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Chapter

Artificial Intelligence in Surgery,
Surgical Subspecialties, and Related
Disciplines
Ryan Yimeng Lee, Alyssa Imperatore Ziehm, Lauryn Ullrich and

Stanislaw P. Stawicki

Abstract

Artificial intelligence (AI) and machine learning (ML) algorithms show promise in
revolutionizing many aspects of surgical care. ML algorithms may be used to improve
radiologic diagnosis of disease and predict peri-, intra-, and postoperative complica-
tions in patients based on their vital signs and other clinical characteristics. Computer
vision may improve laparoscopic and minimally invasive surgical education by iden-
tifying and tracking the surgeon’s movements and providing real-time performance
feedback. Eventually, AI and ML may be used to perform operative interventions that
were not previously possible (nanosurgery or endoluminal surgery) with the utiliza-
tion of fully autonomous surgical robots. Overall, AI will impact every surgical
subspecialty, and surgeons must be prepared to facilitate the use of this technology to
optimize patient care. This chapter will review the applications of AI across different
surgical disciplines, the risks and limitations associated with AI and ML, and the role
surgeons will play in implementing this technology into their practice.

Keywords: artificial intelligence, machine learning, robotics, surgery,
nanotechnology, nanosurgery, computer vision, autonomy

1. Introduction

Artificial intelligence (AI) and machine learning (ML) are rapidly transitioning
from “experimental” into the “mainstream adoption” [1–3]. The current pace of
progress appears to be accelerating, with an emerging number of potential applica-
tions of AI/ML in surgery and its various subspecialties [4]. These programs have
shown promise in their capacity to process vast amounts of data, identify multivariate
relationships within data, and reduce uncertainty of predictions to enable alternative
options to certain tasks [5, 6]. Still, AI has not yet progressed to fully automating tasks
due to certain limitations, such as the inability to understand common-sense scenar-
ios, adjust to untrained circumstances, and make intuitive or ethical judgments—all
necessary abilities required from a surgeon [7–10]. These complementary strengths
suggest that the role of AI may be optimized by collaborating with human intelligence
[11]. However, this has not stopped scholarly discussions from imagining what
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increasingly practical considerations of AI might look like in the future, including
concepts such as “autonomous actions in surgery” [12].

In this chapter, we will explore current and potential future applications of AI/ML
in the sphere of surgery, surgical subspecialties, and related disciplines of medicine.
Each section of this chapter will outline specific aspects where we believe AI may play
a role within the context of surgical care delivery.

2. Methods

For the purposes of this narrative review, we performed an exhaustive literature
search, with primary source platforms being Google™ Scholar and PubMed. The pri-
mary search term was “surgery” with the following secondary terms—“artificial intelli-
gence,” “machine learning,” “technology,” and “subspecialty.” Specific names of
surgical specialties (e.g., orthopedics, neurosurgery, and vascular surgery) were also
employed. The primary search term “surgery” in combination with each of the other
keywords, in various iterations, resulted in more than 875,000 potential listings. Litera-
ture screening focused on sources with “full text” availability, limited to English lan-
guage. In addition, various correspondences (e.g., Letters to Editor and Brief
Communications) were excluded. This resulted in approximately 142,000 secondary
literature results. The search was limited to original research and reviews within this
group, with at least five citations (using Google™ Scholar).With these criteria, our final
list of potentially suitable articles was fewer than 2000. A more intensive review of the
tertiary phase of our article screening resulted in 96 articles with relevance to this
review. After this, secondary sources (derived during in-depth review of our 96 most
relevant articles and examining their respective reference lists) were added. Utilizing
the above methodology, the resultant reference list includes 158 citations (Figure 1).

In the primary search, only studies with five or more citations were considered.
Because newer studies tend to have fewer citations, this may introduce selection bias
against newer studies that either address aspects of these concerns or bring up new
ones. Given the rapidly evolving field of AI, future reviews could evaluate more novel
studies for potential innovations.

Figure 1.
Flowchart of the selection process for review articles.
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2.1 Focused list of AI/ML applications across surgical specialties

A focused list of topics regarding the implication and application of AI and
ML are presented below. AI is broadly defined as a system that can learn to think
or act [13]. ML, which falls under the broad scope of AI, refers more specifically
to an algorithm that adjusts itself based on detected patterns in data [13]. Deep
learning is a subset of ML that uses neural networks to learn intricate relationships
in data [14]. Each item will be presented briefly, with relevant literature sources
provided accordingly. It is important to note that a complete review encompassing
all applications of AI/ML and all specialties of surgery is beyond the scope of this
chapter.

3. Perioperative risk assessment and surgical planning

Due to the ability to quickly and efficiently incorporate and compile large amounts
of data, AI/ML paradigms are likely to be heavily involved in preoperative risk
assessment in all fields of surgery. Through the collection of patient data and charac-
teristics, such as weight, heart rate, blood pressure, comorbidities, and other factors,
highly sophisticated models can be used in algorithms that predict the risk of the
patient before undergoing a surgical procedure. With the ability to calculate risk, AI/
ML may also bring the potential for appropriate mitigating strategies that could
decrease patient morbidity and mortality [4, 15]. By utilizing large data sets organized
by specific surgical procedures and procedure types, AI/ML-powered algorithms
could be used to modify models that carry out statistical weight optimization for
different variables associated with morbidity and/or mortality for each type of sur-
gery, within a specific set of clinical circumstances (e.g., emergency versus
nonemergency) or within a certain population (e.g., demographic). Assuming a rep-
resentative sample, an effective AI/ML algorithm would allow surgeons and other
perioperative medicine experts to input values for individual patients and return an
objective preoperative risk assessment, leading to potential applications in precision
medicine. For instance, there are multiple different bariatric surgeries available to
patients, including sleeve gastrectomy, Roux-en-Y gastric bypass, adjustable gastric
band, and biliopancreatic diversion [16]. Though sleeve gastrectomy is now the most
common approach, each technique has trade-offs between cost, short-term morbidity,
long-term morbidity, and long-term weight loss, and this can sometimes lead to
complex decisions in choosing the optimal procedure [17]. Machine learning algo-
rithms could help address this issue using preoperative data to provide individualized
recommendations, potentially leading to more optimal bariatric surgery prescriptions
[16]. Recent studies have investigated the use of similarly structured and
implemented algorithms across many different types of surgeries and surgical chal-
lenges, from predicting preoperative risk of cardiac complications, identification of a
difficult airway prior to intubation, and the general risk–benefit estimations of differ-
ent procedural or surgical interventions [18–22]. When properly designed and
implemented, such algorithms would allow for risk stratification and, thus, better
preparation for adverse outcomes following surgery. Future improvements would
increase the specificity and sensitivity of these algorithms, facilitating a more accurate
prediction of perioperative risk. Additionally, AI algorithms may be able to provide
quantitative predictions about outcomes with and without surgery, providing both
surgeons and patients with the information for objective decision-making [23].
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Additional preoperative risk assessment could take the form of dedicated ML
analysis of the radiologic imaging [24]. Preoperative imaging is utilized before surgery
to give surgeons more information about the patient’s pathology and anatomy and is
essential for preoperative planning. ML algorithms can be used in the preoperative
setting to predict prognoses and augment surgical decision-making across various
surgical specialties [25–27]. An example of the implementation of preoperative ML
models is the utilization of computed tomography (CT) scans to diagnose lung cancer.
Using ML to evaluate CT scans has shown comparable to even better sensitivities and
specificities compared to radiologists [28]. Such models can be further augmented to
provide data about each identified tumor and suggestions for surgical planning [29].
More widespread adoption of ML algorithms that read imaging could lead to
advancements in surgical planning in interventions such as lumbar decompression in
spinal stenosis to assessing characteristics of corneal endothelium in specular micros-
copy for treatment of corneal edema [20, 30]. The utilization of ML algorithms could
transform how surgeons interpret CT scans preoperatively and could, in return,
improve patient care and surgical outcomes.

Advances in the algorithmic interpretation of medical imaging have led to the
emergence of radiomics, a field involving the analysis of medical imaging to provide
information about the physiology or pathology of the disease [31]. Radiomics contrib-
utes an additional layer to how ML algorithms can interpret medical imaging and has
shown unique promise in surgical oncology, where minute changes in image features
can be associated with various prognoses. Typical features used in radiomic workflow
may include the intensity of signals and the distribution of these signals [32]. Because
benign and malignant tumors have different microenvironments and expression of
specific markers, magnetic resonance imaging (MRI) radiomics shows promise in
being able to differentiate malignant or benign tumors from normal tissue [32]. Radio-
mics could therefore improve patient outcomes through early identification of disease.

In terms of specific examples, radiomics can be used to determine axillary lymph
node (ALN) metastases in patients with breast cancer. The most common site of
breast cancer metastasis is to the axillary lymph nodes (ALN). Early detection of ALN
metastases can inform the surgical management of breast cancer [33]. Based on the
Z0011 clinical trial results, the current diagnostic procedure for ALN metastases for
most patients is sentinel lymph node biopsy (SLNB) [34]. Although this procedure is
less invasive than ALN dissection, SLNB still carries the risk of lymphedema, axillary
paresthesia, and reduced range of motion in the involved upper extremity [35]. Fur-
thermore, in some cases, SLNB has been shown to have false negative rates in the
range of 5–10% [36]. Thus, finding more effective alternative ways to identify ALN
metastases is increasingly important. Radiomics has shown the ability to identify
malignant tissues and determine ALN metastases at a higher rate than radiologists
[37]. In the future, radiologists equipped with radiomics capabilities may be able to
more efficiently and more accurately identify ALN metastases, leading to more
prompt medical and surgical therapeutic interventions. Evidence suggests that radio-
mics may be able to differentiate between different subtypes of cancer based on the
unique molecular profile and the resulting appearance on imaging of each subtype
[38]. The ability to specifically diagnose different subtypes of cancer from their
respective radiologic imaging characteristics may allow surgeons to stratify patient
prognoses and better determine medical and surgical management (e.g., precision
medicine/surgery).

Preoperative uses of ML and AI could also improve patient outcomes for those who
are awaiting organ transplants. More specifically, ML algorithms trained to analyze
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patient characteristics, such as age, sex, severity of disease, hemodynamic measure-
ments, and other variables, could be used to predict waitlist mortality and
posttransplant outcomes [39]. These programs could be used to improve patient out-
comes more broadly through a more objective management of organ transplant
waitlists and recipient match optimization. ML algorithms may also be used in the
future in more direct applications to transplant surgery. For instance, in liver trans-
plantation, graft-weight-to-recipient-body-weight (GW/RW) ratios <0.8% are asso-
ciated with an increased risk of complications such as small-for-size syndrome [40].
Consequently, the estimation of graft weight in living donors is important for limiting
adverse outcomes associated with graft size mismatch. Studies have been conducted
on the potential use of ML models trained on donor age, sex, body mass index, CT
scans, and other data to estimate the donor graft weight [40]. These models have the
potential to greatly enhance the precision of graft weight estimation, improving out-
comes of liver transplantation. Additionally, experiences learned from hepatic trans-
plantation may be suitable for adoption across other areas of organ transplantation
(e.g., kidney, pancreas, heart, and lung), similarly reducing various potentially

Source Year of

publication

Country of

origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to

this review

Hashimoto
et al.

2018 USA All disciplines ML surgical
decision-
making

AI in the form of ML, natural
language processing, artificial

neural networks, and
computer vision has led to
applications such as the

detection of bleeding in tissue
in video, analysis of

Electronic Health Record
(EHR) text, and predicting
lung cancer staging based on
diagnostic and therapeutic

data

Loftus
et al.

2020 USA All disciplines ML surgical
decision-
making

ML models may increase
accuracy and reduce biases in

surgical decision-making

Bihorac
et al.

2019 USA Major inpatient
surgeries

ML
preoperative

risk of
complications

ML algorithm using EHR data
could predict the risk of

certain complications and of
mortality at 1-, 3-, 6-, 12-, and

24 months after surgery
(Areas under the curve

(AUCs) of 0.82 and 0.94)

Zhou et al. 2022 China Thyroid
surgery

ML
preoperative

risk of
complications

ML algorithm using
preoperative patient data and
neck circumference could
predict difficult airway

intubation (AUCs of 0.812
and 0.848)

Wilson
et al.

2021 USA Orthopedic
surgery,

neurosurgery

ML
preoperative
determination
of surgery
candidacy

ML algorithm using lumbar
MRI scans could predict
spinal surgery candidacy

(Area under the curve (AUC)
of 0.88)
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Source Year of

publication

Country of

origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to

this review

Bellini
et al.

2021 Italy Thoracic
surgery

ML
preoperative

risk of
complications

ML models can evaluate
preoperative data to provide
individualized preoperative
risk of outcomes after lung

cancer resection and
identification of pulmonary

nodules

Malani
et al.

2023 India Gynecologic
surgery

ML
preoperative
detection of

disease

ML models can evaluate
imaging to determine the
presence of disease for
surgical intervention

Shoham
et al.

2022 Israel Dermatologic
surgery

ML
preoperative
prediction of

surgery
complexity

ML model using preoperative
patient and tumor data can
predict the complexity of

surgical resection of
nonmelanoma skin cancer

(AUC of 0.79)

Bian et al. 2023 China Surgical
oncology

ML analysis of
imaging

ML radiomics model using
CT scans can predict the
presence of lymph node

metastases in patients with
pancreatic ductal

adenocarcinoma with better
accuracy than clinician alone

(p < 0.001)

Etienne
et al.

2020 France Thoracic
surgery

ML analysis of
imaging,

preoperative
risk

assessment

Multiple ML models can
identify the presence of
malignant nodules using

patient CT scans

Fairchild
et al.

2023 USA Neurosurgery ML analysis of
imaging

ML model can identify the
presence of difficult-to-detect
brain metastases with 94%
accuracy for prospectively
diagnosed metastases and
80% accuracy for new

metastases

Martin
et al.

2022 USA Orthopedic
surgery

ML analysis of
imaging,

preoperative
risk

assessment

ML algorithms can detect the
presence of fractures and
automate the calculation of

measurements such as
coronal knee alignment and

acetabular component
inclination and version

Savage 2020 USA Surgical
oncology

ML analysis of
imaging

ML algorithms can detect the
presence of lung cancer at

rates comparable to
radiologists

Cui et al. 2021 China Surgical
oncology

ML analysis of
imaging

ML model can identify the
presence of lung cancer
nodules (76.0% accuracy
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Source Year of

publication

Country of

origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to

this review

with 0.004 false positives/
scan when double-read) and
provide information about
number, coordinates, and
suspicion of each nodule

Vigueras-
Guillén
et al.

2020 Netherlands Ophthalmology ML analysis of
imaging

ML model can assess corneal
endothelium density,

coefficient of variation, and
hexagonality using images
from specular microscopy in
98.4% of specular images
compared to 71.5% using

previous software

Yu et al. 2021 China Surgical
oncology

ML analysis of
imaging,
radiomics

ML radiomics can predict the
presence of axillary lymph
node metastasis (AUCs of
0.88 and 0.87) and provide

insight into tumor
microenvironment (immune
cells, methylation, and long
noncoding RNAs (lncRNAs))

Chang
et al.

2021 Taiwan Neurosurgery ML analysis of
imaging,
radiomics

ML radiomics can predict
molecular subgroups of

medulloblastoma based on
differing MRI profiles of each

subgroup (AUCs of 0.82,
0.72, and 0.78)

Hsich et al. 2019 USA Transplant
surgery

ML
preoperative

risk
assessment

ML model evaluated which
variables have high

importance in predicting
heart transplant waitlist
mortality, including

glomerular filtration rate
(GFR), serum albumin, and
extracorporeal membrane
oxygenation (ECMO) usage

Giglio et al. 2023 Italy Transplant
surgery

ML
preoperative

surgical
decision-
making

ML models trained on donor
characteristics and CT scans
can accurately predict liver

donor graft weight to
optimize donor-recipient
matching with less errors
than other methods (p

< 0.001)

Gujio-
Rubio et al.

2020 Spain Transplant
surgery

ML
preoperative

risk
assessment

ML algorithms for
preoperative risk assessment

show promise in liver,
pancreas, kidney, heart, and

lung transplantation

Table 1.
Summary of included studies on preoperative artificial intelligence/machine learning (AI/ML).
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preventable complications, improving patient clinical outcomes, and maximizing
effective utilization of organs (Table 1) [41].

4. Intraoperative surgical decision-making

Although AL/ML-based algorithms and approaches can greatly improve patient out-
comes during preoperative use, perhaps the most promising and powerful use of these
programs is their ability to improve intraoperative care. Algorithms trained on patient
vital signs, various biometric and non-biometric characteristics, electrocardiography
(EKG), and other data points could be utilized to help facilitate real-time reduction of
various intraoperative risks, including those of hypertension, hypoxemia, massive hem-
orrhage, and other complications [42–44]. Loftus et al. write that this comprehensive
analysis of patient parameters using AI is especially important for more complex disease
states, such as frailty [45]. Though frailty is a multifactorial disease state affected by
physical, cognitive, and social variables, frailty is currently diagnosed by a few physical,
often subjective criteria. For instance, the Fried frailty phenotype assesses patients based
on their recent physical activity, subjective feelings of exhaustion, walking speed,
handgrip strength, and unintentional weight loss. Diagnosing frailty can therefore be
inconsistent, even though frailty is known to increase morbidity, mortality, and risk of
other comorbidities that also increase surgical risk. Through expert-led ML training on
large sets, algorithms could be developed to better classify complex disease systems such
as frailty or sepsis and improve intraoperative risk assessment [45]. These outputs could
further allow for augmented decision-making, or the advanced application of highly
sophisticated models that are trained on multiple iterations of the same surgical proce-
dure type. This, in turn, could provide decision-making assistance for surgical teams
performing same-type operation based on the patient’s vital signs, procedural charac-
teristics, the progression of the surgery, and various other potential characteristics [46].
For instance, if a machine learning model identifies that a certain constellation of
parameters was associated with worse outcomes, it could potentially suggest that the
surgical team addresses a specific aspect of patient care to improve the projected out-
come, or perhaps to reduce various complication risks [4, 47–50]. Komorowski et al.
showed the possibility of this type of AI through an algorithm that was able to suggest
optimal treatment and dosing options for sepsis patients leading to lower patient mor-
tality than human clinicians alone [51].

Surgery often places high demands on surgeons’ cognition, creating an opportunity
for ML/AI algorithms to reduce cognitive load and further identify ways to improve
surgical outcomes [50, 52, 53].

4.1 Intraoperative pathology and histology determination

Clinical algorithms based on AI/ML have the potential to be highly helpful when
healthcare professionals must quickly “make sense of” large amounts of aggregate/
consolidated data, including text-based content [54–56]. One of the fields within the
broader domain of “AI” that has gained particular interest in recent years is the so-
called “computer vision” [57, 58]. Advancements in computer vision have been
applied to object recognition, facial recognition, and action recognition, and potential
applications of this technology in the area of surgery and related specialties are readily
apparent [59]. This includes the use of AI to interpret radiologic imaging and a
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potentially important role in intraoperative histological analysis. The current proce-
dure/workflow for intraoperative pathology in many oncologic surgeries involves the
excision of a portion of the tumor, where the sample is then transported to the
laboratory for preparation and interpretation by a pathologist. This process can take
20–30 min, prolonging the overall surgical procedure and also potentially delaying the
diagnosis, where each additional step also contributes potential barriers to timely
diagnosis [60]. Applications of “computer vision” could potentially address challenges
associated with intraoperative interpretation of histology. Data are also emerging on
the use of ML algorithms in analyzing images from Raman spectroscopy to identify
malignant and benign tumors. The actual algorithm is functionally similar to the
process used in radiologic analyses, but Raman spectroscopy imaging can be further
processed to provide imaging more similar to hematoxylin and eosin (H&E) staining,
which may better allow surgeons and pathologists to verify ML classifications of tissue
samples [61]. Intraoperative pathology consultations are quite common in neurosur-
gical tumor procedures, breast cancer, hepatobiliary and pancreatic resections, lymph
node dissections, and dermatopathology [62–66]. These procedures may also benefit
from AI-aided streamlining of intraoperative histology and pathology in the future.

The use of computer vision algorithms in surgery can be further expanded to
include the characterization of molecular tissue margins. When removing malignant
tumors, patient outcomes are optimal with maximal resection of the tumor while
sparing as much healthy tissue as possible. Positive margins, or cancerous cells that
remain after incomplete resection, are associated with recurrence of cancer, leading to
worse patient outcomes. Some estimates indicate that positive margins may be found
in approximately 5% of liver and breast cancer resections, so identification of tumor
margins is still a significant problem that must be addressed [67, 68]. As mentioned
previously, Raman spectroscopy has already been used by pathologists to distinguish
neoplastic and normal tissue based on differential Raman scattering, but future
advancements could also lead to intraoperative Raman spectroscopy to determine
tumor margins [69]. Like with other imaging modalities, computer vision algorithms
in the future will be able to identify features such as positive margins. This could allow
surgeons to identify tumor margins within the operating room without needing to

Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

Hatib et al. 2018 USA All surgical
disciplines

ML
intraoperative

risk
assessment

ML model was able to predict
intraoperative hypotension from
the analysis of perioperative
arterial pressure waveforms

(area under the curve (AUC of
0.95 15 min before hypotensive

event)

Lundberg
et al.

2018 USA All surgical
disciplines

ML
intraoperative

risk
assessment

ML model was able to predict
intraoperative hypoxemia from

preoperative patient
characteristics, real-time

ventilation settings, anesthetic
agents, etc.(AUC of 0.76

compared to that of 0.60 with
anesthesiologist’s prediction)
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Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

Lee et al. 2022 Korea All surgical
disciplines

ML
intraoperative

risk
assessment

ML model using pre- and
intraoperative parameters

(arterial pressure waveforms,
oxygen saturation, and ST

segment elevation) was able to
accurately predict intraoperative
massive transfusion (AUC of

0.972 compared to that of 0.824
using the benchmark model)

Loftus et al. 2019 USA All surgical
disciplines

ML
intraoperative

risk
assessment

ML algorithms will be useful for
modeling complex disease states
(such as frailty and sepsis) for a
more accurate intraoperative

risk assessment

Yang et al. 2019 USA All surgical
disciplines

ML decision-
making

ML decision support tools may
be able to provide clinical

decision-making in all aspects of
medicine

Pappada
et al.

2013 USA Surgical
critical care

ML decision-
making

The ML model was able to
predict glycemic trends in
critically ill trauma and

cardiothoracic surgery patients
with 96.7% accuracy for normal

glucose values and 53.6%
accuracy for hyperglycemic

episodes

Komorowski
et al.

2018 UK Surgical
critical care

ML decision-
making

The ML model was developed to
recommend sepsis treatment
strategy and dosage based on
patient demographics, vital
signs, laboratory values,

medications received, etc., and
patient mortality was the lowest

when clinician treatments
matched AI recommendations

Barth and
Seamon

2015 USA All surgical
disciplines

ML decision-
making

Situational awareness is vital for
patient safety, and AI may help
reduce cognitive load to increase

situational awareness

De Melo
et al.

2020 USA All surgical
disciplines

ML decision-
making

Virtual assistants significantly
decreased self-reported

cognitive load in participants
undergoing cognitively

demanding tasks

Voulodimos
et al.

2018 Greece All surgical
disciplines

Computer
vision

Recent advancements in
computer vision include object
detection, face recognition,
action recognition, and pose

estimation

Hollon et al. 2020 USA Neurosurgery Computer
vision

Computer vision models can
analyze Raman spectroscopic
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wait for margins to be identified histologically, increasing efficiency and outcomes of
tumor resection surgeries (Table 2).

5. Enhancement of laparoscopic and minimally invasive surgery

In addition to aiding in tumor resections, computer vision is likely to impact many
other aspects of surgery, especially with the increased integration of minimally invasive
and robotic surgery [70]. Computer vision ML algorithms in the future may be able to
process real time the videos taken during minimally invasive surgery (MIS) and robotic
surgery, providing the surgeon with a broad array of additional, structured, and poten-
tially actionable information. For example, computer vision algorithms may be useful in
enhancing laparoscopic images. Given the anatomy of the abdomen, one issue common
to an entire range of laparoscopic video signals is the quality of images. Nonuniform
lighting, light-absorbing surfaces and substances (e.g., blood), along with other reasons
for low endoscopic visibility, may lead to increased surgical risk and decreased effi-
ciency in the operating room (OR) [71]. Because of these potential setbacks, computer
vision algorithms may be able to process laparoscopic images in real time, digitally
increasing lighting, removing vapor haze, and potentially filling in aspects of the image
that may be obscured due to low visibility [72]. These applications have the potential to
greatly improve ease-of-use of laparoscopes during surgery, decreasing the risk of
incorrect targeting and decreasing the amount of time spent operating.

Further integration of computer vision in surgery could even lead to better identi-
fication of important anatomical landmarks in minimally invasive and robotic sur-
gery. As mentioned previously, computer vision has already been used to identify
objects in images and faces in security videos, and a logical extension of these uses
would be the capacity to identify important surgical landmarks. For instance, rates of
bile duct injury in laparoscopic cholecystectomies (LCs) have been seen to hover

Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

images to aid real-time
intraoperative brain tumor

diagnosis (overall accuracy of
94.6% compared to that of
93.9% with pathologist

interpretation)

Orringer
et al.

2017 USA Neurosurgery Computer
vision

Computer vision model can
process Raman spectroscopy of

brain tumor samples into
simulated H&E staining and can
be used to classify brain tumors

(AUC of 0.984)

Daoust et al. 2021 Canada Surgical
oncology

Computer
vision

Computer vision model
validated on porcine tissue can
identify tissue margins based on

Raman spectroscopy with
accuracy of 0.990 and 0.967

Table 2.
Summary of included studies on intraoperative artificial intelligence/machine learning (AI/ML).
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around 0.45–0.8% [73, 74]. One of the most common causes of bile duct injury in LCs
is misidentification of the common bile duct for the cystic duct [75]. An ML model
trained on imaging data from laparoscopic surgeries was developed to identify critical
anatomy in LCs in video with near-human accuracy, potentially leading to reduced
risk of bile duct injury in LC in the future [76]. The largest challenge in building a
model for this use would be the requirement for labeled video information. More
specifically, any actionable model would need to be trained on many videos of lapa-
roscopic surgeries in which the cystic duct is pre-identified in each of the thousands of
frames within each training video. This formidable task is further complicated by the
natural anatomical variations in human anatomy, necessitating the need for an even
larger test data set of “normal variants” that can be encountered in the OR. Despite
current limitations, it is likely only a matter of time before high fidelity models can be
created, with significant resultant downstream benefits.

Of importance, AI/ML may also play a role as a component of augmented reality
(AR) in surgery [77, 78]. One example with relatively mature application of AR is the
area of spine surgeries, such as using the XVision Spine System (Augmedics, Arling-
ton Heights, IL, USA) [79]. In this instance, AR-guided surgery works by using CT or
MRI imaging to develop a three-dimensional (3D) model, then employing the AR
program to overlay the model on the patient using AR glasses or other image projec-
tion modalities. Though this is a relatively new technology, initial studies investigating
the use of AR systems in cadaveric pedicle screw placement indicate an absolute
increase of accuracy from 88% (via fluoroscopy) to 94% (via AR guidance) [80]. In
the immediate future, AR implementations will most likely be concentrated in ortho-
pedic surgery and neurosurgery due to the relative immobility of bones and the spine
compared to visceral organs. However, the potential increased use of peri- and
intraoperative imaging in abdominal and thoracic surgeries may increase the viability
of AR guidance in other operation theaters [81, 82].

5.1 Surgical education

Perhaps, the most significant benefit of AR in surgery is in medical education.
Head-mounted devices used in AR have already proven useful in various aspects of
medical education, including anatomy and surgery [83]. In the near future, AR may
allow surgeons to practice various procedures anywhere in a low-stakes environment
and decrease cognitive effort, allowing for a more sustained practice [84]. AR may
eventually be used within the operating room as a teaching tool, allowing surgeons to
manipulate personalized models of the patient’s organs based on some of the tech-
niques described previously. Thus, AR may become a valuable supplemental tool to
train future surgeons and other specialists who want to practice procedures.

Machine Learning algorithms may play other essential roles in surgical education.
Aspiring surgeons start their training with varying degrees of motor skill and learning
abilities, with the use of ML algorithms in the future, students may be able to be
classified based on generated learning curves. Gao et al. were able to analyze the
proficiency of students performing various surgical tasks using an algorithm to predict
the number of trials needed for each student to proficiently complete the task [85].
Similar algorithms in the future may be applied to planning surgical resources for
students based on the need to optimize learning for all students within a surgical
program. Other ML programsmay be able to provide feedback to learners about specific
skills. For instance, surgical skill is an important factor in patient outcomes, directly
preventing complications and indirectly in mediating other elements such as the length
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of surgery [86]. Thus, measuring and improving surgical skills is important in improv-
ing patient care. However, there is a lack of practical objective assessments of surgical
skill and dexterity. Currently, many assessments of surgical skills are subjective in
nature [87]. AI algorithms may be able to address these concerns.

Video-based learning remains a promising learning method for surgical resi-
dents [88]. However, video-based review can be limited by having to parse
through long videos, especially when reviewing multiple examples. Hashimoto et al.
show that it is possible to develop a computer vision model capable of accurately
identifying distinct phases of a surgery [89]. This technology allows surgeons to
quickly find specific stages of an operation for more efficient review, and similar AI
models have been validated in other types of surgeries as well [90]. While out of the
scope of these studies, these models could be supplemented with AI that directly
analyzes the surgeon’s skills. For instance, an algorithm could be created to rate
surgical motion economy within the operation theater, and by proxy surgical skill
[91]. Using videos of surgeons performing the same procedure, the algorithm may be
able to provide objective feedback on the motion economy and path length compared
to other surgeons in a video database. AI programs that combine surgical phase
recognition and surgical skill analysis could be used to indicate certain stages of the
procedure where the surgeon could improve motion economy. Surgeons, especially
those in training, may not be completely aware of unnecessary movements they are
making during surgery, and these algorithms could provide an objective way to
compare and teach motion economy. AI algorithms may be applied to similar mea-
sures, such as fluidity of motion, force application in laparoscopic surgery, or a
combination of these factors. In the future, these algorithms may provide objective
insight into surgical skills and dexterity, allowing for targeted practice of specific skills
(Table 3).

Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

Kumar
et al.

2015 USA Minimally
invasive
surgery

Computer
vision

Computer vision algorithms, especially
with growing usage of surgical robots,
may be used to decrease cognitive load

through identification of
intraoperative phases and

segmentation of objects and people
within the surgical theater

Xia et al. 2022 Canada Minimally
invasive
surgery

Computer
vision

Computer vision algorithm can
enhance and refine laparoscopic

images to optimize vision in occluded
regions of the abdominal cavity

Ruiz-
Fernandez
et al.

2020 Spain Minimally
invasive
surgery

Computer
vision

Computer vision application was able
to process imaging from laparoscopic
surgeries to remove water vapor haze
and improve visibility in dark areas

Owen et al. 2022 UK Minimally
invasive
surgery

Computer
vision

Computer vision algorithm developed
to identify critical structures in
laparoscopic surgeries 65–75%

accuracy (compared to 70% baseline).
Labels were verified by three expert

surgeons afterward
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Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

Qian et al. 2019 USA All surgical
disciplines

Augmented
reality

Augmented reality could innovate
surgery in several ways, including

surgical guidance during laparoscopic
surgeries, overlay of tumor margins,

feedback of distance between
instrument and anatomical structures,
and the planning of port placement

Gorpas
et al.

2019 USA Surgical
oncology

Augmented
reality

Augmented reality program can
overlay fluorescence data within the da

Vinci surgical robot for real-time
identification of normal and malignant

tissue

Peh et al. 2020 Germany Spine
surgery

Augmented
reality

Augmented reality surgical navigation
showed improved accuracy of thoracic
and lumbar pedicle screw placement in

cadavers compared to standard
fluoroscopy-guided pedicle placement

(94% vs. 88%)

Soler et al. 2004 France Abdominal
surgery

Augmented
reality

Augmented reality shows promise in
digestive surgery through 3D modeling

of abdominal structures, overlay
visualizations during operations, and

planning of needle targeting

Rad et al. 2022 Thoracic
surgery

Augmented
reality

Augmented reality may be used in
thoracic surgery to improve surgical
training, enhance planning through

visualization of structures, and provide
visual assistance during surgery

Peden et al. 2016 UK Surgical
education

Augmented
reality

Augmented reality in suturing skill
development in suturing-naïve

students has been shown to be more
enjoyable than conventional learning
with comparable skill development

Barteit
et al.

2021 Germany Surgical
education

Augmented
reality

Augmented and virtual reality surgical
simulations of sleeve gastrectomy led
to subjective decreased cognitive effort

and decreased stress

Gao et al. 2020 USA Surgical
education

ML ML model trained on initial
completion times of suturing-naïve
medical students was able to predict

the number of trials needed for
proficiency

Hashimoto
et al.

2019 USA Surgical
education

Computer
vision

Computer vision algorithm can
identify the specific phase of

laparoscopic sleeve gastrectomy with
over 85% accuracy

Garrow
et al.

2021 Germany Surgical
education

Computer
vision

Computer vision algorithms have
shown the ability to identify the
specific phase of various surgeries
including sleeve gastrectomy,
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6. Postoperative risk assessment

The use of ML and AI in postoperative risk assessment would work similar to peri-
and intraoperative risk assessment using patient vital signs and characteristics. After
performing a surgery, the surgeon must be able to triage patients by likelihood of
postoperative complications. Improperly triaged high-risk patients may be sent to
hospital floors where there is a high patient-to-clinician ratio, which can limit the
frequency of patient assessments and lead to higher rates of morbidity and mortality
[92]. Loftus et al. were able to develop an AI model capable of using pre- and periop-
erative labs and vital signs, intraoperative anesthesia variables (such as intraoperative
high inspired oxygen fraction (FIo2)), and postoperative evaluations (including
scheduled postop location) to identify undertriaged patients at risk of postoperative
complication [92]. In the future, similar technology could be integrated into the
electronic health record and send mobile alerts to physicians, allowing for quicker
alterations to patient care [93]. Because postoperative risk assessments may utilize
more complete information, they have been shown to provide a more accurate pre-
diction of postsurgical prognoses and complications [94, 95].

Machine learning models for postoperative care will also be better suited for
predicting pain management needs of the surgical patient. Opiates are common med-
ications prescribed for postoperative pain. However, the opioid epidemic affects over
3 million people in the USA, and it is estimated that 500,000 people in the USA are
dependent on opiates [96]. Physicians are now much more aware of the risks of opioid
addiction; therefore, opioid dependence and abuse are important considerations to
make when prescribing opioids for postoperative pain. A few studies have investi-
gated the use of ML to predict long-term opioid use. One study developed a model to
predict long-term opioid use, defined as opioid prescriptions that were requested in
addition to the original prescription, in patients who underwent elective hip
arthroplasty. Internal validation indicated that the model had good predictive value
for the testing cohorts in the study [97]. Other studies have looked at the use of
similar algorithms in breast cancer surgery, anterior cruciate ligament (ACL) recon-
struction, and joint arthroplasty [98–100]. While these studies did not utilize external
validation, these proof-of-concept studies indicate that ML in the future may have
utility in predicting long-term opioid use, allowing for more informed prescription of
pain medications and potentially earlier identification of patients at risk for opioid
dependence.

Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

laparoscopic cholecystectomy, and
colorectal surgery

Azari et al. 2019 USA Surgical
education

Computer
vision

Computer vision data for tracking
surgeon hand movements during
surgery were used to train an ML
model for evaluating surgical skill,
with measures of motion economy
being most precise (R2 = 0.64)

Table 3.
Summary of included studies on computer vision and augmented reality (AR).
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Machine learning algorithms may also be used for gait analysis in postoperative
care. For most elective joint surgeries, postoperative assessment involves patient-
reported outcome measures or performance-based metrics like the range of motion
and mobility [101]. These assessment methods may introduce bias through subjective
ratings of outcomes measures by the patient or through biased ratings of performance
metrics by physicians [101]. Gait analysis using ML may be able to provide ancillary
objective analysis of postsurgical outcomes. One study showed that an ML model
incorporating walking speed, gait cycle, maximum force of a step, and other biome-
chanical variables was able to separate patients who had total knee arthroplasty with
patients who underwent unicompartmental knee arthroplasty [102]. Other studies
have shown similar potential in total knee arthroplasty and ACL reconstruction
[103, 104]. Furthermore, computer vision can likely be leveraged to increase the
power of these models. Currently, there exist programs that allow users to mark parts
of the body in videos, such as the knees and elbows, and follow the motion of these
structures throughout the video. However, manual input of data is time-consuming
and prone to human error. To alleviate these concerns, multiple markerless models
have been developed to map out patient gait, tracking the movement of anatomical
structures such as the ankles, knees, hips, shoulders, head, and arms that do not
require human input [105–107]. Based on gait estimation from video, future ML
algorithms may be able to stratify patients based on how well they will regain function
following surgery. Algorithms may also be able to identify which patients might
experience recurring issues or may be at higher risk of falls based on their gait
(Table 4) [108].

Source Year of

publication

Country of

origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

Loftus
et al.

2021 USA Surgical
critical care

ML
postoperative

risk
assessment

ML algorithms trained on pre- and
intraoperative patient data
extracted from the hospital

Electronic Health Record (EHR)
were used to develop a model that
could accurately identify critically
ill patients who were undertriaged
(Area under the receiver operating
characteristic curve (AUROC) of

0.92)

Ren et al. 2022 USA Surgical
critical care

ML
postoperative

risk
assessment

ML algorithm trained on real-time
perioperative data extracted from
hospital EHR could predict and

alert physicians about categorized
postoperative complications (AUC
between 0.78 and 0.89 depending

on complication predicted)

Shahian
et al.

2012 USA Cardiac
surgery

ML
postoperative

risk
assessment

ML models trained on data
combining clinical and

administrative data allowed for the
analysis of perioperative and long-

term postoperative data for
accurate prediction of survival up

to 2500 days post-CABG
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Source Year of

publication

Country of

origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

Forte
et al.

2022 Netherlands Cardiac
surgery

ML
postoperative

risk
assessment

ML models implementing
postoperative data were more

accurately able to predict 30-day
and 1-year mortality compared to
models using just preoperative data
(AUCs of 0.75 and 0.79 using pre-
and postoperative data vs. areas
under the curve (AUCs) of 0.70
and 0.69 using preoperative data

only)

Kunze
et al.

2021 USA Orthopedic
surgery

ML
postoperative

risk
assessment

ML models trained preoperative
data, including Harris hip score,
age, body mass index (BMI), etc.,
were able to predict prolonged
opioid use in patients after hip
arthroscopy (AUC of 0.75)

Lötsch
et al.

2018 Germany Surgical
oncology

ML
postoperative

risk
assessment

ML models trained on clinical and
psychological data (such as
subjective answers to pain

perception surveys) were able to
accurately exclude the possibility
of persistent pain (95% accuracy)
following breast cancer surgery,
although it was unable to predict
patients who would experience

persistent pain

Anderson
et al.

2020 USA Orthopedic
surgery

ML
postoperative

risk
assessment

ML model trained on preoperative
demographic data, military

employment data (such as rank
and time deployed), and

prescription data was able to
predict patients at risk of long-term
opioid use (AUC of 0.76) following

ACL reconstruction surgery

Gabriel
et al.

2022 USA Orthopedic
surgery

ML
postoperative

risk
assessment

ML model trained on patient
demographic data, comorbidities,
and perioperative data (such as
postoperative day 1 (POD1)

morphine equivalents) was able to
predict long-term opioid use (up to

AUC of 0.94 with balanced
bagging classifier)

Kokkotis
et al.

2022 Greece Orthopedic
surgery

ML
postoperative

risk
assessment

ML algorithms may be able to
provide insight into gait and

postoperative outcomes following
total knee arthroplasty and ACL
surgeries through the use of
biomechanical measurements

Jones
et al.

2016 UK Orthopedic
surgery

ML
postoperative

risk
assessment

ML algorithm using biomechanical
measurements was able to

differentiate between patients who
underwent total knee arthroplasty
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7. Autonomous robots and artificial intelligence

While the aforementioned applications of AI/ML will greatly enhance surgical
outcomes, the most impactful applications of AI will involve the development of
autonomous robots that will be able to apply and expand on these algorithms. Robotic
autonomy can be categorized based on the need for human involvement in robot
function. Within this proposed scale: a 0 denotes a machine that has no inherent

Source Year of

publication

Country of

origin

Surgical

discipline

Studied AI/

ML

algorithms

Major findings relevant to this

review

and unicompartmental knee
arthroplasty, and who had gaits
much more similar to healthy

patients

Martins
et al.

2015 Portugal Orthopedic
surgery

ML
postoperative

risk
assessment

ML model was used to determine
gait differences based on three
different assistive devices after
total knee arthroscopy, allowing
for the classification of the type of

assistive device used

Kokkotis
et al.

2022 Greece Orthopedic
surgery

ML
postoperative

risk
assessment

ML model trained on ground
reaction forces and biometric data
allowed for the classification of

ACL-deficient, ACL-reconstructed,
and healthy patients with accuracy

of up to 94.95%

Cao et al. 2017 USA Orthopedic
surgery

Computer
vision

Convolutional neural network was
implemented to create a program
that could estimate human poses

even with occlusion of feet or arms
during motion

Chen
et al.

2022 China Orthopedic
surgery

Computer
vision

ML models could classify the type
of gait based on computer vision-
aided anatomical markers and
calculations with up to 98%

accuracy

Moro
et al.

2022 Italy Orthopedic
surgery

Computer
vision

Computer vision algorithm allows
for automated gait analysis with
biomechanical measurements

comparable to manually marked
video

Ng et al. 2020 Canada Orthopedic
surgery

Computer
vision

Computer vision-aided models
trained on human pose estimation

and gait variables identified
cadence, average margin of

stability, and minimum margin of
stability as factors significantly
associated with falls during the

study

Table 4.
Summary of included studies on postoperative artificial intelligence/machine learning (AI/ML).
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autonomy and is rather completely controlled by the operator, a 1 represents a robot
that the operator controls but provides some degree of assistance, and 2–5 represent
varying levels of autonomy; a 5 represents “true autonomy” of the machine without
need for human intervention [109]. Currently, most surgical machines score at level 0
or 1, with machines such as the da Vinci surgical system and robotic endoscopic
systems falling squarely in these categories [110]. Applications of level 2 automated
robots, such as performing autonomous suturing, have been described [111]. At the
current stage, automatons are limited to the autonomy of simple tasks, though there is
a push to develop machines that may autonomously perform more complex tasks.
Some experiments using phantom tissue have shown success using autonomous robots
to ablate abnormal tissue or perform anastomosis of the small bowel, but these exper-
iments were performed on phantom tissue in idealized experimental settings with low
trial numbers [112]. Still, these proof-of-concept experiments show that higher-level
autonomous robots might emerge sooner rather than later. These complex autono-
mous robots would integrate multiple sensory modalities, from computer vision to
tactile sensation to proprioceptive or auditory information [113].

As AI gets more complicated, the process of training also becomes increasingly
complex. Three main learning methods exist for visual-based learning for artificial
intelligence: imitation learning, reinforcement learning, and transfer learning [114].
Imitation learning is a method of learning involving the observation of an expert
performing the task. Based on the observed actions, the algorithm updates its knowl-
edge (also known as policy) to be more like the demonstration [115]. In an ideal
environment, imitation learning will lead to the most reproducible behavior [116].
The use of imitation learning in surgery is limited because of its inability to generalize
behaviors. When environments are dissimilar to the demonstration environments,
such as differing orientation of visceral organs or working with anatomical variations,
the performance of imitation learning algorithms will be suboptimal [116]. This can be
alleviated somewhat by dividing the imitation task into subtasks and training subtasks
depending on starting circumstances. However, generalizability is still lower than in
the other learning methods [115].

Reinforcement learning is another type of learning that is used in AI. This method
of learning involves trial-and-error, where the agent performs its task and updates its
actions based on the outcomes of its actions. An example of reinforcement learning is
the training of the chess engine AlphaZero, in which the engine played many simu-
lated games with itself and improved its playing ability based on the outcomes of each
game [117]. Reinforcement learning is a powerful tool that is better able to generalize
behaviors compared to imitation algorithms, but reinforcement requires many trials
to optimize performance. Additionally, training a model in a real surgical environ-
ment is dangerous.

Fortunately, AI flaws can be circumvented via transfer learning, which essentially
involves the agent learning through reinforcement learning in a simulated environ-
ment and transferring its knowledge to a real environment [114]. Using the simula-
tion, the agent can quickly be trained on many trials before being transferred to real
circumstances. Issues for transfer learning are readily apparent; when there is discor-
dance between simulation and real environments, the performance of the model will
be suboptimal. A few methods have been proposed to improve transfer learning out-
comes. One method is simply improving the quality of the simulation. Computational
simulations are much more efficient than physical manipulations of simulated envi-
ronments, and improvements in computational power are enhancing virtual simula-
tion environments to better model the real world. Other methods involve changing
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the policies of the agents to better adapt to circumstances that were not seen during
simulation training. One proposed system involves the learning of multiple skill
latents in simulation. Broadly defined, “skill latents” represent prelearned or
predetermined “primitive skills” which can be subsequently combined within a
“model-predictive control” environment to perform more complex tasks [118]. These
skill latents can then be accessed and simulated in real time when situations arise that
have not been seen before, and the skill latents that produce the optimal effect can be
chosen for the agent’s actions [118]. Instead of perfectly modeling the real world, this
approach tries to make the AI’s learning as flexible as possible and/or applicable.
Because transfer learning models can be trained in simulation, and because these
models can be adaptive, it is likely that autonomous surgical robots in the near future
will use transfer learning models to navigate the surgical field (Table 5).

Source Year of

publication

Country of

origin

Surgical

discipline

Studied

AI/ML

algorithms

Major findings relevant to this

Review

Shademan
et al.

2016 USA All surgical
disciplines

Automation An autonomous robot using
computer vision and an automated
suturing algorithm was able to

perform suturing tasks on ex vivo

and living porcine tissue

Hu et al. 2018 USA Neurosurgery Automation Autonomous robot using computer
vision algorithms was able to create
a 3D reconstruction of the surgical
cavity and successfully perform
robotic ablation of a surgical

phantom in seven out of ten trials

Tapia et al. 2020 Switzerland All surgical
disciplines

Automation A proprioceptive liquid-metal
stretch sensor was able to

reconstruct deformation of soft
actuators in real time

Hua et al. 2021 China All surgical
disciplines

Automation Deep reinforcement learning,
imitation learning, and transfer
learning are the main methods to

teach autonomous robots

Rivera
et al.

2022 USA All surgical
disciplines

Automation Machine learning through
primitive imitation led to increased
performance compared to other

learning algorithms in two
different primitive tasks

Kumar
et al.

2022 USA All surgical
disciplines

Automation Though imitation learning
algorithms are very powerful in
ideal settings, reinforcement
learning is more optimal when

there is sufficient noise in the data
set for various different learning

policies and tasks

Silver et al. 2018 USA All surgical
disciplines

Automation Reinforcement learning algorithm
was used to create a program

capable of learning and optimizing
performance in chess, shogi, and

Go
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8. Nanotechnology

One technological field that is gaining increased interest in recent years is
nanotechnology. Nanotechnology refers to devices or machines on the scale of
microns and encompasses a wide range of technologies, including nanosensors,
nanoparticles, and nanobots [119]. Nanotechnology opens doors to new therapeutics
for a variety of reasons. Most obviously, the size of these devices allows access to
previously inaccessible spaces. Due to the nanoscale size of these machines, they have
higher surface area-to-volume ratios, leading to increased reactivity, and quantum
effects play a larger role in interactions compared to macroscale sizes [120]. While
nanotechnology does not necessarily need to involve artificial intelligence, these two
fields may work synergistically to help surgeons in the future provide interventions not
previously possible.

Because “nano-machines” operate on a scale much smaller than conventional
robots, nanotechnology can allow for better and more selective delivery of drugs, such
as chemotherapy agents. For instance, nanoparticle capsules may protect agents from
enzymatic degradation or unfavorable pH environments or allow drugs to cross the
blood–brain barrier [121, 122]. Additionally, one of the most powerful aspects of
nanotechnology is the increased specificity of drug delivery targeting. Attaching spe-
cific moieties to nanoparticles can allow for targeted binding and release of encapsu-
lated contents [123]. This application has implications in cancer treatment. Although
chemotherapeutic agents are useful in treating cancer, these drugs often cause a wide
range of adverse effects due to systemic distribution of these drugs. Various nanopar-
ticle vessels, including nanocrystals, liposomes, and carbon nanotubes, can be fitted
with surface coatings allowing cell-specific delivery of cancer therapies, ultimately
reducing side effects [121, 124, 125]. AI may further increase the specificity of nano-
particle drug delivery through analysis of patterns of biomarkers. Through the inte-
gration of AI in biomarker sensing, the presence of different groups and
concentrations of certain biomarkers can allow for classification of disease type and
stage, enabling targeted and modifiable release of drugs from nanocapsules [126].
The selectivity of nanoparticles can also be leveraged for targeted ablation therapy
for certain cancers. For instance, synthetic high-density lipoprotein nanoparticles
were used to facilitate the delivery of photothermal ablative agents to hepatocellular
carcinoma cells in mouse models, reducing tumor burden and stimulating local
immune response [127]. Similar technologies could be applied to other ablation tech-
niques, including radiation, cryoablation, and electroporation, in a wide variety of
cancers [128].

Source Year of

publication

Country of

origin

Surgical

discipline

Studied

AI/ML

algorithms

Major findings relevant to this

Review

He et al. 2018 All surgical
disciples

Automation Transfer learning algorithms
involving prelearned skill latents
could be successfully applied to
complete new tasks (such as

drawing and pushing an object)

Table 5.
Summary of included studies on autonomous robots.
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Besides use in surgical oncology, nanotechnology may allow surgeons to operate
on a nanoscale. Atomic force microscopy (AFM) may be an integral part of
nanosurgery in the future. At its core, AFM consists of a microscopic cantilever
fitted with a tip along with a laser and photodetector. As the tip of the AFM
traverses along a surface, such as tissue, changes in the surface will move the tip and
cause deflections of the laser, which can be detected by the photodetector [129]. The
use of AFM enables the detection of several angstroms of change [129]. Furthermore,
the force applied by the tip to the surface can be used to touch, push, and cut the
surface, providing the ability to manipulate membranes, proteins, and DNA [130–
132]. Some experiments show the viability of using AFM to alter cell morphology and
puncture cell membranes of individual cells [133]. Other uses of AFM in the future
include signaling pathway identification, targeted drug delivery using specialized
AFM tips, and disruption of cellular connections, such as dendrites, without
interfering with cell bodies [130, 134]. Other potential “nano-machines” are limited
only by human creativity and may include nanopropellors, nanowires, and
“nanograbbers” (microscopic machines created by Leong et al. capable of performing
in vitro biopsies) [134, 135].

Besides the direct manipulation of tissue, nanotechnology also makes possible
a wide range of other surgeries. For instance, nanotechnology may increase the
feasibility of islet transplantation in diabetes. While the results from the
Edmonton protocol show that islet transplantation has promise in long-term
glycemic control in type 1 diabetes, practicality of islet transplantation was limited by
immune response against exogenous islet cells, causing gradual loss of islet function
[136]. These concerns could be addressed by encapsulating islet cells with
nanoparticles, with several approaches having been investigated to decrease immu-
nogenicity of exogenous compounds [137–139]. Thus, alongside improving drug
delivery, nanoparticle capsules may also be used to shield contents and suppress
immune response.

Finally, nanoparticles may play roles in facilitating hemostasis and preventing
infection after surgery. Many different hemostatic nanomaterials, such as
mesoporous xerogels, polyphosphate-bound gold colloids, titanium dioxide (TiO2)
nanotubes, and many others, have peen proposed [140]. While additional
properties of each nanomaterial differ, they are thought to function by providing
scaffolding for coagulation factors [140]. Antimicrobial nanoparticles may also be
used for infection control in surgery. Postoperative infection carries a high rate of
morbidity. An estimated 11% of deaths in the intensive care unit (ICU) resulted
from surgical site infections [141]. Because of this need, antimicrobial nanoparticles
may be able to address postsurgical infection risk. Silver nanoparticles have shown
promise in accumulating within bacteria and disrupting various cellular processes,
such as DNA replication and protein translation [142]. Silver nanoparticles have the
potential to improve infection control, especially in orthopedic surgery. Orthopedic
implants are susceptible to colonization of biofilm-forming bacteria, which can lead
to high risk of morbidities [143]. One concern is the dose-dependent toxicity on
human tissue attributable to silver nanoparticle use [144]. However, studies have
indicated that osteocytes may be more resilient to this specific type of toxicity.
Though silver nanoparticles initially decrease Saos-2 (human osteosarcoma cell line)
survivability, Saos-2 cells seem to adapt to silver nanoparticle exposure over the
course of 35 days in vitro [143]. Given these findings, it is possible that silver
nanoparticles may be used to coat orthopedic implants that reduce the effect of
osteoblast function (Table 6).
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Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/ML

algorithms

Major findings relevant to

this review

Roduner 2006 Germany All surgical
disciplines

Nanotechnology Nanorobots have unique
properties due to their

microscopic size, including
increased surface area-to-
volume ratios and increased
strength of quantum effects

Hofferberth
et al.

2016 USA Thoracic
surgery

Nanotechnology Nanotechnology may have
numerous uses in thoracic

surgery, such as nanoparticles
mapping lymphatic drainage

of malignant tumors,
targeting tumor cells for drug
delivery, and selective cell

ablation

Krůpa et al. 2014 Czech
Republic

Neurosurgery Nanotechnology Various nanotechnologies
have shown promise in

transporting drugs across the
blood–brain barrier, allowing
for targeted delivery into

brain tumors

Zhang et al. 2013 China Surgical
oncology

Nanotechnology Nanotechnology may be able
to improve cancer care
through encapsulated

chemotherapy drugs, allowing
for targeted distribution.
Nanoparticles may also be
able to increase intracellular
accumulation of drugs within

cancer cells

Xu et al. 2021 China Surgical
oncology,
urology

Nanotechnology Nanotechnology may be able
to improve bladder cancer

care through targeted
intravesical delivery of

various drugs

Khawaja 2011 Pakistan Neurosurgery Nanotechnology Nanotechnology may improve
glioblastoma multiforme

outcomes through targeted
chemotherapy delivery,

thermo- and photo-therapy,
and surgical nanorobots

Adir et al. 2020 Israel Surgical
oncology

Nanotechnology,
ML

ML algorithms can be used to
analyze complexes of

biomarkers to classify various
cellular disease states,

allowing for targeted delivery
of drugs via nanotechnology

Wang et al. 2021 China Surgical
oncology

Nanotechnology Nanoplatforms may be able to
improve the delivery of
cancer drugs as seen in

multiple studies

Binnig et al. 1986 USA All surgical
disciplines

Nanotechnology Atomic force microscope that
could measure vertical
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Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/ML

algorithms

Major findings relevant to

this review

displacement of the cantilever
tip less than 1 Å was

developed

Song et al. 2012 USA All surgical
disciplines

Nanotechnology A modified atomic force
microscope setup that would

allow for mechanical
manipulation of cellular
samples, with possible

applications to separating
cellular junctions, was created

Li et al. 2005 USA All surgical
specialties

Nanotechnology A modified atomic force
microscope attached with

specific antibodies was used to
recognize cellular receptors
and provide augmented

reality feedback to the user,
allowing for

nanomanipulation of the
sample

Wen and
Goh

2004 Canada All surgical
specialties

Nanotechnology Atomic force microscopy was
able to incise a single collagen

fibril

Yang et al. 2015 USA All surgical
specialties

Nanotechnology Atomic force microscopy was
used to penetrate fixed HaCaT
cell membranes and disrupt
intermediate filaments,
leading to decreased

intercellular connections

Brodie and
Vasdev

2018 UK All surgical
specialties

Nanotechnology Nanomachines, such as
micropipettes to cleave
dendritic connections or

“micrograbbers” to biopsy-
specific cells, may innovate
nanosurgery in the future

Leong et al. 2009 USA All surgical
specialties

Nanotechnology A tetherless, temperature-
activated microgripper

190 μm when closed was able
to take biopsy samples from

ex vivo tissue samples

Im et al. 2012 South
Korea

Surgical
oncology

Nanotechnology Coating rat allotransplanted
islet cells with nanolayer
shielding almost doubled
survival against immune
response (6.8 days vs.

3.6 days)

Park et al. 2018 South
Korea

Surgical
oncology

Nanotechnology Nanolayer shielding of
allotransplanted islet cells was
validated in monkey models,
with heparin nanoshielded
islet grafts surviving average
of 108 days vs. 68.5 days in

the control
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9. Limitations and concerns

Though AI shows great promise in changing many aspects of medical and surgical
care, it is important to highlight the limitations of this technology. The construction of
ML algorithms is reliant on large amounts of data to create generalizable algorithms
that limit unnecessary data within the data set [145]. The classification of ML model
algorithms can identify tumors from imaging. Both training and test data sets still
require annotation, manpower, and time [12, 146]. These factors limit how quickly
these algorithms can be generated. Additionally, ML algorithms identify patterns from
input data without interpretation or critical analysis and may be prone to biases within
the data set. There often exist biases in who participates in clinical trials, and this may
lead to outputs that disproportionately segregate minorities and other groups which
are not as well represented in the training data for the ML model [147, 148]. In some
cases, minute changes or fluctuations in the input data can drastically affect the model
field output [146]. In the same vein, poor data, such as poor video or image quality,
can have deleterious effects on the quality of the model [149]. Because of this,

Source Year of

publication

Country

of origin

Surgical

discipline

Studied AI/ML

algorithms

Major findings relevant to

this review

Izadi et al. 2018 Iran Surgical
oncology

Nanotechnology Nanolayer shielding of mouse
islet cells with poly(ethylene
glycol) was conjugated with
Jagged-1 (JAG-1), which led
to significant reduction in
fasting blood glucose (p

< 0.01)

Sun et al. 2018 China Orthopedic
surgery

Nanotechnology Nanotechnology has enabled
the development of many
different kinds of synthetic

hemostatic materials,
including silica-based

xerogels, self-assembled
peptides, ethylene/propylene
oxide gels, TiO2 nanotubes,
polyphosphate gold colloids,

and others

Rai et al. 2012 India All surgical
disciplines

Nanotechnology Silver nanoparticles have been
shown in various studies to

have broad-spectrum
antimicrobial effects through
disruption of various cellular

processes

Castiglioni
et al.

2017 Italy Orthopedic
surgery

Nanotechnology High concentrations of silver
nanoparticles initially reduced

Saos-2 osteogenic cell
numbers, but this reduction

decreased over 35 days
without impairing cellular

differentiation

Table 6.
Summary of included studies on nanotechnology.
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standardization of imagining techniques and video characteristics is vital for model
efficacy [146]. Verifying the integrity of these models is integral to maintaining
patient autonomy. Faulty or biased recommendations made by AI models can affect a
patient’s ability to provide informed consent for their care [150]. Finally, there may be
a risk for “adversarial attacks,” defined as data inputted in the training set with the
intention of biasing outputs [151]. Notably, potential methods for adversarial attacks
have been identified for every type of machine learning model and may be as overt as
modifying input data or as seemingly innocuous as rotating an image slightly
[151, 152]. There may be many reasons for adversarial data input, from fraudulent
reimbursement to altering research outcomes, so it is vital that methods are
implemented to prevent intentional and unintentional biases in these models.

Ethical concerns surrounding the use of AI center around oversight and liability. It
is important that AI is tested and verified before actual clinical use, but there are
currently no governing body and no approval process for reviewing ML algorithms in
clinical care, let alone for autonomous surgery [12]. This is especially important
because of the “black-box” effect, which is especially prevalent in deep learning
algorithms. Due to the existence of “hidden” layers in deep learning neural networks,
it is often not entirely clear how the AI model arrives at its output, and this can limit
how much trust physicians and patients put in the recommendations made by these
algorithms [153]. Without entities to review these algorithms, AI will remain primar-
ily experimental. There are many legal concerns regarding the use of AI in surgery.
One of the most prominent concerns among physicians is liability [154, 155]. Cur-
rently, there is essentially no case law on the legality of AI in clinical settings [155].
Therefore, legal entities must establish how malpractice and liability are handled if
complications occur because of the use of AI. Without answers to complex legal
questions, the use of AI in surgery will be severely limited. According to Price et al.,
physicians are incentivized to minimize the use of AI under current law. Normally, a
physician’s actions are privileged under tort law if normal standard of care is followed
[155]. However, if a physician follows AI recommendations that go against the current
standard of care, even if the AI recommendation is correct, any resulting poor out-
comes could lead to litigation [155]. Thus, under current law, the clinical use of AI will
mostly be limited to confirming clinical decisions, greatly reducing the potential value
of AI. Finally, in cases where data are stored on the cloud or in cases where data are
crowd-sourced, there may be data privacy concerns [149]. Additionally, in shared
data, there may be concerns about the ownership of uploaded data [149]. Thus, with
each application of AI, terms must clearly delineate medicolegal terms, who owns
uploaded data, and how models may be monetized.

10. Future implications for surgeons

Though important barriers must be addressed before AI/ML can be more broadly
implemented in direct patient care, it is evident how powerful AI/ML can be in
finding patterns and facilitating/directing clinical care in the future. While some
surgeons may be concerned about AI replacing job opportunities in the future, AI
should instead be seen as a dynamic tool for enhancing surgeons’ abilities to provide
optimal patient care. AI algorithms in the near future will potentially improve the
diagnosis of conditions and enhance the prediction of complications. These algorithms
can consolidate vast amounts of data—more than any surgeon could reasonably cog-
nitively process—and thus may be ideal in helping surgeons identify patients at risk
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for certain complications, ultimately making surgeries safer for patients [156]. This is
addition to many other benefits appreciated across immediately adjacent clinical and
nonclinical fields, applications, and implementations. When properly leveraged, the
use of AI will help decrease cognitive load and allow surgeons to focus more on other
aspects of patient care.

Artificial intelligence may enhance many aspects of patient care in the future, but
machines cannot replace the human aspect of medicine. Though AI will allow pro-
viders in the future to parse massive data sets and find patterns that would previously
have been missed, AI does not diminish the need for human-human interaction and
the surgeon-patient relationship [157]. The surgeon-patient relationship is still an
essential aspect of care and is still vital in gaining the trust of the patient. Given the
complex nature of ML algorithms, patients may not be willing to trust recommenda-
tions from AI, especially in the near future. Thus, surgeons will remain instrumental
in the care of patients and can serve as advocates for the many uses of AI in the future.
Though surgeons in the future may utilize AI to enhance diagnosis, medical manage-
ment, and surgical procedures, it is critical that they do not solely rely on these
algorithms. Reliance solely on AI may lead to the “deskilling” of providers and may
lead to missing mistakes made by these algorithms [158].

Finally, while AI/ML may help enhance many other aspects and facets of patient
care, it is critically important to remember that it is most likely surgeons will be
ultimately responsible for interpreting patterns identified by AI and determining the
role of AI in surgery. Therefore, it is vital for surgeons to work with data scientists,
machine learning experts, and other healthcare team members to determine how AI
can be utilized for optimal patient care. AI has the potential to be a powerful tool, but
it will only be as helpful as the surgeons who wield it.

11. Conclusions

Artificial intelligence and machine learning have a myriad of uses in surgery in all
surgical disciplines. AI may enhance disease diagnosis, help surgeons identify patients
at risk of complications, and improve the ease of minimally invasive surgery. Fur-
thermore, AI shows promise in improving surgical education and may eventually be
used in fully autonomous surgery and nanosurgery. Despite its potential uses, AI is
currently limited by large data requirements, concerns about the integrity of data
input, and ethical and legal considerations. Surgeons should work to address these
issues and take an active role in determining the best ways to implement AI to
optimize patient care.
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