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Chapter

Deep Learning Techniques for
Liver Tumor Recognition in
Ultrasound Images
Delia Mitrea, Sergiu Nedevschi, Mihai Socaciu and Radu Badea

Abstract

Cancer is one of the most severe diseases nowadays. Thus, tumor detection in a
non-invasive and accurate manner is a challenging subject. Among these tumors,
liver cancer is one of the most dangerous, being very common. Hepatocellular
Carcinoma (HCC) is the most frequent malignant liver tumor. The golden standard
for diagnosing HCC is mainly the biopsy, however invasive and risky, leading to
infections, respectively to the spreading of the tumor through the body. We conceive
computerized techniques for abdominal tumor recognition within medical images.
Formerly, traditional, texture-based methods were involved for this purpose. Both
classical texture analysis methods, as well as advanced, original texture analysis tech-
niques, based on superior order statistics, were involved. The superior order Gray
Level Cooccurrence Matrix (GLCM), as well as the Textural Microstructure
Cooccurrence Matrices (TMCM) were employed and assessed. Recently, deep learn-
ing techniques based on Convolutional Neural Networks (CNN), their fusions with
the conventional techniques, as well as their combinations among themselves, were
assessed in the approached field. We present the most relevant aspects of this study in
the current paper.

Keywords: hepatocellular carcinoma (HCC), ultrasound images, deep learning
techniques, convolutional neural networks (CNN), conventional machine learning
(CML), classification performance assessment

1. Introduction

Cancer is one of the most severe and frequent affections nowadays, being lethal in
most situations. In particular, liver cancer incidence has considerably increased during
the last years, from 841,000 cases in 2018, to 905,700 cases in 2020, the number of
cases being estimated to double by 2040. HCC is the most often met liver cancer,
present in 70% of the primary hepatic cancer cases, being the 4th most frequent liver
malignant tumor in men, the 7th most frequent liver malignant tumor in women,
respectively the 3rd most frequent cancer-related cause of death after lung and colo-
rectal cancer. HCC usually evolves from cirrhosis, after a liver parenchyma
restructuring phase [1]. The best method for diagnosing liver cancer is through
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biopsy, which raises risks, conducting to infections, respectively to the spreading of
the tumor in the human body [2]. Thus, advanced, computerized methods are due, for
revealing subtle aspects within medical images, respectively for achieving a both non-
invasive and highly accurate diagnosis process. Ultrasonography is a medical image-
based investigation technique that is non-invasive, unexpensive, and suitable for
patient disease monitoring. Other alternative medical examination techniques, such as
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) could be irra-
diating and/or expensive. So, in our research, we performed computer aided and
automatic diagnosis of HCC based on ultrasound images. Firstly, classical, as well as
advanced texture analysis techniques were employed to perform a refined differenti-
ation between the tumoral and the non-tumoral tissue. Superior order Generalized
Cooccurrence Matrices (GCM), in the form of the Gray Level Cooccurrence Matrix
(GLCM) of superior order, respectively Textual Microstructures Cooccurrence Matri-
ces (TMCM) of second and third order [3], combined with highly performant con-
ventional classifiers, such as the Support Vector Machines (SVM), the Multilayer
Perceptron (MLP), Random Forest (RF), respectively AdaBoost in conjunction with
Decision Trees (J48) were involved in this phase. Recently, taking advantage of the
spectacular development of deep learning methods, various types of such techniques
were considered for employment and assessment within ultrasound images for HCC
recognition [4–6]. In the current approach, we focus on those deep learning tech-
niques that led to the best classification performance in our research, also on the
combinations among these techniques, as well as on their combinations with the
Conventional Machine Learning (CML) methods, at both classifier and decision level.

2. The state of the art regarding tumor recognition in medical images

Formerly, texture analysis methods, combined with traditional classification tech-
niques were widely implemented for achieving automatic and computer assisted
diagnosis of various affections, particularly of the tumor structures, based on medical
images [7–10]. A representative approach was presented in [10], the purpose being
that of differentiating, from contrast enhanced CT images, between pancreatitis and
pancreatic cancer (ductal pancreatic adenocarcinoma), employing textural parame-
ters and multivariate logistic regression. In this process, the authors involved textural
features as those derived from the Run-Length Matrix, respectively from the GLCM
matrix, and also the sum of the voxel values. The role of multivariate logistic regres-
sion was also that of identifying relevant CT images, respectively relevant textural
attributes. The textural features were calculated during the arterial and portal phases,
by employing specific software tools (AnalysisKit). The method was evaluated by
employing the Area under the Receiver Operating Characteristic (AuC) metric, which
presented values between 84% and 98% for different groups of attributes.

During the last years, the deep learning methods demonstrated their efficiency,
overpassing the performances of the conventional techniques, and being successfully
employed for medical image recognition. The main aspects concerning the state of the
art regarding the deep learning techniques are highlighted below.

2.1 Deep learning methods for medical image recognition

A CNN having as objective the classification of the HCC tumors was presented in
[11]. This network combined parallel convolutions with atrous pooling modules, for
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performing HCC recognition within ultrasound images. In [12] the authors present a
multi-scale neural network that classifies liver regions by employing VGG16 and
InceptionV4 type CNNs. Regarding the approach presented in [13], the authors
describe a method for recognizing pancreatic tumors based on contrast enhanced CT
images. A multimodal network was proposed, comprising a pyramid of augmented
features, a feature fusion module, respectively a dependency computation module. At
the end, an AuC of 0.9455 resulted. In [14] the authors present a method based on
CNNs for classifying prostate cancer of type T1 and T2 based on MRI images. An
automated system for prostate biopsy classification was presented in [15], a deep
learning architecture called CarconNet being involved. This network assumed the
participation of ResNet50, followed by a Fully Connected Network (FCN). This
approach also considered tumor evolution stage detection through the Gleason score,
the most powerful prognostic predictor for patients suffering from prostate cancer.

2.2 Combination between conventional and deep learning techniques for medical
image recognition

Relevant approaches in this area were described in [16–21]. A representative
approach was depicted in [16], where the authors fused deep learning features with
classical radiomic features to predict lung malignant nodules within tomography
images. The feature maps yielded by VGG-type CNNs, as well as by original CNNs,
were combined with classical radiomic features, which included shape, size, GLCM,
Wavelet and Laws features. A Symmetric Uncertainty (S.U.) method was adopted for
attribute selection, from the deep learning, respectively from the set of traditional
features, then the combined feature vector was provided to a classifier of type RF. The
most increased accuracy, 76.79%, was achieved when adopting a VGG-type CNN. In
[17] the authors combined handcrafted and deep learning features for achieving
automatic prostate cancer diagnosis from transrectal ultrasound images. The
handcrafted features comprised robust and scale-invariant features, features referring
to orientation, shape, texture, and color. The deep learning features were derived
from an original CNN, consisting of a backbone and another network, as well. Differ-
ent backbones were assessed, such as ResNet18, ResNet50, VGG11, VGG16, respec-
tively DenseNet121 and DenseNet201. The concatenated feature vector was fed at the
input of a fully connected network that completed the fusion process. The best
classification accuracy, of 95.54%, the maximum specificity value, of 93.64%, the
most increased value for the sensitivity, of 97.27%, respectively the maximum AuC, of
98.24%, resulted in the case when ResNet18 was adopted as the backbone. On the
other side, assessing the handcrafted and deep learning features separately, provided a
classification accuracy below 90%. Other approaches fused multiple types of deep
learning features [18, 19]. A representative approach aiming for breast tumor classifi-
cation was described in [18], where the authors trained deep CNNs of type GoogleNet
and AlexNet. The deep learning features extracted from these structures were com-
bined, after feature selection, with textural features. The fused feature vector was
finally fed to a SVM classifier. In [19], the authors assessed the fusion between the
deep learning vectors yielded by the ResNet50 and DenseNet201 CNNs, to perform
automatic recognition of brain tumors. After a feature selection phase, the resulting
feature vectors were combined through a serial procedure, respectively fed to a SVM
classifier, yielding a recognition rate of 87.8%. A common approach with regards to
the fusion between classifiers is that of considering them separately, followed by the
application of a voting procedure upon the output vectors [20, 21]. Soft (average)
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voting implies performing an arithmetic mean among the output vectors, between the
corresponding class probabilities. Hard voting means majority voting, multiple classi-
fiers being involved, the most frequently detected class constituting the final class.
Adaptive voting implies that an important weight is provided through a separate
classifier, being assigned to each model thereafter [20]. An adaptive voting-based
technology was presented in [21], for achieving lung cancer classification. It has been
supposed that not all the classifiers brought the same contribution to the recognition
result, so the contribution weights were learnt through a specific algorithm. Thereaf-
ter, a 3-D CNN classifier, besides conventional classifiers, as for example SVM or
logistic regression, were trained to predict the lung cancer type (benign or malignant),
based on low-dose chest CT images. The corresponding output probabilities were
exploited to train a second-stage classifier that yielded the result. At the end, a
maximum AUC of 75% was achieved, due to the ensemble classifiers.

As we notice from the above-presented methods, various types of techniques were
involved for tumor recognition within medical images. However, the classification
performance can be further improved, for achieving a reliable automatic and com-
puter aided diagnosis. Also, the problem of HCC recognition within ultrasound images
was less approached and no systematic analysis exists upon various classes of methods
applied for this purpose. In the next sections, we present our own contribution
regarding each class of techniques (CML methods, deep learning techniques and
combinations).

3. Comparing and combining conventional and deep learning techniques
for HCC recognition within ultrasound images

3.1 The dataset and the experimental settings

The dataset: For achieving reliable results, two datasets were involved in our
experiments. The first one, GE7, comprised classical (B-mode) ultrasound images,
corresponding to 200 cases of HCC, acquired through a Logiq 7 (General Electrics,
USA) ultrasound machine, considering the same acquisition parameters: 5.5 MHz
frequency, gain having the value of 78, depth 16 cm, Dynamic Range (DR) having the
value 111. The second dataset, GE9, included B-mode ultrasound images that belonged
to 96 patients suffering from HCC, acquired through a Logiq 9 (General Electrics,
USA) ultrasound machine, the acquisition parameters being as follows: 6.0 MHz fre-
quency, gain having the value 58, depth having the value of 16 cm, DR being 69. All
the images were collected by the specialists from well-known clinics in Cluj-Napoca:
from the 3rd Medical Clinic, respectively from the O. Fodor Regional Institute of
Gastroenterology and Hepatology. All the patients in our study were subjected to
biopsy or CT exam, for diagnostic confirmation. For each patient, multiple images
were included. Two classes were considered for differentiation in our study: HCC and
the cirrhotic parenchyma on which HCC had evolved (PAR). For the GE7 dataset,
rectangular regions of interest, having the dimension of 50x50 pixels, were selected
through manual procedures, by the specialists, inside HCC, or within the PAR region,
employing a specific application. The second dataset comprised advanced phase HCC,
these tumors being manually delineated by the physicians, using the VIA tool [22].
Through the graphical interface of this application, the doctors delimited the HCC
area by using a polygon. Thus, rectangular regions of interest (patches), having
56 � 56 pixels in dimension, were automatically provided from the HCC and PAR
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areas, through a sliding window algorithm [4]. Representative patch examples for
each of the GE7 and GE9 datasets, from the HCC and PAR classes, are provided in
Table 1. For both datasets, we remark the heterogeneous character of HCC, as com-
pared with PAR.

Experimental settings: Most of the CNNs, i.e. ResNet101, InceptionV3,
Efficientnetb0, respectively the improved versions of Efficientnetb0, were employed
in Matlab R2021-b, using the Deep Learning Toolbox [23]. The enhanced
Efficientnetb0, improved with the aid of an ASPP module, respectively of a dropout
layer, was constructed in the context of the Deep Network Designer. The training of
these networks was performed as follows: the Stochastic Gradient Descent with
Momentum (SGDM) strategy; the learning rate was 0.0002; the mini-batch size was
30; the momentum was considered 0.9; the duration of training was 100 epochs.

These hyper-parameters were set in this manner for achieving an accurate, effi-
cient learning process, respectively for simultaneously avoiding overtraining, also
considering the memory constraints of the computer (the minibatch size). All the
networks mentioned above were pretrained on the ImageNet dataset. The ConvNext
type CNN was employed in Python, by using the TorchVision library [24]. This
network was trained similarly, with the same strategy and the same hyper-parameter
values as those adopted for the other CNNs. As it concerns the dimensionality reduc-
tion methods, the KPCA technique [25] was implemented in Matlab 2021, by using the
Matlab-Kernel-PCA toolbox [26], considering the linear, third-degree polynomial and
Gaussian kernels. The Particle Swarm Optimization (PSO) [27] based feature selection
technique was employed in Matlab as well, using a specific framework [28]. The

Image set HCC PAR

GE7

GE9

Table 1.
Relevant examples of HCC and PAR patches from the GE7 and GE9 datasets.
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classical feature selection techniques were employed by using Weka 3.8. [29]. The
CfsSubsetEval method, standing for Correlation based Feature Selection (CFS) [30],
was implemented with BestFirst search, while the Information Gain Attribute Evalu-
ation (IGA) technique was employed with Ranker search [29, 30]. The conventional
classifiers were also employed using Weka 3.8 [29]. The John Platt’s Sequential Mini-
mal Optimization (SMO) methodology [29], which is equivalent with SVM in Weka,
was assessed, in combination with the polynomial kernel, of 3rd degree that yielded
the best performance. The metaclassifier of AdaBoost was evaluated for 100 itera-
tions, together with the J48 method, the Weka equivalent of the C4.5 algorithm. The
RandomForest classification technique was also adopted in Weka 3.8. Part of the
textural features were derived with the aid of our own Visual C++ modules, as
presented in Section 2.3, in a manner independent on orientation, scale and illumina-
tion, after the application of a median filter for speckle noise attenuation. The LBP
feature vector was calculated in Python, with the aid of the Numpy library. All these
experiments were conducted on a computer with a 2.60 GHz i7 processor, 8 GB of
internal (RAM)memory, respectively an Nvidia Geforce GTX 1650 Ti GPU. As for the
performance assessment strategy, in the case of the CNN based techniques, 75% of the
data stood for the training set, 8% of the data constituted the validation set and 17% of
the data was comprised in the test set. Regarding the conventional classifiers, 75% of
the data was included in the training set, and 25% of the data being integrated in the
test set. The performance of the best classifiers and fusion schemes was reassessed as
well by employing cross-validation with 5 folds.

Performance assessment: For classification performance evaluation, the follow-
ing metrics, appropriate for automatic diagnosis in the medical domain were
approached: recognition rate(accuracy), TP Rate (sensitivity), TN Rate (specificity),
respectively Area under ROC (AuC) [31]. In the current experimental context, HCC
was considered the positive class, PAR being considered the negative class.

3.2 Comparing conventional and deep learning techniques

3.2.1 Conventional techniques involved in our research

Regarding the texture-based methods, both relevant classical techniques, and
advanced, original methods, developed by the authors, were considered. As classical
textural attributes, we included:

• first order statistics of the gray levels (arithmetic mean, maximum and minimum
values)

• second order gray level features: the Haralick parameters derived from GLCM
computed as described in [4], this feature group comprising the GLCM entropy,
the GLCM energy, the GLCM homogeneity, the GLCM correlation, the GLCM
variance and the GLCM contrast, which emphasized the properties of the tissue,
such as the heterogeneity, echogenicity, granularity, complexity of the gray level
structures.

• the autocorrelation index [30], referring to the granularity of the tissue;

• edge based statistics, such as the edge frequency and edge contrast [32],
emphasizing the complexity on the gray level distribution;
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• the statistics of the microstructures, resulted after the application of the Laws
filters [33], emphasizing the structural complexity;

• the Hurst fractal index, highlighting the roughness and structural complexity of
the tissue;

• multiresolution features, such as the Shannon entropy derived after applying the
Wavelet transform recursively, twice [2];

• LBP, as a powerful texture-based technique, insensitive to illumination changes
[33]. For calculating these features, around each pixel, a circle of radius R was
drawn, and, on this circle, N neighbors were emphasized. For achieving the LBP
code, the differences between the central pixel and each neighbor were
determined. For each considered neighbor, if this difference was larger than 0, a
code having the value of 1 was stored, otherwise, a 0 valued code was considered.
These N codes formed a number that represented the LBP code. In the current
work, the LBP attributes were calculated by ranging the values of R and N, the
following (R, N) value pairs being assessed: (1, 8), (2, 16), (3, 24). Compressed
LBP histograms with a smaller number of bins (100), were computed in the area
of interest.

We also employed advanced, original textural attributes, conceived by the authors,
as for example the edge orientation variability [5], or those derived from superior
order GCMs, defined by (1) and computed as described in [5].

CD a1, a2, ::, anð Þ ¼ #

�

x1, y1
� �

x2, y2
� �

x3, y3
� �

:: xn, yn
� �� �

: (1)

A x1, y1
� �

¼ a1,A x2, y2
� �

¼ a2, ::,

A xn, yn
� �

¼ an, ∣x2 � x1∣ ¼ ∣d
!
x1∣, ∣x3 � x1∣ ¼ ∣d

!
x2∣, ::,

∣xn � x1∣ ¼ ∣d
!
xn�1∣, ∣y2 � y1∣ ¼ ∣d

!
y1∣, ∣y3 � y1∣ ¼ ∣d

!
y2∣, ::,

∣yn � y1∣ ¼ ∣d
!
yn�1∣, sgn x2 � x1ð Þ y2 � y1

� �� �

¼ sgn d
!
x1 � d

!
y1

� �

,

sgn xn � x1ð Þ yn � y1
� �� �

¼ sgn d
!
xn�1 � d

!
yn�1

� �

�

According to (1), each element of this matrix, CD(a1, a2,..,an) contains the number
of n-tuples of pixels, having the values (a1, a2, … , an) for the considered attribute A,
which can stand for the intensity level, edge orientation, etc. The pixels are in a spatial
relationship denoted by the displacement vectors, (dx1, dy1), (dx2, dy2),.., (dxn-1, dyn-
1). In our approach, the attribute A stood either for the gray level value of the pixel in
the original image, respectively for the gray level value associated to the cluster
center, after applying the k-means clustering algorithm, each resulting cluster being
associated with a textural microstructure. In the case of k-means clustering, the
value of k was 250 or 500. The second and third order GLCM, respectively the
second and third order Textural Microstructure Cooccurrence Matrix (TMCM) were
determined.
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3.2.2 Convolutional neural networks (CNNs)

As for the deep learning techniques, we included both relevant and newly
developed CNNs, considering both classical CNNs and transformer-based methods
[34–38]. Several standard architectures were initially analyzed, the best performance
being achieved for InceptionV3 [35], ResNet101 [36], DenseNet201 [37], respectively
for the recently developed EfficienNetb0 [34]. Concerning the transformer-based
methods, the best performance resulted for ConvnextBase [38]. These CNN architec-
tures were considered as embedding both inception modules and residual connec-
tions, being well-known that these elements considerably enhanced the classification
performance. The high performant densely connected networks, in the form of the
DenseNet architecture, were included as well, while the EfficienNet architecture was
also employed, due to its’ scaling properties. Some of these architectures were
enhanced, for optimizing their performances. Thus, two improved versions of
Efficientnetb0, denoted Efficientnet_ASPP1, respectively Efficientnet_ASPP2, were
conceived, by introducing, before the fully connected layer, an AtrousSpatial Pyramid
Pooling (ASPP) module [34], designed in two manners, for extracting multi-scale
features. A dropout layer was added thereafter, to avoid overfitting. The ASPP mod-
ules were inserted after the usual convolutional part of Efficientnetb0, immediately
before the fully connected layers. The first ASPP module included a 1 � 1 convolution,
as well as two atrous convolutions of size 3 � 3, with the rate 2, respectively 3
(Efficientnet_ASPP1). The second ASPP module comprised a 1� 1 convolution unit, a
3 � 3 atrous convolution unit with rate 3, respectively a 5 � 5 atrous convolution unit,
with rate 2 (Efficientnet_ASPP2). At the end, a depthcat layer, respectively a global
average pooling layer were added in both cases. Regarding the dropout layer, an
output probability of 0.5 was associated to it.

3.2.3 Experimental results

3.2.3.1 Assessing the performance of the textural features through conventional classifiers

Firstly, upon the entire feature vector, which contained the above-mentioned
textural features, the CFS technique in combination with the IGA method was
employed for relevant feature selection, the intersection between the two resulting
relevant feature subsets constituting the final feature set. Then, the values of these
features were fed at the entrances of conventional classifiers, such as SVM (SMO in
Weka 3.8), RF, respectively AdaBoost combined with Decision Trees (J48) [29]. For
the first dataset, GE7, the best classification accuracy, of 92.92%, the most increased
sensitivity, of 94.1% as well as the highest AUC, of 93.45%, were achieved for
AdaBoost, while the most increased specificity, of 93.1%, resulted for SVM. As for the
GE9 dataset, the highest accuracy, of 82.5%, the most increased sensitivity, of 81.81%,
the maximum specificity, of 83.2%, as well as the best AUC, of 89.7%, resulted for
AdaBoost as well.

3.2.3.2 Assessing the performance of the convolutional neural networks (CNNs)

Within Table 2, the classification performance parameters for the individual
CNNs, obtained through transfer learning, on both datasets, GE7 and GE9, are
depicted. The highest values resulted for each classification performance parameter,
for each dataset, were emphasized with bold. For GE7, the maximum classification
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accuracy, the most increased sensitivity and the best AUC, resulted for ResNet101.
The maximum specificity was achieved for DenseNet201. For the second dataset,
GE9, DenseNet201 yielded the best accuracy of 83.2%, respectively sensitivity, of
83.5%. The best specificity, of 86.9%, was provided by Efficientnet_ASPP2, while the
best AuC, of 86%, resulted for InceptionV3. For both GE7 and GE9 datasets,
Efficientnet_ASPP1, the first enhanced version of Efficientnetb0, led to an increased
classification performance, in terms of accuracy and sensitivity, as compared with the
original Efficientnetb0, while the second improved version, Efficientnet_ASPP2, led
to an improved specificity, in comparison with the initial version, Efficientnetb0.

3.3 Combinations among convolutional neural networks (CNNs)

3.3.1 Classifier level fusion

In this approach, we considered representative CNN architectures, then we com-
bined them at the classifier level. The selected architectures were ResNet101,
InceptionV3, respectively Efficientnetb0, these CNNs being acknowledged for their
performances, as previously described. Two CNNs were combined, by extracting the
features at the end of the convolutional part of the network, before the fully
connected or softmax layers, as depicted by Figure 1, fusing them through the follow-
ing procedures thereafter:

1.Concatenation, assuming the simple concatenation of the feature vectors.

2.CFS + Concatenation, involving feature selection through the CFS technique [28],
on each feature vector, followed by concatenation.

Dataset Method Accuracy Sensitivity Specificity AuC

GE7 ResNet101 95.9% 95.6% 91.2% 93.4%

DenseNet201 93.1% 92.8% 92.5% 93%

InceptionV3 88.7% 88.8% 88.6% 89%

Efficientnetb0 74.93% 72.9% 77.5% 75.2%

Efficientnet_ASPP1 76.9% 77.4% 76.1% 76.75%

Efficientnet_ASPP2 73.2% 72.1% 79.8% 77%

ConvnextBase 83% 78% 88% 83%

GE9 ResNet101 78.4% 82% 75.5% 78.75%

DenseNet201 83.2% 83.5% 82.9% 83.20%

InceptionV3 80.39% 81.63% 79% 86%

Efficientnetb0 74.32% 75.22% 73.22% 82%

Efficientnet_ASPP1 76.2% 79.8% 73.22% 76.51%

Efficientnet_ASPP2 67.1% 48.5% 86.9% 67.70%

ConvnextBase 81% 75% 86% 80.5%

Table 2.
The assessment of the individual CNN architectures.
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3.Concatenation + CFS, implying to perform the concatenation of the two vectors
followed by feature selection through CFS [28].

4.KPCA + Concatenation assumed the application of KPCA [23] on each vector,
performing concatenation thereafter.

5.Concatenation + KPCA, employing the concatenation of the two vectors followed
by KPCA [23] .

For KPCA, the Gaussian kernel was employed, which provided the best results.
The combined feature vector was fed at the input of a conventional classifier, such as
SVM, RF, AdaBoost combined with the C4.5. method of Decision Trees [29].

3.3.2 Decision level fusion

Considering the CNN architectures previously described, we performed decision
level fusion among them, implying to combine the output probabilities of these CNNs
through soft, hard and adaptive voting [18], as also illustrated in Figure 2.

We provide below the detailed description of each procedure. Soft(average) vot-
ing: For soft voting, relevant pairs, or CNN groups, were considered, respectively an
arithmetic or weighted mean was determined among the output probabilities [6]. As
for the weighted mean, a larger weight was attributed to those networks having

Figure 1.
Classifier-level fusion of two CNNs.

Figure 2.
Decision level fusion (voting) of two CNNs.

10

Deep Learning - Recent Findings and Researches



increased performance, according to (2). In (2), Wmean stood for the weighted mean,
P1, P2,., Pn-1 constituted the predictions (probability pairs) of the classifiers in the
group, Pn constituted the prediction of the best classifier, while P1 represented the
prediction corresponding to the weakest classifier.

Wmean ¼
2 n� 1ð ÞPn þ 2 n� 2ð ÞPn�1 þ ::þ 2P2 þ P1

2 n� 1ð Þ þ 2 n� 2ð Þ þ ::þ 1
(2)

Hard(majority) voting: Hard (majority) voting was also implemented, upon rep-
resentative CNN groups. The final derived class was the most frequently met class at
the output of the considered classifiers (the majority class). Adaptive voting: Adaptive
voting was implemented as well, through a stacking combination scheme, by provid-
ing the CNNs’ outputs (pairs of probabilities) to a conventional classifier, which
yielded the final class. The following conventional classifiers were assessed: Multilayer
Perceptron (MLP), Random Forest (RF), Support Vector Machines (SVM), AdaBoost
in conjunction with decision trees (C4.5) [22].

3.3.3 Experimental results

3.3.3.1 Classifier level fusion

Regarding the assessment of the CNN combinations at classifier level, the CNN
features were firstly extracted: 2048 features were obtained from ResNet101, respec-
tively InceptionV3, at the output of the pool5, respectively avg_pool layers, while for
Efficientnetb0, 1280 features were extracted at the end of GlobAvgPool. On both
datsets, GE7 and GE9.

Performance assessment on the GE9 dataset: The highest accuracy, of 97.79%
resulted when considering the fusion between ResNet101 and InceptionV3, for the
KPCA + Concatenation combination scheme, when considering the AdaBoost
metaclassifier. The most increased sensitivity, of 97.9%, was achieved in the case of
the classifier level fusion between ResNet101 and InceptionV3, for KPCA + Concatena-
tion, for the RF classifier, respectively in the case of the combination between
ResNet101 and Efficientnetb0, for the same combination scheme and classifier as
previously. The best specificity, of 98.9%, respectively the best AuC, of 97.8% were
attained when fusing ResNet101 and InceptionV3, through the KPCA + Concatenation
scheme for the AdaBoost metaclassifier. The best classification performance usually
resulted for KPCA + Concatenation, respectively CFS + Concatenation, when
employing the RF, respectively the AdaBoost metaclassifiers. In Figure 3, a graphical
representation of the average accuracy, for each fusion scheme, for each CNN combi-
nation, is provided. Above, the arithmetic mean of the classification accuracies, for
each fusion scheme, considering all the CNN combinations, is depicted: the best
performance was achieved for KPCA + Concatenation, the overall average accuracy
being 92.18%, followed by the FS + Concatenation, the overall average accuracy being
85.91%. We observe that performing first feature selection or KPCA, on each CNN
feature vector, separately, followed by concatenation, led to better results than the
procedures which performed firstly concatenation, then FS or KPCA. We also notice
that the simple concatenation of the CNN features was overpassed by all the other
fusion schemes. Regarding the CNN combinations, the best results were provided by
ResNet101 + InceptionV3, followed by InceptionV3 + Efficientnetb0, respectively by
ResNet101 + Efficientnetb0.
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The classification performance of the best fusion schemes also exceeded the per-
formance of the individual CNNs (Table 2).

Performance assessment on the GE7 dataset: For assessing the performance of
the CNN combinations at classifier level on the GE7 dataset, the same pairs of CNNs
as in the previous case were assessed. The best classification performance was attained
for ResNet101 combined with InceptionV3, for the KPCA+Concatenation scheme:
accuracy of 98.71%, sensitivity of 99.3%, specificity of 98.1%, AuC of 99.8%.

3.3.3.2 Decision level fusion

In the current study, the experiments regarding decision-level fusion of the indi-
vidual CNNs were performed on the GE9 dataset, more recently acquired.

When employing soft voting, through the arithmetic mean between the output proba-
bilities of the CNNs, pairwise combinations, as well as CNN groups were considered.
When applying hard(majority) voting, three relevant groups of CNN were considered:
the top three CNNs with the best classification performance, ResNet101,
DenseNet201 and InceptionV3; the fusion of the two best performing CNNs with
Efficientnet_ASPP1 only, as this enhanced EfficientNet version led to a more
increased performance than Efficientnet_ASPP2; the fusion of the top three CNNs,
having the maximum performance, with Efficientnet_ASPP1, respectively
Efficientnet_ASPP2.

In Figure 4, a comparison of the classification performances for all the fusion
schemes is illustrated. The arithmetic means of the performance metrics, calculated
for each scheme, were considered. Classifier level fusion was also evaluated, on the
same dataset. Above each group that corresponded to a certain fusion scheme, the
arithmetic mean of the performance parameters is emphasized. We can observe that
adaptive voting led to the most increased performance, the average accuracy being
96.85%, the average sensitivity being 97.43%, the average specificity being 96.30%,
respectively the average AuC being 98.45%. On the second place we can find classifier
level fusion, the average accuracy being 90.83%, the mean sensitivity being 85.27%,
mean specificity being 96.34%, the mean AuC being 90.59%. Regarding the decision

Figure 3.
Comparison of the average classification accuracies for each fusion scheme, for every CNN combination.
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level fusion schemes, adaptive voting generated the best performance, followed by
soft voting, respectively by hard voting.

3.4 Combinations between conventional techniques and convolutional neural
networks (CNNs)

3.4.1 Classifier level fusion

The classifier level combination of the CNN based techniques with the CML
methods assumed to feed the initial dataset, consisting of HCC and PAR patches, as
input to a CNN classifier, respectively to the texture analysis techniques, as illustrated
in Figure 5. The deep learning attributes, resulted at the termination of the of CNN
convolutional part, were combined with the textural attributes, through concatena-
tion, or through a fusion scheme that involved dimensionality reduction, as KPCA or
Feature Selection (FS). Then, a supervised conventional classifier was employed. The
textural features presented previously formed the vector of conventional features,

Figure 4.
Classification performance comparison between the CNN based fusion schemes.

Figure 5.
Combination of the conventional and deep learning techniques at classifier level.
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while the deep learning-based features were collected at the end of the last layer that
preceded the fully connected layers. The fusion methods were employed through the
same combination schemes as mentioned in Section 3.3.1. However, in this situation,
feature selection has been performed by employing both classical and bio-inspired
techniques. In the case of classical feature selection, the CFS and IGA methods were
adopted. The CFS technique was employed in conjunction with the best first search
algorithm, while IGA was implemented together with the Ranker search algorithm.
These two FS methods were combined, by finally providing the intersection between
the two resulting feature subsets. Regarding the bio-inspired techniques, the Particle
Swarm Optimization (PSO) algorithm was implemented as described in [3]. Thus, the
corresponding Fitness function aimed to minimize the classifier error rate, but also the
number of relevant features included in the final feature set.

Regarding KPCA, considering Concatenation + KPCA, we retained 500 compo-
nents, while for KPCA + Concatenation, we retained 300 components from each
vector, containing either deep learning or textural features, to balance the vector
lengths in each case. Thereafter, the correlations between the deep learning and
textural features were analyzed, to explain the importance of the deep learning attri-
butes reported to the physical and visual properties of the tumor. To do so, the
Pearson correlation technique was adopted [5].

3.4.2 Decision level fusion

The fusion between the CNN based techniques and the CML methods at the
decision level, implies that the CNN classifier, respectively the CML method,
consisting of advanced texture analysis and a conventional supervised classifier, are
firstly applied in parallel, followed by the combination of the output probabilities of
the two classifiers (deep learning and traditional), as illustrated in Figure 6. In the
current work, the weighted mean operation was performed between the probability
output vectors. Thus, the final output of the combined classifier, the Decision Level
output (DL_output), consisting of the probability vector indicating the class probabil-
ities, was derived by employing the formula (3). In (3), ω1 and ω2 are the weights
associated with the two terms of the weighted mean, the method yielding the best

Figure 6.
Combination of the conventional and deep learning techniques at the decision level.
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classification accuracy being assigned a weight of value 2, while the weight associated
with the other method will have the value 1. P1 was the output (pairs of probabilities)
of the CNN, while P2 was the output (pairs of probabilities) of the conventional
supervised classifer.

DLOutput ¼ ðω1 � P1 � þ ω2 � P2Þ=ðω1 þ ω2Þ (3)

In the current approach, the best performing CNN was fused with the best CML
method, assuming the relevant textural features and the conventional classifier yield-
ing the highest accuracy.

3.4.3 Experimental results

3.4.3.1 Classifier level combination

3.4.3.1.1 Performance assessment on the GE7 dataset

For assessing and comparing the considered fusion schemes, we computed the
arithmetic mean of the values of the performance parameters, attained for the indi-
vidual traditional classifiers, for each fusion between the textural features and the
deep learning features obtained from a certain CNN.

The overall maximum value of the mean accuracy, 97.47%, as well as the overall
maximum value of the mean sensitivity, of 97.53%, were achieved when combining
ResNet101 with the textural features, through the Concatenation + FS combination
scheme, the overall highest value of the average specificity, of 98.63%, was attained
when fusing the InceptionV3 feature vector with the textural feature vector, for the
KPCA + Concatenation combination, while the overall highest value of mean AUC, of
97.86%, was achieved when fusing ResNet101 with the textural features through the
Concatenation + PSO scheme. The highest overall accuracy, 98.23%, was attained
when InceptionV3 was considered, for KPCA +Concatenation, in the case of AdaBoost.
The maximum overall sensitivity, 98.2%, was achieved when ResNet101 was
employed, for KPCA + Concatenation, respectively for AdaBoost.

Above each group, corresponding to a certain fusion scheme, the arithmetic mean
of the accuracy values per group was emphasized. As can be noticed, the performance
of the considered combination schemes exceeded that of the individual CNNs, in most
of the situations. Also, all the fusion schemes employing feature selection and KPCA,
led to a better performance than that achieved when considering a simple concatena-
tion between the CNN and the textural feature vectors. Thus, the highest value of the
average accuracy, 93.46%, was attained for KPCA + Concatenation, followed by the
average accuracy of 91.13%, achieved for the Concatenation + KPCA combination
(Figure 7).

3.4.3.1.2 Performance assessment on the GE9 dataset

Similarly, with the case of the GE7 dataset, we first computed the arithmetic mean
of the values of the performance parameters, obtained, for the three traditional clas-
sifiers, for each fusion between the textural features and the deep learning features
derived from a particular CNN. The maximum value of the mean accuracy, of 98.01%,
the highest mean sensitivity, of 98.26%, the most increased mean specificity, of
97.9%, respectively the maximum mean AUC, of 94.16% were achieved for the
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KPCA + Concatenation fusion scheme, when the ResNet101 architecture was
employed. Regarding the individual values, attained through each traditional classi-
fier, the maximum overall accuracy, 98.9% and the highest overall specificity, 98.6%,
resulted for the fusion between InceptionV3 and the textural attributes, for the
KPCA + Concatenation combination, when considering the AdaBoost metaclassifier. In
Figure 8, the comparison between the values of the arithmetic means of the accura-
cies, for each combination scheme, for each CNN, is depicted, with the arithmetic
average of the accuracies per combination scheme being illustrated for each group.
The highest mean accuracy, 87.58%, was achieved for KPCA, followed by concatena-
tion, while the second-best mean value, of 86.71%, was attained for concatenation
followed by KPCA.

Figure 7.
Comparisons between the mean accuracy values resulted for each fusion scheme, for the employed CNNs, for the
dataset GE7.

Figure 8.
Comparisons between the mean accuracy values resulted for each fusion scheme, for the employed CNNs, for the
dataset GE9.
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Relevant textural attributes: The importance of the textural parameters with
respect to the classification process was evaluated considering the whole feature
vector, when fusing them with the CNN feature vector. The ordering was derived
after the application of the IGA technique [28] upon the combined feature vector,
containing both textural and CNN features. For GE7, the most important feature was
the TMCM contrast, calculated for k = 500, with an average relevance score of 0.066,
the highest average score for the whole feature set being 0.357. This attribute empha-
sized the more complex character of the HCC tissue. Regarding the GE9 dataset, the
first position among the ordered feature vector was occupied by the homogeneity
computed from TMCM of order three, the value of k being 250, having associated the
maximum relevance score of 0.2. This parameter highlighted the heterogeneous
nature of the HCC tissue, due to the interleave of multiple tissue types.

Correlations among the textural and CNN features: The correlations between the
textural parameters and the CNN features were also assessed, for each CNN, on both
datasets. Regarding the correlations between the textural and the CNN attributes, on GE7,
the most increased correlations were those between the TMCM500_contrast and five
InceptionV3 features, the values of the corresponding correlation coefficients being 0.197,
0.194, 0.184, 0.176 and 0.171. As for the GE9 dataset, the highest correlations were those
met between the GLCM_variance and three ResNet101 features, the most increased
correlation coefficients being 0.429, 0.26, respectively 0.17, followed by those between
the TMCM500_contrast and the ResNet101 features of 0.176.

Figure 9 graphically illustrates these correlations for InceptionV3, respectively for
ResNet101 in the case of both GE7 and GE9 datasets. In the case of GE7, the textural

Figure 9.
The correlations between the CNN and textural features: (a), (b) for inception V3; (c), (d) for ResNet101; (a),
(c) on the GE7 dataset; (b), (d) on the GE9 dataset.
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attributes have indexes in the range 1–550, while the CNN features’ indexes are in the
range 51–2598. As for GE9, the textural features have associated indexes from 1 to 98,
while the CNN features have indexes from 99 to 2047.

3.4.3.2 Decision level combination

When employing decision-level fusion, the classification performance was tested
on both GE7 and GE9 datasets, considering, in each case, the best performing CNN
architecture, respectively the subset of relevant textural features in conjunction with
the best conventional classifier. The values corresponding to the classification perfor-
mance parameters are depicted in Table 3.

For the GE7 dataset, the weighted voting procedure was performed between the
ResNet101 architecture and the AdaBoost metaclassifier, a larger weight being assigned to
ResNet101, while for the GE9 dataset, the DenseNet201 architecture and the AdaBoost
conventional classification technique were combined through weighted voting, the
highest weight being attributed to DenseNet201. We notice that the values of the classi-
fication performance parameters corresponding to the decision level fusion between the
conventional and the deep learning techniques are almost equal, however, slightly smaller
than those corresponding to classifier level fusion between these classes of methods.

4. Discussions

In Figure 10, the overall comparisons between the best values of the performance
parameters, for the methods involved in this study, are depicted, in the case of the

Dataset Accuracy Sensitivity Specificity AuC

GE7 97.2% 97.3% 97.7% 97.5%

GE9 97.8% 97.5% 97.3% 97.7%

Table 3.
The values of the classification performance parameters for decision level fusion.

Figure 10.
Comparison of the performance parameter values for all the fusion schemes.
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more recently gathered dataset, GE9. For improving the reliability of the assessment
procedure, the performances of the best classifiers and combination schemes resulted
for each class of techniques were reassessed by employing cross-validation with 5
folds, the values of the performance parameters being also illustrated in Table 4.
Within Table 4, the last column illustrates the average performance, expressed
through the arithmetic mean of the performance parameter values in the case of each
fusion scheme. Also, the overall maximum values for each performance parameter are
highlighted in bold.

We can infer that the maximum performance resulted in the case of classifier level
fusion between the conventional and deep learning techniques. It was followed by that
resulted in the case of classifier level fusion between the CNN structures, then by
decision level fusion between the two classes, CML and CNN, respectively by decision
level fusion between the CNNs. We also notice that all the considered fusion schemes
exceeded, with respect to the classification performance, both the individual CNNs, as
well as the CML methods.

Regarding the comparisons with the already existing state of the art approaches,
we reproduced the method presented in [16] on the experimental dataset GE9
employed in the current approach, as described in [5]. In the current approach, we
reassessed the classification performance, by employing cross-validation with 5 folds.
An accuracy of 84.3% resulted in this manner. The approach described in [19] was
reproduced on the GE9 dataset, as well. After assessing the classification performance
by employing cross-validation with 5 folds, an accuracy of 89.9% was achieved [5].
We also reproduced the approach presented in [18] on the GE9 dataset, by training an
AlexNet CNN, respectively a GoogleNet CNN on the GE9 dataset. Thereafter, the
deep learning features were extracted at the end of the convolutional layers, then the
CFS technique was applied on each feature set to yield the relevant characteristics
from each class. The resulting feature sets were combined with the relevant textural
feature set, the classification accuracy being assessed through the conventional classi-
fiers mentioned in the Section 3.4.1, by employing cross-validation with 5 folds. A
detailed comparison with the state-of-the-art approaches is depicted within Table 5.
In the last column, the difference in accuracy between our approach and each state-
of-the-art approach is illustrated.

Thus, all the employed combination schemes exceeded the classification perfor-
mance of these approaches, with respect to the maximum accuracy resulted in each
case. As it results from Table 5, an average accuracy difference of 11.15%, between the
current approach and the already existing state-of-the-art approaches was achieved.

Combination Accuracy Sensitivity Specificity AuC Average performance

CML 81.9 80.5 82.6 86.22 82.81

CNN 82.65 82.9 82.35 83.75 82.91

CNN + CML (classifier level) 98.35 98 98.6 99.25 98.55

CNN + CML (decision level) 97.35 97.1 96.75 98.25 97.36

CNN + CNN (classifier level) 97.3 97.3 98.3 98.4 97.83

CNN + CNN (decision level) 96.39 96.8 95.9 99 97.02

Table 4.
Comparison of the performance parameter values obtained for all the considered combination schemes through
cross-validation.
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5. Conclusions and future work

The conventional and the deep learning techniques described above, together with
their combinations, led to a very good classification performance, maximum classifi-
cation accuracies above 95% resulting. The combination between the CML and CNN
classes of techniques provided very good results, for both classifier level and decision
level fusion, while applying the same fusion schemes to combine CNNs led to satisfy-
ing results, as well. In our further research, we aim to compare multiple voting pro-
cedures regarding the decision level fusion between the CMM and CNN based
techniques. The current datasets based on ultrasound images will be further extended,
while other types of medical images, such as CT and MRI images will be also involved
for enhancing the computer aided and automatic diagnosis of HCC, performed in a
non-invasive manner.

Acknowledgements

This research was supported by the Romanian National Authority of Scientific
Research and Innovation, CNCS – UEFISCDI, project number PN-III-P1-1.1-TE-
2021-1293, Nr. TE 156/2022, within PNCDI III.

The work was financed as well by CLOUDUT, a project cofounded by the Euro-
pean Fund of Regional Development, part of the Competitiveness Operational Pro-
gram, 2014-2020, contract no. 235/2020.
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Breast tumor recognition [18] 87.85% 10.5%
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Current approach 98.35% —

Table 5.
Comparison with the already existing state of the art approaches.
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