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Chapter

Schrodinger Wave Equation for
Simple Harmonic Oscillator
Noor-ul-ain, Sadaf Fatima, Mushtaq Ahmad,

Muhammad Rizwan Khan and Muhammad Aslam

Abstract

In physics, harmonic motion is among the most representative types of motion.
A simple harmonic oscillator is often the source of any vibration with a restoring force
proportional to Hooke's law. Every minimum potential has a solution in the form of
the harmonic oscillator potential. Little oscillations at the minimum are characteristic
of almost all natural potentials and of many quanta mechanical systems. Harmonic
motion is an essential building block for these more complex uses. The Schrödinger
equation is a defining feature of the harmonic oscillator. Here, we demonstrate that
the time-frequency plane is a useful tool for analyzing their dynamics. We numeri-
cally integrate several examples involving different input forces and demonstrate that
the oscillations are clearly displayed and easily interpretable in the time-frequency
plane.

Keywords: harmonic motion, frequency, pendulum, displacement, amplitude

1. Introduction

A system that uses simple harmonic motion (SHM) is known as a harmonic
oscillator.

A physical system called a harmonic oscillator experiences a restoring
force proportionate to the displacement when it is moved away from its mean
position.

A wave equation that describes the behavior of quantum particles is the
Schrödinger equation. A harmonic oscillator's energy levels can be demonstrated by
the Schrödinger equation to be quantized, which means that they can only take on
specific discrete values. The Schrödinger equation has the effect of restricting the
possible energies that an oscillator that is harmonic can have [1, 2].

A physical system known as harmonic oscillator oscillates at a frequency propor-
tional to the displacement from its equilibrium position and is governed by a restoring
force Fr. The Fr is proportional to the displacement from its mean position. This means
that the system tends to return to its equilibrium position when disturbed from it, and
the rate at which it oscillates is determined by the strength of the restoring force and
the mass of the system. An equation of simple harmonic motion which is sinusoidal
function of time with constant amplitude and frequency can be used to describe the
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motion of harmonic oscillator [1, 3]. The two examples of harmonic oscillator are mass
connected to the spring and a simple pendulum. Harmonic oscillators are important in
physics and engineering because they provide a useful model for many physical
systems and can be used to analyze and predict the behavior of those systems [3, 4].

2. Classical behavior of simple harmonic oscillator

The simple example of linear harmonic oscillator is a mass attached to a wall by
means of a spring as illustrated in the following Figure 1.

2.1 Expression for potential energy of simple harmonic oscillator

Hooke's law states that the force required to stretch or compress a spring is
proportionate to the distance extended or compressed from its original length.
Mathematically, this relation can be expressed as:

F∝ x

F∝ � x

Fr ¼ �kx (1)

Where, Fr is the force applied to the spring, x is the displacement of the spring
from the original length, and k is a constant which is known as spring constant and
represents the stiffness of spring [5] .

Hooke's law applies to all elastic materials, not just springs. It is an important
concept in physics and engineering because it helps to understand and predict the
behavior of systems that involve elastic materials, such as springs, rubber bands, and
other materials. Hooke's law is also the basis for the design of many mechanical
systems, such as shock absorbers, suspension systems, and other devices that rely on
the properties of elastic materials [6, 7].

When an object is displaced from its equilibrium position, a restoring force acts on
it to push or pull it back toward that position. The Fris directly proportional to the
displacement from the equilibrium position and also acts in opposite direction [5].
This force is present in many physical systems, such as springs, pendulums, and mass-
spring systems, and it plays a vital role in the behavior of these systems [3, 4].

Figure 1.
Shows the experimental device for the study of the spring-mass system [1].
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F ¼ � dv

dx
(2)

∵Force F can be expressed as negative derivative of potential energy V.
The work done in stretching spring to distance dx

W ¼ F � distance

P:E ¼ F � dx

�dv ¼ F � dx

dv ¼ �F � dx

dv ¼ �F � dx

From Eq. (1)

F ¼ �kx

dv ¼ kx� dx (3)

Integrate Eq. (3) within limits 0 ! x

ð

dv ¼ þ
ð

x

0

kxdx

V ¼ k

ð

x

0

xdx

V ¼ k lim
0!x

x2

2

V ¼ k
x2

2
� 0

2

� �

V ¼ k
x2

2

V ¼ 1

2
kx2 (4)

Where x is the distance from equilibrium position [8, 9].
The plot of potential energy (V) of a particle executing simple harmonic motion

against displacement from its equilibrium length is a parabola as illustrated in the
following Figure 2.

2.2 Expression for frequency of linear harmonic oscillator

The frequency of a harmonic oscillator is the number of complete oscillations or
cycles it completes per unit time. The frequency of a harmonic oscillator depends on
the physical characteristics of the system, such as its mass and stiffness.

According to second law of motion
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F ¼ ma (5)

Comparing Eqs. (1) and (5)

ma ¼ �kx

m
d2x

dt2
¼ �kx ∵ a ¼ d2x

dt2

d2x

dt2
þ k

m
x ¼ 0 (6)

Eq. (6) is a second-order differential equation. The general solution of this Eq. (6)

x ¼ A sinωt (7)

We know ω ¼
ffiffiffi

k
m

q

x ¼ A sin

ffiffiffiffi

k

m

r

t (8)

We know that

ω ¼ 2πϑt

x ¼ A sin 2πϑ (9)

Comparing Eqs. (8) and (9)

A sin

ffiffiffiffi

k

m

r

t ¼ A sin 2πϑt

sin

ffiffiffiffi

k

m

r

¼ sin 2πϑ

sin �1 sin

ffiffiffiffi

k

m

r

¼ sin �1 sin 2πϑ

∵

ffiffiffiffi

k

m

r

¼ 2πϑ

ϑ ¼ 1

2π

ffiffiffiffi

k

m

r

(10)

Figure 2.
The potential energy for a simple harmonic oscillator [6].
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Eq. (10) gives the frequency of the simple harmonic oscillator, where ϑ the
frequency, k is the spring constant, and m is the mass of a linear harmonic
oscillator. The above equation determines that the frequency of a harmonic oscil-
lator is directly proportional to spring constant's square root and inversely pro-
portional to mass’s square root. This means that by increasing the stiffness of the
spring or by decreasing the mass of the oscillator, the frequency of an oscillator
will increase [8].

Generally, the frequency of harmonic oscillator is an important characteristic that
determines its behavior and can be used to analyze and predict its motion. The
frequency of a harmonic oscillator can be measured experimentally using various
methods, such as by measuring the time period of its oscillations or by analyzing its
response to external forces.

∵ϑ ¼ c

λ
⊽ ¼ 1

λ
ϑ ¼ c⊽

2πc⊽ ¼
ffiffiffiffi

k

m

r

⊽ ¼ 1

2πc

ffiffiffiffi

k

m

r

⊽ is wave number
For two particles connected to each other through a spring as in diatomic molecule,

we use term reduced mass μ [10].

⊽ ¼ 1

2πc

ffiffiffi

k

μ

s

(11)

3. Quantum mechanical treatment of simple harmonic oscillator

The wave function is a mathematical representation of a quantum system's state in
quantum mechanics. All of the information about a particle or a group of particles,
including their position, momentum, and energy, is contained in the wave function. It
is a complex-valued function depends on position and time of particle. It is denoted by
symbol Ψ [11].

Probability of finding the particle at a certain position is proportional to absolute
square of wave function. It is also used to determine the probability density of finding
a particle within a certain volume of space.

In quantum mechanics, wave function is a fundamental concept used to calculate
many properties of quantum systems, such as energy levels, transition probabilities,
and scattering cross-sections. The wave function is also used to describe the behavior
of systems that exhibit wave-like properties, such as electrons, atoms, and molecules
[12, 13].

The wave function follows the Schrödinger equation, which is a differential equa-
tion that determines how the wave function evolves over time. The Schrödinger
equation is used to determine the temporal evolution of quantum systems and to
predict particle and system behavior under different conditions [14].
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3.1 Representation of wave function

In quantum mechanics, the wave function can be represented in several ways,
depending on the context and the physical system being described. Here are three
common representations [15]:

3.1.1 Position representation

In this position representation, Ψ(x,t) gives the probability amplitude of finding a
particle at position x at time t. The position representation is used for systems with
definite position, such as single particle in a box or a molecule. In this representation, a
wave function is typically denoted as Ψ(x,t) i.e., function of position and time. Its
mathematical form can be written as: Ψ(x,t) = A(x,t) * exp(iφ(x,t)) where A(x,t) is
the amplitude of the wave function and φ(x,t) is its phase. The amplitude is a real-
valued function that describes the intensity of the wave, while the phase is a real-
valued function that describes the position of the wave in space and time [16, 17].

3.1.2 Momentum representation

In this representation, the wave function is function of momentum rather than the
position. The wave function Ψ(p,t) gives the probability amplitude of finding a parti-
cle with momentum p at time t. The momentum representation is useful for systems
with definite momentum, like a free particle. In this representation, wave function is
typically denoted as Ψ(p,t) and is function of momentum and time. Its mathematical
form can be written as: Ψ(p,t) = B(p,t) * exp(iχ(p,t)) where B(p,t) is the amplitude of
the wave function in momentum space and χ(p,t) is its phase. This amplitude is real-
valued function that determines the intensity of the wave in momentum space, while
the phase is a real-valued function that describes the position of wave in momentum
space [16–18].

3.1.3 Energy representation

In this representation, the wave function is a function of energy. The wave func-
tion Ψ(E) gives the probability amplitude of finding a system with energy E. The
energy representation is useful for systems with definite energy, like a particle in the
potential well. In the energy representation, wave function is typically denoted as
Ψ(E) and is a function of energy. Mathematically, it can be written as

Ψ Eð Þ ¼ C Eð Þ ∗ exp iψ Eð Þð Þ (12)

where C(E) is the amplitude of the wave function in energy space and ψ(E) is its
phase. This amplitude is real-valued function that determines the intensity of wave in
energy space, while the phase is a real-valued function that describes the position of
the wave in energy space.

In each representation, Ψ is a complex-valued function satisfies the Schrödinger
equation. It can be normalized, which means that the integral of the absolute square of
the wave function over all space or momentum or energy is equal to one, ensuring that
the probability of locating a particle in the system is one.
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The mathematical form of wave function can be used to calculate various proper-
ties of the system, such as probabilities of finding the particle in a certain position,
momentum, or energy state [19].

3.2. Boundaries conditions

For the harmonic oscillator, the two common boundary conditions are described as
follows [20].

3.2.1 Normalizability condition

The wave function must be normalizable, which means that the integral of the
absolute square of the wave function over all space must be finite. This assures that
probability of locating a particle in the system is one [19].

3.2.2 Continuity condition

The wave function must be continuous and differentiable at the ends of the range.
This ensures that the probability density and its first derivative are continuous and
smooth throughout the range of motion.

For the harmonic oscillator, the boundary conditions are typically satisfied by
using a particular type of wave function, called the Hermite polynomials. The Hermite
polynomials are a set of orthogonal polynomials that satisfy both the normalizability
and continuity conditions. They form a complete basis set for the wave function of the
harmonic oscillator, allowing the solution to be expressed as a linear combination of
these polynomials [6].

3.3 Schrodinger wave equation for harmonic oscillator

The mathematical form of the wave function in quantum mechanics depends on
the physical system being described and the representation being used. However, in
general, it is a complex-valued function that satisfies Schrödinger equation [8, 21].

In Quantum mechanics, the one-dimensional time-independent Schrödinger wave
equation for harmonic oscillator follows as [22]:

∂
2ψ

∂x2
þ 2m

ℏ
2 E� Vð Þψ ¼ 0 (13)

But the potential energy of the simple harmonic oscillator is V=1
2Kx

2, therefore

∂
2ψ

∂x2
þ 2m

ℏ
2 E� 1

2
Kx2

� �

ψ ¼ 0 (14)

Or

∂
2ψ

∂x2
þ�mKx2

ℏ2
ψ ¼ �2mE

ℏ2
ψ

mK

ℏ
2 ¼ α2

2mE

ℏ
2 ¼ ε
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Them

∂
2ψ

∂x2
� α2x2 ψ ¼ �εψ (15)

This is Schrodinger’s equation for harmonic oscillator [23–25]. Here x2 is the coef-
ficient of ψ , so it is difficult to obtain its solution. Hence we will find its asymptotic
solution

When x ! ∞ α2x2 > > ε

So we can write:

∂
2ψ

∂x2
� α2x2 ψ ¼ 0 (16)

Its solution is ψ ¼ e�αx2=2

∂ψ

σx
¼ �αxe�αx2=2

∂
2ψ

∂x2
¼ ∂

σx
�αxe�αx2=2

� �

¼ α2x2e�αx2=2 � αe�αx2=2 ¼ �αð Þe�αx2=2α2x2

Value of αx is larger hence we take α2x2 � αð Þ≈ α2x2

∂
2ψ

∂x2
¼ α2x2e�αx2=2

Or ∂
2ψ

∂x2 ¼ α2x2 ψ or ∂
2ψ

∂x2 � α2x2 ψ ¼ 0

Now we take ψ ¼ e�αx
2
=2

Because it obeys the condition that ∣ψ ∣2 decreases with increasing x
General solution:

ψ xð Þ¼f xð Þ
e�αx2=2

Differentiating w.r.t x

∂ψ

σx
¼ f xð Þe

�αx2=2 �αxð Þ þ e�αx2=2 ∂f

∂x

Again differentiating w.r.t x

∂
2ψ

∂x2
¼ f xð Þ e�αx2=2 �αð Þ þ �αxð Þ �αxð Þe�αx2=2

h i

þ �αxð Þ e�αx2=2 ∂f

∂x
þ ∂f

∂x
e�αx2=2 �αxþ e�αx2=2 ∂

2f

∂x2

�

∂
2ψ

∂x2
¼ e�αx2=2f xð Þ �αþ α2x2

� �

þ ∂f

∂x
e�αx2=2 �2αxð Þ þ e�αx2=2 ∂

2f

∂x2

∂
2ψ

∂x2
¼ e�αx2=2 ∂

2f

∂x2
� 2αx

∂f

∂x
þ α2x2 � α
� �

f
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Substituting values of ψ and ∂
2ψ

∂x2 in Eq. (15)

e�αx
2
=2

∂
2f

∂x2
� 2αx

∂f

∂x
þ α2x2 � α
� �

f

	 


� α2x2f e�αx2=2 ¼ �εf e�αx2=2

Or
∂
2f

∂x2
� 2αx

∂f

∂x
þ ε� αð Þf ¼ 0 (17)

Now substituting y =
ffiffiffi

α
p

x and f xð Þ ¼ H yð Þ converting into standard Hermite

polynomial equation

y =
ffiffiffi

α
p

x then dy
dx ¼

ffiffiffi

α
p

∂f

∂x
¼ ∂f

∂y
:
∂y

∂x
¼

ffiffiffi

α
p ∂f

∂y

∂
2f

∂x2
¼ ∂

∂x

∂f

∂x

� �

¼ ∂

∂x

ffiffiffi

α
p ∂f

∂y

� �

¼ ∂

∂y

ffiffiffi

α
p ∂f

∂y

� �

∂y

∂x
¼ α

∂
2f

∂y2

Substituting values of ∂f
∂x and

∂
2f

∂x2 in Eq. (17), we get

α
∂
2f

∂y2
� 2α

y
ffiffiffi

α
p ffiffiffi

α
p ∂f

∂y
þ ε� αð Þf ¼ 0

α
∂
2f

∂y2
� 2αy

∂f

∂y
þ ε� αð Þf ¼ 0

∂
2f

∂y2
� 2y

∂f

∂y
þ ε

α
� 1

� �

f ¼ 0

Now f(x) = H(y)

∂
2H

∂y2
� 2y

∂H

∂y
þ ε

α
� 1

� �

H ¼ 0 (18)

This is standard Hermite differential equation [22]. It can be expressed as

H y
� �

¼
X

∞

p¼0

apy
p (19)

∂H

∂y
¼

X

papy
p�1

∂
2H

∂y2
¼

X

p p� 1ð Þapyp�2

From Eq. (18)

X

p p� 1ð Þapyp�2
–
X

2p� ε

α
� 1

� �h i

apy
p ¼ 0
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This expression is valid only when coefficient of each power of y is zero.
And p = p + 2

X

pþ 2ð Þ pþ 2� 1ð Þapþ2y
pþ2�2

–
X

2p� ε

α
� 1

� �h i

apy
p ¼ 0

apþ2 pþ 2ð Þ pþ 1ð Þ ¼ ap 2p� ε

α

� �

þ 1
h i

apþ2 ¼
2p� ε

α

� �

þ 1
� �

pþ 2ð Þ pþ 1ð Þ ap (20)

We can determine values of all the coefficients in terms of two arbitrary constants
a0 and a1

Thus, complete solution of Schrodinger’s equation is [26]

ψ ¼ e�αx2=2H yð Þ

ψ ¼ e�y2=2H yð Þ

3.4 Energy eigen values

ψ ¼ e�y2=2H yð Þ of a simple harmonic oscillator will be physically accepted only

when y! ∞ , the increase in the value of Hermite Polynomial H yð Þ is more rapid than

the decrease in the value of e�y2=2 value [27].

Value of e�y2=2H yð Þ can be zero only when power series for H yð Þ is finite series.

Let series be finite for p=n, the Eq. (20) becomes.

2n� ε

α
þ 1 ¼ 0

N ¼ 1

2

ε

α
� 1

� � ε

α
¼ 2nþ 1ε ¼ 2mE

ℏ
2 α ¼

ffiffiffiffiffiffiffi

mk

ℏ
2

r

2mE
ℏ2=

ffiffiffiffi

mk
ℏ2

p ¼ 2nþ 1
2

ℏ

ffiffiffiffi

m

k

r

E ¼ 2nþ 1

E ¼ 2nþ 1

2
ℏ

ffiffiffiffi

k

m

r

But we know
ffiffiffi

k
m

q

¼ ω (angular frequency)

E ¼ 2nþ 1

2

� �

ℏω ¼ nþ 1

2

� �

ℏν (21)

Where n = 0, 1, 2, 3, …
The above equation gives the energy levels of a harmonic oscillator [28], where n is

a non-negative integer, h̅ is reduced Planck constant, ω is an angular frequency of the
oscillator, and E_n is the energy of the oscillator in the nth energy level. In quantum
mechanics, the energy levels of simple harmonic oscillator are quantized, which
means they take on only certain discrete values.
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If n = 0 then E0 ¼ 1
2 ℏν

n = 1 then E1 ¼ 3
2 ℏν

n = 2 then E2 ¼ 5
2 ℏν

The energy levels of a harmonic oscillator are equally spaced, with the energy of
each level separated by an amount h̅ω. The ground state of the oscillator, n=0, has the
lowest energy level and corresponds to the oscillator's minimum energy state, where
the particle is localized at the center of the potential well. As n increases, the energy
levels increase and the wave function oscillates with more nodes [27].

The energy of the harmonic oscillator is always positive, and the oscillator can
never reach the zero-point energy, which is the minimum possible energy that a
quantum mechanical system can have [29].
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