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Abstract

In Plastic and Reconstructive Surgery, ischemia reperfusion injury (IRI) prevention 
is of utmost importance in free flaps and vascularized composite allotransplantation 
(VCA) to continue increasing accessibility to these advanced reconstructive options. 
At present, free flaps and VCA undergo irreversible ischemic damage at 3 hours due to 
the highly metabolic nature of skeletal muscle, and static cold storage (SCS) can only 
extend this to 4–6 hours. It is important to understand that one of the major chal-
lenges with transplanting composite tissues is that each tissue has a unique tolerance 
and mechanism to ischemia-reperfusion. Research targeting attenuation of IRI can be 
subdivided into 3 time periods: the pre-ischemic, ischemic, and post-ischemic. In the 
pre-ischemic period, there are conditioning methods, the delay phenomenon, which is 
already used clinically, pharmacologic, and stem cell strategies. In the ischemic period, 
SCS is used clinically, whilst other preservation methods including cryopreservation, 
vitrification, machine perfusion, and pharmacologic strategies are being studied. 
Lastly, in the post-ischemic period, our greatest clinical tool is close post-operative 
monitoring, however conditioning methods, and pharmacologic strategies have been 
studied. This chapter covers IRI in tissues implicated in free flaps and VCA, and several 
prevention strategies either currently in use or in pre-clinical studies.

Keywords: reconstruction, free flaps, vascularized composite allotransplantation, 
ischemia reperfusion injury, static cold storage, pre-ischemic period, post-ischemic period, 
preservation strategies

1. Introduction

In Plastic and Reconstructive surgery, the focus of ischemia reperfusion injury 
(IRI) prevention research is in free flaps and vascularized composite allotransplanta-
tion (VCA). Free flaps and VCA are at the highest end of reconstructive complexity 
options available to patients with significant tissue defects. Both free flaps and VCA 
require the division of blood supply to transfer or transplant the tissue; survival 
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is dependent on prompt revascularization at the recipient site to minimize total 
ischemia time. Clinically, we currently have limited options for targeting the pre-
ischemic, ischemic, and post-ischemic periods to attenuate IRI. The delay phenom-
enon is the best described and most validated preconditioning method (see Section 
3.1.2), static cold storage (SCS) remains the primary clinical intervention during the 
ischemic period (see Section 3.2.2), and the mainstay after microvascular anastomosis 
is close monitoring for microvascular complications (see Section 3.3.2). This chap-
ter will describe several experimental methods and areas of advancement that are 
expected to be seen in clinical trials and use in coming years.

It is notable that the majority of cutting-edge research in the field is focused on 
the ischemic period, as simple SCS can no longer meet the demands of preserving 
tissue as the field advances. Solid organs can withstand varying times in SCS: lungs 
are considered acceptable for 6–8 hours [1], heart for 4–6 hours [2], kidneys for up to 
24 hours but ideally less than 12 [3], and liver for 8–12 hours [4]. Similarly to cardiac 
muscle, free flaps and VCA include transplantation of highly metabolic tissues which 
limits ischemia time with no interventions to 3 hours before irreversible ischemic 
damage takes place. Permissible ischemia time can only be extended to 4–6 hours 
with the use of SCS which has historically been and continues to be the gold standard 
for storage. Due to the highly metabolic nature of the tissues, free flaps and VCA are 
particularly susceptible to IRI, and thus significant advancements in prevention of IRI 
are targeted at reducing ischemia through various preservation methods described in 
this chapter.

1.1 Fundamentals of flaps and VCA

A flap is a unit of tissue wherein the blood supply has been maintained. Flaps are 
transferred from donor to recipient sites, which may be close or distant in proximity 
[5]. Depending on the indication, flaps containing different tissue types, vascular 
configurations, or different conformations can be procured. Exploration of donor sites 
and vascular patterns have led to the categorization of flaps into various subtypes, 
which are classified based on circulation (blood supply), constituents (composition), 
contiguity (destination), construction (blood flow), conformation (geometry), and/
or conditioning (preparation) of the tissue [6]. The term free flap is used to describe 
a unit of tissue whose blood supply has been temporarily detached at the pedicle. The 
free flap can then be anastomosed to a new blood supply at the recipient site to fill and/
or cover defects [5]. Thus, free flap transfer is both subject to and limited by an obliga-
tory ischemia time—with ischemic insult between division of the pedicle at the time 
of flap elevation and eventual microvascular anastomosis. Although heavily criticized 
at first, technical advances and perfection of this technique has rendered free flap 
transfer a highly reliable option for reconstructive surgery [7], with reported success 
rates of 93–98.8% [8]. Free flap transfer is successful when adequate blood supply has 
been re-established, ischemia time is minimized, and vascular complications such as 
thrombosis are thwarted [8]. As alluded to, flaps can have varying composition where 
constituents have different capacities to withstand ischemia.

Skin flaps which are composed of just skin, subcutaneous fat, and superficial 
fascia are often used to cover wound defects where skin edges cannot be approximated 
together tension-free, or where there is inadequate vascular supply for a skin graft to 
survive [9]. Muscle flaps are most often used to fill large oncologic or traumatic defects 
as they are well vascularized, and if used with overlying skin, a myocutaneous flap, may 
obliviate the need for an overlying skin graft [10]. Fascial flaps are often used when a 
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vascular flap is required, but with minimal tissue bulk for good cosmetic outcome [11]. 
Fasciocutaneous flaps contain skin, subcutaneous fat, and deep fascia, are thin like 
fascial flaps, but remove need for overlying skin graft [12]. Bone and osteocutaneous 
flaps are most often used for reconstruction of large bony defects, such as in craniofacial 
reconstruction [13]. With each different composition, different considerations regard-
ing IRI may play a role and affect viability of the tissue being transferred.

VCA is the most complex and most novel reconstructive option for people suffer-
ing from significant tissue loss which offers functional recovery. Unlike solid organ 
transplantation, VCA refers to the procurement and transplantation of multiple 
tissues as a functional unit, including skin, nerves, muscle, bone, tendons, ligaments, 
adipose tissue, and vasculature. Clinically, VCA applications include limb, face, 
larynx, penile, uterine, and abdominal wall transplants. Since the development of 
VCA in 1998, the most common form of VCA performed has been hand and upper 
extremity transplant with 148 total reported between 1998 and 2022 [14]. From 2005 
to 2020, 48 face transplants have been described world-wide [15], and since 2005 5 
penile transplants have been performed [16]. As well, 42 uterine transplants, com-
monly performed as male-to-female gender affirming surgery, have been performed 
with at least 12 live births [17]. Despite significant advances in the field, VCA failure 
rates continue to be high, and it is thus not a routinely pursued reconstructive option 
if other options are available. This highlights the need for continued research and 
innovation in the field [18, 19].

2. Mechanisms of ischemia reperfusion injury

In ischemia, the loss of oxygenated blood flow results in a mandatory shift from 
aerobic to anaerobic respiration in all tissue types [20]. At the mitochondrial level, 
oxygen is required to accept electrons in the electron transport chain (ETC), and in 
hypoxic conditions, the ability to produce ATP through the ETC is therefore lost [20]. 
Cells become reliant on glycolysis which can produce 2 ATP per glucose molecule 
[20, 21]. Glycolysis is dependent on the presence of the coenzyme NAD+ which can 
be regenerated by lactate dehydrogenase (LDH) catalyzing the reaction of pyruvate 
to lactate, which simultaneously converts NAD+ to NADH [22]. Notably, as lactate 
builds up and causes tissue acidosis, this inhibits ATP production through a negative 
feedback loop [23]. Ultimately, cytosolic ATP becomes depleted through maintenance 
of membrane potentials, and there is a build-up of intracellular sodium and calcium 
that draws water into the cells causing swelling [20, 21]. Increased intracellular 
calcium also activates calpain, a protease which converts xanthine dehydrogenase 
(XDH) to XO [24]. Phospholipases disrupt cellular membranes, leading to lipid 
peroxidation and increased circulating fatty acids [23].

Upon reperfusion, XO produces uric acid and superoxide (O2
−) by degrading 

hypoxanthine [23]. O2
− can then be converted to hydrogen peroxide (H2O2) and the 

hydroxyl radical (OH) which promotes further lipid peroxidation [23]. Lipid peroxi-
dation releases arachidonic acid which is a primary substrate for production of pros-
taglandins [23]. In ischemia, prostaglandins typically cause vasodilation to increase 
blood flow, but in their absence, there is unopposed vasoconstriction leading to 
worsened ischemia [23]. Uric acid is a damage-associated molecular pattern (DAMP) 
which bind to inflammasomes and cause a cytokine storm in IRI, recruit neutrophils, 
and increased effector T-cells. This series of events following IRI demonstrates the role 
IRI may have in acute and chronic rejection. Lastly, reperfusion normalizes pH in the 
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extracellular space and removes ions, leaving high intracellular osmolarity. Further 
water is drawn into cells, leading to further swelling and possible membrane rupture. 
Mitochondria, which incurred damage during the ischemic phase continue to produce 
ROS which cannot be eliminated due to antioxidant depletion (Figures 1 and 2).

In brief, at the onset of ischemia in the myocardium, reactive oxygen species 
(ROS) accumulate rapidly from various sources, including the mitochondrial electron 
transport chain (ETC) and oxidation of ferrous heme (Fe2+) to ferric heme (Fe3+) 
both of which result in the production of O2

− [26]. Reperfusion causes additional ROS 
production by way of xanthine oxidase (XO) [20]. Following ischemia-reperfusion, 
neutrophils release toxic oxidants, leading to further damage of the myocardium [27]. 
Mitochondrial permeability transition pore (mPTP) opens in response to elevated 
ROS, increasing permeability of the membrane, and through various mechanisms 
leading to calcium overload, apoptosis, and necrosis of cells [28, 29]. It is believed that 
for this reason, although ischemic necrosis leads to significant cell death, reperfusion 
may lead to an additional 25–40% cell death in the myocardium [30].

The following sections will discuss differences in IRI in various tissues contained 
within free flaps and VCA, highlighting differences in mechanism, if applicable.

2.1 IRI in skin and subcutaneous tissue

2.1.1 Tolerance of ischemia in skin and subcutaneous tissue

IRI in the skin has been studied in the context of both VCA and flap surgery. It 
has been found that intracellular pH changes related to anoxia are reversible up to 

Figure 1. 
Pathophysiology of ischemic injury [25].
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24 hours in both skin and subcutaneous tissue [31]. Notably, the effects of anoxia are 
worsened in warm and mitigated in cold environments [32]—several studies have 
cited that cooling flaps results in enhanced survival up to 48 hours [33]. In the setting 
of VCA, ischemic damage to the skin is negligible if warm or cold ischemia time is 
kept below 6 or 24 hours, respectively. Concern for IRI in skin and subcutaneous 
tissues is warranted beyond these time points.

2.1.2 IRI mechanistic considerations in skin and subcutaneous tissue

Ballestin, et al. showed that rat skin flaps which underwent ischemia-reperfusion 
(IR) had significantly higher inflammatory cell infiltration and increased necrosis 
[34]. They did not find significant changes in Th1/Th2 cytokine levels (i.e., IL-2, 
IL-4, IFN-y), but they did find overexpression of Arginase 1 which is released by M2 
macrophages and shifts arginine metabolism to ornithine and urea [34]. This shift 
in metabolism is also known to happen in cardiac and renal IRI [18, 19]. Wang, et al. 
showed that like the myocardium, Drp1 mediates mitochondrial fission involved in 
IRI progression and that inhibiting Drp1 improves skin flap function [35, 36].

2.2 IRI in skeletal muscle

2.2.1 Tolerance of ischemia in skeletal muscle

It is widely appreciated that irreversible ischemic damage of skeletal muscle is 
3 hours with no preservative intervention. When comparing rat muscle and skin 

Figure 2. 
Pathophysiology of reperfusion injury [25].
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flaps in cold (4°C) storage conditions, Wagh, et al. reported the critical ischemia 
time of muscle (16 hours) to be less than one third that of skin (3.5 days) [37]. This 
stark difference is sensible, as skeletal muscle is more metabolically active and will 
thus expend its energy stores more quickly [7]. Lactate production in skeletal muscle 
has been shown to occur continuously for up to 6 hours due to anaerobic respiration 
until it can no longer produce ATP to sustain the tissue [38]. Critical ischemia times 
in VCA models have yet to be sufficiently studied. Some articles suggest that muscle 
constituents have a warm critical ischemia time of less than 2 hours, which can 
be extended up to 8 hours when cooled [39]. The rapid susceptibility of muscle to 
ischemic insult implies that the ischemia time of VCA replants is largely dictated by 
skeletal muscle.

2.2.2 IRI considerations in different muscle fibres

IRI has also been shown to have differential effects in different muscle fibre types. 
In general, it has been found that Type II fibres exhibit more damage and necrosis 
than Type I fibres after IR—with Type II fast-twitch fibres sustaining the most 
damage to the mitochondria, sarcoplasmic reticulum, and myofibrils [40]. Type II 
fast-twitch fibres also demonstrated delayed recovery of function after IR compared 
to slow twitch fibres, indicating either more profound ischemic damage or a slower 
course of repair [41]. Hence, the predominant muscle fibre type in each free flap or 
composite tissue should be considered when estimating critical ischemia time.

2.2.3 Mechanistic considerations in skeletal muscle

The molecular mechanism of IRI in skeletal muscle is quite similar to the myo-
cardium, though where XO is the primary source of ROS in cardiac muscle, NADPH 
oxidase (NOX) is located in sarcoplasmic reticulum is the most significant source 
of ROS in skeletal muscle (though both muscle types use both enzymes) [30]. 
Membrane disruption due to lipid peroxidation is quite pronounced in skeletal muscle 
as compared to the myocardium [40]. Neutrophils are recruited and release toxic 
oxidants, leading to changes to permeability of capillaries, increased interstitial fluid 
pressure and ultimately capillary compression [30]. An additional component of 
injury in the muscle is mediated by myeloperoxidase from neutrophils, an enzyme 
which converts hydrogen peroxide (H2O2) and chloride into hypochlorous acid 
(HOCl) which damage myocyte membranes and further peroxidation of lipids [42]. 
As a result, the muscle cannot get nutrients and is being directly attacked by enzymes. 
Another subtle difference includes that the subsarcolemmal mitochondria (SSM) are 
more sensitive to ischemia than interfibrillar mitochondria (IFM) of the myocardium 
because SSM release cytochrome c more readily in response to elevated calcium levels 
than IFM, leading to apoptosis of myocytes [43].

2.2.4 Clinical scenarios of IRI in skeletal muscle

Clinically, IRI in skeletal muscle can also be observed in acute compartment 
syndrome; intracompartmental pressure increases sufficiently to collapse capil-
laries and ultimately leads to cessation of tissue perfusion [40]. It can also be seen 
in acute limb ischemia where arterial blood flow is acutely interrupted to a limb. 
Both acute compartment syndrome and acute limb ischemia scenarios are surgical 
emergencies.
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2.3 IRI in peripheral nerves

2.3.1 Tolerance of ischemia in peripheral nerves

Although not as well studied as some other tissue types, IRI in the peripheral nerve 
is an important consideration in tissue transplantation. Ischemia induced degenera-
tion of nerve fibers has been reported in several studies—suggesting that reperfusion 
may result in microvascular or oxidative damage following anoxia [44, 45]. The 
critical ischemic time for nerve tissue at normal temperature is approximately 8 hours 
[40]. Iida, et al. also report that extended periods of reperfusion (42 days) permitted 
nerve fibre regeneration [44]. Studies have shown that early inhibition of inducible 
nitrous oxide synthase exhibited protection/reduction of IRI in the nerve [46].

2.3.2 Mechanistic considerations in peripheral nerves

In mild-moderate ischemia, restoration of blood flow can restore nerve action 
potentials rapidly [47]. It is hypothesized that the likely mechanism in ischemic fibre 
degeneration is due to oxidative stress and that in severe ischemia, there is a break-
down of the blood-nerve barrier, also mediated by xanthine oxidase production of 
hypoxanthine [47]. Nagamatsu, et al. showed a large increase in lipid hydroperoxides 
as well as blood-nerve barrier breakdown with ischemia, and therefore significant 
endoneurial edema [47]. In reperfusion, they showed worsening edema in the nerve 
[47]. Nagamatsu, et al. suggest that clinically, a bulk ischemia time during surgery 
(i.e., use of a tourniquet for an entire procedure) is more harmful than if there is 
periodic reperfusion at regular intervals throughout the procedure [47].

2.4 IRI in bone

2.4.1 Tolerance of ischemia in bone

In VCA, bone constituents may display relative resistance to ischemia. Still, 
increasing ischemia times result in appreciable changes to bone composition, ultra-
structure, mechanical properties, and cellularity [48]. Messner, et al. note that on 
the 10th day following transplantation (cold ischemia = 10 hours), bones subject to 
ischemia were more brittle compared to controls in the rat model [48]. In addition, 
they note the formation of a lighter boney layer containing blood vessels and trabecu-
lae superficial to the cortices of bones—the thickness of which was proportional to 
cold ischemia time [48]. Loss of osteocytes in the lacunar network and changes to 
the ultrastructure of the bone marrow were also observed 10 days following ischemia 
[48], though more precise analysis with electron microscopy revealed that osteocytes 
are irreversibly damaged within 4 hours, and lacunae were near-completely devoid 
of viable osteocytes within 24 hours [49]. Weiss, et al. conducted histomorphometric 
analysis of bone grafts after 4 and 8 hours of warm ischemia time revealed similar 
findings, with a drastic decrease in percentage of osteocyte-occupied lacunae [50]. 
Although osteocytes have been the subject of the aforementioned studies, all bone 
cell types, such as osteoblasts, osteoclasts, chondrocytes, and bone marrow cells are 
vulnerable to IRI [51].

Like other tissues, bone IRI is mitigated at decreased temperatures. It was found 
that after just 3–7 hours of ischemia at 37°C, growth and/or development of bone 
was effectively stunted [52]. Indeed, another study found that bones subject to just 
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6 hours of warm ischemia exhibited central areas of disorganization and complete 
destruction of the growth plate [53]. Decreasing temperatures to 0–5°C, however, can 
increase the critical ischemia time of bone to over 24 hours [52]. Albeit studies suggest 
that non-lethal changes can accrue in bone tissue at significantly shorter durations of 
ischemia [51].

2.4.2 Mechanistic considerations in bone

Information regarding mechanism of IRI in bone has not been extensively studied. 
It is notable that in contrast to other tissue types and organ ischemia studies, anoxia 
appears to readily induce bone cell apoptosis in the ischemic phase—rather than 
necrosis [51, 54]. No bone cell type appears to be particularly sensitive to ischemia 
compared to the others [51].

2.4.3 Clinical scenarios of IRI in bone

Bone IRI may occur in a variety of clinical circumstances, including bone com-
pression, fractures, transplantation, thromboembolic events, and of course, vascular 
disruption [39]. Systemic diseases, such as Cushing’s Disease and sickle cell anemia, 
may also result in IRI [55, 56].

2.5 IRI in vasculature

2.5.1 Tolerance of ischemia in vasculature

It is plausible to assume that any condition or event resulting in compromised 
blood flow will lead to ischemia of distal vessels and structures. The endothelium is 
particularly sensitive to IRI. Functions of the endothelium include controlling vas-
cular tone and blood flow, participating in coagulation and inflammatory cascades, 
dictating the permeability of vessels to various macro- and micromolecules, forming 
new blood vessels, and facilitating immune response pathways [57]. As such, the 
endothelium is of utmost importance to preserve.

2.5.2 Mechanistic considerations in vasculature

Upon exposure to ischemia, the capacity for endothelium to facilitate vasodilation 
is particularly compromised [58]. This is a hallmark sign of arteriolar endothelial dys-
function following IRI and is at least in part due to decreased bioavailability of nitrous 
oxide, which decreases substantially during the reperfusion period [59]. Another 
potential mechanism for impaired vasodilation includes reduced shear forces or 
reduced endothelial nitrous oxide synthase activity caused by pH-dependent protein 
denaturation/proteolysis [59]. Impaired arteriole vasodilation as a result of IRI has 
been observed throughout the vasculature with varying severities [59]. While animal 
studies have shown that the renal vasculature is somewhat resilient to ischemia, cere-
bral vasculature shows signs of endothelial dysfunction even after minor insult [59].

When perfusion is re-established, free radicals are abundantly produced and 
complement proteins and WBCs are activated. In addition to producing ROS which 
exacerbate impairment of endothelium-dependent vasodilation, the inflammatory 
cascade results in activation of the endothelium itself [59, 60]. This leads to marked 
cell swelling, hypercoagulability, immune cell infiltration, and extravasation of fluid/
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proteases into the interstitium [59, 60]. While some posit that cell volume increases in 
response to disrupted membranes and/or ion channel dysregulation, others suggest 
that endothelial cell swelling is a direct result of increased cell packing from vaso-
constriction [61]. Albeit less relevant in the context of IRI-related arteriolar dysfunc-
tion, leukocyte recruitment has also been shown to play a role at the arterial level. 
Neutrophils localize and become activated in response to enhanced adhesion molecule 
expression in arterioles, providing an additional source of ROS and resulting in injury 
upon reperfusion [59].

IRI can also be observed at the level of the capillary. Ischemic injury at this level is 
characterized by a decrease in the proportion of perfused capillaries and an increase 
in fluid filtration—a central mechanism of which has not been agreed upon in the lit-
erature. Decreased capillary perfusion can be attributed to a combination of 1) vessel 
congestion caused by platelet and leukocyte recruitment (leukocyte plugging), and 
2) narrowing and compression of the vessels caused by barrier dysfunction-related 
interstitial edema [62]. It is hypothesized that ischemia-related barrier dysfunc-
tion is caused by decreased ATP stores and increased ROS production, wherein the 
endothelial cytoskeleton is interrupted, intercellular adhesion molecules are internal-
ized, intercellular junctions are compromised [63], and finally, vessel permeability 
increases [64–66]. Barrier dysfunction may also be related to the recruitment and 
subsequent transendothelial migration of leukocytes, namely neutrophils [67]. The 
overall result of leukocyte plugging and vessel compression is significantly increased 
capillary bed resistance, even in the circumstance of restored systemic pressure.

Leukocyte activity in response to ischemic insult is the prominent mechanism 
of venule dysfunction in vascular IRI. Decreased oxygen in the setting of ischemia 
results in upregulated expression of adhesion molecules such as P-selectin or ICAM-1 
in endothelial cells, promoting localization and activation of neutrophils, which 
can lead to increased vascular permeability as discussed above [68, 69]. Leukocyte-
mediated damage can also be caused indirectly by way of interaction with other blood 
cells, such as platelets [70].

3. Strategies to combat IRI in flaps and VCA

Strategies to combat IRI in plastic surgery involve efforts that can be applied prior 
to ischemia (pre-ischemic period), during ischemia (ischemic period) and reperfu-
sion (post-ischemic period). Some strategies are well developed and integrated into 
clinical practice, whilst others are still experimental and have not been translated into 
clinical practice (Figure 3).

3.1 Pre-ischemic period

3.1.1 Local and remote ischemic preconditioning

In 1986, Murry, et al. showed that inducing multiple brief periods of ischemia by 
clamping coronary arteries before a sustained ischemic insult reduces infarct size in a 
canine model [71]. This principle was first tested in skeletal muscle by Mounsey, et al. 
in latissimus dorsi flaps of pigs [72, 73]. In their initial study, a cycle of 30 minutes of 
pedicle clamping and 30 minutes of reperfusion prior to 4 hours of warm ischemia 
and 48 hour reperfusion resulted in 20% increased survival when compared to their 
warm ischemia-only control group [72, 73]. Pang, et al. also showed that three cycles 
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of 10 minute ischemia/10 minute reperfusion significantly reduced IRI damage in 
both latissimus dorsi and gracilis muscles when conducted before the 4 hour sus-
tained ischemia protocol [74]. This principle is called local ischemic preconditioning, 
and the potential mechanism was elucidated by Pang, et al. using adenosine receptor 
blockers and ATP-sensitive K channel blockers (see in Section 3.1.3, Pharmacological 
strategies) [74]. Despite the reduction of IRI, local ischemic preconditioning is 
impractical in clinical conditions because (1) it increases operative time, (2) each 
clamp cycle carries risk of damaging the pedicle, and (3) the workflow of a free flap 
procedure is generally already set-up in a way that the ischemia time is limited to time 
needed to perform anastomoses.

Oxman, et al. showed that inducing ischemia on a remote site can also reduce 
IRI at a distant organ [75]. This principle is called remote ischemic preconditioning. 
Oxman, et al. used a rat model to show that 10 minutes of limb ischemia through 
tourniquet application could precondition the myocardium against reperfusion injury 
[75]. Following success in this initial study, similar investigations were performed on 
skeletal muscle flaps. Addison, et al. applied three cycles of 10 minutes IR by applying 
a tourniquet to the hindlimbs of pigs and testing whether IRI was mitigated on the 
gracilis, rectus abdominis, and latissimus dorsi after 4 hours of ischemia and 48 hours 
of reperfusion [76]. Addison, et al. showed similar results to what was achieved with 
local ischemic preconditioning, however non-specific blockage of adenosine recep-
tors did not reduce effects of preconditioning, though could be reversed by naloxone 
[76]. Furthermore, Moses, et al. demonstrated that inhibition of mitochondrial 
ATP-sensitive K channels resulted in abolition of effects of remote conditioning [77]. 
Moreover, opening these channels without remote preconditioning showed protective 
effects [77]. Interestingly, Kolbenschlag, et al. used remote ischemic preconditioning on 
both free and pedicled flap patients on post-operative day 1, 5, and 12 to assess oxygen 
saturation and flow to the flap after intervention [78]. Significant improvements were 
seen in free flaps, however effects were insignificant in pedicled flaps [78]. Although 
this method had shown effectiveness in experimental settings, a recent clinical trial 
of this technique by Krag, et al. in head and neck free flap reconstructions showed no 
significant effect on the complications and overall survival of the flap [79].

Figure 3. 
Overview of strategies to combat IRI in free flaps and VCA. *Indicates current use in clinical settings.
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3.1.2 Delay phenomenon

Currently, the most noteworthy strategy in the pre-ischemic period is augmenting 
viability by surgical or vascular delay. The delay phenomenon is an experimentally 
and clinically proven form of preconditioning, also known as pre-injury conditioning, 
achieved by inflicting sublethal ischemia that causes permanent vascular changes 
in the flap [80]. This can be achieved by (1) surgically incising the flap boundaries 
without undermining, and/or by (2) dividing other source arteries or perforators 
that also nourish the intended flap area (vascular delay) 2 weeks before the defini-
tive surgery [81]. Vascular delay results in two main events within the flap: a hypoxic 
state caused by reduced blood supply, and a hyperadrenergic state caused by severed 
sympathetic nerve endings [82]. This cascade of events results in hyperplasia, 
enlargement and re-orientation of the existing choke vessels that link individual skin 
perforator territories [83, 84]. It also drives angiogenesis within the flap via recruited 
progenitor cells with the effect of growth factors such as FGF and VEGF [82, 85, 86]. 
The HIF1a-VEGF (hypoxia) axis plays a central role in the delay phenomenon. An 
experimental study in rat skin flaps by Jiang, et al. showed that application of VEGFR 
antagonist significantly decreased the vascular enhancing effects of surgical delay 
[87]. Correspondingly, experimental studies employing VEGF as a pre-treatment 
showed “delay-like” vascular changes in the flap, albeit they were not as effective as 
actual surgical delay [88].

The merit of the surgical delay strategy has been known for several hundreds of 
years, traced back to the sixteenth century work of Tagliacozzi from his descriptions 
of staged nasal reconstruction using forearm flaps [89]. In current clinical practice, 
flap delay is used to enhance the flap area intended for transfer, mainly in pedicled 
flaps. It is used in various locations, including but not limited to the paramedian 
forehead flap for nasal reconstruction [90], the reverse sural flap for foot and ankle 
reconstruction [91], and the tensor fascia lata flap to cover extensive defects in the 
abdomen or lumbar region [92].

The transverse rectus abdominis myocutaneous (TRAM) flap classically dem-
onstrates the concept of delay in the clinical setting [93]. TRAM incorporates the 
rectus abdominis as well as the overlying abdominal skin and fat. It is mainly used for 
autologous breast reconstructions. Employing the delay phenomenon by dividing the 
inferior pedicle and incising the flap boundaries opens the linking vessels between 
the two systems, thus increasing its vascularity with time, allowing a larger skin 
paddle to be transferred as if it were based on the inferior pedicle [83, 84]. Pedicled 
TRAM flaps are less frequently used now, having mostly been replaced by the deep 
inferior epigastric perforator (DIEP) flap sparing [94]. Even with advanced methods 
of pre-operative perforator selection [95], some flaps may show vascular compromise 
during dissection, or in some patients a larger flap may be needed. Delay procedures 
are helpful to increase vascularity and enhance flap volume (extended DIEP) [96].

3.1.3 Pharmacological strategies

Although pharmacological strategies have not yet seen clinical adoption, many 
studies have investigated their promise in reducing the effects of IRI. Commonly, the 
rationale of pharmacological treatment lies in preventing the generation of ROS and 
other inflammatory modulators, or by inducing signaling pathways that yield cell pro-
tection or neovascularization. For instance, free radical scavengers such as edavarone 
and sodium channel blockers such as riluzole have been investigated as protective 
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agents for IRI in muscle [97, 98]. Treatment with vitamin C prior to ischemia has also 
been trialed for moderation of reperfusion injury, with positive findings in animal 
skeletal muscle [99, 100].

In the early 1990s, Pang, et al. demonstrated that, similar to preconditioning mus-
cle with short-duration ischemia, pharmacological methods could be used to improve 
the tolerance of skeletal muscle to ischemic insult [74]. Preconditioning pig latissimus 
dorsi with 10 minutes of intravenous adenosine receptor agonist resulted in reduced 
muscle infarct after 4 hours of global ischemia [74]. This would allow for a more acute 
approach to achieving ischemic tolerance, and is thus termed acute (pharmacologic) 
ischemic preconditioning. Notably, the effects of pharmacologic preconditioning are 
sustained and do not require continuous treatment [74].

Vascular Endothelial Growth Factor (VEGF) is a potent mitogen implicated in 
the hypoxia signaling cascade [101]. Its expression is upregulated in the presence of 
HIF-1a, a factor which is constitutively expressed in the cell but otherwise ubiqui-
tinated/degraded under normoxic conditions [101]. In the case of hypoxia, HIF-1a 
is stabilized and promotes the expression of VEGF, which stimulates vasculo- and 
angiogenesis [101]. Employing recombinant forms of VEGF for expedited angiogen-
esis in tissue healing (including myocardium- and ischemia-related applications) has 
thus been of increasing interest and widely studied in experimental research [102].

3.1.4 Stem cell treatment

Interestingly, treatment with bone marrow-derived and adipose-derived stem 
cells (BMSC and ADSC, respectively), prior to tissue ischemia may also hold promise 
in IRI reduction. These stem cells carry the potential to differentiate into endothelial 
cells [103], which can actively participate in neoangiogenesis and thus improve tissue 
survival in the ischemic environment [104, 105]. These stem cells also participate in 
cytoprotective cytokine and proangiogenic factor signaling [106], further potentiat-
ing their preventative effects in IRI [107]. Reichenberger, et al., for example, suggest 
that ADSCs may downregulate intracellular TNF-alpha expression, thereby avoiding 
programmed cell death and promoting cell survival [108]. This claim is complicated 
by the observed upregulation of HIF-1alpha, VEGF-a, CCL4, and other factors that 
can also have pro-inflammatory, pro-angiogenic, and/or vasoactive effects [108, 109].

In 2009, Uysal et al. described the injection of ADSCs into random skin flaps 
prior to inducing 6 hours of global ischemia [105]. They found that flaps treated with 
stem cells showed statistically significant increases in vascular density, number of 
vessels, flap survival and number of endothelial cells compared to controls [105]. 
Similar methods and results have been reported by Ichioka, et al. [110]. Uysal, et al. 
posit that the observed improvements are a combination of not only enhanced angio-
genesis and anti-inflammatory effects, but also upregulation of chemoattractants 
and other factors that induce in vivo migration, differentiation, and proliferation of 
ADSCs [105]. Improved blood supply at early time points in the postoperative period 
promote nutrition/oxygen delivery, sustaining the ischemic tissue until neovascular-
ization is achieved.

Advantageously, adipose tissue containing ADSCs can be harvested in large 
quantities from the human body in a less invasive manner, with minimal donor site 
morbidity [105, 106]. It has also been suggested in the literature that ADSCs possess a 
similar level of potency and proliferative efficiency to that of BMSCs [105, 111]. In the 
future, this could present an avenue for personalized IRI prevention strategies. Data 
on this strategy in the context of skin flap protection, however, is limited [108].
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3.2 Ischemic period

3.2.1 Limiting ischemia time

Clinically, the best predictor of flap and VCA survival is limiting ischemia time. 
Current research is targeted at strategies taken to prolong allowable ischemia time 
by various preservation methods when ischemia time must be extended. In free flap 
surgeries, the surgeon has control over the onset of ischemia time. The recipient bed, 
along with the recipient artery and veins are prepared, and molding of the flap is done 
(when necessary) before pedicle division. Taking this approach permits the surgeon 
to limit ischemia to the time needed to perform anastomoses. The resultant ischemia 
in this controlled setting is usually not significant enough to decrease the overall 
survival of the flap, but it may increase post-operative complications. Chang, et al. 
demonstrated that ischemia time greater than 5 hours was associated with greater 
complications and flap loss as compared to groups with ischemia time less than 3, 
3–4, and 4–5 hours; they did so in osteocutaneous fibula flaps where they had 116 
flaps for 114 patients undergoing head and neck reconstruction [112]. Interestingly, 
overall flap survival was not different across groups [112]. Marre, et al. divided their 
182 patients who underwent DIEP flaps for breast reconstruction into 4 quartiles 
(P25, P50, P75, P100) according to intraoperative ischemia time (39–177 minutes) and 
found that increased ischemia time (above 100 minutes, P100) was associated with 
increased complications such as venous/arterial thrombosis, skin slough and partial 
flap loss [113]. It was also found that ischemia time was an independent risk factor 
for microvascular complications on multivariate analysis [113]. Further, Lee, et al. 
showed that DIEP flap ischemia time over 100 minutes was significantly associated 
with ultrasound-diagnosed fat necrosis 3 months postoperatively [114].

Clinically, VCA ischemia time is seen in injuries leading to digital amputations. 
For digital replantations, 12 hours of warm ischemia or 24 hours of cold ischemia are 
generally considered to be safe [115, 116]. However, successful digital replantations 
have been reported even after 94 hours of ischemia [117]. As the amputation becomes 
more proximal, prompt intervention and more stringent ischemia times are necessary 
due to the proportion of muscle constituents. In major replantations (amputation 
level above the radiocarpal joint), for example, warm ischemia above 6 hours or 
expected cold ischemia above 12 hours may be considered a contraindication—espe-
cially for cases above the mid-forearm level—to replantation [115, 116]. In these 
situations, temporary vascular shunting by means of catheters can be performed in 
an attempt to reduce ischemia time until a stable bone fixation is achieved, radical 
debridement is completed, and the limb can be properly anastomosed [118]. A major 
clinical consideration in IRI with replantations is systemic reperfusion syndrome 
associated with hypotension, metabolic acidosis, hyperkalemia, myoglobinuria, and 
in some instances cardiovascular collapse and death [119].

3.2.2 Static cold storage

Currently, the gold standard method for preserving composite tissues is static 
cold storage (SCS). SCS decreases the temperature of the tissue, thereby decreas-
ing metabolic demand and preserving energy stores during ischemia. For every 
10°C decrease in temperature, a two-fold decrease in metabolic rate is observed 
[120]. Unlike in free flap surgery, where the workflow of the surgery is centered 
on minimizing ischemia time to time of microvascular anastomosis, VCA is often 
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a transplant from donor to recipient and may need to be transported to different 
sites as is done with solid organ transplantation. As such, expanding ischemia time 
through various preservation methods is critical in advancement of clinical VCA 
accessibility. In SCS, the tissue is flushed with a preservation solution and stored at 
4°C. The procured tissue is wrapped in moist gauze, then placed in a waterproof bag 
on ice until transfer to the recipient operating room [116]. The optimal preservation 
solution for VCA has yet to be defined. Thus, solutions for solid organ preserva-
tion are used [25]. To date, University of Wisconsin (UW) solution has been most 
commonly used for hand and face preservation [121–125]. Rostami, et al. compared 
4 different preservation solutions, including Perfadex, HTK, UW, and heparinzied 
saline [126]. Heparinized saline showed the worst outcomes, HTK resulted in higher 
apoptotic cell count in nerve and skin, and Perfadex and UW were the preferred 
solutions [126]. Even with SCS, composite tissues used in plastic and reconstructive 
surgery are limited to the cold ischemia time of skeletal muscle of just 4–6 hours—
this has bred the need to move away from SCS as the gold standard, and as such sig-
nificant advancements have been made in more sophisticated preservation methods 
described in the following paragraphs.

3.2.3 Cryopreservation

Cryopreservation is a technique aimed at lowering the rate of metabolism, and 
ultimately function, in tissue using temperatures below −80°C. At this temperature, 
chemical activity and enzymatic activity are substantially reduced, but structure 
remains unchanged, allowing for indefinite preservation. Cryopreservation on its 
own is fatal to biological tissue without the use of cryoprotectant agents such as 
glycerol, dimethyl sulfoxide (DMSO), or ethylene glycerol [127]. Cryoprotectants 
reduce ice formation by increasing concentration of solutes in the tissue [127]. 
Although there are no human studies that have evaluated cryopreservation in 
VCA, studies have described single tissue and free flap responses to cryopreserva-
tion. Rinker, et al. show that 9/10 epigastric flaps in Lewis rats cryopreserved with 
DMSO and trehalose continued to be viable at 60 days and survival after transplant 
ranged 5–60 days [128]. Arav, et al. successfully cryopreserved then transplanted the 
above-knee rat hindlimb, which remained viable until their endpoint of 3 days [129]. 
Cryopreservation in free flaps and VCA continue to be limited by their composite 
nature as each tissue varies in its susceptibility to ischemia and IRI, as well as optimal 
cryoprotectants.

3.2.4 Vitrification

Vitrification is a process of cryopreservation which avoids the transition from 
liquid to crystalline structure, but rather shifts to a glass-like phase that behaves 
like a solid but avoids the ice crystals of cryopreservation [128]. Theoretically, vit-
rification allows for indefinite storage of tissues in this state. Vitrification contrasts 
from regular cryopreservation by transitioning from liquid to solid phase very 
quickly in order to suppress ice nucleation in the process, and in the vitrified state, 
viscosity prevents ice crystal formation [130]. Arav, et al. also vitrified 3 above-
knee rat hindlimbs which similarly to their cryopreserved limbs remained viable 
for 3 days post-operatively, which was their endpoint [129]. Vitrification continues 
to be very limited due to the significant technical difficulty associated with rapid 
supercooling.
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3.2.5 Machine perfusion

Machine perfusion has become a very popular research avenue in transplant 
research, particularly following success of ex vivo lung perfusion in the clinical setting. 
Ex vivo machine perfusion entails the connection of vasculature to an external pump 
capable of perfusing the tissue with a perfusion with a solution (+/− an oxygen carrier). 
Machine perfusion allows for constant delivery of oxygen, nutrients, removal of toxic 
metabolites such as lactate, and tissue viability testing. The first known perfusion of 
a composite tissue occurred in 1964, when Delorme, et al. perfused 6 lower extremi-
ties with autologous blood [131]. Since then, several landmark studies have furthered 
our understanding of the utility of machine perfusion in VCA preservation. In 2011, 
Constantinescu, et al. successfully perfused porcine forelimbs for 12 hours. The fore-
limbs exhibited retained functional capacity, evidenced by successful electrical stimu-
lation of muscles as compared to loss of stimulation in the SCS control group [132]. 
Ozer, et al. furthered the porcine forelimb work by showing normal single-muscle 
fibre contractility after 12 hours of perfusion with autologous blood, and successful 
transplant of limbs to recipient pigs with normalized lactate levels post-reperfusion 
[133, 134]. Werner, et al. perfused 5 human upper limbs with a plasma-based perfus-
ate for 24 hours, which resulted in normal electrical stimulation throughout and no 
histological myocyte damage [134]. Gok, et al. perfused rat hindlimbs for 6 hours with 
STEEN solution (perfusate optimized for lung perfusion) enriched with RBCs. They 
found that the muscles remained viable, with no evidence of ischemic necrosis on his-
tology [135]. Krezdorn, et al. showed greater 7-day post-operative replantation survival 
and integrity of porcine forelimbs after 24 hours of perfusion with modified STEEN as 
compared to SCS control stored for 4 hours [136]. Burlage, et al. perfused rat hindlimbs 
with acellular perfusates (bovine serum albumin (BSA), with either polyethylene glycol 
or oxygen carrier HBOC-201 added) at subnormothermic temperatures for 6 hours and 
were successful in heterotopically transplanting the limbs, noting superiority of the 
group perfused with HBOC-201 in 30-day survival post-operatively [137].

Although the past decade has seen an explosion of research in use of machine 
perfusion, major limitations are still being explored. Most studies only follow-up post 
replantation for a maximum of 1 month. Due to heterotopic transplantation, there 
is a major automutilation confounder as well. A major clinical consideration is the 
extravasation of perfusate and subsequent edema and weight gain which may result in 
compartment syndrome necessitating fasciotomies to maintain tissue survival. There 
is thus a need to develop a perfusate which limits this adverse effect of machine perfu-
sion by providing endothelial protection and adequate balance of hydrostatic and 
oncotic pressures. To-date, there is no perfusate that has been specifically designed 
and optimized for use in VCA; no study has been done to directly compare experi-
mental outcomes of various perfusates currently in use for VCA perfusion. Datta, 
et al. reviewed preservation solutions currently used in literature and hypothesized 
that an ideal solution will reduce ROS production, thus attenuating IRI in VCA, but 
cautions that the significant diversity within VCA itself will likely give rise to the need 
to cater solutions to each type of VCA based on tissue subunit composition [25].

3.2.6 Pharmacological strategies

As discussed previously in pre-ischemic treatment methods, treatment with 
various agents during tissue ischemia may also improve survival upon reperfusion. 
In one study, bone grafts were exposed to varying durations of warm ischemia time 
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prior to reperfusion. Just prior to anastomosis, the experimental group was treated 
with superoxide dismutase—which functioned to prevent the generation of reactive 
oxygen species when blood flow was re-established. Bone grafts treated with super-
oxide dismutase exhibited enhanced survival compared to controls [50]. A study 
by Tamura, et al. also achieved pronounced protection from IRI by administering a 
derivative of vitamin C prior to reperfusion in a rat hind limb model [53].

3.3 Post-ischemic period

3.3.1 Post-ischemic conditioning

The principle outlined in Section 3.1.1 (Local and remote ischemic precondi-
tioning) also has a protective effect when applied just before sustained reperfu-
sion—this is known as post-ischemic conditioning. This strategy was first described 
in myocardial tissue by Zhao, et al. where they showed three cycles of 30 second 
coronary artery clamping and 30 seconds of reperfusion applied just before the 
3 hour reperfusion period following a 50 minute ischemic period resulted in sig-
nificant reduction of infarct size compared to their control group [138]. Moreover, 
the protective effect was similar to the pre-conditioning group that they included 
in their study [138]. This strategy was again applied to muscle flaps. Park, et al. 
showed that six cycles of 15 second IR periods at the end of 3 hours of ischemia 
result in the attenuation of IRI in rat extensor digitorum longus [139]. The possible 
mechanistic explanation of this effect was studied by McAllister, et al. on pig latis-
simus dorsi muscle flaps [140]. They showed that intravenous injection of cyclospo-
rine A, an inhibitor of the opening of mPTP after 4 hours of ischemia results in a 
similar effect to four cycles of 30 second IR [140]. They also found this effect could 
be reversed by actractyloside, an mPTP opener [140]. Moreover, McAllister, et al. 
showed that the application of cariporide, a Na+/H+ exchange inhibitor, effectively 
reduces the mitochondrial Ca2+ content and has protective effects like cyclosporine 
A [140]. Despite promising results, ischemic post-conditioning is currently not 
common clinical practice.

3.3.2 Monitoring for microvascular complications post-operatively

The reperfusion period starts upon the completion of proper anastomosis of 
vessels. It is critical to monitor the transplanted tissue hourly, particularly in the 
first 24 hours, as this is the period where most microvascular complications will 
arise due to arterial and/or venous insufficiency. Capillary refill time, tempera-
ture, color, and turgor are monitored [141, 142], blood flow is confirmed with 
a doppler, and oxygenation with a tissue oximeter [143, 144]. Short capillary 
refill time (<2 seconds), purple skin color, marked edema, and increased turgor 
are indications of venous insufficiency [142]. Long capillary refill (>3 seconds), 
pallor and cool temperature are indicators of arterial insufficiency [142]. Arterial 
insufficiency usually results from thrombosis within the anastomosis whilst global 
venous insufficiency may result from venous thrombosis, torsion in the pedicle, 
or hematoma around the pedicle [145, 146]. When these complications arise, 
the flap returns to an ischemic state and blood flow must be restored. Failure to 
recognize these changes, or late intervention are risks of losing the tissue entirely. 
As expected, time from the initial operation until salvage attempt negatively cor-
relates with salvage success [147, 148].
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3.3.3 Pharmacological strategies

Pharmacological treatment is usually initiated in the OR and continued post-oper-
atively to decrease risk of thrombosis. Low molecular weight heparin, unfractionated 
heparin and aspirin are the most commonly used anticoagulant and anti-platelet 
agents [149]. However, there is no consensus on the optimal regime, and it is ques-
tionable whether they actually have any effect on overall survival [149, 150]. Treating 
muscle with copolymer surfactants—which have been shown to adsorb and seal dam-
aged cell membranes—post-injury has also seen success in improving the survival 
of muscles in the rat [151]. Orfany, et al. describe a significant reduction of IRI using 
a mouse acute limb ischemia model with mitochondrial transplantation, leading to 
decreased apoptosis, infarct, and increasing viability and function post-IRI [152].

Treatments targeting IRI in the vasculature have also been explored. In a study 
by Ward, et al., superoxide dismutase or Trolox (antioxidants) were used to prevent 
morphological endothelial cell changes characteristic of ischemic injury, such as cell 
swelling and bleb formation [153]. Another study found that incubating arterioles 
in sepiapterin, a BH4 precursor, or MH4, a BH4 analog, could restore endothelium-
dependent vasodilation following a period of ischemia in the pig [154]. Although 
this work primarily sought to explain the mechanism by which endothelial function 
is blunted in IRI (depletion of cofactor BH4), this work paves the way for future 
reagent-based approaches to IRI prevention [154].

Although not a pharmacologic measure per se, Haapaniemi, et al. also suggest that 
by increasing the partial pressure of oxygen in the tissue, treatment with hyperbaric 
oxygen can effectively reduce IRI [155].

3.3.4 Stem cell treatment

Similarly discussed in the pre-ischemic section of this chapter, stem cells have also 
been investigated as a post-ischemic treatment strategy for IRI. Studies have shown 
that intravenous treatment of skin flaps with adipose derived stem cells exhibited 
enhanced flap survival, flap perfusion, and expression of pro-angiogenic and inflam-
matory genes in the rat [108]. Another study by Nakagami, et al. found enhanced 
blood flow and capillary density 4 weeks post-transplantation of adipose derived 
stem cells co-cultured with human aortic endothelial cells in the ischemic mouse 
hindlimb [156].

4. Conclusion

In conclusion, ischemia reperfusion injury is of critical concern in Plastic and 
Reconstructive Surgery as the highest complexity reconstructive options offered to 
patients are subject to ischemia. In contrast to ischemia of solid organs for transplant, 
Plastic Surgery must uniquely manage composite tissues with varying tolerances to 
ischemia and IRI. Various measures are employed to mitigate the adverse effects of 
IRI, some of which are present in clinical settings today whilst others have yet to be 
translated to human clinical trials. Firstly, in the pre-ischemic period, great effort 
is made to work with well-vascularized tissues through pre-operative planning 
whenever possible and strategies such as delay can be employed. Significant benefits 
have been described through local and remote pre-conditioning methods, and with 
pharmacological and stem cell treatments in the pre-clinical setting. Secondly, the 
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ischemic period occurs after division of the pedicle which is currently the target of 
most research efforts. Currently, SCS is the gold standard of storage, but it has limits 
and research has shown promising outcomes with freezing methods and machine per-
fusion. Thirdly, in the post-ischemic, or reperfusion period, rigorous post-operative 
monitoring of both the patient and the transplanted tissue to promptly address any 
complications that may arise. Some post-conditioning and pharmacological treat-
ments have been described in the pre-clinical setting with promise to enhance the 
reperfusion period. Altogether, there have been significant advances in IRI implica-
tions in Plastic and Reconstructive Surgery, and in order to continue increasing 
accessibility to these advanced reconstructive options for patients with significant 
tissue loss, research must be continued with ultimate translation to clinical studies in 
the near future.
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