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Modeling the spatial-spectral
characteristics of plants for
nutrient status identification
using hyperspectral data and
deep learning methods

Frank Gyan Okyere 1,2, Daniel Cudjoe 1,2,
Pouria Sadeghi-Tehran 1, Nicolas Virlet 1,
Andrew B. Riche 1, March Castle1, Latifa Greche 1,
Daniel Simms 2, Manal Mhada 3, Fady Mohareb 2*

and Malcolm John Hawkesford 1*

1Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom, 2School of Water,
Energy and Environment, Cranfield University, Cranfield, United Kingdom, 3AgroBioSciences
Department, University of Mohammed VI Polytechnic, Ben Guerir, Morocco
Sustainable fertilizer management in precision agriculture is essential for both

economic and environmental reasons. To effectively manage fertilizer input,

various methods are employed to monitor and track plant nutrient status. One

suchmethod is hyperspectral imaging, which has been on the rise in recent times. It

is a remote sensing tool used to monitor plant physiological changes in response to

environmental conditions and nutrient availability. However, conventional

hyperspectral processing mainly focuses on either the spectral or spatial

information of plants. This study aims to develop a hybrid convolution neural

network (CNN) capable of simultaneously extracting spatial and spectral

information from quinoa and cowpea plants to identify their nutrient status at

different growth stages. To achieve this, a nutrient experiment with four

treatments (high and low levels of nitrogen and phosphorus) was conducted in a

glasshouse. A hybrid CNN model comprising a 3D CNN (extracts joint spectral-

spatial information) and a 2D CNN (for abstract spatial information extraction) was

proposed. Three pre-processing techniques, including second-order derivative,

standard normal variate, and linear discriminant analysis, were applied to selected

regions of interest within the plant spectral hypercube. Together with the raw data,

these datasets were used as inputs to train the proposed model. This was done to

assess the impact of different pre-processing techniques on hyperspectral-based

nutrient phenotyping. The performance of the proposedmodel was compared with

a 3D CNN, a 2D CNN, and a Hybrid Spectral Network (HybridSN) model. Effective

wavebands were selected from the best-performing dataset using a greedy

stepwise-based correlation feature selection (CFS) technique. The selected

wavebands were then used to retrain the models to identify the nutrient status at

five selected plant growth stages. From the results, the proposed hybrid model

achieved a classification accuracy of over 94% on the test dataset, demonstrating its
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potential for identifying nitrogen and phosphorus status in cowpea and quinoa at

different growth stages.
KEYWORDS

convolution neural network, hyperspectral imaging, plant nutrition, machine learning,
spectral curves
1 Introduction

Nitrogen (N) and phosphorus (P) are two essential

macronutrients that play a significant role in the normal

functioning and growth of plants. They are involved in vital plant

metabolic processes, such as cell division, protein formation, and

photosynthesis (Siedliska et al., 2021). Plants with adequate

nitrogen nutrition display green leaves, whilst nitrogen deficiency

manifests as chlorosis, starting from light green and progressing to

yellow and eventually brown. Phosphorus deficiency inhibits shoot

growth and shows decolorized leaves, transitioning from pale green

to yellow in severely affected regions (McCauley et al., 2011). When

plants are insufficient in nutrients, fertilizer application is required

to enrich the soil. However, the application of nitrogen and

phosphorus fertilizer often relies on farmer’s experience and

intuition, which may result in over- or under-application. This

practice can lead to soil quality degradation, crop yield reduction,

environmental pollution, and loss of biodiversity (Gao et al., 2021).

Hence, accurate estimation and tracking of plant N and P status is

essential to promote good agronomic practice and effective

fertilizer management.

The tracking of plants’ N and P status traditionally involves

visual inspection or laboratory-based chemical analysis, which can

be destructive, labor intensive, and prone to error. To indirectly

measure nutrient status, breeders and researchers use contact and

remote sensing tools. One such tool is the SPAD (Soil Plant Analysis

Development) meter, which estimates nitrogen content by

measuring the light transmittance of the red (650 nm) and

infrared (940nm) wavelengths through plant leaves (Uddling

et al., 2007). While this technique is simple and fast, it has

limitations. As a leaf contact instrument, it only captures a small

area of contact (2 x 3 mm), which may not provide an accurate

representation of the spatial variation of nitrogen in plants.

Additionally, when these tools are used on a large scale, users

may introduce errors and obtain false measurement (Hassanijalilian

et al., 2020). To mitigate some of these challenges, image-based

non-invasive phenotyping techniques offer a potential solution.

Image-based techniques have proven valuable in plant

phenotyping, allowing for the measurement of various plant

phenotypic properties such as biomass, leaf area, and plant height

(Hairuddin et al., 2011). These techniques utilize images acquired

from digital RGB cameras, hyperspectral and multispectral sensors,

and 3D laser scanners to extract non-invasive features, trends, and

patterns that demonstrate the dynamics of phenotyping traits in

response to physiological and chemical changes in plants. Among
02
these imaging sensors, digital cameras are the most widely used for

plant phenotyping due to their low cost, portability, and high spatial

resolution (Sadeghi-Tehran et al., 2017). However, their spectral

limitations, capturing only broad spectral bands of red, green, and

blue, present a major challenge. To overcome this challenge,

hyperspectral imaging (HSI) has emerged as a promising

technique. By combining imaging and spectroscopy, HSI allows

for the acquisition of spectral and temporal information from

plants, useful for estimating plant physiological parameters

(Mishra et al., 2017). HSI samples the reflective areas of the

electromagnetic spectrum spanning from the visible regions (400-

700 nm) to the short-wave infrared regions (1100-2500 nm). This

approach has been successfully applied in non-destructive

phenotyping of plant leaf area index (Zhang et al., 2021), plant

biomass (Ma et al., 2020), plant nutrient estimation (Ye et al., 2020),

and detection of diseases and fungal infections (Siedliska

et al., 2018).

HSI data are presented in a hypercube format, with the first two

dimensions providing spatial information and the third dimension

representing spectral information. Extracting relevant information

from these hypercubes requires advanced pattern recognition

algorithms, such as machine learning (ML) (Singh et al., 2016).

ML algorithms learn patterns and trends from data without relying

on explicit programming. In a study by Yamashita et al. (2020), ML

regression models were employed to analyze differences in spectral

reflectance and estimate N and chlorophyll contents in tea plants. A

data-based sensitivity algorithm was applied to select the most

informative spectral bands capable of estimating N and chlorophyll

contents in tea leaves. The results showed that the integration of

spectral data with machine learning models is a promising

technique for accurate plant nutrient estimation. To further

improve the application of ML models to HSI, researchers are

currently exploring deep learning methods.

Deep neural networks, particularly convolutional neural

networks (CNNs), have emerged as state-of-the-art machine

learning techniques capable of detecting, classifying, and

predicting plant phenotypes. In the context of hyperspectral

imaging (HSI), CNNs have been successfully combined with HSI

for various applications such as crop and weed classification

(Dyrmann et al., 2016), plant seedlings classification (Nkemelu

et al., 2018), and plant disease and pest detection (Sladojevic

et al., 2016; Fuentes et al., 2017). Most traditional deep learning

methods employed for HSI extract either spectral or spatial

information separately (Hong and He, 2020). For instance, 2D-

CNN models focus on spatial information, whilst 1D-CNN models
frontiersin.org
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primarily utilize spectral information from HSI. In Roy et al. (2020)

and Mu et al. (2021), combining both the spatial (2D) and spectral

information (1D) information gave better results than using only

the spectral or spatial information. However, since these two are

extracted separately, there is difficulty in fully utilizing all

information from a hypercube simultaneously. To address this

limitation and effectively utilize the structural traits of the HSI

data, researchers have introduced 3D-CNN methods (Mirzaei et al.,

2019; Pi et al., 2021). Indeed, 3D-CNN modeling naturally suits the

spatial–spectral information of a hypercube and presents a

promising approach for modeling various scenarios. For example,

Al-Sarayreh et al. (2020) proposed a novel 3D-CNN model to

extract combined features to classify meat using HSI imaging, while

Jung et al. (2022) developed a 3D-CNN classification model for

diagnosing gray mold disease in strawberries. In both studies, the

models employed 3D convolutions, filters, and kernels to extract

relevant spatial and spectral information from the hypercube.

However, homogeneous 3D models pose difficulties in

optimization due to increased parameters, resulting in lengthy

computational time, over-fitting, and gradient disappearance.

These challenges are attributed to the increased complexity of the

models. To further understand CNN modeling using HSI data,

readers are referred to Kumar et al. (2020); Paoletti et al. (2019);

Huang et al. (2022); Wang et al. (2021) and Jia et al. (2021) for more

details. To mitigate some of these challenges, researchers have

proposed the use of hybrid CNN models, which fuse two-unit

deep learning blocks together to simultaneously extract both

spectral and spatial information from HSI data. For instance,

Mohan and Venkatesan (2020) proposed a multiscale hybrid

CNN model for hyperspectral image classification. This model

extracts spatial–spectral features from different window sizes

using a 3D-CNN block. The output from the 3D CNN block is

concatenated and fed into a 2D CNN block for abstract spatial

feature extraction. The performance of the proposed model showed

satisfactory performance when compared to state-of-the-art CNN-

based models. Although this method works effectively in

simultaneously extracting spectral and spatial features from
Frontiers in Plant Science 03
hypercubes, there is a considerably high number of trainable

parameters, which affects the processing time.

In this study, we developed a hybrid model capable of extracting

spatial and spectral information simultaneously from a hypercube

with reduced computational complexities and time. The proposed

model is to identify plant nutrient status (N and P) at different

growth stages. Specifically, hypercube regions of interest (patches)

measuring 15x15-pixels were extracted from four nutrient

treatments. Different spectral transformation techniques were

applied to obtain four distinct datasets. The resulting datasets

were each used to train the proposed model to classify plants

based on their nutrient status. Furthermore, a waveband selection

method was applied to the dataset produced by the best performing

dataset. The selected wavelengths were used as inputs to retrain the

proposed model to identify plant nutrient status at different

growth stages.
2 Materials and methods

Figure 1 is the workflow of this study. It involves the generation

of the spectral library of hypercube patches to build four different

datasets. These datasets were used to train four models to classify

plant nutrient status. The most informative dataset was then used to

retrain the models based on the selected wavebands from the full

plant data (not patches) to classify plants at selected growth stages.
2.1 Plant material and treatments

Vigna unguiculata (cowpea) and Chenopodium quinoa (quinoa)

were cultivated in a Plant Growth Facility https://www.cranfield.ac.uk/

facilities/plant-growth-facility) at Cranfield University (Cranfield, UK).

The plants were grown in pots filled with compost with reconstituted

nutrients. The compost was first washed with deionized water

following the works of Masters-Clark et al. (2020) with some

modifications. This was done by flooding one-part compost with
FIGURE 1

Workflow of the experiment.
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five-part deionizedwater.Adouble-headed0.5μmsievewasused todrain

off the soluble solution. The steps were repeated five times, ensuring the

plant nutrients were depleted, and the washed compost was dried in an

oven at 70°C for 72 hours. Based on the Letcombe nutrition solution

(Masters-Clarketal., 2020), therequired treatmentswerepreparedas:high

nitrogen high phosphorus (HNHP), high nitrogen low phosphorus

(HNLP), low nitrogen high phosphorus (LNHP) and low nitrogen low

phosphorus (LNLP), with five replications each for the treatments. The

treatments had concentrations of 49.1 mM and 14.6 mMN for HN and

LN and 13.4 mM and 3.3 mM P for HP and LP, respectively. By visual

inspection, the different treatments resulted in changes in the leaf

pigments, resulting in variations in the spectral characteristics during

plant development. For both species, the leaves were green when the

nitrogen and phosphorus levels were adequate, whilst deficiency in

nitrogen was characterized by chlorosis progressing from light green to

yellow to brown. Phosphorus deficiency inhibited shoot growth and

decolorized leaves from a blue-green color to pale green/yellow in

severely affected regions (McCauley et al., 2011).
2.2 Hyperspectral imaging system and
data collection

Spectral images were collected 3.0 m above the canopy level

using a Lemnatec Scanalyzer installed in the glasshouse. The

Scanalyzer has a push broom hyperspectral camera (hyperspec®

inspectorTM Headwall Photonic) that operates within the 390 –

2500 nm region covering the visible–near-infrared (VNIR) and

short-wave infrared (SWIR) regions. The sensor collects data with a

0.7 nm step (at the VNIR region) and 6 nm step (within the SWIR

region) and an FWHM (full width at half maximum) image slit of

2.5 nm. This results in a hypercube of 1015 spectral bands for the

VNIR data and 275 spectral bands for the SWIR data, with a

dynamic range of 16 bits. Data collection was performed twice per

week throughout the full development of the plants. Five different

growth stages of cowpea and quinoa, hereafter referred as growth

stages I, II, III, IV, and V, were considered for this study. They

represent the 19, 29, 36, 50, and 69 DAT (days after transplanting)

and 13, 30, 51, 60, and 72 DAT for the cowpea and quinoa plants,

respectively. Supplementary Table 1 is the description of the

selected growth stages based on the BBCH system for coding the

phenological growth stages of plants (Meier et al., 2009).
2.3 Pre-processing of raw spectral data

Prior to any analysis, the raw data were pre-processed to

normalize the spectral data from ambient illumination and to reduce

noise andother artefacts thatwereproducedduring scanning.Thepre-

processing steps comprised: (i) radiometric calibration to remove

illumination system effect, (ii) spectral down-sampling to remove

redundant wavelengths, and (iii) noise reduction.

Radiometric calibration:Hyperspectral image acquisition suffers

from radiometric errors caused by illumination from varying light

exposure. Radiometric correction is essential to reduce the variable

illumination effect and the influence of dark current on the spectral
Frontiers in Plant Science 04
data. During scanning, a white panel (Zenith Lite™ Ultralight

Targets 95%R, Sphereoptics®) was imaged as the white reference

data. Dark reference data with approximately 0% reflectance were

collected in the night without any light source by completely

covering the camera lens with an opaque cap (Zhu et al., 2013).

The calibrated data were calculated using equation (1):

Ic =
Iraw− Rdark

Rwhite  –  Rdark

(1)

Where Ic is the calibrated data, Iraw is the raw spectral data,

Rdark is the dark reference, and Rwhite is the white reference.

Down-sampling: Although the hyperspectral data contain

essential plant information, the huge dataset poses computational

challenges. Down-sampling helps to reduce these computational

complexities and the noise generated during scanning (Sadeghi-

Tehran et al., 2021). Moreover, down-sampling is conducted to map

the spectral resolution to its reference target. In this study, an

averaging window with a 2 nm spectral width was used to down-

sample the spectral data.

Spectra smoothing and denoising: This is a common pre-

processing practice that involves some numerical operations on the

raw spectral data to reduce spectral noise levels. This eliminates spikes

and smooths spectral curves whiles isolating essential features, which

may be obscured by the presence of noise across the different

wavelengths. During spectral smoothing and denoising, the original

shapeand featuresof the spectra arenormallypreserved. Inour study,we

applied the Savitzky–Golay filter (a commonly used low-pass filter), an

effective and computationally fast filter, to smooth the spectra. For each

data point in the spectrum, the filter selects an odd-sized window of

spectral points and fits a least-square regression with a polynomial of

higher order. During this operation, the data points in question are

eventually replaced with the corresponding values of the fitted

polynomial. We used a window of size 13- and second-degree

polynomial as the optimal parameters. It should be noted that a small

window size leads to the emergence of large artefacts in the smoothed

spectra, whilst the larger the window size, the smaller the distinction

between full and moving window processing (Rinnan et al., 2009).

Segmentation: After pre-processing, the HSI data were

segmented using a selected spectral ratio combined with Otsu

thresholding. To segment the VNIR dataset, 705 nm and 750 nm

wavelengths were extracted to create a red-edge normalized difference

vegetation index (RENDVI) image, which was then combined with

automatic Otsu thresholding for segmentation. The RENDVI

generally differentiates plant vegetation from non-vegetation regions.

Hence, the combinationwithOtsu thresholding creates a binary image

where the plant images are labeled as one and all other items labeled as

zeros. The SWIR dataset segmentation used a similar approach, where

theNDVI imagewas derived fromwavelengths 1375nmand1141nm,

as proposed by Williams et al. (2017).
2.4 Data transformation

Although HSI contains important information that relates

objects to its absorptance and reflectance, the measured spectra

are subject to spurious signals such as multiplicative and additive
frontiersin.org
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effects.Hence, further pre-processing steps are applied tominimize the

effect of undesirable occurrences on spectral measurement such as

artifacts, particle size effects, and light scattering (Amigo, 2010). In this

study, the effects of different pre-processing steps on the performance

of classification models were studied by transforming the HSI data

using standard normal variate (SNV), second derivative (SDeri), and

linear discriminant analysis (LDA). In addition to the raw reflectance

spectra, three datasets were generated from the SNV, SDeri, and LDA,

respectively, to train the models.

2.4.1 Standard normal variate
SNV is a pre-processing technique aimed at limiting the

multiplicative effect of scattering and particle size. It accounts for the

variation in baseline shift and curvilinearity in the reflectance spectra

and reduces the difference in the global intensities of the reflectance

spectra (Luo et al., 2019). SNV transformation was performed on each

individual spectrum, requiringno reference spectrum.The raw spectra

were transformedusing the SNV technique byfinding themean center

of each spectrum and dividing by its standard deviation (Barnes et al.,

1989), as shown in equation 2:

xSNVi,j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oy

j xi,j− �xi
y − 1

s
(2)

Where xi,j
SNV is the element of the transformed spectrum, xi,j is

the corresponding original element of the spectrum i at measured at

wavelength j, �xi is the mean reflectance of the uncorrected spectra i,

and p is the number of variables or wavelengths in the spectrum.

It should be noted that SNV is performed independently for

each pixel (has zero mean and variance equal to one). Hence, it gives

an advantage over averaging methods such as MSC (Multiple-

Scattering Correction), where the presence of non-plants could

influence the averaging process.

2.4.2 Spectral derivatives
The spectral derivative aims to normalize the spectral

differences between two continuous narrow bands and remove or

suppress image artefacts that result from non-uniform illumination

(Pandey et al., 2017). It increases the spectral resolution of

overlapping peaks whilst accounting for the baseline correction of

reflectance spectra (Perez-Sanz et al., 2017). According to Cloutis

et al. (1996), the spectral derivative is sensitive to the signal-to-noise

ratio (SNR), such that the higher the spectral derivative, the higher

the noise and vice versa. From literature, the first and second

derivatives are more effective in managing different spectral

disparities and improving data modeling. In this study, we

employed the second derivative (SDeri) using the Savitzky–Golay

smoothing and polynomial derivative package in Python.

Supplementary Figure 1 shows the hypercube of cowpea with

examples of the raw, SNV, and SDeri spectral curves.

2.4.3 Linear discriminant analysis
The high spatial and spectral resolution of the data in this study

posed a computational challenge to the analysis of the hypercube.

Hence, it was desirable to apply a dimensionality technique to reduce
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the depth of the hypercube while maintaining the core informative

features of the data. To do so, the hypercube defined as (w x h x l)
was rearranged into a 2-d spectral matrix (M x l), where M is the

product of w and h. A linear discriminant analysis (LDA) was applied

to find the linear combination of spectral features that characterizes

the different treatments. LDA is a probabilistic generalization

technique that aims at projecting features in higher dimensions to

lower dimensions for solving classification and regression problems

(Xia et al., 2019). It reduces the size of a dataset while retaining the

relevant information that discriminates the different classes. Unlike

principal component analysis (PCA), which takes in only the spectral

features and its variances irrespective of their classes, LDA makes use

of the different class labels to maximize the differences in the classes.

Supplementary Figure 2 is a scatter plot of the first and second

discriminants using LDA for cowpea and quinoa. Comparing

Supplementary Figures 2, 3 for LDA and PCA, respectively, it is

observed that LDA performed better in separating the four classes. In

the PCA, the classes were not as clearly separated, even though

together the first two principal components contained over 90% of

the class information.
2.5 Dataset for model training

2.5.1 Generating hypercube patches
The original HSI hypercube obtained from the Scanalyzer

contained 1397 spectral dimensions (1015 and 275 for VNIR and

SWIR, respectively) for each plant. Down-sampling was applied on

both species, reducing the datasets to 223 (155 VNIR and 68 SWIR)

spectral dimensions for further analysis. To build the classification

model, an automated algorithm was created to extract hypercubes

from the four datasets (raw, second derivative, LDA, and SNV

data). This was done by building a spectral library of region of

interest (patches) from the plant leaves. A patch (Supplementary

Figure 4) is defined as a square area of size 15 x 15 pixels and has a

spectral dimension with l number of wavelengths. From a

hyperspectral image (H ∈ I   (h  �  w  �   y), n number of patches (P

∈ I   (m  �   n  �   k)) can be produced depending on the patches size

required, where h x w and m x n represent the width × height

dimensions of the hyperspectral image and patch hypercube,

respectively, while y and k denote the spectral bands for patches

and the image respectively. To produce the patches, the hypercube

containing the whole plant was divided into four equal segments. A

function that utilizes the patchify library in python was developed to

create patches on each segment, as shown in Supplementary

Figure 4. Then, 20 non-zero patches from each segment were

extracted, producing 80 patches per image and resulting in 2800

patches per treatment. The patches for each species were generated

from 35 (7 time points and 5 replications) hyperspectral images

per treatment.

2.5.2 Developing the training dataset
Since the hyperspectral data for both species from each

treatment were divided into 2800 sample patches, there was a

total of 11,200 patches used for the experiment. Before extracting
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the hypercube patches for training the models, the original

hyperspectral data were first divided into a 3:1 train–test dataset.

The train dataset was further split into an 80%-20% train–validation

dataset. The number of samples of the training, validation, and test

set for each model is shown in Table 1. To introduce spatial

variations into the dataset, the 40% of the train–validation dataset

was rotated at different angles between -20° and 20°. All this was

done for both species.
2.6 Developing models for spatial–spectral
characterization of HSI data

2.6.1 Hybrid CNN framework hyperspectral
classification

In this study, we employed a hybrid 3D-2D CNN method to

model the spatial–spectral variations and interclass appearance to

improve the power of accurately differentiating the N and P

variations in cowpea and quinoa. The next paragraph explains the

architecture and operations of the two units of the model.

3D Convolution Unit: This block employs a 3D convolution

technique where the kernel slides in three dimensions convolving

input data in their spatial and spectral dimensions, resulting in a 3D

data output. It is made of three 3D convolution layers interspersed

with layers of filters ranging from 64, 32, and 16, constituting a (3 x

3x 3), (3 x3 x 5), and (3 x 3 x 7) kernel size, respectively. In addition,

the filters and the generated feature maps are all configured in a 3D

format. The 3D convolution operation is given by equation (3)

(Mohan and Venkatesan, 2020):

yqrs = f (oroh−1
i=0ow−1

j=0 os−1
l−0kijlx(i+q)(j+r)(l+s) + bqrs (3)

where yqrs denotes the extracted feature at position (q, r, s) and k is

the kernel at dimension ijl. S is the kernel size in the

spectral dimension.

2D CNN Unit: In this block, the input is convolved with 2D

kernels and filters where the convolution is mathematically

obtained by the sum of the dot product between the kernels and

the input data. The kernel strides over the entire data to acquire the

spatial information. As mentioned by Mohan and Venkatesan

(2020), the 2D convolution process can be mathematically

expressed as:

Tmn =oloh−1
i=0ow−1

j−0 kijx(i+m) j + nð Þ + biasmn (4)

where Tmn is the feature extracted at position (m, n) and k is the

kernel (2D) at dimension ℎ×w. This convolution operation is
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applied on all feature maps (l) in the receiver area summing all

the values for non-linear activation.

This block has one 2D convolution layer (separable in nature), a

max pooling layer, and two fully connected (FC) layers, and

SoftMax layers. The separable convolution is a transformation

form of conventional 2D convolution in which a single

convolution is divided into two or more convolutions to get the

same output. There are two steps in separable convolution: spatially

and depth-wise separable convolution (Fırat et al., 2022). Spatially

separable optimizes the performance of the convolution networks

to help preserve the spatial information of the data, while the depth-

wise convolution decreases the number of trainable weight

parameters while increasing representation efficiency. To prevent

the model from overfitting, a 0.5 probability dropout was used on

each fully connected layer. The output is fed into a SoftMax layer.

Figure 2 summarizes the hybrid CNN architecture for this study.

Table 2 also shows the output dimension and number of parameters

used in each layer for the hybrid model.

2.6.2 Other models for comparison (3D CNN, 2D
CNN, and HybridSN)

The performance of the proposed method was compared to

other methods such as hybrid spectral convolution neural network

(HybridSN), 3D-CNN, and 2D- CNN models. The HybridSN is a

modification of the model proposed by Roy et al. (2020) for HSI

classification. It is a 3D-2D CNN joint model that combines the

complementary spectral–spatial information from the 3D-CNN

component and abstract level information from the 2D CNN

model. In this model, the first three layers are homogeneous 3D

convolutions, with a 3x3x3 kernel size in the first and third layers

and 3x3x5 filter kernels in the second layer. Each layer has 8, 16, and

32 filters, respectively. The output from the last layer of the 3D

block is reshaped and fed into the 2D CNN block. This block is

made of a classical 2D convolution with a 3 x 3 kernel size and 64

filters. The output is flattened and passed through two dense layers

with Dropout. This is followed by a single SoftMax layer

corresponding to the output. Supplementary Table 2 shows the

detailed architecture of HybridSN used in this study.

The 3D-CNN model for hyperspectral data modeling is known

for extracting spectral and spatial information simultaneously from

hyperspectral data. It is especially useful when relevant information

is localized in both the spatial and spectral dimension and exhibits

good correlations in both domains (Nagasubramanian et al., 2019).

The 3D-CNN model used in this study has four 3D convolution

layers, with 3D kernel of size 3 x 3 x 3 used for the input of the first

convolution layer and three kernels of sizes 3 x 3 x 5 in between the
TABLE 1 The number of training, validation, and testing samples.

Number of samples (patches) Number of Treatment Training set Validation set Test set

2800 4 1680 420 700

2800 4 1680 420 700

2800 4 1680 420 700

2800 4 1680 420 700
fro
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other three layers. The convolution layers are interspersed with max

pooling and batch normalization layers between every two

convolution layers. It uses the rectified Linear Input (ReLU)

activation function for each convolution output (Glorot et al.,

2011). There are two fully connected layers that follow the last

convolution layer. Dropout with a 0.5 probability was performed

after the first max pooling operation. The dropout process was used

to prevent overfitting during training. The last fully connected layer

was fed to the SoftMax layer for classification. Supplementary Table

3 is the detailed architecture of 3D CNN for the classification of

nutrient status.
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The 2D-CNN model is a modified version of LeNet-5 deep

learning architecture introduced by LeCun et al. (1998). This model

was chosen due to its simple and straightforward architecture. It is

made of two convolution layers with two pooling layers interspersed

between the convolutions. It also has a flattening layer, two fully

connected layers, and a SoftMax layer that classifies the resulting

features. The convolution layer is responsible for generating feature

maps by sliding the given filters over the input data and recognizing

patterns and trends. The first convolution layer has a 3 x3 kernel

size, and a stride of one which outputs feature maps of sizes 11 x 11

x 6, while the second convolution layer with a 3 x3 kernel size, and a
TABLE 2 The proposed hybrid-CNN algorithm structure.

Layer (Type) Output Shape Number of Parameters

Input_layer1 (input layer) 15, 15, 223, 1 0

Conv3D (Conv3D) 13, 13, 221, 8 224

batch normalization 13, 13, 221, 8 32

Conv3D-1 (Conv3D) 11, 11, 219, 8 1736

batch normalization 11, 11, 219, 8 32

Conv3D-2 (Conv3D) 9, 9, 217, 16 3472

MaxPooling3D 4, 4, 108, 16 0

Reshape 3D-2D 4, 4, 1728 0

separable_conv2d-2 (Separable Conv2d) 2,2,32 70880

MaxPooling2D 1, 1, 32 0

Flatten 32 0

Dense 256 8448

Dropout 256 0

Dense-1 (Dense) 128 32869

Dropout 128 0

Dense-2 (Dense) 4 516
FIGURE 2

Schematic representation of the proposed 3D-2D-CNN framework with the full-spectrum bands as inputs.
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stride of one takes in 11 x11 x6 input feature maps and outputs 7 x

7x12 feature maps. The pooling layer at each end of the convolution

layers is made of filters of size 2 x 2, and a stride of two which down-

sampling the feature maps by calculating the average value of the

patches of each feature map. The first pooling layer halves the sizes

of the feature map from 11x11x 6 to 5 x 5 x 12, while the second

pooling layer halves the sizes of the feature map from 11x11x 6 to 5

x 5 x 12. The fifth and sixth layers are fully connected layers with

120 feature maps of sizes 1 x 1 and 140 features maps of sizes 1 x 1,

respectively. In addition, ReLU activation function is used in this

architecture. Supplementary Table 4 shows the detailed architecture

of the 2D-CNN model (LeNet) used in this study.

The four models were each trained with RAW, SNV, SDeri, and

LDA datasets, resulting in four models for each dataset. For the

validation models, a stratified 10-fold cross validation with five

repeats was conducted. All the models were programmed in Python

3.8 and implemented based on TensorFlow and Karas open-source

framework. The operating platform was on a PC with Intel (R) Core

(TM) i7-370K U CPU with 3.50 GHz and 16 GB RAM. All the

classification algorithms were established using the full spectrum

(390–2500 nm), and the same parameters (window size, training

sample, testing sample) were set for a fair comparison.
2.7 Optimal wavelength selection

Hyperspectral data containa large amountof information that could

be highly redundant and multi-collinear within adjacent wavelengths,

resulting in computational complexities during processing and

application (Hennessy et al., 2020). Feature mining methods that

extract the most relevant and sensitive informative wavelengths from

the spectral data are important to reduce multi-collinearity in the data

and enhancemodel robustness. In this work, a correlation-based feature

selection (CFS) method was applied to the best group of spectral data.

CFS is one of themost popular data engineeringmethods for selecting a

sensitive set of features to build a discriminative model for a specific

purpose. It works on the principle that good and informative

wavelengths are those that are highly correlated with a particular class

but uncorrelated with each other. To use the CFS algorithm, a heuristic

search algorithm was applied along with a correlation function

(Pearson’s correlation) to assign high scores and select the best subset

of features that had high predictive ability of the class labels with poor

correlation with each other. A greedy stepwise (GS) search strategy was

applied during the application of the CFS algorithms to select the space

attributes of the variable subsets.
2.8 Evaluation metrics for model
performance

To evaluate the performance of the proposed model against the

classification models, the overall accuracy (OA), the F- Score, and

the kappa coefficient (Kappa) evaluation metrics were considered.

OA represents the number of correctly classified samples in the

overall test samples, which is given by equation 5. The F-score

evaluates the accuracy of the model on the entire dataset and is
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useful when there is an uneven class distribution. It is given by the

expression shown in equation 6. The kappa coefficient is a statistical

measure that describes the mutual information between the ground

truth map and the predicted classified map. Kappa values ranges

between 0 and 1, such that a coefficient of 1 means perfect

agreement with predicted class and ground truth and vice versa

when the coefficient is 0.

  OA = o
x
y=1dii
N

(5)

where OA is the overall accuracy, N is the number of all samples, x

is the number of class labels present in the dataset, and dii is

obtained from the diagonal element of the confusion matrix.

F − Score = 2x
Precision X Recall 
Precision + Recall 

(6)

where Recall = TP
TP + FN and Precision = TP

TP + FP and TP is true

positive, FN is false negative, and FP is false positive.

K =
Po− Pc
1 −   Pc

(7)

where Po is the probability of observed agreements and Pc is the

expected agreement.
3 Results

3.1 Characteristics of spectral curves for
different nutrient treatment

Figures 3 and 4 represent the average spectral curves for cowpea

andquinoa, respectively, at growth stage III. For both species, although

the spectral curves are similar in shape, there are visible differences

between the four treatments.There is a characteristic peak in the visible

spectra observed, especially for wavelengths between 550 nm and 560

nm, for both plant species. This indicates a high amount of chlorophyll

absorption in this region (Siedliska et al., 2021), which shows that

chlorophyll could be a responsive feature for the dynamics of N and P

in both plants. The region between 600 nm and 700 nm (red band)

shows a clear and continuous distinction between some variants of the

experiment for both species. The low-nitrogen treatments exhibited

higher reflectance in contrast to the high-nitrogen treatments, which

had low reflectance in this region. HNLP had the lowest reflectance,

whileLNLPhad thehighest reflectance in cowpea.Similarly,LNLPand

HNHP had the highest and lowest reflectance in the red-edge region

for quinoa. This agrees with Clevers and Gitelson (2013), who

demonstrated rapid change in the reflectance of the plant canopy in

the red-edge region in response to high levels of nitrogen. The regions

between 750 and 1100 nm (near infrared) exhibited the highest

differences between the spectral curves of the two species. The

HNHP had the highest reflectance in both species at above 0.62 nm

and above 0.64 nm for cowpea and quinoa, respectively. This agrees

with Zhai et al. (2013), who showed that reflectance of healthy plants

(in this case, HNHP plants) in the NIR region has a strong correlation

with the chemical and cellular architecture of plants and exhibits high

reflectance. In the SWIR region, there was a characteristic drop in
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reflectance from 1250 to 1500 nm and a gradual rise and fall in

reflectance across the spectra from 1500 to 2000 nm. Moreover, there

was comparably low reflectance in the two - related treatments at 1450

nm, which agrees with Siedliska et al. (2021), who suggest that this

region has a quantitative relationship between light reflectance and P

treatments. From wavelengths 2000 nm to 2500 nm, there was an

observable increase in reflectance for both species.
3.2 Model performance based on different
pre-processing methods

Figures 5 and 6 are box and whisker plots summarizing the

accuracy distribution scores for the different models of the two

species. Tables 3, 4 summarize the performance of each model

based on the evaluation metrics used in this study. From Figure 5,
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the pre-processing methods had an effect on the performance of the

different models. SDeri datasets had higher accuracies in all four

models, achieving the highest OA (99.24%), kappa (98.64%), and F-

score (99.19%) for cowpea and 99.18% OA, 98.85% kappa, and

98.76% F-score for quinoa. The high OA and F-score show the good

generalization capacity of the models in classifying the nutrient

status. In contrast, the RAW dataset produced the lowest

performance for all the models, with the hybrid CNN model

achieving the highest performance for cowpea (98.39%, 98.37%,

and 97.81% OA, F-score, and kappa coefficient, respectively). In

quinoa, the HybridSN model achieved the best performance when

trained on the raw dataset with 98.57%, 98.43% and 97.76% OA, F-

score, and kappa coefficient, respectively. On the contrary, the

2DCNN model (trained with raw dataset) had the lowest

performance with 92.77% OA for cowpea. Furthermore, the

2DCNN model had the lowest performance (91.15% OA) when
FIGURE 3

Average reflectance spectra for cowpea under different N and Plevels obtained at growth stage III. Each line represents the averagespectral signature
for five plants from each treatment of theexperiment.
FIGURE 4

Average reflectance spectra for quinoa under different N and P levels obtained at growth stage III. Each line represents the averagespectral signature
for five plants from each treatment of the experiment.
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FIGURE 5

Box and whisker plot of classification accuracy scores for cowpea for the four models: Hybrid-CNN, 3DCNN, 2D CNN, and HybridSN. (A) Raw
dataset, (B) SNV dataset, (C) LDA dataset, (D) Hybrid CNN dataset.
B
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FIGURE 6

Box and whisker plot of classification accuracy scores for quinoa for the four algorithms: Hybrid-CNN, 3DCNN, 2D CNN, and HybridSN. (A) Raw
dataset, (B) SNV dataset, (C) LDA dataset, (D) Hybrid CNN datas.
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TABLE 3 Classification accuracy assessment and computation cost with different models and pre-processing methods for quinoa.

Model Quinoa

Pre-processing datasets

Metrics RAW SDeri SNV LDA

Hybrid-CNN OA 97.15±0.51 99.18±0.66 96.33±1.15 91.45±2.22

F-Score 96.85±0.26 98.85±0.26 95.79±2.17 91.46±1.44

Kappa 96.49±0.44 98.76±0.65 95.88±1.28 90.68±2.13

Training Time(s) 1021.06±75.44 1017.93±29.98 1033.03±35.25 252.43±12.24

3DCNN OA 95.14±1.58 97.82±0.531 93.07±0.96 92.71±1.36

F-Score 95.36±0.49 95.36±0.49 92.51±1.82 91.90±1.29

Kappa 94.57±2.04 97.05±1.70 91.603±1.68 91.33±2.11

Training Time(s) 2274.73±14.88 2220.80±51.00 23104.96±42.84 983.16±15.34

2DCNN OA 95.44± 0.56 96.657±1.445 91.49±1.08 91.15±1.18

F-Score 94.27±1.811 94.27±1.811 90.84±1.34 90.59±1.00

Kappa 93.68±1.636 95.23±0.94 90.43±1.03 90.38±2.60

Training Time(s) 498.51±18.06 456.30±75.32 672.96±55.09 119.06±61.99

HybridSN OA 98.57±1.30 99.01±0.38 94.98±1.31 95.01±1.12

F-Score 98.43±0.79 98.47±0.79 94.46±1.91 94.86±1.34

Kappa 97.76±0.85 98.96±0.22 94.05±1.50 94.87±2.19

Training Time(s) 1845.40±49.75 1874.86±25.31 1841.50±18.75 523.00±11.13
F
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TABLE 4 Classification accuracy assessment and computation cost with different models and pre-processing methods for cowpea.

Cowpea

Model Pre-processing Dataset

Metrics RAW SDeri SNV LDA

Hybrid-CNN OA 98.39±0.59 99.24±0.29 95.81±1.38 97.70±1.38

F-Score 98.37±0.26 99.19±0.33 94.46±1.49 97.32±0.20

Kappa 97.81±1.10 98.64±0.11 96.73±1.82 96.58±1.16

Training Time(s) 971.37±8.01 950.60 ±4.23 964.01±1.85 403.97±16.72

3DCNN

OA 97.65±1.22 97.76±0.69 93.40±1.09 97.96±0.41

F-Score 98.44±0.27 97.92±0.29 94.19±1.81 99.21±0.32

Kappa 98.10±0.56 98.63±0.41 94.02±1.59 99.36±0.07

Training Time(s) 2141.63±14.32 2190.13±27.17 2158.40±73.89 1017.50±79.53

2DCNN

OA 92.77±1.267 95.82±0.74 91.38±0.481 98.45±0.18

F-Score 93.653±1.580 94.59±0.73 91.48±0.63 97.75±0.48

Kappa 92.393±0.890 99.32±0.36 91.75±2.44 96.93±0.29

Training Time(s) 774.00±1.85 851.03±32.63 872.30±15.99 398.57±41.27

(Continued)
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trained with the LDA dataset for quinoa. There was a 3.58% and

1.57% reduction in accuracy performances when the hybrid model

was trained with the SNV and LDA datasets, respectively, for

cowpea as compared to the performance when trained with the

SDeri dataset. Similarly, the proposed model decreased in

performance when trained with the SNV and LDA datasets,

achieving 96.32% and 91.45% OA scores, respectively, for quinoa.

This suggests that the SDeri dataset had important learnable

wavelengths to discriminate the treatments for both species.

Although the LDA dataset had reduced training samples, all the

LDA-based models displayed lower performance compared to the

SDeri dataset-trained model’s performance.

The proposed model for both species exhibited good

performance when trained with SNV- and SDeri-transformed

datasets. Although the HybridSN and 3D CNN models had good

performance when trained with SDeri datasets, their training time

(caused by the high number of trainable parameters) made the

implementation of this model a challenge. The proposed hybrid

CNN model had reduced training parameters (< 200,000 trainable

parameters), subsequently affecting the computational processing

time. The SDeri-trained hybrid CNN model had a processing time

reduced by over 1000 s as compared to the 3DCNN-SDeri model,

which had a 2141.63 processing time for cowpea. For quinoa, the

SDeri-hybrid CNN model had about 54.16% reduced training time

when compared to the 3D CNN model (trained with a raw dataset,

which had the highest training time of over 2000 s). For both

species, the HybridSN-based models had a significantly high

training time irrespective of the training dataset.
3.3 Effective wavelength selection

Although the proposed model with the SDeri dataset produced

the best performance in classifying plant nutrient status, the high

dimensionality of the hypercube posed computational challenges.

Hence, effective wavelengths that accurately distinguish between the

N and P levels were selected and used to retrain the models. From

Figure 7, the selected wavelengths for cowpea were localized in the

blue, red-edge, near-infrared, and short-wave infrared regions

(having the highest number of selected wavelengths). Sixteen (16)

wavebands were selected as the most sensitive wavelengths, with

three selected from the blue regions (411, 431, and 455 nm).
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Moreover, two were selected from the red-edge regions (683 and

691 nm), four from the near-infrared regions (791, 871, 919, and

923 nm), and seven from the SWIR regions (1438, 1450, 1461, 1485,

1508, 1602, and 1660 nm).

In quinoa, the wavelengths were selected within the blue, near-

infrared, and SWIR regions. From Figure 8, twelve (12) wavebands

were selected. These include four from the blue region (571, 575,

583, and 599 nm), one from the red spectrum (607 nm), four the

near-infrared regions (723, 731, 924, and 967 nm), and three from

the SWIR regions (1680 nm and 17520 nm). The differences in the

selected wavebands could be due to the variability in the plant

structure and the changes in the nutrient composition of the plants.
3.4 Results of discrimination analysis at
different growth stages

After the waveband’s selection, the full plant (with full spatial

resolution and selected spectral wavelength) in the second derivative

format was used as a dataset to retrain the different models to predict

the plants’ N and P statuses at different growth stages. Datasets were

generated using the same approach as that in subsection 2.4.2. The

training datasets were augmented to artificially enlarge the number of

training images using rotation and flipping methods.

Tables 5 and 6 show the performance of the models when

trained with the selected wavelengths for cowpea and quinoa,

respectively. All the models performed well (with 79-100%

accuracy on the test data) irrespective of the growth stage under

consideration. This performance was better than that found in

Siedliska et al. (2021), where a 40-100% classification accuracy rate

was achieved for predicting different P levels of three plant species

at five growth stages. Comparing the four models, the proposed

hybrid model had the best performance, attaining above 94% and

97% test accuracy across the selected growth stages for cowpea and

quinoa, respectively. The 2DCNN model had the highest

misclassification, with 84.08% in cowpea at growth stage IV and

79.23% in quinoa at growth stage II in the test dataset. For each

species, there were high classification errors at the early growth

stages, especially in the LNHP and HNLP plants. However, as the

plants developed, there were clear distinctions between the spectral

signatures of the different treatments, which resulted in an increase

in the classification accuracy.
TABLE 4 Continued

Cowpea

Model Pre-processing Dataset

Metrics RAW SDeri SNV LDA

HybridSN

OA 96.16±0.435 98.19±0.85 96.09±0.47 97.73±0.85

F-Score 95.99±0.15 98.76±0.55 95.81±1.83 98.65±0.52

Kappa 96.04±0.78 98.48±0.76 94.75±2.73 98.42±0.12

Training Time(s) 1080.00±23.51 1049.53±18.32 1038.53±55.28 622.67± 23.05
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Table 7 is the summary of the confusion matrix for the proposed

model, which explains the accuracy and misclassification of the

individual classes for cowpea and quinoa. For both species, the

model accurately classified HNHP treatment across all the five

growth stages. The model had difficulties in classifying some variants

of the treatments, especially those with low phosphorus. In cowpea,

HNLP (5% error) and LNHP (> 10% error) were misclassified at

growth stage I. Moving to growth stage II, although a similar trend

occurred, there was an improvement in the classification accuracy of

LNHP (3.64% increment). In the subsequent growth stages, the model

improved its performance, with > 95% at growth stages III, IV, and V.

In quinoa, there was a 100% accuracy in the HNHP and HNLP

classification. However, the model had lower performance in correctly

classifying the LNHP treatment 92.82%. Moving across the growth

spectrum, the model performance increased, achieving above 98%

classification for HNHP and HNLP at growth stages IV and V.
Frontiers in Plant Science 13
4 Discussion

This study aimed to develop a deep learning-based HSI pipeline

for classifying the N and P status in cowpea and quinoa at different

growth stages. This was achieved by developing a hybrid 3D-2D

CNN model to automatically learn and evaluate the spectral and

spatial characteristics of the canopy components of the species.

Previous studies have utilized 1D-, 2D-, and 3D-CNN models for

hyperspectral image analysis. However, these models have

limitations in terms of their feature extraction methods, which

impact their performance. While 1D CNN extracts only spectral

information and 2D CNN deals with spatial information, 3D-CNN

extracts both spectral and spatial information simultaneously.

Nonetheless, the complexity introduced by 3D CNN modeling

can adversely affect its performance and output. Therefore, it is

prudent to develop a model that combines 3D- and 2D-CNN

architectures to learn features and patterns from spectral

hypercube data while decreasing the computational complexities

and processing time.

In this study, patches of hypercube (15 X 15 X 223) were

extracted from the plant canopy with different N and P levels and

used as an input to train the proposed model. Four different spectral

transformation techniques were experimented to select the one with

the most discriminative features for classifying plant nutrient levels.

The performances of the models were compared with standard 3D-

CNN, 2D-CNN, and HybridSN models (Section 3.3). As shown in

Table 3 (section 3.2), the proposed method achieved an accuracy of

over 94% irrespective of the pre-processing technique used.

However, the models trained with the second derivative spectra

(SDeri) outperformed the others. The derivative processing reduced

the background signal and image artifacts, which subsequently

improved the discriminating power of the dataset. The high

performance of the SDeri-based models agrees with the findings

of Siedliska et al. (2021) and Luo et al. (2019), who achieved similar

results using derivative spectra. Additionally, although LDA

achieved comparably low classification accuracy, it improved the
FIGURE 8

Selected wavebands using CFS method for quinoa; the short dash lines indicate selected band areas.
FIGURE 7

Selected wavebands using CFS method for cowpea; the short dash
lines indicate selected band areas.
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interpretability of the spectra information by replacing the original

variables with a group of discriminants while preserving their

original information.

A greedy stepwise CFS technique was applied to select the most

informative set of wavelengths across the various spectral bands.

The selected wavebands were used to retrain the models to identify

the plant nutrient status at different growth stages. The proposed

method achieved the highest performance, with over 94% accuracy

for both species. Although the HybridSN and 3DCNN models

performed well comparably, the high training time limited their

practical application. Practically, the selected wavebands can be

used to develop a multispectral imaging system to predict plant

nutrient status. It should also be noted that all the models

experienced a decrease in accuracy when classifying nutrient

status at the early growth stages, particularly for the LNHP and

HNLP treatments. This decrease in accuracy can be attributed to the

fact that the differences in canopy spectral properties were

considerably minimal between the four treatments at the early

growth stage. As a result, it became difficult for the models to

accurately differentiate the nutrient statuses based on spectral

information alone during these early growth stages. This is
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challenging because, practically, farmers and plant breeders are

more interested in identifying plant nutrient status at the early

growth stage for proper nutrient management. Hence, further

studies are required on the dynamic response of crop canopy to

subtle changes in N and P concentration at the early growth stages

using hyperspectral data.
5 Conclusion

Hyperspectral data hold significant potential for monitoring

nitrogen and phosphorus nutrition of quinoa and cowpea, enabling

the provision of optimal conditions for development and growth.

This study has proposed the use of hyperspectral imaging in tandem

with a hybrid 3D-2D CNN model to identify the nutrient status of

cowpea and quinoa at selected growth stages. The experiment

results presented demonstrate the capability of the proposed

model to accurately distinguish plant nitrogen and phosphorus

levels, based on selected wavebands from the second-order

derivative of the reflectance spectra. The use of separable

convolutions in the 2D CNN block of the proposed model
TABLE 5 Model performance on selected wavebands for classification of cowpea N and P levels at five growth stages.

Plant Cowpea

Training dataset (%) Test dataset (%)

Growth stage Model Accuracy F-Score Kappa Score Accuracy F-Score Kappa Score

I Hybrid CNN 99.12±0.10 99.61±0.08 99.35±0.27 98.51±0.25 98.88±0.25 98.44±0.31

3D-CNN 96.21±0.41 96.08±0.21 96.02±0.13 93.27±0.66 93.12±0.76 93.04±0.0.44

2D-CNN 93.25±0.14 93.21±0.56 93.17±0.25 89.21±0.17 88.71±0.17 89.21±0.37

HybridSN 98.43±0.21 98.02±0.35 98.44±0.13 95.27±0.89 96.05±0.73 96.68±0.11

II Hybrid CNN 99.26±0.50 99.05±0.25 99.08±0.21 99.48±0.56 99.25±0.33 99.51±0.62

3D-CNN 97.15±0.10 97.22±0.16 97.21±0.53 94.11±0.06 94.41±0.25 94.05±0.81

2D-CNN 95.00±0.13 95.16±0.12 95.33±0.26 91.13±0.26 91.22±0.17 91.05±0.11

HybridSN 99.15±0.33 99.34±0.49 99.04±0.54 98.22±0.71 97.15±0.05 97.01±0.24

III Hybrid CNN 99.54±0.24 99.42±0.11 99.63±0.12 98.68±0.22 98.41±0.34 98.22±0.21

3D-CNN 97.41±0.15 97.51±0.24 97.25±0.84 93.74±0.41 93.51±0.25 93.41±0.45

2D-CNN 96.28±0.64 96.12±0.85 99.18±0.15 92.19±0.37 91.87±0.14 91.59±0.26

HybridSN 99.89±0.27 99.22±0.13 99.45±0.13 97.44±0.71 97.42±0.44 97.29±0.44

IV Hybrid CNN 99.73±0.40 99.64±0.27 99.11±0.05 98.92±0.45 98.59±0.24 98.64±0.23

3D-CNN 98.24±0.19 99.26±0.16 99.82±0.14 95.23±0.67 92.25±0.53 95.22±0.31

2D-CNN 98.18±0.25 98.13±0.29 98.32±022 84.08±0.81 84.22±58 84.55±0.67

HybridSN 98.51±0.22 98.17±0.31 98.25±0.35 86.44±0.7 86.02±0.51 86.58±0.74

V Hybrid CNN 99.03±0.12 98.14±0.32 98.07±0.45 98.35±0.22 97.18±0.22 97.34±0.25

3D-CNN 95.95±0.29 98.58±0.44 98.61±0.52 88.42±0.21 88.64±0.25 88.21±0.67

2D-CNN 90.28±0.41 90.44±0.25 90.11±0.23 85.22±0.19 85.23±0.58 85.44±0.10

HybridSN 98.66±0.44 96.35±0.28 96.46±0.15 92.42±0.16 92.25±0.44 92.41±0.31
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reduces the model’s complexity by reducing the number of trainable

parameters. This subsequently reduces the processing time while

enhancing learning efficiency, which is advantageous. These

findings suggest that the proposed model could be integrated into

a system for the non-invasive detection of nitrogen and phosphorus

deficiencies in precision agriculture. Moreover, the success of the
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waveband selection process shows the potential of developing a

multispectral sensor system equipped with the selected wavebands

as a viable alternative to hyperspectral imaging for nutrient stress

detection. These findings highlight the potential of the proposed

model for the early detection and precise management of nutrient

stress in cowpea and quinoa plants.
TABLE 6 Model performance on selected wavebands for classification of quinoa N and P levels at five growth stages.

Plant Quinoa

Training dataset (%) Test dataset (%)

Growth stage Model Accuracy F-Score Kappa Score Accuracy F-Score Kappa Score

I Hybrid CNN 99.12±0.26 99.03±0.51 98.97±0.54 95.34±0.21 94.21±0.44 94.51±0.52

3D-CNN 96.55±0.11 96.65±0.15 96.02±0.45 90.31±0.12 90.32±0.22 90.45±0.31

2D-CNN 92.38±0.50 91.43±0.55 91.25±0.43 85.81±0.65 86.24±0.24 84.21±0.56

HybridSN 97.21±0.25 97.02±0.35 97.42±0.11 91.65±0.33 90.15±0.40 90.16±0.25

II Hybrid CNN 99.08±0.22 99.32±0.20 99.01±0.21 97.21±0.32 97.44±0.14 96.15±0.22

3D-CNN 94.22±0.35 94.39±0.37 98.44±0.33 85.44±0.15 85.48±0.34 85.07±0.45

2D-CNN 97.01±0.18 96.56±0.25 96.89±0.61 79.23±0.26 78.14±0.29 79.11±0.37

HybridSN 96.55±0.16 96.23±0.32 96.34±0.20 85.15±0.22 85.33±0.32 85.01±0.43

III Hybrid CNN 99.58±0.28 99.04±0.05 99.63±0.05 98.55±0.44 98.13±0.22 97.31±0.32

3D-CNN 98.11±0.31 97.89±0.33 98.03±0.23 92.14±0.42 92.27±0.41 92.18±0.37

2D-CNN 97.25±0.28 97.12±0.47 97.18±0.28 86.23±0.34 86.27±0.37 85.89±0.2

HybridSN 96.89±0.12 96.63±0.45 96.55±0.21 85.41±0.29 85.25±0.22 85.09±0.29

IV Hybrid CNN 99.29±0.44 99.18±0.51 99.23±0.25 98.29±0.29 98.80±0.27 97.74±±01.8

3D-CNN 98.34±0.35 98.22±0.53 98.42±0.31 90.43±0.11 90.55±±0.23 90.3±0.36

2D-CNN 96.81±0.36 96.43±0.25 96.32±0.14 84.18±0.45 82.33±0.15 82.45±0.22

HybridSN 96.45±0.42 96.17±0.28 96.44±0.28 80.34±0.31 80.22±0.44 80.45±0.43

V Hybrid CNN 97.72±0.37 97.54±0.14 97.28±0.25 95.18±0.26 95.23±0.58 95.27±0.12

3D-CNN 96.05±0.22 95.78±0.33 96.11±0.37 89.32±0.12 89.53±0.24 89.11±0.31

2D-CNN 95.44±0.12 95.14±0.16 9.31±0.42 82.15±0.41 82.43±0.15 82.18±0.36

HybridSN 96.11±0.58 96.52±0.49 96.34±0.44 92.77±0.55 80.05±0.33 81.26±0.23
TABLE 7 Summary of confusion matrices created for the proposed model for nutrient status identification at five stages of plant growth.

Plant Treatment

Growth Stages

I II III IV V

Cowpea HNHP 98.32 99.57 99.73 99.41 98.92

HNLP 95.00 94.00 97.32 98.52 96.06

LNHP 86.84 90.50 96.30 98.50 95.31

LNLP 96.21 98.00 99.40 99.15 98.23

Quinoa HNHP 97.15 99.41 99.23 99.10 98.65

HNLP 90.22 95.12 98.01 99.27 96.14

LNHP 92.82 97.21 95.13 99.27 98.88

LNLP 98.52 96.75 98.31 98.58 98.25
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