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Abstract

Sequential information is crucial for real-world applications that are related to time,
which is same with time-series being described by sequence data followed by tem-
poral order and regular intervals. In this thesis, we consider four major tasks of
sequential information that include sequential trend prediction, control strategy op-
timisation, visual-temporal interpolation and visual-semantic sequential alignment.
We develop machine learning theories and provide state-of-the-art models for vari-
ous real-world applications that involve sequential processes, including the industrial
batch process, sequential video inpainting, and sequential visual-semantic image cap-
tioning. The ultimate goal is about designing a hybrid framework that can unify
diverse sequential information analysis and control systems

For industrial process, control algorithms rely on simulations to find the opti-
mal control strategy. However, few machine learning techniques can control the
process using raw data, although some works use ML to predict trends. Most con-
trol methods rely on amounts of previous experiences, and cannot execute future
information to optimize the control strategy. To improve the e↵ectiveness of the
industrial process, we propose improved reinforcement learning approaches that can
modify the control strategy. We also propose a hybrid reinforcement virtual learn-
ing approach to optimise the long-term control strategy. This approach creates a
virtual space that interacts with reinforcement learning to predict a virtual strategy
without conducting any real experiments, thereby improving and optimising control
e�ciency.

For sequential visual information analysis, we propose a dual-fusion transformer
model to tackle the sequential visual-temporal encoding in video inpainting tasks.
Our framework includes a flow-guided transformer with dual attention fusion, and we
observe that the sequential information is e↵ectively processed, resulting in promis-
ing inpainting videos. Finally, we propose a cycle-based captioning model for the
analysis of sequential visual-semantic information. This model augments data from
two views to optimise caption generation from an image, overcoming new few-shot
and zero-shot settings. The proposed model can generate more accurate and infor-

v



mative captions by leveraging sequential visual-semantic information.
Overall, the thesis contributes to analysing and manipulating sequential informa-

tion in multi-modal real-world applications. Our flexible framework design provides
a unified theoretical foundation to deploy sequential information systems in distinc-
tive application domains. Considering the diversity of challenges addressed in this
thesis, we believe our technique paves the pathway towards versatile AI in the new
era.
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CHAPTER 1

Introduction

Sequential information is significant in the real-world applications related to time. It

is same with time-series, which is described by sequence data followed by temporal

order and regular intervals. Meanwhile, the various platforms create a large amount

of sequential information contributing approximately 90% of the total data of the

world [1]. Sequential information is a multi-dimensional description. As shown in

Figure 1.1, industrial process [2], computer vision [3], robotic control [4] and lan-

guage process [5] etc. analyse and provide sequential information with di↵erent

perspectives. The illustration of sequential information is diverse for various fields.

For example, some works summarise a function to simulate a chemical process to

simplify the control process through observation of the produced sequential data [2].

In another example, the camera can recognise a specific object by analysing each

consecutive frame of a video sequence. Exploiting sequential information in the

language process benefits the development of automatic speech recognition. In ad-

dition, it is promising that the control strategy provides a human-like interaction for

the robotic domain, attributing to the collection and analysis of sequential informa-

tion. Generally, sequential information includes temporal dependencies leading to

identical data points having di↵erent behaviours at various times. Existing e↵orts

1



control and interpret the time-dependency through amounts of hand-crafted exper-

iments, which are expensive to obtain and highly rely on costly professional domain

knowledge of di↵erent areas.

Figure 1.1: The sequential information from the world.

With the development of Artificial Intelligent (AI) technology, sequential infor-

mation could contribute to more value through research works. As the most popular

theory, artificial intelligent technology has been widely applied in computer vision

since its origin in 1943 [6]. Contemporary AI research manipulates artificial neural

networks to model and predict sequential information. Fewer works focus on the

control of sequential information. Considering the power and potential of AI tech-

nology and the importance of sequential data worldwide, it is a new opportunity and

challenge to combine AI and traditional sequential information analysis and control

the a unified theoretical framework.

1.1 Sequential Batch Process

Our work starts from a conventional and classic field for the industrial process which

has witnessed multiple revolutions due to new technologies. The batch process

is the most vital part of the chemical process, which is used to generate small

quantities of high-value productions such as pharmaceuticals, fine chemicals and

polymers [7]. For example, fermentation is the most key part in the production

process of Penicillin. As reactant, glucose (Raw Material) and penicillium (Reaction

2



Material) can prodcue Penicillin (Product), meanwhile, fermentation e✏uent (By-

product) is also produce during this process. Therefore, the key goal is to maximise

the Penicillin while minimising fermentation e✏uent, which is shown in Figure 1.2.

Recently, more chemical industries have increased the demand for the quality

of di↵erent products. Hence batch manufacturing is acquiring increased demand.

Generally, the challenge of batch process manufacturing is that the production still

has a very narrow range of quality requirements under the apparent distinction of

feedstock. The sequential control strategy with respect to the process e↵ectiveness

is yet agnostic.

Figure 1.2: The description of the batch process. The key control parameter is the
rate of raw material. The objective is to maximise the product while minimising
the by-product.

Due to the imperative demand, the design of the control model is vital for the

e�ciency of the whole industrial process. Many e↵orts apply traditional advanced

control methods for the batch process. But these methods are slow compared with

continuous counterparts [7]. The primary reason is that the operation of the batch

process has a nonstationary character which involves the strong non-linearity of

the dynamics chemical process. Although non-linearity control methods have been

created, the computational complexity and costly prior domain knowledge for the

implementation often obstacles to real industry execution. Besides, a model of

the nonlinear process is challenging to improve, while the increased complexity of

implementation in the industry area.
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Control strategy mainly focuses on making dynamic decisions in sequential obser-

vations. In this thesis, we investigate the simple impact of feed rate in the batch pro-

cess. While most conventional control methods of batch process adjust the control

strategy through repetitive experiments based on process simulation, the exploration

is limited to human experience and time-costly. Dynamic optimisation of control

parameters using fewer empirical data is a critical and imperious requirement. The

hybrid of multiple control technology has significant potential improvement in batch

process control. The feed rate a↵ects the concentration of each element and volume

dynamics in the container [8]. The non-optimal feed rate damages the balance of the

reaction. Additionally, the feed addition changes the total volume, which directly

responds to the concentrations of all products to impact the balance of the reaction.

Overall, the feed rate a↵ects the system in several ways. There are di↵erent control

objectives defined by di↵erent motivations. In many industrial processes, maximis-

ing desired product concentration is the critical control goal. An optimal feed rate

can saturate the pathway for product formation to generate the high desired product

concentration. The process is di�cult to achieve maximum productivity if too little

is fed. On the other hand, overfeeding leads to overflow metabolism that produces

the undesired by-product [8], shown in Figure 1.2. Because of the trade-o↵, the

resource cost is a considerable challenge in the batch process. The control methods

not only balance the concentration between the desired product and the undesired

by-product but also minimise the wastage of the raw material.

1.2 Sequential Information in Computer Vision

Vision, as a natural and important ability of human beings, provides abundant in-

formation such as colour, shapes and relationships of objects etc. Human develops

exciting knowledge by integrating vision information. In computer vision, high-level

semantic information is processed through extraction, analysis and understanding

from digital images and videos. Wide applied computer vision techniques in the

industry include games, healthcare, etc. Extracting visual information has crucial

improvements in computer vision tasks before the deep learning technique experi-
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Figure 1.3: The development of computer vision based on deep learning.

ences tremendous progress.

Over the last few years, deep learning has been demonstrated to improve the

benchmark of various fields. Computer vision is one of the most prominent applica-

tions [9] due to the complex data structure by nature. According to Figure 1.3, many

computer vision problems have been boosted by deep learning, such as object detec-

tion, face recognition, medical recognition, action recognition and image generation

etc. With all of these improvements, convolutional neural networks (CNNs) provide

important technical foundation. CNNs was first proposed and inspired by the vi-

sual structure in 1962 [10]. Neocognitron proposed the first computational model to

acquire the transformation of images based on local connections of neurons and hier-

archical organisation [11]. This model indicates that patches of the previous layer at

di↵erent locations execute neurons with the same parameters, which obtain a form

of translational invariance [9]. Following this inspiration, convolutional neural net-

works applying the error gradient designed by Yann LeCun. Improved performance

in a wide range of computer vision tasks has been observed [12] [13] [14].

Despite the unprecedented revolution of discriminative deep models, image gen-

eration is considered a challenging research topic in computer vision. Images from

social networks describe relationships between each object, including the main char-
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acter, scenes, location and time. Minor modifications of the visual contents can

change the semantics of the images. Digital images are usually modified for vari-

ous reasons, such as scratch and text removal, object removal and random mask.

Hence, image inpainting, as a typical control task of image generation, has caused

increasing attention in recent years. The goal of image inpainting aims to control

the visual content generation to fill the missing region of the image. The challenge

is to infer the semantic information of missing regions from surrounding regions in

an image.

Figure 1.4: The examples of video inpainting.

Compared to image inpainting, video inpainting has more challenges. Addi-

tional sequential information brings complicated motions and the output requires

high temporal consistency [15]. Figure-1.4 shows examples of video inpainting with

random mask and object removal. The first two rows show examples with random

masks. The last two rows show object removal, i.e. the entire foreground object is

removed. Besides completing the missing regions of each frame, the methods must

ensure to guarantee temporally consistent [16]. Although some e↵orts directly ap-

ply deep learning-based image inpainting to address video inpainting tasks, these

6



approaches su↵er from issues. For instance, using an image inpainting approach

on each frame of the video leads to jitters and temporal artefacts. In the mean-

time, it is hard to obtain su�cient sequential coherence when the input is a long

video sequence. Finally, there is high computational consumption when controlling

and generating reasonable content that completes di↵erent missing regions at each

frame. Because of these di�culties, e�ciently controlling and analysing sequential

video information is still challenging.

1.3 Sequential Visual-semantic Models

Di↵erent types of data such as images, texts, audio and videos can describe and

observe things from di↵erent perspectives. For instance, the description of a specific

event from the internet usually contains texts, videos and images. Generally, di↵er-

ent types of data with heterogeneous properties cannot be processed using a unified

multi-modal data structure. Due to heterogeneous feature spaces, multi-modal data

has attracted substantial attention recently. While each multi-modal data repre-

sents a distinct property, they are complementary to each other [15]. Recently, deep

learning approaches have obtained the nonlinear distribution of high-dimensional

single view. Leveraging the information from multi-modal may boost the overall

performance better than each of the single modalities. According to [17], this hy-

pothesis is theoretically proved that multiple views provide more information than

the sum of every single view and to improve task performance.

Overview of cross-modal Cross-modal learning aims to take a main type of

data to describe the other modalities. The biggest challenge due to the heteroge-

neous property of multi-modal data is how to e↵ectively capture the semantic and

correlation between data modalities, i.e. the heterogeneity gap [18]. Figure 1.5 illus-

trates the challenge of cross-modal representation learning: image, video, audio and

text indicate di↵erent modalities. Using specific nonlinear features through the deep

learning model, all the representation features are projected in a common subspace

to capture the joint distribution.

The visual-semantic cross-modal tasks include image-text retrial, Visual Ques-
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Figure 1.5: The challenge of multi-modal data.

tion Answering(VQA) and image captioning. Automatic caption generation is essen-

tial in education, digital libraries and web searching etc. Image captioning focus on

generating a description through an image. Specifically, image captioning requires

extracting the objects, attributes, scene type, location and related information in

an image, generating well-formed sentences to match the syntactic and semantic un-

derstanding of the language [19]. Image captioning has more challenges than other

visual-semantic tasks for two main reasons. Firstly, the model must not only extract

the representation of each object in the image but also can obtain the complex re-

lationship via inference. Secondly, generating descriptions relies on sequential infor-

mation, i.e. the current generated content is highly dependent on previous outputs.

Although existing deep learning-based models achieve state-of-the-art performance

in image captioning, models still struggle when the data quality is not reliable in

the few-shot and zero-shot settings.

1.4 Contributions and Thesis Outline

The contributions of this thesis overcome the above challenges and propose unified

frameworks for diverse applications and tasks while maintaining state-of-the-art per-

formances on each of the tasks. The rest of the thesis is organised as below:
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Chapter 2: Background An comprehensive literature review will be provided

for hybrid control and analysis for sequential information and the applications in

process control, video inpainting and image captioning.

Chapter 3: Sequential Control Process with Reinforcement Learning

In this chapter, we investigate the control approach based on deep learning to the

batch process of the chemical process. Firstly, we apply reinforcement learning

to design the control model aiming at two cases of the batch process. Then, we

proposed two improved reinforcement learning algorithms to control the di↵erent

batch processes, respectively. Finally, the control results of reinforcement learning

are compared with traditional methods to prove the advance of our methods in the

process control field.

Chapter 4: Hybrid Reinforcement Virtual Learning for Sequential

Control Process Based on the investigation from chapter 3, we focus on further

optimisation of the control strategy for the batch process. This chapter proposes a

hybrid reinforcement virtual learning framework for high-e�ciency learning. Hybrid

reinforcement virtual learning is a flexible framework, including virtual space and

reinforcement learning control elements. The first contribution is that the virtual

space executes historical industrial process data to build a virtual environment. In

this space, the reinforcement learning part can interact with the virtual environment

to obtain a virtual control strategy without interacting with any real environment.

Then, when the reinforcement learning part interacts with the real environment, the

virtual control strategy guides the reinforcement learning to learn the real control

strategy when interacting with the real environment. The second contribution is

that the virtual space predicts several future control results after interacting with

the virtual environment to optimise the virtual strategy. The reinforcement learning

part can e�ciently obtain a real strategy based on the optimal virtual strategy. The

final contribution is that the control results of the proposed framework prove that

hybrid reinforcement virtual learning achieves state-of-the-art performance.

Chapter 5: Sequential Visual Information in Video inpainting In video

inpainting, as a typical visual sequential information task, we propose a dual-fusion

transformer to optimise the control of inpainting. In this chapter, the first con-

9



tribution is that applying the optical flow provides extra sequential knowledge to

overcome temporal consistency issues in video inpainting. Second, we propose an

attention-wised transformer model to fuse two views reasonably, leading that fea-

tures of two di↵erent views interact to obtain su�cient spatial-temporal output.

Benefits from these contributions, the proposed model can control the visual con-

tents to complete the missing regions by time series. Finally, the proposed dual

fusion transformer model achieves state-of-the-art performance.

Chapter 6: Sequential Visual-semantic Information Analysis with Cycle-

based Framework We focus on image captioning to investigate the sequential

visual-semantic information analysis in this chapter. Due to the heterogeneity be-

tween semantic information and visual information, it is challenging to connect and

interact with each other. Furthermore, the few-shot and zero-shot multi-modal tasks

are more di�cult based on the above challenges. In order to handle these issues, we

proposed a cycle-based captioning framework to optimize image captioning. Specif-

ically, the proposed cycle-based framework and switcher module can augment data

twice, which means that more data train the model. Meantime, aiming to image

captioning, we investigated the popular dataset to define the new few-shot and zero-

shot settings. Finally, the experiments indicate that our framework can optimize

the visual-semantic information while achieving state-of-the-art performance on the

new few-shot and zero-shot settings.

Chapter 7: Conclusion and Future Work Based on above investigations

of sequential information, we summarise the contributions of di↵erent sequential

tasks in this chapter. We further explore future works aiming at sequential process

control, sequential computer vision and sequential visual-semantic.
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CHAPTER 2

Background

Sequential information is highly related to order and time. There are di↵erent

ways to model sequential processes and the tasks are diverse. Since it is impossible

to cover wide applications of sequential modelling, this thesis focuses on providing

representative examples in typical domains. Our hybrid methodology combines both

traditional approaches and deep methods. This chapter mainly reviews related

research work on hybrid control and analysis for sequential information. Firstly,

we investigate traditional control methods and recent deep approaches for batch

process control. Then, we focus on reviewing the deep-learning-based e↵orts for

video inpainting. Finally, we review image captioning with more focus on the visual-

semantic sequential information.

2.1 Process control

Overview Process control is one of the simplest sequential control problems which

has wide industrial applications. In this thesis, we focus on the challenging nonlinear

time-varying process control. Both traditional and deep learning-based approaches

are reviewed.
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2.1.1 Traditional control strategy

Adaptive control methods As a typical non-linear control algorithm, adaptive

control strategies have been extensively applied in batch process [20], which adapts

the controller parameters over the operation. The common methods of adaptive con-

trol are that certain parameters can change in the whole process to better solve the

non-linear dynamics and uncertainties in the system. Hisbullah et al. [21] applied

the gain scheduling to simulate the yeast system in the batch process, where the

controller gain is adapted with prior knowledge to address the changing dynamics.

Furthermore, Duan et al. [22] and Jenzsch et al. [23] proposed the hybrid adaptive

gain scheduling method to improve the adaptation on non-predictable system dy-

namics, which applied artificial neural network (ANN) to predict the state variables

that unable to be measured in-line. In a di↵erent method of adaptive control, the

model reference adaptive control (MRAC) were used by Oliveira et al. [24] [25] and

Landau et al. [26] in the batch process. In this line, MRAC defines a control action

aiming to minimize the error between the provided output from the control model

and the actual process output.

Fuzzy Control The inspiration for fuzzy control comes from the principles

of fuzzy logic, which mainly addresses uncertain systems without complex models.

Because of the non-linear of the batch process, uncertainty often arises in the produce

process [27]. Fuzzy control illustrates the engineer’s experience with the process

controlling the system under evaluation from the current state of the process. Based

on this direction, Verbruggen et al. [28] applied the fuzzy control strategy without

model identification to solve the complex non-linear process, which is more intuitive

to the user based on the combination between user knowledge and past data [29] [30].

Although some research works applied fuzzy control in the batch process, the strong

dependence on user knowledge limits the implantation in the batch process.

2.1.2 Artificial Neural Networks -based control

Recently, artificial neural networks (ANN) experienced an improvement due to the

exploration of big data. As a typical data-driven technology, ANN, based on his-

12



torical data can establish a complex non-linear system [31]. To obtain the desired

control strategy by ANN, Holland [32] proposed a genetic algorithm that optimised

the determination of an optimal value aiming at a certain variable. Due to the

benefits of ANN, several e↵orts have widely applied ANN in the batch process. For

instance, Ferreia et al. [33] combined ANN as a predictor for a variable of the system

with a feedback control approach to control the batch process. Alternatively, Chen

et al. [34] and Peng et al. [35] directly applied ANN in the optimisation period. Fur-

thermore, Cavagnari et al. [36], Chen et al. [37] applied ANN to directly estimate

the relationship between system output and optimal input by data acquired from

the simulation of model predictive control (MPC).

Di↵erent to previous work, our work focuses on deep reinforcement learning

for the long sequence control processes. The multiple-step learning for long-term

planning and prediction is particularly useful in the control process. Another break-

through is the design of the hybrid reinforcement virtual learning framework. A

long-term trend predictor is trained to predict the control consequences and guide

the reinforcement learning model to make better decisions. The framework is very

flexible for simulator-free scenarios, i.e. there is no empirical model to guide the

training of reinforcement learning. Instead, the trained neural predictor provides a

virtual environment. And we believe this is the first-ever neural digital twins system

for process control.

2.1.3 Reinforcement Learning

In recent years, machine learning has experienced rapid development; for example,

neural networks and deep learning have been applied in many areas [38] [39]. As

one conventional and classic machine learning algorithm, reinforcement learning is an

advanced control algorithm and its theory is inspired by behaviourist psychology.

It follows the Markov decision process (MDP) which includes state S, action A,

transmission probability P , and reward function R [39]. Reinforcement learning

has been widely applied in multi-agent systems, control theory, information theory,

operation research, game theory, simulation-based optimization, genetic algorithm

and swarm intelligence [39].
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Figure 2.1: Structure of reinforcement learning agent can be broken down into four
main components: the agent, the environment, the state, and the reward signal.

For reinforcement learning, an action will be explored and chosen to reach a new

state after interaction between the decision-making agent (intelligent controller) and

goal dynamic system (environment) and then the reward is calculated [40]. Accord-

ing to the reward function, plenty of special preferences information based on penal-

ties and rewards will be collected in reinforcement learning [39]. Figure 2.1 shows

the structure of reinforcement learning. The agent is the entity that interacts with

the environment. It takes actions based on its current state and receives feedback

from the environment in the form of a reward signal. The agent’s goal is to learn a

policy that maps states to actions that maximise the cumulative reward over time.

The environment is the world in which the agent operates. It provides the agent with

feedback in the form of a reward signal based on the actions taken by the agent.

The environment can be a physical system, a simulated environment, or a game.

The state refers to the current situation or context in which the agent is operating.

The state is represented by a set of variables that describe the current state of the

environment. The agent uses the state information to decide what action to take.
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The reward signal is the feedback that the agent receives from the environment after

taking an action. The reward signal is a scalar value that represents how good or

bad the agent’s action was in achieving its goal. The agent uses the reward signal

to update its policy so that it can take better actions in the future.

Traditional Q-learning algorithm There are many algorithms for reinforce-

ment learning. Among them, Q-learning is the most well-known algorithm. As a

classic reinforcement learning algorithm, the Q-learning is a model-free algorithm

for implementing dynamic programming (DP), which means that the agent of Q-

learning can optimally act in Markovian domains [39].

For Q-learning, the main task is to estimate the cumulative future reward, which

can be used to select the action in each visited state [39]. To weigh more heavily on

the near-term rewards, the discount factor � will be applied and the reward function

(Rt) is maximized as the main objective of agent [39], as shown in:

Rt =
1X

k=0

�krt+k (2.1)

where rt+k is the immediate reward signal. The action-value function Q(st, at)

describes the expected value when selecting an action at state st:

Q(st, at) = E {Rt|st = s, at = a} (2.2)

This is the most important key point in this algorithm. This Q-function can

describe the benefit when the agent chooses an action at at state st. As well as, the

agent will choose an action at after observing the current state st; then, the next

new state st+1 will be achieved. At that moment, the new immediate reward signal

rt+1 can be collected. The function, hence, can be obtained by the sum of rewards

with the estimated value function [39]:

Q(st, at) Q(st, at) + ↵t


rt+1 + � max

b2Ast+1

Q(st+1, b)�Q(st, at)

�
(2.3)

Here, the next reward is rt+1, b represents the possible available actions in the

next new state and maxQ(st+1, b) is the maximum Q-value in state st+1. The
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discount factor is described by �(0 < � < 1) deciding the e↵ect of short-term

and long-term rewards. Besides, the learning speed of Q-learning is controlled and

optimized by learning rate ↵(0 < ↵ < 1) [39]. Additionally, the " � greedy policy

can be used to decide the exploitation and exploration. Exploitation means that

if the agent knows the optimal value function (maxQ(st+1, b)) then greedy action

can be selected by the policy. On the contrary, exploration means that if the agent

does not know the optimal value function, then it will explore and choose the action

of the optimal function [39]. And di↵erent updated Q-values can be acquired and

these Q-values can form a Q-table. The agent can follow this Q-table to choose the

next action.

With the improvement of reinforcement learning, the multi-step action Q-learning

algorithm (MSA) is proposed [41]. Based on traditional one-step methods, the

rewards of multi-step Q-learning (MSA) are considered from multiple steps [42].

MSA improved the performance of classic Q-learning by combining experience re-

play [43–45]. Besides, MSA algorithm bootstrapped over long time intervals to

improve the traditional one-step TD algorithm [46]. The main di↵erence between

MSA and traditional Q-learning is the selection of action. For the traditional Q-

learning, the agent selects a new action immediately in the current state in each

step time [39]. However, for the MSA algorithm, the semi-Markov option is utilised,

which means that the agent cannot explore new action in every state. On the con-

trary, the agent will continuously apply the same previous action in m time steps

to acquire the next new state [39]. For instance, if this degree m = 3, the agent will

select the same action for 3-time steps in each period as shown below:

s0
a1
�! s1

a1
�! s2

a1
�! s3

a2
�! s4

a2
�! s5

a2
�! s6...

...si�1
ai
�! si

where si indicates the ith goal state. Through this improvement, an action can be

repeatedly executed for consecutive number of time steps. The Q-value function of
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MSA is shown as [39]:

Qm(si, a
m
i ) Qm(si, a

m
i ) + ↵t [R + �maxQ(si, ai)�Qm(si, a

m
i )] (2.4)

2.2 Sequential information in Video inpainting

Overview Vision is one of the most modalities in AI perceptive systems. Sequential

information is critical for visual analysis. Video inpainting shares the challenges

of the image inpainting task. In this thesis, we focus on processing and analysing

sequential information in video inpainting. Several works have focused on completing

missing regions with temporal and spatial coherent information in the video sequence

[47] [48] [49] [50] [51]. In this thesis, we mainly review deep learning frameworks

with a path-based strategy.

2.2.1 Path-based Strategy

In the early work, video inpainting was modelled as a patch-based optimisation task

[52] [53] [54] [55]. Specifically, these approaches sampled similar spatial-temporal

patches from the available areas to generate the missing regions [49] [55]. Mean-

while, other methods applied foreground and background segments to improve the

performance [54]. Despite promoting the video inpainting performance, patch-based

methods assume a homogeneous motion in the missing regions, while the complex

motion is the general situation. Additionally, the optimisation of patch-based meth-

ods often su↵ers from high computational, which is challenging to apply in real-world

applications [51].

2.2.2 Deep learning Strategy

Due to the challenges of patch-based methods, many works executed deep learning

model in the video inpainting, which boots the performance of this task. This

direction can be divided into three categories: 1. 3D convolution-based models; 2.

flow-based models; 3. attention-based and Transformer models.
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3D Convolution-based Models For 3D convolution-based models, some works

exploited 3D convolution and attention strategies to solve the temporal inconsistent

issue. Based on this line, the mechanism of combination between 2D and 3D con-

volution was proposed by Wang et al. [50] to inpaint the missing regions in a video

sequence. Kim et al. [56] applied a recurrent neural network (RNN) to integrate the

sequential representations by traversing all video frames. Lee et al. [57] designed

a copy-and-paste network to learn the corresponding features from known video

frames; then pasting them to complete the missing regions in the target frame.

Change et al. [58] proposed a Gated Temporal Shift Module and modified gated

convolution to the 3D version for improving the free-form video inpainting [59].

Zhang et al. [60] provided a training strategy, namely one-size-fits-all model, to use

in di↵erent video sequences through applying the internal learning strategy. Further-

more, Hu et al. [61] created a region proposal approach to select the best-completed

contents from all participants.

Flow-based models Optical flow can provide motion information that assists

many visual sequential tasks, such as video segmentation, video object detection,

video understanding, video super-resolution, etc. Hence, several research e↵orts

applied optical flow as extra prior information in the video inpainting to further

overcome the inconsistent temporal issue [56] [62]. However, the invalid regions

from video frames are the occlusion factors, meaning that directly computing the

optical flows of these regions themselves can limit the task performance. Recently,

the flow-based models usually completed the optical flows of video sequences first,

then propagating indexed pixels based on trajectories of the predicted optical flows

[63] [51]. Specifically, most video inpainting models exploit optical flow directly

aggregated flow-based information with traditional spatial information [64] [65] [66]

[67].

Attention-based and Transformer Models Although these approaches inte-

grate the spatial information from neighbour video frames, capturing spatial knowl-

edge from long-range frames is extremely di�cult. To e↵ectively increase the model’s

ability for long-range correspondences, some works adopted attention mechanisms in

the image inpainting and video inpainting [68] [69] [70]. Based on the attention-based
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Figure 2.2: Structure of attention

strategy, Li et al. [71] executed temporal consistent information to propagate to the

target video frame with the dynamic long-context aggregation attention mechanism.

Furthermore, more and more works have applied the Transformer-based strategy in

video inpainting. Significantly, Vision Transformer and its variants [72] [69] achieved

impressive improvements in the video inpainting task. Due to the quadratic com-

plexity of self-attention, several e↵orts proposed the window-based attention mod-

ules to increase the computational e�ciency [73] [74].

Single Attention The attention is the key part in Transformer model, which can

be represented by mapping a query and a set of key-value pairs to an output. Packed

a set of queries simultaneously together into a matrix Q compute the attention

function [75]. Similar, the matrices K and V are constructed by packed the keys

and values together [75]. The matrix of outputs as:

Attention(Q,K, V ) = Softmax(QKT/
p

dk)V (2.5)

Here,
p
dk is the scaling factor. As the most common attention function, dot-product

attention is much faster and high-e�ciency in experiment, it can be applied by highly
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Figure 2.3: Structure of Transformer

optimized matrix multiplication [75].

Multi-Head Attention Based on single-attention, it is benefit to linearly

project the queries, keys and values with h times, which can learn projections to dq,

dk and dv dimensions [75].

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.6)

Here, WO is the linearly projection. The projected versions of queries, keys and

values can be performed the attention function in parallel with dv dimensional output

vales, which are concatenated to obtain the final values [75].
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Transformer Model The Transformer is constructed by the encoder and de-

coder with stacked self-attention and fully connected layers [75]. The encoder con-

sists of a stack of N=6 layers. The self-attention and position wise fully connected

feed-forward network construct each sub-layers. A residual connection was applied

in each of two layers [75]. The decoder is similar with encoder based on a stack of

N=6 layers. However, the decoder has a third sub-layer, which is multi-head atten-

tion over the output of the encoder stack [75]. In addition, the masked multi-head

attention in the decoder ensures that the position of predictions only rely on the

know outputs [75].

2.3 Sequential Visual-Semantic Information

Overview Language models and semantic information is also highly related to

the sequential information of the data representation. Existing image captioning

methods include main three categories: 1. retrieval image captioning; 2. template-

based image captioning; 3. novel image caption generation. In this thesis, the main

investigation direction is deep-learning-based approaches. Most deep-learning-based

methods are included in the category of novel image caption generation [19]. Hence,

we mainly investigate novel image caption generation based on deep learning in

this thesis. As the typical multi-modal task, image captioning includes visual and

semantic perspectives. Specifically, the representations of both two perspectives are

the most crucial elements. Therefore, we mainly review the developments of visual

encoding and language models in the image captioning task.

2.3.1 Visual Representation

Obtaining a representation of visual content is the first challenge in image captioning.

The current visual encoding methods can be summarised in four main directions:

1. global convolutional neural network (CNN) features; 2. attention over regions

of CNN features that encoded visual information applying visual regions; 3. graph-

based approaches combining relationships between object regions of visual content;

4. self-attention algorithms based on transformer-based model.
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Global CNN Features With the improvements of CNNs, several tasks con-

taining visual information have improved in recent years. For image captioning, the

model usually executed the activation of one of the last layers of a CNN to acquire

high-level representations applying to the language model [76], which was explored

in ”Show and Tell” paper [77]. In this work, the global CNN features, as the input,

were fed to the initial hidden state of the language model. Meantime, Karpathy et

al. proposed a similar method using global CNN features to the language model [78].

Furthermore, Donahue et al. [79] and Mao et al. [80] applied the extracted global

visual features at all time steps of the language model. Then, kinds of image cap-

tioning works widely employed global CNN features [81] [82] [83]. Notably, Rennie et

al. [84] proposed the FC model in image captioning, which indicates that implement-

ing ResNet-101 [85] extracted images to obtain their original dimensions. Besides,

some methods represented the most common object words of training captions by

probability distribution through integrating high-level attributes [86] [87]. Although

the image captioning model can simply use global CNN features, the methods with

this direction excessively compress visual information. Hence, the approaches with

global CNN features are challenging to generate fine-grained and specific sentences.

Attention based on Visual Regions Due to the drawbacks of global CNN

features, most e↵orts focused on extracting more relationships from visual content.

Applying the attention mechanism was a significant inspiration. The attention can

be summarised to weighted averaging [88]. Based on attention, several works further

improved the performance of image captioning with the bottom-up and top-down

mechanisms. The bottom-up path executes the visual feedback to adjust previous

predictions, while top-down indicates that leveraging prior information and inductive

bias predict the upcoming sensory input [76]. Specifically, one representation of the

top-down method means additive attention. Regarding this method, the language

model attends a feature grid while predicting the next word [89]. Anderson et al. [90]

defined the bottom-up through the object detector providing image regions. Then,

a top-down method is combined with it to learn weighing each region for each word

generation. Faster R-CNN [91] provides the pooled feature vectors of the region

proposals from detected objects based on pre-training on Visual Genome [92] in
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this approach. Benefits from image region feature, many of the subsequent research

e↵orts have widely applied the visual encoding approach from this strategy such

as [93] [94].

Graph-based Encoding Furthermore, some studies used graphs to establish

image regions improving the representation of image regions. First, Yao et al. [95]

and Guo et al. [96] integrated spatial and semantic information from objects by

graph convolutional network (GCN) [97]. Aiming at estimating semantic relations,

Yang et al. [98] designed the graph-based representation of the image and sentence,

integrating semantic knowledge of text into the image encoding. Meanwhile, Shi et

al. [99] applied the same strategy to represent the image while using ground-truth

captions train module of predicate nodes.

Self-attention Encoding For language understanding and machine transla-

tion tasks, self-attention was first proposed by Vaswani et al. [75], which promoted

the creation of Transformer-based architectures improving the performance in the

NLP area and computer vision. Yang et al. [100] first leveraged a self-attentive

operator to extract the relationships between objects. After that, Li et al. [101]

designed a Transformer model based on combining a visual encoder with a semantic

encoder. The structures of the two encoders mainly consisted of self-attention and

feed-forward layers. Many of the following e↵orts proposed the variants of the self-

attention module regarding image captioning [102] [103] [104] [105]. Furthermore,

He et al. [106] proposed a spatial graph transformer to integrate di↵erent types of

spatial relationships between detected objects. The extension of the attention mod-

ule was proposed by Huang et al. [107], which weights the final attention outputs

through a gate guided by the context. Pan et al. [108] proposed X-liner Attention ap-

plying bilinear pooling to improve the representation of the attended output feature.

Meantime, Cornia et al. [109] designed a Transformer-based model to augment each

encoder layer with a set of memory vectors, namely Memory-augmented Attention.

Luo et al. [110] combined grid and region features to complement advancements

of each other. In the other line, some works directly applied on image patches

with Transformer-based structure [72]. Based on this strategy, Liu et al. [111] first

executed a convolution-free framework in image captioning. Specifically, the en-
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coder of the framework was pre-trained Vision Transformer network (ViT) [72] and

Transformer as decoder generated captions. Interestingly, CLIP [112] was trained

from scratch on large-scale data by the same visual encoding methods. Especially,

CLIP-based features have been widely applied in image captioning [113] [114]. Ad-

ditionally, Zhang et al. [115] designed VinVl based on BERT-like architecture, which

proposed a new object detector to extract better image features and the vision-and-

language pre-training objectives.

2.3.2 Language Models

The language model is the most crucial sequential information in image captioning,

which predicts the probability of each word occurring in a sentence. This thesis

mainly reviews two language modelling directions for image captioning: 1. LSTM-

based methods; 2. Transformer-based methods.

LSTM-based Model Language as typical sequential information, recurrent

neural networks (RNNs) have been applied to solve image captioning. Among RNNs

variants, LSTM [116] is the most predominant language model. As a simple LSTM-

based captioning model, Vinyals et al. [77] designed the single-layer LSTM. In this

architecture, the image features from visual encoding are executed in the initial hid-

den state of the LSTM, generating the caption word by word. During the testing

period, the generated words at the previous step represent the input words, while

during the training period, the words of ground-truth captions are the input. After

that, Xu et al. [117] proposed LSTM with an attention strategy. In this line, the at-

tention mechanism was guided by the previous hidden state over the image features,

which computes a context vector to feed into a multilayer perceptron (MLP) to gen-

erate output words. Many of the following modifications applied a decoder based on

the single-layer LSTM. For example, Lu et al. [118] designed a visual sentinel, which

is a learnable vector to augment visual features. When the decoder generates the

”non-visual” words, the visual sentinel replaces the visual features. Meantime, Chen

et al. [119] applied a second LSTM to reconstruct the previous state based on the

current state to enhance the language model. Then, Wang et al. [120] decomposed

the sentence generation into two periods for generating a sentence from coarse to
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finer based on the single-layer LSTM, which were skeleton caption generation and

attributes enriching. Meanwhile, Gu et al. [121] applied a sequence of LSTM de-

coders to design a coarse-to-fine structure generating refined sentences. Based on

the performance of the single-layer LSTM, a two-layer LSTM was first proposed by

Donahue et al. [79] to apply for the captioning model, which stacks two layers, where

the input of the second layer comes from the hidden state of the first layer. Fur-

thermore, Anderson et al. [90] exploited the attention mechanism in the two-layer

LSTM. Due to the advancement of two-layer LSTM, several e↵orts designed vari-

ants aiming at two-layer LSTM. For instance, Lu et al. [122] proposed a pointing

network guiding the content-based attention strategy. Remarkably, the networks

predict some slots in the caption generation process, which are filled into the visual

region classes. Huang et al. [107] used the Attention on Attention method to boost

the LSTM, computing another step of attention on visual self-attention. Pan et

al. [108] enhanced the language model and visual encoding through the proposed

X-Liner attention mechanism.

Transformer-based Model Transformer has completely obtained breakthroughs

in NLP, which were also applied in the image captioning task. The decoder of the

Transformer uses the masked self-attention and cross-attention operation to apply

to words, where words are the queries, and the keys and values are represented from

the outputs of the last encoder layer with a feed-forward network. Regarding the

advancement of the Transformer, some image captioning works have widely applied

the standard Transformer decoder [123] [124] [110] [125]. Based on the variants

of the Transformer model, Li et al. [101] modified the cross-attention operator by

proposing a gating mechanism, which constrains the visual and semantic informa-

tion by integrating image regions and semantic attributes from the external tagger.

Similarly, Ji et al. [126] proposed the context gating strategy to adjust the e↵ecting

of the visual representation on each predicted word by multi-head attention. Cornia

et al. [109] proposed modulating all encoding layers instead of the last one of cross-

attention. Specifically, the proposed meshed decoder integrates the contributions of

all the encoding layers; then, the weights of these contributions were guided by the

semantic query.

25



CHAPTER 3

Sequential Control Process with Reinforcement Learning

In this thesis, we first investigate the sequential information control problem for

process control. As with most conventional control problems, the traditional control

theory has widely optimised the batch process. In addition, deep neural networks,

as an advanced artificial intelligence technology, are also used in the batch process.

In this chapter, we focus on process control by reinforcement learning.

Sequential control processes involve making a series of decisions over time to

achieve a specific goal. These types of processes are common in many areas, such as

robotics, finance, and manufacturing. Reinforcement learning, on the other hand, is

a type of machine learning that involves an agent learning to make decisions based

on the feedback it receives from the environment. When these two concepts are

combined, the result is a powerful tool for optimising sequential control processes.

Reinforcement learning allows the agent to learn from its actions and adjust its

decisions over time, leading to better performance and more e�cient outcomes. This

is particularly important in complex systems where it may be di�cult or impossible

to determine the optimal sequence of actions through traditional methods. For

another example, batch process control involves the manufacturing of a specific

quantity of a product in a single batch. The process involves a series of steps, such
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as mixing, heating, cooling, and chemical reactions, that must be performed in a

specific sequence and with precise control of various parameters.

In this thesis, our study on sequential control process with reinforcement learning

is based on the batch processes which are important manufacturing routes for the

agile manufacturing of high-value-added products and they are typically di�cult

to control due to highly nonlinear characteristics, unknown disturbance and model

plant mismatches.

3.1 Introduction

Batch processes have received more and more attention as they are suitable for

the responsive manufacturing of high-value added products such as special chem-

icals, special polymers and pharmaceuticals [127]. Di↵erent with continuous pro-

cess, batch process aims to produce chemicals in limited quantities at a fixed time

frame [40]. Meanwhile, batch processing is highly adaptable and allows for flexibility

in production. This flexibility is beneficial in industries where product variations,

customization, and changing production requirements are common. It also enables

the production of multiple products within the same facility [7]. The chemical batch

process consists of a sequence of steps that are executed in a fixed order. These steps

can include raw material addition, cooling, heating, mixing, filtration, chemical re-

actions, separation, and more. Each step is carefully controlled to ensure product

quality and consistency [128].

With the increasing popularity of customized or personalized chemical and medicine,

fed-batch and batch processes have become the major means of responsive manufac-

turing. Generally, the end-of-batch product quality is the main interest in fed-batch

and batch process operations [128] [129]. It is well known that batch processes, such

as batch polymerization reactors, are very di�cult to be optimized and controlled

due to issues associated with batch processes such as time-varying characteristics,

non-steady operations and non-linearity. Besides, batch process can be less e�cient

than continuous processes for large-scale production. To address this, e↵orts are

made to optimize batch processes, reduce cycle times, and minimize waste. This
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may involve process automation and advanced control systems [128].

The goal is to produce a high-quality product that meets the desired specifica-

tions. Reinforcement learning can be used to optimise the batch process control by

allowing the control system to learn from past batches and adjust the control pa-

rameters in real-time to produce a better product. The reinforcement learning agent

receives feedback from the system based on the quality of the product produced and

adjusts the control parameters accordingly. For example, consider the production of

a batch of pharmaceuticals. The process involves several steps, such as mixing, heat-

ing, cooling, and chemical reactions, and the quality of the final product depends on

several parameters, such as the temperature, pressure, and duration of each step. A

reinforcement learning agent can be trained to optimise the control of the process by

learning from past batches. The agent can receive feedback from the system based

on the quality of the final product, such as the purity and yield of the pharmaceu-

ticals. Based on this feedback, the agent can adjust the control parameters, such

as the temperature and pressure, to improve the quality of the next batch. Over

time, the reinforcement learning agent can learn to optimise batch process control

and produce high-quality pharmaceuticals consistently. This can lead to significant

cost savings and increased e�ciency in the manufacturing process.

3.2 Related Work

In order to overcome these di�culties, a number of advanced data-driven modelling

techniques such as neural networks and hybrid computational intelligence methods

have been utilized in building models for batch processes [130]. Neuro-fuzzy system

combined with an adaptive controller to control penicillin production was studied by

Bravo [131]. Nagy proposed a neural network predictive control strategy to control

a biochemical reactor [132]. A feed-forward neural network was applied to optimize

and control batch processes [128].

Compared with the above control algorithms, reinforcement learning control can

be used as an alternative optimization control strategy for the control of batch

processes. Firstly, the optimal control signal can be obtained by choosing actions

28



after the online interaction between environment and active decision-making agent.

Secondly, the previous process information is utilized by controller design. Finally,

due to the fact that this is a simple control algorithm, low-cost hardware can be

used. Hence, reinforcement learning control has been applied to various sophisti-

cated problems or devices in recent years. For example, Sutton and Barto described

that the control targets could be responded to from the value of the reinforcement at

each time, which includes errors, profits or cost [40]. The problem of adaptive con-

trol of a nonlinear chemical process was solved by applying Q-learning by Shah and

Gopal [133]. Said and Guido applied Q-learning to control and optimize the opera-

tion of robots [40]. The path length of Nanobots was optimized by using Q-learning

by Lambe [133] and Spielberg et al. [40] used Q-learning for process control.

Although reinforcement learning has been applied in many areas, its reported

application to batch processes is limited. Therefore, in order to overcome the dif-

ficulties in batch process optimization and control, the stochastic multi-step action

Q-learning algorithm and the modified multiple step action Q-learning are proposed

for the optimization control of fed-batch process operations in this paper.

3.3 Methodology

3.3.1 Modified Multiple Step Action Q-learning algorithm

Firstly, we propose the Modified Multiple Step Action Q-learning algorithm (MMSA)

based on MSA. Compared with traditional Q-learning and MSA, MMSA applies an

important modified " � greedy policy. The modification is that the agent follows

di↵erent " probability to explore and select actions: the agent follows a suitable "

value to explore actions during most of the training time in which the agent can

obtain optimal actions. After that, the " value can be changed to small, making the

agent explores and chooses non-optimal actions as less as possible. Due to applying

this modified " � greedy policy, more and more optimal actions and rewards are

saved into the Q-table to improve the e�ciency of exploration and learning.
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3.3.2 Stochastic Multi-step Action Q-learning Algorithm

Second, we further propose the Stochastic Multi-Step Action Q Learning Algorithm

(SMSA) to improve MMSA. Compared with MMSA, the modification is that the

agent can not apply the same action in multi-steps within a fixed time, but it can

execute the same action in multi-steps within a random di↵erent time. Regarding

this modification, the agent cannot compulsively and persistently select the same

non-optimal actions in many steps. The exploration of action is flexible, and the

agent can rapidly learn optimal actions to acquire more and more goal states. The

updating of the Q-value function is modified in SMSA as:

Q(si, a
nk
i ) Q(si, a

nk
i + ↵t [R + �maxQ(si+1, a

nk
i )�Q(si, a

nk
i )] (3.1)

Here, si is state, a
nk
i indicates an action ai is applied in n time steps in the kth

period, Q(si, a
nk
i ) is Q-value and maxQ(si+1, a

nk
i ) is the maximum Q-value of next

new state. The whole system running time will be divided into di↵erent n time steps

of k parts. For example, initially, if time step n1 = 5, the agent will choose same

action a1 from state s1 to s5. But if next time step n2 = 3 which means that s6, s7

and s8 will execute the same next action a2.

The reinforcement learning model is di↵erent from traditional machine learning

in the process control; it follows the specific process to design the agent, state, action

and reward function. To prove the control performances of MMSA and SMSA, we

apply them to the Case 1 and Case 2 processes in the experiments section. Hence,

the experiments section replaces the methodology section to describe the design of

the agent, state, action and reward function.

3.4 Experiments

Most batch processes have two main goals. The first is that the the reaction within

the limitation time can produce more desired products. The second is that the

control strategy is smooth, which is more stable in the real-world. Based on these

two goals, the final values of desired product C are the main evaluation metric on
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both cases. Di↵erently, in case 2, the goal of the control strategy is to produce more

desired products while ensuring fewer undesired products are produced.

Furthermore, compared with typical machine learning scenarios, the dataset and

environment are not similar. In these experiments, the control signal must inter-

act with environment to obtain the control results. In both cases, the simulation

functions serve as the representation of the environment.

3.4.1 The application of MMSA

Case 1

The nonlinear batch reactor process used by Xiong and Zhang [128] is taken as a

case study. In this case study, the control objective is to maximize the amount of

desired product at the end of a batch. The reaction in this batch process is described

by the following equation.

A
k1
�! B

k2
�! C (3.2)

In this reaction, the raw material is reactant A, B is the desired product, and C

is the undesired by-product. With the control of reactor temperature, the desired

product B will be generated in a specified batch time tf = 60min. Based on material

balances and reaction kinetics, the following mechanistic model can be developed:

dx1

dt
= �k1exp(�E1/uTref )x

2
1,

dx2

dt
= �k1exp(�E1/uTref )x

2
1 � k2exp(�E2/uTref )x2,

u = T/Tref ,

(3.3)

where the concentrations of A and B are represented by x1 and x2 respectively; the

reference temperature is represented by Tref .

The Table 3.1 gives the values of k1, k2, E1, E2 and Tref . The initial conditions of

A and B are A(0) = 1 and B(0) = 0. In addition, the range of reactor temperature

is 298K  T  398K. Based on this detailed mechanistic model, a simulation of

this batch process is developed using MATLAB, and the simulation is used to test

various control strategies.
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Table 3.1: Parameter for batch process of Case 1

Parameter Value

k1 4.0⇥ 103

k2 6.2⇥ 105

E1 2.5⇥ 103

E2 5⇥ 103

Tref 348K

Table 3.2: Parameters for MMSA

Variable Meaning Setting

↵
learning

rate
0.09

�
discount

factor
0.87

"(0-34min) greedy-probability 0.6

"(34-60min) greedy-probability 0.07

The Agent Design of MMSA

As an element of the MMSA algorithm, the model of the agent is important. For

the agent, several parameters need to be designed. The discount factor � and the

learning rate ↵ are vital elements, which can decide the speed of learning and control

system model updating. For MMSA, the most important element is the implemen-

tation of "� greedy policy and the parameters are shown in Table 3.2:

The State Design of MMSA

In this paper, the main control goal is that the desired product should be maximized

during a fixed reaction time. Hence, the state model is designed to follow this

principle. Following the implementation of the control signals, the desired product

can experience an increase. For this process, if the slope of desired product B curve

is made big, the task goal can be achieved. Therefore, the state is represented by

32



Table 3.3: States of MMSA

Equation State

B(t+ 1)� B(t) � 0
goal
state

B(t+ 1)� B(t) < 0
undesired
state

the derivative (first order di↵erence) of the desired product B as shown in Table3.3:

The action design of MMSA

The update and transition of the state are decided by the exploration and selection

of action. Generally, the goal state can be reached after executing optimal action.

With the change in temperature, the desired product B can be produced which

means that the variation of temperature can influence the final concentration of

desired product B. Therefore, the action model is designed by temperature T as

the control signal in this case study. And there are 206 di↵erent symbolic actions.

Figure 3.1 indicates the action space in this experiment.
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Figure 3.1: Action space of MMSA
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The reward function of MMSA

In reinforcement learning, the learning control performance can be influenced by the

rewards. Thus, the reward function is a key element for the MMSA algorithm. And

some constant values can represent reward functions for reinforcement learning.

However, the performance of using constant values as the reward function is not

suitable. In this case, the reward function will be redesigned. The derivatives of

desired product B describe the state meaning that the bigger this positive value

is, the better control objective can be acquired. Due to this characteristic, the

derivative of desired product B represents the reward function:

Reward = �[B] (3.4)

According to this dynamic reward function, the good and bad performance of

exploration and selection of action can be directly and clearly reflected in each step.

Control Results and Discussions of Case 1

In this part, the batch process will be controlled and optimized by the MMSA

algorithm. To demonstrate the advantages of MMSA, the control performance of

MMSA will be compared with traditional Q-learning and MSA.

In this case study, the main control goal is to maximize the desired product B.

Figure 3.2 shows the concentration profiles of the desired product B under di↵erent

control algorithms in a fixed reaction time. At the end of the batch, the final

values of the desired product B are 0.557, 0.587, and 0.640 under the traditional

Q-learning, the MSA algorithm, and the MMSA algorithm respectively. Among the

three control strategies, the MMSA algorithm gives the best control performance.

The control signals of di↵erent control algorithms are shown in Figure 3.3, Fig-

ure 3.12 and Figure 3.5. It is clear that the control signals of the MSA and MMSA

are more reasonable compared with that of the traditional Q-learning. To acquire

more rewards, the selection of action of traditional Q-learning is not limited to the

fix "�greedy policy. Hence, the control signal of the traditional Q-learning exhibits

a lot of sharp oscillation which is not reasonable in the real batch process.

34



Figure 3.2: Comparison of final desired product for three algorithms

According to Figure3.4 and Figure3.5, the control signals of MSA and MMSA

are clearly more reasonable. For MSA, Figure3.4 shows that the curve of the whole

control signal experiences steady and persistent oscillation meaning that the control

signal (action) of MSA is explored continuously.

In other words, the agent explores and selects optimal actions; meanwhile, some

non-optimal actions are executed many times in the whole batch time, which means

that a number of rewards will be received, while amounts of punishments will come

along with them. The reason is that the agent persistently follows the fix "�greedy

policy to explore and choose available actions resulting in the performance of Q-

table and control e�ciency. On the contrary, it is di↵erent for the MMSA algorithm.

From Figure 3.5, the curve of the control signal can experience distinct oscillation

and variation firstly, then it will be changed to smooth and steady. Since MMSA

has the improved "�greedy policy, the agent can explore and select more and more

available actions with big " value during the first reaction time (0-34min); after that,

there is a small " value to explore actions (34-60min), which indicates that there

are more and more optimal actions and rewards can be obtained compared with

MSA algorithm. According to this modification and improvement, there is a better

Q-table, while the exploration of action of MMSA has a higher e�ciency. Therefore,

when the MMSA algorithm controls this batch process, there will be better control
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Figure 3.3: Control signal of traditional Q-learning

e�ciency and robustness.

Besides what has been mentioned above, the reward distributions of di↵erent

algorithms can indicate the advantage of MMSA which can be discussed in Figure3.6,

Figure3.7 and Figure3.8. Generally, it is common that rewards and punishments are

the most important and significant elements which decide the good and bad of the

Q-table directly leading to the performance of reinforcement learning. According

to Figure3.6 and Figure3.7, it is obvious that there are a number of punishments

saved into the Q-table when traditional Q-learning and MSA control batch process

resulting in bad influence for reinforcement learning that Q-table cannot instruct

better the agent to choose more optimal actions.

However, Figure 3.8 indicates that when MMSA control this batch process, more

and more rewards can be acquired without punishments in the same fixed reaction

time. Hence, the Q-table can instruct the agent to explore and choose actions better

which means that the control task can be achieved fast and accurately. This com-

parison can demonstrate that the MMSA algorithm can control the batch processes

better.
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Figure 3.5: Control signal of MMSA
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Figure 3.6: Reward distribution of traditional Q-learning

3.4.2 The application of SMSA

Case 2

A fed-batch process [127] is used as a case study. The following equations describe

the reactions in this fed-batch process.

A+B
k1
�! C, (3.5)

B +B
k2
�! D, (3.6)

For this reaction system, reactants A and B are the raw materials and the desired

product is C and the speciesD is the undesired by-product. In a specified batch time

tf = 120min, the reactant B will be added into the reactor gradually to prevent

the fast formation of the undesired by-product D. Therefore, the main control

objective is that the desired product C should be acquired as much as possible and

the undesired species D should be kept at the lowest quantity. The concentration

of reactant B in the feed is bfeed = 0.2. Based on material balances and reaction

kinetics, the following mechanistic model can be developed:
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d[A]

dt
= �k1[A][B]�

[A]

V
u,

d[B]

dt
= �k1[A][B]� 2k2[B]2 +

bfeed � [B]

V
u,

d[C]

dt
= �k1[A][B]�

[C]

V
u,

d[D]

dt
= 2k2[B]2 �

[D]

V
u,

d[V ]

dt
= u.

(3.7)

The concentrations of A, B, C and D are represented by [A], [B], [C] and [D]

respectively. The volume of the materials in the reactor and reactant feed rate is

denoted by V and u respectively, and k1 and k2 are the reaction rate constants.

Table 3.4 shows the parameter values. Based on this detailed mechanistic model, a

simulation programme of this fed-batch process is developed using MATLAB and

the simulation is used to test various control strategies.

Table 3.4: Parameters for the fed-batch process of Case 2

parameters value

k1 0.5

k2 0.5

[A](0) 0.2moles/litter

[B](0) 0

[C](0) 0

[D](0) 0

[V ](0) 0.5

The Agent of SMSA

As an element of the SMSA algorithm, the model of the agent is important. For

the agent, several parameters need to be designed such as the discount factor �

and the learning rate ↵. The " � greedy policy is an essential algorithm for the

SMSA algorithm. In the batch process, because plenty of positive influence will be

40



generated at the beginning of the process and the last period of the process has the

negative influence, there is a bigger " value in most of the whole batch time firstly,

by contrary, a smaller " value will be applied. In this study, the parameters are

determined based on experiments and are shown in Table 3.5.

Table 3.5: Parameters used in the simulations of Case 2

variable meaning setting

↵
learning

rate
0.1

�
discount

factor
0.98

"(0-79min) greedy-probability 0.8

"(79-120min) greedy-probability 0.05

The State of SMSA

In this process, the main control goal is that the desired product should be produced

as much as possible and the undesired by-product should be kept at a low quantity

at the final time. In this study, the state model is designed to follow this principle.

During a given reaction time, each product can experience an increase or decrease

following the implementation of the control signals. In this process, when the rate

of increase of the desired product concentration is high, the more desired product

is expected to be produced. At the same time, the rate of increase of the undesired

product curve should be kept slow. According to this principle, making the slope of

the [C] curve bigger than that of the [D] curve can achieve the control task in the

whole batch time. Therefore, the state is represented by the di↵erence in derivatives

between [C] and [D] as shown in Table 3.6, where �[C] and �[D] are the rates of

change in [C] and [D] respectively.

The Action of SMSA

Generally, the exploration and selection of action decide the update of state, which

indicates that when the agent explores and chooses an optimal action, the goal state
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Table 3.6: States of Case 2

Condition State

�[C]��[D] � 0
goal
state

�[C]��[D] < 0
undesired
state

will be reached. Thus, the action is a significant element of this SMSA algorithm.

In this study, the addition rate of reactant [B] will influence the final quantity of

product [C] and by-product [D]. Considering this, the action model is the feeding

rate of reactant [B], the control signal u ranges from 0.0020 to 0.01. For this fed-

batch process, the actions can be explored and selected randomly from this range

to significantly reduce the bias and errors with improved accuracy.

The Reward Function of SMSA

The reward function is also a significant key element in the SMSA algorithm, due to

the fact that the rewards and punishments of the reward function can significantly in-

fluence the learning control performance. For the conventional reinforcement learn-

ing algorithm, it is common that the reward function can be set as some constant

values. However, using constant values as the reward function is not suitable and

reasonable for the batch process. Therefore, the reward function is redesigned in this

fed-batch process. In this case, the di↵erence in derivatives between desired product

[C] and undesired by-product [D] describes the state. In other words, the bigger this

positive value di↵erence is, the better the control objective can be obtained. Due to

this characteristic, the reward function can be described by the cubic di↵erence in

rates of change between desired product [C] and undesired product [D]:

Reward = (�[C]��[D])3 (3.8)

This dynamic reward function can directly and clearly reflect the good and bad

performance of exploration and selection of action in this step.

42



Control Results and Discussions of Case 2

The performance of controlling this fed-batch process using SMSA is tested on sim-

ulation. In order to demonstrate the advantages of SMSA, its results are compared

with those of other control algorithms including traditional Q-learning, multi-step

Q-learning (MSA) and ne uro-fuzzy networks-based optimization control.

The variations of desired product [C] and undesired product [D] of di↵erent

control algorithms are shown in Figure 3.9 and Figure 3.10 respectively. The end of

batch values of the desired product [C] and the undesired product [D] are given in

Table 3.7.

Table 3.7: The comparisons with the state-of-the-art algorithms on Case 2

Algorithm

Desired

product

[C]

Undesired

product

[D]

Final di↵erence

of [C] and [D]

Neuro-fuzzy

network
0.0559 0.0204 0.0319

MSA 0.0585 0.0227 0.0358

Traditional

Q-learning
0.0590 0.0193 0.0397

SMSA 0.0618 0.0249 0.0369

Based on Figure 3.9 and Table 3.7, it is clear that by applying SMSA control

to this process, plenty of the desired product [C] can be generated, more than

those from the other control algorithms. Although when applying the traditional Q-

learning, MSA and neuro-fuzzy networks, less final quality of undesired production

[D] are produced as shown in Figure 3.10, the di↵erence between desired product [C]

and undesired by-product [D] under SMSA are much larger than those under MSA

and neuro-fuzzy network as indicated in Table 3.7, which demonstrates that SMSA

can be considered as giving better control performance than MSA and neuro-fuzzy

network.
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Figure 3.9: Variation of [C] in di↵erent algorithm

Figure 3.10: Variation of [D] in di↵erent algorithm
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According to Figure 3.9, Figure 3.10 and Table 3.7, the traditional Q-learning

and MSA have a good control performance as well, in particular, the traditional Q-

learning control results in the largest di↵erence between the desired product [C] and

the undesired by-product [D]. However, the control policies under the traditional

Q-learning and MSA are not optimal and reasonable compared to SMSA on the

final volume and control signal.

At the end of the batch, the final volume are 0.99m3, 1.24m3, 0.92m3 and 0.98m3

when applying neuro-fuzzy network-based optimization control, MSA, traditional Q-

learning and SMSA. Considering the maximum volume constraint of 1m3, this batch

process experiences enough reaction by the neuro-fuzzy network and the volume

is too large being not reasonable in the industries applying MSA. Compared with

SMSA, the traditional Q-learning leads to less final volume. Hence, there is no doubt

that when SMSA control is applied, more desired production [C] and less undesired

production [D] can be acquired the final volume being close to its constraint.
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Figure 3.11: Control signal of neuro-fuzzy networks

Figure 3.11, Figure 3.12, Figure 3.13 and Figure 3.14give the control signals of

the di↵erent control algorithms. It is obvious that the control signals of SMSA,

MSA and neuro-fuzzy network-based optimization control are more reasonable. As

a learning algorithm, the advantage is that SMSA, MSA and traditional Q-learning

will learn first, then apply learned optimal policy control task, which means that
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Figure 3.12: Control signal of MSA
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Figure 3.13: Control signal of traditional Q-learning
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they will explore available actions to reach the next new state and receive a reward

or punishment.

However, the traditional Q-learning will select and explore a new action to reach

a new state in each sampling time. Hence, the learned control signal of traditional Q-

learning can experience sharp and frequent variations at each sampling time making

the practical implementation in real industrial processes problematic. In contrast,

the learned control policies of MSA and SMSA algorithms do not have such sharp

variations indicating that MSA and SMSA are more reliable and robust. There-

fore, the proposed SMSA algorithm is expected to give better performance for real

industrial applications.

3.5 Conclusions

In the paper, the use of reinforcement learning (RL) for the control of a fed-batch

process has been established, using the proposed MMSA and SMSA (successive

mean-based search algorithm) algorithm. The goal was to optimise the end-of-

batch production objectives in a highly nonlinear batch process without needing

a process model. The results showed that the MMSA and SMSA algorithm out-

performed MSA (mean-based search algorithm), traditional Q-learning, and neuro-
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fuzzy network-based optimization control in terms of control performance, reliability,

and robustness of the control policy. Compared with two proposed methods, the

SMSA algorithm was found to have strong learning abilities and could rapidly op-

timise the end-of-batch production objectives. The proposed method was also able

to acquire the optimal control policy in a short iteration time.

One possible future work would be to investigate the use of the proposed SMSA

algorithm in di↵erent batch processes and compare its performance with other RL

algorithms. We also consider applying the proposed method to real-world batch pro-

cesses to evaluate its e↵ectiveness in practical applications. The shortcoming of the

study is that it is based on simulation results rather than real-world data. Therefore,

the proposed method needs to be validated with experimental data to confirm its

e↵ectiveness in real-world batch processes. Additionally, the work did not compare

their proposed method with other optimisation methods, such as model predictive

control (MPC), which is a popular control strategy in the process industry. A com-

parison with MPC would provide insight into the advantages and disadvantages of

both methods for batch process control. We address these problems in the next

chapter. A flexible simulator-free framework is provided using neural digital twins.

The neural predictor also provides guidance for reinforcement learning training as

that in MPC.
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CHAPTER 4

Hybrid Reinforcement Virtual Learning for Sequential Control

The advancements of reinforcement learning in the batch process have been proved

in chapter 3. Hence, we further investigate the sequential information of process

control aiming at control e�ciency based on a hybrid reinforcement learning control

strategy. Reinforcement Learning (RL)-based control system has received consid-

erable attention in recent decades. However, in many real-world problems, such

as Batch Process Control, the environment is uncertain, which requires expensive

interaction to acquire the state and reward values. In this chapter, we present a

cost-e�cient framework, such that the RL model can evolve for itself in a Virtual

Space using the predictive models with only historical data. The proposed frame-

work enables a step-by-step RL model to predict the future state and select optimal

actions for long-sight decisions. Under the experimental settings of the Fed-Batch

Process, our method consistently outperforms the existing state-of-the-art methods.

4.1 Introduction

Batch processes, as an important chemical process, are expected to generate higher

value products, such as desirable chemicals, polymers and pharmaceuticals [134],
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which have received considerable attention in recent years. Due to the rapid evolu-

tion of diversely customised chemical processes, fed-batch is then considered to be

one of the most popular approaches to responsive manufacturing. Among the fed-

batch and batch process operations, the maximum end-of-batch product quality is

the most noteworthy [134]. Batch processes usually face a dilemma in optimisation

and control treatment, due to the rapid time-varying characteristics, non-steady

operations and non-linearity batch polymerisation reactors [135].

The existing solutions are sought from Modern Control Theory, which experi-

enced a rapid improvement in their optimisation mechanism. A number of optimal

control approaches, e.g., Proportional-Integral (PI), Proportional–Integral–Derivative

(PID) and fuzzy control, have been applied in various disciplines. For example,

Khalili et al. [136] proposed an optimal sliding mode control in biology. Trajectory

optimization was then presented and applied in robotics by Carius et al. [137]. Wei

et al. [138] applied such an optimal control to operate and optimize motor.

Figure 4.1: Several widely used methods of reinforcement learning, such as the
traditional RL, DQN and multi-agent reinforcement. The di↵erences between the
proposed RVL and the existing models are highlighted.

With the rapid development of Machine Learning technologies, an emerging

trend of modern control systems has been introduced by exploring the advanced
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data-driven strategies, e.g., neural networks and hybrid computational intelligence

algorithms [134]. Particularly, Reinforcement Learning (RL) models have manifested

the application values in many fields, such as computer vision [38] [139], games [140]

and medicine [141]. With the development of neural networks, Deep Learning (DL)

and RL models have been successfully applied in various chemical processes. For

example, Jie et al. [127] applied the recurrent neural fuzzy network in the fed-batch

process. Shah and Gopal [133] applied Q-learning to solve the problem of adaptive

control of a nonlinear chemical process. Although RL has been applied in di↵erent

chemical processes, it still lacks exploration in fed-batch processes.

In this chapter, a new structure of Reinforcement Virtual Learning (RVL) is

proposed to control and optimize the fed-batch process. The novelty can be summed

up as that the virtual space is explored and cooperated with RL, which means that

a virtual environment can be predicted and created by previous data and the RL

agent can further interact with the virtual environment to learn. Specifically, a

simple and conventional prediction model is explored combined with RL to generate

a more e↵ective and flexible method. We summarise our main contributions below:

• The learned agent of RL through interaction with the virtual environment can

acquire a virtual learning policy. When the agent of RL interacts with the

real environment, this virtual learning policy can introduce and modify the

agent to learn a real learning policy. According to this cooperation, RL can

control and optimise the process in an uncertain environment. Also, previous

historical information can be utilised adequately.

• Besides previous historical information, the proposed RVL can leverage future

information as well. In terms of the virtual environment and learning policy,

the results of future approximation control can be obtained. Considering the

ability of future prediction, the results of discretionary future approximation

control can then be acquired. The agent modifies and improves the learning

policy based on the combination of the short-sight and long-sight approxima-

tions of the future. Hence, the previous historical information combined with

future information can increase learning e�ciency.
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• The comprehensive experiments demonstrate that the results of control ob-

tained by the proposed RVL show better performances compared with the

state-of-the-art control algorithms for the fed-batch process.

The proposed structure of Reinforcement Virtual Learning (RVL) aims to address

the time-series issues in batch-process control. In batch processes, the volume and

capacity of reactants in the previous sequences significantly a↵ect future reactions.

RVL achieves this by extrapolating future information within a virtual space to

provide rewards and penalties, optimizing the control strategy of previous sequences.

The methodology section will provide more in-depth details

4.2 Related Work

As a conventional treatment of chemical process, the fed-batch process brings in

high-profile exploitation, while the product costs and desired product quantity are

the major control challenges. To solve this problem, a better control policy is ex-

pected. With the development of modern technology, control and optimization

methods started to be applied in the fed-batch process in recent years. For instance,

many theoretical works paid attention to step profiles to resolve the optimization

issues for the fed-batch process [142] [143] [144]. Generally, the piecewise parame-

terization by the mean of linear polynomials is another kind of approach [145] [146].

The convenience of using such a smooth continuous feeding profile was marked by

Martinez et al. [147]. The feed rates were parameterized by the sinusoidal functions

developed by Ochoa [148]. The predictive control was also applied to control and

optimize the fed-batch process [149] [150] [151]. However, the online determination

and control of processing variables are not straightforward in the initial stage. After

a period of development, it is still ine�cient considering that there are plenty of

works to take and analyze the samples. The reversibility and uncertainty of the

processing models can influence the control performances and implementations in

the real world.

With the development of machine learning/deep learning [38, 152, 153], there is

plenty of research focusing on finding an alternative method to replace the tradi-
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tional optimal control approaches. As a model-free algorithm of machine learning,

RL was noticed and experienced rapid development in control area. The agent can

find an optimal learning policy by a state-action value function based on the classic

Q-learning [154]. To increase the e�ciency of RL, Hausman et al. [155], Florensa et

al. [156] and Kearns et al. [157] explored the latent models. In addition, Gupta et

al. [158] applied the gradient-based fast adaptation algorithm to acquire exploration

policy through using prior information. Garcia et al. [159] applied the meta strat-

egy into Markov decision process (MDP) to obtain an optimal exploration strategy.

Later, several kinds of methods combined with RL were proposed to further improve

the overall performances. Mnih et al. [44] proposed a Deep Q-network (DQN) to

estimate the state-action value function. Double DQN was then estimated [160]

based on DQN to solve the problem of over-estimation of previous Q-network. After

that, the state value and advantage value were predicted through the separated Q-

network from Dueling Network explored by Wang et al. [161]. The strength of DQN

was combined with constrained optimisation approach by the Optimally Tightening

method by He et al. [162]. Harutyunyan et al. [163] and Munos et al. [164] com-

bined on-policy samples into o↵-policy learning targets by Q⇤(�) and Retrace(�).

Fortunato et al. [165] proposed a Noisy-Net to increase the ability of exploration by

adding noise into the parametric model during the learning progress. Distributional

RL [166] learned a value function using full distribution instead of expected val-

ues. Pritzel et al. [167] proposed a neural episodic control to generate semi-tabular

representation and retrieve fast-updating values by context-based lookup for ac-

tion selection. Lin et al. [168] improved the performance of DQN and proposed an

episodic memory deep Q-network by distilling information of the episodic memory.

Despite the success, these methods still need to combine di↵erent algorithms with

RL, and thus, DQN relied on the open environment which only considers the prior

experience without future information. In addition, treating the neural networks

as a state-action value function cannot leverage future information to guide the

learning of RL agent.

As one of the most important algorithms in multi-agent system, multi-agent

reinforcement learning (MARL) gained traction recently with various successful ap-
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plications. For example, Littman [169] studied MARL in the context of Markov

games. Similarly, Hu et al. [170], Lauer et al. [171] and Arslan et al. [172] ap-

plied MARL in the game learning. Jaderberg et al. [140] developed a tournament-

style evaluation in 3D multiplayer games, while Bard et al. [173] applied MARL in

Hanabi as a new benchmark. Foerster et al. [174] presented the Bayesian action de-

coder(BAD) as a new public belief MDP. Lee et al. [175] proposed a policy evaluation

with a linear approximation and actor-critic to improve the performance of MARL.

Many e↵orts then concentrated on deep neural networks as a functional approxi-

mator in MARL [176–181]. The relative over-generalisation problem was tackled

through developing a Multi-agent Soft Q-learning in continuous action spaces by

Wei et al. [182, 183]. In addition, other works like CommNet [184], ATOC [185]

and SchedNet [186] focused on exploiting an inter-agent communication. Son et

al. [187] proposed QTRAN to acquire a more general factorisation and thus increas-

ing the application range for MARL. Wai et al. [188] applied a double averaging

scheme to optimise the performance of MARL. Qu et al. [189] introduced a value-

propagation method based on a primal-dual decentralised optimisation strategy in

MARL. Liao et al. [190] applied MARL in a 3D medical image segmentation prob-

lem. However, these aforementioned works focused on the cooperation of multi-agent

systems, which strictly relied on an open environment. In addition, the multi-agent

reinforcement learning just interacts with the internal agents of single RL algorithm,

which cannot interact with agents of other algorithms.

The previous MARL and DQN have been applied successfully in various applica-

tions. However, the combination method of the proposed algorithm (namely RVL)

is di↵erent from them, which involves the virtual part, basic part and cooperation

part. Specifically, both virtual part and basic part can be applied with much flex-

ibility. For example, the virtual part can exploit a traditional neural network and

other models like practical swarm optimisation (PSO) control method, fuzzy control

approach, TD model, Sara learning, Q-learning, DQN, and MARL; imitation learn-

ing and deep recurrent Q-learning algorithms can be used in the basic part. The

proposed RVL is general but very e↵ective, which can be creatively used in a wide

range of methods. To show the advantages of RVL, the virtual part and the basic
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part will be applied with both popular and simple prediction models and improved

Q-learning method [134]. When combined with RVL, the new model consistently

outperforms the original model.

4.3 Methodology

In this paper, the proposed RVL is expected to control a fed-batch process, while

the main control task is to maximise the final quality. Specifically, the number of

the desirable productions can be denoted as Ct = [c1, c2, ..., ct] by a sequence of

control signals ut = [u1, u2, ..., ut]. For RVL, the virtual space equals to the virtual

environment, which can directly replace the real environment to interact with the

agent of control algorithms as the basic part. Let Ie be the virtual space of the virtual

part, B be the basic function of the basic part, and RV be the final algorithm part.

Ie, B and RV can be described in RVL as:

Lf (RV ) = Lv(Bv | Ie) � L
r(Br | Re), (4.1)

where Lf (RV ) denotes the optimised final learning policy, which can be acquired

by a virtual learning policy Lv(Bv | Ie) and a real learning policy Lr(Br | Re); �

represents the element-wise product; Re is the real environment space. Therefore,

a virtual space Ie can create a virtual environment of fed-batch process in the vir-

tual part. The basic functions Bv and Br can interact with both virtual and real

environments to get a virtual learning policy Lv(Bv | Ie) and a real learning pol-

icy Lr(Br | Re), and further achieve the cooperation with each other to obtain a

final learning policy Lf (RV ). A better control signal u is also given to control the

fed-batch process: Lf (RV )! ut = [u1, u2, ..., ut]! Ct = [c1, c2, ..., ct].

4.3.1 Virtual Space

An important element of RVL is the virtual space, which can create a virtual envi-

ronment to interact with the agent of the basic part. With the development of the

prediction models, several advanced algorithms were proposed, e.g., RNN, which
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Figure 4.2: The detailed structure of our Reinforcement Virtual Learning (RVL):
The virtual learning policy can be acquired by the virtual part, which interacts with
a real agent by di↵erent steps to obtain the di↵erent real learning policies. After
that, they are combined to get the final learning policy.

is still the most popular prediction model so far. Plenty of improved models have

then been proposed based on RNN, such as Elman Network, Jordan Network, Bi-

directional Long Short-term Memory Network (BiLSTM), Gated Recurrent Unit

(GRU), and Long Short-term Memory Network (LSTM) [191]. Compared with the

traditional RNN, these approaches have some modifications, involving gates, mem-

ory cells, and hidden states for LSTM. Specifically, based on these developments,

when LSTM resolves the time-series data, it shows a better performance compared

with the traditional RNN.

For fed-batch process, the short-term reaction time a↵ects future long-term re-

action. Considering a fact that both short-term and long-term information are

important, and as an advanced algorithm in RNN, LSTM is resonable to model

the fed-batch processes. The gates of LSTM, as the most important component to

capture valid information and store them into the memory cell, the prediction of

method may benefit with higher accuracy under LSTM.
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We model a virtual space Ie by an LSTM model Ĥ with the historical data Xt:

Ie(S) = Ĥ | Xt(A) = �(Wyht + by) | Xt(A), (4.2)

where � is the sigmoid activation function, ht is the hidden state, Wy and by are the

weight and bias, A is the action space, and S denotes the state space. The current

action and the next state can be indicated by at and st+1, respectively,

at ( at 2 A)! Ie(S,A)! st+1 ( st+1 2 S), (4.3)

where the next state st+1 can be obtained through Ie model by the selected current

action at.

4.3.2 Reinforcement Virtual Learning (RVL)

Virtual Leaning Policy

This part provides the strategy of the interactions between the virtual space and RL

agent. In terms of the modelled virtual space Ie, the agent of RL can generate the

virtual state after interaction with Ie. Then, a virtual learning policy Lv(Bv | Ie)

can be acquired through a virtual basic function Bv:

Bv = E
n
Êt | Ie(svt , a

v
t ) , s

v
t 2 S , avt 2 A)

o
. (4.4)

Here, svt and avt denote the virtual state and the action, respectively. Êt repre-

sents the expected reward:

Êt =
1X

n

�nrt+n, (4.5)

where the expected gains are denoted by rt+n and � (0 < � < 1) is the discount

factor. Following Eq. (4) and Eq. (5), the virtual learning policy Lv(Bv | Ie) can

be described as

Lv(Bv | Ie) Bv(s
v
t , a

mkv
t ) + ↵[rvt+1+

�v max
a
mkv
t 2A

Bv(s
v
t+1, a

mkv
t )� Bv(s

v
t , a

mkv
t )],

(4.6)
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where ↵ (0 < ↵ < 1) indicates the learning rate, and amkv
t describes that a vir-

tual action avt can be executed m time steps in kth period based on SMSA [134].

rvt+1 denotes the virtual expected benefits. The maximum virtual value at next vir-

tual state svt+1 is then represented by max
a
mkv
t 2A

Bv(svt+1, a
mkv
t ). Considering that the

agent can interact with di↵erent environments, the weight of benefits is therefore

distinguishable for RVL in di↵erent environments. Following this principle, we set

di↵erent discount factors, where �v represents the virtual discount factor in a virtual

environment.

Real Leaning Policy

It is worth noting that the agent can acquire a virtual learning policy with a virtual

environment, which means RL can be learnt in an unknown and uncertain environ-

ment. Based on this, the learned virtual learning policy can further guide the agent

to learn a real learning policy Lr(Br | Re), when the agent interacts with a real

space Re. Specifically, interacting with a real environment, the current best real

action artb at the current real state s
r
t can be predicted based on the results of future

steps by a virtual learning policy Lv(Bv | Ie) combined with a virtual environment.

For instance, three actions avt1, a
v
t2, a

v
t3 at the current state svt can be obtained

based on the virtual learning values Bv(svt , a
v
t1), Bv(svt , a

v
t2), Bv(svt , a

v
t3) of a virtual

learning policy Lv(Bv | Ie) in terms of maximum to minimum:

Bv(s
v
t , a

v
t1), Bv(s

v
t , a

v
t2), Bv(s

v
t , a

v
t3) 

max
Av

t2A
Bv(s

v
t , A

v
t ) | L

v(Bv | Ie),
(4.7)

where Av
t indicates all possible actions at state svt . Based on the virtual learning

policy, the agent can know several suitable actions in each state. In this paper, three

suitable actions are enough for the task. However, the agent cannot immediately

determine the best action from them. The agent needs to select three actions to

interact with the virtual environment to reach three di↵erent next-states svt1, s
v
t2, s

v
t3,

respectively. After that, the agent can follow Lv(Bv | Ie) to reach three di↵erent

future states of N steps svN1, s
v
N2, s

v
N3. Di↵erent future-states can show the perfor-
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mance of control by the proposed algorithm, which can then be reflected by the

expected benefit (reward) of each di↵erent state:

rvN(s
v
N) = max(rvt + (rvN(s

v
N1, a

v
t1), r

v
N(s

v
N2, a

v
t2), r

v
N(s

v
N3, a

v
t3)) | L

v(Bv | Ie), (4.8)

where rvN(s
v
N) is the maximum reward obtained afterN future steps. If the maximum

reward is rvN(s
v
N1, a

v
t1), the best state is svN1, which means the best action artb is a

v
t1

at state svt and srt . Following this principle and the basic function Br in real space

Re, the virtual learning policy is similar to that of Lr(Br | Re) to learn:

Lr(Br | Re) Br(s
r
t , a

mkr
tb ) + ↵[rrt+1+

�rLv(Bv | Ie)(s
r
t+1, a

mkr
tb )� Br(s

r
t , a

mkr
tb )],

(4.9)

where the real expected benefits is denoted as rrt+1. The real states and actions

are represented by srt and art . In addition, the real discount factor is represented as

�r. In the real space, the virtual learning policy Lv(Bv | Ie)(srt+1, a
mkr
tb ) guides the

agent to learn a real learning policy Lr(Br | Re), which gives both feedback and the

cooperation about the previous Lv(Bv | Ie) to obtain a new final virtual learning

policy Lv(Bv | Ie):

Lv(Bv | Ie) Bv(s
v
t , a

mkv
t ) + ↵[rvt+1+

�vLr(Br | Re)(s
v
t+1, a

mkv
t )� Bv(s

v
t , a

mkv
t )].

(4.10)

Finally, the optimised final learning policy function Lf (RV ) can be acquired by

the cooperation between the learned virtual learning policy Lv(Bv | Ie) and the real

learning policy Lr(Br | Re).

Combination

When the agent selects the best action at each state in a real environment, the

future states of some steps can further influence the selection of the actions based

on a virtual learning policy Lv(Bv | Ie). Therefore, the future step is important for

the proposed RVL, as well as the combination. For the future step, the states of
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the first step and the final step influence the choice of the best action at the current

state. Here, the first step (named as 1-step) is referred to as the short-sight and the

final step is denoted as the long-sight.

The framework is summarised in Figure 4.2. Specifically, through both the short-

sight and the long-sight steps, a final short-sight learning policy Lsf (RV ) and a

long-sight learning policy Llf (RV ) can be obtained. After that, the maximum com-

bination can be executed to acquire the final combination learning policy Lcf (RV ):

Lcf (RV )(scft , acft ) = max(Lsf (RV )(ssft , asft ), Llf (RV )(slft , a
lf
t )). (4.11)

For RVL, the virtual space can interact with a basic function online to obtain

the virtual knowledge. The learned information can further guide the real agents to

learn real knowledge, when the agents interact with a real environment. The agents

acquire useful knowledge through the virtual knowledge, thereby improving the ef-

ficiency of exploration in a real environment. The feedback of the real knowledge

modifies the virtual knowledge, such that more accurate virtual knowledge can help

the real agents to acquire better real knowledge. In this work, the real knowledge

can be obtained e↵ectively, resulting in the better performances for the original

algorithms. Furthermore, RL can be applied directly without certain and known

environments as the proposed virtual space.

4.4 Experiments

We design di↵erent sets of experiments to verify the performance of the proposed

method. The advantages of the new algorithm can be shown directly by our control

results, where the key results are analysed below. In the experiment, we applied

the simulation data to replace real data. The reason is that existing simulation

function have been reflected the real reaction progress. The proposed method can

only be indirectly validated for real-world applications once it demonstrates strong

performance in simulated data. Meanwhile, using simulation data has cost e�ciency.
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Figure 4.3: An example sequence of [A], [B], [C], [D], [V] during a reaction process
based on real environment

4.4.1 Set-up for the Dataset

Fed-batch Process Model

Although a number of control algorithms were applied in chemical processes, ma-

chine learning-based methods were explored barely in recent years. It is worth noting

that machine learning-based control results are often superior to others, which means

machine learning-based technique can be applied successfully in chemical processes.

As a traditional process of chemical processes, the batch process is important. The

main strategy is that the proposed algorithm can control it optimally as shown in

our experiments.

The fed-batch process is a classical batch process, and therefore, we apply it in

this work. This fed-batch process is described as follow:

A+B
k1
�! C, (4.12)

B +B
k2
�! D, (4.13)
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where the reactants A and B are the raw materials; C and D are the desirable

productions and the undesirable by-products, respectively. The reactant B can be

added into the reactor gradually, to prevent the fast formation of the undesirable

by-products D during the specified batch time tf = 120 min.

In the fed-batch process, the main control purpose is that the desirable products

C should be acquired as much as possible, while the undesirable products D should

be kept at the lowest quantity in the whole reaction batch time, where the total

volumes V cannot exceed 1 m3.

In the control task, the concentration of reactant B is added in a feed stream

with concentration bfeed = 0.2. The following fed-batch process model is developed

based on the material balances and the reaction kinetics:

d[A]

dt
= �k1[A][B]�

[A]

V
u,

d[B]

dt
= �k1[A][B]� 2k2[B]2 +

bfeed � [B]

V
u,

d[C]

dt
= �k1[A][B]�

[C]

V
u,

d[D]

dt
= 2k2[B]2 �

[D]

V
u,

d[V ]

dt
= u.

(4.14)

The concentrations of A, B, C and D are represented by [A], [B], [C] and [D],

respectively. The volume of the materials in the reactor and the reactant feed rate

are denoted by V and u, respectively. The reaction rates are represented as k1 and

k2, and are set to 0.5, as shown in Table I. The initial [A] is 0.2 moles/litter and [V ]

is 0.5. Based on the above model, a simulation program of the fed-batch process can

be developed using Matlab, and the simulation is used to test the various control

algorithms. In this paper, the simulation of fed-batch process is called the real

reaction process.

In terms of the real reaction process and an example sequence [A], [B], [C], [D],

[V ] is shown in Figure 4.3.
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Dataset

The dataset is constructed by 20,000 sequences, relying on the base fed-batch process

model in our experiments.

Let sequences control signals be U i
t = [u1

t , u
2
t , u

3
t , ..., u

i
t], the desired productions

be C i
t = [c1t , c

2
t , c

3
t , ..., c

i
t], the undesired productions be Di

t = [d1t , d
2
t , d

3
t , ..., d

i
t], and

the constructed historical information Xt. We randomly select 15,000 sequences

data as our training data, and the remaining 5,000 sequences are taken the test

data.

For desired product C, the prediction model Ĥ has 100 hidden neurons in hidden

state layer and the mini-batch size is set to be 20, then this model is trained by 3,000

epochs. Compared with desired product C model, the prediction model of undesired

product D has 200 hidden neurons and the training time is 6,000 epochs.

4.4.2 Reinforcement Virtual Learning Design for Fed-batch

Process

In this paper, RVL is based on the traditional RL, such that the important con-

struction elements of RVL are similar to the traditional Q-learning. Therefore, the

models of agent, state, action and reward function are vital as well.

The Agent Design

As an element of RVL, several important parameter of the RL model (e.g., learning

rate ↵ and discount factor �) should be set first. For the proposed algorithm, two

di↵erent learning policies will continuously interact during the learning time with

two di↵erent discount factors �v and �r. Specifically, the virtual learning policy

Lv(Bv | Ie) of the virtual space Ie is trained by the prediction model Ĥ, and its

discount factor �v influences less than that of in the real learning policy Lr(Br | Re)

of the real environment Re after Lv(Bv | Ie). The discount factor �r is expected

to significantly a↵ect the final learning policy Lf (RV ). In addition, as an essential

part of RVL, the ✏-greedy policy needs to be set with a suitable ✏ value. Table 4.1

denotes these parameters for our experiments.
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Table 4.1: Parameters used in the simulations.

Variable Meaning Setting

k1, k2 reaction rate 0.5

↵ learning rate 0.1

�v virtual discount factor 0.7

�r real discount factor 0.98

" greedy-probability 0.7

Table 4.2: States of the fed-batch process

Condition State

�[C]��[D] � 0.0008 S1

0.0007  �[C]��[D] < 0.0008 S2

0.0006  �[C]��[D] < 0.0007 S3

0.0005  �[C]��[D] < 0.0006 S4

0.0004  �[C]��[D] < 0.0005 S5

0.0003  �[C]��[D] < 0.0004 S6

0.0002  �[C]��[D] < 0.0003 S7

0.0001  �[C]��[D] < 0.0002 S8

0  �[C]��[D] < 0.0001 S9

�[C]��[D] < 0 S10

The State Design

In our experiments, the main control purpose is that the desirable products [C] are

produced as much as possible, while the undesirable by-products [D] should be kept

at a low quantity at the end [134]. We design the state based on this principle.

During the given reaction time, each product goes through some fluctuations fol-

lowing the implementation of the control policy. Once the increasing rate of the

desirable product concentration is high, more desired products are expected to be

produced, while the increasing rate of the undesirable products should be kept low

at the meantime. Following this principle, the slope of [C] curve should be steeper
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than that of [D] curve, to achieve a desired result in the whole reaction time. There-

fore, the state can be represented by the di↵erences in derivatives between [C] and

[D] as described in Table 4.2, where �[C] and �[D] are the slope of [C] and [D],

respectively.

The Action Design

In our experiments, [A] is given at the beginning of the reaction. With the adding

of u, [B], [C], [D] and [V ] are changed. Therefore, the feeding rate u decides the

the control signal and the action space in the range of from 0.001 to 0.009.

The Expected Benefit Function Design

For any algorithms of RL, the design of the benefit is one of the most important

part. Actually, the benefit and the punishment of the expected benefit function can

directly influence the learning performance of the algorithm, resulting in a flexible

design of the expected benefit function.

The agent can predict future results accurately by the virtual part, leading to

the improvement of the the accuracy of the expected benefit and its selection of

action in the whole learning process for the proposed RVL. In this case, a direct

and simple benefit function is approximated, with the design of the expected benefit

function represented by a constant value based on the traditional methods. In this

fed-batch process, the distribution of the expected benefit function is followed by a

state space.

4.4.3 The Control Results

Experimental Details

Considering a fact that RVL creates the virtual learning policy Lv(Bv | Ie), which

can predict the estimated future results to indicate and interact with the real agent

to further acquire a better real learning policy Lr(Br | Re). Based on this principle,

RVL will predict some future steps during the control and the learning processes.

We set several experiments based on the virtual 1-step, 30-step, 50-step, 80-step and
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Table 4.3: The control results of RVL compared with other control algorithms

Algorithm [C] [D] [V] [C]-[D] ([C]-[D])*[V]

Recurrent neuro-fuzzy network [127] 0.0559 0.0304 0.9900 0.0355 0.0351

Nominal control [127] 0.0615 0.0345 0.9918 0.0267 0.0264

Minal risk [127] 0.0612 0.0236 1.000 0.0376 0.0376

Q-learning [134] 0.0590 0.0193 0.9220 0.0366 0.0366

SMSA [134] 0.0618 0.0236 0.9800 0.0361 0.0361

RVL 0.0614 0.0199 0.9254 0.0415 0.0384

120-step (final step). After that, the proposed combination-step experiments will

be applied as well.

Comparison with Other Algorithms

To show the control performances, the control results of RVL are directly compared

with other state-of-the-art control algorithms, such as the recurrent neuro-fuzzy

network, traditional Q-learning, stochastic multi-step action Q-learning (SMSA)

[134], nominal control, and minimal risk control algorithm [127]. Table 4.4.2 shows

the results of di↵erent control algorithms.

In Table 4.4.2, although more desirable productions [C] are produced by the

nominal control and the SMSA algorithm when compared with other algorithms,

more undesirable productions [D] are generated as well. For RVL, we note that the

di↵erence between [C] and [D] is maximum, and the di↵erence between desired final

species [C][V ] and undesired final species [D][V ] is also maximum. This indicates

that when the proposed RVL algorithm achieves the best compared with other

control algorithms.

In summary, the final control algorithm will follow the combination of the short-

long step based on RVL. The control results of [C] and [D] are described in Fig-

ure 4.4, and the final suitable control signal under the proposed algorithm is shown

in Figure 4.4.
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Figure 4.4: The variation during a reaction process of the desirable products [C] and
the undesirable products [D] based on RVL control. The control signal [u] under
RVL control.

4.4.4 Detailed Evaluations

The Virtual Prediction Results

Figure 4.7 presents the prediction and the ground truth of the desirable products [C]

and the undesirable products [D]. We observe that both products can be predicted

accurately under the model Ĥ.

The Root Mean Squared Error (RMSE) between the predictions and the test data

of two di↵erent productions are shown in Figure 4.5 and Figure 4.6. It shows that

the trained desirable product model C and the undesirable product model D under

Ĥ can predict the real reaction process of [C] and [D] accurately. In summary,
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Table 4.4: The control results of [C] and [D] based on di↵erent pure steps.

Algorithm [C] [D] [V] ([C]-[D])*[V]

1-step 0.0606 0.0182 0.8999 0.0381

30-step 0.0558 0.0173 0.9433 0.0363

50-step 0.0566 0.0179 0.9638 0.0372

80-step 0.0579 0.0218 1.0000 0.0361

120-step 0.0613 0.0211 0.9254 0.0372
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Figure 4.5: RMSE between the predictions and the ground truth of the desirable
products [C].

the model Ĥ shows the outstanding performance, which can clearly predict the

variations of the desirable products [C] and the undesirable products [D] under

di↵erent control signals for the fed-batch process. Therefore, the trained models for

C and D can be referred as the virtual reaction process, which can replace the real

reaction process, especially for learning the virtual learning policy.

Impact of Step Size

In order to describe the control performance of the proposed RVL algorithm, the

results of di↵erent pure steps are shown: short-sight (1-step), immediate-sight (30-
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Figure 4.6: RMSE between the predictions and the ground truth of the the unde-
sirable products [D].

Table 4.5: The control results based on di↵erent combination-steps

Algorithm [C] [D] [V] ([C]-[D])*[V]

Short-Immediate step 0.0603 0.0173 0.8898 0.0382

Immediate-Long step 0.0601 0.0171 0.8913 0.0383

Short-Long step 0.0614 0.0199 0.9254 0.0384

step, 50-step and 80-step) and long-sight (120-step), respectively. The control results

of the combination steps of di↵erent sights are reported as follows. Table 4.4 in-

dicates the results of the desirable products [C] and the undesirable products [D]

based on di↵erent pure steps. Figure 4.8 describes the variation curves.

In Figure 4.8 and Table 4.4, we can observe that when the agent predicts 1-step

and 120-step, more desirable productions [C] can be acquired compared with other

steps of control, which means the short-sight and long-sight have a better control

performance.

Secondly, the combination-step will be applied. In our experiments, the learning

policy of short-sight will be combined with that of the immediate-short and the long-
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Figure 4.7: The prediction and the ground truth of the desirable products [C] and
the undesirable products [D].
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Table 4.6: The total expected benefits of di↵erent steps of algorithms.

Algorithm Total Expected Benefits

1-step (Short-sight) 33100

30-step (Immediate-sight) 6500

50-step (Immediate-sight) 16200

80-step (Immediate-sight) 7900

120-step (Long-sight) 26700

Short-Immediate Combination 34400

Immediate-Long Combination 33400

Short-Long Combination 30800

sight, respectively. When the algorithm applies the combination-step, we acquire a

better performance as shown in Figure 4.9 and Table 4.4.4.

Specifically, there are more desirable productions [C] and less undesirable pro-

ductions [D] after being applied the combination-step compared with the pure

immediate-step (30-step, 50-step, 80-step) and the long-sight step (120-step).

Once the combination-step is applied, the improvement for control can be proved

by the total expected benefits. When the combination-step is applied, the total

reward will be increased compared with di↵erent pure steps. We demonstrate the

details in Table 4.4.4.

Following Table 4.4.4, 1-step (short-sight) and 120-step (long-sight) can collect

more expected benefits than immediate-sight for the pure step, which indicates that

the control results of short-sight and long-sight are better as shown in Figure 4.9

and Table 4.4.4. In addition, it also proves that the expected benefits can reflect

the performance of RL and control results. Obviously, the combination-step can

acquire more expected benefits in total compared with di↵erent pure steps, and

thus, the performance of learning policy and control of combination-step will be

better. Especially, the combination-steps of short-immediate and immediate-long-

sight can be improved significantly compared with immediate-sight (30-step, 50-step

and 80-step).
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Figure 4.8: The variation curves of [C] under di↵erent pure steps control and [D].

Although the total expected benefits of 1-step, short-immediate, and immediate-

long combination-step are greater than the short-long combination-step, the final

control result of short-long combination-step is the best. The reason is that the

expected benefits can be acquired easily in the previous and the immediate reaction

time (short-sight and immediate-sight) compared with the latter reaction time (long-

sight) in terms of the state. The expected benefit function is shown in Figure 4.10.

In this fed-batch process, the di↵erences between �[C] and �[D] (the value of the

state) during the previous and the immediate reaction time are greater than that in

the latter reaction time. Therefore, more expected benefits can be obtained by the

1-step, short-immediate and immediate-long combination-step compared with the

short-long combination-step. However, the control policy of the short-sight and the
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Figure 4.9: The variation curves of the desirable [C] and undesirable [D] under
di↵erent combination steps of control.

immediate-sight can emphasise the short and the immediate control results, resulting

in a better performance, while the final control results are not the best ones. On

the contrary, the long-sight can pay more attention to the final results, and thus

generating better final control results. When long-sight is combined with short-

sight, the control policy can emphasise both previous and latter control results, and

therefore, the control performance of the short-long combination-step is the best.

Based on the comparisons with other algorithms, the proposed RVL can achieve the

best control results.

4.5 Conclusion

In this chapter, we proposed a novel Reinforcement Virtual Learning (RVL) algo-

rithm by creating a virtual space to interact with the agent of RL and the learned

virtual policy. The agent of RL can be introduced to learn the real learning policy

resulting the feedback to modify the virtual learning policy after interaction with

real environment. It is worth noting that the approximated future results of the

combinations between short-sight and long-sight through the virtual environment

can help the agent to acquire a better real control policy. The proposed RVL over-

comes several existing problems, such as uncertain environment, time-variation, and

73



Figure 4.10: The the expected rewards at di↵erent steps during the whole reaction
time.

non-linearity. In addition, our experiments demonstrated that the fed-batch process

controlled by the proposed RVL can outperform the existing stare-of-the-art algo-

rithms, leading to the e↵ective and stable control performances.

Further work includes applying the proposed RVL to other control applications.

For example, RVL can be served for robot control by learning a virtual strategy

through a virtual environment of RVL. In addition, this virtual strategy can help

the robot to achieve some control tasks. Inverse reinforcement learning can replace

the basic part of RVL, which can be applied in self-driving as well. When MARL and

CNN are applied in both the virtual part and the basic part, they can tackle some

medical issues. The proposed RVL can be combined with graph neural networks in

some applications as well.
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CHAPTER 5

Sequential Visual Information in Video Inpainting

Beyond sequential process control, computer vision techniques also involve signif-

icant sequential information. There are several motivations for moving from re-

inforcement learning in chemical batch process control to video inpainting. One

motivation is to testify deep learning techniques in a new and di↵erent domain and

see study the flexibility of the system deployment. This could provide an oppor-

tunity to explore new challenges and develop new approaches to solving problems.

Another motivation is that video inpainting is an important problem in computer

vision and has applications in areas such as security, entertainment, and healthcare.

In process control, sequential information has been used to predict future results.

By applying a similar idea to video inpainting, we believe the visual contexts sur-

rounding the inpainting area can also be modelled as a sequential relationship in the

spatial domain. Additionally, there are technical and methodological similarities be-

tween reinforcement learning in chemical batch process control and video inpainting.

For example, both problems may involve optimising a sequence of actions to achieve

a desired outcome, leveraging prior information, and dealing with uncertainty.

There are di↵erences between the two areas also lead to technical challenges.

One key di↵erence is the nature of the problem. Batch process control involves
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controlling a physical system to produce a desired output, while video inpainting

involves filling in missing or corrupted parts of a video sequence. This means that

the types of algorithms and techniques used in each field may di↵er. Another dif-

ference is the level of uncertainty involved in the problem. In batch process control,

there may be uncertainty in the dynamics of the system, such as fluctuations in

temperature or pressure, which must be accounted for in the control strategy. In

video inpainting, the uncertainty may come from incomplete or noisy data, such as

missing or corrupted frames. The types of data and measurements involved also

di↵er between the two fields. In batch process control, the data may come from

sensors that measure physical parameters such as temperature, pressure, and flow

rates. In video inpainting, the data may come from video cameras or other imaging

sensors.

Despite these di↵erences, both batch process control and video inpainting re-

quire intelligent decision-making over time to achieve the desired outcome. Both

fields may benefit from the use of sequential decision-making techniques, such as

reinforcement learning, to optimise performance and achieve better outcomes. In

video inpainting, machine learning can be used to learn the patterns and structures

of the surrounding pixels and fill in missing or corrupted regions. Both fields rely on

data to make decisions. Data from previous frames or other sources can be used to

fill in missing or corrupted parts of the video sequence. Both batch process control

and video inpainting may involve highly nonlinear optimisation problems. In video

inpainting, the highly nonlinear relationships between the surrounding pixels and

the missing or corrupted regions can make it challenging to fill in the missing data

accurately.

Overall, while batch process control and video inpainting are di↵erent from in-

tuition, they share many common technical aspects that require intelligent decision-

making, optimisation, machine learning, data-driven approaches, and nonlinear op-

timisation techniques. This chapter will thoroughly observe how the two distinctive

research domains can be unified in the sequential information framework.
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5.1 Introduction

Video inpainting aims to complete blank regions of each video sequence frame with

plausible and coherent content. It is widely adapted to real-world applications,

such as video restoration [192], logo removal [193], video editing [194], and video

stabilization [195]. Specific, the Figure 5.1 shows the main task of video inpainting.

The first row displays three normal frames of a video sequence, while the third row

represents the masked frames. The main task of video inpainting is that model needs

generate background pixels of each frames filling masked football and boy to obtain

a high quality video sequence. Despite the outstanding progress made in image

inpainting [48, 49, 63], video inpainting remains challenging due to the complicated

object motion and dynamic camera motion in video frames. Directly applying image

inpainting approaches on each video frame tends to generate inconsistent videos,

since the temporal reliance information has been largely neglected. In this case,

the idea of considering both contents and temporal coherence for synthesizing high-

quality video frames motivates researchers to exploit more e↵ective approaches for

the video inpainting task.
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Figure 5.1: Example of input of our framework. The proposed FDTN framework
aims to take the masked optical flow (second row shown in the figure) and the masked
frame sequences (third row) as input and output the original frame sequence (first
row).
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Recently, plenty of video inpainting approaches [50,196,197] have been proposed

to encode the temporal information for video synthesizing by feeding a large amount

of RGB frames into 3D Convolutional Neural Networks (3D-CNN). However, they

su↵er from temporal artifacts due to limited temporal receptive fields [193]. To

overcome this problem, many e↵orts used attention module obtain long-range cor-

respondences. To preserve the temporal coherence, a few optical-flow guided ap-

proaches [51,63] have been proposed by integrating the temporal motion information

from optical-flow sequences with only one single reference video frame to synthesize

corrupted area. Nevertheless, those optical-flow guided approaches unintentionally

neglect the content/spatial information from corrupted video frame sequences, which

results in coarse synthesized video frames.

Regarding the previous flaws, in this paper, we carefully design a trainable Flow

enhanced Dual spatial-temporal Transformer (FDTN) for the end-to-end video in-

painting task. The proposed FDTN approach integrates an attention-wise fusion

mechanism for spatial-temporal information cross-complementation, resulting in

more comprehensive image synthesizing.

In summary, the main contributions of the FDTN algorithm are summarised:

• We first introduce a dual transformer-based framework for video inpainting

which takes multiple modalities (pixel image and optical flow) to enhance the

spatial-temporal knowledge exploration.

• We present a novel attention-wise fusion module to perform the information

complementation from the optical flow modality to the pixel image modality

and vice versa. The attention-wise fusion module encourages the information

utilization between content and spatial-temporal information, which results in

more comprehensive image synthesizing.

• Extensive experiments demonstrate the superiority of FDTN over state-of-the-

art approaches in video inpainting, both qualitatively and quantitatively.
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5.2 Related Work

In order to develop high-quality video inpainting algorithms, many e↵orts have been

made to fill missing regions with spatial and temporal content in videos. We discuss

representative direct-based methods, learning-based methods, and optical flow-based

models for video inpainting as follows.

Direct-based methods. Traditional key methods can obtain direct appearance

knowledge from known regions to complete the image blanking. Following this tech-

nology, some algorithms complete targeted missing blanks of the image by applying

patches from related known regions and other relevant images [198–201]. Compared

with image inpainting, the main core challenge of the video inpainting task lies in

the temporal domain. Therefore, some works that execute the traditional afore-

mentioned algorithms to solve the video inpainting task are not enough [49, 202].

To solve the di�culty of dynamic videos, the motion field was applied in the blank

regions [48, 203]. However, the sophisticated and high computational is the big-

ger challenge and limitation. In addition, high-level semantic knowledge cannot be

acquired through direct-based algorithms.

Learning-based methods. In recent years, many e↵orts have applied learning-

based algorithms for video inpainting to overcome these limitations. Firstly, some

works directly executed neural networks to apply in inpainting [204, 205]. VInet

[56] applied recurrent networks for ensuring temporal coherence. Beyond applying

naive neural networks, several e↵orts focused on the CNN algorithms to generate

visuals such as Generative Adversarial Networks (GAN). Based on GAN, the large-

scale missing blank regions can be completed by a trained inpainting network by

Pathak [206]. Meanwhile, the proposed LGTSM [59] has a temporal shift module

and spatial temporal adversarial loss to overcome spatial and temporal coherence.

Recently, Iizuk and Yu improved the GAN through adversarial losses of global and

local discriminators and attention algorithms in inpainting tasks [207, 208]. Lee et

al. used frame-wise attention based on weighted summing of each frame [57], but it

was hard to model the complex motions that solely relied on a�ne transformations

of global frames. The missing regions could be filled following pixel-wise attention

step by step [209]; however, the consistent attention result of each recursion was hard
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to ensure. In terms of previous e↵orts, Zeng and Fu et al. applied self-attention

algorithms into the GAN structure to add the temporal contents [193].

Optical-flow based methods. However, these methods cannot fully describe

temporal information. Hence, many works applied optical-flow, which is the pattern

of apparent motion of object, to complete the missing areas of the images in the given

video [48, 210, 211]. Generally, most works applied the FlowNet2.0 [212] to extract

the optical-flow. It applid CNNs to build FlowNetC, FlowNetS and FlowNet-SD

with warping layers to specializing on small motions. The optical-flow was predicted

with the mask to propagate the pixels of blank regions [51] and [63] following Xu’s

work to improve the edge details performance of a video followed by motion edges

network and gradient-domain process [63]. Although these algorithms obtained good

performance, it is rare that exciting video inpainting algorithms cover both enough

spatial and fully temporal content.

5.3 Methodology

Given a corrupted video sequence X
T = {x1, ...,xT |xT 2 R

H⇥W⇥3
} with sequence

length T and corresponding frame-wise binary masks MT = {m1, ...,mT |mT 2

R
H⇥W⇥1

}, we aim at synthesizing the faithful content within the corrupted (masked)

areas under the optical-flow modality information enhancement.

In the following, we discuss the main components of our method. First, we

utilize a flow extractor Fe(.), which encodes all corrupted frames into the masked

optical-flow sequence, i.e., X
F = Fe(X T ), for temporal information provision at

subsequent processing. Second, we extract the representations from two di↵erent

perspectives (i.e.,optical-flow and pixel image) via flow and image encoders, respec-

tively, for subsequent multi-scale patch generation. Third, the extracted multi-

scale patch representations are embedded through the proposed flow-guided and

image-guided transformer modules, for spatial-temporal information extraction (Sec.

5.3.1). Fourth, the proposed fusion attention block guides the feature coordination

from optical flow and image level during the aggregation which provides a more

stable fusion procedure. (Sec. 5.3.2).
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Finally, a decoder up-scales the fused features and reconstructs them to a final

video sequence, i.e., Ŷ
T
= {ŷ1, ..., ŷT |ŷT 2 R

H⇥W⇥3
}

Figure. 5.2 presents the whole pipeline of the proposed FDTN framework. It

is worth noticing that all modules are di↵erentiable and constitute an end-to-end

trainable architecture.
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Figure 5.2: Overview of our proposed Flow Enhanced Dual Transformer (FDTN).
The model takes masked optical-flow and masked frames as input and extracts
multi-scale patches based on two streams. Then the Dual Transformer block takes
the multi-modal patches as input and learns fused spatio-temporal representations.
Finally, the model generates the completed frame sequence based on the fused rep-
resentations.

5.3.1 Flow-guided Transformer

“Learning from multi-modalities” are widely studied in various applications [213,

214], which helps to understand and analyze better when various senses are engaged

in the processing of information. Optical-flow modality is widely used in the com-

puter vision community which often provides temporal information [48,210,211] for

mainstream RGB-image tasks. Inspired by that, we proposed a flow-guided trans-

former module, which aims to extract informative temporal information to encourage

image synthesizing. In previous works [215], patch-based transformer methods have

been verified for their e↵ectiveness in extracting multi-scale informative representa-

tions. Thus, we follow the previous approaches and design a flow-guided transformer
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based on multi-scale patches for multi-scale temporal representation extraction.

Specifically, each optical-flow feature encoded by flow encoder, i.e., f e
2 F o

e (X
F ),

is firstly divided into frame-wise n patches, where n = H
h ⇥

W
w and (h, w) is the patch

size. After patching, the entire optical-flow sequence F p
e = {fp

i 2 R
h⇥w⇥Cf}

T⇥n
i=1 can

be fed into the multi-head self-attention layers for spatial-temporal contents extrac-

tion.

In the self-attention layer, the Query Qf , Key Kf and Value V f are encoded

through three convolution operators, Eq(·) , Ek(·) and Ev(·):

Qf ,Kf ,V f = Eq(F
p
e), Ek(F

p
e), Ev(F

p
e). (5.1)

Then, the flow-guided transformer aggregates the information based on the optical-

flow dot product attention matrix Afm which is derived through the Qf and Kf :

F
f
att(Qf ,Kf ) =

QfK
T
fp

h⇥ w ⇥ Cf

, (5.2)

Af =
exp(Ff

att(Qf ,Kf ))
PT⇥n

i=1 exp(Ff
att(Qf ,Kf ))

. (5.3)

Finally, the output of the optical-flow transformer Of can be acquired and described

by:

Of = AfV f . (5.4)

Similarly, to aggregate content information from pixel-level images, we utilize an

image-based transformer to extract image pixel attention outputOt and its attention

matrix At for subsequent fusion usage.

5.3.2 Dual Transformer with Attention-wise Fusion

To utilize both the content and spatial-temporal information for a more compre-

hensive image synthesizing, we design a dual transformer structure with multi-

ple attention-wise fusion modules. The proposed attention-wise fusion module (as

shown in Figure. 5.3) aims to encourage information complementation from the opti-
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Figure 5.3: The structure of single attention-wise fusion layer.

cal flow attention feature to the pixel image attention feature and vice versa. Firstly,

both image feature map and optical flow are extracted by the same image, which can

be seemed the same modal. However, image feature and optical flow emphatically

represent spatial and temporal information, respectively. Secondly, the proposed

attention fusion model executes a fusion operation in the internal attention, mean-

ing that the fusion operation of two features is executed in the internal integration

between query, key and value. The attention-wise fusion module first stacks the

flow-based and pixel-based attention matrix, i.e., Af and At, into an image-like

tensor with two channels. Then, a fusion convolution operator (Efusion(·)) takes

the image-like tensor as the input to perform information complementation. A 2D

convolution with kernel seize 3 indicates our Efusion(.) operator. For the split

operation, we directly extract the first dimension of fusion output Afusion as the

flow-image attention matrix Af(t) and others as image-flow attention matrix At(f).

The fusion attention matrix Afusion then can be obtained by:

Afusion = Efusion([Af ,At]), (5.5)

where [, ] denotes the stack operation and Afusion 2 R(T⇥n)⇥(T⇥n)⇥2.
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Then, the fusion output Afusion is further separated into two information com-

plementary attention matrices for flow-image attention matrix Af(t) and image-flow

attention matrix At(f), respectively. Finally, the flow-image and image-flow at-

tention matrices follow the flow-based transformer attention function to get the

attention-wise fusion outputs respectively, which is denoted by:

(Of(t)
att ,O

t(f)
att ) = Af(t)V f ,At(f)V t. (5.6)

For multi-layer attention-wise fusion module, the flow-image and image-flow at-

tention outputs from the previous layer are served as input for the next attention-

wise fusion layer with the same fusion operation. The final attention-wise fusion

layer outputs, Ôf(t)
att and Ô

t(f)
att , are concatenated for non-corrupted pixel image and

optical flow reconstruction.

5.3.3 Fusion Optimization

We utilize the real video frames Y T = {y1, ...,yT |yT 2 R
H⇥W⇥3

} as the supervision

information to optimize the proposed FDTN framework through the Ltotoal objective

function:

Ltotoal = Lt
in + Lt

sr + �f
inL

f
in + �f

srL
f
sr (5.7)

where Lt
in, L

t
sr, L

f
in, L

f
sr represent the inpainting loss and surrounding loss of pixel

image and optical-flow respectively. The �f
in and �f

sr are two hyperparameters that

control the contribution index of optical flow modality.

Inpainting Loss and Surrounding Loss

Specifically, the inpainting loss Ly
in aims to optimize the corrupted area synthesizing,

which calculates the per-pixel restoration accuracy on the corrupted area between

the synthesized frame and the ground truth frame:

Ly
in =

||(Y T
�Dimage(Ô

f(t)
att , Ô

t(f)
att ))�MT

||1

||MT
||1

. (5.8)

where || · ||1 indicates the L1 norm, and Dimage(·) represents the pixel image decoder
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for reconstruction.

Similarly, the surrounding loss Ly
sr aims to optimize the non-corrupted area syn-

thesizing, which calculates the per-pixel restoration accuracy on the non-corrupted

area between the synthesized frame and the ground truth frame:

Ly
sr =

||(Y T
�Dimage(Ô

f(t)
att , Ô

t(f)
att ))� (1�MT )||1

||1�MT
||1

. (5.9)

In the same way, the inpainting loss and surrounding loss for optical flow modality

can be written as:

Lf
in =

||(Fe
T
�Dflow(Ô

t(f)
att )�MT

||1

||MT
||1

. (5.10)

Lf
sr =

||(Fe
T
�Dflow(Ô

t(f)
att )� (1�MT )||1

||1�MT
||1

, (5.11)

where Fe
T is the ground truth optical-flow images, and Dflow(·) represents the opti-

cal flow decoder for reconstruction. Since the texture information from pixel image

marginally contributes to the reconstruction of optical flow, we only use the flow-

image fusion output (Ôt(f)
att ) for optical flow reconstruction.

5.4 Experiment

5.4.1 Experiment Setting

Dataset. To evaluate the e↵ectiveness of our FDTN framework, we perform it on

two commonly used datasets, namely DAVIS [55] and YouTube-VOS [55] datasets.

DAVIS dataset includes 150 high-quality video clips. The testing part has 90 video

clips with foreground object masks annotated, and the remaining 60 video clips

are used for training. YouTube-VOS covers 4,453 video clips without object mask

annotations in total, which are divided into 3,471 video clips for training, 474 video

clips for validation, and 508 video clips for testing.

As for masks, during training, we generate stationary and object-like masks

to simulate video completion and object removal applications following [193]. For

evaluation, stationary masks are used to calculate objective metrics (i.e, quantitative
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comparisons), and object-like masks are adopted for qualitative comparisons because

of the lack of references.

Metrics. We choose PSNR, SSIM [216] and VFID [193] to evaluate the performance

of recent video inpainting methods. Specifically, PSNR and SSIM are widely used for

distortion-oriented image and video assessment. VFID has been adopted in recent

video inpainting works [193] to measure the perceptual similarity between two input

videos.
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Figure 5.4: The qualitative evaluation comparison between STTN and FDTN based
on object mask setting and stationary mask setting.

5.4.2 Performance Comparison

Quantitative Evaluation

We report quantitative results on YouTube-VOS and DAVIS datasets under sta-

tionary masks and compare our method with previous video inpainting methods,

including VINet [56], DFVI [51], LGTSM [59], FGVC [63] and STTN [193]. As

shown in Table 5.1, our method substantially surpass all previous methods on all

four metrics. The superior improvements in PSNR and SSIM metrics represent that

our method can generate videos with less distortion. The lower results on VFID

metric demonstrate that our method can generate videos with more visually plau-

sible content. All of those performance gains verify the superiority of the proposed

method.
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Table 5.1: The quantitative comparison of between state-the-of-arts based on
YouTube-VOS and DAVIS datasets.

Method YouTube-VOS DAVIS

PSNR SSIM(%) VFID PSNR SSIM(%) VFID

VINet [56] 29.20 94.34 0.072 28.96 94.34 0.199

DFVI [51] 29.16 94.29 0.066 28.81 94.04 0.187

LGTSM [59] 29.74 95.04 0.070 28.57 94.09 0.170

FGVC [63] 32.03 95.47 0.063 31.38 95.92 0.143

STTN [193] 32.34 96.55 0.059 30.28 95.21 0.149

FDTN 33.30 96.76 0.058 33.94 96.47 0.118

Qualitative Evaluation

We choose the most representative method STTN [193] to conduct visual compar-

isons. Figure. 5.4 shows the video inpainting result under stationary masks and

object mask settings. For the object mask setting, both STTN and FDTN can

synthesize the background to replace the missing object in the foreground, but the

generated background of STTN is more blurry compared with FDTN. For the object

mask setting, although STTN and FDTN can fill the corrupted area of a black car,

FDTN can generate the corrupted area with more faithful textural and structural

information. This demonstrates the e↵ectiveness of the proposed method.

5.4.3 Ablation study

To evaluate the e↵ectiveness of our proposed attention-wise fusion module, we con-

duct an ablation study on the YouTube-VOS dataset. The ablation study consists

of three settings: 1) Early Feature-wise Fusion: a naive feature-level fusion ap-

proach that concatenates the optical flow and pixel image before the transformer

module; 2) Late Feature-wise Fusion: a feature-level fusion approach that con-

catenates the attention outputs of optical flow and pixel image after the transformer

module; 3) Attention-wise Fusion: Our proposed multi-layer attention-wise fu-

sion.

Table 5.2 and Figure 5.5 and Figure 5.6 demonstrate the results for three fusion
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Evaluation

Method PSNR SSIM(%)

Early Fusion 30.11 91.92

Late Fusion 30.35 92.31

Attention Fusion 33.30 96.76

Table 5.2: The quantitative comparison based on PSNR and SSIM between fusion
methods.

methods. We can find that the attention-wise fusion approach achieves the best

evaluation result on PSNR and SSIM metrics, which verifies the e↵ectiveness of the

attention-wise fusion mechanism for information complementation.

5.5 Conclusion

In this paper, we proposed a novel end-to-end Flow Enhance Dual Transformer Net-

work (FDTN), which explored spatial-temporal knowledge from both image content

information and optical-flow motion information. Specifically, the FDTN consists

of dual transformer models extracted features from pixel domain and optical flow

domain, and connected by the attention-wise fusion module for spatial-temporal

information cross-complementation, resulting in more comprehensive image synthe-

sizing. Our FDTN achieved state-of-the-art results on two video inpainting bench-

marks YouTube-VOS and DAVIS datasets, which demonstrate the e↵ectiveness of

the proposed model.
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Figure 5.5: The evaluation metrics comparison based on PSNR between di↵erent
fusion methods.

Figure 5.6: The evaluation metrics comparison based on SSIM between di↵erent
fusion methods.
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CHAPTER 6

Sequential Visual-Semantic Analysis with Cycle-based

Framework

Image captioning is also a sequential modelling problem, similar to video inpainting,

which involves generating a textual description of an image by analysing its content.

This makes it a natural extension of video inpainting and can leverage the same

types of techniques and approaches, such as recurrent neural networks (RNNs) and

attention mechanisms. Secondly, image captioning has practical applications in

areas such as image search, automated content tagging, and visual storytelling. By

generating descriptive captions for images, image captioning can improve search

results and help people with visual impairments understand the content of images.

Thirdly, image captioning is a more challenging problem than video inpainting, as

it involves not only understanding the content of an image but also generating a

coherent and grammatically correct textual description of it. This requires more

advanced techniques and models, such as the combination of CNNs and RNNs.

Finally, image captioning is an active research area, with new approaches and models

being developed constantly, especially in the new AIGC era. By moving from video

inpainting to image captioning, we can testify or sequential modelling framework in

up-to-date domains with the latest advancements in the field and potentially make
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significant contributions to the vision-language area.

E↵orts have been made to address the multi-modal task, which includes the

classic task of image captioning. The Clip model has been particularly e↵ective in

improving the performance of image captioning. However, its few-shot and zero-

shot problems have become a significant research focus. In this work, we propose a

new few-shot and zero-shot setting for the image captioning task, which di↵ers from

popular research directions. Specifically, our approach focuses on the impact of the

existing dataset on the captioning model’s ability. Our analysis reveals that the

frequency of word combinations directly a↵ects the performance of the captioning

model. Based on this observation, we define the new few-shot and zero-shot settings.

To address this challenge, we propose a Cycle-based captioning framework based

on data augmentation, with the novelty switcher module as a critical component.

Our experiments demonstrate that our proposed framework achieves state-of-the-art

performance on both traditional, few-shot and zero-shot settings.

6.1 Introduction

As a traditional task in deep learning, image captioning aims to describe an image in

natural language. Therefore, it generates a sequence of words by designing a model

to reflect the relationship between visual and textual information. The caption is

the most significant piece of information; it represents a classic example of sequential

data. Di↵erent word orders can result in distinct descriptions. Therefore, the model

deals with sequential information when extracting semantic content from captions.

Recently, many e↵orts paid attention to tackle this task by applying Recurrent

Neural Network models [78], Graph Neural Networks [95] and Transformer [109].

Especially the Transformer model can extract more key knowledge between an image

and caption to achieve state-of-the-art performance.

As a significant revolution in deep learning, few-shot and zero-shot learning pro-

vide more inspiration. For example, the zero-shot capability was demonstrated in

computer vision [38]. Besides, the seminal CLIP [112] image-text transformer model

can execute tens of downstream tasks without further training. Impressively, the
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DALL-E [217] can generate images in terms of unseen descriptions. Although ex-

isting algorithms can generate good descriptions on the traditional testing set, the

image captioning task needs to be more attentive to the few-shot and zero-shot

settings.

In the visual-textual multi-modal task, the relationship between images and texts

is the most important factor. Therefore, several e↵orts have analyzed the impacts

of the word on the model performance. For instance, Yan [218] demonstrated that

word frequency a↵ects image-text matching model performance. However, compared

with a single word, word combinations are more critical to the meaning and under-

standing of a sentence. Di↵erent word combinations include amounts of semantic

information, which means that the frequency of word combinations has more e↵ects

on model performance compared with the frequency of a single word. Figure 6.1

describes the proportions of the normal, few-shot and zero-shot based on word com-

bination frequency on the test set. The few-shot and zero-shot settings have fewer

proportions than the normal setting, which are 9%, 28% and 63%. In order to prove

our hypothesis, we do experiments to analyze the impact of word combination on

the image captioning task in the methodology section. Furthermore, di↵erent from

traditional few-shot and zero-shot settings, we propose a new direction of few-shot

and zero-shot settings based on this hypothesis in the image captioning task.

Generally, few-shot and zero-shot methods increase the model generalization to

improve the model performance in the kinds of tasks, and data augmentation is the

most straightforward direction. In terms of this, we propose a novel Cycle Caption-

ing Framework to improve the model ability on the traditional setting and the new

few-shot and zero-shot settings for the image captioning task. In the framework,

the proposed Image Generator generates the image with feature-level as new train-

ing data to feed into the Caption model; meanwhile, the proposed Word Switcher

reasonably exchange words of the caption to augment the training data. Summary

the contributions:

• According to the analysis impact of word combination on the image captioning

task, the new few-shot and zero-shot settings are proposed in this work. While

improving the performance of new settings promotes the extension of a new
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Figure 6.1: The normal, few-shot and zero-shot settings on the Test Set based on
Word Combination Frequency.

direction on the image captioning task.

• The proposed Cycle Captioning Framework adequately apply the existing data

to improve the model generalization ability on the image captioning task. At

the same time, we design a novel Word Switcher to augment the training data.

• The experiments demonstrate that the Cycle Captioning Framework with

Word Switcher achieves state-of-the-art performance compared with existing

image captioning methods.

The methodology section describes the details of word combination, Cycle Caption-

ing Framework and Word Switcher. The experiment and ablation study sections

analyse the ability of the proposed algorithm on the image captioning task.

6.2 Related Work

As a traditional task, many e↵orts were applied to image captioning. Specifically,

Benjamin and J.mao first proposed the deep learning algorithm to predict the se-

quence of captions in image captioning [80, 219]. With the development of ma-

chine learning techniques, more and more works extracted and interacted with the
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spatial and relationship semantics between objects based on Attention and Graph

neural networks [84, 90, 95, 98, 220]. Subsequently, the image could be extracted

more details through a transformer with self-attention to improve the model perfor-

mance [75,107,123,221]. On the one hand, plenty of e↵orts solved the text problems

based on improvements to the language model such as LSTMs, Transformer, and

CNNs [79, 110]. On the other hand, the generated language of image grounding

and non-vision words obtained a better performance by combination with di↵er-

ent semantic information [109, 122]. Specifically, as a popular language framework,

Transformer has been widely used in image captioning tasks. The CogView con-

structed a 4-billion-parameter Transformer with an image-text tokenizer method to

achieve a novel captioning-generating performance [222].

Despite the captioning model experiencing an improvement, also trained the

large-scale vision-language data sets can improve the generating captioning perfor-

mance. Thus, some image captioning tasks applied the large-scale vision-language

data sets in recent years, such as the Visual Genome and MS-COCO. The caption-

ing model utilized millions of image and text pairs from the web to improve the

generated language performance [223] [224]. Based on this technique, some meth-

ods applied the unsupervised external data through conditioning the model during

the training to focus on describing novel objects [225] [226]. The model can exe-

cute external object information in the pre-training and inference phases [227]. The

model can join an image-language embedding space and the visual detector for the

unsupervised methods [228] [229].

Following this direction, the zero-shot language model CLIP was proposed, which

acquired a better score in the image captioning task based on 400M image-sentence

pairs from the web [112]. Based on powerful CLIP, text-driven image manipulation

with Generative Adversarial Networks (GANs) and other generative models can be

supported by means of CLIP [230] [231]. Furthermore, the Clip-VL model [113] uses

the pre-trained Clip model to extract the image region feature.

Unlike existing image captioning few-shot and zero-shot learning directions, we

propose new few-shot and zero-shot settings in image captioning. Our framework

can augment the image-captions pairs based on an existing data set.
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6.3 Methodology

6.3.1 Few-shot and Zero-shot settings

Many machine learning tasks apply the MS-COCO dataset as a traditional dataset,

such as object detection, text-image generation and text-image matching. Obvious,

the MS-COCO also is the most popular dataset in the image captioning task. There-

fore, we analysis the MS-COCO dataset to define our few and zero-shot settings.

As a key part, we define the word combination that two objects or two nouns of

a caption construct a word combination; for example, in the caption “A woman is

drinking water.”, we define the ‘[woman, water]’ to be a word combination. Each

image includes five captions in the MS-COCO dataset, and we collect all word

combinations from all captions, including about 44,712,680 word combinations.

Based on the word combination, we define the few-shot and zero-shot settings.

Firstly, we count the frequency of all word combinations, including the training

set and testing set and sort them based on their frequency. Then, applying the

SOTA models evaluate the data of high-frequency and low-frequency word combi-

nations, respectively. In this evaluation, the CIDEr and BLEU-4 scores reflect the

impacts of high-frequency and low-frequency word combinations on the performance

of SOTA models, which is described by Figure 6.2. It shows that the CIDEr and

BLEU-4 scores decline with the decrease of the frequency of the word combination,

which demonstrates that SOTA models have terrible performance on the data of

low-frequency word combinations compared with the data of high-frequency word

combinations. Finally, we define the zero-shot test set and the few-shot test set,

respectively. The data of low-frequency word combinations of the test set that do

not appear in the training set indicates the zero-shot test set. The few-shot test

set is the data of low-frequency word combinations of the test set whose appearing

frequency in the training set is less than or equal to K.

6.3.2 Cycle Captioning Framework

The definition of the few-shot and zero-shot settings show that the amount of data

can directly a↵ect the performance of the captioning model. We propose a cycle

95



Figure 6.2: The developments of CIDEr and BLEU-4 with frequency of word com-
bination

captioning framework that augments data diversity to overcome the problems in the

few-shot and zero-shot settings. Unlike other state-of-the-art captioning models,

our framework includes a feature-level image generator and word switcher module

in addition to the captioning model. The interaction of the latter two modules

enhances the data and thus improves the performance of the captioning model. The

details of our framework are further described later in the process of cycle captioning

framework section.

Process of Cycle Caption Framework

This part describes the details of the cycle process. Given an image feature X

extracted from an image as input, it is sequentially fed into the Captioning model

Gc(.) and the Feature-Level Image Generator Gi(.) to generate a sequence of vectors

eY as a caption:

eY = Gc(Gi(Gc(X ),X )), (6.1)

To describe our framework clearly, we first define some variables. In our framework,

two types of features are extracted from images X : image feature map X and

region features XR. The sequence of captions Y is the same as image features, also

described by two representations: original captions Yr and exchanged captions Yex.
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Figure 6.3: The structure of Cycle Captioning framework. The green line is the
training process using training data and the orange line indicates the training
process using predicted data. The purple line represents the switch module and
the training process using exchanged data.

The cycle process of the whole framework is divided into two parts. In the first

part, the real caption embeddings Yr, real image feature map Xr and region features

XR in the training set enter the caption model and feature image generator to obtain

the generated caption embeddings eYr and image feature map eXr, respectively.

eYr = Gc(Xr)

eXr = Gi(Yr, XR),
(6.2)

Then, the generated caption embeddings eYr and image feature map eXr as new

training data are fed into two models to acquire cycle caption embeddings eYf and

cycle image feature map eXf .

eXf = Gi(eYr, XR)

eYf = Gc( eXr),
(6.3)

Through the above steps, we realized the first step of data expansion without chang-

ing the training data so that both models could obtain more data for training.

The second part of the framework is the most critical part of our entire frame-

work. In this part, the caption embeddings and region featuresXR in the training set
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first input into the word switcher S(.) to obtain new exchanged caption embeddings

Yex and exchanged region features Xex
R :

Yex, X
ex
R = S(Yr, XR), (6.4)

Then these new training data are fed into the image generator Gi(.) and caption

model Gc(.) to generate the predicted exchanged captions eYex:

eYex = Gc(Gi(Yex, X
ex
R ), Yex), (6.5)

Captioning Model

Our caption model, inspired by Mesh-Memory Transformer [109], is represented by

Gc(.). It is the encoder and decoder structure with stacks of self-attention layers.

The encoder module extracts the relationships from the input image, and then the

decoder module receives the output of the encoder module to predict each word of a

caption. All connections between the image and caption are executed by dot-product

attention. The attention operator follows the standard sets of the transformer,

namely a set of queries Q, keys K and values V , and according to the weighted sum

of value vectors with aggregation between query and key vectors. The operator is

shown as:

Attention(Q,K, V ) = softmax(QKT/d)V, (6.6)

where Q is a matrix of nq query vectors, K and V both contain nk keys and values,

all with the same dimensionality, and d is a scaling factor.

The encoder layers include the self-attention and position-wise feed-forward with

a residual connection and a layer norm Addnorm, and then stacks of them define

our encoder module:

Oce = Addnorm(F(Attention(WqXr,WkXR,WvXr))), (6.7)

where Wq, Wk, Wv indicate the matrices of learnable weights and F(.) is position-

wise feed-forward layer. The Oce represents the output of encoder module.
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Then, the decoder collects outputs from the encoder module and the self-attention

mask module Smask to obtain a generated caption eY , which is described by:

eY = Addnorm(F(Attention(Oce, Smask(Y)))), (6.8)

Figure 6.4: The structure or Feature-Level Image Generator

Feature-Level Image Generator

Generally, the image generator synthesis an entire image in the most multi-modal

task, which is hard to optimize. However, the proposed feature-level image generator

only generates the image features from captions. The Gi(.) represents the feature-
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level image generator (FL image-G) in this work, whose structure is similar to the

captioning model based on the transformer. The main di↵erence is that captions Y

combined with the image region feature XR are the inputs to generate the image

feature map eXr.

In this generator, the image region feature provides extra information to improve

the accuracy of the synthesised image feature map. Meantime, the switcher module

executes the image region feature to generate the new exchanged image region fea-

ture as weak ground truth to train the FL image-G. The reason is that the switcher

module can create the exchanged captions but cannot generate the exchanged image

feature map, which means that when we apply the exchanged captions to train the

FL image-G, there is no ground truth of the image feature map to supervise. But we

can directly exchange the region proposal feature corresponding to the exchanged

object word to obtain weak ground truth. The next part can describe the details.

Switcher Module

The main novel part in our framework, the word switcher module plays a key role.

It is represented by S(.). We follow a principle every time we change words: we

only exchange one noun in a caption. However, the exchanged word is not random

because some new captions constructed by newly exchanged words are not reason-

able, which means that these data can a↵ect our model performance. Therefore,

we follow two steps to select the exchanged word. The first step is choosing the

newly exchanged word from our word combination. For example, in the caption

“A man plays football.”, the word combination is ‘[football, man]’. The Figure 6.5

describes the process of word combination. Ew(.) extracted four words to four word

embedding t1, t2, t3 and t4. Then Fty(.) as word type filter selects nouns from four

word embedding to construct word combination.

We first decide to exchange the word man, and we will select the newly exchanged

word from the combination list containing the word ‘football’, such as ‘[football,

woman]’, ‘[football, cups]’ and ‘[football, dog]’ etc. Then, these newly exchanged

words construct di↵erent new captions: “A woman plays football.”, “A cups plays

football.” and “A dog plays football.”. The second step is to compute the similarity
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Figure 6.5: Process of word combination

and distance between these new sentences and original sentence to select the final

exchanged sentence:

Ldis = ||Yo � Ẏex||2,

Lsim =
Yo · Ẏex

||Yo||||Ẏex||

(6.9)

where Yo and Ẏex denote the original sentence and the new sentence candidates, Ldis

and Lsim are Euclidean distance and Cosine similarity.

We can obtain the weak exchanged image region feature when we acquire the

final newly exchanged caption. Firstly, we collect the representations of each objects

in the whole dataset. Then, we obtain the comprehensive representations through

the Equation 6.10:

rc = (
NX

n=0

rn)/N, (6.10)

where rc and rn are the comprehensive representation and each representation of

object. For example, if the exchanged word is ‘man’ and the new word is ‘woman’, we

can acquire their representations from the image region features by class probability.

We directly apply the comprehensive representation of ‘woman’ to replace ‘man’,

which obtains the new exchanged image region feature Xex
R based on this principle.

Figure 6.6 describes details.
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Figure 6.6: The details of the switcher module. The red word is the exchanged word
and purple is the new word.

6.4 Experiments

In this section, two evaluation settings demonstrate our model performance. First,

our model and state-of-the-art (SOTA) models are evaluated in a traditional setting.

Then, our novel few-shot and zero-shot setting is the second setting to evaluate our

model and SOTA models. Finally, the test results of our model are compared with

the results of the SOTA models under both settings to demonstrate that our model

can achieve SOTA performance.

6.4.1 Datasets

The MS-COCO, the most common dataset for image captioning tasks, is applied to

evaluate our model performance. The dataset includes more than 120000 images,

and 5 di↵erent captions annotate each image. Most image captioning tasks widely

follow Karpathy’s split setup [78], where 110000 images are applied for training,

5000 for validation and the rest for testing.

Regarding the Methodology section, the zero-shot and few-shot settings are set
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up based on our word combination principle. Hence, the zero-shot setting splits

conventional images for training and validation. We select partial images from the

standard test setting for zero-shot testing based on our zero-shot principle. The

training and validation set of our few-shot setting also follows the common training

and validation setting, and we set K-shot (K = 2) to choose testing images.

6.4.2 Experiments Setting

To show our model performance, we follow the standard evaluation protocol to apply

the typical image captioning metrics: BLEU [232], METEOR [233], ROUGE [234]

and CIDEr [235].

In terms of our framework, an object in the caption is selected randomly to be

exchanged with another di↵erent object constructing a new caption and then gen-

erating a new image feature, which means that the exchanged object of the caption

should correspond to the object of images. Hence, we need to obtain image regions

in our framework besides the feature map. To acquire image regions, we execute

Faster R-CNN [91] with ResNet-101 [85] fine-tuned on the Visual Genome [92] [90]

to obtain a 2048-dimensional feature for each region. For caption representation, we

linearly project words of one-hot vectors to the input dimensionality of the model d.

Then, the positional encoder [75] represents word positions added into the sequence

to acquire two embeddings. In our framework, the dimensionality d of each layer

is set to 512, the number of memory vectors is 10, and the number of heads is 6.

We follow the most common training strategy in image captioning tasks, which is

divided into two stages. The first stage is training our captioning model and im-

age generator with a batch size of 256 and learning rate scheduling strategy with a

warmup to 100 epochs. Then, two models are optimized with the Adam optimizer,

and the beam size is set to 5. The second stage is that the captioning model is

fine-tuned with CIDEr-D optimization with a fixed learning rate of 3⇥ 10�4.
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Table 6.1: The comparison with SOTA on Traditional Setting. B@1, B@4, M, R
AND C INDICATE BLEU-1, BLEU-4, METEOR, ROUGE AND CIDER

Method Metrics

B@1 B@4 M R C

SCST [84] - 34.2 26.7 55.7 114

Up-Down [90] 79.8 36.3 27.7 56.9 120.1

RFNet [236] 79.1 36.5 27.7 57.3 121.9

GCN-LSTM [95] 80.5 38.2 28.5 58.3 127.6

ORT [123] 80.5 38.6 28.7 58.4 128.3

AoANet [107] 80.2 38.9 29.2 58.8 129.3

M2 Transformer [109] 80.8 39.1 29.2 58.6 131.2

Clip-VL [113] - 40.2 31.1 - 134.2

Ours 80.8 40.6 31.6 59.3 134.6

6.4.3 Comparison with state-of-the-art methods

In this part, a comparison between the performance of several recent SOTA pro-

posals and our image captioning framework in both settings demonstrates that our

framework can achieve SOTA performance. The compared models include SCST [84]

and Up-down [90], which applied attention to the grid of features and regions, re-

spectively. Then, the RFNet [236] applies a recurrent fusion network to merge CNN

features, and GCN-LSTM [95] executes a Graph CNN to obtain pairwise relation-

ships between image regions. Further, our framework compares with AoANet [107],

ORT [123] and M2 Transformer [109], which apply Transformer for encoding im-

age regions. Finally, we compare with the Clip-VL model [113], which uses the

pre-trained Clip model to extract the image region feature. Our framework and

aforementioned SOTA models evaluate the traditional test split. Table 6.1 reports

the comparison performances, applying the caption model and fine-tuning optimiza-

tion on the CIDEr score. According to observation from Table 6.1, our framework

achieves the best performance on BLEU-1, BLEu-4, METEOR, ROUGE and CIDEr.

Our framework especially increases the SOTA on ROUGE by 0.7 points.
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Table 6.2: The comparison with SOTA on Few-shot and Zero-shot Setting.

Method Few-shot Setting Zeo-shot Setting

B@1 B@4 M R C B@1 B@4 M R C

Clip-VL 72.80 19.30 27.38 54.13 97.11 72.27 17.06 26.84 55.30 92.75

Ours 74.41 24.26 27.76 58.02 113 73.30 22.88 29.43 58.54 110.68

Because the Clip-VL is the best performance, we compare the testing results

with it on our few-shot setting and zero-shot test setting, which are represented

by Table 6.2. In particular, we mainly report the performances of the few-shot

setting with K = 2. As it can be observed from Table 6.2, the performances of

all metrics are worse than the traditional test setting, which also proves that the

frequency of the word combination can impact the model performance. However,

Table 6.2 indicates that our framework surpasses SOTA approach in terms of BLEU-

1, BLEU-4, METEOR and ROUGE being the best performer. To further prove our

framework performance, Figure 6.7 proposes qualitative results and visualization.

In all SOTA approaches, the Clip-VL model is the best performer. Hence, our

framework compares with it. On average, our framework can generate more accurate

and reasonable captions to describe the corresponding images. In addition, our

framework also describes more details and object relationships for images.

Figure 6.7: The comparison of visualization with SOTA.

In addition, we compare the performance of the single captioning model between

our framework and the SOTA model, which is shown by Table 6.3. Because most
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Table 6.3: The comparison with SOTA on single captioning model.

Method Metric

BLEU-1 BLEU-4 METEOR ROUGE CIDEr

Clip-VL 75.30 33.39 27.69 56.09 111.5

Ours 75.51 34.93 29.84 58.20 114.49

SOTA image captioning models fine-tune the captioning model with an reinforced

strategy to improve performance, but a single captioning model is the most signif-

icant part, which directly represents the actual ability of captioning generation for

each SOTA approach. Table 6.3 reports the results, showing that our framework

is the best performer on all evaluation metrics and reflects our framework’s supe-

riority. Although our captioning model includes an image generator, it is a crucial

augmentation part of our captioning model, and our framework’s total number of

layers is fewer than other methods.

6.5 Ablation Study

The quantitative and Qualitative results evident that our framework achieves the

best performance compared with other SOTA models. Furthermore, this ablation

study section reports the e↵ects of the feature-level image generator and switcher

module on task performance. To directly analyze the e↵ects of each component, the

following experiments are executed based on the single captioning model without

the reinforced fine-tuning strategy.

6.5.1 The E↵ect of Feature-Level Image Generator

A part of the cycle-captioning model, Table 6.5 proves that the feature-level image

generator produces essential e↵ects for the whole framework. Compared with the

baseline, the entire framework obtains a noticeable improvement in all settings when

applying the feature-level image generator. Significantly, the ROUGE increase by

approximately 0.51 points compared with the baseline and acquires the best perfor-

mance on the few-shot setting. Impressively, the CIDEr improves by about 11.29
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Table 6.4: The comparisons between di↵erent switcher methods.

Method Component Traditional Setting Few-shot Setting Zero-stho Setting

Switch Constraint Combination list B@4 C B@4 C B@4 C

Without Switch ⇥ ⇥ ⇥ 33.62 110.63 23.08 110.50 22.27 110.02

Random X ⇥ ⇥ 33.41 104.38 22.04 104.01 20.66 100.68

Word nearly X X ⇥ 32.69 104.51 21.09 104.35 22.13 104.23

Combination X X X 34.93 114.49 24.26 113 22.88 110.68

points in the zero-shot setting.

In our cycle framework, the feature-level image generator based on transformer

executes the image region feature to generate the image feature map. Besides, we

also applied the traditional GAN to model it without the image region feature. The

Table 6.5 reports the di↵erences between two methods.

On the one hand, besides the BLEU-4 of the traditional setting, the results of

GAN are worse than the transformer with region feature. However, the performance

of GAN is improved compared with the baseline on all settings, which further proves

that our cycle framework can obtain an enhancement for the image captioning task.

On the other hand, the GAN-based image generator only applies the caption to

generate the image feature map without any other data to supervise the model

further. But the transformer-based generator weakly supervises the model by using

the region feature and the caption.

6.5.2 The E↵ect of Switcher Module

Switcher module is the most novelty component in the whole cycle framework, which

can exchange the word of a caption to augment the new training data. Therefore,

we try di↵erent methods to improve the performance of the framework. All methods

are applied based on the cycle framework.

Table 6.4, the Transformer based indicates no switcher module, and Random

represents that the switcher module randomly exchanges a word in a caption. Both

Word nearly and Combination methods follow the word combination. The first one

means that we fix the first word of the word combination and exchange its neighbour;
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for example, in a caption “A man plays football.”, the word combination is ‘[man,

football]’, we will exchange ‘man’ neighbour ‘plays’ to other word based on constrain.

The second one is that we exchange the second word of the word combination and

select a new word from the combination list of the first word; for instance, in a

caption “A man plays football.”, the word combination is ‘[man, football]’, and

we exchange the ‘football’. If the combination list may include ‘[man, tennis]’ and

‘[man, baseball]’, we select ‘tennis’ or ‘baseball’ to construct a new caption based

on the constraint.

Table 6.5: The comparisons between di↵erent image generators.

Traditional

Setting

Few-shot

Setting

Zero-shot

Setting

Method B@4 C B@4 C B@4 C

Baseline 32.96 104.22 22.51 110.48 22.19 98.73

GAN

based
33.97 109.74 22.81 110.48 22.11 107.60

Transformer

based
33.62 110.63 23.08 110.50 22.27 110.02

Table 6.4 indicates that the unreasonable switcher method can destroy the abil-

ity of the whole framework, such as the Random method and the Word nearly

method. These methods generate the new training data as noise to attack the

model. Although the Word nearly method executes the word combination and con-

straint to generate the new weakly reasonable caption, it still exits the instability

when exchanging a near word. Finally, we apply the interaction between the combi-

nation list and constraint to generate the new caption as much as stable. Table 6.4

demonstrates that our switcher method supports the framework to achieve the best

performance, especially on the few-shot and zero-shot settings.
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6.6 Conclusion

In this work, we define the new few-shot and zero-shot settings based on the prin-

ciple of the word combination. Meanwhile, a cycle-based captioning framework is

proposed to solve this task. Firstly, the word combination is designed through the

popular dataset. Then, the experiments demonstrate that the word combination

frequency can impact the captioning performance of the model, proving that the

proposed few-shot and zero-shot settings are reasonable existing. Finally, the cycle-

based captioning framework augments the data with a feature-level image generator

and the novelty switcher module to achieve state-of-the-art performance on tradi-

tional, few-shot and zero-shot settings. Although the cycle-based captioning frame-

work acquires the best ability, the algorithm of the switcher module can still be

improved. In the future, we can apply reinforcement learning to design the switcher

module, and the reward, as the feedback, can weakly supervise the feature-level

image generator.
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CHAPTER 7

Conclusion and Future work

This thesis delves into the complexities of sequential information and presents in-

novative solutions to three major problems: control, vision, and language. Chapter

3 focused on control and proposes two novel reinforcement learning algorithms to

e↵ectively manage two di↵erent sequential batch processes that are commonly used

in mainstream applications. Building upon the analysis of Chapter 3, Chapter 4

introduced a reinforcement virtual learning framework to optimise the sequential

batch process further.

In Chapter 5, we shifted our focus to sequential visual information and the

challenges associated with it. To address these challenges, we proposed a dual fusion

transformer model that e↵ectively captures the spatiotemporal features of visual

information and leverages them to enhance performance in various applications.

Finally, in Chapter 6, we address the control problems of sequential visual-

semantic information in few-shot and zero-shot settings. To tackle these issues,

we propose a cycle-based framework that optimises the interaction between visual

and semantic information, resulting in improved performance and greater e�ciency.

Overall, this thesis presents a comprehensive analysis of sequential information and

o↵ers practical solutions to some of its most significant challenges. Key findings of
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this thesis are summarised as follows.

7.1 Sequential Process Control by Reinforcement

Learning

In chapter 3, we proposed two improved reinforcement learning to control batch

processes. Firstly, we aim at di↵erent batch processes to design the agent, state,

action and reward functions of reinforcement learning. Secondly, we improved the

exploration strategy for all actions, leading to e�cient learning progress. Addition-

ally, we explored the same action to execute in multiple steps at di↵erent periods,

inspired by multiple-step action reinforcement learning (MSA). Due to these im-

provements, we demonstrated that the improved reinforcement learning achieves a

state-of-the-art control performance compared to conventional methods.

7.2 Sequential Process Control by Hybrid Rein-

forcement Virtual Learning

In chapter 4, we proposed a hybrid reinforcement virtual learning framework to op-

timize process control further. Although improved reinforcement learning achieves

a good control performance with fewer experiments in the batch process, the ap-

proach still widely relies on the real environment to learn control strategy. Hence, a

high-e�ciency control strategy is essential in the real industrial control process. Hy-

brid reinforcement virtual learning contains virtual space and reinforcement learning

control part. Specifically, virtual space estimates a virtual environment based on

the real environment first. Then, the reinforcement learning control part acquires

a virtual control strategy by interaction with virtual space. Because of the virtual

control strategy, the reinforcement learning control part with prior knowledge in-

teracts with the real environment to e�ciently obtain a real control strategy. Due

to virtual space, we can predict future control results under interaction with the

virtual environment to adjust the virtual control strategy. An optimal virtual con-
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trol strategy guides the control part to optimize the real control strategy during

interaction with the real environment. Compared with other control approaches,

hybrid reinforcement virtual learning achieves the best control results with fewer

interactions with the real environment.

7.3 Sequential Visual Information

In chapter 5, we proposed a dual fusion transformer model to optimize the control

challenges in sequential visual information. Firstly, we applied the optical flow to

provide extra-temporal knowledge, improving time-series consistency for the video

inpainting task. Then, we fusion optical flow features with conventional spatial fea-

tures by the proposed attention-wised fusion operator to control reasonable contents

completing the missing regions of a video sequence. Due to attention-wised fusion

operation, temporal knowledge from the optical flow can interact with spatial in-

formation from image pixel features to obtain complementary attention clustering

outputs, improving the model control of reasonable pixels to complete the target

regions sequentially. Unlike other novelty transformer-based models, our attention-

wised operator fusions two perspectives in the internal attention integrating opera-

tion of the transformer. During this period, two views can provide extra knowledge

to support each other at the initial attention integration between query and key.

Finally, we executed standard experiments to prove our proposed model achieves

state-of-the-art performance compared with di↵erent algorithms.

7.4 Sequential Visual-semantic information

In chapter 6, we proposed a cycle-based transformer framework to control sequen-

tial visual-semantic information. Specifically, the proposed cycle-based transformer

framework improved the performance of the image captioning task aiming at new

few-shot and zero-shot settings. Firstly, we designed a feature-level image generator

to synthesize image features besides the standard captioning generator. In addition

to training two generators with actual training data, the generated image feature and
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caption from two generators as augmented training data also train two generators,

representing the first data augmentation. Secondly, the proposed switcher module

exchanges the object word of a caption for acquiring new caption data and the new

estimated image feature, which is the most novelty part of the entire framework and

indicates the second data augmentation. According to the proposed feature-level im-

age generator and switcher module, we conduct two data augmentation to directly

improve that model control the generated word constructing a sentence satisfying

syntactic. Besides, we proposed the new few-shot and zero-shot sets based on the

analysis of the conventional dataset. Finally, we execute experiments on the popular

test set, new few-shot set and zero-shot set, which demonstrate that the proposed

cycle-based framework outperforms state-of-the-art performance under all settings.

7.5 Future Work

Sequential Process Control with Hybrid Reinforcement Virtual Learning

In the future, we will apply reinforcement virtual learning (RVL) to real industrial

processes. We further optimize the RVL to achieve high-e�ciency control perfor-

mance based on the real environment. For example, fermentation is the most key

part in the production process of Penicillin. In the entire fermentation process,

pH value, temperature, and oxygen levels significantly impact the quality of the

production. We apply reinforcement learning to control fermentation process.The

actions are pH value, temperature, and oxygen, while the state is represented by the

quality of production. The reward can be reflected by the di↵erence in the quality

of production at di↵erent steps. Based on this design, we can construct a Q-table

to learn a control strategy. In addition, we execute the RVL to control the indus-

trial processes of multiple agents. Because of the flexible framework of RVl, we can

use MARL to replace Q-learning. Meanwhile, optimizing virtual space is another

essential operation. Due to the decisions of the previous time generating the e↵ects

for the late period, we apply an attention-based transformer model to augment the

relationships of the entire process.

Sequential Visual Information Analysis In chapter 4, we proposed a dual fu-
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sion transformer model based on optical flow to improve the performance of image

pixel generation. Due to the importance of optical flow in the whole model, it is

essential that the proposed model further optimizes the generation of optical flow

based on an attention-wised fusion operator in the future. In addition, we will apply

the proposed model to other visual information control, such as video generation

and action recognition. Despite the proposed model achieving state-of-the-art per-

formance in video inpainting, the e�ciency of the model still is a considerable issue.

Hence, the distillation of the model is our future direction. Because we fusion the

features of two perspectives in each layer in the proposed model, we can observe

and obtain the fixed layer of the optimal fusion result. Based on this, we further

distil the model. In the future, we will apply the proposed model in Medical Image

Processing. In this application, images contain a significant amount of noise and

corruption that a↵ects the semantic quality of image. The proposed method aims

to restore and complete the missing regions of the image, resulting in a high-quality

medical image.

Sequential Visual-semantic Information Analysis In chapter 5, we proposed

a cycle-based captioning framework to address the new few-shot and zero-shot set-

tings problems and achieve state-of-the-art performance. In the future, there will be

two main optimization directions. Firstly, we will optimize the feature-level image

generator inspired by the di↵usion model. Secondly, we can apply reinforcement

learning to design the switcher module, and the reward, as the feedback, can weakly

supervise the feature-level image generator. Besides, we will execute the proposed

cycle-based framework in text-image retrieval and text-image generation tasks. In

a real-world application, we will implement the proposed model in industrial in-

telligent manufacturing. This model will be trained using industrial data. When

production exhibits appearance defects, the model will generate descriptions for

engineers, thereby improving overall working e�ciency

Application of AI technology in Real Industry With the development of

AI theories, more and more works paid attention to real industry. AI technology

can further change the working process of industry. For example, computer vision

technology is applied in industrial defect inspection. The quality of production is
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important with the demands of modern marketing. Compared with the traditional

detection method, computer vision detection improves detection accuracy. Mean-

while, computer vision detection technology instead of labour decreases the cost.

However, the application of deep learning still has some limitations. Firstly, the

data of real industrial appearance defects has various types, and quantity is less

compared with other tasks. Secondly, the training time of the model increases the

production cycle of the product. Hence, we will apply the generation model to aug-

ment training data. Meantime, we execute few-shot and zero-shot learning to solve

the few and zero data problems. Finally, we further train a large model aiming at

industrial defect inspection based on the di↵usion model.

115



Bibliography

[1] W. Bank, “World development report 2021: Data for better lives,” 2021. 1

[2] G. Stephanopoulos, Chemical process control, vol. 2. Prentice hall Englewood
Cli↵s, NJ, 1984. 1

[3] R. A. Jarvis, “A perspective on range finding techniques for computer vi-
sion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 2,
pp. 122–139, 1983. 1

[4] G. Saridis, “Intelligent robotic control,” IEEE Transactions on Automatic

Control, vol. 28, no. 5, pp. 547–557, 1983. 1

[5] M. Pienemann, Language processing and second language development, vol. 10.
Amsterdam: John Benjamins, 1998. 1

[6] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133,
1943. 1

[7] H. Yoo, H. E. Byun, D. Han, and J. H. Lee, “Reinforcement learning for
batch process control: Review and perspectives,” Annual Reviews in Control,
vol. 52, pp. 108–119, 2021. 1.1, 1.1, 3.1

[8] L. Mears, S. M. Stocks, G. Sin, and K. V. Gernaey, “A review of control
strategies for manipulating the feed rate in fed-batch fermentation processes,”
Journal of biotechnology, vol. 245, pp. 34–46, 2017. 1.1

[9] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, et al., “Deep
learning for computer vision: A brief review,” Computational intelligence and

neuroscience, vol. 2018, 2018. 1.2

[10] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” The Journal of physiology,
vol. 160, no. 1, p. 106, 1962. 1.2

116



[11] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition una↵ected by shift in position,” Biological

cybernetics, vol. 36, no. 4, pp. 193–202, 1980. 1.2

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. 1.2

[13] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989. 1.2

[14] M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, and A. Szlam, “A
mathematical motivation for complex-valued convolutional networks,” Neural

computation, vol. 28, no. 5, pp. 815–825, 2016. 1.2

[15] Y. Wang, “Survey on deep multi-modal data analytics: Collaboration, rivalry,
and fusion,” ACM Transactions on Multimedia Computing, Communications,

and Applications (TOMM), vol. 17, no. 1s, pp. 1–25, 2021. 1.2, 1.3

[16] J. Summaira, X. Li, A. M. Shoib, and J. Abdul, “A review on methods and
applications in multimodal deep learning,” arXiv preprint arXiv:2202.09195,
2022. 1.2

[17] C. Xu, D. Tao, and C. Xu, “Large-margin multi-viewinformation bottleneck,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 8, pp. 1559–1572, 2014. 1.3

[18] K. Wang, Q. Yin, W. Wang, S. Wu, and L. Wang, “A comprehensive survey
on cross-modal retrieval,” arXiv preprint arXiv:1607.06215, 2016. 1.3

[19] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A comprehen-
sive survey of deep learning for image captioning,” ACM Computing Surveys

(CsUR), vol. 51, no. 6, pp. 1–36, 2019. 1.3, 2.3

[20] I. Y. Smets, J. E. Claes, E. J. November, G. P. Bastin, and J. F. Van Impe,
“Optimal adaptive control of (bio) chemical reactors: past, present and fu-
ture,” Journal of process control, vol. 14, no. 7, pp. 795–805, 2004. 2.1.1

[21] M. A. Hussain and K. Ramachandran, “Comparative evaluation of various
control schemes for fed-batch fermentation,” Bioprocess and biosystems engi-

neering, vol. 24, pp. 309–318, 2002. 2.1.1

[22] S. Duan, Z. Shi, H. Feng, Z. Duan, and Z. Mao, “An on-line adaptive control
based on do/ph measurements and ann pattern recognition model for fed-batch
cultivation,” Biochemical Engineering Journal, vol. 30, no. 1, pp. 88–96, 2006.
2.1.1

[23] M. Jenzsch, S. Gnoth, M. Kleinschmidt, R. Simutis, and A. Lübbert, “Im-
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painting of complex scenes,” Siam journal on imaging sciences, vol. 7, no. 4,
pp. 1993–2019, 2014. 2.2, 2.2.1, 5.1, 5.2

[50] C. Wang, H. Huang, X. Han, and J. Wang, “Video inpainting by jointly learn-
ing temporal structure and spatial details,” in Proceedings of the AAAI con-

ference on artificial intelligence, vol. 33, pp. 5232–5239, 2019. 2.2, 2.2.2, 5.1

[51] R. Xu, X. Li, B. Zhou, and C. C. Loy, “Deep flow-guided video inpainting,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 3723–3732, 2019. 2.2, 2.2.1, 2.2.2, 5.1, 5.2, 5.4.2, 5.1

[52] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patchmatch:
A randomized correspondence algorithm for structural image editing,” ACM

Trans. Graph., vol. 28, no. 3, p. 24, 2009. 2.2.1
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