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Chapter

Spiking Neural Encoding and
Hardware Implementations for
Neuromorphic Computing
Honghao Zheng and Yang Cindy Yi

Abstract

Due to the high requirements of the computational power of modern data-
intensive applications, the traditional von Neumann structure and neuromorphic
computing structure started to play complementary roles in the area of computing.
Thus, neuromorphic computing architectures have attracted much attention with
high data capacity and power efficiency. In this chapter, the basic concept of
neuromorphic computing is discussed, including spiking codes and neurons. The
spiking encoder can transfer analog signals to spike signals, thus avoiding using
power-consuming analog-to-digital converters. Comparisons of training accuracy and
robustness of neural codes are carried out, and the circuit implementations of the
spiking temporal encoders are briefly introduced. The encoding schemes are evalu-
ated on the PyTorch platform with the most common datasets, such as Modified
National Institute of Standards and Technology (MNIST), Canadian Institute for
Advanced Research, 10 classes (CIFAR-10), and The Street View House Numbers
(SVHN). From the result, the multiplexing temporal code has shown high data capac-
ity, robustness, and low training error. It achieves at least 6.4% more accuracy than
other state-of-the-art works using other encoding schemes.

Keywords: analog/mixed-signal integrated circuit (IC) design, neuromorphic
computing, neural spike encoding, multiplexing temporal encoder, gamma alignment

1. Introduction

Since the late 1980s, researchers have been paying attention to neuromorphic
computing [1]. Researchers have noticed that by mimicking the biological neural
systems with either software or hardware implementations, computing systems’ data
capacity and power efficiency can be greatly improved. With the limitations of con-
ventional von Neumann structures appealing to the progress of application require-
ments, the self-training mechanism of neuromorphic computing structures has
attracted more and more attention, both from the industrial and academic areas. For
instance, neuromorphic computing systems can more efficiently process data-
intensive tasks like speech processing and image recognition [2–4] due to the nature of
parallel computing. Besides that, the comparison between the conventional structure
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and neuromorphic chips has shown that the power consumed by neuromorphic com-
puting systems is also lower than traditional von Neumann structures and it is
achieved by the parallelism and distributed processing as well as event-driven
processing nature of neuromorphic computing. For example, the IBM TrueNorth chip
is very power efficient when processing recognition applications [5]. It only consumes
less than 3 watts of power. Compared with conventional central processing units
(CPUs) or graphics processing units (GPUs), it has shown great improvements.
Although GPU has more small specialized cores than CPU, it still consumes tens or
even hundreds of watts for the same tasks. Therefore, neuromorphic computing
systems, especially those realized by application-specific integrated circuits (ASICs),
have demonstrated their superiority in both learning capability and power efficiency
aspects.

Among all the types of artificial neural networks (ANNs), one special type is the
so-called spiking neural network (SNN) [6–9]. Inspired by the signal transformation
in biological neural networks, researchers realized that information could be trans-
mitted in the form of spikes in neural systems [10]. A neuron’s function is to receive
stimulus and output impulses. It is formed of four main parts, dendrites, soma, axons,
and synapses. A dendrite receives the stimulus and transmits it to soma. Soma is the
central computing unit in the biological neural network and generates an output signal
when the input exceeds a threshold voltage. Each neuron has a specific threshold
voltage, and when the output signal is generated, the soma fires a spike to the axon,
which transmits the output signal to the synapse. Finally, the impulse will be con-
veyed through the synapse to the subsequent neurons. With such property, neurons in
the network can stay silent unless triggered by coming spikes. In this way, the oper-
ating power consumption can be greatly saved. To convert information to the form of
spikes, several encoding schemes have been investigated [11, 12]. This research started
a few decades ago. These encoding schemes can be categorized into two main types,
rate encoding and temporal encoding [13]. The rate encoding scheme represents that
information is converted to the number of spikes in one spike train [14]. The spike
rate in this encoding scheme means the number of spikes in one encoding window.
The larger the input is, the higher the spike rate will be in the corresponding encoding
window. This encoding scheme is very straightforward to implement and is one of the
most commonly used encoding schemes. On the other hand, temporal encoding takes
account of the number of spikes in the encoding window and utilizes the temporal
property of the spike train [15]. With the different temporal properties used, the
temporal encoding scheme can be more deeply divided into several types, like the
Time-to-First-Spike (TTFS) [16], the Interspike Interval (ISI) [17], and the Phase of
firing encoding [18].

With the advancement of neuroscience, researchers noticed a special encoding
scheme in biological neural systems. This encoding scheme can integrate multiple
encoding schemes that operate in different time scales [19]. This kind of encoding
scheme is called multiplexing encoding [20]. For instance, ISI encoding can be inte-
grated with phase encoding, forming the multiplexing ISI-phase encoding. Compared
with just one encoding scheme, multiplexing encoding has various advantages,
including high data capacity and high robustness, especially in noisy environments.
The advantages and disadvantages of these encoding schemes are summarized in
Table 1. For example, rate encoding is not only easier to implement than other
schemes but it also has lower data capacity. Temporal encoding schemes not only have
higher data capacity than rate encoding but also have lower robustness compared with
multiplexing encoding.
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A literature review of those encoding schemes is also carried out. This literature
review provides a concise overview of key studies and advancements in the area of
spike neural encoding.

In Rolls and Treves [21], the authors have carried out a quantitative analysis of
information in the realm of neural encoding. The researchers noticed the existence of
the firing rate encoding in the short time window. In the aspect of quantitative
analysis, more information is encoded by the rate encoding scheme rather than tem-
poral encoding. In rate code, neurons have been found to be able to take synaptic
weighted sums of the inputs for training purposes.

In Auge et al. [22], the authors have summarized the theoretical foundation as well
as the applications of encoding schemes. It includes both the rate encoding and the
temporal encoding schemes. They concluded that the rate encoding has high robust-
ness since it does not rely on the precise firing timing of spikes. They also noticed that
temporal codes have been shown to have higher information capacity, faster reaction
times, and higher transmission speeds.

In Kayser et al. [23], researchers have verified the hypothesis that different codes
might be employed concurrently and provide complementary stimulus information.
They also quantified the information encoded in the auditory cortex of animals and
found that multiplexing those codes together will provide a much higher information
level. What’s more, the authors also found that the multiplexing codes with phase of
firing code are very much robust to sensory noise added to the stimulus.

In this chapter, a deeper discussion of these mentioned encoding schemes will be
presented in Section 2. Section 3 will discuss the ASIC implementations of these
encoding schemes and their simulation results. Lastly, the training results of these
encoding schemes working with some common datasets and the hardware testbench
of the multiplexing temporal encoder will both be illustrated in Section 4.

2. Neural encoding schemes

As mentioned in Section 1, the neural encoding schemes represent the different
ways the input signals get converted to spike signals in spiking neural networks.
Researchers have put much effort into finding various encoding schemes that utilize
different properties of spike trains in the SNN [24]. The most straightforward and,
thus, the first discovered encoding scheme is rate encoding [21]. It uses the number of
spikes in one spike train to typify the input information. Figure 1(a) shows that the
input stimulus is transferred to the firing rate during the sampling window. There-
fore, as long as the numbers of spikes are the same, two different spike trains still
stand for the same input signal. The simplicity of this code leads to its common use in
nowadays applications. For instance, the Intel Loihi chip, which is a neuromorphic

Encoding scheme Rate Temporal Multiplexing

Advantage Straightforward

Easy to implement

Higher data capacity Highest data capacity

High robustness

Disadvantage Low data capacity Low robustness against noise High complexity

High power and area cost

Table 1.
Advantages and disadvantages of different encoding schemes.
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research test chip designed by Intel Labs, uses an asynchronous SNN to implement
adaptive self-modifying event-driven fine-grained parallel computations used to
implement learning and inference with high efficiency. It utilizes rate encoding in its
neural network and has been evaluated through lots of applications such as adaptive
robot arm control and drone motor control [25, 26]. It only consumes less than 1 watt
of power while maintaining a good operating speed. Moreover, the Tianjic chip also
implements rate encoders in the neural network and achieves high accuracy for
pattern recognition applications [27, 28]. However, this simple encoding scheme has
its disadvantages. First, rate encoding has a relatively lower data capacity than other
encoding schemes since it only utilizes the number of spikes in a spike train but
ignores the temporal patterns of the spike train. Second, the low data capacity also
caused the low robustness of the encoding scheme against noises and errors. Since one
spike train only represents one input information, any mistakes of the spike train will
lead to an inaccurate result.

To overcome these drawbacks, other encoding schemes that can use other proper-
ties of spike trains are proposed for the spike encoding process. Temporal patterns,
which mean the different timings of spikes in the spike train, are the most used
aspects for encoding [29]. Therefore, a large category of neural code is called temporal
encoding, which employs both the spike number and the temporal pattern of the spike
train for stimulus. Among these temporal codes, three are the most widely used, the
TTFS code, the ISI code, and the phase of firing code.

The time of the first spike encoding, also known as latency encoding, is the most
basic temporal encoding scheme [22, 30]. Just as literal, the TTFS encoding converts
the input information to the time difference between the onset of the sampling
window and the first spike. Since the only useful spike is the first one, for energy
efficiency, normally there is only one spike in the spike train for TTFS encoding, as
demonstrated in Figure 1(b). Since the onset of sampling windows is often defined by

Figure 1.
Examples of encoding scheme. (a) Presentation of rate encoding. Input stimulus is transferred to the firing rate in
the encoding window. (b) Presentation of TTFS encoding. Input stimulus is converted to the time difference
between the onset of the window and the first spike. (c) Presentation of ISI encoding. Input information is
transferred to the time intervals of spikes.
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external references, the precision of the encoding process is very much dependent on
the accuracy of external signals. Any variation in the external source could affect the
performance of the encoder [31]. Another shortcoming of the TTFS encoding scheme
is that its robustness is low. With the property that only one spike is effective, even
only one mistake in the TTFS-encoded spike train could cause enormous errors in the
final output of the encoding process. Thus, the function of the TTFS encoder is not
robust against even minor noise or error.

Another neural code is proposed to overcome the disadvantages of the TTFS code,
the ISI code. As demonstrated in Figure 1(c), instead of being converted to the time
difference between the onset and the first spike, the input stimuli are converted to
time intervals of spikes [15]. Unlike latency encoding, ISI encoding utilizes the spikes
as the internal reference frame for each other, thus avoiding the dependence on the
external references. As discussed in the previous paragraph, one main drawback of
latency encoding is its relatively low data capacity. However, since the ISI code has
multiple spikes in one sampling window, it can transfer more information than
latency encoding. There are two types of ISI encoders, the parallel structure and the
iteration structure, introduced in Zhao et al. [30]. The parallel encoder, the simpler
type, could convey information faster but maintains fewer spikes in one encoding
window. On the contrary, the iteration encoder generates more spikes in the sampling
window but also takes more time. Both structures’spike numbers relate to the number
of neurons in the encoder. The parallel structure has this relation:

NS ¼ N, (1)

whereN andNS are the number of spikes in one sampling window and the number
of neurons in the encoder. The iteration structure has an exponential relation:

NS ¼ 2N�1
: (2)

From Eqs. 1 and 2, we can notice that the iteration structure has more spikes when
the encoder has more than two neurons. Thus, when looking for a high data capacity
and high robustness, the iteration encoder is a promising candidate [17].

Besides relying on the number of spikes and intervals between spikes, information
can also be conveyed as relative position on internal reference frames. The internal
reference frames are called the subthreshold membrane oscillation (SMO). The SMO
can replace the external reference frame and thus overcome the precision issue.
What’s more, with the help of SMO, the phase of firing encoding scheme can be
implemented in neuromorphic computing systems [32–34]. In the phase encoding,
input signals are transferred to the phase of SMO. When the SMO arrives at this
phase, one spike will be fired. The math model of the SMO can be written as follows:

SMOi ¼ A � cos ωT þ ϕið Þ, (3)

where A, ω, and ϕ present the amplitude of the SMO, the angular velocity of the
signal, and the start phase of the sine SMO signal, respectively.

To further improve the performance of neuromorphic computing systems, another
encoding mechanism has been investigated by researchers. First found in biological
neural systems, the multiplexing encoding schemes combine multiple neural codes,
especially the ones with different time scales, to have higher data capacity [23]. Each
independent encoding scheme can carry a certain amount of information. For
instance, in ISI-phase encoding, the ISI encoding scheme and phase of firing encoding
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scheme carry their own information. After the multiplexing process, the two parts of
information are combined and transferred within one sampling time window. There-
fore, with multiplexing encoding, the same amount of information can be conveyed
within a shorter sampling window and thus increase the data transmission rate [35].

The multiplexing encoding schemes are more robust than the other ones. Experi-
ments have been conducted to quantify the data density in the different neural codes
with different levels of input sensory noise [23], as shown in Figure 2. From the
figure, it is noticeable that although the information from all the encoding schemes
decreases with the increase in noise level, the multiplexing encoding schemes always
keep the highest data density. Moreover, we can also notice that temporal encoding
keeps more information than rate encoding; thus, temporal-phase encoding also has
higher data capacity than rate-phase encoding. With the result discussed above, it is
proved that the multiplexing encoding scheme is more robust against noisy environ-
ments and the high data capacity in all noise levels helps with data transferring from
noisy input to spike signals.

The multiplexing encoding requires two separate steps to transfer the input signals
to multiplexing encoded spikes [36]. The first one is the encoding process that trans-
ferred the analog inputs to differently encoded spikes. For example, if rate encoding is
utilized, the encoded spikes are in the form of spike trains with different numbers of
spikes. For TTFS encoding, the encoded spike is normally in the form of a single spike.
As for the ISI code, the spikes are spike trains with the same number of spikes but
different temporal patterns.

After the encoding process, the spikes need to be shifted to meet the phase
encoding mechanism [37, 38]. This step is called the gamma alignment step. In this
step, the already generated spikes are shifted to the next immediate local maximum of
SMOs. The relationship between the original spikes and the shifted spikes can be
expressed as

Figure 2.
Information in codes for different noise levels. The blue line indicates the information carried in the rate code with
different noise levels. The orange line represents the information level of the temporal encoding scheme. Similarly,
the yellow line means the information in the rate and phase of firing multiplexed encoding scheme, and the purple
line demonstrates the information carried in the temporal and phase of firing multiplexed code.
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P0
τ ¼ Pt, (4)

where t is the timing of the original spike and τ is the next immediate local
maximum.

As depicted in Figure 1(d), the TTFS-encoded spikes are processed by the gamma
alignment step and become the TTFS-phase encoded spikes. In this figure, the spikes
are divided into four different channels. Each channel has its corresponding SMO. The
SMOs have the same amplitude and angular velocity, and their phases follow this
relationship:

ϕi ¼ ϕ0 þ i� 1ð Þ
2π

N
, (5)

where i means the ith channel and N represents the total number of channels. As
for the ISI-phase encoding scheme, since only one channel in Figure 1(e) exists, the
ISI-coded spikes are shifted to their immediately following local maximums of the
same SMO [39].

3. Circuit implementations of the neural encoders

To utilize the various encoding schemes in the application-specific integrated
circuit (ASIC) of neural network systems, the circuit implementations of these neural
encoders need to be investigated. This section will discuss the circuit implementations
of these different encoders and their simulation results with analog sinusoidal current
input.

3.1 Rate encoder

The schematic of the rate encoder is demonstrated in Figure 3(a). After the clock
signal CLK resets the voltage across the membrane capacitor C1 with the switch
transistor M8, an encoding window begins. The voltage across the membrane capaci-
tor C1 increases when the input current is injected. When the membrane voltage
exceeds the reference voltage Vref, a spike will be fired through the buffer. The fired
spike will also trigger the switch transistor M7 to bring the membrane voltage back to

Figure 3.
Circuit schematic and simulation result of rate encoder.
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the ground so that the integration process will start over. Thus, the relation between
the input current and the spike numbers can be written as:

N ¼
P

T
¼

P
CmVref

Iin

¼
PIin

CmVref
, (6)

where N, P, and T represent the spike number, encoding window period, and
integration time of one spike. Iin, Cm, and Vref mean the input current, membrane

capacitance, and the reference voltage. The formula shows that the number of
spikes in the sampling window and the input current have a linear relationship. From
Figure 3(b), a similar relationship can be observed. When the input current is high,
there are more spikes in the sampling window; when the input current is relatively
smaller, there are fewer spikes in the sampling window.

3.2 TTFS encoder

The schematic of the TTFS encoder is depicted in Figure 4(a) [40]. The charge
integration mechanism starts after the CLK signal resets the membrane voltage with
switch transistor M11. Along with the voltage across the membrane capacitor C1
increasing, the voltage at the source of the transistor M1 will increase at a rate
controlled by Vref. When the source voltage of M1 exceeds the threshold voltage of
the inverter composing M3 and M4, the output will be digitally high. Almost imme-
diately after the output becomes digital high, the four-transistor clock-controlled
inverter also gives a digital high feedback signal to the switch M11 so that the mem-
brane voltage goes back to the ground. Thus, at the output of the encoder, there will
only be a spike instead of a square wave at digital high. Moreover, until the next CLK
signal, the feedback signal will always be at the high voltage, so there will only be one
spike in one sampling window. The time difference between the onset and the spike
can be written as:

T ¼
CmVref

Iin
: (7)

Figure 4(b) shows that the time difference is inversely proportional to the input
current. The larger the input is, the closer the spike is to the CLK signal.

Figure 4.
Circuit schematic and simulation result of TTFS encoder.
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3.3 ISI encoder

As mentioned in Section 2, the ISI encoder has two different structures. In this
section, we will talk in detail about the parallel structure. Although more neurons in
the ISI encoder lead to more spikes in one encoding window, it also leads to higher
power consumption and a larger design area. Thus, the two-neuron parallel structure
ISI encoder circuit will be discussed in this section. The schematic of the encoder is
demonstrated in Figure 5(a). The two neurons utilize the same CLK signal and have
the same encoding window. The input currents of the two neurons are the same, so
the charge integration rates of the neurons are the same. The only difference between
the neurons is that they have different reference voltages so that the neurons will fire
spike at different times. Afterward, an OR gate is implemented to integrate the two
spikes into a two-spike train. With that, the input information is converted to the time
intervals of spikes, which can be expressed as:

D ¼ T2 � T1 ¼
Cm Vref2 � Vref1

� �

Iin
: (8)

The simulation result of the ISI encoder is illustrated in Figure 5(b). It is
noticeable that when the input is smaller, the time interval of the spike is larger and
vice versa. Thus, this encoder has fulfilled the mathematical relation of the
information conversion.

3.4 TTFS-phase encoder

As discussed in Section 2, the TTFS-phase encoding scheme shifts the
TTFS-encoded spikes to the immediate local maximum of their corresponding
SMOs. Since there is only one channel in our design, as shown in Figure 6(a), the
TTFS-phase encoder utilizes only one SMO [37]. To carry out the spike-shifting
process, a gamma alignment block is implemented. Inside the gamma alignment
block, a peak detector captures and holds the coming spike. The spike voltage will be
held across the capacitor with a diode-connected transistor. After that, when the local
maximum of the SMO arrives, a spike will be fired by the AND gate and outputted
after being stabilized by a buffer. Meanwhile, the spike will trigger the switch tran-
sistor and bring the captured voltage back to the ground until the next spike comes.

Figure 5.
Circuit schematic and simulation result of ISI encoder.
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The peak detector can only detect spikes that last longer than 10 nanoseconds (ns).
However, the TTFS neuron can only output 1 ns spikes. Thus, a spike expander, as
demonstrated in Figure 6(a), is designed to extend the width of spikes. With Vbias
controlling the charging rate on the capacitor, the width of spikes can be adjusted
without changing the capacitor and thus save a lot of design area. Figure 6(b) illus-
trates the signal flows in the TTFS-phase encoder. The top panel of the figure repre-
sents the TTFS encoding function, while the bottom panel depicts the gamma
alignment process. After being encoded by the TTFS neuron, the current signal is
converted to spikes, and in the gamma alignment block, the TTFS spikes are moved to
the next local maximum of the SMO.

Figure 6.
Circuit schematic and simulation result of TTFS-phase encoder.

Figure 7.
Circuit schematic and simulation result of ISI-phase encoder.
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3.5 ISI-phase encoder

Similar to the TTFS-phase encoder, the ISI-phase encoder is designed with an
ISI encoder with one spike expander and one gamma alignment block, as shown in
Figure 7. With the spike expander, the output spikes of the ISI encoder have a width
of over 10 ns and thus can be captured by the peak detector. To shift the expanded
spikes to the local maximum of the SMO, the gamma alignment block is implemented
for the spike train in one sampling window. With the two neurons in the ISI encoder,
there are two spikes in one encoding window, and thus the SMO frequency should be
higher; otherwise, the two spikes in the same encoding window will possibly be
moved to the same local maximum to leave only one spike in the sampling window.

4. Encoder performance analysis

4.1 Performance comparison of encoding schemes

We have implemented SNNs in Python to compare the performance of these
various encoding schemes, especially the classification accuracy for popular
datasets. For instance, the MNIST dataset [41], the CIFAR-10 dataset [42], and the
SVHN dataset [43] are utilized in the comparison for the accuracy of the above-
mentioned encoding schemes. In all, 60,000 data points served as the training
samples, and 10,000 were testing samples in the MNIST dataset, 50,000 samples
were training ones, and 10,000 samples were testing ones. As for the SVHN sam-
ples, 73,257 are for training and 26,032 are for testing. The process of verifying
encoding scheme performance can be divided into three steps. The first step is to
design encoders to convert the datasets to spikes. The second is to build neural
networks with these spike encoders and tune the neural networks according to the
encoding schemes and datasets to get the desired output. The last step is to run the
simulation and compare the accuracy achieved by the various codes.

First, the rate encoder needs to be designed. Due to the nature of the rate encoding
that the spiking number in the sampling window has a linear proportional relation
with the input signal amplitude, the rate encoding is implemented in Python that
outputs spike numbers within the range of 0 to 16. A larger input pixel value leads to a
greater number of spikes in one spike train.

Second, the TTFS encoder is implemented to realize the inversely proportional
relation of the input pixel value and the first spike time. One more thing to notice is
that only the pixel values larger than the threshold can be transferred to spikes. This
property maps the neuron functionality more closely. Similarly, the ISI encoder is
implemented with multiple TTFS encoders with different thresholds. With those
encoders, spikes with different timings are outputted. Those spikes have time inter-
vals also inversely proportional to the input value. For both the TTFS and ISI
encoders, the input pixel values are first linearly assigned to the range of 0 to 8 and
then transferred to spike trains.

As for the multiplexing neural encoders, the corresponding encoders, the TTFS
and ISI encoders, need to be added with the gamma alignment process. Realizing
gamma alignment in Python means updating the spike times of the TTFS and ISI
encoder outputs with the numbers of an arithmetic progression. The various frequen-
cies of the SMO can be achieved by changing the common difference of the arithmetic
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progression. Thus, the TTFS-phase encoder and ISI-phase encoder are achieved with
different SMO frequencies.

The datasets utilized in this experiment are transferred into different architectures
with the help of the TTFS-phase and ISI-phase encoders. Certain training neural
networks need to be designed and tuned accordingly to verify the training accuracy of
these encoding schemes. These networks are implemented with a PyTorch package for
spiking neural networks, SpykeTorch [44]. The two parameters are the threshold of
neurons and the size of each layer. The threshold values of neurons are 15 for the first
layer and 10 for the rest of the layers. For the MNIST dataset, a 3-layer convolutional
neural network is implemented. Due to the datasets’ complexity, a deeper neural
network is implemented for the CIFAR-10 and SVHN datasets to get the desired
results. This network is a 10-layer convolutional neural network. The neurons in both
networks are all leaky integrate-and-fire (LIF) neuron models. The neuron model’s
parameters are: initial Vm ¼ 0, EL ¼ 0, Cm ¼ 100pF, Rm ¼ 10kOhm, Vreset ¼ 0, and
τm ¼ 1ms. What’s more, the synapses in the SNNs simply take into account the weights
and output of neurons and provide excitation current. They do not give any specific
influence themselves. The spike-timing-dependent plasticity (STDP) is the training
algorithm used in these neural networks since the spiking neural network cannot be
trained with backpropagation and is most commonly trained with the STDP training
rule. As demonstrated in Figure 8, the two convolutional SNNs contain a decision-
maker layer to provide reward/punishment signal as part of the reinforcement STDP
learning rule. The neurons between the convolutional layers are connected in the
relation of N:1. N equals the size of the kernel in the former convolutional layer.
Neurons in convolutional layers are organized into local receptive fields that slide
across the input data, and they share weights to efficiently learn and capture local
patterns.

This simulation is performed with a 12 GB NVIDIA Tesla K80 GPU and 13 GB
RAM on the Google Colab platform. For the sake of fairness, the encoding schemes are
compared between the other state-of-the-art works and this work, as shown in
Table 2. For conciseness, the results without reference are from this work. This work

Figure 8.
(a) Network structure of the 3-layer convolutional SNN. (b) Network structure of the 10-layer
convolutional SNN.
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achieves 91.8% of accuracy and 93.78% of accuracy for the MNIST dataset. Compared
with other works, the multiplexing encoding schemes classify the dataset with at most
10.78% higher accuracy. The ISI-phase encoding gets 83.83% of accuracy for the
CIFAR-10 dataset, while the other works at most get 83.71% of accuracy. It classifies
the dataset at most 6.4% more accurately than other neural codes. When it comes to
the SVHN dataset, the multiplexing encoding has got even more desired results,
especially ISI-phase encoding. It has achieved 86.4% of testing accuracy while the rate
encoder only gets to 75% of accuracy. The 11.4% of accuracy difference has proved the
superiority of the multiplexing encoding schemes. With these comparison results, we
notice that the multiplexing encoding, although more complex than other encoding
schemes since it requires one more processing step, yields the highest training accu-
racy for the commonly used datasets. If considering the complexity of the state-of--
the-art networks is often higher than that given in this work, the multiplexing
encoding can have even higher accuracy for image classification applications. Thus,
the multiplexing encoding schemes have the capability to convert datasets into a more
classifiable structure and get better training performance for the whole system.

5. Conclusions

In this chapter, we discussed different encoding schemes and the advantages and
disadvantages of each spiking neural code. It shows that the rate encoding is straight-
forward but has low data capacity, the temporal codes have higher data capacity but
are not robust against noise, and the multiplexing encoding schemes not only have
both high data capacity and high robustness but also have high complexity and thus
great power and area cost. Moreover, the mechanisms of the neural encoding schemes
are also explained. The input signals are converted to different properties of spike
trains in sampling windows. For instance, the signals are converted to the time inter-
vals between the spikes for the ISI encoding, and the inputs are transferred to the
spike number for the rate encoding. To utilize these encoding schemes in the analog
circuit neural systems, the circuit implementations of these schemes are introduced as
long as the mathematical models of the neural codes are employed. To the best of our
knowledge, the ISI, TTFS-phase, and ISI-phase encoders proposed by our group are
the first IC implementations. We have also built neural networks with different
encoders to compare their performance when working with some commonly used
image classification datasets. For fairness, we compared our group’s performance of
multiplexing encoders with those of the state-of-the-art works. For MNIST, the
multiplexing encoder achieves 10.78% higher accuracy. For CIFAR-10, the ISI-phase
encoder can classify the images 6.4% more accurately. The ISI-phase encoder gets
11.4% of higher accuracy than other works for SVHN. These comparison results have

Encoder type Rate TTFS ISI TTFS-phase ISI-phase

MNIST [45] – 83.0% [45] – 85.0% [45] – 90.0% 91.8% 93.8%

CIFAR-10 [46] – 79.7% [47] – 77.4% [48] – 83.7% 77.9% 83.8%

SVHN [49] – 75.0% [50] – 82.1% 82.8% 82.5% 86.4%

Table 2.
Performance comparison of code-level encoders with the MNIST, CIFAR-10, and SVHN datasets.
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shown that although the multiplexing encoding may require more power and area, it
has the potential to achieve better training performance for the whole system.

As for future work, our group is going to implement spike neural networks as well
as those above-mentioned encoding schemes in the Neural Simulation Tool (NEST)
simulator [51]. With such a simulator, a more detailed and more realistic simulation of
SNN can be carried out and there will be more convincing evidence that multiplexing
encoding schemes achieve higher data capacity and robustness than rate or temporal
codes alone. What’s more, we will also investigate the various training algorithms for
SNNs, including STDP, spike-based backpropagation, and ANN-SNN conversion. We
will dig into the cooperation of different encoding schemes with various training
algorithms and find out the most suitable one for the multiplexing encoder. The
hardware implementation difficulties of the training algorithms will also be consid-
ered as part of the tradeoff.

Author details

Honghao Zheng* and Yang Cindy Yi
The Bradley Department of Electrical and Computer Engineering, Virginia Tech, USA

*Address all correspondence to: zhenghh@vt.edu

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

14

Neuromorphic Computing



References

[1]Mead C. Neuromorphic electronic
systems. Proceedings of the IEEE. 1990;
78(10):1629-1636

[2] Bai K, Yi Y. Opening the “black box” of
silicon chip design in neuromorphic
computing [Internet]. In: Bio-Inspired
Technology. London, UK: IntechOpen;
2019. DOI: 10.5772/intechopen.83832

[3] Bai K, Yi Y. DFR: An energy-efficient
analog delay feedback reservoir
computing system for brain-inspired
computing. ACM Journal on Emerging
Technologies in Computing Systems
(JETC). 2018;14(4):1-22

[4]Hamedani K, Zhou Z, Bai K, Liu L.
The novel applications of deep reservoir
computing in cyber-security and
wireless communication [Internet]. In:
Intelligent System and Computing.
London, UK: IntechOpen; 2020. DOI:
10.5772/intechopen.89328

[5] Akopyan F, Sawada J, Cassidy A,
Alvarez-Icaza R, Arthur J, Merolla P,
et al. Truenorth: Design and tool flow of
a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Transactions
on Computer-Aided Design of
Integrated Circuits and Systems. 2015;
34(10):1537-1557

[6]Hamedani K, Liu L, Hu S,
Ashdown J, Wu J, Yi Y. Detecting
dynamic attacks in smart grids using
reservoir computing: A spiking delayed
feedback reservoir based approach. IEEE
Transactions on Emerging Topics in
Computational Intelligence. 2019;4(3):
253-264

[7] Bai K, Li J, Hamedani K, Yi Y.
Enabling an new era of brain-inspired
computing: Energy-efficient spiking
neural network with ring topology. In:
2018 55th ACM/ESDA/IEEE Design

Automation Conference (DAC).
New York, NY: IEEE; 24 Jun 2018.
pp. 1-6

[8] Bai K, Bradley YY. A path to
energy-efficient spiking delayed
feedback reservoir computing system for
brain-inspired neuromorphic processors.
In: 2018 19th International Symposium
on Quality Electronic Design (ISQED).
Santa Clara, CA: IEEE; 13 Mar 2018.
pp. 322-328

[9]Hamedani K, Liu L, Liu S, He H, Yi Y.
Deep spiking delayed feedback
reservoirs and its application in
spectrum sensing of MIMO-OFDM
dynamic spectrum sharing. Proceedings
of the AAAI Conference on Artificial
Intelligence. 2020;34(02):1292-1299

[10] Ghosh-Dastidar S, Adeli H.
Spiking neural networks. International
Journal of Neural Systems. 2009;19(04):
295-308

[11] Zhao C, Li J, Yi Y. Making neural
encoding robust and energy efficient: An
advanced analog temporal encoder for
brain-inspired computing systems. In:
2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).
Austin, TX: ACM; 7 Nov 2016. pp. 1-6

[12] Zhao C, Danesh W, Wysocki BT,
Yi Y. Neuromorphic encoding system
design with chaos based CMOS analog
neuron. In: 2015 IEEE Symposium on
Computational Intelligence for Security
and Defense Applications (CISDA).
Verona, NY: IEEE; 26 May 2015. pp. 1-6

[13] Zhao C, Hamedani K, Li J, Yi Y.
Analog spike-timing-dependent resistive
crossbar design for brain inspired
computing. IEEE Journal on Emerging
and Selected Topics in Circuits and
Systems. 2017;8(1):38-50

15

Spiking Neural Encoding and Hardware Implementations for Neuromorphic Computing
DOI: http://dx.doi.org/10.5772/intechopen.113050



[14] Cullen KE. The neural encoding of
self-motion. Current Opinion in
Neurobiology. 2011;21(4):587-595

[15] Zhao C, Wysocki BT, Liu Y,
Thiem CD, McDonald NR, Yi Y.
Spike-time-dependent encoding for
neuromorphic processors. ACM
Journal on Emerging Technologies in
Computing Systems (JETC). 2015;12(3):
1-21

[16]Nomura O, Sakemi Y, Hosomi T,
Morie T. Robustness of spiking neural
networks based on time-to-first-spike
encoding against adversarial attacks.
IEEE Transactions on Circuits and
Systems II: Express Briefs. 2022;69(9):
3640-3644

[17] Zhao C, Yi Y, Li J, Fu X, Liu L.
Interspike-interval-based analog spike-
time-dependent encoder for
neuromorphic processors. IEEE
Transactions on Very Large Scale
Integration (VLSI) Systems. 2017;25(8):
2193-2205

[18]Montemurro MA, Rasch MJ,
Murayama Y, Logothetis NK, Panzeri S.
Phase-of-firing coding of natural visual
stimuli in primary visual cortex. Current
Biology. 2008;18(5):375-380

[19] Panzeri S, Brunel N, Logothetis NK,
Kayser C. Sensory neural codes using
multiplexed temporal scales. Trends in
Neurosciences. 2010;33(3):111-120

[20] Lankarany M, Al-Basha D, Ratté S,
Prescott SA. Differentially synchronized
spiking enables multiplexed neural
coding. National Academy of Sciences of
the United States of America. 2019;
116(20):10097-10102

[21] Rolls ET, Treves A. The neuronal
encoding of information in the brain.
Progress in Neurobiology. 2011;95(3):
448-490

[22] Auge D, Hille J, Mueller E, Knoll A.
A survey of encoding techniques for
signal processing in spiking neural
networks. Neural Processing Letters.
2021;53(6):4693-4710

[23] Kayser C, Montemurro MA,
Logothetis NK, Panzeri S. Spike-phase
coding boosts and stabilizes information
carried by spatial and temporal spike
patterns. Neuron. 2009;61(4):597-608

[24] Yi Y. Analog Integrated Circuit
Design for Spike Time Dependent
Encoder and Reservoir in Reservoir
Computing Processors. Lawrence,
United States: University of Kansas
Center for Research, Inc.; 1 Jan 2018

[25] Davies M, Srinivasa N, Lin TH,
Chinya G, Cao Y, Choday SH, et al.
Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE
Micro. 2018;38(1):82-99

[26]Davies M, Wild A, Orchard G,
Sandamirskaya Y, Guerra GA, Joshi P,
et al. Advancing neuromorphic
computing with loihi: A survey of results
and outlook. Proceedings of the IEEE.
2021;109(5):911-934

[27]Deng L, Wang G, Li G, Li S, Liang L,
Zhu M, et al. Tianjic: A unified and
scalable chip bridging spike-based and
continuous neural computation. IEEE
Journal of Solid-State Circuits. 2020;
55(8):2228-2246

[28] Pei J, Deng L, Song S, Zhao M,
Zhang Y, Wu S, et al. Towards artificial
general intelligence with hybrid Tianjic
chip architecture. Nature. 2019;
572(7767):106-111

[29] Zhao C, An Q, Bai K, Wysocki B,
Thiem C, Liu L, et al. Energy efficient
temporal spatial information processing
circuits based on stdp and spike
iteration. IEEE Transactions on Circuits

16

Neuromorphic Computing



and Systems II: Express Briefs. 2019;
67(10):1715-1719

[30] Zhao C, Wysocki BT, Thiem CD,
McDonald NR, Li J, Liu L, et al. Energy
efficient spiking temporal encoder
design for neuromorphic computing
systems. IEEE Transactions on Multi-
Scale Computing Systems. 2016;2(4):
265-276

[31] Rueckauer B, Liu SC. Conversion of
analog to spiking neural networks using
sparse temporal coding. In: 2018 IEEE
International Symposium on Circuits
and Systems (ISCAS). Florence, Italy:
IEEE; 27 May 2018. pp. 1-5

[32] Paraskevopoulou SE,
Constandinou TG. A sub-1μW neural
spike-peak detection and spike-count
rate encoding circuit. In: 2011 IEEE
Biomedical Circuits and Systems
Conference (BioCAS). San Diego, CA:
IEEE; 10 Nov 2011. pp. 29-32

[33]Masquelier T, Hugues E, Deco G,
Thorpe SJ. Oscillations, phase-of-firing
coding, and spike timing-dependent
plasticity: an efficient learning scheme.
Journal of Neuroscience. 2009;29(43):
13484-13493

[34] Cattani A, Einevoll GT, Panzeri S.
Phase-of-firing code. arXiv preprint
arXiv:1504.03954. Apr 15 2015

[35] Akam T, Kullmann DM. Oscillatory
multiplexing of population codes for
selective communication in the
mammalian brain. Nature Reviews
Neuroscience. 2014;15(2):111-122

[36]Nadasdy Z. Information encoding
and reconstruction from the phase of
action potentials. Frontiers in systems
neuroscience. 2009;3:6

[37] Zheng H, Mohammadi N, Bai K,
Yi Y. Low-power analog and mixed-

signal ic design of multiplexing
neural encoder in neuromorphic
computing. In: 2021 22nd International
Symposium on Quality Electronic
Design (ISQED). Santa Clara, CA: IEEE;
7 Apr 2021. pp. 154-159

[38] Arriandiaga A, Portillo E, Espinosa-
Ramos JI, Kasabov NK. Pulsewidth
Modulation-Based Algorithm for Spike
Phase Encoding and Decoding of Time-
Dependent Analog Data. IEEE
Transactions on Neural Networks and
Learning Systems. 2019;31(10):
3920-3931

[39] Zheng H, Anderson J, Yi Y.
Approaching the area of neuromorphic
computing circuit and system design. In:
2021 12th International Green and
Sustainable Computing Conference
(IGSC). Pullman, WA: IEEE; 18 Oct
2021. pp. 1-8

[40] Bai K, An Q, Liu L, Yi Y. A training-
efficient hybrid-structured deep neural
network with reconfigurable memristive
synapses. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems.
2019;28(1):62-75

[41]Deng L. The mnist database of
handwritten digit images for machine
learning research [best of the web]. IEEE
Signal Processing Magazine. 2012;29(6):
141-142

[42] Krizhevsky A, Hinton G. Learning
multiple layers of features from tiny
images

[43]Netzer Y, Wang T, Coates A,
Bissacco A, Wu B, Ng AY. Reading digits
in natural images with unsupervised
feature learning

[44]Mozafari M, Ganjtabesh M,
Nowzari-Dalini A, Masquelier T.
Spyketorch: Efficient simulation of
convolutional spiking neural networks

17

Spiking Neural Encoding and Hardware Implementations for Neuromorphic Computing
DOI: http://dx.doi.org/10.5772/intechopen.113050



with at most one spike per neuron.
Frontiers in Neuroscience. 2019;13:625

[45]Nowshin F, Yi Y. Memristor-based
deep spiking neural network with a
computing-in-memory architecture. In:
2022 23rd International Symposium on
Quality Electronic Design (ISQED).
Santa Clara, CA: IEEE; 6 Apr 2022.
pp. 1-6

[46]Nguyen VT, Trinh QK, Zhang R,
Nakashima Y. STT-BSNN: An In-
Memory Deep Binary Spiking Neural
Network Based on STT-MRAM. IEEE
Access. 2021;9:151373-151385

[47] Cao Y, Chen Y, Khosla D. Spiking
deep convolutional neural networks for
energy-efficient object recognition.
International Journal of Computer
Vision. 2015;113(1):54-66

[48] Park S, Kim S, Choe H, Yoon S. Fast
and efficient information transmission
with burst spikes in deep spiking neural
networks. In: 2019 56th ACM/IEEE
Design Automation Conference (DAC).
Las Vegas, NV: IEEE; 2 Jun 2019. pp. 1-6

[49]Wang Z, Liu J, Ma Y, Chen B,
Zheng N, Ren P. Perturbation of spike
timing benefits neural network
performance on similarity search. IEEE
Transactions on Neural Networks and
Learning Systems. Sep 2022;33(9):
4361-4372

[50]Ma C, Yan R, Yu Z, Yu Q. Deep spike
learning with local classifiers. IEEE
Transactions on Cybernetics. May 2023;
53(5):3363-3375

[51] Plesser HE, Diesmann M, Gewaltig
MO, Morrison A. NEST: the Neural
Simulation Tool. In: Jaeger, D., Jung, R.
(eds) Encyclopedia of Computational
Neuroscience. New York, NY: Springer;
2015. DOI: 10.1007/978-1-4614-
6675-8_258

18

Neuromorphic Computing


