
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

178,000 195M

TOP 1%154

6,600



Chapter

Heat Transfer Mechanisms in
Petroleum and Geothermal
Wellbores
Sharat V. Chandrasekhar, Udaya B. Sathuvalli

and Poodipeddi V. Suryanarayana

Abstract

The flow of fluids between wells and reservoirs involves a substantial amount of
thermal energy exchange with the formation. Understanding the mechanisms
involved in the heat transfer of these processes is crucial to the design of the wells for
mechanical integrity. While long term production scenarios may achieve a notional
steady state, short term injection scenarios involve an accurate consideration of the
thermal transients. With global initiatives towards a transition to clean energy, the
design of geothermal wells is becoming an area of great importance these days.
Accordingly, correct simulation of the heat transfer in the circulating scenario
involved in closed loop wells enables accurate assessments of thermal power gener-
ated. This chapter aims to educate the user in how to tackle these problems and
explains the physics and mathematics involved in detail.

Keywords: heat transfer, wellbores, production, injection, circulation, geothermal
energy

1. Introduction

1.1 Background

The discovery of reservoirs with hotter in-situ temperatures (above 200° F) over
the past several decades has introduced engineering challenges that depend critically
on an accurate assessment of wellbore temperatures. In particular, subsea wells are
being drilled to deeper horizons these days and are exposed to hotter temperatures
than in the past.

These wells have multiple tubulars and fluid-filled annuli as depicted in Figure 1.
In addition, many of these wells are prolific producers (of hydrocarbons or geother-
mally heated water), resulting in high arrival temperatures at the surface. In some
instances, the fluid arrival temperatures at the wellhead could, in fact, be hotter than
the already high bottomhole temperature, because of the negative Joule-Thomson
effect. A problem of equal, if not greater importance, is the effect of the lateral (or
radial) heat transfer from the flowing stream to the wellbore layers, resulting in
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temperature buildup in fluid filled annuli and thermal stresses in the unsupported
sections of the bounding tubulars.1 One of the most serious implications of radial heat
transfer is Annular Pressure Buildup (APB). The prediction and mitigation of APB
constitutes a vast body of investigation in its own right. Thermal stresses in tubulars
influence the structural design of the wellhead, and the control of Wellhead Move-
ment (WHM). The displacement constraints on the tubulars at the wellhead and the
tops of cement can cause buckling and the generation of bending stresses during well
operation. In a worst case discharge (WCD) scenario, elevated temperatures may
potentially dislodge tubulars from the wellhead, and require additional lock down
rings to prevent the tubulars from catapulting. All of these phenomena require accu-
rate and reliable estimates of wellbore temperatures. In instances that involve opera-
tions with short durations, accurate prediction of the thermal transient response is
critical (for example. Drillstem tests, Well Testing to evaluate reservoir performance,
Designing APB mitigation mechanisms, wellhead pressure control in platform wells).
Injection and circulation scenarios also create temperature changes that generate
unsustainable tensile forces in improperly designed wellbore tubulars and tubular
connections.

1.2 Heat transfer mechanisms in wellbores

The fundamental mechanisms of heat transfer in a wellbore are indicated in
Figure 2. In most of the onshore and offshore locations, the geothermal temperature
increases with depth below the surface, at an average of rate of 21–32°C/km. This

Figure 1.
Schematic of a complex wellbore with multiple annuli and bounding tubulars.

1 Wellbore casings (see Figure 1) are hollow cylinders with diameter to wall thickness ratios between 8 and

40. These hollow cylinders are known as Oil Country Tubular Goods (OCTG) or tubulars.
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temperature gradient is the primary driver for all heat exchange phenomena in a
wellbore. This is true of wellbores used to extract oil and gas, and of wellbores used to
generate geothermal energy.

For the purposes of thermal and structural analysis, a well can be enclosed in an
imaginary volume that encloses the production tubing (i.e. the innermost cylinder and
primary flow conduit), and the series of casings and cement sheaths in the intervening
annular spaces. The well boundary is located at the interface between the outermost
cement sheath and the earth (known hereafter as the formation).

In a wellbore, energy is exchanged between the flow stream(s), the wellbore (i.e.
the casing strings and annular contents) and the formation. The thermal analysis of
the producing wellbore proceeds in three interlinked steps. The first step is the
solution of the balance (mass, momentum, and energy) equations in the tubing. The
second step is the assessment of radial heat loss from the tubing to the wellbore. For
the purposes of thermal analysis, the wellbore is defined as the region between the
outer surface of the tubing and the outer surface of the outermost cement sheath. The
third step is the determination of the heat transfer in the formation, i.e. from the
wellbore – formation boundary to the earth.

There is forced convection heat transfer between the flowing fluid stream and the
conduit boundary. Usually, the uncemented annular sections between tubulars con-
tain incompressible fluids that experience natural convection. Conduction in the
radial direction occurs through the walls of the casing, and the cemented sections of
the intervening annuli. This is a case of diffusion across in a composite medium. At
the well boundary, heat lost by the contents of the wellbore diffuses by conduction
into a semi-infinite domain. Sometimes the semi-infinite domain is approximated by a
finite domain with a very large farfield radius. In some wells, there is a need to

Figure 2.
Illustration of the various heat transfer phenomena in a wellbore.
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minimise heat loss from the wellbore. In such applications, Vacuum Insulated tubing
(VIT) is used.2 The heat transfer in this case between the inner and outer pipes is
practically by thermal radiation.

1.3 Types of well thermal operations

In terms of thermal interactions, a wellbore is essentially a heat exchanger. Conven-
tional heat exchangers typically involve heat transfer between two counterflowing or
parallel streams. In a wellbore however, a single stream flowing up (production) or
down (injection) the wellbore, exchanges heat with the formation layers surrounding
the wellbore, as indicated in the left two panels of Figure 3. In this figure, the black
dotted line represents the geothermal temperature, which prevails in the wellbore until
an operation (or operations) induce a thermal disturbance. During production, the hot
fluid exits from the reservoir at the bottom of the well and flows upward. During it
upward transit, there is loss of fluid enthalpy because of lateral/radial heat transfer. This
is responsible for the heating of the tubulars, the annular contents in the well (solid red
curve, panel (a)). During injection, cold fluid gets heated during its downward transit
(blue curve, panel (b)). The right two panels indicate circulation scenarios which are
analogous to classic counterflow heat exchangers. In both cases, qualitative descriptions
of the associated temperature profiles are indicated (solid red and blue curves).

In all the three scenarios in Figure 3, the key objective of a thermal analysis is the
prediction of the flowing temperature profiles, given appropriate boundary condi-
tions. In the case of transient heat transfer, initial conditions must also be specified. In
production and injection scenarios, the (boundary condition) temperatures are either
known or stipulated at the reservoir and wellhead locations. In forward circulation,
the temperature is specified at the wellhead location of the inner conduit, whereas in
reverse circulation the temperature is specified at the wellhead location of the outer
(annular) conduit. In either case, the temperature is specified at the inlet to the
wellbore of the downward flowing stream. At the bottom of the wellbore, it is typical
(but not always) to stipulate the equality of the temperatures of the two flowing
streams, as shown in Figure 3 (panels (c) and (d)).

The analysis involves the solution of the transport equations in conjunction with
heat transfer in the formation. This requires careful consideration of all relevant fluid
and thermal transport phenomena. The subsequent sections will present a systematic
analytical approach to the solution of the aforementioned problems.

Figure 3.
Producing (a), injection (b), forward circulating (c), and reverse circulating (d) scenarios.

2 A joint of VIT contains a set of concentric pipes welded together at the ends of the shorter tube. The

annular gap between the pipes is evacuated to �20 millitor (2.6 Pa).
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1.4 Review of relevant literature

The earliest studies of heat transfer in wellbores by Lesem et al. [1] and Moss and
White [2] date back to the late 1950s. For a detailed review of the literature on the
topic, the reader is referred to Chandrasekhar [3] wherein a comprehensive transient
thermal model of a complex wellbore is described in detail. There are several key
studies that constitute essential reading and are listed below:

The 1962 study by Ramey [4] was the first systematic study of both flowing and
wellbore temperatures. His approach assumed pseudo steady state conditions in the
flowing conduit and wellbore, with the transients relegated solely to the formation.
This approach is in fact the basis for a very large number of model implementations
(the WELLFLO code for example) to this day. The wellbore itself was modelled as a
line source in a semi-infinite formation for which a simple expression was used to
characterise the transient heat flux. While the approach breaks down for shorter
producing intervals, it is valid for time periods corresponding to Fourier numbers in
excess of unity.

Willhite [5] extended the approach of Ramey [4] to account for amongst
other phenomena, natural convection, and thermal radiation in fluid-filled annuli.
An iterative approach is required to calculate the overall heat transfer coefficient
linking the temperature of flowing stream to the far field undisturbed geothermal
temperature.

It is very likely that Raymond [6] was the first study of the transient circulation
problem using a combine Laplace Transform/Finite Difference approach. The key
observation of Raymond’s analysis is that the transients are limited to the first few
hours of circulation and that the steady state solution was valid for longer periods. The
first detailed study of multiple well operating scenarios is that of Wooley [7] in which
production, injection, and circulation were considered in the context of a transient
analysis using a finite difference approach to couple the well and formation responses.

More recent studies have looked at analytical solutions where possible for coupled
wellbore/formation problems. Wu and Pruess [8] considered transient heat transfer
between a flowing fluid stream and the formation, but used an overall lumped heat
transfer coefficient to model the heat transfer across the wellbore itself. They formu-
lated a more refined formation temperature model using Laplace transforms to model
a cylindrical source. The 2018 study of Chandrasekhar et al. [9] is recommended for
the reader interested in the application of a circulating model to a complex realistic
wellbore considering both hydraulics and thermal phenomena, in addition to several
other aspects of actual real-life wellbores.

There are several textbooks in the literature that present a detailed analysis of the
fundamentals of wellbore heat transfer. Hasan and Kabir [10] cover several aspects of
both heat transfer and fluid flow in wellbores, starting with the governing equations,
and several models for multiphase flows in wellbores. In a 2009 SPE monograph,
Mitchell and Sathuvalli [11] discuss various phenomena and analytical techniques
relevant to temperature prediction in prolific oil and gas producers.

There are a few experimental studies that have investigated aspects of wellbore
heat transfer. Jones [12] describes a real time measurement that was quite novel at the
time approach to establish circulating temperatures in wellbores during drilling and
cementing operations. The performance of Vacuum-Insulated Tubing was studied by
Aeschliman et al. [13] in the context of a steam injection well. Their results compared
six different commercially available means of achieving thermal insulation by the
suppression of convection in the tubing annulus.
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2. Governing transport equations

2.1 Mass conservation

Consider a control volume (CV) of length Δz and a fixed radius R as shown in
Figure 4. Mass, momentum, and energy enter and leave the CV at locations z and
zþ Δz. In wellbores, usually there is no mass accumulation at a given location in the
control volume, so that the constant mass flow rate is given by

_m ¼ ρ zð ÞV zð Þ ¼ ρ zþ Δzð ÞV zþ Δzð ÞA (1)

where A ¼ πR2 is the conduit flow area. A mass balance over the control volume in
the limit that the size Δz shrinks to zero yields

∂

∂z
ρVð Þ ¼ � ∂ρ

∂t
¼ 0 (2)

so that the instantaneous temporal derivative of the density is zero. From Eqs. (1)
and (2), we have

∂V

∂t
¼ ∂

∂t

_m

ρA

� �

¼ _m

A

∂

∂t

1

ρ

� �

¼ �V

ρ

∂ρ

∂t
¼ 0 (3)

whereupon the temporal derivative of the velocity also vanishes, so that along with
no mass accumulation, there is no accumulation of momentum in the control volume
either.

Figure 4.
Control volume for mass, momentum, and energy balances.
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2.2 The energy equation

The specific energy e z, tð Þ identified in the figure is the sum of the kinetic,
potential, and internal energies such that

e ¼ uþ 1

2
V2 � δgy (4)

where y is the vertical depth relative to some fixed datum, and the negative sign
associated with it implies a loss of potential energy as the vertical depth increases. The
term δ ¼ �1 defines the orientation of the streamwise coordinate relative to the
gravity vector, such that δ ¼ 1 and δ ¼ �1 describe injection and production scenar-
ios, respectively. The issue of how to deal with these terms in a circulation scenario
will be described later.

Energy enters and leaves the CV in Figure 4 as indicated, with some accumulation
at the rate Δe over a period Δt. Energy is supplied through the conduit boundary at the
rate _q tð Þ.

A simple energy balance yields the following expression

_m e zþ Δzð Þ � e zð Þ½ � þ ρAΔz
Δe

Δt
¼ 2πR

ð

s¼zþΔz

s¼z

_q sð Þds� _mΔ
P

ρ

� �

¼ 2πRΔzð Þ _q zþ λΔz, tð Þ

(5)

where the Mean Value Theorem has been used to replace the integral such that
0< λ< 1. Dividing by Δz and taking the limit as both Δz ! 0 and Δt ! 0 results in

lim
Δz ! 0

Δt ! 0

_m
e zþ Δzð Þ � e zð Þ

Δz

� �

þ ρA
Δe

Δt

� �

¼
lim

Δz ! 0

Δt ! 0

2πR _q zþ λΔzð Þf g (6)

Evaluating the limit and noting that _m ¼ ρAVsimplifies Eq. (6) to

ρ
∂e

∂t
þ ρV

∂e

∂z
¼ 2

R
_q zð Þ (7)

From one of the fundamental thermodynamic relationships relating the enthalpy
to internal energy, we have

h ¼ uþ P

ρ
(8)

Substitution of the above along with Eq. (4) into Eq. (7) yields

ρ
∂u

∂t
þ V

,

∂V

∂t

0

þ
,

∂

∂t
δgyð Þ0

" #

þ ρV
∂h

∂z
þ V

∂V

∂z
� δg

� �

¼ 2

R
_q z; tð Þ (9)

The derivative of the vertical depth y with the streamwise coordinate z (known as
theMeasured Depth in wellbore parlance) is the cosine of the local wellbore inclination
θ. From Eq. (8), the temporal derivative of the internal energy can be expressed as
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∂u

∂t
¼ ∂h

∂t
� ∂

∂t

P

ρ
¼ ∂h

∂t
� P

ρ

,

∂P

∂t

0

� P

ρ2

,

∂ρ

∂t

0 P

ρ

" #

¼ ∂h

∂t
(10)

where the temporal derivative of the density vanishes in accordance with the
constant mass flow criterion which also stipulates from Eq. (3) that the time deriva-
tive of the velocity is zero. In addition, it follows from the momentum conservation
equation (which will be presented in the next section), that in the context of a
constant mass flow rate the time derivative of the pressure also vanishes. Accordingly,
Eq. (9) reduces to

ρ
∂h

∂t
þ ρV

∂h

∂z
þ V

∂V

∂z
� δg cos θ

� �

¼ 2

R
_q z, tð Þ (11)

Note that Eq. (11) contains spatial derivatives of both specific enthalpy and veloc-
ity. Closure therefore requires the consideration of the momentum equation which is
presented next. It is reiterated here that Eq. (11) as derived is only valid under the
assumption of a constant mass flow rate throughout the wellbore.

2.3 The momentum equation

A force balance over the same control volume as in Figure 4 yields the rate of
change of momentum. The forces acting on the fluid in the control volume are the
static and dynamic pressure forces and the pressure and shear stress as indicated

A ρ zþ Δzð ÞV2 zþ Δzð Þ � ρ zð ÞV2 zð Þ
� 	

þ A P zþ Δzð Þ � P zð Þ½ � þ ρAΔz

,

ΔV
Δt

0

¼ δρg zð ÞAΔzþ 2πRΔz

ð

s¼zþΔz

s¼z

τ sð Þds ¼ δρg zð ÞAΔzþ 2πRΔzð Þτ zþ λΔzð Þ
(12)

whereupon following the same logic as was used to derive the energy equation and
noting from Eq. (3) that the time derivative of the velocity vanishes, we have

ρV
∂V

∂z
þ ∂P

∂z
¼ δρg cos θ þ 2

R
τ zð Þ (13)

which is functionally equivalent to Newton’s Second Law of Motion relating the
rate of change of Momentum to the sum of the forces acting on a body of fluid.

Note that the stipulation of no mass accumulation also implies no momentum
accumulation, so that the only accumulation in the wellbore is that of energy. Note
also, that from Eq. (13), the time derivative of pressure is zero which enables the
energy equation to be cast with enthalpy as the sole flux variable on both side of the
equation.

2.4 Coupled transport equation system

The kinetic energy term in Eq. (11) is represented by the spatial derivative of the
velocity. This term can be expressed in terms of pressure and enthalpy derivatives by
invoking the chain rule as follows
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∂V

∂z
¼ ∂

∂z

_m

ρA

� �

¼ _m

A

∂

∂z

1

ρ

� �

¼ �V

ρ

∂ρ

∂z

¼ �V
1

ρ

∂ρ

∂P













h

� �

∂P

∂z
þ 1

ρ

∂ρ

∂h













P

� �

∂h

∂z

� �

¼ V αh
∂h

∂z
� β

∂P

∂z

� � (14)

where β ¼ 1
ρ

∂ρ

∂P







h
is the adiabatic compressibility and αh ¼ � 1

ρ

∂ρ

∂h







P
can be regarded as

a two-phase isobaric volume expansivity.3 Substitution of Eq. (14) into Eqs. (11) and
(13) yields the system of equations that can be expressed in the compact form

ρ
∂

∂t

h

0

" #

þ
ρV 1þ V2αh

� �

�ρV3β

ρV2αh 1� ρV2β

" #

∂

∂z

h

P

" #

¼
2R�1

_q z, tð Þ þ δρVg cos θ

δρg cos θ þ 2R�1τ zð Þ

" # (15)

2.5 Extraction of wellbore temperatures

Subject to an initial condition for the enthalpy field in the wellbore and appropriate
pressure and enthalpy and boundary conditions, Eq. (15) can be solved in conjunction
with the constitutive models for the heat flux ( _q z, tð Þ) and frictional resistance τ zð Þ
terms. Once the enthalpy and pressure distributions are known, the temperature
distribution is determined from the appropriate thermophysical property database4 or
a correlation that has the functional form

T ¼ T h,Pð Þ (16)

Since the heat flux term itself depends on temperature, the solution involves an
iterative sequence at each depth. Furthermore, in a transient multiphase analysis, the
coupling of the transport equations with the diffusion in the formation adjacent to the
wellbore can present occasional challenges with respect to the latter, as is the case with
modelling transient phenomena in steam injector wells.

2.6 Single phase flow (sensible heat)

In Two-Phase flow, the temperature remains constant under an isobaric change in
enthalpy. In single phase flow however, an enthalpy change is related to changes in
pressure and temperature according to

dh ¼ cpdT � cpcJTdP (17)

where cp and cJT are the specific heat at constant pressure and the fluid Joule-
Thomson Coefficient, respectively. The latter is related to the fluid volume expansiv-
ity according to

3 Note that the volume expansivity is typically defined as the normalised density derivative with respect to

temperature.
4 Such as NIST’s REFPROP.
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cJT ¼ 1

ρcp
αT � 1ð Þ (18)

For liquids with very low expansivity, the Joule-Thomson coefficient is invariably
negative. The term “sensible heat” is used to refer to Eq. (17) since a change in
enthalpy can be perceived as a change in temperature, which is not possible when the
state point is inside the vapour dome of the fluid.

The sensible heat formulation can also be extended to multiphase flow in wellbores
in conjunction with the so-called Black-Oil Model, where weighted properties are used
for the fluid thermophysical properties in each of the phases. The key advantage of
Eq. (17) is that the primary flux variables are now pressure and temperature. Accord-
ingly, the spatial velocity derivative is now expressed as

∂V

∂z
¼ �V

1

ρ

∂ρ

∂P













T

� �

∂P

∂z
þ 1

ρ

∂ρ

∂T













P

� �

∂T

∂z

� �

¼ V α
∂T

∂z
� β

∂P

∂z

� �

(19)

where α ¼ � 1
ρ

∂ρ

∂T







P
is the (single-phase) isobaric volume expansivity, and β ¼ 1

ρ

∂ρ

∂P







T

is the isothermal (not adiabatic) compressibility.
Substitution of Eq. (19) in Eq. (15) results in the system (see Chandrasekhar [3]):

ρcp
∂

∂t

T

0

� �

þ ρV cp þ V2α
� �

�ρV cpcJT þ V2β
� �

ρV2α 1� ρV2β

" #

∂

∂z

T

P

� �

¼ Q þ VH

H þ F

� �

(20)

where

Q tbg ¼ 2R�1
_q z, tð Þ ¼ 2π

U

_mtbg
Tann � Ttbg

� �

Htbg ¼ �g cos θρtbgVtbg

Ftbg ¼ 2R�1τ zð Þ ¼ 1

2D
fρV2

(21)

are the Thermal, Hydrostatic, and Frictional forcing functions respectively. If we
ignore the transient term for the time being, then the 2�2 system in Eq. (20) can be
inverted to yield the following expressions for the streamwise gradients of tempera-
ture and pressure as

dT

dz
¼ 1� ωð ÞQ þ αTVð ÞH þ αT þ ω� 1ð ÞVF

ρV 1� ωð Þ cp þ ηα
� �

þ η αT þ ω� 1ð Þα
� 	 (22)

and

dP

dz
¼ cpH þ cp þ ηα

� �

F � gc
�1Vα

� �

Q

1� ωð Þ cp þ ηα
� �

þ η αT þ ω� 1ð Þα
� 	 (23)

where

η ¼ V2 (24)
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and

ω ¼ ρV2β ¼ ηρβ (25)

For an incompressible liquid, α ¼ β ¼ ω ¼ 0, and accordingly the expression for
the temperature gradient reduces to

dT

dz
¼ Q � VF

ρVcp
(26)

and the pressure gradient reduces as it should, to

dP

dz
¼ H þ F (27)

Before delving into the important physical aspects of Eq. (26), it will be useful to
establish the constitutive models for the heat flux and fluid shear stress, which will be
presented next.

3. Constitutive models

3.1 Heat flux

The formation adjacent to a wellbore is notionally a semi-infinite cylinder.
Accordingly, a true steady state is never reached. However at large times from when a
well is put into operation, a notional or pseudo-steady state condition is reached as
shown by Ramey [4]. Under these conditions, the heat flux between the flowing fluid
stream in the wellbore and the formation can be represented in terms of the local
temperature difference between the fluid and the undisturbed formation temperature
prevailing at a distance far from the wellbore, at any given depth. Mathematically this
can be represented by the very simple form

_q zð Þ ¼ �U T zð Þ � Tgeo zð Þ
� 	

(28)

where U which will be described in more detail to follow, is an Overall Heat
Transfer coefficient that is independent of time, and is associated with the conduit
radius R, as reflected by the 2πR term in Eq. (5). Note that the factor of 2π itself has
already been incorporated in Eq. (5) and therefore does not appear in Eq. (28).

3.2 Overall heat transfer coefficient

Consider the section of the wellbore shown in Figure 5 with multiple intervening
layers between the fluid and the formation. At some notional steady state typically
attained at long elapsed times after a well is put into operation, the fluxes across all of
these layers are equal. In addition, this flux is also equal to the flux at the wellbore-
formation interface at some frozen time instant t. This assumption corresponds to
what is termed a Pseudo-Steady-State approach. With respect to the nomenclature of
the figure, the heat flux per unit length (not unit area) is
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_qL zð Þ
2π

¼ �hR T0 � T0

� �

¼ � k1
ln r1=r0

T0 � T1

� �

¼ � k2
ln r2=r1

T1 � T2

� �

¼ ⋯

¼ � kj
ln rj=rj�1

Tj�1 � Tj

� �

¼ ⋯ ¼ � kN
ln rN=rN�1

TN�1 � TN

� �

¼ �RwbkGeo
∂T

∂r
tð Þ












r¼Rwb

¼ �kGeo TN � TGeo zð Þ
� �∂θ

∂η
τð Þ












η¼1

(29)

where the dimensionless time τ ¼ αGeo
R2
wb

t is a Fourier Number. In Eq. (29) the barred

entities refer to interface locations (layer boundaries) and the subscript 0 in the first
term on the RHS of Eq. (29) refers to the fluid. Note that this term describes forced
convection between the fluid and the conduit. The dimensionless flux in the last term
of Eq. (29) is independent of the wellbore outer radius, interface temperature, and
formation properties and is obtained from the solution of the diffusion problem in a
cylindrical semi-infinite domain. Ramey [4] presented an expression for the dimen-
sionless flux in terms of the Fourier Number5 based on an approximation of the line
source solution as

∂θ

∂η
τð Þ












η¼1

¼ F τð Þ ¼ � ln
1

2
ffiffiffi

τ
p þ 0:29

� ��1

(30)

The constant heat flux per unit length across the wellbore represented by Eq. (29)
and out into the formation at some snapshot in time can also be represented in terms
of a fluid to formation temperature difference with the use of an Overall Heat Trans-
fer Coefficient as

_qL zð Þ
2π

¼ UR T � TGeoð Þ (31)

Eliminating the flux _q zð Þ and the temperatures between Eqs. (29) and (31) results
in the following expression for the overall heat transfer coefficient

Figure 5.
Wellbore layers between the transport fluid and the formation.

5 Note that Ramey’s solution is not accurate for small values of the Fourier Number. An expression for F τð Þ
that is valid over the entire spectrum of Fourier Numbers is provided in [3].
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U ¼ 1

R

1

hR
þ

X

k¼N

k¼1

ln rj=rj�1

kj
þ 1

kGeoF τð Þ

" #�1

(32)

Eq. (32) considers the following phenomena.

• forced convection in the conduit,

• thermal resistances offered by all of the intervening wellbore layers,

• thermal resistance at the wellbore-formation interface.

It is often convenient in wellbore heat transfer analysis to work with an overall
conductance rather than a coefficient. In the context of Eq. (32), this is defined as

U ¼ UR, so that Eq. (28) can be rewritten as

_q zð ÞR ¼ �U T0 zð Þ � Tgeo zð Þ
� 	

(33)

where the overall conductance is the reciprocal of the term in brackets in Eq. (32).

3.3 Natural convection in fluid-filled annuli

The thermal conductivity in each wellbore layer depends on the medium of the
layer. In the case of tubulars and cemented sections, the thermal conductivity may be
regarded as constant. Typical values for steel and cement are 45 W/m-K and 1 W/m-K,
respectively. When the layer consists of a fluid however, it is subject to natural convec-
tion that must be considered in the analysis. Therefore, the conductivity of a fluid layer
as used in Eq. (32) should be replaced by an equivalent thermal conductivity keq that
accounts for natural convection. In terms of a heat transfer coefficient the flux due to
natural convection between the inner and outer walls of the layer is given by

_qi zð Þ ¼ hiri�1 Ti�1 � Ti

� �

¼ keq
ln ri=ri�1

Ti�1 � Ti

� �

(34)

The natural convection correlation used in this context is an extension of the one
proposed by Dropkin and Sommerscales [14] as suggested by Willhite [5] such that
the equivalent conductivity keq of the layer can be obtained by using a multiplier on
the thermal conductivity of the static medium that corresponds to the Nusselt Num-
ber from the Dropkin-Somerscales correlation according to

keq
ki

¼ hiri�1

ki
¼ Nu ¼ 0:049 GrPrð Þ1=3Pr

0:074

(35)

where the Grashof and Prandtl numbers are defined as

Gr ¼ βfg Ti�1 � Ti

� �

ri�1 � rið Þ3

ν2
(36)

and
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Pr ¼ ν

α
(37)

where in the interest of keeping with the traditional nomenclature used in the
literature, the term βf in Eq. (36) is the coefficient of volumetric thermal expansion
(essentially the isobaric volume expansivity), and should not be mistaken for the
isothermal compressibility.6 Owing to the exponent of one-third in Eq. (35), an
iterative procedure is required to evaluate the overall heat transfer coefficient, with
Eqs. (32)-(37) all embedded in the iterative loop.

3.4 Shear stress

For flow in a conduit, the frictional resistance is expressed as a shear stress per unit
distance in the streamwise gradient that is related to the flow velocity according to the
Darcy–Weisbach model

τ zð Þ ¼ � 1

8
fρV2 (38)

where the friction factor f ¼ f Re , ε=Dð Þ can be obtained in terms of the flow Reyn-
olds number and the pipe roughness (ε) to diameter ratio, according to the iterative
Colebrook-White model or any one of several noniterative approximations published
in the literature. Note that the negative sign in Eq. (38) implies that the shear stress
acts in the direction opposing the flow.

4. Steady state temperature profiles

Consider the scenario depicted in Figure 6, in which fluid enters a vertical
wellbore from a reservoir at a fixed temperature TBH. This temperature is generally
referred to as the Static Bottomhole Temperature. The formation temperature is
assumed to decrease linearly with depth down to TSurf at the wellbore exit, such that

Tgeo zð Þ ¼ TBH � z

L
TBH � TSurfð Þ (39)

Dimensionless streamwise coordinate, and fluid and geothermal temperatures can
be defined according to

ξ ¼ z

L
, θ ¼ T � TSurf

TBH � TSurf
, θgeo ¼

Tgeo � TSurf

TBH � TSurf
¼ 1� ξ (40)

Substitution of Eqs. (28) and (38) for the heat flux and shear stress into Eq. (26)
and rearranging, results in the compact form

dθ

dξ
¼ NTU θgeo � θ

� �

þ Λ ¼ NTU 1� ξ� θð Þ þ Λ (41)

6 This rather unfortunate reusing of symbols in context is somewhat typical of heat transfer analysis, when

a multitude of thermal phenomena are considered. Note that α can refer to both volume expansivity and

thermal diffusivity.
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where readers familiar with classical heat exchanger analysis will identify the
coefficient of the temperature differential as the Number of Transfer Units defined in
this context as

NTU ¼ 2
URL

ρVR2cp
¼ 2π

UL

_mcp
� 1

Pe
(42)

which as noted above can be expressed as the reciprocal of a7 Peclet Number. The
dimensionless Frictional Heating parameter in Eq. (41) is defined as

Λ ¼ f

4

V2

cp TBH � TSurfð Þ

� �

L

R
(43)

Note that the dimensionless entity in parenthesis within the expression for Λ is the
Eckert Number. If the temperature at the inlet to the wellbore is the same as the
reservoir temperature TBH, the boundary condition corresponding to Eq. (41) is

θ 0ð Þ ¼ 1 (44)

Subject to the boundary condition above, the solution of Eq. (41) is

θ ξð Þ ¼ 1� ξþ Ce�NTUξ þ 1þ Λ

NTU
(45)

For NTU ¼ 1, the dimensionless temperature profiles are plotted in Figure 7 for
various values of the frictional heating parameter Λ. What is noteworthy is that as Λ

Figure 6.
Production through a wellbore from a reservoir.

7 The use of the article a in “a Peclet Number” as opposed to the Peclet Number is because there are several

flavours of this entity relating the magnitudes of the advective to thermal diffusive fluxes.
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increases from zero, the temperature at the surface (known as the Arrival Tempera-
ture) not only approaches the reservoir temperature, but in fact exceeds it, a very
common observation in prolific deepwater oil producers. Neglecting the frictional
heating term can therefore result in a severe underprediction of temperatures and
threaten wellbore integrity if the attendant tubular thermal stresses and annular
pressure buildup are accordingly underpredicted.

The impact of the Number of Transfer Units is shown in Figure 8, and shows that
even in the absence of frictional heating, near-isothermal conditions in the wellbore

Figure 7.
Temperature profiles for NTU = 1 and various values of Λ.

Figure 8.
Effect of NTU on temperature profiles for Λ = 0 (left) and Λ = 0.5 (right).
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can be achieved as the Number of Transfer Units number becomes very small. In fact,
in the limit NTU ! 0, the RHS of Eq. (41) reduces to zero for Λ = 0 implying θ ξð Þ ¼ 1
throughout in accordance with the boundary condition of Eq. (44).

A word of caution is in order here. The phenomenon of the arrival temperature
exceeding the bottomhole temperature as evidenced in Figure 7 is associated only
with liquids that almost always have a Negative Joule-Thomson coefficient cJT. For
gases, cJT is negative only below the inversion pressure. Accordingly, for very high gas
rate flows in wellbores, it is not uncommon to see the contrary effect of a substantial
drop in the fluid temperature towards the surface. Attempting to simulate this effect
however, with negative values of Λ (positive cJT) will yield results which while seem-
ingly plausible may not be accurate since Eq. (41) is only valid for incompressible
flows, and the assumptions invoked in its derivation tend to break down when the
produced fluid is predominantly gaseous.

5. Transient heat transfer in wellbores

Thermal transients in a wellbore are characterised by the fluid exchanging heat
with the surrounding formation at a rate that evolves in time. Therefore, there are two
adjacent coupled problems that need to be considered – the transient transport equa-
tion in the wellbore conduit of radius R and the transient radial diffusion in the
formation. These two problems are coupled at the interface between the outer layer of

the wellbore and the formation at the radius R as shown in Figure 9. Between the

radial locations R and R are all of the wellbore layers comprised of tubulars and annuli.
For the purpose of this illustrative example, it will be assumed that these layers have

Figure 9.
Transient production through a wellbore.
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negligible capacitance, so that they respond instantaneously to the fluid transients.8

Unlike in the steady state case where the overall heat transfer coefficient across the
wellbore layers was used to link the fluid temperature to the undisturbed geothermal
temperature, in a transient analysis, the linkage is between the fluid temperature and
the transient temperature at the wellbore-formation interface according to

_q z, tð Þ ¼ �U T z, tð Þ � TWBF z, tð Þ½ � ¼ kGeo
∂TForm

∂r













r¼R

(46)

With the assumption of an incompressible fluid, the transient transport equation
can be extracted from Eq. (20) as

∂T

∂t
þ V

∂T

∂z
¼ Q � VF

ρcp
(47)

subject to the same boundary condition as in the steady state case i.e., T 0, tð Þ ¼
TBH and the initial condition

T z, 0ð Þ ¼ Tgeo zð Þ (48)

The temperature at the interface between the wellbore and the formation is not
known a-priori, but constitutes one of the radial boundary conditions for the problem
of diffusion in the formation. In lieu of a semi-infinite domain, we will regard the
formation as a finite cylindrical domain with an outer radius far enough that geother-
mal conditions prevail therein at the end of the well operational time period of
interest. Accordingly, the diffusion in the formation is governed by the partial differ-
ential equation

ρgeocpgeo
∂TForm

∂t
¼ kgeo

∂
2TForm

∂r2
(49)

subject to the initial condition

TForm r, 0, zð Þ ¼ TGeo zð Þ (50)

and the boundary conditions

TForm R, τ, z
� �

¼ TWBF zð Þ (51)

and

∂TForm

∂r
R
∞
, τ, z

� �

¼ 0 (52)

Implicit in Eq. (49) is the assumption that axial diffusion is negligible, which given
the length scales of typical wellbores, is eminently justified. As a consequence, the
governing equation holds at all depths along the wellbore where the thermal interac-
tion between the wellbore and the formation is described in terms of a purely radial
heat transfer mechanism.

8 For an analysis that considers the thermal transients in all layers of a complex wellbore, see [3].
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The time and spatial coordinates variables are non-dimensionalised as

ξ ¼ z

L
, η ¼ r

R
, η

∞
¼ R

∞

R
, τ ¼ αgeo

R
2 t (53)

where the dimensionless time is essentially a Fourier Number, and the tempera-
tures are normalised as before with respect to the bottomhole to surface geothermal
temperature difference as

θ ¼ T � TSurf

TBH � TSurf
θform ¼ TForm � TSurf

TBH � TSurf

ψ ¼ TWBF � TSurf

TBH � TSurf
ϕ ¼ TForm � TSurf

TBH � TSurf

(54)

Substitution of the modified heat flux constitutive model i.e., Eq. (46), the shear
stress model from Eq. (38) and the set of dimensionless variables defined by Eqs. (53)
and (54) into Eq. (47) and Eqs. (48)–(52) result in the following dimensionless system
of coupled equations:

∂θ

∂τ
þ Pe

∂θ

∂ξ
¼ Γ ψ � θð Þ þ Λ (55)

where

Pe ¼ VR

αgeo

R

L
(56)

is a Peclet number. In the context of the steady state problem, the term

Γ ¼ 2
R

R

UR

ρcpαgeo
(57)

is a diffusion coefficient and the frictional heating parameter

Λ ¼ f

4

R

R

V3R

cpαgeo TBH � TSurfð Þ (58)

as defined above is somewhat different from that described earlier. Eq. (55) is
subject to the initial condition

θ ξ, 0ð Þ ¼ 1� ξ (59)

and the boundary condition

θ 0, τð Þ ¼ 1 (60)

which must be solved in conjunction with the formation diffusion problem non-
dimensionalised as

∂ϕ

∂τ
¼ ∂

2ϕ

∂η2
(61)
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subject to the initial condition

ϕ η, ξ, 0ð Þ ¼ 1� ξ (62)

along with the a priori unknown boundary condition at the wellbore formation
interface

ϕ 1, ξ, τð Þ ¼ ψ ξ, τð Þ (63)

and the farfield boundary condition

∂ϕ

∂η
η
∞
, ξ, τð Þ ¼ 0 (64)

The value of the farfield radius ratio η
∞
must be choses so as to be consistent with

the physics of the problem. While the Neumann condition (zero flux) in Eq. (64)at
the drainage radius is by itself adequate from a mathematical standpoint to provide
closure to the system of equations, physical realism also requires that the formation
temperature asymptotically approach the undisturbed geothermal temperature at the
depth in question, at a radial location prior to the drainage radius. Failure to satisfy
this criterion due to an insufficiently large value of η

∞
could result in substantially

inaccurate calculations. A good rule of thumb for estimating the required drainage
ratio is η

∞
¼ 5

ffiffiffi

τ
p

where the Fourier number corresponds to the end of the time period
of interest.

5.1 Solution of the transient formation diffusion problem

We start with the solution of Eq. (61) subject to the criteria of Eqs. (62)–(64) that
following Ozisik [15], involves the use of Duhamel’s Theorem as is customary for
problems involving time dependent boundary conditions. The radial temperature
profile is not the actual entity of interest. What is necessary to facilitate the coupling
of the formation diffusion problem with the fluid transport equation, is the interface
flux wherein flux continuity as expressed by Eq. (46) yields in terms of non-
dimensional entities

ψ � θ ¼ γ
dϕ

dη
ξ, τð Þ













η¼1

¼ γ
X

∞

j¼1

CjDj ξ, τð Þ (65)

where

γ ¼ kGeo

UR
(66)

and the Duhamel Convolution Integral is

Dj ξ, τð Þ ¼ �
ð

τ

0

e�λ2j τ�βð Þ
ψ 0 ξ, βð Þdβ (67)

where the prime denotes a derivative with respect to β. The eigenvalues λj and the

Fourier-Bessel coefficients Cj are defined in the appendix and depend on the farfield
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radius ratio η
∞
. In practice, the infinite summation in Eq. (65) is obviously restricted

to a finite number of Fourier modes. Note that the purpose of the exercise above was
to express the temperature difference ψ � θin terms of an interface flux.

5.2 Solution of the transient fluid transport equation

As is the case with a large number of problems in transient heat transfer, the first
step in the solution of Eq. (55) is Laplace transformation whereupon we have

sΘ� θ ξ, 0ð Þ þ Pe
dΘ

dξ
¼ Γ Ψ� Θð Þ þ Λ

s
(68)

Laplace transformation of the interface flux expression of Eq. (65) in conjunction
with Eq. (67) and some algebra yields

Ψ� Θ ¼ �γ
X

∞

j¼1

Cj
sΨ� ψ 0, ξð Þ

sþ λ2j

" #

(69)

where the Convolution Theorem has been used on the Duhamel Integral. Noting
that the initial condition or the interface flux is the undisturbed geothermal tempera-
ture, Eq. (69) can be rearranged (see [3]) into the compact form

Ψ� Θ ¼ G sð Þ 1� ξð Þ � sG sð ÞΘ (70)

where

G sð Þ ¼ W sð Þ
1þ sW sð Þ (71)

and

W sð Þ ¼ γ
X

∞

j¼1

Cj

sþ λ2j
(72)

Substitution of Eq. (70) into Eq. (68) along with the initial condition of Eq. (59)
results in the ordinary differential equation in the frequency domain

dΘ

dξ
¼ 1þ ΓG

Pe

� �

1� ξð Þ � s
1þ ΓG

Pe

� �

Θþ Λ

Pe

� �

s�1 (73)

subject to the transformed boundary condition

Θ 0, sð Þ ¼ 1

s
(74)

The solution of Eq. (73) in the frequency domain is

Θ ξ, sð Þ ¼ F sð Þ 1� e�A sð Þξ
� �

þ 1

s
e�A sð Þξ � ξ

� �

(75)
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where

F sð Þ ¼ 1

s
þ Peþ Λ

1þ ΓG sð Þ

� �

1

s2
(76)

and

A sð Þ ¼ s
1þ ΓG sð Þ

Pe

� �

(77)

5.3 Inversion from the frequency domain

The solution expressed in Eq. (75) in the frequency domain is not particularly
useful from a practical point of view. It must therefore be inverted back to physical
space using the Inverse Laplace Transform. One approach is to use the Cauchy
Residue Theorem by summing the residues over all of the poles of Eq. (75). One of
these poles is at the Origin.9 The remaining poles lie along the negative real axis of
the complex plane and are the zeros of the denominator of the 2nd term in Eq. (76)
such that

f sð Þ ¼ 1þ ΓG sð Þ ¼ 0 (78)

which must be solved numerically. An efficient method of doing so involves an
asymptotic bracketing technique, the description of which is outside of the scope of
this chapter.

The Residue Theorem while attractive from the standpoint of constituting a formal
analytical solution can involve some very tedious if otherwise straightforward book-
keeping in addition to the requirement of numerical evaluation of the roots of
Eq. (78). A far more efficient approach is to use numerical inversion with the Gaver-
Stehfest Function-Sampling Algorithm (Stehfest [16]) whereupon the temperatures in
physical space are given by

θ ξ, τð Þ≈ � ln 2

τ

X

2NG

k¼1

σkΘ
k ln 2

τ

� �

(79)

where NGS is the (even) order of the Gaver Summation, and σk, k ¼ 1⋯NGS are the
Stehfest Accelerators, defined and listed in Table 1 in the Appendix.

The evolution of the temperature profiles for two cases –with and without
frictional heating, is shown in Figure 10. In both cases, the Gaver-Stehfest function
sampling algorithm was used in conjunction with a farfield radius ratio of 200 and
1000 Fourier modes. The Negative Joule-Thomson effect is clearly seen in the right
panel of the figure for the case with frictional heating.

9 There is also a double-pole at the origin on account of the s�2 term in Eq. (76).
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6. Heat transfer in circulating scenarios

Circulation constitutes an important aspect of wellbore operations. This is most
commonly encountered in drilling, as well as swapping fluids and hole cleaning. In
what is known as forward circulation, fluid is pumped down a drillstring and returns
to the surface through the annulus, as depicted in panel (c) of Figure 3. In Reverse
Circulation (panel d Figure 3), the flow directions are reversed so that colder fluid is
injected down the annulus and hotter fluid returns to the surface. This is not that
common in conventional wellbores, but is the primary mode of operation in geother-
mal wells where hot fluid returns through an insulated or partially insulated inner
string known in that context as the tubing.

The thermal interactions in both scenarios are depicted in Figure 11 indicating the
known boundary conditions and the a priori unknown return fluid temperatures of
interest. At the bottom of the well, a matching condition stipulates that the pipe and
annulus temperatures (designated by the subscripts “p” and “a”, respectively) are
equal. In the simple well configuration considered, there is an inner pipe of inner
radius R. The annulus has inner and outer radii Ri and Ro as indicated. The outer
casing is cemented with the outer radius of the wellbore RWB in contact with the
formation. A linear geothermal gradient is assumed.

Invoking the previous assumptions of both incompressibility and pseudo steady
state heat transfer, the governing equations describing both forward and reverse
circulation can be described by the pair of equations

δ
dTp

dz
¼

Qp � VpFp

ρcVp
(80)

for flow in the pipe (denoted by the subscript “p”), and

�δ
dTa

dz
¼ Qa � VaFa

ρcVa
(81)

Figure 10.
Evolution of the transient temperature profiles for Λ = 0 (left) and Λ = 0.05 (right).
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for flow in the annulus (denoted by the subscript “a”). Note that the subscript “p”
has been dropped from the specific heat since it is now used to denote the flowing
stream in the inner pipe. The direction of the circulation is characterised by the
parameter δ ¼ �1, with the positive and negative signs denoting Forward and Reverse
circulation, respectively. The associated boundary conditions are

1þ δð ÞTp 0ð Þ þ 1� δð ÞTa 0ð Þ ¼ 2Tin (82)

at the surface inlet and the matching condition

Ta Lð Þ ¼ Tp Lð Þ (83)

at the bottom of the well assuming no losses as the fluid leaves one conduit and
enters another. The velocities are related through mass conservation such that

_m ¼ ρApVp ¼ ρAaVa ) Va ¼
Ap

Aa

� �

Vp (84)

The Heat Transfer terms in Eqs. (80) and (81) are

Qp ¼ 2R�2Upa Ta � Tp

� �

(85)

for the pipe describing the interaction between the two flowing streams and

Qa ¼ 2R�2Upa Tp � Ta

� �

þ 2R�2Ua∞ TGeo � Tað Þ (86)

for the annulus describing the interaction between the streams and the interaction
between the annulus stream and the formation. In accordance with the formulation of
the overall heat transfer conductance, we have with respect to the geometry of
Figure 11 the following expressions

Figure 11.
Thermal interaction in forward (left) and reverse (right) circulation scenarios.
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Upa

kfluid
¼ kfluid

hR
þ kfluid

ksteel
ln

Ri

R
þ kfluid

hiRi

� ��1

(87)

and

Ua∞

kfluid
¼ kfluid

hoRo
þ kfluid

ksteel
ln

Ro

RC
þ kfluid
kcement

ln
RC

Rwb

kfluid
kGeo

1

F τð Þ

� ��1

(88)

where τ is the Fourier number corresponding to the instantaneous snapshot in time
at which the temperature profiles correspond to the pseudo steady state. In both
expressions above, it should be noted that the division by the constant fluid thermal
conductivity (assumed) enables the evaluation of the forced convection Nusselt num-
bers in terms of known correlations such as the Dittus-Boelter or Sieder-Tate models.
The frictional heating terms for the pipe and annulus streams are given by

Fp ¼ 2
τp zð Þ
R

¼
f p
4

ρV2
p

R
(89)

and

Fa ¼ 2
τa zð Þ

Ro � Ri
¼ f a

4

ρV2
a

Ro � Rið Þ (90)

Normalising the wellbore streamwise coordinate by the length as in the previous
exercises, and the pipe and annulus temperatures by the surface to well depth tem-
perature difference as before yields the following coupled system of equations

d

dξ

θp

θa

� �

¼
�δNpa δNpa

�δNpa δ Npa þNa∞

� �

� �

θp

θa

� �

þ
δΛp

�δΛa

� �

þ
0

�δNa∞

� �

ξ (91)

which makes use of the fact that the normalised linear geothermal temperature is
θGeo ξð Þ ¼ ξ. Eq. (91) is subject to the pair of boundary conditions

1þ δð Þθp 0ð Þ þ 1� δð Þθa 0ð Þ ¼ 2θin

θa 1ð Þ ¼ θp 1ð Þ
(92)

The governing dimensionless parameters are the Number of Transfer Unit
parameters

Npa ¼ 2π
UpaL

_mc
Na∞ ¼ 2π

Ua∞L

_mc
(93)

and the dimensionless frictional heating parameters

Λp ¼
f p
4

V2
p

cΔT

L

R
Λa ¼

f a
4

V2
a

cΔT

L

Ro � Ri
(94)

The analytical solution of Eq. (91) yields the pair of equations for the pipe and
annulus temperature profiles as
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θp ξð Þ ¼ Cλe
λξ þ Cμe

μξ þ hp þ ξ (95)

and

θa ξð Þ ¼ Cλrλe
λξ þ Cμrμe

μξ þ ha þ ξ (96)

where λ and μ are the eigenvalues of the matrix in Eq. (91) given by

λ ¼ 1

2
δNa∞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Na∞
2 þ 4NpaNa∞

q

� �

μ ¼ 1

2
δNa∞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Na∞
2 þ 4NpaNa∞

q

� � (97)

The r and h constants in Eqs. (95) and (96) are

rλ ¼ 1þ λ δNpa

� ��1

rμ ¼ 1þ μ δNpa

� ��1
(98)

and

hp ¼ NpaNa∞

� ��1
Npa þNa∞

� �

Λp þNpaΛa � δNa∞

� 	

ha ¼ Na∞
�1

Λp þ Λa

� �
(99)

The constants of integration are determined from the boundary conditions as

Cλ ¼
eμ � rμe

μ
� �

2θin � 1þ δð Þpp � 1� δð Þpa
� �

� pa � pp

� �

1þ δð Þ þ 1� δð Þrμ
� 	

1þ δð Þ þ 1� δð Þrλ½ � eμ � rμeμ
� �

� 1þ δð Þ þ 1� δð Þrμ
� 	

rλeλ � eλð Þ

Cμ ¼
rλe

λ � eλ
� �

2θin � 1þ δð Þpp � 1� δð Þpa
� �

þ pa � pp

� �

1þ δð Þ þ 1� δð Þrλ½ �
1þ δð Þ þ 1� δð Þrλ½ � eμ � rμeμ

� �

� 1þ δð Þ þ 1� δð Þrμ
� 	

rλeλ � eλð Þ
(100)

6.1 Forced convection in the annulus

In Eqs. (87) and (88), the termshiandho represent the heat transfer coefficients at
the inner and outer surfaces of the annulus, respectively. In turbulent flows in annuli
with radius ratios approaching unity, the following approximation can be used

hi ¼ ho ¼ h ¼ kfluid
Dhyd

NuT ¼ kfluid
Dhyd

CRemPrn (101)

where Dhyd is the hydraulic diameter of the annulus, and C, m, and n are the

constants of the forced convection correlation used.10 Most annular flows in wellbore
circulating scenarios however, tend to be laminar, and associated with annulus radius

10 For the very common Dittus-Boelter correlation, the values are C ¼ 0:023, m ¼ 0:8, and n ¼ 0:33.
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ratios often well less than unity. In addition, the Non-Newtonian nature of the flow
must be considered. Merely replacing the turbulent Nusselt Number NuT in Eq. (101)
with its laminar analogue NuL is not consistent with the physics of the problem. It is
recommended that for fluids that obey the Power-Law model, the following correla-
tions from Chandrasekhar [17] be used instead

hiD

kfluid
n, κð Þ ¼ � 2

1� θb n, κð Þ
1� κ

κ ln κ

� �

hoD

kfluid
n, κð Þ ¼ � 2

θb n, κð Þ
1� κ

ln κ

� �
(102)

where the dimensionless bulk temperature is a function of the power law index
and radius ratio, and is given by

θb n, κð Þ ¼
X

4

j¼1

aj þ nbj
� �

κj�1

a1 ¼ 0:213 , a2 ¼ 0:576 , a3 ¼ �0:439 , a4 ¼ 0:152

b1 ¼ 0:0043 , b2 ¼ �0:0183 , b3 ¼ 0:0236 , b4 ¼ �0:0102

(103)

6.2 Examples of forward and reverse circulation

For a given set of operational parameters, the intermediate calculations and
evaluation of the dimensionless parameters is shown in Figure 12 which
represents a case of forward circulation of an oil-based fluid in a fairly typical
drilling scenario.

The circulating temperature profiles in the Drillpipe and its annulus are shown in
Figure 13 for the parameters in Figure 12, but three different flowrates. It is seen that

Figure 12.
Estimation of dimension groups from problem data (forward circulation).
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the temperature at the well TD at first decreases with flowrate as would be expected,
but at higher flowrates, actually increases due to frictional heating. This is more
clearly evident in Figure 14 where the TD and arrival temperatures are plotted over a
range of flowrates. The inflexion point in the well TD temperature is where the
negative Joule-Thomson effect surpasses the advection effect in the drillpipe. The
point at which the (dashed) arrival temperature curve intersects the (solid) well TD
curve is where frictional heating is significant even in the annulus.

The temperature profiles shown in Figure 15 for three different mass flow rates of
water in a reverse circulating scenario correspond to a geothermal well. In this case,
the inner conduit known as the tubing is assumed to be insulated as is common in

Figure 13.
Circulating temperature profiles for three different flowrates – Forward circulation of an oil-based drilling fluid.

Figure 14.
Negative joule-Thomson (frictional heating) effect of circulating flow rate on well temperatures.
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geothermal wells. The well TD and arrival temperatures quickly tend to become
independent of mass flow rate. The thermal power produced by a geothermal well is
given by

_PMWT ¼ _mcP Tarr � Tinletð Þ (104)

and is plotted as a function of mass flow rate as shown in Figure 16. The arrival
temperature is seen to become independent of mass flow rate at about 25 kg/sec

Figure 15.
Circulating temperature profiles for three different flowrates – Reverse circulation of water in a geothermal well
with an insulated tubing.

Figure 16.
Effect of flow rate on thermal power generated and arrival temperature in a geothermal well with an insulated
tubing.
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whereupon the thermal power increases linearly. It is important to note that only a
fraction of the thermal power is actually converted into electric power (often at a rate
of about 15–20%) that can be transmitted to a grid. Furthermore, a portion of even
this converted power has to be used to overcome the parasitic power due to frictional
losses in the geothermal wellbore. The thermal power serves however as a useful
metric in a parametric sensitivity analysis of a geothermal well.

The circulating thermal model developed here considers only a simple monobore
well for illustrative purposes. For an extension of the methodology to a complex
wellbore with multiple wellbore segments coupled via an arbitrary number of inter-
face temperature matching conditions, the reader is referred to [9]. That study also
considers curvature and tortuosity effects in deviated wells, variable lithology, multi-
ple geothermal gradients, and the effects of fluid rheology.

7. Evaluation of wellbore and interface temperatures

7.1 Wellbore temperatures in a transient analysis

The methodologies described in the previous sections dealt with the estimation of
flowing temperatures in operating and circulating scenarios. An issue of equal - if not
often greater - importance is the estimation of temperatures in the intervening
wellbore layers (fluid and solid) between the flow conduit and the formation. The
description of a fully transient analysis wherein the transient temperatures in all
layers are evaluated in tandem with the transient flowing temperature is beyond the
scope of this chapter, but the interested reader is referred to [3] where such an
analysis is described in near-exhaustive granularity. What will be demonstrated in
what follows here is how to estimate the interface thermal conductivities and tem-
peratures which are needed to evaluate the heat fluxes as well as the natural convec-
tion multipliers required for the estimation of the nodal thermal conductivities in
fluid layers.

Consider the depiction in Figure 17 showing 3 adjacent layers designated i� 1, i
and iþ 1 from left to right. The barred and unbarred symbols refer to interfacial and
nodal entities respectively. At the interface i� 1 at the left of the layer i, the flux
expressed in terms of the straddling nodal difference and the interface conductivity,
can also be expressed in terms of the differences between the nodes and the interface,
and the nodal conductivities. This relationship can be expressed as

_qi�1 zð Þ ¼ � ki�1

ln ri=ri�1

Ti�1 � Tið Þ ¼ � ki�1

ln ri�1=ri�1

Ti�1 � Ti�1

� �

¼ � ki
ln ri=ri�1

Ti�1 � Ti

� �

(105)

from which the interface thermal conductivity at the right and left interfaces with
indices i and i� 1 can be expressed in terms of the nodal values as the weighted
harmonic means

ki ¼ ln riþ1=ri
λi

ki
þ μi

kiþ1

� ��1

ki�1 ¼ ln ri=ri�1

λi�1

ki�1
þ μi�1

ki

� ��1
(106)
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where the geometric coefficients are

λi ¼ ln ri=ri μi ¼ ln riþ1=ri (107)

The interface temperatures can be expressed in terms of the geometric coefficients
in Eq. (107) and the nodal conductivities as

Ti ¼
λ�1
i kiTi þ μ�1

i kiþ1Tiþ1

λ�1
i ki þ μ�1

i kiþ1

Ti�1 ¼
λ�1
i�1ki�1Ti�1 þ μ�1

i�1kiTi

λ�1
i�1ki�1 þ μ�1

i�1ki

(108)

When there is at least one fluid layer subject to natural convection, the evaluation
of the interface values must be embedded in an iterative sequence within each time
step. Note that in a transient analysis, the fluxes on either side of a nodal layer need
not be equal, so that in general, qi�1 6¼ qi with respect to Figure 17.

7.2 Wellbore temperatures in a Pseudo steady state analysis

If the transients are relegated solely to the formation and included as a flux
captured at a snapshot in time, then the overall heat transfer coefficient can be
calculated from Eq. (32) without any need for explicitly formulating an energy bal-
ance for each individual wellbore layer. If at least one layer is a fluid layer, then the
interface temperatures are required to model the natural convection which then
renders the procedure iterative. At each step of the iteration, the interface tempera-
tures can be calculated as follows - given a value of the fluid temperature evaluated a
certain iteration step, the temperature at the conduit wall is estimated from the forced
convection component of the overall thermal resistance as

T0 ¼ T0 �
U

hR
T zð Þ � Tgeo zð Þ
� 	

(109)

Subsequently the temperatures at each of the outer layers is evaluated as

Figure 17.
Nodal and Interface temperatures and conductivities.
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Tj ¼ Tj�1 � ln
rj
rj�1

� �

U

kj
T zð Þ � Tgeo zð Þ
� 	

, j ¼ 1⋯N (110)

Once the iteration has converged, the temperature at the layer mid radius is
evaluated as

Tj ¼
1

2
Tj�1 þ Tj

� �

, j ¼ 1⋯N (111)

Note that in this case, since the fluxes are evaluated using interface temperature
differences, there is no need to evaluate interface thermal conductivities as in the
transient analysis case.

8. Conclusions

The key aspects of wellbore heat transfer cover the entire gamut of thermal energy
transport mechanisms from advection/convection in wellbores, to conduction across
wellbore tubular and cement layers, to natural convection in trapped annuli, and
diffusion in semi-infinite domains from a wellbore to the surrounding formation
layer. A term by term derivation of the transport equation using the enthalpy
formulation is crucial to understanding the relative importance of the various
energy terms.

The mathematical models developed are applicable to a very wide range of
wellbore operations, from production and injection to circulation. While thermal
transients can generally be ignored for long term production scenarios, significant
errors can result from ignoring them in shorter injection and circulating scenarios.
When the flowrates exceed a certain threshold, the seemingly counter-intuitive
temperature profiles can be explained in terms of the Negative-Joule-Thomson effect.

The most efficient approach to solving transient wellbore heat transfer problems is
by Laplace transformation of the governing equations. An efficient method of inver-
sion back to the physical domain is with the use of the powerful Gaver-Stehfest
function sampling algorithm.

Appendix

Fourier-Bessel coefficients
The solution to the one dimensional radial transient diffusion problem defined by

Eq. (61) with a constant boundary condition (ϕ 1, ξ, τð Þ = 1 in Eq. (63)) at the inner
boundary and an insulated outer boundary at the radial location η

∞
is

ϕ ξ, τð Þ ¼ 1�
X

∞

j¼1

CjFj ηð Þ e�λ2j τ (112)

in which the radial eigenfunction is

Fk ηð Þ ¼ J1 μkη∞ð ÞY0 μkηð Þ � Y1 μkη∞ð ÞJ0 μkηð Þ (113)
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where JkðÞ and YkðÞ for k = 0, 1 are the Bessel Functions of the First and Second
Kind of Order k and the eigenvalues are the zeroes of

J1 μη
∞

ð ÞY0 μð Þ � Y1 μη
∞

ð ÞJ0 μð Þ ¼ 0 (114)

The Fourier-Bessel coefficients are

Ck ¼
ð

D

1

Fk ηð Þ½ �2ηdη

2

4

3

5

�1
ð

D

1

Fk ηð Þηdη (115)

The flux at the inner boundary is the entity of interest, so that the coefficient Cj in
Eq. (65) is given by

Cj ¼ Cj
∂Fj

∂η













η¼1

¼ Cj Y1 μkη∞ð ÞJ1 μkð Þ � J1 μkη∞ð ÞY1 μkð Þ½ � (116)

Stehfest accelerators
The coefficients in the Gaver Summation known as Stehfest accelerators are

defined as

λi ¼ �1ð ÞInt N
2þið Þ X

k¼Min i, NGS
2

� �

k¼Int iþ1
2ð Þ

k
NGS
2 2kð Þ!

n
2 � k
� �

!k! k� 1ð Þ! i� kð Þ 2k� ið Þ! , k ¼ 1⋯NGS (117)

and are tabulated below for the first few even orders of the method.

k Stehfest accelerators

2 4 6 8 10

1 2 �2 1 �3.333E�01 8.333E�02

2 �2 26 �49 4.833E+01 �3.208E+01

3 �48 366 �9.060E+02 1.279E+03

4 24 �858 5.465E+03 �1.562E+04

5 810 �1.438E+04 8.424E+04

6 �270 1.873E+04 �2.370E+05

7 �1.195E+04 3.759E+05

8 2.987E+03 �3.401E+05

9 1.641E+05

10 �3.281E+04

Table 1
Stehfest Accelerators.
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Nomenclature

A Flow Area (m2)
cJT Joule-Thomson Coefficient (K-m2/N)
cp Specific Heat at Constant Pressure (J/kg-K)

D Hydraulic Diameter (m)

e Total Specific Energy (J/kg-K)
f Friction Factor
g Acceleration due to Gravity (m2/s)
h Specific Enthalpy (J/kg) / heat transfer coefficient (W/m2-K)
k Thermal Conductivity (W/m-K)
L Conduit Length (m)
_m Mass Flow Rate (kg/s)
n Power Law Index (dimensionless)
Nu Nusselt Number (dimensionless)
Nu Nusselt Number (dimensionless)
P Pressure (N/m2)
Pr Prandtl Number
Pr Prandtl Number (dimensionless)
Re Reynolds Number (dimensionless)
_q Heat Fux per Unit Area (W/m2)
r local radius (m)
r Interface Radius (m)
R Conduit Radius (m)

R Wellbore Outer Radius (m)

Re Reynolds Number (dimensionless)
Re Reynolds Number (dimensionless)
s Laplace variable in Frequency Domain
t time (s)
T Temperature (K)
u Specific Internal Energy (J/kg)
U Overall Heat Transfer Coefficient (W/m2-K)

U Overall Heat Transfer Conductance (W/m-K)

V Flow Velocity (m/s)
y True Vertical Depth (m)
z Streamwise Coordinate (m)
α Isobaric Volume Expansivity(1/K)
β Isothermal Compressibility (m2/N)
κ Annulus Radius Ratio ()
δ Directional Index
ϕ Dimensionless Formation Temperature
η Dimensionless radial Coordinate
ν Kinematic Viscosity (m2/s)
θ Dimensionless Fluid Temperature/ Wellbore Local Inclination Inclination
ρ Fluid Density (kg/m3)
τ Dimensionless Time (Fourier Number)
τw Wall Spear Stress (Pa)
ξ Dimensionless Streamwise coordinate
a Annulus
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Form Formation
Geo Geothermal
i Inner Surface
o Outer Surface
p Pipe
wb Wellbore
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