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Chapter

Evaluation of Generic Deep
Learning Building Blocks for
Segmentation of Nineteenth
Century Documents
Evan Segal, Jesse Spencer-Smith and Douglas C. Schmidt

Abstract

Although the field of computer vision has grown significantly due to the advent of
convolutional neural networks (CNNs), electronic analysis of historical documents
has experienced scant research and development attention. Recently, however, com-
puter vision has matured to the point where it can be applied to outperform existing,
specialized tools for document analysis. This paper demonstrates empirically how
state-of-the-art results can be produced by implementing, training, and evaluating
generic computer vision models on historical document segmentation tasks. We show
the generality of our approach to document analysis and explain how innovation in
this domain can arise from combining generic building blocks for computer vision.

Keywords: computer vision, deep learning, convolutional neural networks (CNNs),
image and document segmentation, 19th century documents

1. Introduction

Image segmentation is the process of partitioning an image by assigning a label or
class to each of its pixels to represent the image meaningfully [1]. For example, an
automated driving system may find it helpful to label objects in its environment, such
as street signs and pedestrians, to assist with the driving process. Other examples of
image segmentation may exist in content-based image retrieval systems [2], medical
imaging [3], object detection [4], surveillance [5], generating data visualizations from
hand-drawn sketches [6], and biometric security systems [7].

This paper explores methods and tools for image segmentation, specifically in the
context of paper documents with handwritten records prior to the twentieth century.
For the previously mentioned applications of image segmentation, there are many
distinguishing features (such as color and brightness) between different objects. In
historical documents, however, there is little/no color or contrast differences between
parts of the document.

Instead, historical documents typically only exhibit logical differences that can be
inferred from markings on the page, which are created inconsistently between records
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over time and are often degraded [8]. The segmentation of paper documents thus
often necessitates different methods than the segmentation of other types of data.
Moreover, the range of desired analysis on paper documents is extremely expansive,
so it is important to consider the specific dataset we used in this paper and the
problem that our analysis addresses.

This paper builds upon earlier work on dhSegment [9], which hypothesized that
generic computer vision models could effectively perform document segmentation.
We expand upon the dhSegement approach by (1) evaluating generic computer vision
models other than the ResNet50-based [10] model used in dhSegment and (2)
exploring what other models help advance this domain further using images found in
the Slave Societies Digital Archive (SSDA) [11]. We hypothesize that the success of
ResNet50 in classification tasks demonstrates its utility as a successful generic building
block for constructing segmentation models compared to other common
convolutional neural networks (CNNs).

The remainder of this paper is organized as follows: Section 2 motivates and
summarizes our technical approach; Section 3 summarizes work related to various
types of significant CNNs used in our analysis; Section 4 describes adaptations to
model architectures that we applied to enable CNNs to operate on segmentation tasks;
Section 5 describes how we compared the ResNet-based dhSegment [9] to other CNN-
based models by reviewing the experimental dataset, establishing a proof-of-concept
and baseline for success, and elaborating on how experimental models are
implemented and trained; Section 6 compares the results of training between similar
models and between all of the best models, as well as analyzes trends that occurred
during the training process; and Section 7 presents concluding remarks.

2. Motivation and summary of our technical approach

The motivation for this paper stems from the Slave Societies Digital Archive (SSDA)
hosted at Vanderbilt University [11] that includes over 700,000 digital images drawn
from: 2000 unique volumes dating from the sixteenth through twentieth centuries that
document the lives of an estimated four to six million individuals. Slave societies are
defined as civilizations where slave labor and/or trade was an essential part of their
economies, politics, and lives as a whole. The SSDA preserves documents related to
African people and their descendants in slave societies, mostly in the Iberian NewWorld.

The majority of the documents in the SSDA are Catholic Church documents, which
mandated the baptism of African slaves and their descendants. With baptisms comes
eligibility for marriage and burial with the Catholic Church. Since the Catholic Church
is a centralized, hierarchical organization, there is significant consistency between
documents created in different parts of the world and at different periods in time.

Although the quality and the layout of documents may be different between record
keepers, a base set of facts (such as) names, locations, dates, and the names of family
members [11]) remains consistent throughout the documents. These common facts
between documents create a structure that lends itself to algorithmic analysis rather
than needing to analyze each of 700,000 images manually. It is not yet feasible,
however, to simply extract the characters from the page using optical character rec-
ognition (OCR) technology [8] and then analyze the text. Instead, this information
must be derived from other features to analyze the SSDA archive meaningfully.

The ultimate goal of our project is to develop a model for computationally creating
family trees based on the images in the SSDA. Using each record of baptisms,
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marriages, and deaths, it may be possible to match the names, locations, and dates to
create a story that follows the genealogical progression of the descendants of African
slaves in the Iberian New World. Ideally, this tool could be used by a descendant of
African slaves who knows (or can infer) the name of an ancestor who appears in these
documents, opening up a new chapter of his or her ancestral history that would not
have been uncovered otherwise.

We performed this analysis via several steps described below, starting with sepa-
rating the records from each image. Every image in the SSDA contains at least one
record, as well as empty page space and extraneous parts of the image that provide no
useful information (such as parts of a table or the fingers of people who scanned the
document). It was therefore necessary to isolate the records as blocks of text from the
SSDA images to analyze the data efficiently.

Figure 1 shows two example images found in the SSDA [12] that exemplify many
difficulties in the quality of historical document data. These images often display
extraneous objects, such as fingers and glimpses of the surface that the book is resting
on. Likewise, there are differences in lighting and page orientation between these two
pages. Moreover, smudging and bleed-through between pages are also clearly evident.

Figure 1.
Sample images from the SSDA.
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OCR technology is not sufficiently advanced to directly glean character informa-
tion from such degraded images [8], so another approach must be applied to match
names. Our approach treated written names as patterns and matched them with other
names that appear similar, thereby addressing the idiosyncrasies of handwriting
between different record keepers. Moreover, after matching the records by name, a
family tree structure may begin to emerge that helps unlock the ancestral history of
millions of people around the world.

The first phase of our approach—separating records from the rest of their images
—requires using image segmentation. While segmentation technology has improved
significantly in recent years, research involving the segmentation of documents has
been less expansive. However, the dhSegment [9] model and toolkit demonstrate
promising success in this domain using generic computer vision models rather than
segmentation-specific document processing tools.

3. Related work on CNNs

Image processing is a ubiquitous field with extreme variation between different
types of images and tasks. A significant number of segmentation methods therefore
exist that can be applied for any given task. This section gives an overview of relevant
related work, focusing primarily on segmentation using CNN architectures and then
discusses how we adapted these methods for use in our segmentation tasks to analyze
documents from the SSDA.

One of the first CNNs that appeared in academic literature was AlexNet [13, 14].
AlexNet’s main innovation was its more efficient training, which reduced costs and
increased the amount of data learned. Some techniques pioneered in AlexNet included
using Rectified Linear Units (ReLUs) as activation layers, customized and optimized
graphics processing unit (GPU) algorithms for convolutions and training, and pooling
outputs together [14].

Building on AlexNet was the Visual Geometry Group (VGG) [15], whose model
incorporated the smallest possible convolutions to the earliest layers of the model,
allowing for quicker training than its predecessors. Convolutions enabled the creation
of feature maps from input data [16], using the smallest possible convolutions to
simplify the determination of convolution parameters. Smaller convolutions generally
yield more efficient creation of useful feature maps.

Another significant model is GoogLeNet [17], which reduced parameter count and
resource usage while training to transition from densely-connected networks to
sparsely-connected networks. However, the underlying hardware for modern com-
putations is inefficient when working with sparse calculations. A key contribution of
GoogLeNet paper, therefore, was approximating sparse structures with existing dense
components, allowing better results with less expensive networks.

A highly significant model is ResNet [18], which provided breakthroughs in train-
ing extremely deep networks by adding skip connections between layers. These skip
connections allow the training of the model to ensure that skipped layers perform
meaningful tasks, creating a more efficient training process. This approach advanced
the field of computer vision significantly.

DenseNet [19] uses the same principle as ResNet to add skip connections between
layers. DenseNet, however, adds one layer to every subsequent layer rather than
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adding connections between every other (or third) layer. Likewise, DenseNet uses
fewer convolutional filters per layer due to the large amount of information passed
between layers. The analysis of DenseNet in [19] shows that low-level features from
early layers are still used by layers closer to the end of the model, which poses
questions about how low-level features can be combined with higher-level features.

SqueezeNet [20] is another project that sought AlexNet-level accuracy with their
network, but with much less space utilization. The SqueezeNet team recognized that
convolutions operating on every input channel use large amounts of space, so they
created 1x1 convolutions to squeeze all the input channels into larger convolutions that
required fewer parameters. They also used compression techniques, such as
Deep Compression [21], to further compact their model while still maintaining accuracy.

4. Our approach: Applying CNNs for image segmentation

Our work in this paper adapts CNNs for segmentation via the U-Net [22] archi-
tecture. This architecture leverages the encoder-decoder architecture [23], which uses
convolutional layers to encode low-resolution maps of fundamental features in images
and subsequently decodes the feature maps to labels for each pixel using upsampling
operations, such as pooling and deconvolution [24]. U-Net extends the encoder-
decoder architecture by adding skip connections between corresponding
downsampling and upsampling layers.

During the decoding process, U-Net combines upsampled data with data that is
never fully convolved. This approach maintains information about high-level features
in a given image, which allows the model to combine low-level knowledge (such as
how to classify pixels) with high-level data (such as where these pixels may be
located in the image). The U-Net architecture significantly advanced the field of
image segmentation.

A relevant approach specifically focused on the domain of historical document
segmentation is called dhSegment [9]. The dhSegment architecture applies common
deep learning architectures and standard image processing techniques to perform
pixel-wise segmentation via a model similar to U-Net. However, dhSegment uses a
ResNet50 [10] model as the encoder and utilizes standard upsampling and concate-
nation of encoder features as its decoder. A key insight from the dhSegment paper is
that a highly successful model for document segmentation can be build via a generic,
pre-trained encoder-decoder structure. This model can be trained on a variety of
different tasks regarding document segmentation, such as page extraction, layout
analysis, and line detection.

The tasks that can be performed on documents is quite expansive. The dhSegment
team therefore applied many different types of image processing techniques to further
improve the accuracy of their model. Examples of the techniques they applied include
threshholding [25] or shape vectorization (which performs a reduction of detected
regions into polygonal shapes).

The dhSegment image processing techniques are standard processes that do not
require machine learning analyses. Therefore, the task-specific application of post-
processing techniques on a general model provide a generalizable tool for document
segmentation that requires little training, but instead requires domain knowledge to
construct accurate results using simple processing techniques on its output. The
success of dhSegment’s use of only generic deep learning models as building blocks is
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impressive, so the rest of this paper evaluates the viability of applying similar generic
building blocks to segment historical documents, such as those found in the SSDA.

5. Implementation and training of the ResNet-based model

This section describes how we evaluated the ResNet-based dhSegment [9] archi-
tecture to other CNN-based models. We first review our experimental dataset, then
establish a proof-of-concept and baseline for success, and finally explain how we
implemented and trained the experimental models.

5.1 Overview of the dataset

The dataset used for our analysis in this paper is based on the SSDA and contains a
collection of documents consisting of the baptismal records of people of color from the
Iglesia de San Agustín in Ceiba Mocha, Cuba from 1872 to 1892 [12]. Each image in the
dataset is a photograph of a page that contains one or more records. As shown in
Figure 1, these images also contain extraneous information, such as a hand holding
the page flat or a table that the record book is resting on.

Images in the SSDA dataset are labeled such that the two categories of records
to extract are different colors from the rest of the image, including the blank page space,
table, and other extraneous information. Although this data archive is available publicly
on the SSDA website, there are no labels for the data. A dataset of approximately 100
images was created to train and evaluate the performance of a model.

5.2 dhSegment

We applied the pre-trained dhSegment model to form a baseline measure of success
by which we can evaluate other models. The dhSegment model implementation and can
be found on GitHub [9]. This model is implemented as an application programming
interface (API) wrapped around a deep learning model built with TensorFlow and
Keras. Since the dhSegment model was trained for document-specific segmentation
tasks, its pre-trained weights allow for quick and efficient training.

Using the built-in training method from the dhSegment API, the model can predict
the correct pixel value: 92% of the time. Using pixel values, however, can give a
skewed measure of performance when large portions of the image are segmented
correctly, but are not of interest. The mean Intersection-over-Union (mIoU) is a
measure between 0 and 1 representing the ratio of the overlap of predicted and
ground truth bounding boxes to the union of the bounding boxes, which is more
reflective of successful segmentation. In the present case, the mIoU of the model is:
70.7%. Given the fact that the training dataset contains only: 80 images, this perfor-
mance is impressive and demonstrates how quickly the dhSegment architecture can
learn to analyze ancient documents.

After the initial round of training, our out-of-the-box results were promising. With
about 70% mIoU accuracy, however, there was room for improvement. Due to how
the dhSegment toolbox is constructed, the ability to look inside the model and make
improvements is restricted. Although dhSegment provides a wrapper class created
around pure Tensorflow, this wrapper lacked key functionality, such as built-in GPU-
optimized data augmentation and the ability to experiment with different loss
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functions. We therefore constructed other generic models using the FastAI [26]
framework and evaluated their performance, as discussed below.

5.3 FastAI

FastAIis an open-source deep learning library and an open API for training and
deploying machine learning models [26]. We applied FastAI to provide much of the
custom functionality necessary to experiment and augment the capabilities that
dhSegment does not provide. For example, FastAI can easily change the loss function
of a model during training. Another benefit of FastAI is its ability to add data aug-
mentation when loading the dataset and perform it dynamically along with GPU
optimizations. These additions enable relatively quick tuning of a model’s
hyperparameters that can optimize its performance.

An important feature of FastAI is the function ‘unet learner’. This function allows a
user to provide a standard, pre-trained CNN for use as the encoder of a U-Net model,
which can then be trained and tested. Likewise, FastAI provides a custom implemen-
tation of cross-connections among the encoding and decoding passes of the U-Net so it
can operate with any encoder that is provided.

A notable feature of the dhSegment architecture is its ability to combine generic
building blocks. The dhSegment team used a ResNet50 architecture for training and
evaluation, but their work demonstrated that other generic architectures could work
for similar functions. The FastAI library is compatible with any of the models available
in the torchvision [27] library, thereby enabling configuration of the dhSegment
architecture with any CNN as its encoder. These torchvision models include the ones
discussed in Section 3. Moreover, the torchvision library includes many slightly dif-
ferent alterations of these models. We used FastAI to construct these altered U-Net
models and evaluated their performance on the SSDA dataset.

To train and evaluate different generic building blocks in place of a ResNet50 as
the encoder of a U-Net, we used the built-in torchvision models available in FastAI, as
outlined above. The models we chose were different variations of ResNet,
SqueezeNet, DenseNet, VGG, and AlexNet. After the U-Net architecture was created
using these pre-trained models as the encoder, we settled on the cross-entropy loss
function [28].

In the initial round of training, we performed segmentation into the three classes
shown in Figure 2 (main text, column text, and not text), which are representative of
the data used in the training and test set. In particular, an image from the SSDA (top)
and its corresponding segmentation mask (bottom). The red masks represent the
main-body blocks of text, while the green masks represent column blocks of text.

We found that the training process resulted in models that minimized the amount
of “not text” that was labeled incorrectly, rather than labeling it correctly as “main
text” or “column text.” With a larger dataset, we could have used a weighted cross-
entropy loss function to account for the imbalance text classes, but with the limited
amount of data we elected to combine “main text” and “column text.” We therefore
performed a binary classification on “text” or “not text” with relatively balanced
classes, so a cross-entropy loss function was an appropriate function to minimize.

The model’s hyperparameters were selected to be either the default or through
cross-validation schemes. We applied FastAI’s built-in function to find the optimal
learning rates, ‘find lr.’ Likewise, each training epoch was performed with the built-in
‘fine tune’ function, which includes training defaults specifically used for transfer
learning.
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Figure 2.
Training data.
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The actual training process consisted of training each model between 26 to 30
epochs and evaluating their accuracy on the testing dataset at several checkpoints.
This large amount of epochs relative to the amount of training data was performed to
train each model to its best performance and then observe how quickly its perfor-
mance degraded due to overfitting.

To train each model, we began by solely training its last layer in the first set of
epochs. The entire model was then unfrozen and trained. We then progressively froze
the earlier layers and continued training until either the models overfit or: 30 epochs
were completed.

6. Analysis of results

This section presents the results of our evaluation of different base encoders of the
U-Net on the given segmentation task. Figure 3 represents the mIoU accuracy over
each checkpoint epoch for the different ResNet models evaluated. This accuracy was
measured at epoch 5, epoch 10, and every other epoch until the model was determined
to overfit sufficiently. The resnet101 base does not overfit, but it never fit in the first
place and its relative success was deemed as random based on visual inspection.

Figure 3 shows that the most successful models used resnet50 and resnet18 as their
encoders. The model with resnet34 performed the worst by far, whereas the models
with resnet101 and resnet152 initially performed well, but did not improve much. This
result demonstrates how a CNN can experience tradeoffs as a result of increasing the
number of layers.

When there are more layers in a CNN, there are more extracted features as the
result of convolutions, but the question remains whether these features can be used
efficiently and effectively. As the size of the model grows, the complexity and thus the
number of parameters used also increases. Training the models therefore requires
changing more parameters, which increases the possibility of overfitting. Overfitting
was particularly prominent with resnet101 and resnet152, as they both had high
training accuracies, but had essentially random guesses on the testing set.

An interesting aspect of the tradeoff described above is how it operated when
going up from 18 layers to 50 layers. Since 18 layers are relatively few, the tendency to
overfit was lower, which allowed the model that is based in resnet18 to become
accurate quickly without deriving newer features in its layers. The model containing a
resnet34 encoder may have had too many layers such that it overfit, but not enough

Figure 3.
ResNet-encoder comparison.
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layers to derive any high-level features that may have helped its performance. Finally,
the model with a resnet50 encoder had enough parameters such that it may easily
overfit, but the added layers gave an extra level of depth that allowed it to work out
deeper features and gain accuracy with more training than resnet18 required.

Figure 4 represents the mIoU accuracy for each of the SqueezeNet and DenseNet
models evaluated. This accuracy was measured at epochs 5, 10, and every other epoch
thereafter. After learning what the targets for segmentation were, the models did not
improve or worsen significantly over many epochs.

Figure 4 shows how both variations with SqueezeNet encoders had the best accu-
racy of all the out-of-the-box models available on FastAI. DenseNet encoders also
performed extremely well. Both these base encoder architectures created models that
performed accurately without much training, but did not significantly increase their
levels of accuracy or begin to overfit after excessive training. One explanation for why
these models perform better than ResNet is that they both have significantly fewer
parameters than ResNet, which is consistent with the same logic that allows the model
based on the resnet18 encoder to perform well.

Figure 5 represents the mIoU accuracies achieved for the VGG and AlexNet
models throughout their training. AlexNet had high accuracy in the beginning, but

Figure 4.
SqueezeNet-encoder and DenseNet-encoder comparison.

Figure 5.
VGG-encoder and AlexNet-encoder comparison.
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dropped off after training. This result did not occur due to chance, as this happened
multiple times when training from scratch.

Figure 5 demonstrates how AlexNet required little training to perform well, while
VGG did not change its performance even after training extensively. AlexNet is a suc-
cessful—yet relatively early—CNN that is composed of few layers compared to the CNNs
that were created since. It is much smaller and has fewer parameters, which helps explain
how it quickly identified the important features in training, but also how further training
allowed for overfitting since it lacked the depth required to make complex features.

Figure 6 displays the same data between the best of each type of model. The
testing accuracy for the best from each model type. Two types of ResNet models were
included since they performed quite similarly, which is notable and will be discussed
below. This comparison of different model types allowed easy visualization with
relative accuracy and variability.

Figure 6 provides an overview of how all the types of models compare against each
other. These results show how ResNet-based encoders provide much more variability
in the model. The model may be basing its decision-making on features that provide
different results when slightly altered. Another notable result shown in Figure 6 is
how several of the tested CNN encoders create models that do not perform much
better or worse after training than before.

Our finding that SqueezeNet and DenseNet encoders performed better than the
other models for a majority of the training and evaluation process indicates the need
for further research into these architectures and their applicability in document anal-
ysis. It is noteworthy that the SqueezeNet output shown on the in Figure 7 appears
more block-based than the ResNet, which helps explain how SqueezeNet can encap-
sulate blocks of text with success. This figure shows the real (left) and predicted
(right) output of a test set image for both squeezenet1_1 (top) and resnet50 (bottom)
encoder-based models. By visual inspection, the SqueezeNet based model encapsu-
lates the logic of where text blocks may occur better than the ResNet-based model.

7. Concluding remarks

Conventional pre-trained CNNs are not well suited to perform segmentation on
historical documents, such as the Slave Societies Digital Archives (SSDA) used as the

Figure 6.
Inter-model comparison.
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basis for our research presented in this paper. Relatively little literature examines
document segmentation since the rise in popularity of CNNs. Some research, how-
ever, is beginning to push the envelope.

For example, the dhSegment paper and library provide a promising approach and
toolkit for segmentating historical documents. The dhSegment authors demonstrated
the feasibility of general computer vision models and standard post-processing

Figure 7.
SqueezeNet and ResNet outputs.
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techniques by inserting a ResNet50 encoder into the U-Net architecture and
outperforming specifically dedicated systems built for document segmentation. Our
research expanded upon their approach by training and evaluating other general-use
computer vision models as the encoders in the U-Net architecture.

The key lessons learned we gleaned from this research are summarized below:

• Deep learning may outperform mature, classical methods of document analysis. The
lack of ubiquity of a single or subset of classical methods used for image-based
document analysis demonstrates that the existing tools are not robust enough.
Deep learning is a relatively new technique, but it is already making significant
progress in creating successful document analysis [13].

• Generic deep learning techniques—rather than specialized document analysis systems
—are successful in historical document segmentation. The advent of the dhSegment
toolbox [9] showed that the combination of generic deep learning building
blocks, ResNet, and U-Net architectures, yielded promising results
demonstrating that a CNN can label historical documents sufficiently well.

• Other unspecialized deep learning building blocks have the potential to improve on
dhSegment’s original architecture. Our results showed that other generic CNN-
based architectures, specifically using SqueezeNet [20] and DenseNet [19],
outperformed ResNet50 on our specific dataset. This result is not definitive due
to the limited size and scope of the data used, but it is nonetheless an interesting
outcome.

• With a relatively small amount of data, we were able to train and evaluate several
CNNs, such as other ResNets, SqueezeNet, DenseNet, and more. Our initial
hypothesis that a ResNet50 encoder would perform the best on segmentation
tasks rather than other generic building blocks was not supported by our
empirical evidence. Due to the lack of diversity within the dataset and the small
number of images analyzed, our results are not conclusive that any of these given
models work better than ResNet. However, we demonstrate that other models
like SqueezeNet and DenseNet perform better on our specialized dataset and
should be considered targets for further research in the context of document
segmentation.

• Due to confounding issues (such as the extraneous objects and page bleed-through
shown in Figure 1), more research must be conducted to advance this domain of
analysis. While this paper does not provide a comprehensive model that
completely solves the first phase of the eventual family tree problem, it does
provide the foundation for future attempts of this problem and many others that
lie adjacent to it. In particular, our results empirically evaluate potential analyses
that help to further the success of historical document segmentation.

Our future work consists of exploring the performance of these architectures on
larger datasets and incorporating them into a toolbox with the post-processing tech-
niques mentioned by the dhSegment team. Likewise, we are exploring the intricacies
of the training process concerning the variability seen in training the ResNet models
and the lack thereof within the training of the DenseNet models and others. Finally,
the use of the transformer-based multidimensional long-short-term-memory [29]
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(which is another type of artificial intelligence model) is a promising technique for
document analysis that we are exploring.

Additional information

Parts of this chapter were previously published in the Master’s thesis by the same
author: Evan Segaul. “Evaluation of Generic Deep Learning Building Blocks for Seg-
mentation of Nineteenth Century Documents,” 2021, [Unpublished Master’s thesis].
Vanderbilt University. Available from: https://ir.vanderbilt.edu/handle/1803/16673.
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