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Chapter

Quality Determination of Hydraulic
Pumps with Adaptive Fuzzy
Pattern Classifiers to Reduce the
Risk for Quality Management

Amir Nemati, Elif Oztiirk, Steffen F. Bocklisch
and Welf-Guntram Drossel

Abstract

Automated production of complex assemblies such as hydraulic pumps also
requires reliable detection of defects utilizing functional tests. In principle, this is a
classification task in good/bad, which, however, is often not to be made sharply but
should provide gradations for detailed error analysis. From this, conclusions can be
drawn, for example, about the type or location of the defects, wear, or aging of
components in the production chain. A high-dimensional vector of data from static or
dynamic measurements including is generally available as the basis for the fault
detection model. Modeling such complex nonlinear systems under various load con-
ditions with dynamic test procedures leads to uncertainties that should also be
reflected in the diagnostic model. For this, the design of the classification model (the
classifier) should be largely automatic during the training phase for time and cost
reasons. In addition, online updating under actual operating conditions is also often
desired. These challenging goals can be met through the artificial intelligence (AI)
methodology of fuzzy pattern classification. This chapter deals with the development
of a fuzzy classifier for the application case of the final inspection of hydraulic axial
piston pumps. The focus is on the automatic training of the classifier employing a new
adaptation procedure and permanently (until termination) evaluates the resp. current
classifier using performance measures. Using real experimental data, the procedure
and the step-by-step adaptation results for different links between the current classi-
fication model and the new data are presented and compared.

Keywords: fuzzy pattern classification, adaptive fuzzy pattern classifiers, hydraulic
pump, quality control, productivity improvement

1. Introduction

Today, in the various industrial sectors, the primary objective of each industrial
unit is to improve the quality level of the products manufactured. More confidence in
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the equipment used is one of the requirements that the designer must consider as one
of the basic objectives of any system, which is achieved through the timely detection
of defects. Designers face the challenge of designing diagnostic systems that must be
robust to faults within the system and resistant to uncertainties in the system. The
uncertainties introduced by modelings, such as linearizing nonlinear systems and
process parameter variations, cause the diagnostic system to fail and generate false
alarms [1, 2].

Due to the numerous advantages of hydraulic drives over other drives, such
as reliability, low power consumption, precise controllability, and high
performance, such assembly systems are increasingly used. In the hydraulic industry,
the hydraulic pump is the central part of hydraulic systems, responsible for generating
flow and pressure in the process. In general, defects in hydraulic pumps can cause
severe and irreparable damage, requiring costly repair and overhaul. Therefore,
diagnosis, detection, and repair of defects in the pump components are crucial at
the initial stage. The operation of hydraulic pumps is affected by various factors
such as friction, adhesion, incompressible fluid, and internal and external leakage.
Therefore, hydraulic pumps have nonlinear behavior and are complex nonlinear
systems with multiple inputs and multiple outputs whose input and output behavior
cannot be described by physical exact mathematical models. Therefore, theoretical
modeling would only be an inaccurate model of the system. Since we need to simplify
the input data, we are often forced to accept a certain degree of inaccuracy and
uncertainty in mathematical models, which then cannot achieve acceptable results for
the dynamic behavior of the systems [3, 4]. In such situations, a data-based controlled
nonlinear black-box system provides a reasonable approximation to nonlinear sys-
tems. In these approaches, models are built based on the process’s measured input and
output data, requiring little or no physical or formal information [3]. The literature
shows that black-box models, such as neural networks and fuzzy logic-based
models, are widely used to build fault diagnostic models from measured input/output
data [5-7]. These approaches perform better than statistical models [1] and
mathematical equations [3].

For the prediction of hydraulic pump failure, the correct and accurate
categorization of faults is essential because various factors affect the failure of
the hydraulic pump. The fault categories can be understood as classification.
Qualitative variables are considered, and the classification approach can be used
for qualitative variables. Various approaches to classify data sets include
regression, artificial neural networks, probability, and fuzzy approaches.
However, these classification approaches are static, and the nature of
static classification leads to several primary principle weaknesses on the user’s
side [8, 9].

1.The first issue is that these static classifications cannot adapt to the current user
data stream that occurs in real systems. A comprehensive data set that covers all
features of the system (big data), which is often required, is costly and time-
consuming, complicated, and often impossible to achieve.

2.The second point is that the flow of new, unclassified, and unlabeled data
requires a new classification that an expert or supervising supervised person has
not provided. So the user’s need may change, and the classifier should keep up
with this need and automatically add a new class to its database.
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Therefore, the goal is to develop a new method for automatic modeling in
real-world situations and also with online data streams. The technical term for this
category is Evolving Classification [10]. Evolving classifications can adaptively
update their structures, components, and parameters according to the
requirements of new process characteristics, system behavior, and operational and
environmental conditions. These systems support modeling arbitrary scenarios of
data flow, online measurements, and dynamic data whose nature and
characteristics change over time. The main features of the evolving classifications are
as follows [11]:

1.The learning process can be started from scratch, and the system can learn the
classes required by the user without an initial learning phase.

2.Input samples can form new classes without losing previous knowledge, that is,
or forgetting previous classes that the classifier has not currently seen.

3.Unlike traditional approaches, these evolving classification systems may have
little or no learning phase.

The research work presented in this paper deals with axial piston pump.
Specifically, a subset of these pumps of the variable displacement pump type was
selected for the study. The axial piston hydraulic pump was designed and
optimized for demanding heavy industry and shipping use. Thus, this type of
pump, this axial piston pump in swash plate design in an open circuit with
pressure ratings up to 420 bar and high speeds offers the user a high productivity and
power density. The axial piston hydraulic pump is characterized by high conversion
flexibility [12].

The main objective of this work is to provide a new fuzzy pattern classification
approach [13] that works automatically, online, and without the presence of users.
This classification method is applied to the final inspection and testing of hydraulic
axial piston pumps.

2. Principles of pumps and axial piston hydraulic pumps

Nowadays, power transfer at low cost and high precision is desired in many
processes. Hence, the use of pressure fluid in the transmission and control of power in
all branches of the industry is expanding. Fluid power is separated into two categories:
hydraulic and pneumatic. Pneumatic systems are used where relatively low forces
(about one ton) and high-mobility speed are required (such as in systems that are used
in drive robots). In pneumatic systems, compressible fluids such as air are used. In
cases where high power and precisely controlled speeds (such as hydraulic jacks,
brakes, and hydraulic steering) are needed, hydraulic systems are used. The advan-
tages of hydraulic systems to mechanical and electronic systems are a simple design,
power increase capability, simplicity and accuracy of control, flexibility, high effi-
ciency, and reliability. Hydraulic systems are highly regarded in many industrial
applications, such as industrial robot control, industrial machinery, automobile
industry, hydraulic suspension systems, mechanical power transmission systems, and
aerospace industries. Other advantages of hydraulic systems, compared to other
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mechanical systems, are the need for fewer actuator components and the
achievement of high power and high-power movement at any point due to high-
pressure flow in the tubes and hoses. In other mechanical systems, it is used to
transmit power from components such as a cam, gear, lever, or clutch. As the heart of
the hydraulic system, the pump converts the mechanical energy supplied by electric
motors or internal combustion to hydraulic energy. The pump in a hydraulic cycle
increases fluid energy to be used in the desired position. Hydraulic systems are based
on Pascal’s law. Like many mechanical systems, the disadvantages of hydraulic sys-
tems are their nonlinear and similar behavior. Several factors affect the operation of
hydraulic systems, such as friction, adhesion, incompressible fluid, and internal and
external leakage [14, 15].

The hydraulic axial piston pump is a type of hydraulic pump that has two
fixed axial piston pumps and a variable axial piston pump. The multi-piston pump
is used for mechanized hydraulic systems and can produce a more uniform flow of
fluid. Figure 1 shows the hydraulic axial piston pump. In the hydraulic axial
piston pump type, the pistons are parallel to the central axis of the pump. The
pistons are located around the central axis of the pump and in the circle’s environ-
ment. The primary axial piston pump is based on the motion of the piston and the
piston inside the cylinder that operates the suction and pressure of fluid in every
move. In other words, the pump converts the rotary motion of the input shaft to
the piston’s back-and-forth linear motion. By embedding a mechanism for
changing the angle of the back of the pistons, the displacement volume of a pump
can be changed. This mechanism changes each piston movement’s course, and
the pump’s discharge rate is adjusted by changing the angle between the two
pump axes. There is no discharge at zero angles, and the maximum discharge is
obtained at the maximum angle. Axial piston pumps are high-pressure pumps.
Depending on the type of controller each pump has, the flow changes uniformly and
continuously.

The pumps used in this work are axial piston pumps with a swash plate designed
and optimized for demanding use in heavy-duty industrial and marine applications.
With pressure ratings of up to 420 bar and high-speed ratings, this open circuit,
swashplate-type axial piston pump provides its users high productivity and power
density.

Figure 1.
Hydraulic axial piston pump [16].
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As a standard, every swashplate-type axial piston pump comes with an integrated
pre-compression volume, which ensures low ripple operation. A wide range of dis-
placements and control options allows for various applications such as primary metal
refining/processes, machine tools, marine, oil gas and power generation. The dis-
placement for this pump ranges from 16 cm>/rev to 360 cm?/rev. These pumps are
classified into five frame sizes according to the displacement. Each frame size can
generate the discharge rate concerning the value of the swashplate angle. In Table 1
and Figure 2, all types of frame size and their output flow are expressed.

The advantages of a swashplate-type axial piston pump include the following:

* Operating pressures of up to 350 bar (continuous) or 420 bar

(intermittent) and high-power density.

Accurate, high dynamic controls

Outstanding response characteristics and productivity improvements.

Excellent suction characteristics, high self-priming speeds, and increased

productivity.
Frame size Displacement [em3Irev]
1 16, 20, 23, 28
2 32, 40, 46
3 63, 80, 92
4 140, 180
5 270
Table 1.

Physical conditions and chavacteristics of the pumped fluid.

Figure 2.
Axial piston pumps with five different frame sizes [16].



De-risking Product Development

There are several approaches to determining the quality of products or detecting
defects and their classification. Product quality is diagnosed by processing multiple
measurements using data analysis or logical reasoning links. It is also another way to
compare real actual data and mathematical models of hydraulic pumps. However,
creating a mathematical model is difficult because the pump system has considerable
nonlinearities in parameters.

Another approach is to develop an intelligent system that learns the behavior of the
hydraulic pump. Fuzzy pattern classification can be referred to as an approach to
developing intelligent systems [13, 17].

3. Theoretical basis and methodology

Human intelligence has creativity, skill, awareness, intuition, and emotion. Intelli-
gence is the ability to understand, think, and learn. The question is how to model this
human ability and demonstrate it in a way that has computational efficiency. Tradi-
tional artificial intelligence and various mathematical and analytical tools for character-
ization, description, and analysis of systems attempted to simulate such intelligent
behavior in systems requiring accurate and comprehensive representation of knowl-
edge. With the increase in the complexity of dynamic systems, the traditional modeling
techniques could not satisfy the needs any further and fall short in managing such
processes, mainly because these methods were especially suitable for linear systems and
could not solve problems in nonlinear systems. Hence, new tools for nonlinear systems
should be developed that, on the one hand, can learn or deal with new and unknown
situations and, on the other hand, can predict future events accurately enough for
proper decision-making. This system, capable of understanding and predicting the
environment or processes and its changes, can be called an intelligent system.

Computational intelligence means extracting intelligence, knowledge, and algo-
rithms. Intelligent systems, in principle, provide free models for dynamic systems
through the approximation of functions and/or mapping. Additionally, computational
characteristics, such as accuracy, flexibility, and ease of implementation, are also of
utmost importance in an intelligent system. Intelligent techniques have been applied,
especially in uncertain, complex, nonlinear, time-varying, and randomly targeted
processes. These models are not comparable to traditional mathematical modeling
techniques mainly because [18]:

* The mathematical description of the processes is extraordinarily complex.
e Evaluation of these models is difficult and expensive.

 There is uncertainty in process operations.

* Nature often has a nonlinear process and random distribution.

The significant challenge in computational intelligence and one of the distinctive
criteria for classification models is whether the system can continually learn from the
incoming stream of data [19]. When human learning is considered, it is observed that
the learning process is incremental. Human learns concepts from the environment and
refines these concepts from facts, new observations, and new information in an
increasing manner. For two primary reasons, humans need to learn continuously [20].
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* The continuous flow of information.
* Limited memory and information processing.

Nowadays, with the massive increase in the speed of data collection, the goal of
processing data is not only to achieve the least possible error, as it always was, but to
do so in the shortest possible time. However, traditional approaches for training
machine learning models fall short in this aspect since most of the learning algorithms
in computational intelligence are batch learning or optimization, which are very costly
and very slow in the data flow. The use of these algorithms is very challenging,
especially in an online process, due to the sensitivity of the parameters in these
algorithms, which makes it difficult in many cases to maintain accuracy.

Batch learning does not provide the possibility to learn continuously. Therefore,
the system must be trained using all the available data, hence the requirement for a lot
of computing time and resources. That is why this learning is done offline. In the
presence of new data or facing an ever-changing environment, the models that are
trained offline need to be trained again. Such a process, in which the system is
stopped, trained again, and replaced as a new one, obviously cannot be done during
system execution. Consequently, if the available data, a collection of the recently
obtained and already existing data, are immense in size, the system should be trained
from scratch and then replace the older version, which was trained by the previously
available data. This, of course, would require a lot of resources, such as computational
power from CPUs, memory space, disk space, etc., and would probably take hours to
be done [19].

Because of the need for new techniques to continuously improve the performance
of models with the flow of new data, incremental or online learning techniques are
proposed. Incremental learning is, in fact, a method in advanced modeling [11, 21]. An
incremental learning system is especially beneficial for computers with limited
resources or systems that need to adapt quickly to the current data. In an online
system, there is no need to keep the data after training; the data can be discarded and,
as a result, save memory space. These systems are mostly suitable for large data,
where storing them in the device’s memory is neither a valid nor practical option.

Three important aspects of incremental learning are as follows [20].

1.How to adapt the previously learned knowledge to the currently received data
and use the new raw data for learning.

2.How the accumulated experience and knowledge over time can support and
further benefit future decision-making processes.

3.How classes can be produced, merged, or divided based on the dynamic nature of
environmental changes.

3.1 Fuzzy computational

To counter complexity in modeling and solving new issues in physics, engineering,
medicine, biology, and many other sciences, creating and developing new computa-
tional methods more closely aligned with human thinking is required. Artificial intel-
ligence aims to match a computer system’s behavior and response to the patterns in
which humans behave and respond. In reality, many concepts which humans use are

7



De-risking Product Development

perceived as imprecise, unclear, and vague. Though words and concepts such as hot,
cold, long, short, old, young, and so on do not refer to exact numbers, the human mind
immediately understands everything with fantastic flexibility and uses them for deci-
sions and conclusions. At the same time, the machine is precise and only understands
numbers. The purpose of new methods in computer science is to learn these abilities
from human beings and then to teach them to machines as closely as possible [22].

The scientific laws of Newtonian physics and mechanics are all based on old
logic. Old logic can only express two attitudes: white and black, yes and no, bright and
dark, one and zero, true and false. In general, variables in nature or calculations are of
two types:

Quantitative values can be expressed in a given number, and qualitative values are
expressed from a feature. These two values can be converted. Since the human mind
operates with other logic and adapts decisions, formulating and developing new logic
and the multivalued requirement, fuzzy logic is one of them. Following the first fuzzy
set theory by Professor Lotfi Zadeh [23] in 1965, a new calculation appeared on the
scene. This theory was developed to compensate for the inadequacy of the Boolean
logic to describe many real-world issues. Classical math operations recognize only 0
and 1. Much real-world data is inaccurate and has uncertainties, so classical logic
cannot cite the fact in this respect. Fuzzy logic presents a systematic concept for
investigating uncertainty both quantitatively and qualitatively. Fuzzy theory is for
applications with uncertain conditions and utilizes linguistic variables [18, 24].

One of the critical issues in fuzzy logic is distinguishing it from the theory of
probabilities in mathematics. Often, the fuzzy theory is confused with the probability
theory. However, these two concepts are entirely different from each other. Fuzzy
logic deals with inaccurate facts and refers to the limits and levels of reality. However,
probability theory is the theory of random events and discusses the chance of an event
occurring. When the predicted event occurs, the theory is assumed to be accurate [25].

The main difference between fuzzy logic and neural networks is the data used. In
other words, neural networks are based on data-driven modeling, but fuzzy models
are knowledge-based. Data-driven models are any form of mathematical model
extracted or learned from data. Knowledge-based models are extracted from the
experience of experts, operators, and users working on the system [11, 18].

3.2 Fuzzy pattern classification (FPC)

Fuzzy pattern classification is suitable for complex issues, including technical and
non-technical, and can provide support for control or decision support. Fuzzy pat-
terns are modeled using multidimensional fuzzy membership functions, specified in a
dimensional feature space representing the measured variables or characteristics.
Compared to other approaches, the fuzzy pattern is a sign of parallel and non-
sequential. One classifier can comprise some patterns, which are all semantically
interpretable. Fuzzy pattern classifiers can be modeled using a knowledge-based
approach or data-driven approach or as a combination of both [10, 13]. Fuzzy classi-
fication is a method for describing classification systems of observations defined as
feature vectors in feature space of one or more dimensional (n-dimensional) Euclid-
ean space. Compared to other methods, this model allows modeling interdependencies
of the variables by rotating the multi-axis system within the entire coordinate system.
Therefore, the correlation between input variables can be discussed. Fuzzy pattern
classification can also be designed and modeled as a data-driven or knowledge-based
approach or a combination of both [13]. The following is a discussion of the

8
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one-dimensional and multi-dimensional membership functions appropriate for the
fuzzy pattern classification.

3.2.1 One-dimensional membership functions (MF)

Fuzzy pattern classification is based on an asymmetric membership function that
differentiates between left and right function branches. This is a generalized potential
function of the Aizerman’s model and the Bocklisch model is similarly used to describe
niches in ecology [16]. It has been proven that Aizermans modified function is very
suitable for describing very high-dimensional membership functions (practical to 100
dimensions). Eq. (1) defines the one-dimensional asymmetric membership function
type for the variable u.

( a
u<r
1+( ! )V;—”dl
pl(u) = bl _al (l) . 1)
uzr
() )

Besides the mathematical model of this function, the following semantic meaning
can be assigned to the parameters. This function is based on a set of eight parameters:

The parameter » denotes the representative position of the MF, which can be
determined in various ways, for example, as the center of gravity of the objects
constituting the class, as the arithmetic mean, or as a reference point. The maximum
value of the membership parameter a of this unimodal MF is assigned to r. The
membership parameter 2 >1 can indicate the weight or authenticity of a class. The
membership parameter can indicate the weight or authenticity of a class. The param-
eters ¢; and ¢, (¢;/, > 0) are the class information that contains the position of the
farthest object from the center in projection to the axis. Therefore, parameter ¢
represents the greatest distance of an observed object from . As shown in Figure 3, ¢,
and ¢, characterize a fuzzy pattern class’s left- and right-sided expansions. Both
parameters represent the range of a class. The parameters b; and b, (0 < by, < 1) are
factors that determine the value of the MF at the sharp boundaries ¢y, of the fuzzy
pattern class. The parameters d; and d, (d;;, > 2) determine the form of the function
and carry information about the object distribution in the corresponding class. In
special cases the amount for d;,, — oo changes to a sharply described class (red color in
Figure 4) [3, 13].

3.2.2 Multidimensional membership functions

The previous considerations only focused on the presentation of fuzzy pattern
classification in one-dimensional (feature) space R'. The fuzzy potential function
points to the theoretical possibility of multidimensional membership functions.
Hence, one-dimensional membership functions define the membership function in
N-dimensional space RN Therefore, the exceptional advantage of the potential func-
tion is that a suitable conjunctive combination of several fuzzy sets/logic can be used
to obtain a multivariate membership function in parametric form [3, 13]. The
normalized function (a = 1) with N dimension is given by

9
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Figure 3.
Two one-dimensional asymmetric membership functions with different parameters [3].
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where j belonging to number of features (# = 1,2,3,..., N; N = the number of
dimension). Therefore, o; denoted by

| (3)
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Figure 4 illustrates the basic join operation for two-dimensional fuzzy pattern
classes.

3.3 Adaptive fuzzy pattern classification (AFPC)

As previously explained, some classification systems can be designed dynamically.
These systems can modify classifications automatically during the operation phase
and online. These systems can adjust their parameters continuously to improve system
performance or change their structure for new classes. For these systems, two types of
incremental learning algorithms can be presented: algorithms for incremental
parameter learning and algorithms for incremental structure learning. The system is
considered at the beginning of the learning process for incremental learning of the
parameters, and the system parameters are learned according to the new data. Such
algorithms are considered “adaptation” algorithms, and the classifications whose
parameters change based on new data are called “adaptive classifiers.” In incremental
structure learning, parameters and classification structures change; they are called
“evolving classifiers.” Adaptive classifiers can modify their parameters based on the
new process’s demand characteristics, the system’s behavior, and operational and
environmental conditions. These systems can support modeling any scenario for data
flow, online measurements, and dynamic data whose nature and characteristics
change over time. Continuous adaption capability is essential for two reasons [10, 11]:

1.New data samples are related to the specific context in the real world, which can
improve classification and differentiate it.

2.The storage of information and learning data is not required for classification
consistency. Therefore, the classification can be set up with a small dataset and
improve system performance.

3.3.1 Adaption of parameter a

The parameter a, as already explained, represents a measure of the “weight” of a
class. This “weight” is limited upwards by a value max which is determined individu-
ally (@ax = 10). The parameter 4 is a function of the number of N}, objects belonging
to a class. For the total number of objects belonging to the classifier,  is defined as

max ~— 1 T
e (1 (2)") “
amax
The dynamic of the evolvement can be changed using the weight of the transition

patterns N;>1 depending on the membership function parameter 4, which represents
the number of data points that created the patterns in the past [10, 13].

3.3.2 Adaption of parameter v

Adapting the r values leads to modification of the fuzzy pattern’s position in the

coordinate system. The new position of 7, called P with n representing the index

of the dimension and with k = 1,2,3, ..., K; whereby K is the number of classes, is
defined for each additional data value x,, through the weighted arithmetic mean:

11
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N, 1
(kynew) _ k . nl0ld) .
" Net1 ™ TNgx1

(5)

The dynamic of the evolvement can be changed using the weight of the transition
patterns N >1 with N, depending on the membership function parameter a, which
represents the number of data points that created the patterns in the past [10, 13].

3.3.3 Adaption of parameter cy),

Adapting the ¢;/, values leads to modification of the fuzzy pattern’s boundary of the

class. The new ¢;/, boundary cgl(el’;’gvyz) , with # representing the index of the dimension and

k representing the number of classes, is defined for each additional data value x,.

(ksnew) N k ) (old) 1 )
c(k,new) _ C(l/n) N N, +1 Cl/n + N, +1 o (6)
(tfe)m (emew) Nk (old) 1

C(V/n) _Nk_{_l'cr/n +Nk+1'xn

To adapt the parameter c;,, first, it must be determined that the new point in each

. . . .. kyew) . . . .
dimension, in what position of the new parameter V;g ), is in the same dimension.

After determining the position of the new point, the new parameter ¢, is calcu-
lated from Eq. (6). At this phase, we introduced two approaches for adaptation and
evaluated their results.

I: To adapt the parameter c;, first, in each dimension the new point must be
determined, at what position of the old parameter ¢ is in the same dimension. Then, if
the corresponding object is out of range, that is, it is smaller than the left ¢ parameter
or greater than the ¢ right parameter, then adaptation is done for the ¢ parameter. II:
The ¢;;, parameter is compatible with all objects (see scenarios II and III in Section 5.1
and results in Section 5.2).

4. Experiments on an axial piston pump and data collection

The level and complexity of product reliability and safety requirements have been
increasing in many industrial fields. Complying with such demands requires various
tests and evaluations at each stage of production, from research and development of
materials to evaluating finished products. Dynamic testing is used to measure product
behavior and response characteristics and structural members in response to environ-
mental changes, for instance, through the internal analysis of excitation vibration,
pressure, and the temperature source transfer path of the piston pump. In order to
make the product work reliably and safely, it is essential to ensure that the system has
excellent dynamic attributes. Therefore, dynamic analysis and design of mechanical
products and equipment are necessary to satisfy the requirements of static and
dynamic characteristics of the mechanical structure.

4.1 Hydraulic pumps testing machine

Any pump, regardless of its type and size, should be tested in different methods
throughout the operation. If done otherwise, there is no way of knowing if all the

12
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requirements and needs of the user will be met. Therefore, the type of test and how to
use it depends on the ultimate goal of the application. The performance test of the
axial piston pump is done after assembly completion to prove that the pump has the
required specifications based on requests. The performance test is performed after
completing quality control inspections, such as mechanical and tolerance tests. These
tests are a benchmark for the acceptability of the pump. Therefore, testing machine
(see Figure 5) in laboratory has been developed with the ability to test rotational
speeds up to 3000 rpm, a torque of 5000 Nm, a pressure of up to 450 bar, and a flow
of 500 liters/min. The hydraulic pump is fixed with the help of fixators on the work
table so that it does not move and vibrate during the hydrological pump test. After
setting the values based on the pump controller and test program, the device is turned
on through the touch screen. The main factors affecting the pump’s operation are
suction, discharge, and speed. Secondary factors affecting the performance of pumps
include physical and climatic variables such as temperature, viscosity, density, and
turbulence in the pumped liquid. At the pump outlet, a pressure gauge measures the
output pressure, the average of the piston pressures in the pump. There are also
sensors for measuring the outlet flow and rotational speed of the electromotor in the
testing machine. The circuit of the test station is closed. This means the fluid is
pumped from the reservoir and returned to the reservoir again after leaving the pump
and passing through the equipment and filters.

In this work, the standard controllers from Parker Hannifin [16] are selected for
testing, and in these controllers, there are two plans for the axial hydraulic pump, full
stroke, and zero stroke. In the full stroke plan, four features are measured at three
levels of pressure, and in the zero stroke plan, five features are measured at the three
levels of pressure (see sections 4.1.1 and 4.1.2). The characteristics of the pumped
fluid and the physical conditions are defined in Table 2.

4.1.1 Full stroke in axial piston pumps

In the axial piston pumps, the generated flow volume Q depends on the displace-
ment swash plate. In other words, the displacement value is proportional to the

Figure 5.
Axial piston pumps test bench [16].
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Hydraulic fluid Hydraulic oil, Group HLP

Viscosity class ISO VG 46

Viscosity class of the hydraulic fluid v = 46 + 5mm’/s in 40°C

Temperature of the hydraulic fluid t=50+2°C

Purity level of the hydraulic fluid 18/16/13 according to ISO 4406
Table 2.

Physical conditions and characteristics of the pumped fluid.

change in the angle between the swashplate and the axis of the pistons. In the full
stroke, four features (see Table 3) are measured at three levels of pressure, 100, 200,
and 300 bar. When the test machine is turned on, the hydraulic oil pressure is
increased to 100 bar (set value) within four seconds, and it stays at this level for five
seconds. Then, the actual feature values are determined by the sensors every second
and stored. After the recording of these values, the hydraulic oil pressure increases to
200 bar (set value) in four seconds. At this step, the oil pressure stays at the value of
200 bar, and over five seconds, the values of the features are measured every second
by the sensors. This process is repeated for a pressure of 300 bar (set value). When the
measurement is finished, the pressure value is reduced from 300 bar to zero. Figure 6
shows the pressure variations according to the time in the full stroke plan.

The measured features include:

Symbol Unit

Feature
P [bar] outlet pressure
VM1 [1/min] outlet flow
VM2 [l/min] leak oil flow
NM1 [rpm] electromotor rotational speed
Table 3.

The feature definition for the full stroke plan.

350
300 /‘Oﬂﬂ
250 / |
200 /&OOQ S
150 /

100 #

/1

pressure (bar)

%\

———

12345678 91011121314151617181920212223242526272829
time (s)

Figure 6.
Pressure vs. time curve for the full stroke plan.

14



Quality Determination of Hydraulic Pumps with Adaptive Fuzzy Pattern Classifiers...
DOI: http://dx.doi.ovg/10.5772/intechopen.1001349

4.1.2 Zero stroke in axial piston pumps

After completing the measuring in the full stroke plan, the test program enters a
new phase called the zero stroke plan. The goal of the zero stroke plan is to measure
five features (see Table 4) at the three levels of pressure 350, 200, and 100 bar.
Figure 7 shows the pressure variations over time in the zero stroke plan.

In this process, the hydraulic oil pressure is increased to 350 bar (set value) within
four seconds and stays at this level for five seconds. Then, the actual feature values are
measured by sensors every second and stored. After storing these values, the hydrau-
lic pressure of the oil is decreased to 200 bar within four seconds. Afterward, the oil
pressure stays at the value of 200 bar for five seconds, and the values of the features
are measured by the sensors every second. This process is repeated for 100 bar oil
pressure, too. In the end, the oil pressure is reduced to zero. At this point, the process
of testing a hydraulic piston pump is finished.

The measured features include:

Symbol Unit Feature
P [bar] outlet pressure
AP [bar] Pressure difference between output and control
VM1 [1/min] outlet flow
VM2 [l/min] leak oil flow
NM1 [rpm] electromotor rotational speed
Table 4.

The feature definition for the zero stroke plan.

4.2 Data collection and data labeling

In the database, there may be corrupt data such as I. Failure to store data. II. There
needs to be more compatibility between the data. Therefore, the quality of these data
should be checked. Preprocessing can eliminate inappropriate and corrupt data. In this
way, the desired output can be obtained from the data. After data acquisition and

pressure (bar)

1234567 8 91011121314151617181920212223242526272829303132

time (s)

Figure 7.
Pressure vs. time curve for the zero stroke plan.
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merging, data preparation was started. The next step was data cleaning. Collected data
usually has three significant breaches: some data is noisy, there are some missing
values, or in some cases, there is an inconsistency within the data, so data cleaning, to
treat missing values and possibly inconsistent data, is necessary. After cleaning the
data, selecting features was started. This process will discuss which plans are selected
and how they can be prepared for the labeling phase. The full stroke and the zero
stroke plans were selected among different plans. Then, the full stroke set values 100,
200, and 300 bar and the zero stroke set values 350, 200, and 100 bar were selected.
In the end, the results were used in the labeling step. Due to the use of a supervised
learning approach, it is essential to determine the appropriate label. At this step,
labeling means evaluating data. The process of labeling receives data from the previ-
ous step includes the two plans: full stroke and zero strokes. It should be noted that all
pumps tested in this work were in good condition. According to frame size, displace-
ment, and the set values of this plan (see Table 5), the number of 18 classes was
defined by the expert for full and zero stroke.

Depending on the available dataset, the classifier design can be considered as
supervised learning for fuzzy pattern classification. This work has a set of labeled
objects with known class membership. About 70% of this set is extracted and applied
to obtain a classifier. These objects build the training set. The remaining objects,
whose correct class assignments are also known, are referred to as the sets for
adaptation and are used to validate the adaptive classifier’s performance.

Class Frame size Displacement [cm3lrev] Set value full stroke Set value zero stroke
1 3 60 100 350
2 3 80 100 350
3 3 92 100 350
4 4 140 100 350
5 4 180 100 350
6 5 270 100 350
7 3 60 200 200
8 3 80 200 200
9 3 92 200 200
10 4 140 200 200
11 4 180 200 200
12 5 270 200 200
13 3 60 300 100
14 3 80 300 100
15 3 92 300 100
16 4 140 300 100
17 4 180 300 100
18 5 270 300 100
Table 5.

The labeled dataset for the full stroke and zero stroke plan.
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5. Results and discussion
5.1 Introduction

In this section, the fuzzy pattern classification and adaptive fuzzy pattern classifi-
cation algorithms developed in this work are evaluated, and their performances are
presented. For the fuzzy modeling, the axial piston pump test data was used. Two full
stroke plans and zero stroke plans were used for tests on pumps, which aim to model
the data obtained from these two test plans. The modeling is based on supervised
learning. So, for each test plan, the 18 classes were defined (see Table 5).

Since the validity of any model computed in the research needs to be estimated,
the division of the samples into the three training, fitting, and testing datasets was
applied to measure and verify the accuracy of the models. For learning the fuzzy
model, three scenarios are considered:

Scenario I: About 70% of the data was used for fuzzy modeling as a basic model.
Therefore, 15% of the data (testing data respectively, the last 15% of saved data.) was
used to evaluate the accuracy of the models.

Scenario II: Models obtained from scenario one were applied to an adaptive
algorithm. Therefore, 15% of the data (adaption data) was used to adapt the model’s
parameters from the scenario I and to obtain the new pattern with the new parame-
ters. In order to evaluate the accuracy of a new fuzzy pattern obtained from an
adaptive algorithm, it has been used of the data (test data).

Scenario III: In this scenario, as in scenario II, 15% of the data is used in the basic
model adaptation process, and 15% is used as test data to evaluate the adaption model.
The difference in this scenario is that only the objects that are outside the scope of any
classifier are included in the adaptation process.

The training phase was defined with initial values (b, = 0.5, d;;, = 2) and is used
for the fuzzy pattern classification for all classes.

5.2 Evaluation of the fuzzy pattern classification and adaptive fuzzy
classification

Figure 8 shows the membership values of the test data (15%) for full stroke, set
value pressure 100 bar, and for different scenarios. As you can see, in class 1 and
scenario I, the membership value, in other words, the accuracy of the basic model, has
improved to 0.81 and after the adaptation process according to scenario.

II: to 0.84 and scenario III to 0.86. In class 6, these improvements and changes are
more, and in class 3, these changes are much less. However, in these classes, it is more
accurate after adapting the model. As it is clear from diagram 8, scenario I in classes 2,
4, and 5 has less compliance than the other two scenarios, but overall, scenario III
shows a useful improvement considering the small number of data.

Figure 9 shows the membership values for different frame sizes for full stroke at a
pressure of 200 bar. As can be seen in Figure 9, class 8 has the most changes to
increase the accuracy of the base model after adaptation, and these results can be seen
in classes 7 and 12. In classes 9 and 10, the changes after adaptation are almost
negligible, while these classes display more than 95% accuracy after adaptation.

Figure 10 shows the membership values for full stroke and in 300 bar. As you can
see, in class 14, in other words, in scenario I, the basic model has a low accuracy of
about 10%. In contrast, after adaptation and with a limited number of objects, the
model’s accuracy has improved. Also, in other classes, except class 17, we see an
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Accuracy of different scenarios for full stroke in set value 100 bar by testing data.
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Accuracy of different scenarios for full stroke in set value 200 bar by testing data.

increase in accuracy in the model after adaptation, and this accuracy is more than 80%
in all classes except class 14.

Figures 11-13 show the membership values of test data for zero stroke at pressures
of 350, 200, and 100 bar. As it is evident in these figures, in frame size 5 (see Table 1),
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Accuracy of different scenarios for full stroke in set value 300 bar by testing data.
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Accuracy of different scenarios for zero stroke in set value 350 bar by testing data.

in other words, classes 6, 12, and 18, the accuracy of the basic model, in other words,
scenario I, is in the range of 0.21 to 0.41, which after the adaptation of these models,
there is a significant improvement that they show from 0.39 to 0.65. As discussed in
the zero plane test and Section 4.1.2, the tested pumps are suddenly pressurized to
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Accuracy of different scenarios for zevo stroke in set value 100 bar by testing data.

350 bar from a static state within a few seconds. In this case, the data dispersion is
almost high, and the system faces uncertainty because the oil pressure needs time to
reach equilibrium. The thing to think about in this process is that the fuzzy model has
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displayed a stable state with appropriate accuracy concerning this uncertainty. Also,
the accuracy of the model has improved after adaptation.

5.3 Evaluation of the adaptive fuzzy classification process

One of the questionable points in the adaptation process is how accurate the
adapted model of each adaptation step is to the test data, whether the model’s accu-
racy has continually improved during the adaptation process or exhibits other results.
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Figure 14.
Example of each adaptation step for full stroke of class 1 in set value 100 bar.
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Figure 15.
Example of each adaptation step for zero stroke of class 2 in set value 350 bar.
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To answer this question, the new model should be evaluated with test data for each
object participating in the adaptation process and compared with the reference or
threshold value. The result of this study is shown in Figures 14 and 15. In these
graphs, the blue lines are the reference values and, in other words, the thresholds
displayed for class 1 in plan five and class 2 in plan six based on strategy III. The red
lines show each stage’s adaptation process and the model’s accuracy. It can be seen
from these graphs that the adapted models have improved compared to the threshold.
So that in plan five and Figure 14, the model’s accuracy has improved from 0.82 to
0.86, and this value in plan six and Figure 15 is from 0.73 to 0.86. It should be noted
that the number of objects during the adaptation process was 9.

6. Conclusion and future work

The primary goal of this work is to provide a new method for the final inspection
and testing of hydraulic axial piston pumps working automatically and online without
the user’s presence. Motivated by the increasing need for flexible classifiers that can be
automatically adapted continuously to cope with dynamic work environments in the
context of Industry 4.0 and 5.0, this work proposed an adaptive fuzzy pattern classi-
fication algorithm, which can model nonlinear and complex relationships between
empirical input and output data with precise accuracy. This algorithm can adapt
models to real situations and with online streams of data. The performance test of the
axial piston pump is done to verify that the pump has the required specifications
based on requests. These tests are a benchmark for the acceptability of the pump. In
this work, the pump data from the good situation are tested for four months. In the
standard controllers, there are two application plans: full stroke and zero stroke for the
axial hydraulic pump. In the full stroke, four features are measured at 100, 200, and
300 bar pressure levels. In the zero stroke plan, five features are measured at 350, 200,
and 100 bar pressure levels. The axial piston pumps range the displacement from
16 cm?/rev to 360 cm>/rev. According to frame size, displacement and the set values of
each plan are defined as the number of 18 classes out of 448 pumps.

The parameters of a class are composed of position parameters and shape parame-
ters. The strategy to update the initially static fuzzy pattern classifier to changes in the
fuzzy pattern classifier parameter is to the classifier from the sequence of the object.

In the scenario I, to evaluate the accuracy of the models in both test plans, 70% of
the data (learning data) and 15% of the data (testing data) were used. In scenarios II
and III, 70% of the data was used as a basic model for fuzzy modeling. Therefore, 15%
of the data was used to adapt and 15% to evaluate the accuracy of the models.

As can be seen from the results, the model’s accuracy improves with the adaption
process and increasing number of samples. These results show that the models can be
improved significantly when using adaptation/ evolution based on new measurements.

Similar to the parts presented in this work, our standpoint can be divided into
application and theoretical perspectives.

As future applications, we present here the essential points:

* In the tested pumps, two pumps were found with faults whose data can be
defined and modeled as fault classes in the future.

* These pumps can be controlled online by defining classes in a microcontroller,
connecting with axial piston pumps, and defining fault classes.
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* It is possible to transmit this concept and approach to other technical
applications, such as machine tools, forming and pressing machines, surface

analyses.

As future theoretical works, we present below the direct signs that we consider to
improve our approach:

* For a better classification of the complex features according to the analysis
results, the model always requires an adjustment of the combination of all
parameters. Therefore, adapting the remaining class parameters (b;/,,d;,) is
required.

* An evolving fuzzy pattern classification can update structural components on

demand based on new system behavior and operating conditions. Evolving
structure is a theoretical complex that should be researched in the future.
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