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Chapter

Using Mobile Phone to Assist DHH 
Individuals
Ming-Han Huang, Hsuan-Min Wang and Chuen-Tsai Sun

Abstract

Past research on sign language recognition has mostly been based on physical 
information obtained via wearable devices or depth cameras. However, both types of 
devices are costly and inconvenient to carry, making it difficult to gain widespread 
acceptance by potential users. This research aims to use sophisticated and recently 
developed deep learning technology to build a recognition model for a Taiwanese 
version of sign language, with a limited focus on RGB images for training and recog-
nition. It is hoped that this research, which makes use of lightweight devices such as 
mobile phones and webcams, will make a significant contribution to the communica-
tion needs of deaf and hard-of-hearing (DHH) individuals.

Keywords: deep learning, sign language recognition, Taiwan sign language, 3DCNN, 
human poses, model ensembles

1. Introduction

Today we have many daily opportunities to watch deaf and hard-of-hearing 
(DHH) individuals use sign language to communicate with each other, as well as to 
watch sign language interpreters at work in meetings or in media coverage of press 
conferences and official announcements. In addition to communicating with each 
other, DHH individuals use sign language to interact with hearing-enabled people 
who have learned sign language or have access to interpreters. To communicate with 
their DHH children, parents, and other family members must invest large quantities 
of time and expense learning a sign language, or hire caregivers who can use and/or 
teach sign language. The number of individuals who are sign language-fluent is much 
smaller than those who speak foreign languages, thus posing challenges for prompt 
and accurate communication. The primary goal of this research is to use the latest 
computer vision and deep learning technologies to perform sign language recognition 
tasks in support of interactions between DHH individuals who do not have full-time 
access to interpreters. We believe such a tool will be especially useful for providing 
appropriate assistance to DHH individuals in emergency situations.

Presently, the most commonly used sign language recognition technologies consist 
of wearable devices and depth cameras [1]. Although the information obtained by 
such devices provides great assistance, users must deal with problems tied to uni-
versality and lack of portability. To achieve widespread social or personal use, these 
tools must be made smaller, lighter, cheaper, and easier to maintain and upgrade. 
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Accordingly, the model described in this research uses the DarkPose [2] whole-
body estimation model to extract sign language information via images, and then 
integrates it with pretrained neural networks to achieve sign language recognition. 
Sign languages are distinctly national or regional, and currently, there is no model 
training dataset for the Taiwanese version, which is required to create a body of local 
sign language support materials. Since DarkPose does not require special equipment 
for data acquisition, our proposed system can be applied to portable and lightweight 
devices such as mobile apps or simple webcams already widely used.

2. Related work

2.1 Sign language recognition

Sign language communication requires gestures and upper-body postures that 
express concepts and ideas, plus facial expressions that convey meaning or tone. 
Digital sign language recognition presents multiple challenges in terms of computer 
vision. Users must make many tradeoffs between systems based on a detailed under-
standing of their advantages and disadvantages [3]. For data acquisition tasks, the 
most widely used technologies today include the use of gloves with detectors, acceler-
ometers, Microsoft Kinect, Intel RealSense (with depth lenses), or webcam and multi-
view cameras [1]. Many systems rely heavily on depth lenses to obtain 3D data [4].

Arguably the greatest challenge for sign language recognition systems is back-
ground separation. Successful preprocessing requires the separation of hand and 
facial information from their backgrounds, using cues such as skin color and the 
continuous tracking of hand movements [5]. Wren et al. [6] have created a useful 
method that entails visual “blobs” that separate all or parts of bodies from complex 
backgrounds, thus removing a large amount of noise and achieving better recognition 
rates. Other researchers have reported that the combination of Kinect depth infor-
mation and RGB data supports good background separation for training purposes 
with convolutional neural networks (CNN) [7, 8]. Note that in terms of perspective, 
researchers have proposed both third-person and first-person approaches to system 
design, but problems obtaining sufficient amounts of information indicate a need for 
additional objects such as wristbands [9].

After background separation, the next major challenge is ensuring image recogni-
tion of each individual finger, since understanding finger movement is key to learning 
sign language. The most commonly used method for identifying finger extensions is 
reference points [10]. Since certain identical gestures can look completely different 
based on different rotations and translations, depth data are required to identify 3D 
positions and to make predictions for individual fingers. For the next step—recog-
nizing hand positions and making translations [11, 12]—existing technologies such 
as Intel RealSense depth cameras can be used to obtain hand data and to identify 
gestures [13]. Similar to printed text, individual signs with similar-looking gestures 
can cause confusion [14]. The use of multi-layered random forest (MLRF) classifiers 
achieves better recognition rates when dealing with this problem, with one layer 
detecting hand position and another recognizing hand movement.

Starner and Pentland [15] used the Hidden Markov Model (HMM, a standard 
method for analyzing continuous movement) to track hand motions for purposes of 
recognizing signs for 40 English words. For deep learning, the direct use of CNN has 
been shown to achieve a high recognition rate for sign language speakers compared 
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to video images of single words [16]. Since sign language data are continuous, 
region-based CNN (R-CNN) produces better results but suffers from a tendency to 
over-simulate in cases of insufficient data, resulting in performance degradation [17]. 
When 3D skeletal data are available, a CNN + long short-term memory (CNN+LSTM) 
model is useful for recognizing continuous 3D+time actions [18]. The 3DCNN model 
proposed by Ji et al. [19] represents an important improvement to the CNN model 
limitation of not referring to time series data; today it is widely used for action 
recognition tasks [20, 21].

2.2 Human body pose estimation

In early human pose estimation (HPE) research, bodies were treated as 
 combinations of parts rather than joint systems. To obtain binary images, Felzenszwalb 
and Huttenlocher [22] separated bodies from their backgrounds and matched indi-
vidual body parts (represented as boxes) to individual limbs using a posture estima-
tion method. One limitation was that limb object matching was based on binary 
images that were identified following background separation; therefore, the correct 
positions of covered (overlapping) limbs could not be seen, resulting in many incor-
rectly matched body parts.

DeepPose [23], the first tool to apply deep learning to HPE research, uses a seven-
layer deep neural network (DNN) to identify images. The “return method” improves 
accuracy by connecting a final output layer representing joint point positions as (x, y) 
coordinates, but it only works with two-dimensional local coordinates; since it lacks 
spatial and environmental information, it does not perform well with overlapping 
joints.

Another HPE research direction is heat map prediction technology [24], which 
processes images in parallel with multiple resolutions to detect sliding windows and 
locate targeted joint points. The junction node generates a heat map that forms a 
two-dimensional Gaussian distribution with the targeted joint position at its center. A 
Gaussian distribution allows the model to consider environments around joint points 
during training, which helps improve model performance in cases of complex back-
grounds or joint points that are occluded or overlapping. Heat map prediction tech-
nology has been applied to advanced research involving Cascaded Pyramid Networks 
(CPNs) [19], SimpleBaseline [17], and HRNet [25], among other tools.

2.3 DarkPose

DarkPose [2], a model-independent plug-in that optimizes heat map technology and 
verifies carry out computation optimization (COCO) and MPII datasets, was released 
by the University of Electronic Science and Technology of China in October 2019. All 
existing human body pose estimation models were analyzed in terms of effectiveness, 
with HRNet producing the best results. According to our data, heat map and joint coor-
dinate point conversions exert significant impacts on HPE training and accuracy and are 
therefore responsible for decoding heat maps into coordinate points and encoding coor-
dinate points into heat maps. Table 1 presents results from a comparison of DarkPose 
with other HPE models using a carryout computation optimization (COCO) dataset and 
the distribution-aware coordinate representation of keypoint (DARK) algorithm.

The model-predicted heat map was found to have multiple peaks after decoding into 
coordinate points and was therefore convolved with a Gaussian kernel with the same 
distribution for use as test data in order to obtain a smoothed heat map. Next, Taylor 
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expansion was applied to calculate correct joint point positions (Figure 1a and b) prior 
to returning peak heat map calculations to the same space as the original image and 
converting them to the correct target joint coordinates (Figure 1c). However, the part of 
this process where joint coordinates are encoded into a heat map has the same quan-
tization problem as that observed during the decoding process. In standard encoding 
methods, whenever the original image resolution is reduced, joint point coordinates 
may be rounded into integers, resulting in errors. DARK solves this problem by directly 
setting heat map centers in nonquantized positions. Since coordinate point encoding 
usually refers to ground truth encoding into heat maps for model learning, many model 
training optimizations are possible.

3. Proposed solution

This study conducts experiments using GNN (Graph Neural Network) and ResNet 
models, which exhibit the following main advantages and characteristics:

Figure 1. 
Schematic of DARK-based optimization for decoding heat maps into coordinate points.

HPE model Backbone Input 

size

AP AP50 AP75 APM APL AR

Bottom-up

OpenPose [26] – – 61.8 84.9 67.5 57.1 68.2 66.5

MultiPoseNet 

[27]

– – 69.6 86.3 76.6 65.0 76.3 73.5

Top-down

G-RMI [28] ResNet-101 353×257 64.9 85.5 71.3 62.3 70.0 69.7

CPN [29] ResNet-

Inception

384×288 73.0 91.7 80.9 69.5 78.1 79.0

SimpleBaseline 

[30]

ResNet-152 384×288 73.7 91.9 81.1 70.3 80.0 79.0

HRNet [25] HRNet-W48 384×288 77.0 92.7 84.5 73.4 83.1 82.0

DARK [2] HRNet-W48 384×288 77.4 92.6 84.6 73.6 83.7 82.3

Notes: AP, average precision; AP 50, average success rate when intersection over union > 50%; AP 70, average success 
rate when intersection over union > 70%; APm, medium-size frame pattern (32*32 < area), regarded as successful and 
accurate; APL, large-size frame pattern (96*96 < area) regarded as successful and accurate; AR = average recall.
Bold text indicates the best performance among all methods.

Table 1. 
A comparison of DarkPose with other advanced human pose estimate (HPE) models based on a carry-out 
computational optimization (COCO) dataset.
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1. GNN Model: The GNN model can effectively model the relationships between 
human keypoints, thereby better capturing spatial features of sign language 
gestures. Additionally, the GNN model can model the relationships between hu-
man keypoints at different time points, thus better capturing temporal features 
of sign language gestures. These characteristics make the GNN model perform 
excellently in sign language recognition tasks.

2. ResNet Model: The ResNet model is a deep residual network that effectively ad-
dresses the problem of vanishing gradients in deep neural networks, thus facili-
tating better training of deep models. In this study, the ResNet model is utilized 
for RGB image recognition, efficiently extracting image features and achieving 
superior recognition performance.

By combining the advantages and unique features of both models, this study can 
better capture spatial and temporal features of sign language gestures, resulting in 
improved sign language recognition performance. Moreover, by employing multiple 
models for sign language recognition, this research maximizes the benefits of each 
model and achieves superior recognition results.

3.1 Research structure

The main goal of this research is to create a recognition system for Taiwanese sign 
language, with video clips of sign language speakers serving as input and prediction 
results for 40 language terms serving as output. Author-produced Taiwanese sign lan-
guage videos were used to form a dataset and then used with an HPE model to extract 
body, hand, and facial keypoints. RGB images from the videos were input into a 
3DCNN system for training. Final output prediction was determined as the weighted 
average of results from the two steps. The video dataset was used to separately train 
two models: a graph convolution network (GCN) model (explained in detail in sec-
tion 3.5) with human body keypoints as input, and a 3DCNN model with the original 
RGB images as input. Last, model prediction results were weighted, averaged, and 
used as output.

3.2 Data collection

Sign language datasets tend to be scattered due to regional and national dif-
ferences. Currently, the most common sign language datasets are associated with 
American Sign Language (ASL) and Chinese Sign Language (CSL). There is cur-
rently no database available for training for the Taiwanese sign language used in this 
research; only two online sign language dictionaries compiled by the Taiwan Ministry 
of Education and National Chung Cheng University. Although both offer demonstra-
tion videos, their data are insufficient for training a sign language recognition model. 
We therefore supplemented the Ministry of Education dictionary with data from the 
ASLLVD and DEVISIGN sign language databases.

As stated above, our goal is to create a tool that DHH individuals can use for com-
munication during emergency situations. Four terminology categories were chosen 
for this task: feelings, asking for help, communication, and daily needs. The 40 terms 
shown in Table 2 served as identification targets; gesture and movement images are 
presented in Appendix.
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3.3 Data preprocessing

3.3.1 Video-to-RGB image conversion

Since the final layer of the 3DCNN model used in this study is a fully connected clas-
sification layer, a necessary step is converting the video-to-RGB images prior to train-
ing, making sure that the number of images (frames) is the same in each dataset. After 
using the HPE model to extract a whole-body keypoint vector from the video, and after 
using the whole-body keypoint vector to identify the maximum range of motion for the 
signing individual, images were cropped down to squares with the signing individual as 
the central focus. Picture size was then reduced to 256 × 256 pixels to facilitate training. 
To ensure equal numbers of video images during the training process, GPU memory 
space was calculated and the average number of video frames used as a benchmark for 
cutting and cropping (70 frames). When the number of video frames exceeded the 
number of reference frames, images were cropped to emphasize the middle part; when 
the number of video frames was less than the number of reference frames, sections of 
the video were duplicated until an equal number was achieved.

3.3.2 Training and validation sets

Trained model quality was determined according to whether the model made 
correct judgments after receiving previously unseen photos or videos. To properly 
train and test the model, data were divided into training and validation sets (the latter 
used to verify model effectiveness) prior to the start of each experiment. Randomly 
dispersed data were divided into training and validation sets at a 4:1 ratio, with sets 
containing the same amounts of data for each sign language classification. Upon 
completion of the preprocessing stage, there were 619 videos in the training set and 
127 in the validation set.

3.4 Human keypoint detection

Currently marketed and open-source human keypoint detection or HPE tools for 
capturing human movement include OpenPose (developed by CMU) and DarkPose, 
with HRNet serving as a basic model. Although OpenPose features detailed parameter 
descriptions and a complete real-time 2D multi-person pose estimation system, it lags 
behind the latest DarkPose version in terms of performance and accuracy. During 
testing, we noticed that OpenPose did not detect hand positions when the elbow 
of the signer was not visible on-screen (Figure 2). Further, OpenPose frame rates 

Category Vocabulary item

Feelings Fear, glad, dislike, painful

Ask for help Disappear, search, rob, headache, hungry, lost, hearing aid, wounded, catch a cold, 

dizzy, ask for help, danger

Communicate We, cannot, not right, don’t want, don’t know, never mind, careful, understand, at 

once, can, agree, forget, sorry, welcome, request, thank, very, encourage

Daily needs Eat, drink, respirator, rent, telephone, relax

Table 2. 
The 40 Taiwanese sign language terms used in this research and their categories.
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were greatly reduced during simultaneous face-hand-body posture detection. Since 
DarkPose accuracy and performance were not affected by similar conditions, it was 
chosen for the total body pose estimation tasks in this research.

3.4.1 Keypoint selection

The COCO WholeBody dataset [31] consisted of 133 extracted keypoints—17 
limbs, 6 feet, 68 faces, and 42 hands (21 each for left and right hands). Three-
dimensional datasets were generated for each keypoint. The first two numbers repre-
sent two-dimensional keypoint coordinates (x, y) indicating horizontal and vertical 
positions, and the third number is the keypoint confidence value (a floating point 
number between 0 and 1). The datasets did not cover areas below the torso; therefore, 
waist (12, 13), knee (14, 15), ankle (16, 17), and foot keypoints were not included in 
the model prediction process.

3.4.2 Keypoint features

The 121 keypoints that were trained together during this part of the experiment 
were connected to obtain approximate outlines of each body part, which allowed 
all bodily movements to be captured, even subtle ones. Since the presence of too 
much information during model training can result in poor model performance, 
an effort was made to limit keypoint extraction to small numbers of “feature key-
points.” Although these decisions affected the capability to capture the most subtle 
movements of key body parts, the extracted information was sufficient for research 
purposes. The 39 feature keypoints listed in Table 3 include 7 limbs, 22 hands (11 each 
for left and right), and 11 faces.

3.5 Forecast model

3.5.1 Pose estimate model

Experiments conducted to test the use of keypoints for sign language identification 
utilized the temporal and spatial graph convolution network (GCN) model proposed 
by Yan et al. [32]. To obtain body position information, keypoints must be connected 
to skeletal data in order to construct two-dimensional graphs consisting of points and 

Figure 2. 
OpenPose (left) did not detect hand positions when the subject’s elbow was not visible. DarkPose (right) was not 
affected.
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edges. In order to capture position changes over time, corresponding points in adjacent 
frames must be connected for use as model input.

3.5.2 RGB model

RGB image processing required the use of Tran et al.’s [33] ResNet2+1D convolu-
tions, a variant that applies 1D convolution to 3D ResNet and uses pretrained weights 
with a Kinectics dataset. This model separates the original TxHxW 3D convolution 
kernel into a 1xHxW 2D convolution kernel (for dealing with spatial features) and a 
Tx1x1 1D convolution kernel (for dealing with temporal features). The error rate is 
reduced by increasing the number of nonlinear layers.

3.6 Model ensemble learning

During training, different models focus on different features in the same dataset, 
with different weights given to individual features. This produces distinctly different 
results across models, which encourages the use of ensembles to vote for individual 
models or to create weighted averages of model results so that all input data features 
can be at least partially acknowledged. This is a common deep learning technique. 
In this study, the model architecture supports the attainment of prediction and 
RGB image output. GCN and 3DCNN model outputs were expressed as vectors with 
lengths = 40, indicating the probability of video input being 40 sign language vocabu-
lary items. The two prediction results were given different weights that were summed 
to achieve the highest possible accuracy:

 α β= × + × ,final pose RGBpredict predict predict  (1)

with “predict” denotes the model output, and α and β denote the weights of the 
two models. During the verification step, weight distribution was adjusted according 
to model accuracy to achieve the best results.

4. Experiment

4.1 Experiment details

CPU: AMD Ryzen7 3700X

Category Keypoints

Limb (7) Nose (1), ears (4, 5), shoulders (6, 7), elbows (8, 9)

Face (10) Eyebrows (41, 43, 45, 46, 48, 50), mouth (84, 86, 88, 90)

Left hand (11) Wrist (92), thumb (94, 96), index finger (97, 100), middle finger (101, 104), ring finger 

(105, 108), little finger (109, 112)

Right hand (11) Wrist (113), thumb (115, 117), index finger (118, 121), middle finger (122, 125), ring 

finger (126, 129), little finger (130, 133)

Table 3. 
Body keypoints used to test the proposed model.
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GPU: GeForce RTX 2070
Operating system: Ubuntu 18.04
Programming language: Python 3.7
Deep learning framework: Pytorch 1.8.1

4.2 Model design

4.2.1 Human body keypoints

During the first phase of our experiments, the COCO WholeBody dataset was 
used to remove 12 lower-body keypoints (not required for sign language communica-
tion), including waist (12, 13), knee (14, 15), ankle (16, 17) and foot (6) keypoints. 
The remaining 121 keypoints were used for model training and prediction. Vertical 
and horizontal coordinates for these keypoints were used as input, followed by 100 
epochs of training. Accuracy data for the Top 1, Top 3, and Top 5 verification trends 
are shown in Figure 3a and b. In the figures, Top 1 refers to the largest final prob-
ability vector prediction result; a correct prediction indicates a correct result classifi-
cation. Top 3 refers to the three largest and Top 5 the five largest probability vectors, 
with correct predictions indicating correct probabilities.

The results indicate approximately 95% Top 3 and Top 5 accuracy rates after 
20 epochs, and stabilized Top 1 accuracy after 60 epochs. Top 1 accuracy during 
this phase of our experiments was 94.9%; for both Top 3 and Top 5, it was 99.3%. 
According to Figure 3b, there was a downward loss trend due to the excessive infor-
mation produced by the 121 keypoints.

A confusion matrix of experimental results during this stage is presented as 
Figure 4. According to this matrix, “at once,” “not right” and “thank” were poorly 
performing categories—their similar actions are distinguished by slightly different 
gestures. Comparable characteristics were noted for two other poorly performing 
categories: “don’t know” and “dislike.” A likely explanation for these findings is the 
presence of excessive feature point noise affecting gesture detection accuracy.

4.2.2 Feature keypoints

During the second experiment phase, 39 of the original 121 body keypoints were 
identified as sufficient representations of key body parts for training and test data 

Figure 3. 
Accuracy data for the Top 1, Top 3, and Top 5 verification data trends from (a) the training of 121 full keypoints 
and (b) downward loss trends.
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purposes. All unnecessary and redundant information was removed to improve model 
performance. The coordinates of these 39 keypoints were used during training (100 
epochs). As shown in Figure 5a and b, Top 3 and Top 5 accuracy results stabilized 
after reaching approximately 95% after 20 epochs of training; Top 1 accuracy stabi-
lized after 40 epochs—significantly faster than during the first stage (≈60 epochs). 
Specific accuracy results were Top 1, 97.9% and Top 3 and Top 5, both 100%. Fewer 
spikes are noted in Figure 5b, indicating greater stability during the training process.

A confusion matrix of experimental results during this stage is presented in 
Figure 6. Note that “don’t know” and “dislike” performed better during this stage 
compared to the first stage; similar improvements were observed to a lesser degree for 
“at once,” “not right,” and “thank.” Note also the stronger focus on gesture changes.

4.3 RGB model

In the third experiment phase, 3DCNN was used to identify the continuous RGB 
graphics (see Section 3.3.1). The R(2+1)D model was used to disassemble the 3D 
convolution kernel in 3D-ResNet, thus creating a 2D + 1D convolution kernel vari-
ant capable of separately performing spatial and temporal processing for purposes 

Figure 4. 
Confusion matrix following full keypoint training.

Figure 5. 
Top 1, Top 3, and Top 5 accuracy data during (a) feature keypoint training and (b) downward loss trends.
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of optimizing the model’s training process. A total of 59,610 pieces of original image 
information was used for experiment input, with the input dimension expressed 
as (channel, frame, size_x, size_y) = (3, 70, 64, 64) with a learning rate of 0.001 
(100 epochs). Results are shown in Figures 7 and 8. Training and verification 

Figure 6. 
Confusion matrix following feature keypoint training.

Figure 7. 
Accuracy trends during 3DCNN training. Blue line, training accuracy; orange line, verification accuracy.

Figure 8. 
3DCNN training loss trends. Blue line, training loss; red line, verification loss.
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accuracy values were approximately 95% after 70 epochs. Accuracy stabilized while 
verification loss continued to decrease steadily; overall, the training process became 
relatively stable. Accuracy values during this stage were Top 1, 97.6% and Top 3 and 
Top 5, both 99.3%.

A confusion matrix of experimental results for this stage is presented as Figure 9. 
Compared to the second stage, the RGB model results were less stable when dealing 
with vocabulary items, with large differences between individual gestures and expres-
sions. For example, there was a 14% probability of “don't know” being misread as 
“not right,” “painful,” or “understand.” As shown in Figure 10, these four signs are all 
expressed with one hand, with very small differences between them. According to the 
poor performance results for the terms “at once,” “not right,” and “thank,” the RGB 
model is more sensitive to changes in motion. Further, better RGB performance was 
noted for related vocabulary recognition.

4.4 Model ensemble

For the next stage, the human pose and RGB models were purposefully integrated 
to determine whether prediction accuracy could be improved. Specifically, an effort 
was made to determine the best performance when model weights were 0.55 and 0.45, 
respectively, using the formula

 = × + ×0.55 0.45final pose RGBpredict predict predict  (2)

Postmodel integration results indicate an accuracy rate of 98.6%. Top 3 and Top 5 
accuracy rates were both 100% (Table 4).

A confusion matrix constructed from the experimental results for this stage is 
shown in Figure 11. Note that “don’t know,” “thank,” and “not right” are shown as 
having incorrect predictions. Improved stability was noted compared to the second 

Figure 9. 
Confusion matrix constructed from data collected following RGB model training.
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and third stages. Other keypoint model weaknesses also exhibited improvement due 
to the RGB model’s greater motion sensitivity characteristic. Other errors were the 
same in both models.

5. Conclusion

Most sign language recognition systems require wearable devices or depth cameras 
to capture and analyze signer movement. The goal of our research is to reduce depen-
dency on such equipment in order to help signers communicate more easily with 

Figure 10. 
A comparison of signs for four terms. Source: Taiwan Ministry of Education online dictionary of commonly used 
sign language terms, located at https://signlanguage.moe.edu.tw/.

Method Top 1 (%) Top 3 (%) Top 5 (%)

Joint-121 94.9 99.3 99.3

Joint-39 97.9 100 100

RGB 97.6 99.3 99.3

Ensemble

(RGB + Joint-39)

98.6 100 100

Table 4. 
Accuracy rates for individual and integrated models.
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people lacking any knowledge of sign language. The method described in this paper 
is based on RGB image data. According to results from a series of experiments, the 
method is capable of identifying 40 signs in the Taiwanese sign language system. The 
proposed model consists of two integrated submodels: a GCN model that uses human 
body keypoints for prediction purposes, and a 3DCNN model that recognizes RGB 
images. For the GCN model, the batch size used in this experiment was 32, and the 
learning rate was set to 0.001. The model was trained for 60 epochs in the first stage 
of the experiment and 100 epochs in the second stage. As for the 3DCNN model, a 
batch size of 64 was used in the experiment, with a learning rate of 0.001. The model 
was trained for 100 epochs.

First-stage experiment results using 121 upper-body keypoints for model train-
ing indicate a Top 1 accuracy rate of 96.8%. During the second stage, redundant 
information was removed in an effort to improve performance. Data for 39 selected 
keypoints indicate a higher Top 1 accuracy rate of 97.9% and a 100% Top 3 accuracy 
rate. Complete screen information was added during the third stage, in which RGB 
images were used for sign language recognition; here, the Top 1 accuracy rate was 
97.6%. For the fourth stage, prediction results generated during the second and 
third stages were weighted and added so that the model could concurrently refer to 
bodily motion and RGB changes, resulting in recognition accuracy values of 98.6% 
for Top 1 and 100% for Top 3. According to the confusion matrix constructed from 
these data, GCN and 3DCNN model integration successfully addressed the prob-
lem of identification errors involving similar signs when the RGB model was used 
alone. Compared to the work of DS Chen and SC Lo [33] using the YOLO model for 
Taiwanese Sign Language recognition, there is a clear improvement in recognition 
accuracy in this study.

In the absence of a complete Taiwanese sign language database, this research was 
limited to producing its own videos. Due to manpower and time limitations, only 40 
common vocabulary items could be used for training purposes, with each item being 
the focus of approximately 20 short videos. Thus, even though a recognition accuracy 

Figure 11. 
A confusion matrix from data collected following model integration.
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rate of 99% was noted for the final experiment, lack of item diversity must be taken 
into consideration when interpreting the findings.

6. Future research

To overcome limitations associated with a lack of item diversity, it is essential to 
establish a large-scale Taiwanese sign language database in order to create sufficient 
training sets. Such a database requires waist-up images of signers standing in front 
of a variety of backgrounds under different intensities of light. For each vocabulary 
item, database producers should ask several signers to participate in video produc-
tion to ensure a diverse body of data, making it possible to create comprehensive 
and robust models. Further, any successful sign language database should contain 
combinations of signs that are conducive to creating sentences. When such a database 
is established, an important next step will be to refine the proposed model in order to 
create apps that can be used with smartphones and other small-scale devices.
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