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Abstract

Recently, dynamic language users have started to recognize the value of types in their

code. To fulfil this need, many popular dynamic languages have adopted extensions that

support type annotations. A prominent example is that of TypeScript which offers a

module system, classes, interfaces, and an optional type system on top of JavaScript.

However, providing usable (not too verbose, or complex) types via traditional type inference

is more challenging in optional type systems. Motivated by this, we redefine the goal of

type inference for optionally typed languages as: infer the maximally natural and sound

type, instead of the most general one. By the maximally natural and sound, we refer to a

type that (1) is derivable in the type system, and (2) maximally reflects the intention of

the programmer with respect to a learnt model.

We formally devise a type inference problem that aids the inference of the maximally

natural type. Towards this goal, our problem asks to combine information derived from

two sources: (1) from algorithmic type systems using deductive logic-based techniques;

and (2) from the source code text using inductive machine learning techniques.

To tackle our formulated problem, we develop two frameworks that combine the two sources

of information using mathematical optimization. In the first framework, we formulate

the inference problem as a problem in numerical optimization. In the second framework,

we map the inference problem into popular problems in discrete optimization: maximum

satisfiability (MaxSAT) and Integer Linear Programming (ILP). Both frameworks are built

to be consistent with information derived from the different sources. Moreover, through

formal proofs, we validate the soundness and completeness of the developed framework for

a core λ-calculus with named types.

To assess the efficacy of the developed frameworks, we implement them in a tool named

Optyper that realizes natural type inference for TypeScript. We evaluate Optyper on

TypeSript programs obtained from real world projects. By evaluating our theoretical

frameworks we show that, in practice, the combination of logical and natural constraints

yields a large improvement in performance over either kind of information individually.

Further, we demonstrate that our frameworks out-perform state-of-the-art techniques in

type inference to produce natural and sound types.
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1
Introduction

To code is to name. While coding, developers must name parameters, local variables,

functions, modules, and programs themselves. Often these names are meaningful. For

instance, variables named username or password have different connotations, although

both should have all the attributes of a type String . In this dissertation we explore how

to extend the traditional type inference problem to one that soundly takes into account

names of identifiers.

In this chapter, Section 1.1 gives the overall context of the dissertation. Section 1.2 states

the thesis of the dissertation. Finally, Section 1.3 outlines each chapter along with the

contributions of this dissertation.

1.1 Context

Programming languages share properties with natural languages related to their purpose

as a means of communication and having a syntactic form separate from their semantics.

Following this observation, the software engineering community has recently adopted the

term natural source code, the idea of thinking of source code as natural written by humans

and meant to be understood by other humans (Knuth, 1992). The structured and highly

composable nature of source code data provides fertile ground for using and creating

machine learning models that exploit the probabilistic reasoning capabilities that these

models can offer and allow us to view existing problems in a new perspective.

Recently machine learning techniques have been applied to build practical programming

tools that enhance the development process by leveraging “Big Code” (Big-Code, 2017).

Just like vast amounts of data on the web enabled “Big Data” applications and altered a
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2 CHAPTER 1. INTRODUCTION

number of areas, such as natural language processing and computer vision, the increased

amount of publicly available source code, through code repositories, like GitHub (2020),

enables a new class of applications that leverage these large codebases. People want to

reuse code, and machine learning could provide the perfect framework to do that. There

is already a growing interest in predictive models of source code that build on methods

from machine learning and statistical natural language processing to predict the source

code text that programmers will write next. By contrast, relatively little work has applied

probabilistic models from machine learning to infer semantic properties of programs.

One of the numerous potential fields of application is aiming towards automatic enhance-

ment of type inference. Although different languages use types differently, types are an

important factor in virtually all programming languages. Whether a language is going to

be statically or dynamically typed is an important implementation decision (Meyerovich

and Rabkin, 2012), which involves a trade-off.

On one end of the spectrum, we have statically typed languages that aim to enforce

correctness and safety properties on programs by guaranteeing constraints on program

behaviour using types. A large scale user-study suggests that programmers benefit from

type safety (Hanenberg et al., 2014); use of types has also been shown to prevent field

bugs (Gao et al., 2017). However, type safety comes at a cost: these languages often require

explicit type annotations, which imposes the burden of declaring and maintaining these

annotations on the programmer. Strongly statically-typed, usually functional languages,

like Haskell or ML, offer type inference procedures that reduce the cost of explicitly writing

types but come with a steep learning curve (Tirronen et al., 2015).

On the other end of the spectrum, we have dynamically typed languages, which either

lack or do not require type annotations. This attribute makes dynamic languages a

popular choice over statically typed languages (Meyerovich and Rabkin, 2012). Initially

designed for quick scripting or rapid prototyping, these languages have begun reaching the

limits of what can be achieved without the help of type annotations, as witnessed by the

heavy industrial investment in and proliferation of static type systems for these languages

(TypeScript (Microsoft, 2020) and Flow (Facebook, 2019) are just two examples). Retrofit

for dynamic languages, these type systems include gradual (Siek and Taha, 2006) and

optional type systems (Bracha, 2004). Like classical type systems, these type systems

require annotations to provide benefits.

For dynamic languages, however, the task of type inference is far more challenging. Firstly,

dynamic languages have complex type features such as subtyping, structural types, and

union types that contribute to the complexity of the problem. Moreover, programmers
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are allowed to write more expressive programs and use libraries that cannot be precisely

type checked using standard type systems. In addition, like classical type systems, these

type systems require annotations to provide benefits, but this process itself turns out to

be quite burdensome for the programmer. Conventional type systems aim to infer most

general types, but unfortunately, in the presence of the above circumstances, the generated

types are often verbose, difficult to understand, and may not reflect the programmer’s

intention.

As indicated earlier, the machine learning community has identified this challenging topic

and by seeing it in a new light has proposed learning-based type inference techniques.

Specifically, for type inference, machine learning allows us to develop less strict type

inference systems that learn to predict types from uncertain information, such as comments,

names, and lexical context, even when traditional type inference procedures fail to infer a

useful type.

The classic literature on conventional type systems takes great care to demonstrate that

type inference only suggests sound types (Milner, 1978; Pierce, 2002). Learning-based type

inference is not in conflict with classical type inference but complements it. There are

settings, like TypeScript, where correct type inference is too imprecise. In these settings,

learning-based type inference helps the human in the loop to move a partially typed

codebase—one lacking so many type annotations that classical type inference can make

little progress—to a sufficiently annotated state that classical type inference can take over

and finish the job.

The closest related works to this end are JSNice (Raychev et al., 2015) and NL2Type

(Malik et al., 2019), which use probabilistic graphical models to statistically infer types of

identifiers in programs written in JavaScript, along with the DeepTyper tool (Hellendoorn

et al., 2018), which targets TypeScript. These approaches all use machine learning models

to capture the structural similarities between typed and untyped source code and extract

a statistical model for the text. All of these tools are using various sources of knowledge

that are typically ignored by type inference algorithms, but at the same time discard

certain information arising from classical type inference procedures.

Wei et al. (2020) propose a different approach to probabilistic type inference for TypeScript.

LambdaNet is based on graph neural networks (Allamanis et al., 2017), which learn type

dependency graphs extracted by static code analysis on the training data. Their type

dependency graph has edges that are either logical or contextual, corresponding to what

we call logical or natural constraints. All the aforementioned methods are based on pure

learning techniques without validating their predictions against the corresponding type
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Figure 1.1: Overview of general framework that combines logical and natural
constraints in a single optimization problem.

checker for the language targeted.

TypeWriter (Pradel et al., 2020) trains a neural model to predict types based code context

and natural language information in Python source code, but on top of that validates its

predictions by employing a combinatorial search strategy against a gradual type checker

that helps them to rule out any inconsistent predictions. Kazerounian et al. (2021)

proposed SimTyper, a type inference system for Ruby that soundly combines standard

type inference with heuristics.

Recently, Allamanis et al. (2020) introduced Typilus, which removes the constraint of

predicting types within a fixed size vocabulary and enables prediction for user-defined and

rare types. Mir et al. (2022) with their tool Type4Py proposed an innovative k-nearest

neighbour search that enables to scale the size of the type vocabulary up to 40k types.

(See Section 2.3 for an extensive discussion of learning-based type inference systems.)

1.2 Thesis

As discussed, there is a great amount of interest towards a new kind of type inference

procedure that aims to combine information from conventional type systems and learning

procedures. Undoubtedly, inference procedures that are learning-based but at the same

time produce sound typings are more useful for the programmer. In this dissertation we
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focus our attention on these type inference procedures, which we refer to as natural type

inference. The aim is now to infer the maximally natural type, in the sense that is both

sound and maximally influenced by a learning procedure. This dissertation formalizes

this problem for a small λ calculus, proposes novel solutions to solve it via optimization

methods, provide theoretical guarantees, and evaluates our approach.

Overall, we present the following thesis:

“ Conventional type systems can be formally extended to take into account
statistical information in a sound way and infer the maximally natural type.
The natural type inference problem is an NP-hard problem, that can be solved
optimally by reducing it to an integer linear programming (ILP) problem or
any other equivalent problem, such as maximum satisfiability (MaxSAT). ”

To substantiate this thesis, we present a novel algorithm for type inference that assigns

sound and natural types to identifiers. To ensure that our types are both sound and

natural, we propose exploiting two types of constraints on the type variables. The first

type, which we refer to as logical constraints, is the constraints deduced by classical type

inference algorithms. In particular, they are obtained by accumulating and propagating

constraints on the type variables, in the spirit of Milner’s Algorithm W (Milner, 1978).

The other type, which we refer to as natural constraints, is the information produced by

machine learning procedures on the identifiers. This type of information refers generically

to indirect, statistical constraints about types. In this work, we focus our attention on a

specific kind of natural constraint, where each identifier name maps to a probability vector

over nominal types (Section 5.1).

We define natural type inference as the problem of inferring a type assignment that satisfies

all the logical constraints and is as natural as possible based on the natural constraints.

To do so, we describe an algorithm to extract both logical and natural constraints from

the input program, and then to combine them to produce the maximally natural type

assignment. To effectively combine the two types of constraints, we encode the inference

problem as an optimization problem. We explore different ways to define and solve this

optimization problem, both in the continuous and the discrete space. Our formulation

allows us to use off the shelf algorithms to effectively solve our problem. We prove that our

proposed discrete solution is optimal. We evaluate our approach in a real-world scenario,

by implementing an end-to-end application, called Optyper, which aims to suggest missing

types for TypeScript files.

Next, we show in a minimal formal setting how natural type inference can help to provide

more intuitive types to the programmer.
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1.3 Contributions and Dissertation Outline

The main contributions of this dissertation is to define and formalize the problem of natural

type inference, present two algorithms to solve it, and prove termination, correctness, and

optimality for both of them. Our specific algorithm deals with ambiguities arising from

overloading, dot-notation, and structural equality of type names.

Here is the outline of the dissertation

Chapter 2 details on the related work.

Section 7.3 defines an exemplary type inference task as finding a type signature for an

untyped function definition within a λ-calculus, whose types are defined by a global

set of equations between type names and scalar, record, and function types. The

operational semantics and type system satisfy preservation and progress properties:

Theorem 3.2 and Theorem 3.1.

Chapter 4 presents a new algorithmic type system that given an expression yields logical

constraints (Section 4.1). The algorithm is terminating (Theorem 4.1) and the logical

constraints are sound and complete with respect to the declarative type system

(Theorem 4.2). Corollary 4.1 is that our overall task, finding a type signature for an

untyped function definition, is equivalent to satisfying the logical constraint extracted

from the function definition.

Chapter 5 describes a procedure of exploiting deep learning to extract natural language

information from source code, or the so-called natural constraints (Section 5.1).

This is followed by the formal presentation of the problem of natural type inference

(Problem 5.1) that asks to infer a type that satisfies the logical constraints and

maximizes the “value” of the satisfied natural constraints.

Chapter 6 shows how to combine a relaxation of the logical constraints (Section 6.2) with

probability distributions over the library of types to form a continuous constrained

optimization problem (Section 6.4). Theorem 6.1 relates the logical semantics and

its relaxations. By Theorem 6.2, if the optimizer terminates successfully, we get the

optimal solution to the natural constraints that satisfies the logical constraints.

Chapter 7 presents an efficient reduction of the natural type inference problem into two

popular problems in discrete optimization, namely maximum satisfiability (MaxSAT)

and Integer Linear Programming (ILP). Such reductions allow us to leverage industrial

MaxSAT and ILP solvers to infer sound types. We prove that both reductions
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provide us with sound and complete algorithms for type inference in Theorem 7.1

and Theorem 7.2. Finally, we prove that our reductions are optimal, by proving the

NP-hardness of the natural type inference problem using Theorem 7.3.

Chapter 8 presents a realization of our algorithms for natural type inference for TypeScript,

named Optyper. We investigate its ability to infer types on several real world

programs obtained from GitHub repositories. We deduce that combining logical and

natural constraints yields a large improvement in performance over either natural

or logical constraints individually. Further, by comparing against state-of-the-art

techniques LamdaNet and TypeWriter, we assert Optyper’s ability to derive sound

and natural types within reasonable time.

Chapter 9 summarises the conclusions that we draw from this scientific study and suggests

possible next steps for future work.

For the reader’s convenience we provide relevant background knowledge within the appro-

priate chapter.





2
Related Work

Natural type inference is a new approach on learning-based type inference that optimizes

over both logical and natural constraints. Related work spans across classical, deterministic

type inference Section 2.1, some key works on the more general topic of machine learning

for source code. Section 2.3, and earlier machine learning approaches Section 2.3.

2.1 Type Systems

Although different languages use types differently, types are an important factor in virtually

all programming languages. The main purpose of types and of their corresponding type

system is to verify and enforce a level of correctness in programs by guaranteeing certain

constraints on the program’s behavior. Types have other purposes as well, for instance

enabling enhanced compiler optimization and warnings, providing forms of documentation,

decompilation or deobfuscation and improving code readability. Whether a language is

going to be statically or dynamically typed (type-checked at compile time or run time

respectively) is an important implementation decision, which involves a trade-off. Although

statically typed languages (such as C and Java) are type-safe, their requirement of explicit

types annotations comes with an additional cost for the programmer, who has to write

and maintain them. It is perhaps partly for this reason that several popular languages,

like Python and JavaScript, do not include static type annotations as part of the language.

This lack of static type enforcement means programmers can write code that is verbose and

flexible, and that takes advantage of highly dynamic features such as metaprogramming.

As are a result, these type of languages were used initially for rapid prototyping and

development of programs. Type inference, that is the automatic deduction of the type of

an expression at compile time, can provide the best of both worlds. This feature is an

9
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inherent trait of strongly, statically-typed, functional languages (like Haskell or ML). In

this direction, some procedural languages attempt to include type inference as a feature.

For instance, in C++ programmers can use the auto keyword to avoid writing the type in

the definition of a variable with an explicit initialization, while in C# (starting with version

3) the var keyword can be used as a convenient syntactic sugar for shorter local variable

declarations. Nevertheless, C# is still a statically typed language. These enhancements

are implemented via compiler tricks and thus are considered as a small step towards a

world of static typing where possible, and dynamic typing when needed.

The quest for more modular and extensible static analysis techniques has resulted in

the development of richer type systems. Refinement types, that is subsets of types that

satisfy a logical predicate (like boolean expression), constrain the set of values described

by the type, and hence allow the use of modern logic solvers (such as SAT and SMT

engines) to dramatically extend the scope of invariants that can be statically verified. An

implementation of this concept comes with Logically Qualified Data Types, abbreviated

to Liquid Types. DSOLVE is an early application of liquid type inference in OCAML

(Rondon et al., 2008). A type-checking algorithm, which relies on an SMT solver to

compute subtyping efficiently for a core, first order functional language enhanced with

refinement types (Bierman et al., 2012), provides a different approach. LiquidHaskell

(Vazou et al., 2014) is a static verifier of Haskell based on Liquid Types via SMT and

predicate abstraction. The expressive type system of functional languages made the task of

adding refinement types easier to achieve. For instance, these languages take as primitive

the useful idea of data tagged with data constructors by providing kinds, that is, a type of

a type, and algebraic types as built-in notion. Although modern scripting languages have

popularized the use of higher-order constructs, attempts to apply refinement typing to

scripts have mostly proven to be impractical (Chugh et al., 2012). Unfortunately, as each

programming language has developed its own characteristics, all of the above solutions

are tied to a specific language. However, richer type annotation holds the promise of a

more precise, modular and extensible analysis, and, as the need of building programs that

conform the specifications emerges we should therefore search for novel and universally

applicable solutions in integrating static and dynamic typing and thereby combining the

benefits of both typing disciplines.

Gradual vs. Optional Type Systems

Towards this pursuit, recently dynamic languages have also started to pay more attention

to typings. This, has resulted in new kinds of type systems. The most two prominent



2.1. TYPE SYSTEMS 11

examples are gradual and optional type systems, which we discuss briefly below.

Several JavaScript extensions (like Closure Compiler (Google, 2019) and TypeScript

(Microsoft, 2020)) add optional type annotations to program variables. In JavaScript,

these annotations are provided by specially formatted comments known as JSDoc. However,

these extensions often fail to scale to realistic programs that make use of dynamic evaluation

and complex libraries (for example jQuery), which cannot be analyzed precisely (Jensen

et al., 2009). In line with this approach we have seen extensions for other popular scripting

languages, for instance Python community introduced PEP 484 (Rossum et al., 2014),

which adds optional static typing to Python 3.5 and newer, or RuboCop (Bastov, 2018b),

which serves as a static analyzer for Ruby by enforcing many of the guidelines outlined

in the community Ruby Style Guide (Bastov, 2018a) and performing various check types

known as cops.

A gradual language is one that obeys the gradual guarantee. Informally, the gradual

guarantee states that, if we change the types in a gradual program to be “more precise”

that is, we replace an any type with an integer or function signature — the changed

program either has the same behaviour as the original or raises a dynamic type error.

Gradual languages accomplish this by injecting runtime type casts where an untyped, ‘any’

value may flow into a typed variable (Siek et al., 2015). In other words, gradual languages

recover type soundness at runtime with casts. These casts are costly, as chronicled in “Is

Sound Gradual Typing Dead?” (Takikawa et al., 2016). In response, academic research

has centred on compiler optimizations aimed at removing or consolidating casts.

Optional types are industry’s response to the cost of graduality. TypeScript is a pioneer

and perhaps remains the most prominent example. An optionally typed language can

be viewed as a gradual language that skips runtime type casts. By design, optionally

typed languages are unsound: they do not prevent operations be applied to operands with

incorrect types. Instead, optional languages provide the static benefits of gradual typing,

that is, improved navigation, documentation, and erroring on local type inconsistencies,

without its runtime cost.

Perhaps because of its industrial origin, the fact that optionally typed languages inten-

tionally violate soundness, and the concomitant lack of publications, academic computer

science conflates gradual and optional typing. Indeed, Siek et al. (2015) proposed the

gradual guarantee in an effort to clarify the meaning of gradual typing. Apparently, these

type systems gain popularity among the programmers (Di Grazia and Pradel, 2022), so

we believe that exploring this topic further is a promising research direction.
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2.2 Learning-based Programming

In this section, we will outline the area of learning-based source code models aiming to

give an intuition along with a rough overview of the whole area.

Programming languages share properties with natural language related to their purpose as

a means of communication and having a syntactic form separate from its semantics. Based

on this observation Hindle et al. (2012) proposed the naturalness hypothesis for software.

“ Programming languages, in theory, are complex, flexible and powerful, but
the programs that real people actually write are mostly simple and rather
repetitive, and thus they have usefully predictable statistical properties that
can be captured in statistical language models and leveraged for software
engineering tasks. ”

In line with this observation, the software engineering community has recently adopted the

term natural source code, that is the idea of thinking of source code as natural written by

humans and meant to be understood by other humans (Hindle et al., 2012). The structured

and highly composable nature of source code data provides fertile ground for using and

creating machine learning models that exploit the probabilistic reasoning capabilities that

these models can offer and allow us to view existing problems in a new perspective.

Although the interdisciplinary field between machine learning and programming languages

is quite young, some complete reviews of this emerging area are already available. Allamanis

et al. (2018) in their survey give an extensive synopsis of works that model source code in

a probabilistic way by containing a learning component and using complex representations

of the underlying code. A detailed description of the area is also given by Vechev and

Yahav (2016) in their related article Programming with “Big Code”. While Gottschlich

et al. (2018), in their position paper, examine the research area by categorising the class

of the challenges involved in three main, overlapping pillars: intention, invention, and

adaptation. Additionally, there has been an effort from the community to gather resources,

datasets and code in a single website (http://learnbigcode.github.io/).

A major subfield of this area concerns about predictive models of source code that build on

methods from machine learning and statistical natural language processing (NLP) aiming

to predict the source code text that programmers will write next. Program Synthesis,

could be considered as taking the problem of predicting code to the extreme. Although

this is a rather hard problem, some of the most popular machine learning applications

sprung from this idea. For example, the FlashFill by Gulwani (2011) tool is robust enough

to being shipped as part of a commercial product (for example Excel) and thus being used

http://learnbigcode.github.io/


2.3. LEARNING-BASED TYPE INFERENCE 13

daily from thousands of users. More recently, the machine learning community has been

exploring similar ideas to a boarder context by willing to capture more general program

structures. Pursuant to this Graves et al. (2014) worked to encode differentiable Turing

Machines while Cai et al. (2017) tried to incorporate the notion of recursion directly

into the neural network. By combining the two lines of research, the DeepCoder tool

uses input-output examples as a training data to a deep network that learns to predict

properties of the intermediate program (Balog et al., 2016). Predictive models of source

code have been applied for other tasks such as prediction or autocomplete of next token

or a phrase in a program, to suggesting names that better follow naming conventions

(Allamanis et al., 2014), and JSNice for deminifing JavaScript (Raychev et al., 2015). Most

recently (Bavishi et al., 2017) improved the results of JSNice by combining a lightweight

static analysis, an auto-encoder neural network and a RNN into a single tool.

A different subfield of learning-based programming aims different kind of program analysis

tasks. Program analysis aims to provide guarantees about properties of the code such as

correctness or safety. For such tasks most commonly formal methods are being recruited

to generate a set of constraints that has to be respected by the program. These hard

constraints emerge new challenges for the probabilistic world of machine learning; as there

is not a trivial way to incorporate them along with the logical rules that they should

follow to a probabilistic model. However, the task of predicting semantic properties, such

as types, could alleviate the programmer from the burden of explicitly annotating the

code while also support program verification and bug finding at no additional cost. The

aforementioned task is indeed the main goal of this dissertation, as discussed in Chapter 1.

In the following section, we survey closely related works in more detail.

2.3 Learning-based Type Inference

Learning-based type inference is a flourishing research area for at least two reasons. First,

recent breakthroughs in machine learning (ML) have enabled researchers to apply ML tech-

niques to effectively predict type annotations for dynamic programming languages, whose

dynamism has stymied traditional type inference. Second, popular dynamic languages are

adopting optional type annotations, generating the data ML needs in abundance in the

form of huge, publicly available repositories of code 1. For instance, Python introduced

optional typing in PEP 484 (Rossum et al., 2014), or equivalent TypeScript (Microsoft,

2020), which adds optional type definitions to JavaScript.

1These repositories are the oil fields of the digital economy, if we believe that “Data is the new oil.”, as
Clive Humby observed (Arthur, 2013).
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This section surveys work in learning-based type inference starting with the pioneering

work using graphical models, before considering sequence-to-sequence, including the latest

hierarchical model, and graphical neural networks. It discusses sound approaches, then

closes by observing the lack of a formal treatment, a gap we fill in this work.

The pioneering work in this area builds probabilistic graphical models from structures

extracted from source code. JSNice (Raychev et al., 2015) takes JavaScript code, extracts its

abstract syntax tree, and converts the AST into a conditional random field (CRF) (Sutton

et al., 2012). JSNice employs Maximum a Posteriori (MAP) inference over its CRF to

predict both names and types. Its predictions are unsound. Indeed, the authors state

“where soundness is required, the approach presented here will have value as part of a

guess-and-check loop”. Xu et al. also construct a graphical model, in the form of a factor

graph (Xu et al., 2016). This work requires heuristically chosen weights in the factors that

integrate logical and natural constraints. Both works formalize the construction of their

model and validate their predictions empirically by reporting precision and recall over a

corpus.

Given sufficient training data, neural approaches learn features themselves, obviating

manual feature identification and extraction as well as the realization of heuristics to

process them. DeepTyper (Hellendoorn et al., 2018) was the first to use a sequence-to-

sequence model to predict types for TypeScript. Its core idea is to train a neural model on

an aligned corpus of TypeScript and JavaScript code. DeepTyper consumes its training

data as a raw token stream. As such, this stream implicitly combines the logical and

natural constraints embedded within it; DeepTyper itself must learn to distinguish and

exploit both. DeepTyper formalizes its neural architecture and is unsound, sometimes

predicting multiple types for a variable across its uses in a single scope. Like its predecessors,

DeepTyper is empirically compared to JSNice using accuracy from information retrieval.

NL2Type is trained solely on function signatures and JSDoc comments (Malik et al., 2019).

NL2Type formally defines its features and how it constructs training data to expose them

to its neural network; its evaluation is empirical, reported using information retrieval

measures and focused on how it can complement JSNice. Type4Py employs an innovative

k-nearest neighbour search that enables to scale the size of the type vocabulary up to 40k

types. Its training data includes existing type annotations and, taking a page from Typilus

below, it employs triplet loss to advance the state of the art (Mir et al., 2022). Type4Py

tersely describes its model and validates its performance empirically. Like DeepTyper,

NL2Type and Type4Py are both unsound.

Because source code is inherently graph-structured, graph neural networks (GNN) are a
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natural architecture for learning-based type inference (Gilmer et al., 2017; Allamanis et al.,

2018). Targeting TypeScript, LambdaNet was the first to use a GNN for type inference;

it applies static analysis to its training data to build its model’s graph. LambdaNet

combines logical and contextual (which includes natural) constraints. It is the first

approach to effectively predict user-defined types not encountered during training by using

a pointer-network-like architecture (Vinyals et al., 2015; Allamanis et al., 2016) over an

open vocabulary. LambdaNet’s architecture explicitly models a fixed set of type constraints

as hypergraphs. Typilus (Allamanis et al., 2020) is a GNN that employs metalearning

using triplet loss to predict an open vocabulary of types for Python, including rare, even

unseen-during-training, user-defined types. Both GNN models use an iterative computation

called message passing to compute predictions, which is closely related to the sum-product

algorithm that Xu et al. (2016) use. Even LambdaNet, which explicitly models some type

constraints, does not enforce them over its predictions. Indeed, in practice, we observe that

LambdaNet, despite explicitly modeling logical type constraints, produces annotations

that do not respect the learnt logical relationships. In short, both LambdaNet and Typilus

are unsound. Both formally detail their models, which are their core contributions. As

is conventional in this space, both are evaluated empirically over code corpora and the

results are reported using accuracy.

Williams et al. (2020) present an algorithm to infer unit types for numbers in spreadsheets

cells. They first generate logical constraints—sets of equations—on unit types by analyzing

formulas and format information (such as currencies or percentages). Relying on a method

due to Orchard et al. (2015), they transform the constraints to linear equations and solve

by matrix reduction, to obtain a set of unconstrained critical variables, which amount

to the most general unit typing. Rather than present spreadsheet users with unknown

variables, they use textual information such as column headers or labels on cells together

with a pre-trained language model to predict the most likely concrete units for the critical

variables (and hence the numeric cells in the workbook). They formalize, but do not state

or prove theorems about, their algorithm. Their evaluation is empirical, reported in terms

of the usual suspects of information retrieval measures.

None of the approaches covered so far, whether graphical or neural, explicitly model the un-

derlying type inference rules, so their predictions miss useful type constraints. Recognising

this problem, researchers proposed TypeWriter and SimTyper. TypeWriter (Pradel et al.,

2020) realizes the guess-and-check integration of prediction with type checking proposed

by JSNice. Targeting Python, TypeWriter enumerates the top-ranked predictions from

a neural type predictor, then invokes Python’s gradual type checker mypy (The-Mypy-

Project, 2014) to filter out those that do not type-check. As the authors claim, TypeWriter
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is soundy (Livshits et al., 2015) up to a fixed type context (as usual, changing a module’s

context may invalidate a correct prediction made in another context). Because of its re-

liance on mypy, TypeWriter is not, however, sound by construction. The authors formalize

TypeWriter’s model and present its guess-check-and-backtrack procedure in pseudocode

and report its performance using information retrieval measures. SimTyper (Kazerounian

et al., 2021) builds on a previous system, InferDL (Kazerounian et al., 2020), which adds

heuristics to DRuby (Furr et al., 2009), a type inference system for Ruby, based on type

inclusion constraints (Aiken and Wimmers, 1993). Following InferDL, SimTyper uses a

guess-check-and-backtrack approach to find readable nominal types instead of hard-to-read

structural types. It extracts constraints from its input program, and simplifies them. If any

type variable is assigned a complex structural type, SimTyper attempts to generalize to a

more readable nominal type, while maintaining soundness. Candidate nominal types are

all classes that subsume the inferred structural type. SimTyper uses a transformer model

to rank these candidates. For each candidate in order, it adds the equality constraint that

equates the candidate and the inferred complex structural type to its constraint set. If

the resulting constraints are not sound, SimTyper backtracks and repeats, up to a bound.

SimTyper’s results are reported for various relaxed matches using precision and recall.

In short, both TypeWriter and SimTyper achieve natural type inference in phases that

separately handle logical and natural constraints. This is less efficient than the approach

we present here that combines logical constraints and natural constraints into a single

joint optimization problem. Their separate handling of natural and logical constraints also

means that they do not formalize their approaches from the ground up, and prove their

correctness and termination, as we do in this dissertation (see Section 5.2).



3
A Calculus of Named Types

This chapter paves the way for the remainder of the dissertation by introducing a λ-calculus

with named types to formalize and verify natural type inference. We describe its syntax,

operational semantics, and type system, and state its basic metatheory. Given these

definitions, we can frame the type inference problem to be solved by algorithms in later

chapters.

Section 3.1 introduces the problem, along with some examples and shows that natural type

inference resolves ambiguities arising from dot-notation, from overloading of arithmetic

operators, and from type aliases for structurally equivalent types. Our formalism represents

each of these ambiguities.

Section 3.2 defines the structure of types and definitional type equations. A type t is

simply a name drawn from a finite set T of type names (such as Int or IntArray). Each

type name t is defined by a type equation type t = S where S is a type structure, which

could be either a base, record, or function type (see Definition 3.1). For instance, the type

equation type Range = {length : Int , breadth : Int} defines the type Range to have the

type structure {length : Int , breadth : Int}. Recursive types may be defined by recursive

type equations.

Section 3.3 defines equivalence between types as a bisimulation relation, following Brandt

and Henglein (1998). Proposition 3.1 is that type equivalence is decidable, while Defini-

tion 3.4 defines type equality between a type name t and a type structure S.

Section 3.4 defines the syntax of expressions and values, along with the operational

semantics of the core language.

The core judgment of our type system is a type assignment relation that determines when

17
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an expression E may be assigned a type name t. Unusually for a λ-calculus, our formalism

assigns type names t but not type structures S to expressions, which allows us to easily

limit the solutions to our constraints to a finite universe of named types. Still, this aspect

of our formalism does not limit which expressions may be typed, because we can introduce

a new type name for any desired type structure.

Section 3.5 characterises the type assignment via two separate inductive definitions that

yield the same relation. The two definitions differ in how they introduce type equality.

In the first, type equality appears only in a single retyping rule (akin to a subsumption

rule in a system with subtyping). For this first system, we state and prove progress

(Theorem 3.1) and preservation (Theorem 3.2) theorems, along with standard . In the

second syntax-directed system, type equality appears in each of the rules. Proposition 3.3

shows the two definitions are equivalent.

Finally, Section 3.6 states the type inference problem for the calculus.

3.1 Problem Statement

Names can also mislead, when poorly chosen or when the program has evolved to use

them quite differently to when they were first given. This is why analyses often ignore

names and treat them just as nonces that tie a definition to a set of uses. This approach

can, however, be too conservative.

Consider the standard problem of type inference for a dynamic language (such as JavaScript

or Python). Specifically, consider the definition of a function f that has formal arguments

x1, . . . , xn, and whose result is determined by the untyped expression E with fv(E) ⊆
x1, . . . , xn:

function f(x1, . . . , xn) return E

Although E is untyped (like JavaScript), we assume that there is a type assignment

relation for untyped expressions (like the one for TypeScript (Microsoft, 2020)), and a

library of types ti available for typing expressions. Given this input, type inference is the

task of computing a type signature for f , that is, a tuple of pairs (x1 : t1, . . . , xn : tn, f : t),

such that the following is derivable in the type assignment relation for expressions:

x1 : t1, . . . , xn : tn ⊢ E : t

There may be many valid type signatures for the same untyped input, creating a challenge

for type inference: which valid signature to return? An algorithm for natural type inference
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is one that exploits natural language information, such as the identifiers x1, . . . , xn, f and

other lexical information in E, when selecting which valid type signature to return.

Three Example Functions Each With Multiple Type Signatures

Here are three examples of untyped function definitions, to illustrate some of the sources

of ambiguity that can be resolved by natural type inference.

function uppercase(str) return // 1st

{length = str .length,

items = λ(i) let char = str .items(i) in char < 97 ? char : char < 123 ? char − 32 : char}
function diffRange(range1 , range2 ) return range1 .length − range2 .length // 2nd

function intEqual3 (int1 , int2 , int3 ) return int1 == int2 ? int2 == int3 : false // 3rd

Consider the following library of type definitions.

type Char = Int

type String = {length : Int, items : Int → Char}
type IntArray = {length : Int , items : Int → Int}
type Range = {length : Int , breadth : Int}

We work in a λ-calculus with scalar types Bool and Int , record, and function types, and a

type system where equivalence of named types is determined by structure, as in TypeScript,

and not by name. For instance, although the types String and IntArray are syntactically

different (because they are different type names), they are structurally equivalent (because

they have the same structure, if we ignore the names). Note that the above type library is

a shorthand for the full type library properly defined in Definition 3.2.

A function definition may have multiple type signatures for several reasons:

(1) Two different named types may actually be structurally equivalent. For example,

String and IntArray are structurally equivalent. A function such as uppercase can be

typed using either of these types, resulting in syntactically distinct but structurally

equivalent type signatures: for example,

(str : String , uppercase : String)

versus (str : IntArray , uppercase : IntArray)

versus (str : IntArray , uppercase : String).
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(2) Differently structured types may share the same field. For example, String , IntArray ,

and Range share the field name length. A function such as diffRange can be typed

using any of these types, resulting in syntactically and structurally distinct type

signatures: for example,

(range1 : Range, range2 : Range, diffRange : Int)

versus (range1 : String , range2 : IntArray , diffRange : Int)

versus (range1 : IntArray , range2 : IntArray , diffRange : Char).

(3) A primitive operator such as equality == is overloaded over multiple primitive types,

such as Bool and Int . A function such as intEqual3 can be typed using either of these

types, resulting in syntactically and structurally distinct type signatures: for example,

(int1 : Int , int2 : Int , int3 : Int , intEqual3 : Bool)

versus (int1 : Bool , int2 : Bool , int3 : Bool , intEqual3 : Bool)

versus (int1 : Char , int2 : Char , int3 : Char , intEqual3 : Bool).

These examples of type ambiguity are not purely academic: similar issues arise directly

in TypeScript. For example, when given the second example, TypeScript infers the

uninformative intersection string | any [] for both range1 and range2 and, when given the

third example, TypeScript infers any for each parameter, which does not help neither the

programmer nor the type system.

In many previous papers, the goal of type inference is to find a unique most general type,

perhaps polymorphic, for an untyped program. For example, if we supported subtyping

and the declared type HasIntLength = {length : Int}, the diffRange example could

be assigned the signature (range1 : HasIntLength, range2 : HasIntLength, diffRange : Int).

Curried function types provide a way of defining and using functions that accept multiple

arguments, but only return a single value. Thinking of signatures as such, this signature

is a supertype of either (range1 : Range, range2 : Range, diffRange : Int) or (range1 :

String , range2 : IntArray , diffRange : Int), the two signatures mentioned for diffRange.

Our perspective is that sometimes a programmer will prefer a less general but more natural

type; for example, because they want to hide the implementation details of how a length is

maintained, and instead wish to use domain-relevant words like Range in their signatures.

For example, given diffRange (see above) as input, what is the type signature (range1 :

t1, range2 : t2, diffRange : t) to output?
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Our type inference algorithm generates the following logical and natural constraints.

• The logical constraints, after simplification, are that (range1 : t1, range2 : t2, diffRange :

t) is a type signature for diffRange if and only if (1) t1 = String or t1 = IntArray or

t1 = Range, (2) t2 = String or t2 = IntArray or t2 = Range, and (3) t = Int . A detailed

description of how we generate these constraints, can be found in Section 4.3.

• In a simplified form the natural constraints eventually map each of the identifiers

{range1 , range2 , diffRange} to a probability vector over possible types. The formal

definition can be found in Section 5.1.

In the context of the library types Char , String , IntArray , and Range, and the builtin

types Int and Bool , the natural constraints bias the choice of both t1 and t2 to be Range,

consistent with logical constraints (1) and (2). The natural constraint (diffRange, t) biases

the choice of t to be Range, but this violates the logical constraint (3), which takes priority.

In all, we get that:

• The algorithm assigns diffRange the type signature

(range1 : Range, range2 : Range, diffRange : Int).

Similarly, on our other examples we get as the maximally natural type signature:

• The algorithm assigns uppercase the type signature

(str : String , uppercase : String).

• The algorithm assigns intEqual3 the type signature

(int1 : Int , int2 : Int , int3 : Int , intEqual3 : Bool).

3.2 Types, Type Structures, and Type Equations

In this section we give the formal definitions of types t and type structures S.

Definition 3.1 (Types).

t type (drawn from a finite set of names, including Bool and Int)

ι ::= Bool | Int base type

ℓ label for field in a record
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S ::= type structure

ι base type

{ℓi : ti
i∈1..n} record type

t1 → t2 function type

Each type t has a unique type equation: type t = S

In particular, each base type ι has the type equation: type ι = ι

Our core syntax does not allow for a type alias type t1 = t2, and nor does it allow

nested type structures such as S1 → S2 or {ℓi : Si
i∈1..n}. However, we can interpret

these as shorthands for the core syntax. Given the definition type t2 = S for t2, we

can interpret the alias type t1 = t2 as being short for type t1 = S. We can interpret

type t = S1 → S2 as meaning type t = t1 → t2 where t1 and t2 are fresh type names

defined by type t1 = S1 and type t2 = S2.

Here is the library in the core syntax, where we have introduced the Int2Char and Int2Int

as names for the function types used in our motivating examples (Section 3.1).

Definition 3.2 (Type Library).

type Bool = Bool

type Int = Int

type Char = Int

type Int2Char = Int→ Char

type Int2Int = Int→ Int

type String = {length : Int, items : Int2Char}
type IntArray = {length : Int , items : Int2Int}
type Range = {length : Int , breadth : Int}

3.3 Definition of Type Equality

This section explains our standard construction of type equality, and also illustrates that

our formalism supports recursive types. Although recursive types are not needed for

the motivating examples in Section 3.1, they arise naturally from our formalism and in

practice.

Let type equality, t <:> t′, hold between two types t and t′ that have the same structure,

disregarding names. We define type equality as a bisimulation relation, following Brandt
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and Henglein (1998). It is a decidable equivalence relation. Amadio and Cardelli (1993)

define recursive types as types defined by recursive type equations. Here is an example

from their paper, the recursive type Cell of an integer-containing memory cell:

type Unit = {}
type Read = Unit→ Int

type Write = Int→ Cell

type Add = Cell→ Cell

type Cell = {read : Read,write : Write, add : Add}

Type equality in our formalism is by structure rather than by name. According to Amadio

and Cardelli (1993), Algol 68 was the first language based on structural type equality in

the presence of recursive types. Intuitively, the abstract structure of a type is a potentially

infinite tree induced by the nested unfolding of its definition. Two types are equal if their

abstract structures are equal.

Building on the literature on subtyping recursive types, we formalize equality of two types’

abstract structure as a co-inductive bisimulation relation (Milner, 1989; Gordon, 1994),

following Brandt and Henglein (1998).

Definition 3.3 (Simulation, Bisimulation, and Type Equality).

• A binary relation on types R is a simulation if and only if:

(1) whenever t R t′ and type t′ = ι, then type t = ι;

(2) whenever t R t′ and type t′ = {ℓi : t′i
i∈1..n}, there are ti with type t = {ℓi : ti

i∈1..n}
and ti R t′i for each i ∈ 1..n;

(3) whenever t R t′ and type t′ = t′1 → t′2 there are t1, t2 such that type t = t1 → t2

and t′1 R t1 and t2 R t′2.

• A relation R is a bisimulation if and only if both R and its converse R−1 are simulations.

• The type equality relation <:> is the union of all bisimulations.

The following holds by standard constructions (Milner, 1989).

Lemma 3.1. Type equality is reflexive, symmetric, and transitive, and is the largest

bisimulation.

Proof. Using standard arguments by constructing bisimulations.

Proposition 3.1. Type equality t <:> t′ is decidable.
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Proof. As a corollary of Lemma 3.1, it follows that t <:> t′ if and only if there is a

bisimulation R such that t R t′. Since there is a finite number of types, there is a finite

number of bisimulations. Hence, equality of two types t and t′ can be decided in principle

by enumerating all the bisimulations in search of the pair (t, t′).

To check type equality in practice, we can adapt existing algorithms for typing and

subtyping recursive types to our system (Amadio and Cardelli, 1993; Brandt and Henglein,

1998).

To exemplify reasoning with bisimulations, we show that the types from Chapter 1 partition

into five equivalence classes: {Bool}, {Int ,Char}, {Int2Char , Int2Int}, {String , IntArray},
and {Range}.

To check that the pairs of types in these classes are equal, consider this relation.

R ≜ {(Int ,Char), (Int2Char , Int2Int), (String , IntArray)}

We can see that both R and R−1 are simulations, and therefore that R is a bisimulation.

By Lemma 3.1, <:> is the largest bisimulation and therefore R ⊆ <:>. It follows that

Int <:> Char , Int2Char <:> Int2Int and String <:> IntArray .

Conversely, we can easily check that types from each of the five equivalence classes cannot

be in a bisimulation with types from any of the others, and therefore cannot be equal.

Most presentations of λ-calculi with recursive types use the notation µt.S for the recursive

type defined by the equation type t = S. Patrignani et al. (2021) include a comprehensive

survey. We do not use the µt.S notation because our goal is an explicit formalism of

named types defined by type equations.

Up to type equality, our example types partition into five type equivalence classes: {Bool},
{Int ,Char}, {Int2Char , Int2Int}, {String , IntArray}, and {Range}.

Additionally, we adopt some type-specific notations for constraints. To do so, we introduce

a relation t <:> S meaning that the type t equals any other with the structure S.

Definition 3.4 (Type Equality). Let the relation t <:> S between type t and type structure

S hold as follows:

(1) t <:> ι, means type t = ι;

(2) t <:> {ℓi : ti
i∈1..n} means there are t′i with type t = {ℓi : t′i

i∈1..n} and ti <:> t′i for

all i ∈ 1..n;
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(3) t <:> t1 → t2 means there are t′i with type t = t′1 → t′2 and ti <:> t′i for all i ∈ 1..2.

Our core type system does not include subtyping, and so the constraints we need are

mostly type equality constraints; a type system with subtyping would use type inclusion

constraints (Aiken and Wimmers, 1993; Aiken et al., 1998).

3.4 Expressions, Values, and Operational Semantics

Expressions and Values

To distinguish between the variables denoting values and functions, we conventionally use

the metavariable x for values and metavariable f for functions. Moreover, variables can

occur either free or bound in an expression. Separately, we have a set of record labels

used to name the fields of a record. We consider labels to be a separate name space from

identifiers; labels cannot be bound.

Definition 3.5 (Syntax of Expressions and Values).

v ::= variable identifiers

x (value) variable

f function variable

ℓ record label

E ::= expression

x variable

b boolean literal (b ∈ {true, false})
c integer literal (c ∈ Z)

E1 ⊕ E2 ⊕ ∈ {−, <,==} selection of binary operators

{ℓi = Ei
i∈1..n} record (n ≥ 0)

E.ℓ projection

E1 ?E2 : E3 conditional expression

let x = E1 in E2 let-expression

λ(x)E lambda abstraction

E1 (E2) application

V ::= value

b | c | {ℓi = Vi
i∈1..n}

λ(x)E at most x free in E

Two of the expression forms are variable binders. In the binder let x = E1 in E2, the
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variable x is bound, with scope E2. In the binder λ(x)E, the variable x is bound, with

scope E. Let fv(E) be the set of variables occurring free in expression E. Let a binder be

shadowed by an inner scope in two cases: (1) it is let x = E1 in E2 with a binder for x in E2;

(2) it is λ(x)E with a binder for x in E. Let an expression be well-scoped if and only if it

has no subexpression that is a binder shadowed by an inner scope, and its bound variables

are distinct from its free variables. For example, let x = y in λ(x)x is not well-scoped

because the inner binder λ(x)x shadows the let-bound x; and let y = x in λ(x)y is not

well-scoped because the free variable x is bound by the lambda abstraction.

Intuitively, no binder within a well-scoped expression E re-defines either a variable free in

or bound within E.

Formally, we define fv(E) as follows.

Definition 3.6 (Free Variables).

fv(x) ≜ {x}
fv(c) ≜ {}
fv({ℓi = Ei

i∈1..n}) ≜
⋃

i∈1..n fv(Ei)

fv(E.ℓ) ≜ fv(E)

fv(E1 − E2) ≜ fv(E1) ∪ fv(E2)

fv(E1 < E2) ≜ fv(E1) ∪ fv(E2)

fv(E1 == E2) ≜ fv(E1) ∪ fv(E2)

fv(E1 ?E2 : E3) ≜ fv(E1) ∪ fv(E2) ∪ fv(E3)

fv(let x = E1 in E2) ≜ fv(E1) ∪ (fv(E2) \ {x})
fv(λ(x)E) ≜ fv(E) \ {x})
fv(E1 (E2)) ≜ fv(E1) ∪ fv(E2)

Operational Semantics, Preservation, and Progress

We define a standard small-step call-by-value reduction relation on closed expressions,

E → E ′, meaning that expression E evolves in one step to expression E ′.

The reduction relation E → E ′ means that expression E evolves in one step to E ′. In the

rules below, we write E[V/x] for the outcome of a capture-avoiding substitution of the

value V for each free occurrence of the variable x in the expression E, with bound variables

consistently renamed to result in a well-scoped expression. If E and V are well-scoped so

is E[V/x].
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Definition 3.7 (Reduction Rules).

(Red-1 Oplus)

E1 → E ′
1 ⊕ ∈ {−, <,>,==}

E1 ⊕ E2 → E ′
1 ⊕ E2

(Red-2 Oplus)

E2 → E ′
2

V1 ⊕ E2 → V1 ⊕ E ′
2

(Red −)
c3 = c1 − c2
c1 − c2 → c3

(Red < True)

if c1 < c2 holds

c1 < c2 → true

(Red < False)

if c1 < c2 does not hold

c1 < c2 → false

(Red == True) (V1, V2 first order)

V1 = V2

V1 == V2 → true

(Red == False) (V1, V2 first order)

V1 ̸= V2

V1 == V2 → false

(Red-1 Proj)

E → E ′

E.ℓ→ E ′.ℓ

(Red-2 Proj)

j ∈ 1..n

{ℓi = Vi
i∈1..n}.ℓj → Vj

(Red Rcd)

Ej → E ′
j j ∈ 1..n

{ℓi = Vi
i∈1..j−1, ℓj = Ej, ℓk = Ek

k∈j+1..n} → {ℓi = Vi
i∈1..j−1, ℓj = E ′

j, ℓk = Ek
k∈j+1..n}

(Red If)

E1 → E ′
1

E1 ?E2 : E3 → E ′
1 ?E2 : E3

(Red If True)

true ?E2 : E3 → E2

(Red If False)

false ?E2 : E3 → E3

(Red-1 Let)

E1 → E ′
1

let x = E1 in E2 → let x = E ′
1 in E2

(Red-2 Let)

let x = V1 in E2 → E2[V1/x]

(Red-1 Lambda)

E1 → E ′
1

E1(E2)→ E ′
1(E2)

(Red-2 Lambda)

E2 → E ′
2

V (E2)→ V (E ′
2)

(Red Appl)

(λ(x)E)(V )→ E[V/x]

Note that for the (Red == True) and (Red == False) we mean equality of values up

to alpha-conversion. As, our type system requires that the type of the values be either Int

or Bool , we only ever care about reductions of well-typed expressions, so we never end up

testing equality between two function values.
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3.5 Declarative Type System

An environment Γ is a finite map from variables to types, written either as x1 : t1, . . . , xn : tn

where n > 0 and the xi are pairwise distinct, or as ∅ for the empty environment. The

purpose of an environment is to assign types to variables. The domain dom(Γ) of an

environment Γ is the set of variables it assigns. Let dom(x1 : t1, . . . , xn : tn) = {x1, . . . , xn}
and dom(∅) = ∅. In what follows, we use as a convention that if Γ contains x : t we write

Γ(x) = t. The core judgment, Γ ⊢ E : t, means that in environment Γ the expression E

has the type t.

Declarative Typing Rules with Retyping

Definition 3.8 (Declarative Typing Rules with Retyping).

(Expr Retype)

Γ ⊢ E : t t <:> t′

Γ ⊢ E : t′

(Expr x)

x ∈ dom(Γ) Γ(x) = t

Γ ⊢ x : t

(Expr b)

b ∈ {true, false}
Γ ⊢ b : Bool

(Expr c)

integer c

Γ ⊢ c : Int

(Expr −)
Γ ⊢ E1 : Int Γ ⊢ E2 : Int

Γ ⊢ E1 − E2 : Int

(Expr <)

Γ ⊢ E1 : Int Γ ⊢ E2 : Int

Γ ⊢ E1 < E2 : Bool

(Expr ==) (t ∈ {Bool , Int})

Γ ⊢ E1 : t Γ ⊢ E2 : t

Γ ⊢ E1 == E2 : Bool

(Expr Rcd)

Γ ⊢ Ei : ti ∀i ∈ 1..n type t = {ℓi : ti
i∈1..n}

Γ ⊢ {ℓi = Ei
i∈1..n} : t

(Expr Proj)

Γ ⊢ E : t j ∈ 1..n type t = {ℓi : ti
i∈1..n}

Γ ⊢ E.ℓj : tj

(Expr If)

Γ ⊢ E1 : Bool Γ ⊢ E2 : t Γ ⊢ E3 : t

Γ ⊢ (E1 ?E2 : E3) : t

(Expr Let) (x /∈ dom(Γ))

Γ ⊢ E1 : t1 Γ, x : t1 ⊢ E2 : t2

Γ ⊢ let x = E1 in E2 : t2

(Expr Lambda) (x /∈ dom(Γ))

Γ, x : t1 ⊢ E : t2 type t = t1 → t2

Γ ⊢ λ(x)E : t

(Expr Appl)

Γ ⊢ E2 : t Γ ⊢ E1 : t1 type t = t1 → t2

Γ ⊢ E2(E1) : t2

The type system captures variable scoping:
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Lemma 3.2. If Γ ⊢ E : t then fv(E) ⊆ dom(Γ).

Proof. The proof is by induction on the depth of the derivation of Γ ⊢ E : t.

Given a type environment, the type of a well-typed expression is unique up to type equality:

Lemma 3.3. If Γ ⊢ E : t1 and Γ ⊢ E : t2 then t1 <:> t2.

Proof. The proof is by induction on the structure of E.

We state a standard weakening and a standard substitution lemma.

Lemma 3.4 (Weakening). If Γ ⊢ E ′ : t′, then Γ, x : t ⊢ E ′ : t′ for any x /∈ dom(Γ) and

type t.

Proof. By induction on the height of the derivation of Γ ⊢ E ′ : t′ using the syntax-directed

rules.

Lemma 3.5 (Substitution). If Γ, x : t,Γ′ ⊢ E ′ : t′ and Γ ⊢ V : t then Γ,Γ′ ⊢ E ′[V/x] : t′.

Proof. By induction on the height of the derivation of Γ, x : t,Γ′ ⊢ E ′ : t′ using the

syntax-directed rules.

Type assumptions can be varied up to type equality:

Lemma 3.6 (Bound Equality). If Γ, x : t ⊢ E : t̂ and t <:> t′ then Γ, x : t′ ⊢ E : t̂.

Proof. By induction on the height of the derivation of Γ, x : t ⊢ E : t̂ using the declarative

typing rules.

We now state progress and preservation theorem for our type system. Progress means that

a closed well-typed program can always make positive progress, as opposed to failing in a

stuck state. Preservation means that the outcome of a progression is well-typed, so long

as the starting point is.

Theorem 3.1 (Progress). If ∅ ⊢ E : t either (1) there is a value V such that E = V , or

(2) there is an expression E ′ such that E → E ′.

Proof. By induction on the height of the derivation of ∅ ⊢ E : t.

Theorem 3.2 (Preservation). If Γ ⊢ E : t and E → E ′ then Γ ⊢ E ′ : t.
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Proof. By induction on the height of the derivation of E → E ′.

In the next section we introduce syntax-directed typing rules as an alternative set of type

rules for deriving judgments of the form Γ ⊢ E : t. We do so as these rules because make

some proofs easier, but we present the rules with (Expr Retype) as primary because

they do not need the auxiliary relation

Next we present the syntax-directed typing rules.

Syntax-directed Presentation of Declarative Type System

This section presents an alternative syntax-directed set of rules for the judgment Γ ⊢ E : t,

and shows that the relations inductively defined by the rules in (Declarative Typing Rules

with Retyping) and (Syntax-directed Declarative Typing Rules) are one and the same

(Proposition 3.3).

This alternative set of rules is syntax-directed in the sense that there is one rule for each

syntactic form of expression, unlike the rules above because of (Expr Retype); the work

done by (Expr Retype) of closing the judgment up to type equality is moved into each

of the syntax-directed rules, using an auxiliary relation t <:> S defined in Definition 3.3.

Definition 3.9 (Syntax-directed Declarative Typing Rules).

In these rules, the notation t1 <:> t2 <:> ι means t1 <:> ι and t2 <:> ι.

(Decl Expr x)

x ∈ dom(Γ) Γ(x) = t t <:> t′

Γ ⊢ x : t′

(Decl Expr b)

b ∈ {true, false} t <:> Bool

Γ ⊢ b : t

(Decl Expr c)

integer c t <:> Int

Γ ⊢ c : t

(Decl Expr −) (t1 <:> t2 <:> Int)

Γ ⊢ E1 : t1 Γ ⊢ E2 : t2 t <:> Int

Γ ⊢ E1 − E2 : t

(Decl Expr <) (t1 <:> t2 <:> Int)

Γ ⊢ E1 : t1 Γ ⊢ E2 : t2 t <:> Bool

Γ ⊢ E1 < E2 : t

(Decl Expr ==) (t1 <:> t2 <:> Bool or t1 <:> t2 <:> Int)

Γ ⊢ E1 : t1 Γ ⊢ E2 : t2 t <:> Bool

Γ ⊢ E1 == E2 : t

(Decl Expr Rcd)

Γ ⊢ Ei : ti ∀i ∈ 1..n t <:> {ℓi : ti
i∈1..n}

Γ ⊢ {ℓi = Ei
i∈1..n} : t

(Decl Expr Proj) (t <:> {ℓi : ti i∈1..n})

Γ ⊢ E : t j ∈ 1..n

Γ ⊢ E.ℓj : tj
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(Decl Expr If) (t′ <:> Bool)

Γ ⊢ E1 : t′ Γ ⊢ E2 : t Γ ⊢ E3 : t

Γ ⊢ (E1 ?E2 : E3) : t

(Decl Expr Let) (x /∈ dom(Γ))

Γ ⊢ E1 : t1 Γ, x : t1 ⊢ E2 : t2

Γ ⊢ let x = E1 in E2 : t2

(Decl Expr Lambda) (x /∈ dom(Γ))

Γ, x : t1 ⊢ E : t2 t <:> t1 → t2

Γ ⊢ λ(x)E : t

(Decl Expr Appl) (t2 <:> t1 → t)

Γ ⊢ E2 : t2 Γ ⊢ E1 : t1

Γ ⊢ E2(E1) : t

Lemma 3.7. For all name types t, t′, and structures S, if t <:> S and t′ <:> S then

t <:> t′.

Proof. By a case analysis.

Proposition 3.2. If Γ ⊢ E : t using the rules of (Syntax-directed Declarative Typing

Rules) and t <:> t′ then Γ ⊢ E : t′.

Proof. We proceed by a case analysis of the derivation of Γ ⊢ E : t according to the rules

of (Syntax-directed Declarative Typing Rules).

(Decl Expr x) Suppose that Γ ⊢ x : t because x ∈ dom(Γ) and Γ(x) = t′′ and t <:> t′′.

Suppose also that t <:> t′. By transitivity we have that t′′ <:> t′. By applying

(Decl Expr x) for x ∈ dom(Γ) and Γ(x) = t and t <:> t′′ we get that Γ ⊢ x : t′′.

(Decl Expr b) Suppose that Γ ⊢ b : t because b ∈ {true, false} and t <:> Bool .

Suppose also that t <:> t′. By transitivity we have that t′ <:> Bool . By applying

(Decl Expr b) for b ∈ {true, false} and t′ <:> Bool we get that Γ ⊢ b : t′.

(Decl Expr c) Suppose that Γ ⊢ c : t because integer c and t <:> Int . Suppose also

that t <:> t′. By transitivity we have that t′ <:> Int . By applying (Decl Expr b)

for integer c and t′ <:> Int we get that Γ ⊢ c : Int.

(Decl Expr −) Suppose that Γ ⊢ E1 − E2 : t because Γ ⊢ E1 : t1, Γ ⊢ E2 : t2,

t1 <:> t2 <:> Int , and t <:> Int . Suppose also that t <:> t′. By transitivity we

have that t′ <:> Int . By applying (Decl Expr −) for Γ ⊢ E1 : t1, Γ ⊢ E2 : t2,

t1 <:> t2 <:> Int , and t′ <:> Int we get that Γ ⊢ E1 − E2 : t′.

(Decl Expr <) Suppose that Γ ⊢ E1 < E2 : t because Γ ⊢ E1 : t1, Γ ⊢ E2 : t2,

t1 <:> t2 <:> Int and t <:> Bool . Suppose also that t <:> t′. By transitivity we

have that t′ <:> Bool . By applying (Decl Expr <) for Γ ⊢ E1 : t1, Γ ⊢ E2 : t2,

t1 <:> t2 <:> Int , and t′ <:> Bool we get that Γ ⊢ E1 < E2 : t′.
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(Decl Expr ==) Suppose that Γ ⊢ E1 == E2 : t because Γ ⊢ E1 : t1, Γ ⊢ E2 : t2,

t1 <:> t2 <:> Bool or t1 <:> t2 <:> Int , and t <:> Bool . Suppose also that

t <:> t′. By transitivity we have that t′ <:> Bool . By applying (Decl Expr

==) for Γ ⊢ E1 : t1, Γ ⊢ E2 : t2, t1 <:> t2 <:> Bool or t1 <:> t2 <:> Int , and

t′ <:> Bool we get that Γ ⊢ E1 == E2 : t′.

(Decl Expr Rcd) Suppose that Γ ⊢ {ℓi = Ei
i∈1..n} : t because Γ ⊢ Ei : ti ∀i ∈ 1..n

and t <:> {ℓi : ti
i∈1..n}. Suppose also that t <:> t′.

Definition 3.3 it must be that there is J = {ℓjj∈1..n} = {ℓii∈1..n} and t′j such that

type t′ = {ℓj : t′j
j∈1..n} and tj <:> t′j for each j ∈ 1..n. By induction for all j ∈ 1..n,

if tj <:> t′j and Γ ⊢ Ej : tj then Γ ⊢ Ej : t′j. Now, by applying (Decl Expr Rcd)

for Γ ⊢ Ej : tj ∀j ∈ 1..n t <:> {ℓj : tj
j∈1..n} we get that Γ ⊢ {ℓj = Ej

j∈1..n} : t′.

By transitivity we have that t′ <:> {ℓi : ti
i∈1..n}. By applying (Decl Expr Rcd)

for Γ ⊢ Ei : ti ∀i ∈ 1..n and t′ <:> {ℓi : ti
i∈1..n} we get that Γ ⊢ {ℓi = Ei

i∈1..n} : t′.

(Decl Expr Proj) Suppose that Γ ⊢ E.ℓj : tj because Γ ⊢ E : E : t j ∈ 1..n and

t <:> {ℓi : ti
i∈1..n}. Suppose also that tj <:> t′. By Definition 3.3 it must be

that there are type t′ = {ℓi : t′i
i∈1..n}, By applying (Decl Expr Proj) for

Γ ⊢ E : t j ∈ 1..n and Γ ⊢ E.ℓj : tj and t′ <:> we get that Γ ⊢: E.ℓj : t′j.

(Decl Expr If) Suppose that Γ ⊢ (E1 ?E2 : E3) : t because Γ ⊢ E1 : t1, Γ ⊢ E2 : t2,

Γ ⊢ E3 : t t′ <:> Bool . Suppose also that t <:> t′. By transitivity we have that

t′ <:> Bool . By applying (Decl Expr If) for Γ ⊢ E1 : t′ Γ ⊢ E2 : t Γ ⊢ E3 : t

and for t′ <:> Bool we get that Γ ⊢ (E1 ?E2 : E3) : t′.

(Decl Expr Let) Suppose that Γ ⊢ let x = E1 in E2 : t2 because Γ ⊢ E1 : t1 Γ, x :

t1 ⊢ E2 : t2. Suppose also that t2 <:> t′. By transitivity we have that t′ <:> t2. By

applying (Decl Expr Let) for Γ ⊢ E1 : t1 Γ, x : t1 ⊢ E2 : t2 and t′ <:> t2 we get

that Γ ⊢ let x = E1 in E2 :: t′.

(Decl Expr Lambda) Suppose that Γ ⊢ λ(x)E : t because t <:>. Suppose also that

t <:> t′. By transitivity we have that t′ <:>. By applying (Decl Expr Lambda)

for Γ ⊢ λ(x)E : t and t′ <:> we get that Γ ⊢: t′. Suppose that Γ ⊢ λ(x)E : t because

type t = t1 → t2 and Γ, x : t1 ⊢ E : t2. We also assume that t <:> t′. By 3.3 it

must also be that type t′ = t′1 → t′2 such that t′1 <:> t1 and t2 <:> t′2. Now, by

applying (Decl Expr Lambda) for Γ, x : t′1 ⊢ E : t′2, we get Γ ⊢ λx.E : t′.

(Decl Expr Appl) Suppose that Γ ⊢ E2(E1) : t because t2 <:> t1 → t and E2 : t2 Γ ⊢
E1 : t1. Suppose also that t→ t′. By transitivity we have that t′ <:> t. By 3.3 it
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must also be that type t′ = t′1 → t′2 such that t′1 <:> t1 and t2 <:> t′2. By applying

(Decl Expr Appl) for Γ ⊢ E2 : t2 Γ ⊢ E1 : t1 and t2 <:> t1 <:> t′ we get that

Γ ⊢ E2(E1) : t′.

(Declarative Typing Rules with Retyping) and (Syntax-directed Declarative Typing Rules)

define one and the same relation.

Proposition 3.3. The judgment Γ ⊢ E : t is derivable using the rules of (Declarative

Typing Rules with Retyping) if and only if Γ ⊢ E : t is derivable using the rules of

(Syntax-directed Declarative Typing Rules).

Proof. The proof breaks down into proving the two halves separately.

(1) If Γ ⊢ E : t is derivable using (Declarative Typing Rules with Retyping) then Γ ⊢ E : t

is derivable using (Syntax-directed Declarative Typing Rules).

(2) If Γ ⊢ E : t is derivable using (Syntax-directed Declarative Typing Rules) then

Γ ⊢ E : t is derivable using the (Declarative Typing Rules with Retyping).

The proof of part (1) is by induction on the structure of E. In each case, we consider that

the derivation must follow from one of the syntax-directed rules of (Declarative Typing

Rules with Retyping) together with zero or more usages of (Expr Retype). We build a

derivation using the corresponding rule from (Syntax-directed Declarative Typing Rules),

and apply Proposition 3.2 to complete the derivation (doing the work of (Expr Retype)).

The proof of part (2) is by induction on the structure of E. In each case, we build a

derivation using the corresponding rule from (Declarative Typing Rules with Retyping),

and apply (Expr Retype) to complete the derivation.

Background: Structural vs. Nominal Type Systems

Pierce (2002) writes: “Type systems like Java’s, in which names are significant and

subtyping is explicitly declared, are called nominal.” In contrast, a structural type system

is one where “names are inessential and subtyping is defined directly on the structures of

types.” In our setting, names are inessential to type equality (or to the subtyping relation

obtained as the union of all simulations). Therefore, our type system is structural and not

nominal. Still, it is worth noting that our typing judgment Γ ⊢ E : t is name-based and

not structure-based, in the sense that it ascribes only a type name t to an expression, and
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not a syntactic structure S. In contrast, Featherweight Java (Igarashi et al., 2001) has

both a typing judgment that is name-based and a nominal type system.

3.6 The Type Inference Problem for Function Defini-

tions

We have now assembled enough formal definitions to define the task introduced in Chapter 1.

Problem 3.1 (Type Signature). Consider a top-level untyped function definition with the

following syntax:

function f(x1, . . . , xn) return E

Let a type signature for f be a tuple Σ ≜ (x1 : t1, . . . , x2 : tn, f : t) of type names, such

that the following type assignment is derivable:

x1 : t1, . . . , xn : tn ⊢ E : t

If (x1 : t1, . . . , xn : tn, f : t) is a type signature, we can introduce a type so that the value

λ(x1) . . . λ(xn)E has type t, and hence can be called as a function from typed code.

As shown in Section 3.1 our three running examples all exhibit ambiguities that we will

resolve using natural information.



4
Type Inference by Accumulating Logical Con-

straints

The purpose of this chapter is to define an algorithmic typing system for the core language

of Section 7.3. The goal of this type system is to encode typing constraints by accumulating

logical constraints over type variables; this step will enable us to constructively combine the

logical constraints with other sources of information in Chapter 5. We first describe related

definitions and syntax for these typing constraints, and then present the corresponding

algorithmic type system. We continue by proving some formal properties for this system

and by showing what are the logical constraints that the algorithmic type system produces

for our motivating examples. We then conclude this chapter by giving some references to

related work on type inference by accumulating constraints.

Section 4.1 defines basic concepts that are needed for the description and usage of the

logical constraints in the rest of the dissertation. We construct these constraints as logical

formulae (Definition 4.2) over type variables (Definition 4.1). Thus we need to define

a valuation that maps type variables to nominal types of Section 7.3 (Definition 4.3)

and what does logical satisfaction mean in this case (Definition 4.4). Additionally, in

Definition 4.6 we give a compact derived syntax to generalize the Definition 3.4 for type

variables; we use this syntax to describe the algorithmic type system that follows.

Section 4.2 provides the (Algorithmic Typing Rules), where essentially for each rule of

the (Declarative Typing Rules with Retyping) we define a corresponding rule to the new

system. The core judgement of the algorithmic type system proposed in this chapter,

emits a logical formula C which encodes the desired constraints using Definition 4.6, along

with a set of pairs V, which associates variable identifiers to their corresponding type

35
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variables. The type system is designed in such a way that any type that can be ascribed

to E by Definition 3.8 corresponds to a variable valuation µ that satisfies the formula.

Hence the formula captures logically the ways in which the expression may be type correct.

Intuitively, we need these constraints to make sure that when we later combine them with

the natural ones, our predictions will be sound.

In Section 4.3 we prove termination, soundness and completeness for (Algorithmic Typing

Rules) and we state an important corollary (Corollary 4.1) that enables to show how

this system corresponds to the claims we make in Section 3.1 about our three motivating

examples of untyped function definitions. Finally, in Section 4.3 we apply Corollary 4.1 to

our motivating examples and show the corresponding logical constraints.

4.1 Type Variables, Logical Constraints, Type Vari-

able Valuation

To encode constraints C (Definition 4.2) on type variables α (Definition 4.1) we use

formulas in Equational logic. Equational logic relies on Boolean operators and equational

predicates of the form α = t, which denote that a type variable α is of type t; the logic

considers types simply as atomic names and does not depend on any other properties,

such as type equality.

Hence, a constraint α = String holds if α denotes the type name String , but does not hold

if α denotes IntArray , even though String <:> IntArray .

Definition 4.1 (Type Variables).

α type variable

Let A be a set to range over finite sets of type variables.

Let tyvar(α) = {α}.

Definition 4.2 (Equational Logic).

C ::= logical formula or constraint

true

α = t equation, between type variable α and type name t

¬ C negation

C ∨ C disjunction
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Let tyvar(C) be the set of type variables occurring in C.

Let C be the set of all constraints.

As usual in classical logic, we define false ≜ ¬true and C1 ∧ C2 ≜ (¬C1) ∨ (¬C2).

Definition 4.3 (Type Variable Valuation µ). A valuation µ is a finite map {αi = ti
i∈1..n}

that maps a type variable αi to a nominal type ti with µ(αi) = ti. Let dom(µ) = {αi | i ∈
1..n}, the finite set of type variables in the domain of µ.

We also introduce a notation µ(Γ◦) that lifts a variable valuation µ to apply to an

algorithmic environment Γ◦. Let µ(Γ◦) = x1 : µ(α1), . . . , xn : µ(αn) if environment

Γ◦ = x1 : α1, . . . , xn : αn.

We define a logical satisfaction relation µ |= C, when tyvar(C) ⊆ dom(µ), by induction on

the size of C, as follows:

Definition 4.4 (Logical Satisfaction Relation).

µ |= true always

µ |= α = t if and only if µ(α) = t

µ |= ¬ C if and only if not µ |= C

µ |= C1 ∨ C2 if and only if µ |= C1 or µ |= C2

Let constraint C be satisfiable if and only if there is a valuation µ such that µ |= C.

We say that such an µ is a model for C.

Our standard notations behave as expected:

• µ |= false never;

• µ |= C1 ∧ C2 if and only if µ |= C1 and µ |= C2.

Background: Type Inference by Accumulating Constraints

While it is standard to accumulate sets of constraints on type variables, since Milner’s

Algorithm W (Milner, 1978), our introduction of disjunctive constraints to handle ambiguity

is less common. While Milner’s system finds the principal type scheme of a function

definition, ours finds the maximally natural subject to being sound. Milner uses unification

to simplify constraints as they are generated. For now, we omit constraint simplification

from our theory so as to emphasise the generation of constraints. But as a next step, in

Chapter 7 we convert these logical constraints to a formula in propositional logic and
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eventually as an input to a MaxSAT solver, which simplifies the constraints. However, for

the sake of readability we define logical equivalence between two formulas as follows:

Definition 4.5 (Logical Equivalence). Let C ∼ C ′ mean that for all µ with tyvar(C,C ′) ⊆
dom(µ), µ |= C if and only if µ |= C ′.

Logical equivalence is reflexive, transitive, and symmetric, and is a congruence. The

relation satisfies expected laws of logical equivalence, including associative, commutative,

identity, and domination laws for each of ∧ and ∨, and distributive laws relating them.

(There is a rich literature on simplifying type inclusion constraints (Aiken and Wimmers,

1993; Aiken et al., 1998).)

Additionally, we adopt some type-specific notations for constraints, to do so we use the

relation defined on Definition 3.4 and define a derived syntax to notate the relation

α <:> S ′, which we use on Definition 4.7. Note that S ′ is defined in the same way as S

where a concrete type t has been replaced with a type variable α. We adopt standard

notation for conjunction and disjunction of sets of constraints. If we have a set of constraints

{Ci | i ∈ I} for a finite indexing set I = {i1, . . . , in}, the notation
∧

i∈I Ci means the

conjunction Ci1 ∧ · · · ∧ Cin , and in particular means true if I = ∅. Similarly, the notation∨
i∈I Ci means the disjunction Ci1 ∨ · · · ∨ Cin , and in particular means false if I = ∅.

Definition 4.6 (Derived Syntax for Constraints).

α <:> ι ≜
∨

t∈I α = t where I = {t | t <:> ι}
α <:> α′ ≜

∨
(t,t′)∈I(α = t ∧ α′ = t′) where I = {(t, t′) | t <:> t′}

α <:> {ℓi : αi
i∈1..n} ≜

∨
(t,t1,...,tn)∈I(α = t ∧

∧
i∈1..n αi = ti)

where I = {(t, t1, . . . , tn) | t <:> {ℓi : ti
i∈1..n}}

α′ <:> α.ℓ ≜
∨

(t,t′)∈I(α = t ∧ α′ = t′)

where I = {(t, t′) | ∃n, j ∈ 1..n, ℓ1, t1, . . . , ℓn, tn : t <:> {ℓi : ti
i∈1..n}, ℓ = ℓj, t

′ = tj}
α <:> α1 → α2 ≜

∨
(t,t1,t2)∈I(α = t ∧ α1 = t1 ∧ α2 = t2)

where I = {(t, t1, t2) | t <:> t1 → t2}

These derived forms of constraints are satisfied as follows:

Lemma 4.1 (Logical Satisfaction for Derived Syntax).

a. µ |=
∧

i∈I Ci if and only if ∀i ∈ I : µ |= Ci

b. µ |=
∨

i∈I Ci if and only if ∃i ∈ I : µ |= Ci

c. µ |= α <:> ι if and only if µ(α) <:> ι

d. µ |= α <:> α′ if and only if µ(α) <:> µ(α′)
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e. µ |= α <:> {ℓi : αi
i∈1..n} if and only if µ(α) <:> {ℓi : µ(αi)

i∈1..n}
f. µ |= α′ <:> α.ℓ if and only if ∃ n, ℓ1, t1, . . . , ℓn, tn and j ∈ 1..n :

µ(α) <:> {ℓi : ti
i∈1..n} and µ(α′) <:> tj and ℓ = ℓj

g. µ |= α <:> α1 → α2 if and only if µ(α) <:> µ(α1)→ µ(α2).

Proof.

a. Suppose that we have an empty indexing set I = ∅.

µ |=
∧
i∈I

Ci

if and only if true (Definition of the notation)

b. Suppose that we have a finite indexing set I = {i1, . . . , in}.

µ |=
∧
i∈I

Ci

if and only if µ |= Ci1 ∧ · · · ∧ Cin (Definition of the notation)

if and only if ∀i ∈ I : µ |= Ci (Definition 4.4)

c. Suppose that we have an empty indexing set I = ∅.

µ |=
∨
i∈I

Ci

if and only if false (Definition of the notation)

Suppose that we have a finite indexing set I = {i1, . . . , in}.

µ |=
∨
i∈I

Ci

if and only if µ |= Ci1 ∨ · · · ∨ Cin (Definition of the notation)

if and only if ∃i ∈ I : µ |= Ci (Definition 4.4)
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d. Consider any µ, α, ι. Let I = {t | t <:> ι}

µ |= α <:> ι

if and only if µ |=
∨
t∈I

(α = t) (Definition 4.6)

if and only if ∃t ∈ I : µ(α) = t (Part b)

if and only if ∃t ∈ I : t <:> ι and µ(α) = t

if and only if µ(α) <:> ι (Definition 4.3)

e. Consider any µ, α, α′. Let I = {(t, t′) | t <:> t′}

µ |= α <:> α′

if and only if µ |=
∨

(t,t′)∈I

(α = t ∧ α′ = t′) (Definition 4.6)

if and only if ∃(t, t′) ∈ I : µ(α) = t and µ(α′) = t′ (Part b)

if and only if ∃(t, t′) : t <:> t′ and µ(α) = t and µ(α′) = t′

if and only if µ(α) <:> µ(α′) (Definition 4.3)

f. Consider any µ, α, n, ℓ1, ..., ℓn. Let I = {(t, t1, . . . , tn) | t <:> {ℓi : ti
i∈1..n}

µ |= α <:> {ℓi : αi
i∈1..n}

if and only if µ |=
∨

(t,t1,...,tn)∈I

(α = t ∧
∧

i∈1..n

αi = ti) (Definition 4.6)

if and only if ∃(t, t1, . . . , tn) ∈ I : µ(α) = t and

µ(α1) = t1 and . . . and µ(αn) = tn (Part a,b)

if and only if ∃(t, t1, . . . , tn) ∈ I : t <:> {ℓi : ti
i∈1..n} and

µ(α) = t and µ(α1) = t1 and . . . and µ(αn) = tn

if and only if µ(α) <:> {ℓi : µ(αi)
i∈1..n} (Definition 4.3)

g. Consider any µ, α, α′, ℓ. Let I = {(t, tj) | t <:> {ℓi : ti
i∈1..n}, ℓ = ℓj, j ∈ 1..n}}

µ |= α′ <:> α.ℓ

if and only if µ |=
∨

(t,t′)∈I

(α = t ∧ α′ = t′)

if and only if ∃(t, t′) ∈ I : µ(α) = t and µ(α′) = t′ (Part b)

if and only if ∃(t, t′) ∈ I : t <:> {ℓi : ti
i∈1..n}, ℓ = ℓj, j ∈ 1..n}
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and µ(α) = t and µ(α′) = t′

if and only if ∃n, ℓ1, t1, . . . , ℓn, tn and j ∈ 1..n :

µ(α) <:> {ℓi : ti
i∈1..n} and µ(α′) <:> tj and

ℓ = ℓj and j ∈ 1..n (Definition 4.3)

h. Consider any µ, α, α1, α2. Let I = {(t, t1, t2) | t <:> t1 → t2}

µ |= α <:> α1 → α2

if and only if µ |=
∨

(t,t1,t2)∈I

(α = t ∧ α1 = t1 ∧ α2 = t2) (Definition 4.6)

if and only if ∃(t, t1, t2) ∈ I :

µ(α) = t and µ(α1) = t1 and µ(α2) = t2 (Part b)

if and only if ∃(t, t1, t2) ∈ I : t <:> t1 → t2 and

µ(α) = t and µ(α1) = t1 and µ(α2) = t2

if and only if µ(α) <:> µ(α1)→ µ(α2) (Definition 4.3).

Our core type system does not include subtyping, and so the constraints we need are

mostly type equality constraints; a type system with subtyping would use type inclusion

constraints (Aiken and Wimmers, 1993; Aiken et al., 1998).

4.2 Algorithmic Type System

An algorithmic type environment Γ◦ is a finite map from identifiers to type variables,

written either as x1 : α1, . . . , xn : αn where n > 0 and the xi are pairwise distinct, or as ∅
for the empty environment. Let dom(x1 : α1, . . . , xn : αn) = {x1, . . . , xn} and dom(∅) = ∅.

Let tyvar(x1 : α1, . . . , xn : αn) = {α1, . . . , αn} and tyvar(∅) = ∅.

Additionally, the type system outputs an overall record V of when an identifier corresponds

to a type variable. The record V is a finite set V = {(x1, α1), . . . , (xn, αn)} of what we call

natural facts, pairs of identifiers xi and type variables αi. Section 5.1 shows how this set

serves as an input to construct natural constraints for E. Let tyvar(V) = {α | (x, α) ∈ V}.

The judgment of our algorithmic type system takes the form Γ◦ ⊢ E ⇒ α (C,V) meaning

that in Γ◦ the expression E emits a type variable α, a logical formula C, which accumulates

all the logical constraints in E, and a set V of natural facts that associates exactly all
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bound variables in E with type variables from Γ◦ or C.

The rules for deriving Γ◦ ⊢ E ⇒ α (C,V) are as follows. We rely on the notation

tyvar(ψ1, . . . , ψn) that means the set of variables tyvar(ψ1) ∪ · · · ∪ tyvar(ψn), where each

ψi is a syntactic phrase that is either an environment Γ◦, a type variable α, a logical

constraint C, or the set V.

The auxiliary function newtyvar(Γ◦, α, C,V) determines the type variables that are fresh

in the derivation of Γ◦ ⊢ E ⇒ α (C,V), that is, the variables tyvar(α,C,V) occurring in

the output that are not in tyvar(Γ◦), the variables of the input. By definition, it follows

that tyvar(α,C,V) ⊆ tyvar(Γ◦) ∪ newtyvar(Γ◦, α, C,V).

Definition 4.7 (Algorithmic Typing Rules).

Let newtyvar(Γ◦, α, C,V) = tyvar(α,C,V) \ tyvar(Γ◦).

(Algo x)

x ∈ dom(Γ◦) Γ◦(x) = α

Γ◦ ⊢ x⇒ α (true,∅)

(Algo b) (α /∈ tyvar(Γ◦))

b ∈ {true, false}
Γ◦ ⊢ b⇒ α (α <:> Bool ,∅)

(Algo c) (α /∈ tyvar(Γ◦))

integer c

Γ◦ ⊢ c⇒ α (α <:> Int ,∅)

(Algo −) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 − E2 ⇒ α (α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

(Algo <) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 < E2 ⇒ α (α <:> Bool ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

(Algo ==) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 == E2 ⇒ α (α <:> Bool ∧
∨

ι∈{Bool ,Int}(α1 <:> ι ∧ α2 <:> ι) ∧ C1 ∧ C2,V1 ∪ V2)

(Algo Rcd) (α /∈
⋃

i∈1..n tyvar(Γ◦, αi, Ci,Vi) and sets newtyvar(Γ◦, αi, Ci,Vi) disjoint)

Γ◦ ⊢ Ei ⇒ αi (Ci,Vi) ∀i ∈ 1..n

Γ◦ ⊢ {ℓi = Ei
i∈1..n} ⇒ α (α <:> {ℓi : αi

i∈1..n} ∧
∧

i∈1..nCi,
⋃

i∈1..n Vi)

(Algo Proj) (α′ /∈ tyvar(Γ◦, α, C,V))

Γ◦ ⊢ E ⇒ α (C,V)

Γ◦ ⊢ E.ℓ⇒ α′ (α′ <:> α.ℓ ∧ C, V )

(Algo If) (sets newtyvar(Γ◦, αi, Ci,Vi) disjoint)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2) Γ◦ ⊢ E3 ⇒ α3 (C3,V3)

Γ◦ ⊢ (E1 ?E2 : E3)⇒ α2 (α1 <:> Bool ∧ α2 <:> α3 ∧
∧

i∈1..3Ci,
⋃

i∈1..3 Vi)
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(Algo Let) (x /∈ dom(Γ◦) and α1 /∈ tyvar(Γ◦) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar((Γ◦, x : α1), α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦, x : α1 ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ let x = E1 in E2 ⇒ α2 (C1 ∧ C2, {(x, α1)} ∪ V1 ∪ V2)

(Algo Lambda) (x /∈ dom(Γ◦) and α1 /∈ tyvar(Γ◦) and α /∈ tyvar(Γ◦, α1, α2, C,V))

Γ◦, x : α1 ⊢ E ⇒ α2 (C,V)

Γ◦ ⊢ λ(x)E ⇒ α (α <:> α1 → α2 ∧ C, {(x, α1)} ∪ V )

(Algo Appl) (α /∈ tyvar(Γ◦, C2, C1,V2,V1) and newtyvar(Γ◦, α2, C2,V2) ∩ newtyvar(Γ◦, α1, C1,V1) = ∅)

Γ◦ ⊢ E2 ⇒ α2 (C2,V2) Γ◦ ⊢ E1 ⇒ α1 (C1,V1)

Γ◦ ⊢ E2(E1)⇒ α (α2 <:> α1 → α ∧ C1 ∧ C2,V1 ∪ V2)

We call this relation algorithmic because it is a nondeterministic specification for an

algorithm that given inputs Γ◦ and E computes outputs α, C, and V such that Γ◦ ⊢ E ⇒
α (C,V). Most of the rules pick a variable α to represent the type of the expression; these

variables are freshly generated in the sense of being chosen arbitrarily so long as they are

distinct from existing variables. The only nondeterminism in the rules arises from the

choice of these fresh type variables.

Take the rule (Algo −) for example.

(Algo −) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 − E2 ⇒ α (α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

The rule illustrates the two kinds of side-condition needed for freshness.

(1) The first kind, exemplified by α /∈ tyvar(Γ◦, C1, C2,V1,V2), ensures that the fresh

variable α is distinct from other variables in the current derivation: distinct both from

the input Γ◦ or the output components C1, C2 and V1,V2.

(2) The second kind, exemplified by newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) =

∅, ensures the disjointness of the sets of fresh variables picked by independent parallel

derivations, such as Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Γ◦ ⊢ E2 ⇒ α2 (C2,V2).

A third kind of side-condition is x /∈ dom(Γ◦) in (Algo Let) and (Algo Lambda);

these ensure that the input expression E is well-scoped, and that environments only bind

distinct variables.

Altogether, these three kinds of side-conditions ensure the following basic property:

Lemma 4.2. If Γ◦ ⊢ E ⇒ α (C,V) then E is well-scoped.
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Proof. By induction on the depth of derivation of Γ◦ ⊢ E ⇒ α (C,V).

Disjunctive logical constraints (written either explicitly, or implicitly using derived notations

of Definition 4.6) represent alternative typings in the following rules:

• (Algo ==): which overloading of the equality operator;

• (Algo Rcd): which named record type to return;

• (Algo Proj): which named record type from which to extract a field;

• (Algo Lambda): which named function type to return;

• (Algo Appl): which named named function type to apply.

Type Variables may have Zero, One, or More Identifiers

In (Algorithmic Typing Rules) we need the set V of natural facts as each type variable

can be associated with zero, one, or more identifiers. For instance the (Algo Proj) rule

introduces a fresh type variable α′ which does not correspond to any identifier. While in

the program below, we show that a type variable can be associated with three distinct

value variables.

λ(y) // V = {(y , α1 )}
let x1 = y in // V = {(y , α1 ), (x1 , α1 )}
let x2 = y in // V = {(y , α1 ), (x1 , α1 ), (x2 , α1 )}
x1 − x2

4.3 Formal Properties: Termination, Soundness, and

Completeness

Every well-scoped expression determines a logical constraint and a set of (id,type variable)

pairs.

Theorem 4.1 (Termination). Suppose E is well-scoped and fv(E) ⊆ {x1, . . . , xn}. For
pairwise distinct α1, . . .αn, there are α, C, V such that x1 : α1, . . . , xn : αn ⊢ E ⇒
α (C,V).

Proof. Existence holds by induction on the structure of E.

Lemma 4.3. If Γ◦ ⊢ E ⇒ α (C,V) then α ∈ dom(Γ◦) ∪ newtyvar(Γ◦, α, C,V).
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Proof. By induction on the derivation of Γ◦ ⊢ E ⇒ α (C,V), with appeal to the definition

that newtyvar(Γ◦, α, C,V) = tyvar(α,C,V) \ tyvar(Γ◦).

Lemma 4.4. If Γ◦ ⊢ E ⇒ α (C,V) then tyvar(C) ⊆ dom(Γ◦) ∪ newtyvar(Γ◦, α, C,V).

Proof. By definition, newtyvar(Γ◦, α, C,V) = tyvar(α,C,V) \ tyvar(Γ◦).

Lemma 4.5. If µ ∪ µ′ |= C and dom(µ′) ∩ tyvar(C) = ∅ then µ |= C.

Proof. By induction on the derivation of Γ◦ ⊢ E ⇒ α (C,V)

Lemma 4.6 (Soundness). If Γ◦ ⊢ E ⇒ α (C,V) and dom(µ) = tyvar(Γ◦) and dom(µ′) =

newtyvar(Γ◦, α, C,V) and (µ ∪ µ′)(α) <:> t and µ ∪ µ′ |= C then µ(Γ◦) ⊢ E : t.

Proof. For the reader’s convenience we present here only a representative subset of the

total number of cases. The rest cases can be found in the Appendix A. It suffices to prove

that for all Γ◦, E, α, C, V, µ, µ′, t that, if

(1) Γ◦ ⊢ E ⇒ α (C,V)

(2) dom(µ) = tyvar(Γ◦)

(3) dom(µ′) = newtyvar(Γ◦, α, C,V)

(4) (µ ∪ µ′)(α) <:> t

(5) µ ∪ µ′ |= C

then µ(Γ◦) ⊢ E : t.

The proof is by induction on the derivation of (1) Γ◦ ⊢ E ⇒ α (C,V). We proceed by

considering each rule that can derive judgment (1). Notice that in each case, there can

only be one rule from Definition 3.9 that can derive the declarative judgement. In each

case, we can assume (2) dom(µ) = tyvar(Γ◦), (3) dom(µ′) = newtyvar(Γ◦, α, C,V), (4)

(µ ∪ µ′)(α) <:> t, and (5) µ ∪ µ′ |= C.

Case E = x. Our judgment (1) is derived as follows, with E = x and C = true and V = ∅.

(Algo x)

x ∈ dom(Γ◦) Γ◦(x) = α

Γ◦ ⊢ x⇒ α (true,∅)

Given this and (2), (3), (4), and (5), we are to show µ(Γ◦) ⊢ x : t.

From (3) we have:

dom(µ′) = newtyvar(Γ◦, α, C,V)



46 CHAPTER 4. TYPE INFERENCE BY ACCUMULATING LOGICAL CONSTRAINTS

= tyvar(α,C,V) \ tyvar(Γ◦)

= tyvar(α, true,∅) \ tyvar(Γ◦)

= ∅, because α ∈ tyvar(Γ◦)

and so it must be that µ′ = ∅.

Since x ∈ dom(Γ◦) and Γ◦(x) = α, by Definition 4.3 it must be that x ∈ dom(µ(Γ◦))

and µ(Γ◦)(x) = µ(α). Hence, for Γ = µ(Γ◦), t = µ(α) and t′ = t. We have t <:> t′

because <:> is reflexive (Lemma 3.1), and hence we can derive the following, as

desired.

(Decl Expr x)

x ∈ dom(Γ) Γ(x) = t t <:> t′

Γ ⊢ x : t′

Case E = b. Our judgment (1) is derived as follows, with E = b and C = α <:> Bool and

V = ∅.

(Algo b) (α /∈ tyvar(Γ◦))

b ∈ {true, false}
Γ◦ ⊢ b⇒ α (α <:> Bool ,∅)

Given this and (2), (3), (4), and (5), we are to show µ(Γ◦) ⊢ b : t.

From (3) we have:

dom(µ′) = newtyvar(Γ◦, α, C,V)

= tyvar(α,C,V) \ tyvar(Γ◦)

= tyvar(α, α <:> Bool ,∅) \ tyvar(Γ◦)

= {α}, because α /∈ tyvar(Γ◦)

and so it must be that α ∈ dom(µ′).

By (4) and Lemma 4.1(2) for ι = Bool , µ′(α) <:> Bool because µ′ |= α <:> Bool ,

and therefore it must be that t <:> Bool .

Since b ∈ {true, false} and t <:> Bool , we can derive the following, as desired.

(Decl Expr b)

b ∈ {true, false} t <:> Bool

µ(Γ◦) ⊢ b : t
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Case E = c. Our judgment (1) is derived as follows, with E = c and C = α <:> Int and

V = ∅.

(Algo c) (α /∈ tyvar(Γ◦))

integer c

Γ◦ ⊢ c⇒ α (α <:> Int ,∅)

Given this and (2), (3), (4), and (5), we are to show µ(Γ◦) ⊢ c : t.

From (3) we have:

dom(µ′) = newtyvar(Γ◦, α, C,V)

= tyvar(α,C,V) \ tyvar(Γ◦)

= tyvar(α, α <:> Int ,∅) \ tyvar(Γ◦)

= {α}, because α /∈ tyvar(Γ◦)

and so it must be that α ∈ dom(µ′).

By (4) and Lemma 4.1(2) for ι = Int , µ′(α) <:> Int because µ′ |= α <:> Int , and

therefore it must be that t <:> Int .

Since we have integer c and t <:> Int , we can derive the desired judgment:

(Decl Expr c)

integer c t <:> Int

µ(Γ◦) ⊢ c : t

Case E = E1 − E2. Our judgment (1) is derived as follows, with E = E1 − E2 and

C = α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2 and V = V1 ∪ V2.

(Algo −) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 − E2 ⇒ α (α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ ∪ µ′)(α) = t, and (5) µ ∪ µ′ |= α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,

we are to show µ(Γ◦) ⊢ E1 − E2 : t.

By (5) and Definition 4.4, we have µ∪ µ′ |= α <:> Int and µ∪ µ′ |= α1 <:> Int and

µ ∪ µ′ |= α2 <:> Int and µ ∪ µ′ |= C1 and µ ∪ µ′ |= C2.

By applying Lemma 4.1(c) for ι = Int , we get that:

i. (µ ∪ µ′)(α) <:> Int because µ ∪ µ′ |= α <:> Int ,
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ii. (µ ∪ µ′)(α1) <:> Int because µ ∪ µ′ |= α1 <:> Int ,

iii. (µ ∪ µ′)(α2) <:> Int because µ ∪ µ′ |= α2 <:> Int .

From (i) and (4) it must be that t <:> Int . Let t1 = (µ∪µ′)(α1) and t2 = (µ∪µ′)(α2).

Hence, from (ii) and (iii), it must be that t1 <:> Int and t2 <:> Int .

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Hence, from (3.1) and (ii) we get (4.1) (µ ∪ µ′
1)(α1) <:> Int .

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : t1.

By symmetric reasoning, we obtain µ(Γ◦) ⊢ E2 : t2.

Hence, we can derive the desired judgment

(Decl Expr −) (t1 <:> t2 <:> Int)

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦) ⊢ E2 : t2 t <:> Int

µ(Γ◦) ⊢ E1 − E2 : t

Case Let. Our judgment (1) is derived as follows, with E = let x = E1 in E2 and

C = C1 ∧ C2 and V = {(x, α1)} ∪ V1 ∪ V2.

(Algo Let) (x /∈ dom(Γ◦) and α1 /∈ tyvar(Γ◦) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar((Γ◦, x : α1), α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦, x : α1 ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ let x = E1 in E2 ⇒ α2 (C1 ∧ C2, {(x, α1)} ∪ V1 ∪ V2)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ ∪ µ′)(α2) <:> t2, and (5) µ ∪ µ′ |= C1 ∧ C2, we are to show µ(Γ◦) ⊢ let x =

E1 in E2 : t2.

By Definition 4.4, we have µ ∪ µ′ |= C1 and µ ∪ µ′ |= C2.

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).
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From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Let t1 = (µ ∪ µ′)(α1). Hence, from (3.1) we get (4.1) (µ ∪ µ′
1)(α1) <:> t1.

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : t1.

From (3), we have:

dom(µ′) = newtyvar(Γ◦, α2, (C1 ∧ C2), ({(x, α1)} ∪ V1) ∪ V2)

= ({α2, α1} ∪ tyvar(C1) ∪ tyvar(C2) ∪ tyvar(V1) ∪ tyvar(V2)) \ tyvar(Γ◦)

Hence, α1 ∈ dom(µ′) since α1 /∈ tyvar(Γ◦) = dom(µ).

Consider µ2 = µ ∪ {α1 = t1} and µ′
2 = µ′ ↾ (dom(µ′) \ {α1} \ dom(µ′

1)).

The sets {α1} and dom(µ) are disjoint, because of the condition α1 /∈ tyvar(Γ◦) =

dom(µ).

Hence, we have (2.2) dom(µ2) = tyvar(Γ◦, α1).

We can verify that (3.2) dom(µ′
2) = newtyvar((Γ◦, x : α1), α2, C2,V2) by the following

calculation:

LHS = dom(µ′
2)

= dom(µ′) \ {α1}

= ({α2, α1} ∪ tyvar(C2) ∪ tyvar(V2)) \ tyvar(Γ◦) \ {α1}

= ({α2} ∪ tyvar(C2) ∪ tyvar(V2)) \ tyvar(Γ◦) \ {α1}

RHS = newtyvar((Γ◦, x : α1), α2, C2,V2)

= tyvar(α2, C2,V2) \ tyvar(Γ◦, x : α1)

= tyvar(α2, C2,V2) \ tyvar(Γ◦) \ {α1}

= ({α2} ∪ tyvar(C2) ∪ tyvar(V2)) \ tyvar(Γ◦) \ {α1}

We have (4.2) (µ2 ∪µ′
2)(α2) <:> t2 because (µ∪µ′)(α2) <:> t2 and µ2 ∪µ′

2 = µ∪µ′.

We have (5.2) µ2 ∪ µ′
2 |= C2 because µ ∪ µ′ |= C2 and µ2 ∪ µ′

2 = µ ∪ µ′.
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By induction hypothesis, Γ◦, x : α1 ⊢ E2 ⇒ α2 (C2,V2), (2.2), (3.2), (4.2), (5.2)

imply µ2(Γ
◦, x : α1) ⊢ E2 : t2.

Hence, we have µ(Γ◦), x : t1 ⊢ E2 : t2.

Hence, we can derive the desired judgment

(Decl Expr Let) (x /∈ dom(Γ))

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦), x : t1 ⊢ E2 : t2

µ(Γ◦) ⊢ let x = E1 in E2 : t2

Case Lambda. Our judgment (1) is derived as follows, with E = λ(x)E ′ and C = α <:>

α1 → α2 ∧ C ′ and V = {(x, α1)} ∪ V′.

(Algo Lambda) (x /∈ dom(Γ◦) and α1 /∈ tyvar(Γ◦) and α /∈ tyvar(Γ◦, α1, α2, C′,V′))

Γ◦, x : α1 ⊢ E ′ ⇒ α2 (C ′,V′)

Γ◦ ⊢ λ(x)E ′ ⇒ α (α <:> α1 → α2 ∧ C ′, {(x, α1)} ∪ V′)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ ∪ µ′)(α) <:> t, and (5) µ ∪ µ′ |= α <:> α1 → α2 ∧ C ′, we are to show µ(Γ◦) ⊢
λ(x)E ′ : t.

By Definition 4.4, we have µ ∪ µ′ |= α <:> α1 → α2 and µ ∪ µ′ |= C ′.

By applying Lemma 4.1(g) we have that (µ∪µ′)(α) <:> (µ∪µ′)(α1)→ (µ∪µ′)(α2),

because µ ∪ µ′ |= α <:> α1 → α2.

Let t1 = (µ ∪ µ′)(α1) and t2 = (µ ∪ µ′)(α2). Hence, from (4), it must be that

t <:> t1 → t2.

From (3), we have:

dom(µ′) = newtyvar(Γ◦, α, (α <:> α1 → α2 ∧ C ′), ({(x, α1)} ∪ V′))

= ({α, α1, α2} ∪ tyvar(C ′) ∪ tyvar(V′)) \ tyvar(Γ◦)

Hence, α1 ∈ dom(µ′) since α1 /∈ tyvar(Γ◦) = dom(µ).

Consider µ1 = µ ∪ {α1 = t1} and µ′
1 = µ′ ↾ (dom(µ′) \ {α, α1}).

Observe that µ ∪ µ′ = µ1 ∪ µ′
1 ∪ {α = t}

µ1 ∪ µ′
1 ∪ {α = t} = µ ∪ {α1 = t1} ∪ µ′ ↾ (dom(µ′) \ {α, α1}) ∪ {α = t}

= µ ∪ µ′
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The sets {α1} and dom(µ) are disjoint, because of the condition α1 /∈ tyvar(Γ◦) =

dom(µ).

Hence, we have (2.1) dom(µ1) = tyvar(Γ◦, α1).

We can verify that (3.1) dom(µ′
1) = newtyvar((Γ◦, x : α1), α2, C

′,V′) by the following

calculation:

LHS = dom(µ′
1)

= dom(µ′) \ {α, α1}

= ({α, α1, α2} ∪ tyvar(C ′) ∪ tyvar(V′)) \ tyvar(Γ◦) \ {α, α1}

= ({α2} ∪ tyvar(C ′) ∪ tyvar(V′)) \ tyvar(Γ◦) \ {α1}

RHS = newtyvar((Γ◦, x : α1), α2, C
′,V′)

= tyvar(α2, C
′,V′) \ tyvar(Γ◦, x : α1)

= tyvar(α2, C
′,V′) \ tyvar(Γ◦) \ {α1}

= ({α2} ∪ tyvar(C ′) ∪ tyvar(V′)) \ tyvar(Γ◦) \ {α1}

We have (4.1) (µ1 ∪ µ′
1)(α2) <:> t2 because (µ ∪ µ′)(α2) <:> t2 and µ1 ∪ µ′

1 ∪ {α =

t} = µ ∪ µ′.

We have (5.1) µ1 ∪ µ′
1 |= C ′ because µ ∪ µ′ |= C ′ and µ1 ∪ µ′

1 ∪ {α = t} = µ ∪ µ′.

By induction hypothesis, Γ◦, x : α1 ⊢ E ′ ⇒ α2 (C ′,V′), (2.1), (3.1), (4.1), (5.1) imply

µ1(Γ
◦, x : α1) ⊢ E ′ : t2.

Hence, we have µ(Γ◦), x : t1 ⊢ E ′ : t2.

We can conclude as follows:

(Decl Expr Lambda) (x /∈ dom(µ(Γ◦)))

µ(Γ◦), x : t1 ⊢ E ′ : t2 t <:> t1 → t2

µ(Γ◦) ⊢ λ(x)E ′ : t

Case Appl. We have:

(Algo Appl) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α2, C2,V2) ∩ newtyvar(Γ◦, α1, C1,V1) = ∅)

Γ◦ ⊢ E2 ⇒ α2 (C2,V2) Γ◦ ⊢ E1 ⇒ α1 (C1,V1)

Γ◦ ⊢ E2(E1)⇒ α (α2 <:> α1 → α ∧ C1 ∧ C2,V1 ∪ V2)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ ∪ µ′)(α) <:> t, and (5) µ ∪ µ′ |= α2 <:> α1 → α ∧ C1 ∧ C2, we are to show

µ(Γ◦) ⊢ E2(E1) : t.
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By Definition 4.4, we have µ |= α2 <:> α1 → α and µ |= C1 and µ |= C2.

By applying Lemma 4.1(g) we get (µ ∪ µ′)(α2) <:> (µ ∪ µ′)(α1 → α) because

µ ∪ µ′ |= α2 <:> α1 → α.

Let t1 = (µ ∪ µ′)(α1) and t2 = (µ ∪ µ′)(α2). Hence, from (4), it must be that

t2 <:> t1 → t.

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Hence, from (3.1) and because t1 = (µ∪µ′)(α1) we can get (4.1) (µ∪µ′
1)(α1) <:> t1.

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : t1.

By symmetric reasoning, we obtain µ(Γ◦) ⊢ E2 : t2.

Hence, for Γ = µ(Γ◦) we can derive the desired judgment

(Decl Expr Appl) (t2 <:> t1 → t)

µ(Γ◦) ⊢ E2 : t2 µ(Γ◦) ⊢ E1 : t1

µ(Γ◦) ⊢ E2(E1) : t

Lemma 4.7 (Completeness). Consider Γ◦ ⊢ E ⇒ α (C,V) and type t.

For all µ with dom(µ) = tyvar(Γ◦), if µ(Γ◦) ⊢ E : t then there is µ′ with dom(µ′) =

newtyvar(Γ◦, α, C,V) and (µ ∪ µ′)(α) <:> t and µ ∪ µ′ |= C.

Proof. As before, for the reader’s convenience we present here only a representative subset

of the total cases. The rest cases can be found in the Appendix A.

It suffices to prove that for all Γ◦, E, α, C, V, µ, t that, if

(1) Γ◦ ⊢ E ⇒ α (C,V)

(2) dom(µ) = tyvar(Γ◦)

(3) µ(Γ◦) ⊢ E : t
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then there is µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ ∪ µ′)(α) <:> t, and (C)

µ ∪ µ′ |= C.

The proof is by induction on the height of the derivation of the algorithmic judgment (1).

We proceed by a case analysis of E. For each rule from (Algorithmic Typing Rules), only

one of the syntax-directed rules from (Syntax-directed Declarative Typing Rules) can have

derived declarative judgment (3). Hence we can obtain the desired satisfaction relation by

a detailed case analysis.

Recall that newtyvar(Γ◦, α, C,V) = tyvar(α,C,V) \ tyvar(Γ◦).

Case E = x. In this case, and our assumptions (1), (2) and (3) take the forms:

(Algo x)

x ∈ dom(Γ◦) Γ◦(x) = α

Γ◦ ⊢ x⇒ α (true,∅)

dom(µ) = tyvar(Γ◦)

(Decl Expr x)

x ∈ dom(µ(Γ◦)) µ(Γ◦)(x) = t t <:> t′

µ(Γ◦) ⊢ x : t′

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V) (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = true and V = ∅.

Let µ′ = ∅.

We have (A), since

dom(µ′) = ∅

newtyvar(Γ◦, α, C,V) = tyvar(α,C,V) \ tyvar(Γ◦)

= tyvar(α, true,∅) \ {α}

= ∅

We have (B) (µ ∪ µ′)(α) <:> t, since x ∈ dom(Γ◦) and Γ◦(x) = α, by Definition 4.3

it must be that x ∈ dom(µ(Γ◦)) and µ(Γ◦)(x) = µ(α), and by the premises of (Decl

Expr x) we get that Γ = µ(Γ◦) and t <:> µ(α).

We have (C) µ ∪ µ′ |= true, by Definition 4.4.

Hence µ′ has properties (A), (B), and (C) as desired.
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Case E = b. In this case, and our assumptions (1), (2) and (3) take the forms:

(Algo b) (α /∈ tyvar(Γ◦))

b ∈ {true, false}
Γ◦ ⊢ b⇒ α (α <:> Bool ,∅)

dom(µ) = tyvar(Γ◦)

(Decl Expr b)

b ∈ {true, false} t <:> Bool

µ(Γ◦) ⊢ b : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V) (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = true. and V = ∅.

Let µ′ = {α 7→ t}.

We have (A), since

dom(µ′) = {α}

newtyvar(Γ◦, α, C,V) = tyvar(α, α <:> Bool ,∅) \ tyvar(Γ◦) and α /∈ tyvar(Γ◦)

= {α}

We have (B) (µ ∪ µ′)(α) <:> t, because µ′(α) <:> t by definition of µ′.

We have (C) (µ ∪ µ′) |= α <:> Bool since (µ ∪ µ′)(α) <:> t and t <:> Bool .

Hence µ′ has properties (A), (B), and (C) as desired.

Case E = c. Similar to the case for E = b. In this case, and our assumptions (1), (2) and

(3) take the forms:

(Algo c) (α /∈ tyvar(Γ◦))

integer c

Γ◦ ⊢ c⇒ α (α <:> Int ,∅)

dom(µ) = tyvar(Γ◦)

(Decl Expr c)

integer c t <:> Int

µ(Γ◦) ⊢ c : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V) (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = α <:> Int . and V = ∅.



4.3. FORMAL PROPERTIES: TERMINATION, SOUNDNESS, AND COMPLETENESS 55

Let µ′ = {α 7→ t}.

We have (A), since

dom(µ′) = {α}

newtyvar(Γ◦, α, C,V) = tyvar(α, α <:> Int ,∅) \ tyvar(Γ◦) and α /∈ tyvar(Γ◦)

= {α}

We have (B) (µ ∪ µ′)(α) <:> t, because µ′(α) <:> t by definition of µ′.

We have (C) (µ ∪ µ′) |= α <:> Int since (µ ∪ µ′)(α) <:> t and t <:> Int .

Hence µ′ has properties (A), (B), and (C) as desired.

Case E = E1 − E2. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo −) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 − E2 ⇒ α (α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

dom(µ) = tyvar(Γ◦)

(Decl Expr −) (t1 <:> Int and t2 <:> Int)

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦) ⊢ E2 : t2 t <:> Int

µ(Γ◦) ⊢ E1 − E2 : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2.

By induction hypothesis, (1) Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E1 : t1 imply there is µ′
1 with (A) dom(µ′

1) = newtyvar(Γ◦, α1, C1,V1),

(B) (µ ∪ µ′
1)(α1) <:> t1, and (C) µ ∪ µ′

1 |= C1.

By induction hypothesis, (1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E2 : t2 imply there is µ′
2 with (A) dom(µ′

2) = newtyvar(Γ◦, α2, C2,V2),

(B) (µ ∪ µ′
2)(α2) <:> t2, and (C) µ ∪ µ′

2 |= C2.

The sets {α}, dom(µ′
1), and dom(µ′

2) are disjoint, because of the conditions α /∈
tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅.

Let µ′ = {α 7→ t} ∪ µ′
1 ∪ µ′

2, a well-formed finite map.
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We have (A), since

dom(µ′) = {α} ∪ dom(µ′
1) ∪ dom(µ′

2)

newtyvar(Γ◦, α, C,V) = {α} ∪ newtyvar(Γ◦, α1, C1,V1) ∪ newtyvar(Γ◦, α2, C2,V2)

and α /∈ tyvar(Γ◦, C1, C2,V1,V2)

= {α} ∪ dom(µ′
1) ∪ dom(µ′

2)

We have (B) (µ ∪ µ′)(α) <:> t because µ′(α) = t by definition of µ′.

We have (C) µ ∪ µ′ |= C because:

• {α 7→ t} |= α <:> Int since t <:> Int

• µ ∪ µ′ |= α1 <:> Int since (µ ∪ µ′)(α1) <:> t1 and t1 <:> Int

• µ ∪ µ′ |= α2 <:> Int since (µ ∪ µ′)(α2) <:> t2 and t2 <:> Int

• µ ∪ µ′ |= C1

• µ ∪ µ′ |= C2

Hence µ′ has properties (A), (B), and (C) as desired.

Case Let. In this case, our assumptions (1), (2) and (3) take the forms

(Algo Let) (x /∈ dom(Γ◦) and α1 /∈ tyvar(Γ◦) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar((Γ◦, x : α1), α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦, α1 ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ let x = E1 in E2 ⇒ α2 (C1 ∧ C2, {(x, α1)} ∪ V1 ∪ V2)

dom(µ) = tyvar(Γ◦)

(Decl Expr Let) (x /∈ dom(Γ))

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦), x : t1 ⊢ E2 : t2

µ(Γ◦) ⊢ let x = E1 in E2 : t2

We are to find µ′ with

• (A) dom(µ′) = newtyvar(Γ◦, α2, C1 ∧ C2, {(x, α1)} ∪ V1 ∪ V2)),

• (B) (µ ∪ µ′)(α2) <:> t2, and

• (C) µ ∪ µ′ |= C1 ∧ C2.

By induction hypothesis, (1) Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E1 : t1 imply there is µ′
1 with (A) dom(µ′

1) = newtyvar(Γ◦, α1, C1,V1),

(B) (µ∪ µ′
1)(α1) <:> t1, and (C) µ∪ µ′

1 |= C1. Note, that because α1 /∈ tyvar(Γ◦), it

must be α1 ∈ dom(µ′
1).
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Let µ2 = µ ∪ {α1 = µ′
1(α1)} and hence µ2(α1) <:> t1.

We have dom(µ2) = tyvar(Γ◦, x : α1) and µ2(Γ
◦, x : α1) = µ(Γ◦), x : µ2(α1).

By Lemma 3.6, µ(Γ◦), x : t1 ⊢ E2 : t2 and µ2(α1) <:> t1 imply µ(Γ◦), x : µ2(α1) ⊢
E2 : t2, and thus µ2(Γ

◦, x : α1) ⊢ E2 : t2.

By induction hypothesis, (1) Γ◦, x : α1 ⊢ E2 ⇒ α2 (C2,V2), (2) dom(µ2) =

tyvar(Γ◦, x : α1), and (3) µ2(Γ
◦, x : α1) ⊢ E2 : t2 imply there is µ′

2 with

• (A) dom(µ′
2) = newtyvar((Γ◦, x : α1), α2, C2,V2),

• (B) (µ2 ∪ µ′
2)(α2) <:> t2, and

• (C) µ2 ∪ µ′
2 |= C2.

Let µ′ = µ′
1∪µ′

2. The sets dom(µ′
1) and dom(µ′

2) are disjoint, because newtyvar(Γ◦, α1, C1,V1)∩
newtyvar((Γ◦, x : α1), α2, C2,V2) = ∅.

We have µ ∪ µ′ = µ2 ∪ µ′
1 ∪ µ′

2:

µ2 ∪ µ′
1 ∪ µ′

2 = µ ∪ {α1 = µ′
1(α1)} ∪ µ′

1 ∪ µ′
2

= µ ∪ µ′
1 ∪ µ′

2

= µ ∪ µ′

We have (A) dom(µ′) = newtyvar(Γ◦, α2, C1 ∧ C2, {(x, α1)} ∪ V1 ∪ V2) as shown by

the following calculation.

LHS = dom(µ′)

= dom(µ′
1 ∪ µ′

2)

= dom(µ′
1) ∪ dom(µ′

2)

= newtyvar(Γ◦, α1, C1,V1) ∪ newtyvar((Γ◦, x : α1), α2, C2,V2)

= (tyvar(α1, C1,V1) \ tyvar(Γ◦)) ∪ (tyvar(α2, C2,V2) \ tyvar((Γ◦, x : α1)))

= ({α1} ∪ tyvar(C1,V1)) \ tyvar(Γ◦)) ∪ ({α2} ∪ tyvar(C2,V2)) \ tyvar(Γ◦) \ {α1})

= ({α1, α2} ∪ tyvar(C1, C2,V1,V2)) \ tyvar(Γ◦)

RHS = newtyvar(Γ◦, α2, C1 ∧ C2, {(x, α1)} ∪ V1 ∪ V2)

= ({α1, α2} ∪ tyvar(C1, C2,V1,V2)) \ tyvar(Γ◦)

We have (B) (µ∪µ′)(α2) <:> t2 because µ∪µ′ = µ2∪µ′
1∪µ′

2 and (µ2∪µ′
2)(α2) <:> t2.

We have (C) µ ∪ µ′ |= C1 ∧ C2 because µ ∪ µ′
1 |= C1 and µ2 ∪ µ′

2 |= C2.



58 CHAPTER 4. TYPE INFERENCE BY ACCUMULATING LOGICAL CONSTRAINTS

Hence µ′ has properties (A), (B), and (C) as desired.

Case Lambda. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo Lambda) (x /∈ dom(Γ◦) and α1 /∈ tyvar(Γ◦) and α /∈ tyvar((Γ◦, x : α1), α2, C,V))

Γ◦, x : α1 ⊢ E ⇒ α2 (C,V)

Γ◦ ⊢ λ(x)E ⇒ α (α <:> α1 → α2 ∧ C, {(x, α1)} ∪ V)

dom(µ) = tyvar(Γ◦)

(Decl Expr Lambda) (x /∈ dom(µ(Γ◦)))

µ(Γ◦), x : t1 ⊢ E : t2 t <:> t1 → t2

µ(Γ◦) ⊢ λ(x)E : t

We are to find µ′ with

• (A) dom(µ′) = newtyvar(Γ◦, α, α <:> α1 → α2 ∧ C, {(x, α1)} ∪ V),

• (B) (µ ∪ µ′)(α) <:> t, and

• (C) µ ∪ µ′ |= α <:> α1 → α2 ∧ C.

Let µ1 = µ ∪ {α1 = t1}.

We have dom(µ1) = tyvar(Γ◦, x : α) and µ1(Γ
◦, x : α1) = µ(Γ◦), x : t1.

By induction hypothesis, (1) Γ◦, x : α1 ⊢ E ⇒ α2 (C,V), (2) dom(µ1) = tyvar(Γ◦, x : α1),

and (3) µ1(Γ
◦, x : α1) ⊢ E : t2 imply there is µ′

1 with

• (A) dom(µ′
1) = newtyvar((Γ◦, x : α1), α2, C,V),

• (B) (µ1 ∪ µ′
1)(α2) <:> t2, and

• (C) µ1 ∪ µ′
1 |= C.

Let µ′ = µ′
1 ∪ {α1 = t1, α = t}.

Observe that µ ∪ µ′ = µ1 ∪ µ′
1 ∪ {α = t}

µ ∪ µ′ = µ ∪ µ′
1 ∪ {α1 = t1, α = t}

µ1 ∪ µ′
1 ∪ {α = t} = µ ∪ {α1 = t1} ∪ µ′

1 ∪ {α = t}

We have (A) dom(µ′) = newtyvar(Γ◦, α, α <:> α1 → α2 ∧ C, {(x, α1)} ∪ V) as shown

by the following calculation.

LHS = dom(µ′)

= dom(µ′
1 ∪ {α1 = t1, α = t})
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= dom(µ′
1) ∪ {α1, α}

= newtyvar((Γ◦, x : α1), α2, C,V) ∪ {α1, α}

= (tyvar(α2, C,V) \ tyvar((Γ◦, x : α1))) ∪ {α1, α}

= ({α2} ∪ tyvar(C,V)) \ tyvar(Γ◦) \ {α1}) ∪ {α1, α}

= ({α, α2} ∪ tyvar(C,V)) \ tyvar(Γ◦) \ {α1}) ∪ {α1}

= ({α, α2} ∪ tyvar(C,V)) \ tyvar(Γ◦)) ∪ {α1}

= ({α, α1, α2} ∪ tyvar(C,V)) \ tyvar(Γ◦)

RHS = newtyvar(Γ◦, α, α <:> α1 → α2 ∧ C, {(x, α1)} ∪ V)

= ({α, α1, α2} ∪ tyvar(C,V)) \ tyvar(Γ◦)

We have (B) (µ ∪ µ′)(α) <:> t because µ ∪ µ′ = µ1 ∪ µ′
1 ∪ {α = t}.

We have (C) µ∪µ′ |= α <:> α1 → α2∧C because t <:> t1 → t2 and µ′ = µ′
1∪{α1 =

t1, α = t} and µ ∪ µ′ = µ1 ∪ µ′
1 ∪ {α = t} and (µ1 ∪ µ′

1)(α2) = t2 and µ1 ∪ µ′
1 |= C.

Hence µ′ has properties (A), (B), and (C) as desired.

Case Appl. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo Appl) (α /∈ tyvar(Γ◦, C2, C1) and newtyvar(Γ◦, α2, C2,V2) ∩ newtyvar(Γ◦, α1, C1,V1) = ∅)

Γ◦ ⊢ E2 ⇒ α2 (C2,V2) Γ◦ ⊢ E1 ⇒ α1 (C1,V1)

Γ◦ ⊢ E2(E1)⇒ α (α2 <:> α1 → α ∧ C1 ∧ C2,V1 ∪ V2)

dom(µ) = tyvar(Γ◦)

(Decl Expr Appl) (t2 <:> t1 → t)

µ(Γ◦) ⊢ E2 : t2 µ(Γ◦) ⊢ E1 : t1

µ(Γ◦) ⊢ E2(E1) : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = α2 <:> α1 → α ∧ C1 ∧ C2 and V = V1 ∪ V2.

By induction hypothesis, (1) Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E1 : t1 imply there is µ′
1 with (A) dom(µ′

1) = newtyvar(Γ◦, α1, C1,V1),

(B) (µ ∪ µ′
1)(α1) = t1, and (C) µ ∪ µ′

1 |= C1.

By induction hypothesis, (1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E2 : t2 imply there is µ′
2 with (A) dom(µ′

2) = newtyvar(Γ◦, α2, C2,V2),

(B) (µ ∪ µ′
2)(α2) <:> t2, and (C) µ ∪ µ′

2 |= C2.

The sets {α}, dom(µ′
1), and dom(µ′

2) are disjoint, because of the conditions α /∈
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tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅.

Let µ′ = {α 7→ t} ∪ µ′
1 ∪ µ′

2, a well-formed finite map.

We have (A) dom(µ′) = newtyvar(Γ◦, α, C,V) because newtyvar(Γ◦, α, C,V) = {α}∪
newtyvar(Γ◦, α1, C1,V1) ∪ newtyvar(Γ◦, α2, C2,V2).

We have (B) (µ ∪ µ′)(α) <:> t because µ′(α) = t by definition of µ′.

We have (C) µ ∪ µ′ |= C because:

• α2 <:> α1 → α since (µ ∪ µ′)(α2) <:> t2, (µ ∪ µ′)(α1) <:> t1, (µ ∪ µ′)(α) <:> t,

(µ ∪ µ′)(α) <:> t, and t2 <:> t1 → t

• µ ∪ µ′ |= C1

• µ ∪ µ′ |= C2

Hence µ′ has properties (A), (B), and (C) as desired.

Theorem 4.2. Suppose Γ◦ ⊢ E ⇒ α (C,V).

For all µ with dom(µ) = tyvar(Γ◦) and type t:

(1) (Soundness) For all µ′, if dom(µ′) = newtyvar(Γ◦, α, C,V) and (µ ∪ µ′)(α) <:> t

and µ ∪ µ′ |= C then µ(Γ◦) ⊢ E : t.

(2) (Completeness) If µ(Γ◦) ⊢ E : t then there is µ′ with newtyvar(Γ◦, α, C,V) with

(µ ∪ µ′)(α) <:> t and µ ∪ µ′ |= C.

Proof. (1) follows from Lemma 4.6 and (2) follows from Lemma 4.7.

The following corollary can prove the claims made in Section 3.1 about our three motivating

examples.

Corollary 4.1. Suppose that:

• function f(x1, . . . , xn) return E is an untyped function definition with fv(E) ⊆
{x1, . . . , xn}

• Γ◦ = x1 : α1, . . . , xn : αn for fresh type variables αi

• Γ◦ ⊢ E ⇒ α (C,V)

Then, for all tuples (t1, . . . , tn, t), the following propositions are logically equivalent:

(1) (x1 : t1, . . . , xn : tn, f : t) is a type signature for f

(2) x1 : t1, . . . , xn : tn ⊢ E : t
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(3) for all µ = {α1 = t1, . . . , αn = tn}: µ ∪ µ′ |= C for some µ′ such that dom(µ′) =

newtyvar(Γ◦, α, C,V) and (µ ∪ µ′)(α) <:> t.

Proof. It is trivial that (1) and (2) are equivalent. By Theorem 4.2 we get that (2) is

equivalent to (3). And thus, (1)-(3) are logically equivalent.

Logical Constraints for our Three Motivating Examples

In this subsection we show how Corollary 4.1 applies to our motivating examples

(see Section 3.6). We show in full details how we extract these for the type signature for

the diffRange function. For uppercase and intEqual3 we present only the first and the

final step of our reasoning.

We have checked these derivations by running our examples through a direct implementation

of the algorithmic typing rules for our typed λ-calculus. In the examples that follow for

readability we use the subscripts 1, 2 to shorten the definitions, for example E1,2 ≜

range1 ,2 .length shoud expand to E1 ≜ range1 .length and E2 ≜ range2 .length.

Example: diffRange

Recall that the definition for diffRange is:

function diffRange(range1 , range2 ) return range1 .length − range2 .length

Starting with Γ◦ = range1 ,2 : β1,2, let:

E1,2 ≜ range1 ,2 .length, EdiffRange ≜ E1 − E2

By Definition 4.7, the following is derivable:

Algo x
Γ◦ ⊢ range1 ,2 ⇒ β1,2 (true,∅) α1,2 /∈ {β1,2}

Algo Proj
Γ◦ ⊢ E1,2 ⇒ α1,2 (α1,2 <:> β1,2.length ∧ true,∅) β /∈ {β1,2, α1,2} and {a1} ∩ {a2} = ∅

Algo −
Γ◦ ⊢ EdiffRange ⇒ β (β <:> Int ∧ α1,2 <:> Int ∧ α1,2 <:> β1,2.length ∧ true,∅)

Given this result, for all tuples (t1, t2, t), Corollary 4.1 tells us that each of the following

propositions are logically equivalent:

(1) (range1 : t1, range2 : t2, diffRange : t) is a type signature for diffRange

(2) range1 : t1, range2 : t2 ⊢ EdiffRange : t
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(3) there is µ′ with dom(µ′) = {α1, α2} and

{β1 = t1, β2 = t2, β = t} ∪ µ′

|= (β <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ α1 <:> β1.length ∧ α2 <:> β2.length ∧ true)

By further simplification, the following propositions are also equivalent:

(4) by Lemma 4.1(f), there is µ′ with dom(µ′) = {α1, α2} and

{β1 = t1, β2 = t2, β = t} ∪ µ′

|=
(
β = Int ∧ α1 = Int ∧ α2 = Int ∧

((β1 = String ∧ α1 = Int) ∨ (β1 = IntArray ∧ α1 = Int) ∨ (β1 = Range ∧ α1 = Int)) ∧
((β2 = String ∧ α2 = Int) ∨ (β2 = IntArray ∧ α2 = Int) ∨ (β2 = Range ∧ α2 = Int)) ∧ true

)

(5) by Definition 4.5, there is µ′ with dom(µ′) = {α1, α2} and

{β1 = t1, β2 = t2, β = t} ∪ µ′

|=
(
β = Int ∧ α1 = Int ∧ α2 = Int ∧

(β1 = String ∨ β1 = IntArray ∨ β1 = Range) ∧
(β2 = String ∨ β2 = IntArray ∨ β2 = Range)

)

(6) by Definition 4.4

(
(t1 = String or t1 = IntArray or t1 = Range) and

(t2 = String or t2 = IntArray or t2 = Range) and t = Int
)

To summarize our chain of reasoning, we have that:

(range1 : t1, range2 : t2, diffRange : t) is a type signature for diffRange

if and only if(
(t1 = String or t1 = IntArray or t1 = Range) and

(t2 = String or t2 = IntArray or t2 = Range) and t = Int
)
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Example: uppercase

By Corollary 4.1 and similar reasoning to the previous example, we get:

(str : t1, uppercase : t) is a type signature for uppercase

if and only if(
(t1 = IntArray or t1 = String) and (t = IntArray or t = String)

)

Example: intEqual3

Again, by Corollary 4.1 and similar reasoning we get:

(int1 : t1, int2 : t2, int3 : t3, intEqual3 : t) is a type signature for intEqual3

if and only if(
(t1 = Bool and t2 = Bool and t3 = Bool) or

(t1 = Int and t2 = Int and t3 = Int)
)

and t = Bool





5
Defining Natural Type Inference

In this chapter, we first formalize the notion of natural information in our setting, what

we call natural constraints, in Section 5.1. We then define what is a maximally natural

satisfying type valuation, as an environment that both satisfies the logical constraints

defined in Chapter 4 and maximizes the information we take from natural constraints

defined in this chapter. Equipped with that, we define a new natural type inference

problem for function definitions, where we extend the type inference problem defined in

Problem 3.1 with the requirement to get the maximally natural type signature Problem 5.2.

Finally, we give an overall algorithm on how the natural type signature problem can be

solved. On this outline of the algorithm we abstract the exact way of how we combine

the logical and natural constraints, by just setting the requirements of the problem. In

the next two chapters we will show two different ways of unifying the two channels of

information and also prove the correctness of our overall algorithm.

5.1 Formalizing Textual Information as Natural Con-

straints

Source code is bimodal: it interlinks a formal, algorithmic channel aimed at devices and

a natural language channel of identifiers and comments aimed at developers (Casalnuovo

et al., 2020). Particularly, in our work we use the bimodality of code to enhance classical

type inference by using statistical dependencies in the source code. As discussed in

Section 2.3 there is a growing interest in various learning-based methods for type inference

that exploits some form of Natural Language Processing (NLP) (Jurafsky and Martin,

2009) to extract information from source code. To mention some examples here, names

65
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of variables provide information about their types (Xu et al., 2016), natural language in

method-level comments provide information about function types (Malik et al., 2019),

and lexically nearby tokens provide information about a variable’s type (Wei et al., 2020;

Hellendoorn et al., 2018).

This source of information is indirect, and thus difficult to formalize, but we can still hope

to exploit it by applying machine learning to large corpora of source code. Following the

idea that the naturalness in source code (Hindle et al., 2012) may be in part responsible for

the effectiveness of learning-based type inference, we refer generically to indirect, statistical

constraints about types as natural constraints. As this type of constraints are uncertain,

they are naturally formalized as probabilities.

The inference systems of the previous chapter assume unbounded sets of type variables α

and type names t. The freshness conditions in the (Algorithmic Typing Rules) assume we

can always pick fresh type variables. However, in the setting of our top-level problem, of

inferring types for a function definition function f(x1, . . . , xn) return E, we can limit

our attention to the finite sets of type variables needed to generate constraints, and a

finite library of definitions for type names. More specifically, when inferring types for a

particular function definition, we consider a finite sequence of V > 0 type variables α1,

. . . , αV , and a finite sequence of T > 0 type names t1, . . . , tT .

We generate natural constraints for each type variable αv based on the set V of (identifiers,

type variables) pairs, which are obtained as the output of the (Algorithmic Typing Rules).

We now describe the formal details of formulating the natural constraints.

Natural Constraints

As discussed in Section 2.3 researchers have recently developed innovative learning-based

techniques to predict missing type annotations (Raychev et al., 2015; Hellendoorn et al.,

2018; Wei et al., 2020; Pradel et al., 2020; Allamanis et al., 2020; Mir et al., 2022). We

can abstract these techniques as a function NC that provides a probability distribution

based on the identifiers associated with each type variable. We later exploit this function

NC for each type variables to construct a natural matrix N (Definition 5.1) that forms an

integral part of our type inference problem.

Formally, NC is a function that maps a set of identifiers to a distribution over type names.

In practice (and as done in our implementation as well), the function NC is computed by

training a machine learning model. Thus, the function can return a distribution over type

names for any set of identifiers.
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However, we intend to predict the types only based on the identifiers associated with

a type variable gathered in the set V from our (Algorithmic Typing Rules). Thus, for

each type variable αv, we define a set idvV = {id | (id, αv) ∈ V}, which is the finite set of

identifiers associated with a type variable.

Now, for a set idvV, NC(idvV) is a probability vector nv of length T representing the

distribution over named types for αv. A type variables maybe associated with zero, one,

or more identifiers, as explained in Section 4.2. In the special case, when Vv = ∅ for a

type variable α, that is when there are no identifiers associated with α, we set NC(∅) to

be the uniform probability vector [1/T , . . . , 1/T ]. This is because, without any associated

identifiers, one cannot get any natural language information for a type variable.

We now provide the definition of natural constraints.

Definition 5.1 (Natural Constraints). Let V be a set of pairs (identifiers, type variable)

and NC be the function that maps sets of identifiers to distribution over type names.

Further, let idvV = {id | (id, αv) ∈ V} be the set of identifiers associated with type variable

αv for each v ∈ 1..V. We then define a natural constraint for a type variable αv to be the

probability vector NC(idvV) ≜ nv = [nv,1, . . . ,nv,T ]. We aggregate the natural constraints

nv for all v ∈ 1..V into a natural matrix of size V × T using a function NatConstr as

follows:

NatConstr(V) ≜
[
NC(id1V) . . . NC(idVV)

]
=
[
nT

1 . . . nT
V

]T
.

For the sake of brevity, when V and NC are clear from the context, we represent the natural

matrix NatConstr(V) simply as N .

The above definition can easily be generalized for any other properties, for instance

comments or lexical scope, that can be associated with a type variable during training.

Natural Value

Our aim is to obtain a type valuation by utilizing information from the natural constraints.

To this end, we first rewrite a type valuation µ as a V × T type valuation matrix. Such a

rewrite enables us to be consistent with the notation of a subsequent chapter, Chapter 6,

where we relax type valuations to provide a distribution over named types.

Definition 5.2 (Type Valuation Matrix). Given a type valuation µ over the type variables

{αv | v ∈ 1..V}, we define a type valuation matrix as:

Bin(µ) ≜
[
mT

1 . . . mT
V

]T
(5.1)
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where mv ≜
[
mv,1 . . . mv,T

]
is a row one-hot vector for a type variable αv with mv,τ = 1

if µ(αv) = tτ , and 0 otherwise, where τ ∈ 1..T . The row mv is an alternative way of

providing a valuation of αv over named types. Further, we define Bin−1 to be the inverse

transformation that allows us to go from a type valuation matrix Bin(µ) to a valuation µ.

LetMV×T be the set of all type valuation matrices.

We proceed by defining a metric that enables us to determine the naturalness of a type

valuation matrix M as the following.

Definition 5.3 (Natural Value). Given a type valuation matrix M ∈MV×T and a natural

matrix N ∈ PV×T we define natural value as

NatValN(M) ≜
V∑

v=1

mv · nv =
V∑

v=1

T∑
τ=1

nv,τ ·mv,τ (5.2)

5.2 The Natural Type Inference Problem for Function

Definitions

The goal of our problem is to choose a valuation µ that both satisfies C and simultaneously,

maximizes the information we obtain from N . We can formally define this, as follows:

Problem 5.1 (Maximally Natural Type Valuation). Given a formula of logical constraints

C in equational logic over tyvar(C) = {αv | v ∈ 1..V} and a natural matrix N of size V×T ,
find a type assignment µ∗ with dom(µ∗) = tyvar(C) that has the following properties:

(1) µ∗ |= C; and

(2) for every type valuation µ that satisfy the logical constraints C (that is, µ |= C) the

following holds:

NatValN(Bin(µ)) ≤ NatValN(Bin(µ∗)).

We refer to a type assignment µ∗ that satisfies the properties (1) and (2) as a maximally

natural type valuation with respect to logical constraints C and natural matrix N . Note

that µ∗ may not be unique, but we are interested in finding any one. Also, for the sake

of readability, we represent such a type valuation µ∗ that satisfies the above mentioned

properties using the notation µ∗ ⇑ (N | C).

We now frame the problem of finding the maximally natural type signature. By combining

Corollary 4.1 and Problem 5.1, the problem describes as follows:
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Problem 5.2 (maximally natural Type Signature). Suppose that:

• function f(x1, . . . , xn) return E is a function definition with fv(E) ⊆ {x1, . . . , xn}
• Γ◦ = x1 : α1, . . . , xn : αn for fresh type variables αi, i ∈ 1..n

• Γ◦ ⊢ E ⇒ α (C,V)

• N = NatConstr(V ∪ {(x1, α1), . . . , (xn : αn), (f, α)})

Find a tuple for f

Σ∗ = (x1 : µ∗(α1), . . . , xn : µ∗(αn), f : µ∗(α)),

with dom(µ∗) = tyvar(Γ◦) and µ∗ ⇑ (N | C).

We define the type signature Σ∗ as the maximally natural type signature We regard

as natural type signature only the signatures that both satisfy the logical constraints

and maximize the natural ones. In this chapter, we present our first approach to unify

information from two sources, namely logical constraints derived from the algorithmic type

system defined in Chapter 4 and natural constraints using machine learning described

earlier in this chapter.

5.3 High-level Overview of the Algorithm for Natural

Type Inference

We now present the high-level overview of the algorithm to solve Problem 5.2, that is to

determine the natural type signature. Our algorithm has a couple of global parameters:

• We have an existing ambient library of type definitions:

type t1 = S1 . . . type tT = ST

• We assume that we are given a function NatConstr that maps identifiers to probability

distribution over types.

We consider as input a function definition:

function f(x1, . . . , xn) return E

and our goal is to find a natural type signature Σ∗ = (x1 : t∗1, . . . , xn : t∗n, f : t∗) for f .

(1) Check that E is well-scoped with fv(E) ⊆ {x1, . . . , xn}, and if not, terminate with an
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error.

(2) Let Γ◦ = x1 : α1, . . . , xn : αn for fresh type variables αi.

(3) Run the algorithmic typing rules to derive Γ ⊢ E ⇒ α (C,VE).

(4) Let V = VE ∪ {(x1, α1), . . . , (xn, αn), (f, α)}. Let N = NatConstr(V).

(5) Solve the natural type inference problem and find a valuation µ∗ with dom(µ∗) =

tyvar(Γ◦) such that:

(a) for some µ′ with dom(µ′) = newtyvar(Γ◦, α, C,V) and µ ∪ µ′(α) = t

{µ∗(α1) = t∗1, . . . , µ
∗(αn) = t∗n} ∪ µ′ |= C,

and

(b) µ∗ ∪ µ′ ⇑ (N | C).

(6) If Step (5) terminates successfully, then return Σ∗ = (x1 : µ∗(α1), . . . , xn : µ∗(αn), f :

µ∗(α)) as the maximally natural type signature for f .

The most important (and challenging) step of the above algorithm is Step (5) that solves

Problem 5.1, that is to find the natural type valuation µ∗. In the next two chapters

(Chapters 6 and 7), we will examine different approaches of solving this problem using

tools from mathematical optimization. Later, in Chapter 8, we provide an empirical

comparison of the different approaches.

The correctness and termination of the above algorithm also depends on the approach used

for Step (5). This is because, we can already assert that the rest of the steps are correct and

terminate based on the results discussed so far. Steps (1), (2) and (6) are trivially correct

and terminate by construction. For Step (3), Theorem 4.1 and Theorem 4.2 prove the

termination and correctness, respectively. Step (4) simply invokes a pre-trained machine

learning model on the identifiers of the source code and thus, is correct and terminates.

Hence, all depends on the guarantees of the approach used for Step (5). In the subsequent

chapters, we expand upon what theoretical guarantees one can expect from the presented

approach.



6
Natural Type Inference using Continuous Op-

timization

In this chapter, we present a continuous optimization approach to unify information from

two sources, namely logical constraints derived from the algorithmic type system defined

in Chapter 4 and natural constraints using machine learning described in Chapter 5. A

logical constraint is a formula C that describes necessary conditions for E to be well-typed.

As described in Section 4.2, an instance of an algorithmic typing judgment takes the form

Γ◦ ⊢ E ⇒ α (C,V). In principle, C can be any formula such that if µ1(Γ
◦) ⊢ E : (µ1∪µ2)(α)

with dom(µ1) = tyvar(Γ◦) and a µ2 with dom(µ2) = newtyvar(Γ◦, α, C,V), then then

µ1 ∪ µ2 |= C. From now on, let µ = µ1 ∪ µ2, this is for reader’s convenience as we are

interested in finding a valuation for all type variables and not only the ones that are

apparent in Γ◦. As discussed in Chapter 5 we can also exploit natural constraints N

to help us determine the maximally natural type valuation (Problem 7.1). Remember,

that we have already relaxed µ to a V × T matrix in Definition 5.2. To combine these

two constraints, we relax the boolean operations C to continuous operators on [0, 1]

using fuzzy logic, which we briefly review in Section 6.1. We then define a continuous

interpretation of the semantics of C (Section 6.2) and describe its properties (Section 6.3).

Most importantly, we provide conditions under which the continuous relaxation satisfies

the boolean constraints Theorem 6.1.

Having done this, we first establish a constrained optimization problem (6.3) which directly

solves natural type inference problem. We then propose a method of solving the constrained

problem using a standard method from numerical optimization, called the penalty method,

which re-formulates the problem as a series of unconstrained optimization problems (6.7).

By a standard result Theorem 6.3 shows that the two formulations are equivalent. Finally,

71
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we state Theorem 6.2 that shows how this formulation can give a solution to the natural

type inference problem. In Chapter 8 we evaluate the algorithm in practice.

6.1 Background: Fuzzy Logic

The concept of fuzzy logic was introduced by Zadeh (1965) as an extension of classical

logic that allows for the representation and processing of imprecise or vague information.

In particular, t-norm based fuzzy logics take the real unit interval [0, 1] as a set of truth

values, and interpret the various binary operations as functions on the unit interval [0, 1].

A t-norm is a commutative and associative binary operation in [0, 1], non-decreasing in

both variables and having 1 and 0 as neutral and absorbent elements respectively (Hájek,

1998). The are three widely know t-norm based logics: Gödel logic,  Lukasiewicz logic,

and product logic, with the latter attracting recently more interest from the machine

learning community (Rocktäschel et al., 2015; Ryan et al., 2020; Yao et al., 2020). The

main definition in product logic is that the classical boolean conjunction is interpreted as

the product of the relaxed semantics of the conjuncts (Hájek et al., 1996). Product logic

is well-suited for our optimization-based approach as its relaxations are smooth, and thus

allows backpropagation (Evans and Grefenstette, 2018), which is essential for learning

techniques.

6.2 Relaxation of the Logical Constraints

We proceed by defining a relaxation for the discrete logical constraints (see Definition 4.2).

In Definition 6.1 we have defined a probability matrix P to hold relaxed probabilistic

types. This is the object we optimize in our key formulation, (6.3), below. To do so we

first define relaxed semantics for the logical constraints C over P , and establish important

properties of this semantics. Our semantics is based on product logic (Section 6.1); however,

our atomic propositions αv = tτ and their interpretation via the matrix P are original

(Definition 6.2).

Definition 6.1 (Typing Probability Matrix P ). We define a probability matrix of size

V × T as

P ≜
[
pT
1 . . . pT

V

]T
where each pv ≜

[
pv,1 . . . pv,T

]
is a row vector that defines a probability distribution

over named types. Let PV×T be the set of all typing probability matrices of size V × T .

Definition 6.2 (Relaxed Semantics). The relaxed semantics of C is a function JCKP :
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PV×T × C → [0, 1], where v ∈ 1 . . .V, τ ∈ 1 . . . T and C is the set of logical constraints,

defined as:

JtrueKP = 1

Jαv = tτKP = pv,τ

J¬CKP = 1− JCKP

JC1 ∧ C2KP = JC1KP · JC2KP .

Let the derived t-conorm be JC1 ∨ C2KP = JC1KP + JC2KP − JC1KP · JC2KP . Now, we show

that our relaxed semantics JCKP is bound within [0..1] and establish useful equivalences on

it, which we use to prove Theorem 6.1. Note that the definition of negation in Definition 6.2

follows previous related work (Rocktäschel et al., 2015; Yao et al., 2020) and is not the

standard one for product logic. This choice is more appropriate in our case as we want to

keep the relaxation as a smooth function in [0..1].

Lemma 6.1. For all logical constraints C and all P ∈ PV×T , we have 0 ≤ JCKP ≤ 1.

Proof. By structural induction on the expression C.

Lemma 6.2. For all C, C1, C2, and P ∈ PV×T :

i. (JCKP = 0) if and only if (J¬ CKP = 1)

ii. (J¬ CKP = 0) if and only if (JCKP = 1)

iii. (JC1KP = 1 and JC2KP = 1) if and only if (JC1KP · JC2KP = 1).

Proof. These follow by cases analyses based on Lemma 6.1.

6.3 Relaxation and Rounding of Type Valuations

In optimization, a relaxation approximates a difficult (usually discrete) problem with a

nearby, easier (often continuous) problem. Our approach relaxes the natural type inference

problem and then recovers a discrete type valuation from the relaxation, all the while

preserving validity. So we first show how to relax a type valuation, then define a continuous

probability distribution over all possible type valuations, conditioned on a type valuation

probability matrix P (Definition 6.1). We close by showing that this relaxation preserves

validity.
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The following asserts essentially that the relaxed semantics is a continuous function that

always agrees with the logical semantics.

Lemma 6.3 (Binary Relaxation). For all C and µ: JCKBin(µ) = 1 if and only if µ |= C.

Proof. By structural induction on the constraint C.

We have just shown how to relax a type valuation. We also need to go the other way and

recover a type valuation from a continuous relaxation, a procedure known as rounding. To

this end, we introduce a random variable that denotes type valuation, which is instrumental

in recovering a discrete type valuation.

Definition 6.3. Let µ̃ be a random variable that denotes type valuations. We define the

probability mass function of µ̃ as follows:

Pr[µ̃ = µ | P ] =
V∏

v=1

T∏
τ=1

(pv,τ )δ(µ(αv),tτ ), (6.1)

where pv,τ denotes the probability that the type variable αv is of type tτ (as defined in

Definition 6.1), δ is the Kronecker delta, defined as δ(i, j) = 1 if i = j, otherwise 0. Also,

we conventionally use 00 = 1.

Additionally, when we know we are referring to µ̃, we write Pr[µ | P ].

Theorem 6.1 (Continuous Relaxation of Logical Constraints). Consider any µ and any

P ∈ PV×T , such that Pr[µ | P ] > 0. For all C, we have that:

JCKP = 1 implies µ |= C (6.2a)

JCKP = 0 implies µ |= ¬ C. (6.2b)

Proof. The proof is by induction on the structure of C, proceeding by a case analysis of C.

Case (av = tτ ). The base case is C = (av = tτ ).

For Equation (6.2a), we have that because Jav = tτKP = 1, and Jav = tτKP = pv,τ

by definition, then we have pv,τ = 1. Let µ(av) = tτ ′ . Then Pr[µ | P ] = ϵpv,τ ′ for

some ϵ ∈ R. Since pv,τ = 1 and pv is a probability vector, then for τ ′′ ̸= τ , we have

pv,τ ′′ = 0. Therefore, Pr[µ | P ] > 0 implies that τ ′ = τ , which implies that µ |= C.

For Equation (6.2b), we are to show that Jav = tτKP = 0 implies µ |= ¬ C. We

have that Jav = tτKP = pv,τ by definition, and so pv,τ = 0. We are to show that

µ |= ¬ (av = tτ ). For a contradiction, we assume the contrary, which by definition
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means that µ |= (av = tτ ). If µ |= (av = tτ ) then by definition µ(av) = tτ . Then

Pr[µ | P ] = ϵpv,τ for some ϵ ∈ R. Since pv,τ = 0 we obtain that Pr[µ | P ] = 0, which

contradicts our assumption that Pr[µ | P ] > 0.

Case C = ¬ C ′. Both for Equation (6.2a), Equation (6.2b) we have that Pr[µ | P ] > 0.

For Equation (6.2a), we suppose that J¬ C ′KP = 1, which by Lemma 6.2i implies that

JC ′KP = 0. By the induction hypothesis of Equation (6.2b) we have that µ |= ¬ C ′.

For Equation (6.2b), we suppose that J¬ C ′KP = 0, which by Lemma 6.2i implies

that JC ′KP = 1. By the induction hypothesis of Equation (6.2a) we have that µ |= C ′,

which by definition implies that µ |= ¬ ¬ C ′.

Case C = (C1 ∧ C2). We have that Pr[µ | P ] > 0.

For Equation (6.2a), we suppose that

JC1 ∧ C2KP = 1

implies JC1KP · JC2KP = 1 (Definition 6.2)

implies JC1KP = 1 and JC2KP = 1 (Lemma 6.1)

implies µ |= C1 and µ |= C2 (Inductive Hypothesis)

implies µ |= C1 ∧ C2 (Definition 4.4).

For Equation (6.2b), we suppose that

J(C1 ∧ C2)KP = 0

implies JC1KP · JC2KP = 0 (Definition 6.2)

implies JC1KP = 0 or JC2KP = 0

implies µ |= ¬ C1 or µ |= ¬ C2 (Inductive Hypothesis, twice)

implies µ |= (¬ C1 ∨ ¬ C2) (Definition 4.4)

implies µ |= ¬ (C1 ∧ C2) (De Morgan’s Law).
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6.4 Natural Type Inference as a Continuous Opti-

mization Problem

Given a program that admits multiple, correct, concrete type valuations given a type

library (like our motivating examples in Section 3.1), the core intuition of this dissertation

is that, the logical and natural constraints can interact to expedite the process of finding

a type valuation that (1) type checks and (2) is maximally natural (see Problem 7.1).

In this section, we focus on finding a probability matrix P ∗ that has these properties; and

then we discuss how to obtain a valuation µ∗ from P ∗. Our insight is that we can combine

these two requirements into a constrained continuous optimization problem.

Intuitively, we design the optimization problem to be over probability matrices P ∈ PV×T .

In the problem, we wish to find the matrix P ∗ that is maximally natural, in the sense

that it has the maximum NatValN among all probability matrices that satisfy the logical

constraints. As described in the previous section, this translates to JCKP ∗ = 1 which we

pose as a hard constraint to the optimization problem. Note that, while, in Definition 5.3,

we define NatValN for type valuation matrices, we can extend it naturally to any other

matrix that has a dimension same as N .

Hence, we obtain the constrained optimization problem OC,N(P ) which is defined by

max
P∈PV×T

NatValN(P )

s.t. JCKP = 1
(6.3)

where P is a typing probability matrix as defined in Definition 6.1.

We like to exploit the solution of 6.3 to extract a maximally natural type valuation, which

is our original goal. Towards this, we first relate type valuations to continuous typing

matrices using the following definition.

Definition 6.4. We say that a type valuation µ is “maximally consistent” with a typing

probability matrix P and natural matrix M if the following holds:

(1) for all v ∈ 1..V, µ(αv) = tτ implies pv,τ > 0.

(2) for all v ∈ 1..V, µ(αv) = tτ implies nv,τ ≥ nv,τ ′ where τ ′ is any index such that

pv,τ ′ > 0.

From a given typing probability matrix P and natural matrix N , one can easily construct

a maximally consistent type valuation µ as follows: for each v ∈ 1..V, set µ(αv) = tτ ,
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where τ is an index where the typing probability pv,τ is non-zero and also, the natural

value nv,τ achieves maximum (chosen at random if there are multiple such indices).

We now state the result that enables us to utilize the solution of 6.3 to derive a maximally

natural type valuation.

Theorem 6.2. Let C be the logical constraints, N be the natural matrix, NatValN be the

natural value function with respect to N , and JCKP be the relaxed semantics of C. Now,

consider P ∗ to be a solution of the problem OC,N (P ), described in (6.3), and µ∗ to be a type

assignment maximally consistent with P ∗ and N . Then, µ∗ has the following properties:

(1) µ∗ |= C; and

(2) for all µ ̸= µ∗ such that µ |= C, NatValN(Bin(µ)) ≤ NatValN(Bin(µ∗)).

Proof. For (1), we rely on the first criterion of µ∗ being maximally consistent, mentioned

in Definition 6.4, to show the following:

Pr[µ∗ | P ∗] =
V∏

v=1

pv,ind(µ∗(v)) > 0, (6.4)

where ind provides the index of the named type. Moreover, we have JCKP∗ = 1, since P ∗

is a solution to 6.3. Thus, by Theorem 6.1, Pr[µ∗ | P ∗] > 0 and JCKP ∗ = 1 imply that

µ∗ |= C, which gives us (1).

For (2), we show that NatValN (P ∗) = NatValN (Bin(µ∗)). First, observe that Bin(µ∗) is a

typing probability matrix for which JCKBin(µ∗) = 1 (since µ∗ |= C). Thus, NatValN(P ∗) ≥
NatValN(Bin(µ∗)), since P ∗ is a solution for 6.3. Next, observe the following inequality

that is a result of the second criteria of µ∗ being maximally consistent as defined in

Definition 6.4:

NatValN(Bin(µ∗)) =
V∑

v=1

nv,ind(µ∗(v)) =
V∑

v=1

T∑
τ=1

pv,τnv,ind(µ∗(v))

≥
V∑

v=1

T∑
τ=1

pv,τnv,τ = NatValN(P ∗)

Finally, for any type valuation µ |= C, we have NatValN(Bin(µ∗)) = NatValN(P ∗)) ≥
NatValN(Bin(µ)), since Bin(µ) is a typing probability matrix that satisfies JCKBin(µ) = 1.
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Techniques to solve Optimization Problem 6.3

To solve the constrained optimization problem (6.3), we need to make some remarks about

its structure. The most important one is that the constraint JCKP = 1 can be a non-linear

constraint over the optimization variables, as it contains a multiplication of more than

two variables, making the problem challenging. In fact, one can check that it is possible

that JCKP is an arbitrarily high-order polynomial over the optimization variables. In

principle, we could give the above problem directly to a off-the-shelf optimizers that handles

globally constrained optimization problems. However, most optimizers are effective for (or

even allow) optimization problems with constraints consisting of only up to second-order

polynomials and will not work directly.

A common workaround is to convert the constrained problem to an equivalent unconstrained

problem (6.8), in an approach inspired by the penalty method (Bertsekas, 1982; Boyd

and Vandenberghe, 2004; Luenberger and Ye, 2015). Penalty methods are commonly

used as they offer a straightforward way to handle constrained problems without the

need of sophisticated tools and instead use general off-the-shelf optimization methods.

In short, we approximate the constrained problem by adding to the objective function a

term the prescribes a high score for the violation of the constraints. This additional term

includes a multiplier c that determines the severity of the penalty. Ideally as c increases

towards infinity the solution point of the penalty problem will converge to a solution of

the constrained problem.

To do so first, we reparameterize the problem to remove the probability constraints, by

using the softmax function

σ(x) =

[
exp{x1}∑
i exp{xi}

,
exp{x2}∑
i exp{xi}

, · · ·
]T
, (6.5)

which maps real-valued vectors to probability vectors. Next, we sometimes abuse the

definition of softmax to use it over matrices where each row is a probability vector, meaning

that the softmax function is applied over each row.

Using (6.5), our transformed problem takes the form

max
Y ∈RV×T

NatValN(σ(Y ))

s.t. JCKσ(Y ) = 1
(6.6)

where N is the natural matrix and Y =
[
yT
1 . . . yT

V

]T
is a matrix of size V×T consisting
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of real variables and σ(Y ) =
[
(σ(y1))

T . . . (σ(yV))T
]T

.

Our transformation of the optimization problem ensures that if some real-valued matrix

Y ∗ maximizes (6.6), then P ∗ = σ(Y ∗) maximizes (6.3). This is because, any probability

vector can, in principle, be represented as the softmax of a real-valued vector.

We now remove the constraint in (6.6) by introducing a penalty cℓ yielding the final form

of our unconstrained optimization problem

max
Y ∈RV×T

UC,N(cℓ, Y ) ≜ NatValN(σ(Y ))− cℓ Pen(σ(Y )) (6.7)

where N is the natural matrix, c is a positive constant and Pen is a function over RV×T

satisfying: (i) Pen is continuous, (ii) Pen(σ(Y )) ≥ 0 for all RV×T , and (iii) Pen(σ(Y )) = 0

if and only if 1− JCKσ(Y ) = 0.

By choosing the Lagrangian penalty method (Luenberger and Ye, 2015)(Section 13.1)

where Pen(σ(Y )) = 1− JCKσ(Y ) and ℓ being an integer index indicating the sequence of

optimization problems, we need to solve a sequence of unconstrained problems for different

cℓ where

max
Y ∈RV×T

UC,N(cℓ, Y ) = NatValN(σ(Y ))− cℓ (1− JCKσ(Y )) (6.8)

In the unconstrained problem, we maximize the natural value minus a penalty term that

penalizes Y if it does not satisfy C under the relaxed semantics.

One method to actually solve (6.8) is the following: Let {cℓ}, ℓ = 1, 2, . . . , be a sequence

of real values tending to infinity, such that, for each ℓ, cℓ ≥ 0, cℓ+1 > cℓ. For each cℓ solve

problem (6.8) obtaining a solution point Yℓ.

Observe that if we let cℓ →∞ we will get back a solution that both maximizes the NatVal

and satisfies the logical constraints, formally:

Theorem 6.3. Let N be a natural probability matrix, C be logical constraints, JCKP denote

the relaxed semantics of C and {cl} be a sequence of real values tending to infinity. Now,

consider {Yℓ} to be the sequence generated by the sequence of penalty method problems

max
Y ∈RV×T

UC,N(cℓ, Yℓ) = NatValN(σ(Yℓ))− cℓ (1− JCKσ(Yℓ))

Then, any limit point of the sequence {Yℓ} is a solution to (6.6).

The proof of the above theorem directly corresponds to a standard result in non-linear

optimization bibliography, which can be found in Luenberger and Ye (2015) (p. 459). For
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this result, they consider a general optimization problem, stated as follows:

min
x

f(x)

s.t. x ∈ Ω
(6.9)

where f is a continuous function of En and Ω is a constraint set in En. They consider its

corresponding unconstrained problem to be: min q(c,x) ≜ f(x) + cP (x), where c is a

positive constant and P is a function on En satisfying: (i) P is continuous, (ii) P (x) >= 0

for all x ∈ En, and (iii) P (x) = 0 if and only if x ∈ Ω. They the state the following result:

Theorem 6.4 (Luenberger and Ye (2015)). Let {xk} be a sequence generated by the penalty

method. Then, any limit point of the sequence is a solution to the general optimization

problem 6.9.

To apply the aforementioned theorem in our case we simply need to replace f(x) =

−NatValN(σ(Yℓ)) and P (x) = 1− JCKσ(Y ).



7
Natural Type Inference using Discrete Opti-

mization

In this chapter, we present novel algorithms for solving the maximally natural type

inference problem (Problem 5.1) using popular deductive techniques to solve discrete

optimization problems. Our first algorithm, presented in Section 7.1, reduces the type

inference problem to a problem in maximum satisfiablity (MaxSAT) and exploits an off-

the-shelf MaxSAT solver to search for a suitable type assignment. Our second algorithm,

presented in Section 7.2, relies on an Integer Linear Program (ILP) formulation of the type

inference problem and thereafter, exploits an industrial ILP solver. Both the algorithms

provide a sound and complete method of predicting types by exploiting information from

the algorithmic typing rules and source code text, as established by Theorem 7.1 and

Theorem 7.2. Finally, in Section 7.3, we prove that the natural type inference problem is

in fact an NP-hard problem, in Theorem 7.3, indicating that there can be no polynomial

time algorithm to solve it (unless P=NP).

7.1 Natural Type Inference using MaxSAT

In this section, we present an approach that is principally different from the one presented

in Chapter 6. This approach relies on reducing the problem of maximally natural type

inference to an instance of the maximum satisfiability (MaxSAT) problem (Krentel, 1986).

The problem MaxSAT, roughly speaking, deals with finding suitable solutions for formulas

in propositional logic. To understand this better, let us first introduce some notation

related to propositional logic.

81
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Propositional Logic

Let Var be a set of propositional variables, which take Boolean values {0, 1} (0 represents

false, 1 represents true). Formulas in propositional logic—usually denoted by capital

Greek letters—are defined recursively as follows:

Φ := z ∈ Var | ¬Φ | Φ ∨ Φ

In addition, as syntax sugar, we allow the following standard formulas: true, false,

Φ ∧Ψ ≜ ¬(¬Φ ∨ ¬Ψ) and Φ→ Ψ ≜ ¬Φ ∨Ψ.

An assignment a : Var 7→ {0, 1} is a function that maps propositional variables to Boolean

values. Given an assignment a, a valuation function V (a,Φ) provides the semantics of a

propositional formula. It is inductively defined as follows:

V (a, z) = a(z)

V (a,¬Ψ) = 1− V (a,Ψ)

V (a,Ψ ∨ Φ) = max{V (a,Ψ), V (v,Φ)}

We say that a satisfies Φ if V (a,Φ) = 1, and call a a satisfying assignment of Φ. A

propositional formula Φ is satisfiable if there exists a satisfying assignment a of Φ.

The most well-known problem in propositional logic—the satisfiability (SAT) problem—is

the problem of determining whether a propositional formula is satisfiable or not. For this

problem, propositional formulas are often assumed to be in Conjunctive Normal Form

(CNF). A formula Φ, in CNF, is a conjunction of clauses c ∈ CΦ; CΦ being the set of

clauses. Each clause is a disjunction of literals; a literal being a propositional variable z or

its complement ¬z.

MaxSAT and its Variants

We can now introduce the problem of MaxSAT. MaxSAT is a variant of the SAT problem

that deals with the search of assignments that maximize the number of satisfied clauses

for a given propositional formula.

For our inference problem we, however, use a more general version of the MaxSAT problem,

known as Partial Weighted MaxSAT, or PW-MaxSAT in short. In this version, for a

given propositional formula there are weights associated with its clauses and suitable

assignments must be searched based on these weights.
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Formally, a formula Φ is associated with a weight function w : CΦ 7→ R∪{∞} that assigns a

weight to each of its clauses c ∈ CΦ. Based on the weights assigned, clauses are categorized

into hard constraints H and soft constraints S. A clause is a hard constraint c ∈ H if

w(c) =∞, while it is a soft constraint c ∈ S if w(c) ∈ R. Given a propositional formula Φ

with hard constraints H and soft constraints S, the goal in PW-MaxSAT is to find an

assignment a that

(1) satisfies all hard constraints, that is, V (a, c) = 1 for all c ∈ H, and

(2) maximizes the total weight of satisfied soft constraints, that is, maximizes
∑

c∈S w(c) ·
V (a, c).

With the rapid development of SAT (and related) solvers (Li and Manyà, 2021), finding

assignments to formulas even with millions of variables is feasible. For the MaxSAT

problem and its variants, in particular, there are several dedicated solvers that have

excellent performance (Bacchus et al., 2019). However, many modern SAT solvers—like

the one used for our prototype, Z3 (de Moura and Bjørner, 2008)—have been extended

with the capability of handling MaxSAT problems.

The Encoding Using MaxSAT

For reducing our inference problem to PW-MaxSAT, we construct a propositional formula

ΦNTI(C,N) and assign appropriate weights to its clauses. Our constructed formula

ΦNTI(C,N) has the property that, for any assignment a that satisfies its hard constraints

and maximizes the weight of the satisfied soft constraints, we can obtain a type assignment

µa that: 1) satisfies the logical constraints C; and 2) is as natural as possible with respect

to the natural matrix N . In short, µa ⇑ (N | C) based on the notation introduced in

Problem 5.1. We formalize this at the end of this section, as Theorem 7.1.

Internally, ΦNTI(C,N) is a conjunction of three formulas, described as follows:

ΦNTI(C,N) = ΦLC(C) ∧ ΦV C(C) ∧ ΦNC(N).

The first conjunct ΦLC(C) ensures that the prospective type assignment µa satisfies the

logical constraints arising from the typing rules in Definition 4.7. The second conjunct

ΦV C(C) ensures that µa is a valid type assignment, assigning exactly one type to each

variable. The third conjunct ΦNC(N) ensures that µa is as natural as possible, that is, it

maximizes the function NatValN , described in Problem 5.1. The conjuncts ΦLC(C) and

ΦV C(C) are hard constraints (that is, ΦLC(C),ΦV C(C) ∈ H), while ΦNC(N) consists of

soft constraints (that is, ΦNC(N) ∈ S). In the remainder of the section, we describe each
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conjunct (and their corresponding weights) in detail.

Each of the conjuncts of ΦNTI(C,N) rely on the following propositional variables: zv,τ for

each v ∈ 1..V and τ ∈ 1..T . A variable zv,τ tracks whether the variable v is assigned a

type tτ . Precisely, a(zv,τ ) = 1 if and only if µa(αv) = tτ . We now exploit the introduced

variables to construct our formulas.

We construct our first conjunct ΦLC(C) based on the algorithmic typing rules described

in Chapter 4. Let C be the logical constraints obtained using Definition 4.7. We now

convert C, which is a formula in equational logic, to a formula in propositional logic using

a translation function tr . The function is recursively on the structure of C as follows:

tr(αv = t) = zv,τ ;

tr(¬C) = ¬tr(C);

tr(C1 ∨ C2) = tr(C1) ∨ tr(C2).

Intuitively, the function tr translates equations αv = tτ to propositional variables zv,τ and

leaves the rest unchanged. We now simply set ΦLC(C) = tr(C).

We construct the second conjunct ΦV C(C) as follows:

ΦV C(C) =
∧

v∈1..V

[ ∨
τ∈1..T

zv,τ ∧
∧

τ ̸=τ ′∈1..T

[
¬zv,τ ∨ ¬zv,τ ′

]]
.

Intuitively, the above formula says that each variable v must be assigned at least one type

tτ and there must not be two types tτ ̸= tτ ′ assigned to it.

Due to the validity constraints introduced above, we can derive a type assignment µa from

a satisfying assignment a in a straightforward manner: we simply set µa(αv) to be the

unique τ ∈ 1..T for which a(zv,τ ) = 1.

We now construct the third conjunct ΦNC(N) as follows:

ΦNC(N) =
∧

v∈1..V

∧
τ∈1..T

zv,τ

Unlike the other conjuncts, ΦNC(N) consists of soft constraints. As a result, we assign

real-valued weights to its clauses using the following function w :

w(zv,τ ) = nv,τ , for all v ∈ 1..V and τ ∈ 1..T .

where nv,τ is the probability that αv is set to type tτ as specified in the natural constraint
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N (see Definition 5.1 for the details).

We conclude this section by stating a theorem that asserts the correctness of the constructed

propositional formula ΦNTI(C,N).

Theorem 7.1. Let be the logical constraints C and natural matrix N .

Let NatValN be the natural value function obtained from the natural matrix N .

Let H and S be the hard and soft constraints contained in the formula ΦNTI(C,N).

(1) (Soundness) If a is an assignment to ΦNTI(C,N) that satisfies the hard constraints

H and maximizes the weight of the satisfied soft constraints S, then the corresponding

type assignment µa has the properties that:

(a) µa |= C; and

(b) for all µ ̸= µa such that µ |= C, NatValN(Bin(µ)) ≤ NatValN(Bin(µa)).

(2) (Completeness) If µ |= C, then there exists an assignment a to ΦNTI(C,N) that

satisfies the hard constraints H.

Proof. Let us assume that a is a desired assignment to ΦNTI(C,N) and µa be the type

assignment derived from a. Now, to prove (1a) we use the following claim: If V (a, tr(C)) =

1 then µa |= C. We prove the claim via an induction on the structure of C.

Base Case C = (αv = tτ ): Let V (a, tr(αv = tτ )) = 1. Then, V (a, zv,τ ) = 1, which, based

on the definition of the valuation function, means a(zv,τ ) = 1 . Further, using our

construction of µa, µa(αv) = tτ and thus, µa |= (αv = tτ ).

Case C = ¬C1:

V (a, tr(¬C1)) = 1

implies 1− V (a, tr(C1)) = 1 (Definition of tr)

implies V (a, tr(C1)) = 0

implies not µ |= C1 (Inductive Hypothesis)

implies µa |= ¬C1 (Definition 4.4)

implies µa |= C

Case C = C1 ∨ C2 :

V (a, tr(C)) = 1
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implies V (a, tr(C1 ∨ C2)) = 1

implies V (a, (tr(C1) ∨ tr(C2)) = 1 (Definition of tr)

implies V (a, (tr(C1)) = 1 or V (a, (tr(C2)) = 1

implies µa |= C1 or µa |= C2 (Inductive Hypothesis)

implies µa |= (C1 ∨ C2) (Definition 4.4)

implies µa |= C

For (1b), we show that the weight of the satisfied soft constraints by an assignment a

satisfying the hard constraints (that is, ΦLC and ΦV C) is equal to NatValN(Bin(µa)).

Precisely,

NatValN(µa) =
V∑

v=1

nv,µa(αv) (Definition 5.3)

=
V∑

v=1

∑
τ∈1..T

where a(zv,τ )=1

nv,τ (Definition of µa)

=
V∑

v=1

T∑
τ=1

w(zv,τ ) · V (a, zv,τ ) (Definition of V ).

Thus, maximizing the weight of the satisfied soft constraints corresponds to maximizing

the NatValN function.

For (2), using type assignment µ, we construct an assignment a as follows: we set a(zv,τ ) = 1

if and only if µ(αv) = tτ . Now, to show that such an assignment satisfies ΦLC , we first

prove the following claim: If µ |= C then V (a, tr(C)) = 1. Similar to the proof for the

claim in (1a), we use a structural induction on C.

Base Case C = (αv = tτ ): Let µ |= (αv = tτ ). Then, by Definition 4.4 we get that

µ(αv) = tτ . Now, we construct an assignment a by setting a(zv,τ ) = 1. Then, based

on the definition of the valuation function V (a, zv,τ ) = 1, This can be rewritten using

the definition of the translation function as V (a, tr(αv = tτ )) = 1.

Case C = ¬C1:

µ |= ¬C1

implies not µ |= C1 (Definition 4.4)

implies V (a, tr(C1)) = 0 (Induction Hypothesis)

implies 1− V (a, tr(C1)) = 1
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implies V (a, tr(¬C1)) = 1 (Definition of tr)

implies V (a, tr(C)) = 1

Case C = C1 ∨ C2:

µ |= C1 ∨ C2

implies µ |= C1 or µ |= C2 (Definition 4.4)

implies V (a, (tr(C1)) = 1 or V (a, (tr(C2)) = 1 (Inductive Hypothesis)

implies V (a, (tr(C1) ∨ tr(C2)) = 1 (Definition of tr)

implies V (a, tr(C1 ∨ C2)) = 1

implies V (a, tr(C)) = 1

7.2 Natural Type Inference using ILP

We now describe an alternate way of combining logical and natural constraints by reducing

to a well-known problem—Integer Linear Programming (ILP) (Papadimitriou, 1982).

Integer Linear Programming expresses the optimization of a linear function subject to a

set of linear constraints over integer variables. We now formally introduce ILP.

Integer Linear Programming

Let c = [c1, · · · , cn] ∈ Rn and b = [b1, · · · , bm] ∈ Rm be vectors over real numbers, and

A ∈ Rm×n be an m × n dimensional matrix with entries ai,j ∈ R for each i ∈ 1..m and

j ∈ 1..n. Also, let x = [x1, · · · , xn] be a vector of variables where each xi can assume only

integer values. The general problem can now be written as the following optimization:

max
x

n∑
i=1

cixi

s.t.
n∑

i=1

ai,jxi = bj for each j ∈ 1..m

xi ≥ 0 for each i ∈ 1..n

xi ∈ Z for each i ∈ 1..n.
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Before we present our ILP formulation, we clarify the theoretical consequence of such a

formulation. In terms of complexity, both MaxSAT and ILP share the same hardness: the

decision version of both the problems are known to be NP-complete. As the result, the

reductions shown in both Section 7.1 and this section demonstrate that combining logical

and natural constraints can potentially be as hard as solving an instance of MaxSAT or

ILP. However, it is often seen that reducing a problem to one of the two problems happens

to be more effective in practice. Now, which of the two problem turns out to be more

effective for our type inference problem requires a empirical study, which we present in

the next chapter. Our focus in this section is on providing an efficient reduction to ILP

and thereafter, proving its correctness.

The ILP Formulation

To set up our ILP formulation, we introduce integer variables yv,τ for each v ∈ 1..V
and each τ ∈ 1..T . To refer to the variables in a concise manner, we use the vector

y = [y1,1, · · · , yV,T ] of dimension V · T .

Further, to impose the logical constraints C on the integer variables, we introduce a

translation function tr that converts C into linear expressions over the integer variables.

The translation function we design can be applied only on clauses and thus, we consider

C to be specified in (or, if necessary, converted to) CNF. We now define tr over a clause

c = l1 ∨ l2 ∨ · · · ∨ lk where li’s represent literals that can be of the form (αv = tτ ) or

¬(αv = tτ ).

tr(αv = tτ ) = yv,τ ;

tr(¬(αv = tτ )) = 1− yv,τ ;

tr(l1 ∨ l2 · · · ∨ lk) = tr(l1) + tr(l2) + · · · tr(lk)

We now specify the ILP formulation as follows:

max
y

V∑
v=1

T∑
t=1

yv,τ · nv,t

s.t. 0 ≤ yv,τ ≤ 1 for each v ∈ 1..V and τ ∈ 1..T∑
τ∈1..T

yv,τ = 1 for each v ∈ 1..V

tr(ci) ≥ 1 for each clause ci of C

yv,τ ∈ Z for each v ∈ 1..V and t ∈ 1..T .

(7.1)

We refer to the above formulation as INTI(C,N). In INTI(C,N), the first set of constraints

ensure that the variables yv,τ assume values either 0 or 1. The second set of constraints
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ensure that for each v ∈ 1..V, exactly one variable yv,τ assumes the value 1. The third

constraint ensures that the variables respect the linear equation obtained from the logical

constraints C using the translation function tr .

In a solution of INTI(C,N), let the value of yv,τ be denoted using av,τ for each v ∈ 1..V
and for each τ ∈ 1..T . From a solution av,τ , we construct a type assignment µa as follows:

we set µa(αv) to be unique τ ∈ 1..T for which av,τ = 1.

We now prove that our ILP formulation is correct, which formally stated is as follows:

Theorem 7.2. Let C be the logical constraints and N the natural matrix. Let NatValN be

the function that computes the natural value of a type assignment with respect to a natural

matrix N . Let INTI(C,N) be the ILP formulation as described above.

(1) (Soundness) Let the µa be the type assignment constructed based on a solution of

INTI(C,N). Then µa has the following properties:

(a) µa |= C; and

(b) for all µ ̸= µa such that µ |= C, NatValN(Bin(µ)) ≤ NatValN(Bin(µa)).

(2) (Completeness) If µ |= C, then there exists a feasible solution of INTI(C,N), i.e.,

a solution that satisfies all of the constraints.

Proof. To prove (1a), we prove that µa |= ci for some arbitrary clause ci = l1 ∨ · · · ∨ lk
of C. To this end, observe that tr(li) can only assume values 0 or 1, since li’s are either

yv,τ or 1− yv,τ . Now, tr(ci) ≥ 1 since INTI(C,N) admits a feasible solution. This implies

that at least one tr(li) has value 1. Thus, without loss of generality, let tr(lm) = 1 and

lm = (αv = tτ ). Consequently, based on our definition of µa, µa(αv) = tτ . As a result,

µa |= lm and hence, µa |= ci.

For (1b), we show that the value of the optimization objective in INTI(C,N) is equal to

NatValN(µa). Let av,τ be the value assumed by variable yv,τ for each v ∈ 1..V and each

τ ∈ 1..T . We now have the following:

NatValN(Bin(µa)) =
V∑

v=1

Bin(µa)v · nv (Definition 5.3)

=
V∑

v=1

T∑
τ=1

av,τ · nv,τ .

Thus, maximizing the objective function in INTI(C,N) maximizes the NatValN function.

Finally, to prove (2), we construct a solution of INTI(C,N) based on a satisfying type
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assignment µ. In particular, we set av,τ = 1 if µ(αv) = τ , otherwise av,τ = 0 for each

v ∈ 1..V and τ ∈ 1..T . We now prove that this a feasible solution for INTI(C,N). Clearly,

the first set of constraints
∑

τ∈1..T av,τ = 1 is satisfied, since µ(αv) = tτ for exactly one τ .

The second set of constraints is satisfied by definition since av,τ is either 0 or 1. Finally,

we show that the third set of constraints hold by showing that it holds for an arbitrary

clause ci = l1 ∨ · · · ∨ lk of C. Now, since µ |= ci, µ |= lm for some literal lm. Without loss

of generality, let lm = (αv = tτ ). Now, av,tτ = 1 based on the definition of the solution.

Thus, tr(ci) ≥ av,τ = 1.

7.3 Natural Type Inference is NP-hard

We now prove that the problem of combining logical and natural constraints, as we state in

Problem 5.1, is in fact an NP-hard problem. Since Problem 5.1 is an optimization problem,

we prove its NP-hardness by relying on its corresponding decision problem, which we state

below.

Problem 7.1 (Decision: Natural Satisfying Type Valuation). Given a formula C in

equational logic over A = tyvar(C) = {αv | v ∈ 1 . . .V}, a natural matrix N of size V × T ,
and k ∈ R, does there exist a type assignment µ with dom(µ) = A that has the properties:

(1) µ |= C; and (2) NatValN(Bin(µ)) ≥ k?

We refer to the above problem as NatSAT for brevity. In contrast to the optimization

problem (Problem 5.1), the NatSAT problem requires a real number k to search for

a satisfying type assignment µ that has the property NatValN(Bin(µ)) ≥ k. Now, to

determine for which values of k there exists a type assignment with the mentioned

properties, one can simply solve the optimization problem. As a result, the optimization

problem is harder than the stated decision problem NatSAT. In what follows, we show

that the NatSAT problem is NP-complete, making Problem 5.1 NP-hard.

Theorem 7.3. The NatSAT problem is NP-complete.

It is straightforward to show that the NatSAT problem is in NP. In particular, given a

type assignment µ, verifying whether µ |= C can be done in time O(poly(|C|)), where

|C| is the size of the syntactic tree of C. Also, verifying NatValN(Bin(µ)) ≥ k requires

performing a number of arithmetic operations based on Definition 5.3, which can be done

in time O(poly(V · T )).

For proving the NP-hardness, we rely on the decision version of the MaxSAT problem,

which is the following:
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Problem 7.2 (Decision: MaxSAT ). Given a propositional formula Φ in CNF over n

variables with m clauses, and a natural number k ≤ m, does there exist an assignment a

that satisfies at least k clauses?

Again, for brevity, we refer to the above problem as MaxSAT . The MaxSAT problem is a

well-known NP-complete problem (Papadimitriou, 2007).

We now provide a polynomial reduction of the MaxSAT problem to the NatSAT problem,

that is, MaxSAT≤mNatSAT. The crux of our reduction is to construct logical constraints

CΦ and a natural matrix NΦ from a propositional formula Φ such that the following holds:

Claim 7.1. There exists an assignment for Φ that satisfies at least k of its clauses if and

only if there exists a type assignment µ such that µ |= CΦ and NatValN (Bin(µ), NΦ) ≥ k+n
2
.

In the remainder of the section, we provide our reduction and subsequently, prove the

above claim.

Let Var = {z1, z2, · · · zn} be the set of variables in Φ and C = {c1, c2, · · · , cm} be the

clauses of Φ. For the construction, let us introduce propositional variables di for each

i ∈ 1..m. These variables track the valuation of each clause ci of Φ. Precisely, a(di) = 1 if

and only if V (a, ci) = 1 for each i ∈ 1..m. To ensure the desired meaning of the variables

di, we construct the following formula:

ΨΦ ≜
∧

i∈1..m

(di ↔ ci)

≜
∧

i∈1..m

(di → ci) ∧ (ci → di)

≜
∧

i∈1..m

(¬di ∨ ci) ∧ (¬ci ∨ di)

As a running example, consider Φ = (z1 ∨ ¬z2) ∧ (z3 ∨ ¬z1), where c1 = z1 ∨ ¬z2 and

c2 = z3 ∨ ¬z1. We then have ΨΦ = (d1 ↔ c1) ∧ (d2 ↔ c2), which can be expressed in CNF

as ΨΦ = (¬d1 ∨ z1 ∨¬z2)∧ (¬z1 ∨ d1)∧ (z2 ∨ d1)∧ (¬d2 ∨ z3 ∨¬z1)∧ (¬z3 ∨ d2)∧ (z1 ∨ d2).

We now describe the construction of CΦ. We build CΦ over type variables A = tyvar(CΦ) =

{αv | v ∈ 1..n+m} and two types {t1, t2}. For constructing CΦ, we apply a translation

function t̃r to convert ΨΦ to obtain formula in equational logic. The function t̃r is defined

inductively as follows:

t̃r(zi) = (αi = t1); t̃r(di) = (αn+i = t1)

t̃r(¬Φ) = ¬t̃r(Φ); t̃r(Φ ∨Ψ) = t̃r(Φ) ∨ t̃r(Ψ)
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Now, CΦ is simply t̃r(ΨΦ). For the running example, CΦ is over type variables {α1, α2, α3, α4, α5}
and types {t1, t2}. Applying t̃r on ΨΦ yields the following CΦ:

CΦ = [¬(α4 = t1) ∨ (α1 = t1) ∨ ¬(α2 = t1)] ∧ [¬(α1 = t1) ∨ (α4 = t1)]

∧ [(α2 = t1) ∨ (α4 = t1)] ∧ [¬(α4 = t1) ∨ (α3 = t1) ∨ ¬(α1 = t1)]

∧ [¬(α3 = t1) ∨ (α5 = t1)] ∧ [(α1 = t1) ∨ (α4 = t1)]

Next, we construct the natural constraints nv as follows:

nv =

[1
2
, 1
2
] for v ∈ 1..n

[1, 0] for v ∈ n+ 1..n+m

Intuitively, the natural constraints are constructed such that, for each type variables αi

where i ∈ 1..n, equal preference is given to be set to t1 or t2, but, for each type variables

αi where i ∈ n+ 1..n+m, more preference is given to be set to t1. The natural matrix

N = [nT
1 · · · nT

n+m] is defined based on the introduced natural constraints. For the

running example, N will be the following:

t1 t2



α1
1
2

1
2

α2
1
2

1
2

α3
1
2

1
2

α4 1 0

α5 1 0

Proof of Claim 7.1. To prove the forward direction, we consider that there exist an assign-

ment for Φ, say a, which satisfies at least k of its clauses. We extend a to assign values for

the introduced variables di by simply setting a(di) = V (a, ci).

Such an assignment a satisfies ΨΦ, that is, a |= ΨΦ. Since ΨΦ =
∧

i∈1···n di ↔ ci, to show

a |= ΨΦ, it suffices to show a |= di ↔ ci. This can be shown by expanding the inductive

definition of the valuation function V as follows:

V (a, di ↔ ci) = min{V (a, di → ci), V (a, ci → di)}

= min{max{1− a(di), V (a, ci)},max{1− V (a, ci), a(di)}}

= min{max{1− a(di), a(di)},max{1− a(di), a(di)}}

= 1
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Using the considered assignment a, we construct µ as follows:

• for i ∈ 1 · · ·n, µ(αi) ≜ t1 if a(zi) = 1, t2 otherwise; and

• for i ∈ n+ 1 · · ·n+m, µ(αi) ≜ t1 if a(di) = 1, t2 otherwise.

We now prove that µ |= CΦ. To this end, we prove that V (a,Ω) = 1 if and only if µ |= t̃r(Ω)

for any subformula Ω of ΨΦ. We show this using an induction on the structure of the

formula Ω as follows:

Case Ω = zi:

V (a, zi) = 1

if and only if a(zi) = 1 (Definition of V )

if and only if µ(αi) = t1 (Definition of µ)

if and only if µ |= (αi = t1) (Definition of V )

if and only if µ |= t̃r(zi)

Case Ω = ¬Ω′:

V (a,¬Ω′) = 1

if and only if V (a,Ω′) = 0 (Definition of V )

if and only if µ ̸|= t̃r(Ω′) (Inductive Hypothesis)

if and only if µ |= t̃r(¬Ω′) (Definition 4.4)

Case Ω = Ω1 ∨ Ω2:

V (a,Ω1 ∨ Ω2) = 1

if and only if V (a,Ω1) = 1 or V (a,Ω2) = 1 (Definition of V )

if and only if µ |= t̃r(Ω1) or µ |= t̃r(Ω2) (Inductive Hypothesis)

if and only if µ |= t̃r(Ω1 ∨ Ω2) (Definition 4.4)

For the inductive step, we skip the cases when Ω = di and Ω = Ω1 ∧ Ω2 since they are

almost identical to the cases where Ω = zi and Ω = Ω1 ∨ Ω2, respectively.

Finally, using the fact that V (a,ΨΦ) = 1, we prove that µ |= t̃r(ΨΦ), that is, µ |= CΦ

We now prove that NatValN(Bin(µ), NΦ) ≥ n
2

+ k. In the proof, we use the notation
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1condition to represent the characteristic function which has value 1 if the condition holds,

0 otherwise. The proof is now as follows:

NatValN(Bin(µ), NΦ) =
n∑

i=1

(
1

2
· 1µ(αi)=t1 +

1

2
· 1µ(αi)=t2) +

n+m∑
i=n+1

1µ(αi)=t1

=
n

2
+

n+m∑
i=n+1

1µ(αi)=t1 =
n

2
+

m∑
i=1

1a(di)=1 =
n

2
+

m∑
i=1

1V (a,ci)=1

≥ n

2
+ k

In the above equation, note that 1V (a,ci)=1 ≥ k since a satisfies at least k clauses of Φ.

To prove the backward direction, let us consider µ is an type assignment such that µ |= CΦ

and NatValN(Bin(µ), NΦ) ≥ n
2

+ k. Using µ, we construct assignment a for Φ in the

following manner:

• for i ∈ 1 · · ·n, a(zi) = 1 if µ(αi) = 1

• for i ∈ n+ 1 · · ·n+m, a(di) = 1 if µ(αi) = 1

As in the other direction, we prove that V (a,Ω) = 1 if and only if µ |= t̃r(Ω) for any

subformula Ω of ΨΦ using the exact same inductive proof. This proves that V (a,ΨΦ) = 1

since µ |= t̃r(ΨΦ).

Next, we prove that a(di) = V (a, ci) for each i ∈ 1..n, using contradiction. Consider that

a(di) ̸= V (a, ci) for some i ∈ 1..n. This implies a(di) = 1 − V (a, ci). Based on this, we

compute V (a, di ↔ ci) as follows:

V (a, di ↔ ci) = min{V (a, di → ci), V (a, ci → di)}

= min{max{1− a(di), V (a, ci)},max{1− V (a, ci), a(di)}}

= min{max{V (a, ci), V (a, ci)},max{1− V (a, ci), 1− V (a, ci)}}

= min{V (a, ci), 1− V (a, ci)}

= 0

Thus, if V (a, di ↔ ci) = 0, V (a,ΨΦ) = 0 since ΨΦ =
∧

i∈1..m di ↔ ci, leading to a

contradiction.

Finally, we prove that a satisfies at least k clauses of Φ by exploiting NatValN . In

particular, we have the following:

NatValN(Bin(µ), NΦ) ≥ n

2
+ k
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implies
n

2
+

n+m∑
i=n+1

1µ(αi)=t1 ≥
n

2
+ k (Definition 5.3)

implies
m∑
i=1

1a(di)=1 ≥ k (Definition of a)

implies
m∑
i=1

1V (a,ci)=1 ≥ k

showing that V (a, ci) = 1 for at least k clauses.

The result in this section shows that the problem of combining logical constraints C and

natural constraints N to obtain a type assignment µ that satisfies the logical constraints

C and, at the same time, maximizes the natural value NatValN is NP-hard. However,

this does not directly show that finding a maximally natural type assignment for a given

program is NP-hard. This is because, in Problem 7.1 (which we prove to be NP-hard), we

make an implicit assumption that one can obtain arbitrary (in terms of syntactic structure)

logical constraints C from a program via the typing rules in Chapter . We do not know

whether this is true. Nevertheless, this generates an interesting line of future work in

which one characterizes programs based on the syntactic structure of logical constraints

derived from the program to determine the computational hardness of obtaining maximally

natural type assignments.





8
Realizing Natural Type Inference for Type-

Script

In this chapter, we discuss about our realization of natural type inference in a prototype

for TypeScript, which we name Optyper. Our tool Optyper principally differs from

existing tools (at least for TypeScript) in two ways: 1) it exploits typing rules to generate

logical constraints for sound typing and does not need to learn them; and 2) it employs

optimization to pick the maximally natural choice that the logical constraints allow.

Before diving into the implementation details of Optyper, we must clarify a restriction that

we employ in our tool. While, in Section 7.3, we prove that our approach is sound over

a λ-calculus of named types, TypeScript’s type system is vastly more expressive. Hence,

as is standard practice with research prototypes, Optyper does not handle TypeScript’s

type system in its entirety, and employs restrictions such as restricting Optyper to a fixed

type vocabulary (see Section 8.2). That said, we know of no reason, in principle, that

Optyper could not be extended to TypeScript’s full type system.

To explain its implementation, in this chapter, we first describe the different building

blocks of Optyper. We begin by describing how Optyper generates the logical constraints

from the TypeScript compiler (Microsoft, 2020) tsc, in Section 8.1. We then describe how

Optyper extracts the natural information using a popular deep learning model—Long Short

Term Memory (LSTM)—in Section 8.2. Finally, we present the implementation of the

various techniques for joint optimization of logical and natural constraints in Section 8.3.

Specifically, for the joint optimization, we describe the implementation of continuous

optimization from Section 6.4, MaxSAT from Section 7.1 and ILP from Section 7.2.

We then evaluate Optyper on real world benchmarks obtained from open source GitHub

97
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repositories. Through our evaluation, we answer a number of research questions regarding

the efficacy of our approach. In particular, we compare the different joint optimization

techniques and the benefits of combining logical and natural constraints. Finally, we

compare Optyper against two state-of-the-art type inference tools LambdaNet (Wei et al.,

2020) and TypeWriter (Pradel et al., 2020). We show that, leveraging its solid formal

foundation and optmization techniques, Optyper outperforms the other tools in predicting

types.

8.1 Logical Constraints for Optyper

In this section, we first provide some background regarding TypeScript’s compiler and

then we describe how we use it to extract logical constraints from it.

Background: TypeScript’s Type System

TypeScript (Microsoft, 2020) is a typed superset of JavaScript designed for developing large-

scale, stable applications. TypeScript’s compiler (tsc) typechecks TypeScript programs

then emits plain JavaScript, to leverage the fact that JavaScript is the only cross-platform

language that runs in any browser, any host, and any OS. TypeScript’s type system

considers record types (classes), whose fields or members have the same names and types,

to be equal. This implementation decision permits TypeScript to handle many JavaScript

idioms that depend on dynamic typing. One of the main goals of TypeScript’s designers

is to support idiomatic JavaScript to provide a smooth transition from JavaScript to

TypeScript. Therefore, TypeScript’s type system is deliberately unsound (Bierman et al.,

2014). It is an optional type system, whose annotations can be omitted and have no

effect on runtime, as TypeScript erases them when transpiling to JavaScript (Bierman

et al., 2014). TypeScript’s type system defaults to assigning its any type to unannotated

parameters, and methods or properties.

Extracting Logical Constraints

We cannot rely on the TypeScript compiler (Microsoft, 2020) tsc directly to generate the

logical constraints of Section 4.1, because tsc does not construct logical formulas explicitly

during typechecking. Still, we can rely on a mode of operation where the compiler infers

types on TypeScript code with no type annotations. To ensure that no types are present to

the input files, the first step before extracting the logical constraints is to parse the original

files and remove all type annotations, then we continue with generating the constraints.



8.2. NATURAL CONSTRAINTS FOR OPTYPER 99

Specifically, to generate logical constraints on argument types, we build on a command-line

tool, named TypeStat (Goldberg, 2020), that calls tsc to predict type hints for variables,

usually to provide codefixes within a development environment. We associate each variable

xv, to a fresh generic type variable αv, in correspondence to Definition 4.1, and append

the pair to V = V ∪ {(xv, αv)}. So, when the predicted type for an identifier xv, is a literal

tτ within our universe, we emit the constraint αv = tτ , where v ∈ 1..V, τ ∈ 1..T . When

the predicted type for xv is a union type (t1 | · · · | tn) of literals, we emit the disjunction

((αv = t1) ∨ · · · ∨ (αv = tn)). Overall, for each function or group of functions in a file, we

return a conjunction of the logical constraints generated for variables, as described above.

We note that our logical constraints include propositional logic, and therefore are able to

express a wide range of interesting type constraints (Odersky et al., 1999; Pottier and

Rémy, 2005).

8.2 Natural Constraints for Optyper

In this section, we describe how we generate the natural constraints using a deep learning

model: character-level LSTM, a variant of Recurrent Neural Networks (RNNs). While

there are numerous machine learning models for learning-based type inference as we see in

the related works—Section 2.3; for our purposes of bridging the gap between logical and

learning-based inference, the chosen RNN model suffices.

In what follows, we first provide some background knowledge for character-level LSTM

and then we explain how we instantiate it for our problem to learn natural constraints

from naming conventions over types.

Background: Character-level LSTM

In principle, natural constraints can be calculated based on any property of the source code,

including names and comments. In this dissertation, we consider a simple but practically

effective example of natural constraint, namely, a deep network that predicts the type

of an identifier from the characters in its name. We consider each identifier id to be a

character sequence xid = (cid1 . . . c
id
n ), where each cidi is a character. (This instantiation of

the natural constraint is defined only on types for identifiers that occur in the source code,

such as a function identifier or a parameter identifier.) This is a classification problem,

where the input is xid, and the output classes are the set of our concrete types. Ideally, the

classifier would learn that identifier names that are lexically similar tend to have similar

types, and specifically which subsequences of the character names, like lst , are highly
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predictive of the type, and which subsequences are less predictive. One simple way to do

so is to use an RNN.

For our purposes, an RNN is simply a function (hi−1, wi) 7→ hi that maps a state vector

hi−1 ∈ RH and an arbitrary input wi to an updated state vector hi ∈ RH . (The dimension

H is one of the hyperparameters of the model, which can be tuned to obtain the best

performance.) The RNN has continuous parameters that are learned to fit a given data

set, but we elide these parameters to lighten the notation, because they are trained in a

standard way. We use a particular variant of an RNN called character-level long-short

term memory (LSTM) network, which has proven to be particularly effective both for

natural language and for source code (Sundermeyer et al., 2012; Melis et al., 2018; White

et al., 2015; Khanh Dam et al., 2016). Such a network consists of LSTM units (Hochreiter

and Schmidhuber, 1997) and can process a sequence of characters. We now proceed to

describe the specific details of the character-level LSTM network that we use.

Character-level LSTM Network Architecture and Training details

To mathematically denote the output of an LSTM unit, we use the notation LSTM(hi−1, wi).

We now describe how our LSTM network processes identifiers. For a given identifier

xid = (cid1 . . . c
id
n ), our network inputs each character cidi to an LSTM unit sequentially and

finally, outputs a state vector hn. This vector hn is then passed as input to a simple

neural network that outputs the natural constraint nid. Formally, we have the following:

hi = LSTM(hi−1, c
id
i ) i ∈ 1, . . . , n (8.1a)

nid = F (hN), (8.1b)

where F : RH → RT is a simple (feedforward) neural network. This network structure is,

by now, a fairly standard architectural motif in deep learning. We leave the possibility of

incorporating sophisticated networks as promising future work.

We now also specify our choice of the architecture for F . We choose F to be a feedforward

neural network with no additional hidden layers, described as follows

F (h) = log
(
σ
(
hAT + b

))
, (8.2)

where the log function is applied componentwise, and A and b are learnable weights and

bias. The softmax function (6.5) corresponds to the last layer of our neural network and

essentially maps the values of the previous layer to [0, 1], while the sum of all values is 1

as expected for a probability vector as already explained. We work in log space to help
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# of pairs
˜45,000
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Conventions

Figure 8.1: Pipeline of learning naming conventions with a character-level LSTM,
represented by a probability vector for each identifier.

numerical stability since computing (6.5) directly can be problematic. As a result, F

outputs values in [−∞, 0].

We train our character-level LSTM network on (id, type) pairs consisting of variable

identifiers together with their known types, and minimizing a loss function. Our chosen

loss function is the negative log likelihood function—conveniently combined with our log

output—defined as

L(N ) = −
V∑
1

log(nid) (8.3)

where nid is a natural constraint as defined in (8.1b) and N is a matrix of size V × T that

aggregates all the natural constraints(Definition 5.1).

We set the maximum number of iterations to 2,000, which suffices in practice for the loss

to stabilise.

We use Adam (Kingma and Ba, 2014), an extension of stochastic gradient descent (Robbins

and Monro, 1951), as our optimization algorithm for the natural constraints. The main

difference between Adam and classical stochastic gradient descent is the use of adaptive

instead of fixed learning rates. Although there exist other algorithms with adaptive

learning rates like AdaGrad (Duchi et al., 2011) and RMSprop (Tieleman and Hinton,

2014), Adam tends to have better convergence (Ruder, 2016).

The model is written in PyTorch (Paszke et al., 2017) and trained in an NVIDIA GeForce

GTX 1080 Ti GPU.

Training Data Set

Following the work of Wei et al. (2020) and Hellendoorn et al. (2018), to train our model we

use as dataset the 300 most starred Typescript projects from Github, containing between

500 to 10,000 lines of code. Our dataset was randomly split by project into 70% training
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data, 10% validation data and 20% test data. Figure 8.1 shows a summary of the pipeline

used to train our model.

Extracting Natural Constraints

To obtain the natural probability matrix N as described in Definition 5.1, we rely on the

probability distributions over named types for each identifier returned by our character-

level LSTM network. In particular, we define the probability vector nv associated with

each type variable αv as

nv =

[1/T , . . . , 1/T ],

Average({nid | id ∈ idvV}),
(8.4)

where idvV denotes the identifiers associated with type variable αv (as defined in Section 5.1),

and nid is the probability distribution output by our LSTM network (as defined in

Equation (8.1b)). The function Average when applied to a set of probability vectors

simply computes the point-wise average for each element of the vectors.

8.3 Combining Logical and Natural Constraints with

Optyper

Combining Constraints using Continuous Optimization

In our framework both solving the relaxed logical constraints alone, and combining them

with the natural constraints correspond to an optimization problem as described in (6.3).

Our implementation is written in PyTorch (Paszke et al., 2017), and, as the PyTorch’s

optimization package does not solve non-linear constraints, we relied on the unconstrainted

optimization problem, presented in (6.7), to solve our problem. Our experiments show

that choosing k = 1000 as penalty multiplier suffices in most cases to satisfy the logical

constraints. To find the minimum of the generated function, we use RMSprop (Tieleman

and Hinton, 2014), an alternative to stochastic gradient descent (Robbins and Monro,

1951), with an adaptive learning rate. Finally, we note that, for numerical stability we

need to use logits instead of probabilities as described below.
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Logical Constraints in the Logit Space

In Definition 6.2, we present the continuous interpretation based on probabilities. As

already mentioned, in the actual implementation we use logit instead for numerical stability.

The logit of a probability is the logarithm of the odds ratio. Precisely, for an element

p ∈ [0, 1] of a probability vector, the logit π corresponds to

π = log
p

1− p
.

It allows us to map probability values from [0, 1] to [−∞,∞].

Given the matrix L, which corresponds to the logit of the matrix P in Definition 6.2, we

have that log(JCKP ) = JCKL. we interpret a constraint C as a number JCKP ∈ R as

follows:

Jαv = tτKL = πv,τ

J¬CKL = log(1− exp(JCKL)

JC1 ∧ C2KL = JC1KL + JC2KL

JC1 ∨ C2KL = log
(
exp(JC1KL) + exp(JC2KL)− exp(JC1KL + JC2KL)

)
.

The sigmoid function is defined as

sigmoid(a) =
exp{a}

1 + exp{a}
,

while the LogSumExp function is defined as

LogSumExp(x) = log

(∑
i

exp{xi}

)
.

Combining Constraints using MaxSAT

To tackle the MaxSAT problem (defined in Section 7.1), we rely on an industrial SAT/SMT

solver Z3 (de Moura and Bjørner, 2008) developed at Microsoft Research. It is one of the

most widely used deductive solvers, having the ability to handle a large variety of problems

related to constraint satisfiablity. Due to its versatility, numerous software verification

and program analysis tools, such as Boogie (Goues et al., 2011), Dafny (Leino, 2010) etc.,

are built on top of it.
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While it started off as a SAT/SMT solver, it was later extended with the feature of

handling MaxSAT/MaxSMT (Bjørner and Phan, 2014). Although there are many al-

gorithms provided by Z3 to handle MaxSAT, we stick to the default algorithm known

as MaxRes (Narodytska and Bacchus, 2014) since it is proven to scale well on large

benchmarks. Roughly speaking, the MaxRes algorithm iteratively removes soft constraints

having low weights, until it finds a subset of soft constraints that are consistent with the

hard constraints.

Combining Constraints using ILP

To tackle the ILP problem (defined in Section 7.2), we rely on Gurobi (https://www.

gurobi.com), one of the fastest mathematical programming solvers available. For solv-

ing LP problems, Gurobi uses a highly-optimized implementation of the Simplex algo-

rithm (Dantzig, 1960) that incorporates many heuristics to scale down the size of the

problem, including removing redundant variables and linear inequalities.

8.4 Evaluation of Optyper

In this section, we evaluate the ability our tool Optyper to predict types. To evaluate

our tool systematically, we formulate a number of research questions, which we answer

through our experiments. The research questions are as follows:

RQ1: How do the different methods for combining logical and natural constraints compare

against each other?

RQ2: How effective is it to combine logical constraints and natural constraints for type

inference?

RQ3: How does our approach compare with prior work in predicting types?

To answer the research questions, we use the same benchmark set as was used by Wei

et al. (2020); Hellendoorn et al. (2018). This is the exactly the same 20% test set that

was used for the evaluation of our character-level LSTM model. This test set consists of

1304 files from 60 GitHub packages with ∼10000 annotation slots, locations in the source

where type annotations are permitted.

As we alluded in the beginning of the chapter, for all the experiments, we restrict Optyper’s

type vocabulary to be the top-100 most common library types occurring in our training

set. As Wei et al. (2020) report, this space covers 98% of the non-any annotations in the

https://www.gurobi.com
https://www.gurobi.com
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Figure 8.2: Comparison of runtime of the presented algorithms. All the presented
times are in seconds. The timeout TO chosen is 300 seconds.

dataset. While we impose this restriction, for extensive evaluation, one can easily extend

Optyper to handle a larger vocabulary.

For handling polymorphic types, Optyper conforms to prior work (Wei et al., 2020;

Hellendoorn et al., 2018; Xu et al., 2016; Raychev et al., 2015) and mapping the arguments

of polymorphic types to any. For example, it maps Promise<boolean> to Promise<any>.

Moreover, Optyper in its type vocabulary maps higher-order functions to the type Function.

Note that Optyper does not include the any type outside of polymorphic types or Out-Of-

Vocabulary OOV token.

In what follows, we answer the three research questions based on the results obtained from

our experiments.



106 CHAPTER 8. REALIZING NATURAL TYPE INFERENCE FOR TYPESCRIPT

0 20 40 60 80 100

0

20

40

60

80

100

Optyper-ContOpt accuracy

O
p
ty
p
er
-M

a
x
S
A
T

a
cc
u
ra
cy

(a) Comparison: ContOpt vs MaxSAT

0 20 40 60 80 100

0

20

40

60

80

100

Optyper-ContOpt accuracy

O
p
ty
p
er
-I
L
P

ac
cu
ra
cy

(b) Comparison: ContOpt vs ILP

0 20 40 60 80 100

0

20

40

60

80

100

Optyper-MaxSAT accuracy

O
p
ty
p
er
-I
L
P

ac
cu
ra
cy

(c) Comparison: MaxSAT vs ILP

Figure 8.3: Comparison of accuracy of the presented algorithms. All the
presented accuracy is in percentage.

RQ1: Comparison of Joint Optimization Techniques

To answer RQ1, we compare the performance of three techniques presented for the joint

optimization of the logical and natural constraints. To distinctly identify the techniques,

we call the technique using continuous optimization from Section 6.4 as Optyper-ContOpt,

the one using MaxSAT from Section 7.1 as Optyper-MaxSAT and the one using ILP from

Section 7.2 as Optyper-ILP. We compare the algorithms based on two parameters, the

time required to predict types and the accuracy obtained.

Figure 8.2 demonstrates the pair-wise comparison of the running times on all test files and

Table 8.1 presents the average running time. From the charts, one can clearly see that both

Optyper-MaxSAT and Optyper-ILP outperform Optyper-ContOpt in running time. This

fact is also reflected in the average running time of the algorithms. A possible explanation

for the underwhelming performance of Optyper-ContOpt is that, in its optimization

formulation, it relies on a non-linear objective function. Both Optyper-MaxSAT and
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Algorithm Avg-Time (in sec) Avg-Accuracy (in %)

Optyper-ContOpt 29.20 81
Optyper-MaxSAT 10.12 83

Optyper-ILP 1.44 83

Table 8.1: Comparison of average runtime and average accuracy of the different
joint optimization techniques. Num-SAT denotes the number of instances where
type assignment satisfies the logical constraints, Avg-Time denotes the average
running time of the algorithm in seconds, and Avg-Accuracy denotes the average
accuracy of the algorithm.

Optyper-ILP rely on linear constraints and objective functions.

Also, from both Figure 8.2 and Table 8.1, we can observe that Optyper-ILP is faster

than Optyper-MaxSAT. The main reason is the tool used for solving the ILP formulation,

Gurobi, is well suited for solving ILP instances. The tool used for solving MaxSAT, Z3,

on the other hand, is not a dedicated MaxSAT solver. Using dedicated MaxSAT solvers

can lead to the efficient solving of the MaxSAT instances and thus, improve running time.

Next, we compare the accuracy achieved when the type predictions are compared to the

annotations in the test files (see Section 8.2). These annotations include the ones that the

programmer has written explicitly and the ones that the TypeScript compiler can infer.

Figure 8.3 compares the pair-wise accuracy of the algorithm on individual test files, while

Table 8.1 provides the average accuracy on all files. We observe that Optyper-ILP and

Optyper-MaxSAT obtain an identical accuracy performance. This is because the tools

being used to solve ILP and MaxSAT are known to be sound and complete and thus

return optimal solutions, which in almost all cases are unique. Optyper-ContOpt, however,

acheives different accuracy than Optyper-ILP and Optyper-MaxSAT in many cases. This

is because, for solving the optimization in Optyper-ContOpt, we rely on RMSProp (an

extension of gradient descent), which may not always converge to an optimal solution

(typically, when the number of epochs performed is low).

To answer RQ1, in terms of runtime, Optyper-ILP displays the best performance, almost

10 times faster, on average, than other algorithms. In terms of accuracy, all the algorithms

achieve comparable accuracy. Since Optyper-ILP has the best overall performance, for the

next parts, if we write Optyper we mean Optyper-ILP.
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RQ2: Effectiveness of Combining Logical and Natural Constraints

To answer RQ2, we compare Optyper against two other algorithms: LC-only and NC-only.

The algorithm LC-only only considers the logical constraints and searches for type assign-

ments that only satisfy the logical constraints. The algorithm NC-only, on the other hand,

only considers the natural constraints and returns a type assignment that assigns a type

variable with the top-1 type prediction made by the LSTM model. We now compare the

algorithms on the test set based on three parameters, which we describe next. Table 8.2

summarizes the comparison results based on the parameters.

Table 8.2: Effectiveness of combining natural constraints and logical constraints;
Num-SAT denotes the number of instances where type assignment satisfies the
logical constraints, Avg-NatVal denotes the average NatVal of the resulting type
assignment, and Avg-Accuracy denotes the average accuracy of the algorithm.

Algorithm Num-SAT Avg-NatVal Avg-Accuracy (in %)

LC-only 1304 0.212 67
NC-only 228 0.238 52

Optyper-ILP 1304 0.236 83

First, we compare the algorithms based on the number of test files in which it produces a

satisfiable type assignment based on the logical constraints. We observe that, as expected,

algorithms Optyper and LC-only satisfy the logical constraints in all files. NC-only,

satisfies the logical constraints in only 17.4% of all instances. This indicates that simply

relying on machine learning based models might result in unsound type assignments.

Second, we compare the algorithms based on the natural value of the resulting type

assignments using the function NatVal, introduced in Definition 5.3. Here we observe that

LC-only, in general, produces type assignments with the lowest NatVal values among the

three algorithms. This indicates that simply satisfying the logical constraints need not

produce natural types.

Finally, we compare the algorithms based on their accuracy, which measures how close the

predicted types are to the original ones. We observe that Optyper has the best accuracy,

asserting the effectiveness of combining information from two types of constraints.

To answer RQ2, we can say that combining logical and natural constraints greatly benefits

the inference of natural and sound types, as is evident from Table 8.2.
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RQ3: Comparison to Existing Techniques

We now present a comparison of Optyper against two state-of-the-art techniques in learning-

based type inference, Lambdanet (Wei et al., 2020), and TypeWriter (Pradel et al., 2020).

We compare against these techniques since the underlying idea for both of the techniques is

to combine program logic based information and natural information. To do so, Lambdanet

employs a deep-learning based method, while TypeWriter employs a search-based method

guided by the natural information.
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Table 8.3: Comparison of the number of sat instances and the accuracy of
LambdaNet, NC-only, LC-only and Optyper only on variables for which Lamb-
daNet can predict types. Num-SAT denotes the number of instances where type
assignment satisfies the logical constraints and Avg-Accuracy denotes the average
accuracy of the algorithm.

Algorithm Num-SAT Avg-Accuracy (in %)

NC-only 228 51.4
LC-only 1304 71.1

LambdaNet 366 68.5
Optyper-ILP 1304 84.1

Comparison to LambdaNet

The comparison with LambdaNet is straightforward because they provide a pretrained

model trained on the same dataset and for the same set of types as ours. We compare

Optyper against LambdaNet a number of different parameters.

Figure 8.5 shows the runtime comparison of Lambdanet with Optyper-algorithms (note

that the figure also contains a comparison with TypeWriter). As evident, Lambdanet

performs significantly faster than any other type inference method. This is because

Lambdanet simply relies on a deep-learning model that can be queried very fast. The

other methods employs search techniques to ensure the soundness of the type prediction,

which can be time-consuming.

In Figure 8.4, we present the number of test files in which the type prediction satisfies

the logical constraints that we generate. Being a method that simply relies on machine

learning model, the type prediction made by LambdaNet can definitely be unsound.

Nevertheless, we provide this result as an indication of how efficiently a model can learn

logical constraints.

In Table 8.3, we present the average accuracy obtained when compared with the original

annotations from the test files (see Section 8.2). We present the number for NC-only

and LC-only to understand the result better. We see that our accuracy is significantly

better than that of LambdaNet. We think that a reason for the small difference between

LambdaNet’s performance in all declaration slots and the reported performance in (Wei

et al., 2020) is due to the fact that LambdaNet fails to learn types that are inferable for

the compiler but yet not apparent in the training data.

Figure 8.6 demonstrate two specific examples where LambdaNet fails to predict types,

for which the logical constraints are apparent directly in the code. The parameters on
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1 function f1(

2 x: boolean,

3 z: Window,

4 y: Event

5 ): number {

6 x = true;

7 z = window;

8 y = Event.prototype;

9 return 1;

10 }

(a) Original TypeScript file.

function P1{f1}(
P2{x}: L [ty]{Boolean},
P3{z}: (L [ty]{String} ̸= L [ty]{Window}),
P4{y}: (L [ty]{Number} ̸= L [ty]{Event})
): (P5: (L [ty]{Number}) {

P2{x} ← L {Boolean};
P3{z} ← L {window};
P4{y} ← L {Event}.prototype;
return P5 = L {Number}

}

(b) LambdaNet’s output.

Figure 8.6: Minimal example showing 2 cases where LambdaNet gives incorrect
predictions.

lines 3 and 4 actually have type Window and Event, as you can see in Section 8.4, which

contains the developer-annotated ground truth. Section 8.4, the figure on the right, shows

that LambdaNet mispredicts their types as String and Number. We conjecture that the

misprediction is because of data sparsity. LambdaNet correctly predicts the type of the first

parameter because uses of boolean are relatively common in the training data, while uses

of Window and Event are not, so the assignments on lines 7 and 8 provide too little signal

for LambdaNet to pick up. Optyper, in contrast, correctly predicts all three parameter

types. Optyper succeeds here because the assignments on lines 7 and 8 generate hard

logical constraints that Optyper incorporates, at test time, into its optimization search

for a satisfying type environment. These examples may explain the difference between

LambdaNet’s and Optyper’s prediction accuracy. This difference in performance between

the two approaches will crop up whenever the training data lacks sufficient number of

examples of a particular logical relation.

Finally, we note that we see LambdaNet and indeed any learning approach as comple-

mentary to our work. In theory, it is straightforward to treat them as an instantiation

of the natural phase, as a probability distribution over types described in our theoretical

framework (Section 5.3).

Comparison to TypeWriter

We now compare Optyper against the search-based technique used by TypeWriter (Pradel

et al., 2020), which is illustrated in Algorithm 1 in their paper. The implementation of this

algorithm, however, is not publicly available. Moreover, the tool is developed for Python,

while we develop for TypeScript. Due to these reasons, based on the algorithm provided
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in the paper, we faithfully re-implemented their approach in Python and use it for our

comparison. While they provide two approaches, a greedy and a non-greedy one, for our

experiments, we do not use the non-greedy approach, since it takes a prohibitively large

amount of time. Further, their algorithm relies on a parameter w which only searches

for the type assignment in the top w choices proposed by the LSTM model. We ran

their algorithm with three values of w, 1, 5, 10, which resulted in the three algorithms

TypeWriter-1, TypeWriter-5 and TypeWriter-10.

Table 8.4: Comparison of the accuracy of TypeWriter algorithms and Optyper on
all benchmarks. Avg-Accuracy denotes the average accuracy of the algorithm.

Algorithm Avg-Accuracy (in %)

TypeWriter-1 51.7
TypeWriter-5 63.4
TypeWriter-10 68.9
Optyper-ILP 82.0

Figure 8.5 compares the runtimes of the different algorithms. Here, we notice that Optyper-

ILP has a better runtime than all of the TypeWriter algorithms, which performs worse

when w increases.

Figure 8.4 presents a comparison of the algorithms based on the number of instances in

which they return a type assignment that satisfies the logical constraints. We observe

that Optyper, in all of the instances, in which none of the algorithms timeout, returns a

type assignment that satisfies the logical constraints. All of the TypeWriter algorithms,

however, perform significantly worse in returning a sound type assignment. This can

be attributed to two main reasons. First, as it is a greedy approach, during its search

TypeWriter can overlook the type assignments that could satisfy the logical constraints.

Second, the parameter w, which TypeWriter relies upon to reduce its space of types,

results in ignoring the types that the logical constraints assert.

Finally, Table 8.4 presents the average accuracy of the algorithms. Here again, Optyper dis-

plays the best accuracy due to its complete search technique.

To answer RQ3, we can safely say that Optyper outperforms the state-of-the-art techniques

in many aspects. Compared to LambdaNet, Optyper achieves at least 10% higher average

accuracy and also, ensures all type predictions are sound. Compared to all TypeWriter

algorithms, Optyper searches types at least two times faster and achieves an average

accuracy of at least 10% higher.
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Conclusion

We conclude this dissertation by providing a summary of the research conducted, highlight-

ing some of the current limitations and shedding light on some possible future directions.

9.1 Summary

This dissertation addresses the lack of a rich type inference process for dynamically typed

languages. To tackle this, we combine logical constraints, that is, deterministic information

from a type system, with natural constraints, that is, uncertain information about types,

learned by machine learning techniques, while focusing on the satisfaction of the typing

rules dictated by the language. The key insight of our method is to constructively combine

the natural and logical part using different optimization techniques with theoretical

guarantees.

We have thus formally developed an inference system, from the ground up, that assigns

type names to arbitrary type structures. This type system captures key aspects of type

inference in optionally typed languages used in industry, like TypeScript and Python.

Crucially, we have validated this system by theorem and proof. This work fully formalizes

and proves termination, and correctness for a natural type inference algorithm.

We describe Optyper, a realization of our algorithm for natural type inference for Type-

Script, and demonstrate its effectiveness (Section 8.4). The combination of logical and

natural constraints yields a large improvement in performance over either natural or logical

constraints individually, improves accuracy over the-state-of-the-art tool for predicting

types for TypeScript by Wei et al. (2020), and demonstrates a better search technique than

other type inference algorithms such as TypeWriter (Pradel et al., 2020). Our framework

113
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is extensible: it can incorporate information from arbitrary models into its natural part

and type constraints generated by traditional deterministic type inference systems.

As our literature review makes clear, all work in learning-based type inference to date

focuses on formalizing their method, none states theorems or formally proves its approach

to be sound by construction, and all are empirically validated. The present work rises to

address this challenge. We have formally developed an inference system, from the ground

up, that assigns type names to arbitrary type structures. This type system captures key

aspects of type inference in optionally typed languages used in industry, like TypeScript

and Python. Crucially, we have validated this system by theorem and proof. This work is

the first to formalize and prove termination and soundness for a natural type inference

algorithm.

Limitations At this point, it is important to underline limitations of the discussed

topics. These essentially stimulate the discussion about possible future directions and

improvements. Our algorithm only chooses types from the given library of type definitions.

Hence, an input expression will be rejected if it needs a record or function type missing

from the library. Another limitation is that we ignore field names when generating natural

constraints. We expect it would be straightforward to extend the inference algorithm to

augment the given library with type equations defining additional record or function types,

as needed, and to take field names into account.

A bigger challenge is to extend natural type inference to features including subtyping,

parametric polymorphism, and intersection and union types, important for TypeScript

and other languages.

9.2 Future Work

Next, we discuss some possible future directions in more details.

Extend to a Formal System with Subtyping

As follow up work it would be interesting to look at how we can extend our core ideas to

Featherweight Java (Jangda and Anand, 2019). Featherweight Java is a pure subset of

Java, as a classic formalization of a nominal type system with subtyping. As in the current

formalization we have not considered subtyping, we could use Featherweight Java as a

standard off-the-shelf formalization of object oriented subtyping. Furthermore, it would

be interesting to explore how our system would extend to inheritance.
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Predicting from an Open Type Vocabulary

A harder problem is trying to predict complex types. This could include objects, higher

order functions, unions and intersection types, or user defined types. In this case, we need

to find a way to handle an actual type lattice, consider the hierarchy in-between types and

the possible infinite combinations of them. To do so, it seems necessary to start by defining

a particular type lattice—the official documentation of TypeScript does not explicitly

defines one. Regarding the learning part, this extension will probably lead us to learn over

trees instead of multiple labels. Furthermore, we will need to find a way to embed this

hierarchy into the optimisation problem, presumably by using some kind of linearization

over the tree structure. LambdadNet has already shown that is possible, by using using a

pointer-network-like architecture (Vinyals et al., 2015). A different approach would be to

use Source Code Embeddings from Language Models (SCELMo) (Karampatsis and Sutton,

2020) where the embeddings of each token depend on its context of the input sequence

and thus even out-of-vocabulary (OOV) tokens have effective input representations, based

on Peters et al. (2018)’s work.

Add Terms to the Optimization Problem

Another aspect is to be able to handle infinite or unseen combinations of types. We think

it is compelling to include information from dynamic analysis in our approach. For the

pure dynamic analysis part there is already some related work for testing TypeScript

declaration files dynamically that could be viewed as a starting point (Kristensen and

Møller, 2017; Graves et al., 2014). What seems more interesting is how we will integrate

the new source of information to our model; for this we will probably have to add a new

weighted term to the optimization problem, which will depend on the evidence we get

through the dynamic analysis. This particular extension could be extremely useful, as it

opens a way towards automatic transformation from JavaScript to TypeScript code.

Learn the Logical Constraints

A reasonable extension is to incorporate the continuous optimization function in the

training process of our LSTM. Doing so we our model would possibly learn relations

between logical constraints and the corresponding type. (Selsam et al., 2018; Wang et al.,

2019) on their recent work have shown different ways to learn how to solve SAT problems

using deep learning; that suggests that we could encode the logical constraints directly on

the learning phase instead of enforce them at prediction time.
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Application on Automatic Program Repair

A common pattern seen in Automatic Program Repair (APR) (Gazzola et al., 2019)

approaches is that of a neural model generating a sequence of source code tokens that

serves as a replacement for a bug. However, available information on which tokens are

legal at a given position, such as in-scope variables, programming language syntax is not

always used. We believe that it should be possible to formulate optimization problems

similar to the one described in this dissertation, namely consisting of a neural model that

outputs source code tokens for the natural part, and logical constraints based on which

tokens are legal at a given position (for instance based on information from a compiler or

a static analysis tool), which could probably achieve good performance due to narrowing

down the space of possible results via the logical constraints.
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Appendix

A.1 Proofs for Soundness and Completeness of the

Algorithmic Typing System

Lemma 4.6 (Soundness). If Γ◦ ⊢ E ⇒ α (C,V) and dom(µ) = tyvar(Γ◦) and dom(µ′) =

newtyvar(Γ◦, α, C,V) and (µ ∪ µ′)(α) <:> t and µ ∪ µ′ |= C then µ(Γ◦) ⊢ E : t.

Proof. Note that here, we only provide the cases that we omit in the main text after

Lemma 4.6.

It suffices to prove that for all Γ◦, E, α, C, V, µ, µ′, t that, if

(1) Γ◦ ⊢ E ⇒ α (C,V)

(2) dom(µ) = tyvar(Γ◦)

(3) dom(µ′) = newtyvar(Γ◦, α, C,V)

(4) (µ ∪ µ′)(α) <:> t

(5) µ ∪ µ′ |= C

then µ(Γ◦) ⊢ E : t.

The proof is by induction on the derivation of (1) Γ◦ ⊢ E ⇒ α (C,V). We proceed by

considering each rule that can derive judgment (1). Notice that in each case, there can

only be one rule from Definition 3.9 that can derive the declarative judgement. In each

case, we can assume (2) dom(µ) = tyvar(Γ◦), (3) dom(µ′) = newtyvar(Γ◦, α, C,V), (4)

(µ ∪ µ′)(α) <:> t, and (5) µ ∪ µ′ |= C.

Case E = E1 < E2 Our judgment (1) is derived as follows, with E = E1 < E2 and

117
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C = α <:> Bool ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2 and V = V1 ∪ V2.

(Algo <) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2.V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 < E2 ⇒ α (α <:> Bool ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ∪µ′)(α) <:> t, and (5) µ∪µ′ |= α <:> Bool ∧α1 <:> Int ∧α2 <:> Int ∧C1∧C2,

we are to show µ(Γ◦) ⊢ E1 < E2 : t.

By (5) and Definition 4.4, we have µ ∪ µ′ |= α <:> Bool and µ ∪ µ′ |= α1 <:> Int

and µ ∪ µ′ |= α2 <:> Int and µ ∪ µ′ |= C1 and µ ∪ µ′ |= C2.

By (4) and Lemma 4.1(c) three times, we get

i. for ι = Bool , (µ ∪ µ′)(α) <:> Bool because µ ∪ µ′ |= α <:> Bool ,

ii. for ι = Int , (µ ∪ µ′)(α1) <:> Int because µ ∪ µ′ |= α1 <:> Int ,

iii. for ι = Int , (µ ∪ µ′)(α2) <:> Int because µ ∪ µ′ |= α2 <:> Int .

From (i) and (4) it must be that t <:> Bool . Let t1 = (µ∪µ′)(α1) and t2 = (µ∪µ′)(α2).

Hence, from (ii) and (iii), it must be that t1 <:> Int and t2 <:> Int .

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Hence, from (3.1) and (ii) we get (4.1) (µ ∪ µ′
1)(α1) <:> Int .

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : Int .

By symmetric reasoning, we obtain µ(Γ◦) ⊢ E2 : Int .

Hence, for Γ = µ(Γ◦) we can derive the desired judgment

(Decl Expr <) (t1 <:> Int and t2 <:> Int)

Γ ⊢ E1 : t1 Γ ⊢ E2 : t2 t <:> Bool

Γ ⊢ E1 < E2 : t
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Case E = E1 == E2 Our judgment (1) is derived as follows, with E = E1 == E2 and

C = α <:> Bool ∧
∨

ι∈{Bool ,Int}(α1 <:> ι ∧ α2 <:> ι) ∧ C1 ∧ C2 and V = V1 ∪ V2.

(Algo ==) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 == E2 ⇒ α (α <:> Bool ∧
∨

ι∈{Bool ,Int}(α1 <:> ι ∧ α2 <:> ι) ∧ C1 ∧ C2,V1 ∪ V2)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ ∪ µ′)(α) <:> t, and (5) µ ∪ µ′ |= α <:> Bool ∧
∨

ι∈{Bool ,Int}(α1 <:> ι ∧ α2 <:>

ι) ∧ C1 ∧ C2, we are to show µ(Γ◦) ⊢ E1 == E2 : t.

By (5) and Definition 4.4, we have µ ∪ µ′ |= α <:> Bool and (µ ∪ µ′ |= α1 <:> Bool

and µ ∪ µ′ |= α2 <:> Bool) or (µ ∪ µ′ |= α1 <:> Int and µ ∪ µ′ |= α2 <:> Int) and

µ ∪ µ′ |= C1 and µ ∪ µ′ |= C2.

By (4) and Lemma 4.1(c) five times we get

i. for ι = Bool , (µ ∪ µ′)(α) <:> Bool because µ ∪ µ′ |= α <:> Bool ,

ii. for ι = Bool , (µ ∪ µ′)(α1) <:> Bool because µ ∪ µ′ |= α1 <:> Bool ,

iii. for ι = Bool , (µ ∪ µ′)(α2) <:> Bool because µ ∪ µ′ |= α2 <:> Bool ,

iv. for ι = Int , (µ ∪ µ′)(α1) <:> Int because µ ∪ µ′ |= α1 <:> Int ,

v. for ι = Int , (µ ∪ µ′)(α2) <:> Int because µ ∪ µ′ |= α2 <:> Int .

Thus we have that (µ ∪ µ′)(α) <:> Bool and (µ ∪ µ′)(α1) <:> Bool and (µ ∪
µ′)(α2) <:> Bool) or ((µ ∪ µ′)(α1) <:> Int and (µ ∪ µ′)(α2) <:> Int).

From (i), it must be that t <:> Bool .

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Hence, from (3.1) and (ii) we get (4.1) t1 <:> Bool or t1 <:> Int .

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : t1.

By symmetric reasoning, we obtain µ(Γ◦) ⊢ E2 : t2.
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Hence, for Γ = µ(Γ◦) we can derive the desired judgment

(Decl Expr ==) ((t1 <:> Bool and t2 <:> Bool) or (t1 <:> Int and t2 <:> Int))

Γ ⊢ E1 : t1 Γ ⊢ E2 : t2 t <:> Bool

Γ ⊢ E1 == E2 : t

Case Rcd. Our judgment (1) is derived as follows, with E = {ℓi = Ei
i∈1..n} and C =

α <:> {ℓi : αi
i∈1..n} ∧

∧
i∈1..nCi and V =

⋃
i∈1..n Vi.

(Algo Rcd) (α /∈
⋃

i∈1..n tyvar(Γ◦, αi, Ci,Vi) and sets newtyvar(Γ◦, αi, Ci,Vi) disjoint)

Γ◦ ⊢ Ei ⇒ αi (Ci,Vi) ∀i ∈ 1..n

Γ◦ ⊢ {ℓi = Ei
i∈1..n} ⇒ α (α <:> {ℓi : αi

i∈1..n} ∧
∧

i∈1..nCi,
⋃

i∈1..n Vi)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ ∪ µ′)(α) <:> t, and (5) µ ∪ µ′ |= α <:> {ℓi : αi
i∈1..n} ∧

∧
i∈1..nCi, we are to show

µ(Γ◦) ⊢ {ℓi = Ei
i∈1..n} : t.

By Definition 4.4, we have µ ∪ µ′ |= α <:> {ℓi : αi
i∈1..n} and µ ∪ µ′ |= C1 and ...

and µ ∪ µ′ |= Cn.

By applying Lemma 4.1(e) we get that (µ ∪ µ′)(α) <:> {ℓi : (µ ∪ µ′)(αi)
i∈1..n}

because µ ∪ µ′ |= α <:> {ℓi : αi
i∈1..n}.

Let ti = (µ ∪ µ′)(αi), for all i ∈ 1..n. Thus, from (4) it must be that t <:> {ℓi :

ti
i∈1..n}.

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Hence, from (3.1) and t1 = (µ ∪ µ′)(α1) we get (4.1) (µ ∪ µ′
1)(α1) <:> t1.

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : t1.

By symmetric reasoning, for all i ∈ 2..n we obtain µ(Γ◦) ⊢ Ei : ti.

Hence, for Γ = µ(Γ◦) we can derive the desired judgment



A.1. PROOFS FOR SOUNDNESS AND COMPLETENESS OF THE ALGORITHMIC

TYPING SYSTEM 121

(Decl Expr Rcd)

µ(Γ◦) ⊢ Ei : ti ∀i ∈ 1..n t <:> {ℓi : ti
i∈1..n}

µ(Γ◦) ⊢ {ℓi = Ei
i∈1..n} : t

Case Proj. Our judgment (1) is derived as follows, with E = {ℓi = Ei
i∈1..n} and C =

α′ <:> α.ℓ ∧ C ′ and V = V′.

(Algo Proj) (α′ /∈ tyvar(Γ◦, α, C′,V′))

Γ◦ ⊢ E ⇒ α (C ′,V′)

Γ◦ ⊢ E.ℓ⇒ α′ (α′ <:> α.ℓ ∧ C ′,V′)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C ′,V′), and (4)

(µ ∪ µ′)(α′) <:> t′, and (5) µ ∪ µ′ |= α′ <:> α.ℓ, we are to show µ(Γ◦) ⊢ E.ℓ : t.

By Definition 4.4, we have µ ∪ µ′ |= α′ <:> α.ℓ and µ ∪ µ′ |= C ′.

By applying Lemma 4.1(f) we get that (µ ∪ µ′)(α) <:> {ℓi : (µ ∪ µ′)(αi)
i∈1..n} and

(µ ∪ µ′)(α′) <:> (µ ∪ µ′)(αj) and ℓ = ℓj and j ∈ 1..n because µ ∪ µ′ |= α′ <:> α.ℓ.

Let ti = (µ ∪ µ′)(αi), for every i ∈ 1..n, and let t = (µ ∪ µ′)(α). Thus, we get

t <:> {ℓi : ti
i∈1..n} and t′ <:> tj.

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α, C ′,V′).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α, C ′,V′).

From Γ◦ ⊢ E ⇒ α (C ′,V′) and Lemma 4.3 we get α ∈ dom(Γ◦)∪newtyvar(Γ◦, α, C ′,V′).

Hence, from (3.1) and t = (µ ∪ µ′)(α) we get (4.1) (µ ∪ µ′
1)(α) <:> t.

From Γ◦ ⊢ E ⇒ α (C ′,V′) and Lemma 4.4 we get that tyvar(C ′) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α, C ′,V′).

Hence, from µ ∪ µ′ |= C ′ and Lemma 4.5 we get (5.1) µ1 ∪ µ′
1 |= C ′.

By induction hypothesis, Γ◦ ⊢ E ⇒ α (C ′,V′), (2), (3.1), (4.1), (5.1) imply µ(Γ◦) ⊢
E : t.

Hence, for Γ = µ(Γ◦) we can derive the desired judgment

(Decl Expr Proj) (t <:> {ℓi : ti i∈1..n})

µ(Γ◦) ⊢ E : t j ∈ 1..n

µ(Γ◦) ⊢ E.ℓj : tj

Case If. We have:
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(Algo If) (sets newtyvar(Γ◦, αi, Ci,Vi) disjoint)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2) Γ◦ ⊢ E3 ⇒ α3 (C3,V3)

Γ◦ ⊢ (E1 ?E2 : E3)⇒ α2 (α1 <:> Bool ∧ α2 <:> α3 ∧
∧

i∈1..3Ci,
⋃

i∈1..3 Vi)

From (2) dom(µ) = tyvar(Γ◦) and (3) dom(µ′) = newtyvar(Γ◦, α, C,V), and (4)

(µ∪ µ′)(α2) <:> t, and (5) µ∪ µ′ |= α1 <:> Bool ∧ α2 <:> α3 ∧
∧

i∈1..3Ci, we are to

show µ(Γ◦) ⊢ (E1 ?E2 : E3) : t.

By Definition 4.4, we have µ ∪ µ′ |= α1 <:> Bool and α2 <:> α3 and µ ∪ µ′ |= C1

and µ ∪ µ′ |= C2 and µ ∪ µ′ |= C3.

By applying Lemma 4.1(c) for ι = Bool we get (i) (µ ∪ µ′)(α1) <:> Bool because

µ ∪ µ′ |= α1 <:> Bool .

By applying Lemma 4.1(d) we get (ii)(µ∪µ′)(α2) <:> (µ∪µ′)(α3) because µ∪µ′ |=
α2 <:> α3.

Let t1 = (µ∪ µ′)(α1), t3 = (µ∪ µ′)(α3). Hence, from (i) it must be that t1 <:> Bool

and from (ii) and (4) t2 <:> t3.

Let µ′
1 = µ′ ↾ newtyvar(Γ◦, α1, C1,V1).

Hence, we have (3.1) dom(µ′
1) = newtyvar(Γ◦, α1, C1,V1).

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.3 we get α1 ∈ dom(Γ◦)∪newtyvar(Γ◦, α1, C1,V1).

Hence, from (3.1) and (ii) we get (4.1) (µ ∪ µ′
1)(α1) <:> Bool .

From Γ◦ ⊢ E1 ⇒ α1 (C1,V1) and Lemma 4.4 we get that tyvar(C1) ⊆ dom(Γ◦) ∪
newtyvar(Γ◦, α1, C1,V1).

Hence, from µ ∪ µ′ |= C1 and Lemma 4.5 we get (5.1) µ ∪ µ′
1 |= C1.

By induction hypothesis, Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2), (3.1), (4.1), (5.1) imply

µ(Γ◦) ⊢ E1 : t1.

By symmetric reasoning, we obtain µ(Γ◦) ⊢ E2 : t2, and µ(Γ◦) ⊢ E3 : t3.

By applying the (Expr Retype) rule for t2 <:> t3, we can derive the desired

judgment

(Decl Expr If) (t1 <:> Bool)

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦) ⊢ E2 : t2 µ(Γ◦) ⊢ E3 : t2

µ(Γ◦) ⊢ (E1 ?E2 : E3) : t2
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Lemma 4.7 (Completeness). Consider Γ◦ ⊢ E ⇒ α (C,V) and type t.

For all µ with dom(µ) = tyvar(Γ◦), if µ(Γ◦) ⊢ E : t then there is µ′ with dom(µ′) =

newtyvar(Γ◦, α, C,V) and (µ ∪ µ′)(α) <:> t and µ ∪ µ′ |= C.

Note that here, we only provide the cases that we omit in the main text after Lemma 4.7.

Proof. It suffices to prove that for all Γ◦, E, α, C, V, µ, t that, if

(1) Γ◦ ⊢ E ⇒ α (C,V)

(2) dom(µ) = tyvar(Γ◦)

(3) µ(Γ◦) ⊢ E : t

then there is µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ ∪ µ′)(α) <:> t, and (C)

µ ∪ µ′ |= C.

The proof is by induction on the height of the derivation of the algorithmic judgment (1).

We proceed by a case analysis of E. For each rule from (Algorithmic Typing Rules), only

one of the syntax-directed rules from (Syntax-directed Declarative Typing Rules) can have

derived declarative judgment (3). Hence we can obtain the desired satisfaction relation by

a detailed case analysis.

Recall that newtyvar(Γ◦, α, C,V) = tyvar(α,C,V) \ tyvar(Γ◦).

Case E = E1 < E2. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo <) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2.V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 < E2 ⇒ α (α <:> Bool ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2,V1 ∪ V2)

dom(µ) = tyvar(Γ◦)

(Decl Expr <) (t1 <:> Int and t2 <:> Int)

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦) ⊢ E2 : t2 t <:> Bool

µ(Γ◦) ⊢ E1 < E2 : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = α <:> Bool ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2

and V = V1 ∪ V2.

By induction hypothesis, (1) Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E1 : t1 imply there is µ′
1 with (A) dom(µ′

1) = newtyvar(Γ◦, α1, C1,V1),

(B) (µ ∪ µ′
1)(α1) <:> t1, and (C) µ ∪ µ′

1 |= C1.

By induction hypothesis, (1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2), (2) dom(µ) = tyvar(Γ◦), and
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(3) µ(Γ◦) ⊢ E2 : t2 imply there is µ′
2 with (A) dom(µ′

2) = newtyvar(Γ◦, α2, C2,V2),

(B) (µ ∪ µ′
2)(α2) <:> t2, and (C) µ ∪ µ′

2 |= C2.

The sets {α}, dom(µ′
1), and dom(µ′

2) are disjoint, because of the conditions α /∈
tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅.

Let µ′ = {α 7→ t} ∪ µ′
1 ∪ µ′

2, a well-formed finite map.

We have (A) dom(µ′) = newtyvar(Γ◦, α, C,V) because newtyvar(Γ◦, α, C,V) = {α}∪
newtyvar(Γ◦, α1, C1,V1) ∪ newtyvar(Γ◦, α2, C2,V2).

We have (B) (µ ∪ µ′)(α) <:> t because µ′(α) = t by definition of µ′.

We have (C) µ ∪ µ′ |= C because:

• {α 7→ t} |= α <:> Bool since t <:> Bool

• µ ∪ µ′ |= α1 <:> Int since (µ ∪ µ′)(α1) <:> t1 and t1 <:> Int

• µ ∪ µ′ |= α2 <:> Int since (µ ∪ µ′)(α2) <:> t2 and t2 <:> Int

• µ ∪ µ′ |= C1

• µ ∪ µ′ |= C2

Hence µ′ has properties (A), (B), and (C) as desired.

Case E = E1 == E2. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo ==) (α /∈ tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2)

Γ◦ ⊢ E1 == E2 ⇒ α (α <:> Bool ∧
∨

ι∈{Bool ,Int}(α1 <:> ι ∧ α2 <:> ι) ∧ C1 ∧ C2,V1 ∪ V2)

dom(µ) = tyvar(Γ◦)

(Decl Expr ==) ((t1 <:> Bool and t2 <:> Bool) or (t1 <:> Int and t2 <:> Int))

µ(Γ◦) ⊢ E1 : t1 µ(Γ◦) ⊢ E2 : t2 t <:> Bool

µ(Γ◦) ⊢ E1 == E2 : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ∪µ′)(α) <:> t, and

(C) µ∪µ′ |= C, where C = α <:> Bool ∧
∨

ι∈{Bool ,Int}(α1 <:> ι∧α2 <:> ι)∧C1∧C2.

By induction hypothesis, (1) Γ◦ ⊢ E1 ⇒ α1 (C1,V1), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E1 : t1 imply there is µ′
1 with (A) dom(µ′

1) = newtyvar(Γ◦, α1, C1,V1),

(B) (µ ∪ µ′
1)(α1) <:> t1, and (C) µ ∪ µ′

1 |= C1.

By induction hypothesis, (1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E2 : t2 imply there is µ′
2 with (A) dom(µ′

2) = newtyvar(Γ◦, α2, C2,V2),
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(B) (µ ∪ µ′
2)(α2) <:> t2, and (C) µ ∪ µ′

2 |= C2.

The sets {α}, dom(µ′
1), and dom(µ′

2) are disjoint, because of the conditions α /∈
tyvar(Γ◦, C1, C2,V1,V2) and newtyvar(Γ◦, α1, C1,V1) ∩ newtyvar(Γ◦, α2, C2,V2) = ∅.

Let µ′ = {α 7→ t} ∪ µ′
1 ∪ µ′

2, a well-formed finite map.

We have (A) dom(µ′) = newtyvar(Γ◦, α, C,V) because newtyvar(Γ◦, α, C,V) = {α}∪
newtyvar(Γ◦, α1, C1,V1) ∪ newtyvar(Γ◦, α2, C2,V2).

We have (B) (µ ∪ µ′)(α) <:> t because µ′(α) = t by definition of µ′.

We have (C) µ ∪ µ′ |= C because:

• {α 7→ t} |= α <:> Bool since t <:> Bool

• (µ ∪ µ′ |= α1 <:> Bool and µ ∪ µ′ |= α2 <:> Bool) or (µ ∪ µ′ |= α1 <:> Int and

µ ∪ µ′ |= α2 <:> Int), since (µ ∪ µ′)(α1) <:> t1 and (µ ∪ µ′)(α2) <:> t2, and

(t1 <:> Bool and t2 <:> Bool) or (t1 <:> Int and t2 <:> Int)

• µ ∪ µ′ |= C1

• µ ∪ µ′ |= C2

Hence µ′ has properties (A), (B), and (C) as desired.

Case Rcd. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo Rcd) (α /∈
⋃

i∈1..n tyvar(Γ◦, αi, Ci,Vi) and sets newtyvar(Γ◦, αi, Ci,Vi) disjoint)

Γ◦ ⊢ Ei ⇒ αi (Ci,Vi) ∀i ∈ 1..n

Γ◦ ⊢ {ℓi = Ei
i∈1..n} ⇒ α (α <:> {ℓi : αi

i∈1..n} ∧
∧

i∈1..nCi,
⋃

i∈1..n Vi)

dom(µ) = tyvar(Γ◦)

(Decl Expr Rcd)

µ(Γ◦) ⊢ Ei : ti ∀i ∈ 1..n t <:> {ℓi : ti
i∈1..n}

µ(Γ◦) ⊢ {ℓi = Ei
i∈1..n} : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α, C,V), (B) (µ ∪ µ′)(α) <:> t,

and (C) µ ∪ µ′ |= C, where C = α <:> {ℓi : αi
i∈1..n} ∧

∧
i∈1..nCi and V =

⋃
i∈1..n Vi.

By applying induction hypothesis n times, for all i ∈ 1..n, (1) Γ◦ ⊢ Ei ⇒ αi (Ci,Vi),

(2) dom(µ) = tyvar(Γ◦), and (3) µ(Γ◦) ⊢ Ei : ti imply there is µ′
i with (A) dom(µ′

i) =

newtyvar(Γ◦, αi, Ci,Vi), (B) (µ ∪ µ′
i)(αi) <:> ti, and (C) µ ∪ µ′

i |= Ci.

The sets {α}, and dom(µ′
1), . . . , and dom(µ′

n) are disjoint, because of the conditions

α /∈
⋃

i∈1..n tyvar(Γ
◦, αi, Ci,Vi) and sets newtyvar(Γ◦, αi, Ci,Vi) are disjoint.

Let µ′ = {α 7→ t} ∪
⋃

i∈1..n µ
′
i, a well-formed finite map.
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We have (A) dom(µ′) = newtyvar(Γ◦, α, C,V) because newtyvar(Γ◦, α, C,V) = {α}∪⋃
i∈1..n newtyvar(Γ

◦, αi, Ci,Vi).

We have (B) (µ ∪ µ′)(α) <:> t because µ′(α) <:> t by definition of µ′.

We have (C) µ ∪ µ′ |= C because:

• µ ∪ µ′ |= α <:> {ℓi : αi
i∈1..n} since for all i ∈ 1..n, (µ ∪ µ′)(αi) <:> ti and

(µ ∪ µ′)(α) <:> t and t <:> {ℓi : ti
i∈1..n}

• µ ∪ µ′ |= C1 and ... and µ ∪ µ′ |= Cn.

Hence µ′ has properties (A), (B), and (C) as desired.

Case Proj. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo Proj) (α′ /∈ tyvar(Γ◦, α, C,V))

Γ◦ ⊢ E ⇒ α (C,V)

Γ◦ ⊢ E.ℓ⇒ α′ (α′ <:> α.ℓ ∧ C,V)

dom(µ) = tyvar(Γ◦)

(Decl Expr Proj) (t <:> {ℓi : ti i∈1..n})

µ(Γ◦) ⊢ E : t j ∈ 1..n ℓ = ℓj

µ(Γ◦) ⊢ E.ℓ : tj

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α′, C,V), (B) (µ ∪ µ′)(α′) <:> t,

and (C) µ ∪ µ′ |= C ′, where C ′ = α′ <:> α.ℓ ∧ C.

By induction hypothesis, (1) Γ◦ ⊢ E ⇒ α (C,V), (2) dom(µ) = tyvar(Γ◦), and

(3) µ(Γ◦) ⊢ E : t imply there is µ′′ with (A) dom(µ′′) = newtyvar(Γ◦, α, C,V), (B)

(µ ∪ µ′′)(α) <:> t, and (C) µ ∪ µ′′ |= C.

The sets {α′}, dom(µ′′) are disjoint, because α′ /∈ tyvar(Γ◦, α, C,V).

Let µ′ = {α′ 7→ tj} ∪ µ′′, a well-formed finite map.

We have (A) dom(µ′) = newtyvar(Γ◦, α′, C,V) because newtyvar(Γ◦, α′, C,V) =

{α′} ∪ newtyvar(Γ◦, α, C,V).

We have (B) (µ ∪ µ′)(α′) = tj because µ′(α′) <:> tj by definition of µ′.

We have (C) µ ∪ µ′ |= C ′ because:

• µ ∪ µ′ |= α′ <:> α.ℓ because (µ ∪ µ′)(α) <:> t and t <:> {ℓi : ti
i∈1..n} and

(µ ∪ µ′)(α′) <:> tj by Lemma 4.1(f).

• µ ∪ µ′′ |= C
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Hence µ′ has properties (A), (B), and (C) as desired.

Case If. In this case, our assumptions (1), (2) and (3) take the forms:

(Algo If) (sets newtyvar(Γ◦, αi, Ci,Vi) disjoint)

Γ◦ ⊢ E1 ⇒ α1 (C1,V1) Γ◦ ⊢ E2 ⇒ α2 (C2,V2) Γ◦ ⊢ E3 ⇒ α3 (C3,V3)

Γ◦ ⊢ (E1 ?E2 : E3)⇒ α2 (α1 <:> Bool ∧ α2 <:> α3 ∧
∧

i∈1..3Ci,
⋃

i∈1..3 Vi)

dom(µ) = tyvar(Γ◦)

(Decl Expr If) (t′ <:> Bool)

µ(Γ◦) ⊢ E1 : t′ µ(Γ◦) ⊢ E2 : t µ(Γ◦) ⊢ E3 : t

µ(Γ◦) ⊢ (E1 ?E2 : E3) : t

We are to find µ′ with (A) dom(µ′) = newtyvar(Γ◦, α2, C,V), (B) (µ∪ µ′)(α2) <:> t,

and (C) µ ∪ µ′ |= C, where C = α1 <:> Bool ∧ α2 <:> α3 ∧
∧

i∈1..3Ci and

V =
⋃

i∈1..3 Vi).

Let t1 = t′, t2 = t, and t3 = t. By applying induction hypothesis 3 times, for all

i ∈ 1..3, (1) Γ◦ ⊢ Ei ⇒ αi (Ci,Vi), (2) dom(µ) = tyvar(Γ◦), and (3) µ(Γ◦) ⊢ Ei : ti

imply there is µ′
i with (A) dom(µ′

i) = newtyvar(Γ◦, αi, Ci,Vi), (B) (µ∪µ′
i)(αi) <:> ti,

and (C) µ ∪ µ′
i |= Ci.

The sets dom(µ′
1), . . . , and dom(µ′

3) are disjoint, because the sets newtyvar(Γ◦, αi, Ci,Vi)

are disjoint.

Let µ′ =
⋃

i∈1..3 µ
′
i, a well-formed finite map.

We have (A) dom(µ′) = newtyvar(Γ◦, α2, C,V) because newtyvar(Γ◦, α2, C,V) =⋃
i∈1..3 newtyvar(Γ

◦, αi, Ci,Vi).

We have (B) (µ∪µ′)(α2) <:> t because µ′
2(α2) <:> t2 <:> t, and hence µ′(α2) <:> t

by definition of µ′.

We have (C) µ ∪ µ′ |= C because

• µ∪µ′ |= α1 <:> Bool , since t′ <:> Bool and (µ∪µ′)(α1) <:> t′, the latter because

µ′
1(α1) <:> t1 <:> t′, and hence µ′(α1) <:> t′ by definition of µ′.

• µ ∪ µ′ |= α2 <:> α3, since (µ ∪ µ′)(α2) <:> t2 and (µ ∪ µ′)(α3) = t3, and by

definition t2 <:> t3 <:> t.

• µ ∪ µ′ |= C1 and µ ∪ µ′ |= C2 and µ ∪ µ′ |= C3.

Hence µ′ has properties (A), (B), and (C) as desired.
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