)α

j

, e(ga, gn)
α, R

}
= {ga, (gγ · gj)a, e(g1, gn)a, R} ,

and sets R = H2((e(H1(w
∗
β), PKo,2) · e(PKs,2, PKs,1))

a).
By the definition of PKo,2, PKs,1 and PKs,2, we can get

R =(e(H1(w
∗
β), PKo,2) · e(PKs,2, PKs,1))

a

= (e(gl
∗
β , gy) · e(gc, gb))a

= e(gl
∗
β , ga)y · e(g, g)abc.

Phase 2-4: Finally, A2 outputs a guess β′ of β. By this time,
B randomly picks a tuple (z, Z) from H2List and returns

z

e(g
l∗
β ,ga)y

as its solution for BDH problem instance.

The simulation and solution are now complete. Next, we
analyze the probability that B outputs e(g, g)abc correctly is
at least ε′. We define E be an event that A2 issues a query
for either one of H2((e(H1(w

∗
0), PKo,2)·e(PKs,2, PKs,1))

a)
or H2((e(H1(w

∗
1), PKo,2)·e(PKs,2, PKs,1))

a) in the real at-
tack. Let ¬E denote that E doesn’t occur. We notice that if ¬E

occurs, Pr[β′ = β] = 1/2. Therefore, similar Formulas 4, 5,
and 6, we can get ε ≤ |Pr[β′ = β]−1/2| ≤ 1

2Pr[E ], Pr[E ] ≥
2ε. Hence, A2 issues a query for H2((e(H1(w

∗
b ), PKo,2) ·

e(PKs,2, PKs,1))
a) with probability at least ε. That is, the

value H2((e(H1(w
∗
b ), PKo,2) · e(PKs,2, PKs,1))

a) will ap-
pear in H2List. The probability that B chooses the right is
1/qH2

. Therefore, the probability that B outputs the correct
solution of the BDH problem instance is ε/qH2

.

Theorem 3. The dKASE scheme is KT-IND-KGA secure assum-
ing the HDH assumption holds.

Proof: Suppose that there exists an outside attacker
(excluding the cloud server and the authorized users) A3

that can break the dKASE scheme with AdvGame 3
A3

(λ) ≥ ε.
We construct a simulator B that can solve the HDH problem
at least with probability ε. Therefore, if the HDH assump-
tion holds, then ε must be negligible. Thereby, the dKASE
scheme is KT-IND-KGA secure according to the Definition
6. Below, we show in detail how to construct simulator B.

Given an HDH problem instance: (g, ga, gb, η) and a
hash function H : {0, 1}∗ → G∗, where η is either H(gab) or
a random element of G∗, B simulates the challenger C and
interacts with A3 to run each phase of Game 3 as follows.
Phase 3-1: B first chooses α ∈ Z∗

P at random and
computes gi = g(α

i) for i = 1, ..., n, n + 2, ..., 2n.
Then, it chooses γ, y ∈ Z∗

p at random and computes
PKo,1 = gγ , PKo,2 = gy . It also randomly chooses
Q ∈ G∗ and sets PKs,1 = Q, PKs,2 = X = ga. It returns
{p,G,GT , e(·, ·), (g, g1, ..., gn, gn+2, ..., g2n),H,H1,H2} as
system parameter (where H1 and H2 are hash functions
randomly chosen by B), PKo = (PKo,1, PKo,2) as public
key of the data owner, and PKs = (PKs,1, PKs,2) as
public key of the cloud server.
Phase 3-2: A3 sends B a set S∗ ⊆ [1, n] to attack. B
computes KS∗ =

{
KS∗,1,KS∗,2

}
=

{∏
l∈S∗ g

γ
n+1−l, y

}
and returns it to A3.
Phase 3-3: A3 makes trapdoor queries in this phase. For a
trapdoor query on keyword wi, B does the following:

• Compute KS∗,1 =
∏

l∈S∗ g
γ
n+1−l.

• Choose r ∈ Z∗
p at random.

• Compute Twi
= {KS∗,1 ·H1(w)

y ·H((ga)r), gr} .

Phase 3-4: A3 sends B a pair of keywords (w∗
0 , w

∗
1). The

restriction is that neither w∗
0 nor w∗

1 is queried in Phase
3-3. B randomly picks β ∈ {0, 1}, and computes Tr∗ ={
KS∗,1 ·H1(w

∗
β)

y ·H(η), gb
}

and returns it to A3.
Phase 3-5: A3 makes keyword trapdoor queries as in Phase
3-3 on condition that w ̸= w∗

0 , w
∗
1 .

Phase 3-6: A3 outputs a guess β′ of β. If β′ = β, B outputs
"1", otherwise outputs "0".

This completes the simulation and solution. Next, we
analyze that the probability of B correctly solving the HDH
problem is at least ε. If η = H(gab) in a given instance
of HDH problem, simulation and real attack are indistin-
guishable, and therefore A3 guesses β′ = β with at least
probability 1

2 + ε. If η is a random elemant of G, A3 guesses
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TABLE 3: Computation Comparison with [25], [26].

Algorithm

Scheme
[26] [25] dKASE dVKASEM

Setup (2n− 1)EG + (2n− 2)MZp (2n− 1)EG + (2n− 2)MZp (2n− 1)EG + (2n− 2)MZp (2n− 1)EG + (2n− 2)MZp

KeyGeno EG 2EG 2EG 2EG

KeyGens ⊥ ⊥ EG EG

Encrypt 2P + 4EG +MG +MGT
2P + 6EG + 2MG +MGT

3P + 2EG
+2EGT

+MG +MGT

3P + 3EG
+2EGT

+MG +MGT

Extract (|S| − 1)MG + EG (|S| − 1)MG + EG (|S| − 1)MG + EG (|S| − 1)MG + EG

Trapdoor EG +MG mMG m(2EG + 2MG) 4EG + 2MG

Search
m|S|(2P+

(2|S| − 1)MG +MGT
)

m|S|(2P+
(2|S| − 2)MG +MGT

)
m|S|(3P + EG + EGT

+
(2|S| − 2)MG + 3MGT

)
m|S|(3P + 2EG + EGT

+
2|S|MG + 3MGT

) +mdMG

Verify ⊥ m(2P + (2d+ 3)EG+
2dMG + dMZp )

⊥ (m+ 1)P +m(d− 1)MG
+(m− 1)MGT

β′ = β with probability 1
2 . Therefore, we have

|Pr[A(g, ga, gb, H(ga·b)) = ”1”]− Pr[A(g, ga.gb, η) = ”1”]|

≥(
1

2
+ ε)− 1

2
=ε.

7.2 Security Analysis for dVKASEM Scheme

In this subsection, we prove the ciphertext indistinguisha-
bility and trapdoor indistinguishability of dVKASEM in
Theorem 4 and Theorem 5, respectively. The proof idea is
basically the same as that of dKASE, so we do not analyze
in detail but focus on the differences. In theorem 6, we show
that dVKASEM can effectively verify search results.

For the page limit of the journal, we defer the proofs of
the following theorems to the appendix A, B and C, which
is provided as the supplemental material.

Theorem 4. The dVKASEM scheme is KC-IND-CKA secure in
the ROM assuming the BDH assumption holds.

Theorem 5. The dVKASEM scheme is KT-IND-KGA secure
assuming the HDH assumption holds.

Theorem 6. For the cloud server, it is computationally infeasible
to forge a valid aggregate signature to pass the "Verify" algorithm
when the group G is a bilinear group for Diffie-Hellman.

8 PERFORMANCE ANALYSIS

8.1 Theoretical Analysis

We compare our scheme with [26] and [25] in the field of
computation and communication cost. TABLE 3 shows the

TABLE 4: Communication Comparison with [25], [26].

Component

Scheme
[26] [25] dKASE dVKASEM

Ciphertext
(Data Owner→Server) 2|G|+ |GT | 2|G|+ |GT | 2|G|+ |GT |+ |λ| 3|G|+ |GT |+ |λ|

Aggregate Key
(Date Owner→User) |G| |G| |G|+ |Zp| |G|+ |Zp|

Encrypted Aggregate Key
(User→Server) |G| ⊥ ⊥ |G|+ |Zp|

Trapdoor
(User→Server) |G| m|G| 2m|G| 2|G|

Verify
Challenging Value

(User→Server) ⊥ md|Zp| ⊥ ⊥
proof

(Server→User) ⊥ 2|G|+ |Zp| ⊥ |G|

”|G|”: the bit-length of an element in group G;
”|GT |”: the bit-length of an element in group GT ;
”|λ|”: the length of security parameter λ.

computation comparison, and TABLE 4 shows the commu-
nication comparison. As we pointed out earlier, we do not
consider the verifiability of [26]. In addition, the authentica-
tion method of [25] is universal, so we do not consider its
authentication and focus on its verifiability.

Since the system frameworks of these schemes differ
we will unify the algorithms contained in each scheme as{
Setup,KeyGeno,KeyGens, Encrypt, Extract, T rapdoor,

Search, V erify
}

, where KeyGeno denotes that the
data owner generates its public key and master secret
key, KeyGens denotes that the server generates its
public/secret key pair, Search denotes that the server
uses trapdoor to search for keyword ciphertext, including
trapdoor adjustment and specific test algorithm.

For simplicity, we assume that there are m data owners
sharing documents with the user, and they all share |S|
classes, with each class containing one document. Following
the search, each data owner has d documents that meet
the search criteria. Furthermore, we only consider some
time-consuming operations, including the bilinear pairing
operation P , exponentiation operation EG and EGT

in G and
GT , respectively, and multiplication operation MG1 , MGT

,
and MZp in G, GT , and Zp, respectively.

TABLE 3 shows that the main difference in the compu-
tation cost of these four schemes is in KeyGens, Trapdoor,
and V erify. In order to resist the off-line KGA, our schemes
introduce the public key and secret key of the server. For
Trapdoor, in dVKASEM and [26], a trapdoor generated by
the user’s secret key can be used to query the data of multi-
ple data owners, so the computation cost is independent of
m. In addition, our V erify algorithm is more efficient than
that of [25], and [26] can not realize verification.

TABLE 4 shows that the trapdoor size of our dVKASEM
is constant, but that of [25] is related to m. Moreover, during
verification in dVKASEM, the server merely needs to send
the user an element of group G, namely the aggregate
signature, but in [25] the communication complexity of ver-
ification is linear with the number of matched documents.

8.2 Practical Analysis
Our experiments are performed on Ubuntu 20.04.1 LTS op-
erating system and are implemented by GCC 9.4.0 compile
on a Linux Server with AMD Ryzen 5 4600H with Radeon
Graphics CPU@ 3.00 GHz and 3GB memory by using C++
programming language based on the Paring Based Cryptog-
raphy (PBC) Library. We simulate the time costs of schemes
[25], [26] and our schemes in different settings.
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Fig. 8: Trapdoor Time

Fig. 5 shows the time cost for Setup, indicating that the
efficiency of the setup algorithm in these four schemes is
nearly identical and has almost a linear relationship with
the number of document classes, which is consistent with
the theoretical analysis. The time cost of Encrypt is shown in
Fig. 6. The encryption time of dVKASEM and [25] is longer
than that of dKASE and [26] because both dVKASEM and
[25] need to generate additional signatures for verification.
Although our dKASE scheme is slightly time-consuming
than [26], this is for higher security. In Fig. 7, we provide
the trend of Extract’s time consumption relative to the
number of shared document classes. The efficiency and
growth rate of these schemes are the same. In Fig. 8, we
demonstrate the Trapdoor generation time. The simulation
results reveal that our extension scheme dVKASEM greatly
improves the efficiency of trapdoor generation. Compared
to [26], our scheme improves security with little sacrifice to
the efficiency of trapdoor generation.

Fig. 9 shows the time cost of Search, where in Fig. 9 (a)
we fix m = 1, |S| varies from 100 to 500, and in Fig. 9 (b)
we fix |S| = 100, m varies from 10 to 50. We can see that the
search time of our schemes is a bit larger than that of [25],
[26]. The extra time cost is due to what we intend to achieve
KC-IND-CKA and KT-IND-KGA security. Fig. 10 shows the
time cost of Verify, where in Fig. 10 (a) we fix m = 1, d
varies from 10 to 50, and in Fig. 10 (b) we fix d = 10, m
varies from 10 to 50. The adoption of aggregate signature
effectively improves our verification efficiency.

9 CONCLUSION

We propose a notion of dKASE and design a concrete
scheme. Our dKASE scheme can realize secure ciphertext
searching and selective data sharing at the same time. Fur-
thermore, we present an extended scheme to support multi-
owner and verifiability of search results, which is applicable
to cloud outsourcing model in practice. We also define two
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security models on dKASE including KC-IND-CKA and
KT-IND-KGA. Formal security analysis demonstrates our
schemes achieve the desired security properties. Experimen-
tal results show our schemes’ efficiency.
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