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Abstract

The concept of precision medicine involves tailoring medical interventions to 
each patient’s specific needs, considering factors such as their genetic makeup, 
lifestyle, environment and response to therapies. The emergence of digital twin (DT) 
technology is anticipated to enable such customization. The healthcare field is, thus, 
increasingly exploring the use of digital twins (DTs), benefiting from successful 
proof of concept demonstrated in various industries. If their full potential is realized, 
DTs have the capability to revolutionize connected care and reshape the manage-
ment of lifestyle, health, wellness and chronic diseases in the future. However, the 
realization of DTs’ full potential in healthcare is currently impeded by technical, 
regulatory and ethical challenges. In this chapter, we map the current applications of 
DTs in healthcare, with a primary focus on precision medicine. We also explore their 
potential applications in clinical trial design and hospital operations. We identify 
the key enablers of DTs in healthcare and discuss the opportunities and barriers that 
foster or hinder their larger and faster diffusion. By providing a comprehensive view 
of the current landscape, opportunities and challenges, we aim to contribute to DTs’ 
ongoing development and help policymakers facilitate the growth of DTs’ application 
in healthcare.

Keywords: human digital twins, precision medicine, DT of the eye, clinical trials, 
hospital operations management

1. Introduction

Digital twins (DTs) are currently implemented in various sectors such as smart 
cities, manufacturing, construction, automotive and aerospace. Successful proof 
of concept in various industries and the growing accessibility of technological 
devices capable of gathering patient data facilitate an emerging utilization of DTs 
in the healthcare field [1]. DTs present significant potential, particularly in the 
realm of precision medicine [2]. In this context, DTs offer the capability to simulate 
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personalized treatment approaches, providing a visual representation of the potential 
outcomes of therapies and the progression of diseases for each individual patient [3]. 
Furthermore, the healthcare sector has already witnessed successful implementations 
of DTs, particularly in areas like predictive maintenance and performance enhance-
ment of medical devices, as well as the optimization of hospital management systems.

While DTs have demonstrated significant success in various fields, it is important 
to acknowledge that DTs developed for healthcare differ significantly from those 
designed for industrial applications. Healthcare DTs face unique challenges and 
requirements due to the complexity and sensitivity of medical data, and there are 
several important points to consider. For instance, human DTs indeed rely heavily on 
the integration of artificial intelligence (AI) applications, and these applications often 
utilize sensitive medical data. Given the sensitive nature of medical data, ensuring the 
proper handling and protection of this information becomes crucial [4].

Unlike other industrial applications, health DTs have unique characteristics that 
require a dedicated examination. This review encompasses an evaluation of the tech-
nologies used in health DTs, the specific areas of application within healthcare, and 
the barriers that exist in both the research field and the market for these technologies. 
By conducting this comprehensive analysis, a deeper understanding can be gained 
regarding the potential benefits, challenges and opportunities associated with health 
DTs in healthcare settings.

This chapter contributes to the DTs in healthcare literature as follows:

• We introduce a comprehensive background and recent advances of DTs in 
healthcare covering multiple areas of healthcare.

• We provide a comprehensive summary of enabling technologies and possible 
data sources in DTs in healthcare, assessing their benefits and drawbacks.

• We summarize DT applications in healthcare (precision medicine, clinical trials 
design and hospital operations) from the literature. As a case study, we present 
a comprehensive review focused on DTs of the eye and how they differ from 
creating DTs of other organs.

• Finally, we discuss limitations and open issues. We engage in a discussion on poten-
tial strategies to address these challenges and overcome the barriers they pose.

2. Background: concept of DTs in healthcare

A Digital Twin (DT) serves as a reflection of the real world, offering a way to 
simulate, predict and enhance physical manufacturing systems and procedures [5]. In 
the realm of healthcare, DTs can be described as virtual representations, also known 
as “digital twins,” of patients, their anatomical structure and medical devices. These 
twins are created using a combination of multimodal patient data, population data 
and real-time updates on patient and environmental variables [6, 7]. Additionally, 
when it comes to healthcare facilities, a DT of a hospital environment can also be 
included within the scope. Overall, in the healthcare field, DTs offer various benefits, 
covering diverse areas such as enhancing diagnostics, treatment and care, assisting in 
medical pathway planning, as well as supporting hospital organization and manage-
ment, and facilitating medical or asset resource allocation.
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The concept of human DTs comprises three essential components: the physical 
object, the virtual object and the digital thread. The author [8] summarizes these 
three components as follows: (1) The physical object can be a patient, a medical 
device, a wearable device, an external factor (e.g., social behavior, weather, air qual-
ity, or even government policies influencing patient health), or a system consisting 
of more of these objects (e.g., a hospital). (2) The virtual object is the medical device 
model, wearable device model, digital person model, external factor model and 
digital system models. (3) The digital thread is healthcare data, including real-time 
data detected from medical and wearable devices or external factors, simulation data 
from digital models, historical health data and electronic health records (EHRs) from 
healthcare institutions, and service data from platforms that enable the communica-
tion between the physical and virtual objects and spaces.

The physical object in DT applications primarily comprises physical patients 
and devices such as medical instruments, auxiliary equipment and wearable sensors 
that are connected to actual individuals. Various medical detection and scanning 
instruments, as well as wearable devices, are utilized to collect dynamic and static 
multi-source data related to physical humans. This data is then transmitted in real-
time to a virtual space and is processed to finally return to the physical objects as 
real-time instructions and commands (Figure 1). This interplay between the physical 
twin (PT) and virtual twin (VT) enables seamless interaction and data exchange for 
improved healthcare outcomes [8]. Thus, to enable the continuous development of 
DTs, the co-evolution of both PTs and VTs is essential. A reliable data link facilitates 
the mapping between the PT and VT, enabling their synchronized development in 
both the physical and virtual environments. This enables real-time data analysis and 
continuous monitoring of the PT’s condition, allowing for instance the early detection 
or crisis warning of potential health issues [9].

DT models can be effectively employed to enhance the outcomes of diverse clinical 
procedures. By leveraging real-time data and processing capabilities, DT algorithms 
can provide accurate insights and predictions, thereby improving decision-making in 

Figure 1. 
High-level component view of a DT for precision medicine.
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medical settings. Through the utilization of a vast dataset and AI-powered models, an 
ideal replica of the human body or specific body parts can be generated. This replica-
tion mimics human physiology and can provide potential answers to a wide range of 
clinical questions [10, 11]. Additionally, DTs can provide a secure environment for 
young practitioners, doctors and surgeons to practice, undergo training procedures 
and conduct tests on a virtual representation of the human body. This enables them to 
enhance their skills and expertise in a safe environment.

3. Health DT development: enabling technologies and data sources

The DT model allows for the continuous collection and accumulation of data 
throughout its entire lifecycle [12]. The accessibility of biomedical data has signifi-
cantly increased due to various sources such as large biobanks, electronic health 
records, medical imaging, wearable devices, biosensors, as well as cost-effective 
genome and microbiome sequencing. This accessibility has played a crucial role in the 
development of health DT solutions [13]. Moreover, data gathered through personal 
digital devices, and patient-generated health data, such as patient-reported function 
or symptoms, physical markers, and demographic, and lifestyle data over time of 
an individual contribute to the development of more comprehensive DTs [9, 14, 15]. 
The integration of diverse data streams within health DTs allows for a broad under-
standing of an individual’s health. This holistic view enables personalized healthcare 
interventions tailored to the specific needs of each individual.

In a health DT process, collected data from patients and the surrounding 
environment is transmitted and stored in real-time within the Internet of Things 
(IoT) cloud. Through the utilization of big data analytics and AI, valuable insights 
are extracted from the vast volume of data. This knowledge can be reused and 
enhanced over time. These insights then enable the creation of a VT, representing 
the PT’s condition. Through this process, information regarding the PT’s attributes, 
health status and other relevant data is fed back to the virtual models, enabling 
a two-way transmission of data. Thus, effective communication techniques that 
enable bi-directional data transmissions between the PT and VT are crucial for 
the success of this model. By constructing product models in the virtual space 
and facilitating the feedback of digital models to the physical space, a closed-loop 
process is achieved in the DT mode [9]. Finally, to comprehend and monitor the 
PT’s status comprehensively, visualization tools are necessary. These tools allow for 
a visual representation of the PT’s data, aiding in understanding and monitoring 
their condition.

The progress made in Digital Health technologies has made it possible to observe 
a rich amount of digital data and detailed aspects of people’s behavior, the complex 
factors that influence behavior at any given moment, and how behavior changes 
over time within each person. This advancement relies on a range of devices such as 
smartphones, wearables, implantable sensors and ingestible sensors (like smart pills) 
to gather and analyze biological (e.g., blood glucose), physiological (e.g., heart rate 
and blood pressure) or behavioral data [16, 17]. Wearable sensors particularly enable 
healthcare professionals to gather real-time data outside of traditional clinical set-
tings. The availability of affordable and noninvasive devices, such as smartwatches or 
bands, has rapidly increased. These wearable sensors are capable of accurately mea-
suring various physiological metrics. By integrating data from these wearable devices 
with EHRs, it becomes possible to extract relevant information about a patient’s 
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underlying disease risk. This integration enables the creation of a personalized remote 
monitoring experience for patients and caregivers [13].

Moreover, DT models also rely on biomarkers that cannot be directly measured 
or require invasive procedures. These biomarkers play a crucial role in various 
applications, such as precision cardiology. In precision cardiology, the integration of 
cardiovascular imaging with computational fluid dynamics enables the noninvasive 
assessment of flow patterns and the computation of diagnostic metrics. This approach 
is particularly useful for conditions like coronary artery disease, aortic aneurysms, 
valve prostheses and stent design, providing valuable insights without the need for 
invasive procedures [18].

Despite these advancements in the healthcare field, there are several challenges 
(technical limitations, ethical considerations and financial constraints) that hinder 
data acquisition for building DTs and unfolding their full potential. Unlike industries 
like automotive, where sensors are readily available and integrated into the assets, 
humans do not naturally possess embedded sensors [3, 19]. Still, humans mostly 
rely on periodic medical examinations to gather data about their health; thus, the 
intermittent data collection method poses limitations in maintaining real-time and 
continuous updates for human DTs. The seamless connection between humans and 
their DTs cannot be guaranteed yet [4].

The implementation of DTs encompasses a wide range of technologies. These 
include the IoT, 5G networks, cloud and edge computing, extended reality (XR), 
simulation tools, visualization tools, and AI and machine learning (ML) models. 
Additionally, the integration of technologies such as federated learning (FL) and 
blockchain is rising to address security, transparency and privacy-related issues. 
These technologies coupled with the availability of diverse and accurate create excit-
ing opportunities for the use of DTs in healthcare [3, 12, 19, 20].

3.1 Internet of Things

Enhanced IoT sensors and devices refer to internet-connected sensors and devices 
that have the capability to be integrated into ordinary objects or attached to the 
human body, such as wearable devices. These advanced sensors and devices enable 
data collection, communication and interaction with the surrounding environment, 
thereby enhancing connectivity and enabling a wide range of applications and 
services [21]. The integration of IoT into medical systems holds immense potential for 
driving the future of DTs in healthcare. Rather than relying solely on visits to hos-
pitals, real-time health monitoring of patients enabled by IoT devices can empower 
individuals, allow early detection of health issues, and facilitate effective manage-
ment of chronic conditions. This shift toward continuous monitoring and personal-
ized healthcare plans has the potential to significantly improve patient outcomes and 
enhance overall healthcare delivery [22].

The decreasing cost and increasing accessibility of IoT devices have facilitated 
the rise of connectivity. However, challenges remain in achieving real-time moni-
toring, particularly due to factors like power outages, software errors and ongoing 
deployment issues. These challenges pose significant obstacles to the overall objec-
tive of establishing seamless connectivity. For instance, one of the challenges is the 
reliance on a single sensor to provide data for AI algorithms. If there is a dysfunc-
tion or failure in the sensor, it can hinder the success of a specific process. Achieving 
complete connectivity and redundancy in data collection is crucial to mitigate the 
impact of such failures.
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3.2 5G network

The high transmission rate of the 5G network enables the collection of sensor 
data at a rate that satisfies the demands of big data analysis and advanced forms of 
AI in DT systems [23]. Thus, the adoption of 5G networks in DT applications has the 
potential to enhance ongoing operations through continuous monitoring of physical 
systems in real time. Despite this clear potential, DTs adoption within 5G networks 
remains relatively new [24].

3.3 Artificial intelligence

AI is revolutionizing healthcare by employing a widely applied combination of 
highly complex algorithms that emulate human cognitive functions across various 
applications and sectors. This transformative technology, including techniques like 
deep learning (DL) and ML, can be extensively applied to diverse healthcare data 
types [11, 22]. Multimodal AI models have the potential to integrate data from mul-
tiple sources, such as biosensors, genetic information, epigenetic markers, proteomic 
data, microbiome profiles, metabolomic measurements, medical imaging, textual 
data, clinical records, social determinants of health and environmental data [13].

DT applications leverage AI technologies and techniques, and software analyt-
ics to create and maintain a dynamic, real-time digital representation of a physical 
object. Currently, AI-powered DTs of human biological systems or organs play a 
significant role in diagnosing existing medical conditions and forecasting poten-
tial future health issues. This is accomplished by analyzing aggregated data and 
medical histories associated with individuals [25]. Furthermore, AI is crucial in 
designing DTs of organs by leveraging physiological data to generate 3D images. A 
notable example is the development of a DT model by Siemens Healthineers, which 
utilized a vast database comprising over 250 million annotated images, reports and 
operational data. By harnessing AI capabilities, this DT model enables the creation 
of digital heart designs based on patient-specific data, considering factors such as 
size, ejection fraction, muscle contraction and other relevant conditions unique to 
each patient. This AI-driven approach facilitates personalized and precise modeling 
of organs, contributing to advancements in healthcare diagnostics and treatment 
planning [26].

One of the major challenges DTs faces is particularly regarding privacy concerns. 
The collection and storage of large volumes of data in a centralized repository raise 
significant privacy concerns and increase the risk of data breaches. Solely removing 
patient identifiers from the data is not sufficient to address these concerns since there 
is a possibility of reconstructing the original data even without the identifiers. FL 
offers a potential solution to this issue by enabling the utilization of the combined 
power of individual data modalities without the need to centralize the data [27].

3.4 Federated learning

FL aims to address data governance and privacy concerns by enabling collabora-
tive training of algorithms without sharing the actual data. FL allows institutions to 
gain insights collectively, such as through a consensus model, while keeping patient 
data within the institution. The ML process takes place locally at each participating 
institution, with only model characteristics (such as parameters and gradients) being 
transferred. Recent research has demonstrated that FL-trained models can achieve 
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performance levels similar to those trained on centralized datasets and outperform 
models that only have access to isolated data from individual institutions [27, 28].

FL has the capacity to facilitate large-scale precision medicine, resulting in models 
that provide unbiased decisions, accurately represent an individual’s physiology, 
and account for rare diseases, all while addressing governance and privacy concerns. 
However, the implementation of FL still requires careful technical considerations 
(including data heterogeneity, traceability and explainability issues) to ensure opti-
mal algorithm performance without compromising safety or patient privacy [28].

3.5 Immersive technologies (XR)

The emergence of immersive technologies in both industrial and consumer 
electronics has introduced innovative possibilities for DTs. These technologies offer 
new paradigms that can enhance the visualization and interaction capabilities of 
DTs, and enable highly realistic simulations. The combination of DTs and immersive 
technologies has primarily been utilized in the manufacturing domain [29], and there 
is emerging evidence of its potential use cases in healthcare as well. Some use cases 
of VR in conjunction with DTs offers a safe and immersive platform for training, 
enhancing skills, and refining medical techniques, remote operations, and remote 
collaborations, for instance, in surgeries [30]. This integration allows clinicians to 
practice complex procedures in a virtual environment. For instance, [31] developed a 
novel DT prototype that facilitates remote surgeries by integrating a robotic arm and a 
VR system connected over a 4G mobile network. By testing the prototype, the authors 
were able to analyze communication and cybersecurity requirements within their DT 
system. Moreover, medical education benefits significantly from this advancement, as 
healthcare professionals can gain hands-on experience by practicing treatments and 
procedures on virtual patients before performing them on real individuals.

3.6 Cloud and edge computing

DTs rely on a substantial volume of data, requiring high computing power to 
enable clinicians to extract real-time patient information. However, the storage and 
computing capabilities required for DTs often surpass what is currently available in 
healthcare centers [32]. Thus, many healthcare centers outsource their healthcare 
data and monitoring services to different locations, such as the edge or the cloud.

The deployment decision of twins in healthcare is primarily influenced by two 
key factors: available computing power and latency. In a typical Cloud Computing 
(CC) setup, data storage and computation are carried out within a centralized system. 
Cloud deployment provides greater computing power but higher latency due to its 
remote nature [10, 33]. As the number of IoT devices, mobile services, and the size of 
data continue to grow rapidly, it becomes imperative to alleviate the computational 
burden on the operating station or cloud. As an alternative, Edge Computing (EC) 
enables the network to conduct computation or process data at the extreme edges of 
the network, closer to the data source, rather than relying on centralized or distrib-
uted nodes in the core of the network [10]. EC offers limited computing power com-
pared to CC but also benefits from low latency as it is in close proximity to devices. In 
the healthcare domain, EC comes into play when time is critical when dealing with 
emergencies such as ischemic heart disease (IHD) or stroke, as it improves efficiency 
by reducing data circulation and providing faster data processing [34]. In 2019, [34] 
developed Cardio Twin, a platform designed as a DT of the human heart. The purpose 



Digital Twin Technology - Fundamentals and Applications

8

of this DT platform is to detect, prevent and mitigate the risk of heart disease. Cardio 
Twin runs on the edge devices like smartphones and connects with external sensors 
through Bluetooth communication to gather biosignals and collects data from other 
sources like medical records. In turn, this data is processed to detect and help in case 
the real twin is suffering an IHD or a stroke.

The integration of AI and ML algorithms with EC will significantly contribute to the 
progress of various applications, including healthcare and industries. A novel concept 
called Edge Machine Learning enables smart devices to perform local processing 
utilizing ML and DL algorithms. While edge devices can still transmit data to the cloud, 
processing data locally offers several advantages. It allows for data screening before 
sending it to the cloud and facilitates real-time data processing and response [10].

Finally, an integrated cloud-edge computing framework will support the advance-
ment of healthcare DTs by ensuring the availability of low-latency and high-capacity 
storage solutions. A cloud-edge computing arrangement enables time-sensitive 
tasks to be accomplished at the network’s edge. Tasks that require heavy computa-
tion or storage and cannot be executed at the edge are transferred to the cloud [9]. 
Ultimately, it is crucial for an effective DT framework to establish mechanisms that 
guarantee security and privacy, ensure highly reliable communications and reduce 
latency [35]. The decision to deploy DTs involves a careful balance, considering the 
aforementioned characteristics [33].

3.7 Blockchain

Recent advancements in DTs could pose specific challenges (e.g., privacy and security) 
in data sharing, storage and access in the healthcare sector [36]. Blockchain technology 
could address them by storing a patient’s medical history records in a secure, transparent, 
trustworthy and timely manner [37]. This ensures that healthcare providers and profes-
sionals have access to reliable and up-to-date information whenever needed. Having 
access to such comprehensive and timely data enables healthcare providers to make 
informed decisions and consider appropriate courses of action in the event of any future 
complications or medical concerns [38]. Despite the benefits of blockchain-enabled 
systems, one of the challenges they face is high latency caused by complex consensus 
mechanisms. This latency can hinder the system’s efficiency in meeting DTs’ low latency 
requirements. To overcome this challenge, novel optimization schemes are necessary [9].

4. Current applications of DTs in healthcare

In this section, we explore various examples of DT applications that have made 
significant advancements in facilitating the use of DTs in multiple healthcare 
domains. The primary objective of this section is to demonstrate the deployment of 
DTs in precision medicine and their role in supporting medical decision-making. 
Additionally, we introduce a detailed review of developing a DT of the eye. To provide 
a comprehensive overview of DTs in healthcare, we also present our findings on the 
utilization of DTs in clinical trial design and optimizing hospital operations.

4.1 Precision medicine and medical decision-making support

Precision medicine can be defined as an approach to target the right treatments 
to the right patients at the right time [39]. The broad goal of precision medicine is 
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to deliver customized therapies to individual patients, aiming to optimize both the 
effectiveness of treatments and the overall efficiency of our healthcare system (e.g., 
to prevent disease, improve survival and extend health span) [18, 40]. However, the 
original concept of precision medicine has faced criticism for its heavy emphasis 
on genomics and its limited focus on addressing clinical management challenges 
[40]. Additionally, a significant barrier to achieving precision medicine is the lack of 
consistent treatment response among patients with the same disease. This discrep-
ancy primarily results from the substantial complexity of the underlying condition, 
which can involve complex interactions among thousands of genes that vary across 
individuals with the same diagnosis. As a result, the concept is evolving and expand-
ing to incorporate a broader range of data, including lifestyle factors, environmental 
influences and biological information, moving away from a solely gene-centric 
perspective [41].

Precision medicine necessitates not only improved and more comprehensive data 
but also advancements in computer capabilities to analyze, integrate and leverage this 
data, ultimately constructing a DT of an individual patient. In this context, DTs have the 
potential to facilitate the prediction of illnesses by analyzing the personal history of an 
individual’s real twin and considering its current state, including factors such as location, 
time and activity. By leveraging the data collected from the real twin, DTs can simulate 
and predict the potential impact of different treatments on these patients, a shift from 
the “one-size-fits-all” treatments to tailor-made treatments [26]. This capability enables 
DTs to provide valuable insights into personalized treatment approaches, enabling them 
to make informed decisions and optimize patient care [18, 26]. An important challenge 
lies in integrating this data with healthcare organizations while ensuring the security and 
confidentiality of sensitive information [18].

In the medical and clinical fields, there is a growing interest and increasing avail-
ability of prototypes in the development of DTs in the precision medicine scope. The 
author in [42] proposed a framework for DT of patients, where a DT representing 
a patient exhibiting symptoms of a specific disease is created in unlimited copies, 
replicating the network models of all relevant molecular, phenotypic and environ-
mental factors associated with the disease’s mechanisms. Subsequent simulations are 
conducted using various drugs to determine the optimal treatment strategy.

DT technology is also encouraging to mimic human organs. The human heart [43], 
brain [44] and liver [45] are some examples of research areas within the DT scope. The 
Living Heart (Dassault Systèmes) project presented in [43] is a pioneering initiative in 
the field of organ DTs. This research project introduced a proof-of-concept simulator 
for reproducing cardiac excitation and contraction in the human heart. By utiliz-
ing human computer tomography and magnetic resonance images, the researchers 
successfully developed a comprehensive model of the entire heart, including all four 
chambers interconnected by four valves, incorporating various aspects of its function-
ality, such as blood flow dynamics, mechanical behavior and electrical impulses. This 
model integrated a human heart simulator, enabling the exploration of various clinical 
parameters and facilitating device design and treatment planning for cardiac diseases 
and dysfunctions. Another study in [45] describes the development of a DT of the liver 
with the aim of enhancing our understanding of liver disease and its correlation with 
drug toxicity, which is a leading cause of drug failures in clinical settings.

Moreover, several studies have been conducted with the aim of enhancing our 
comprehension or control of specific conditions or diseases and the care process [21]. 
The author [3] discusses the DTs design for the management of multiple sclerosis, a 
chronic autoimmune and degenerative disease that affects the central nervous system. 



Digital Twin Technology - Fundamentals and Applications

10

DTs have emerged as a promising tool in the field of multiple sclerosis (MS) and are 
particularly well-suited for MS due to the complex and heterogeneous nature of the 
disease, the multitude of treatment options available, and the need for comprehensive 
data integration and analysis. By integrating big data analysis and ML techniques, 
DTs can provide a comprehensive visualization of the disease progression and enable 
more informed therapeutic decisions (e.g., enhancing disease characterization, 
predicting disease course and conducting deep clinical phenotyping of individuals). 
Another application is trauma management, where effective management of trauma 
is highly critical in time-sensitive medical conditions. The author [46] introduced an 
initial case study that focuses on utilizing agent-based DTs for the management of 
severe traumas. This includes the prehospital phase, where physicians provide initial 
aid to patients and transfer them to the hospital emergency department, as well as 
the operative phase, where the trauma team provides necessary care in the hospital 
emergency setting. While the implementation of such systems is still in progress, a 
prototype has been developed to showcase the potential of this approach. In the case 
of elderly management, [8] introduced a framework called CloudDTH for manag-
ing the healthcare of elderly individuals. The framework specifically addresses the 
challenges related to real-time monitoring and accurate crisis warnings in healthcare 
services for elderly patients. Finally, the application of DTs extends to diabetes 
management as well. The author [47] introduced the DT model employed in diabetes 
management tracks various aspects such as nutrition, sleep patterns and changes in 
physical activity. DT model continuously monitors important health parameters for 
diabetes management including patients’ blood sugar levels, liver function, weight 
and more. Ongoing clinical trials have indicated that providing daily precision nutri-
tion guidance, which relies on a continuous glucose monitoring system (CGM), food 
intake data and ML algorithms, can offer substantial benefits to individuals diagnosed 
with type 2 diabetes.

4.2 Case study: Developing a DT of the eye

While significant efforts have been invested in the development of DTs for various 
human organs, including the heart, brain and liver, the field of ophthalmology currently 
lacks any such prototype or application, and this could be explained by several factors.

The main reason can be found in the peculiarity of the eye compared to other 
organs. For example, creating a DT of the heart can be, in certain respects, less 
complex than creating one for the eye. This is largely due to the differences in the 
scale and nature of the functional components involved in these two organs. One of 
the fundamental functions of the heart – the dynamics of blood flow – operates on a 
macroscopic level [18]. This involves the larger structures of the heart, including the 
chambers and valves, which are more easily accessible and observable. In contrast, 
the key functions of the eye involve microscopic structures that are more challenging 
to examine in detail and replicate digitally. Furthermore, the study and simulation 
of specific interventions in the heart, such as the functioning of a new valve, is 
inherently a macroscopic event. It does not necessitate an exploration of microscopic 
structures or phenomena. Therefore, the development of a DT for the heart can focus 
primarily on these larger, more observable elements, simplifying the task of creating 
a functionally representative model [6]. Additionally, the heart’s relatively exposed 
location within the chest cavity makes it more accessible for detailed scanning and 
data collection, a critical step in creating a DT. This accessibility is less straightfor-
ward in the case of the eye, which is largely shielded within the orbital bones.
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Overall, the eye is a composite organ, constituted of various distinct tissues, each 
with its own unique function and characteristics. These include the cornea, sclera, 
uvea and retina, with their microscopic structures. Each of these structures plays a 
crucial role in the overall function of the eye, and thus, any comprehensive digital rep-
resentation of the eye must incorporate the intricate interactions between these tissues. 
AI has been instrumental in studying these separate structures (e.g., optical coherence 
tomography or topography), but it has yet to reach the level of sophistication required 
to integrate these diverse elements into a single, coherent model [48]. The vision 
process is a result of the harmonious functioning of all these diverse elements. As 
such, the development of a DT that would reproduce these intricate interactions could 
significantly advance research in ophthalmology with potential advantages spanning 
from precision medicine to education, diagnostics and medical research.

To construct more sophisticated models, it would be first necessary to generate a 
static reproduction of a specific eye. This preliminary step entails the integration of 
images derived from both the anterior and posterior segments of the eye. The primary 
challenge for engineers in this endeavor is the synthesis of data originating from a 
multitude of sources. The construction of a comprehensive static model necessitates 
the utilization and interpretation of raw data and images from different technologies 
such as slit lamp imaging, topography, optical coherence tomography of the anterior 
and posterior segment, confocal microscopy, gonioscopy, echography, etc. The task of 
harmonizing such varied and extensive data sets would be the first challenge. Further, 
certain regions of the eye, such as the vitreous base, the extreme periphery of the fun-
dus or the ciliary body, are difficult to capture with the imaging technology currently 
available. In these instances, AI could be employed to supplement the missing data. For 
example, in an eye with severe myopia, it is probable that its peripheral retina would be 
thinner and that retinal degenerations would be more frequent. AI algorithms could be 
developed to acknowledge these alterations and fill in the gaps in the data accordingly 
[49]. Consequently, the resulting static model, enhanced by AI, could offer a reliable 
and comprehensive representation of the eye. Another example is the use of confo-
cal microscopy, an imaging tool that enables high-resolution imaging of the cornea, 
providing in vivo images of its structure. However, performing confocal microscopy 
across the entirety of the cornea - due to the enormous data requirements and time 
needed for comprehensive image acquisition – would be a challenge. Here, again, AI 
algorithms employing data from a set of representative samples obtained through 
confocal microscopy could predict the corneal structure in areas that were not directly 
imaged [50]. This method, combining direct imaging with intelligent prediction, could 
feasibly construct a complete, high-resolution model of the cornea.

Even though the creation of a DT of the eye would initially involve the development 
of a static model, the ultimate goal of this research field would not be limited to just an 
anatomical representation; it would be a functional replica capable of imitating both 
structural and functional attributes specific to an individual’s eye. This could, in theory, 
enable the DT to react to treatments and surgeries much like their physical counterparts, 
offering interesting opportunities for the exploration and testing of therapies and 
surgical procedures. One potential application could be clinical trials for rare conditions, 
such as Retinitis pigmentosa. The rarity of such conditions often makes it challenging to 
conduct traditional clinical trials due to the lack of a large patient sample or ethical issues 
[51]. However, with the generation of multiple DTs reproducing the specifics of these 
rare diseases, it would become possible to test new treatments within a digital environ-
ment. This could significantly accelerate the process of therapy development. Moreover, 
the DT of the eye could be instrumental in the ethical training of young doctors, 
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providing a realistic, risk-free environment for surgical practice. Trainees could refine 
their skills, reduce potential complications and increase their confidence before moving 
on to real-life surgeries on a specific eye and predict outcomes [52]. Finally, by accurately 
mirroring a patient’s unique eye characteristics, the DT could simulate visual experi-
ences, effectively predicting the individual’s visual acuity and field [53]. This predictive 
capability could have vital applications in legal and rehabilitative contexts. In legal 
situations where visual capability is a determinant factor, such as in disability claims or 
determining fitness to drive, the DT could provide a comprehensive, objective measure 
of a person’s visual function. It would serve as a reliable tool for accurately assessing 
visual impairment levels and substantiating legal claims. Furthermore, in the realm  
of visual rehabilitation, a DT could offer indispensable insights. By simulating a patient’s 
visual experience, clinicians could tailor rehabilitative strategies to address specific visual 
deficits, enhancing the effectiveness of the rehabilitation process [54]. Finally, with the 
assistance of AI, a DT of the eye could integrate various biomarkers of ocular diseases 
such as diabetic retinopathy [55]. This would allow for the prediction of disease progres-
sion and treatment outcomes in a specific eye.

Despite being in the early stages, research into developing a DT of the eye holds 
considerable potential. The complexity of the task, involving extensive data integra-
tion and sophisticated computational methods, is substantial. However, given the far-
reaching implications for individualized diagnostics, tailored treatment strategies and 
surgical training, the potential benefits underscore the value of continued research in 
this direction.

4.3 Other applications

4.3.1 Clinical trials design

The idea of incorporating virtual patients into the clinical trial design is an evolv-
ing concept [56]. DTs have the potential to enhance randomized controlled trials 
(RCTs) by reducing the number of subjects required to achieve the desired statistical 
power [57]. Current empirical trials have limitations because they often exclude 
patients with comorbidities or complex treatment regimens [18]. Additionally, clini-
cal studies face delays in the enrollment phase, and some trials fail to meet overall 
enrollment goals. DTs have the potential to create unlimited virtual replicas of actual 
patients, enabling computational treatment with a wide range of drug combinations 
that can serve as the control group. This approach allows for the testing of early-stage 
drugs on DTs of real patients, accelerating clinical research, mitigating potential 
risks and reducing the need for costly trials to approve new therapies. By leveraging 
DT technology, the impact of hazardous drugs can be minimized, while the overall 
process of drug development and approval can be improved [2].

In comparative clinical trials, the use of a control group can sometimes raise 
ethical concerns, particularly when the treatment being tested has the potential to 
save lives, and the standard of care or placebo is not considered effective. Ethical 
issues can also arise when there are significant differences in the characteristics of the 
treatments being compared, such as safety concerns or invasive procedures compared 
to noninvasive ones. DTs have the potential to address these ethical issues by replac-
ing placebo or standard-of-care patients with virtual counterparts that simulate the 
evolution of health states based on patients’ characteristics. By doing so, DTs can 
provide a representative view of how an intervention may impact the VT, effectively 
creating a synthetic control group [2].
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While virtual clinical trials have demonstrated significant potential and offer 
several advantages, they have not yet reached a stage where they can completely 
replace human trials [56]. There are several issues to be considered including ensuring 
the accuracy and reliability of the VT’s simulation, addressing potential biases in the 
data used to create the DT, and maintaining transparency in how the DT is developed 
and utilized. Addressing these limitations in DTs in clinical trials could pave the way 
toward more targeted and efficient patient trials in the development of efficient drugs 
and medical devices.

4.3.2 Optimization of hospital operations

Another significant application of DT technology lies in the optimization of the 
entire operations management of hospitals. At the healthcare facilities and at the 
individual department level, one approach to improving processes involves creat-
ing testable scenarios based on real-time data inputs within a DT system. These 
scenarios aim to enhance various aspects such as staff allocation, visitor and patient 
flow management, reducing waiting times, optimizing equipment and resource 
allocation, facilitating emergency vehicle access, and improving overall service-
related operations [6, 46]. Notably, GE Healthcare and Siemens Healthineers have 
developed DTs specifically for hospital management optimization. DTs in digital 
process optimization in hospitals facilitate the optimization of digital processes 
by enabling predictive capabilities and capacity planning based on patient activity 
and demand. In this context, DTs can analyze historical data, current trends and 
other relevant factors to forecast patient flow and resource requirements accurately. 
Additionally, they allow for the execution of workflow simulations, enabling the 
testing and evaluation of various operational scenarios and layouts. This capability 
helps hospital administrators, and decision-makers assess the potential impact of 
different process changes or optimizations before implementing them in the physi-
cal environment [26].

5. Limitations and open issues

DT applications face several challenges and concerns that could impede the 
realization of their full potential. Especially, the multidisciplinary nature of designing 
and developing health DT systems presents a significant challenge. While collabora-
tion across various fields of research can potentially lead to breakthroughs, it can also 
impede progress [1]. Indeed, DTs combine emerging technologies, such as AI, IoT, 
big data and XR, and each component brings its own socioethical issues and technical 
limitations to the implementation stage, resulting in a lack of standardization and, 
thus, slower outcomes [1, 58]. The absence of standardized practices impacts vari-
ous aspects, including security, privacy, interactions, roles, contribution protocols, 
data transmission and synchronization between the VTs and PTs. The establishment 
of global standards would play a crucial role in accelerating the widespread adop-
tion of DTs and making them a reality more quickly. By having universally accepted 
standards, organizations and industries can benefit from streamlined processes and 
interoperability, fostering a more efficient and effective utilization of DT technol-
ogy [59]. Although DTs can show great performance in some tasks (e.g., predictive 
capability), DT capabilities could not be considered yet sufficient for therapy selec-
tion and preventive care [2].
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5.1 Technical limitations

DTs are indeed a complex combination of emerging technologies, each with 
its own set of limitations. While DTs offer numerous benefits, it is important to 
acknowledge the challenges associated with the individual technologies involved. 
For instance, while the cost-effectiveness and ease of implementation of IoT devices 
have facilitated increased connectivity, it is important to recognize the persistent 
challenges associated with their use. Issues such as power outages, software errors 
and ongoing deployment errors continue to pose obstacles. In the healthcare domain, 
these challenges become particularly critical, as the disconnection of sensors that pro-
vide data to health AI algorithms can significantly impact the objective of real-time 
monitoring [1]. When taking into account the advancements in AI technology, the full 
potential of ML in healthcare is hindered by the underutilization of existing medical 
data, primarily due to data silos and privacy concerns that limit access to this valu-
able information. Without access to an ample amount of data, ML faces obstacles in 
effectively transitioning from research to clinical practice [28]. For instance, training 
an AI-based tumor detector poses challenges due to the need for a vast database cover-
ing diverse anatomies, pathologies and input data types. However, obtaining such 
data is difficult as health data is highly sensitive and subject to stringent regulations. 
Even if data anonymization is employed, it is increasingly recognized that removing 
identifiable information alone may not adequately protect privacy. Additionally, 
the process of collecting, curating and maintaining a high-quality dataset requires 
significant time, effort and financial investment. As a result, these data sets possess 
substantial business value, leading to a decreased likelihood of their free sharing. Data 
collectors tend to maintain strict control over the data they have gathered, retaining 
fine-grained ownership and access rights. Another challenge refers to VR technol-
ogy, where issues related to the VR interaction design, networking optimization and 
optimized hardware controls need to be addressed [30].

5.1.1 Data diversity and multisourcing

The progress of AI-integrated DTs heavily depends on data fusion, which entails 
integrating diverse information from multiple sources. However, one of the signifi-
cant challenges for human DTs is the heterogeneity and operational complexity of 
EHRs and healthcare information systems. For instance, dealing with different health 
data sources such as EHR data and imaging reports, creates inefficiency in data cod-
ing and sharing [7].

5.1.2 Data bias

A crucial concern revolves around building DT technology on data sets that con-
tain biased patterns. Since DT technology focuses on identifying patterns, training 
algorithms with flawed data can amplify and perpetuate those biases. Unfortunately, 
many existing data sets contain biases based on factors such as race, gender or other 
demographics. Utilizing these data sets without appropriate correction can perpetuate 
and amplify these biases, leading to DTs making suboptimal or inappropriate recom-
mendations, particularly for individuals who do not align with the “ideal” demo-
graphic profile. It is essential that DT designers address this concern to ensure that DT 
systems do not inadvertently reinforce existing biases present in the data, which could 
have negative implications for decision-making and outcomes [19].
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5.1.3 Overconfidence in data and models

The consequences of bad data, flawed analysis and subsequent inaccurate repre-
sentation are magnified due to the trust placed in these models. It is crucial to remain 
cautious about the overreliance on data and ensure robust data validation and analysis 
methods to mitigate the risks associated with overconfidence in the results produced 
by DT models [58].

5.2 Socioethical issues

5.2.1 Security and privacy

The primary socioethical risk that stands out is the violation of security and 
privacy. The ethical concern surrounding healthcare organizations, insurance 
companies or any other entities possessing a persistent and detailed record of an 
individual’s biological, genetic, physical and lifestyle information over an extended 
period is a troubling issue with significant implications. The protection of DT systems 
from unauthorized access, misuse, modification or disclosure presents a significant 
challenge, similar to any other information system. Given that DT systems handle 
large volumes of sensitive and personal data, they become attractive targets for threat 
actors and cyber-attacks. Moreover, the integration of IoT devices and sensors further 
complicates the implementation of adequate security measures, as traditional security 
controls may not be well-suited for these components.

Furthermore, processing personal user data within DT systems introduces regula-
tory risks. Compliance with privacy regulations such as the General Data Protection 
Regulation (GDPR) in Europe or relevant national data protection laws becomes 
mandatory, which adds further complexity when designing DT systems and imposes 
additional challenges [18]. The future objective should be to prioritize the privacy of 
the data utilized in DT applications [1, 8, 58].

5.2.2 Change of structures and roles in organizations

DT stakeholders have raised concerns about the risks associated with institu-
tional changes related to DTs, even if they may seem minor initially. One significant 
concern relates to the question of diagnostic responsibility once a DT becomes 
involved in the diagnostic process. If the real-life physician remains the primary 
diagnostician, what happens if they override the AI-based component of a DT? 
Similarly, what happens if a wrong diagnosis is made based on the data from the DT? 
To address these concerns, some stakeholders are now limiting the influence of DTs: 
while a DT can provide valuable insights into different intervention scenarios, the 
decision-making process remains in the hands of the human physician. These issues 
gain importance as computers become increasingly intelligent, while policies and 
regulations struggle to keep up [58].

5.2.3 Lack of trust in DT systems

There is still a prevailing lack of confidence among doctors when it comes to 
relying on AI algorithms and big data for decision-making in real-world problems. 
The primary reason behind this skepticism is the absence of clear and comprehensible 
explanations to support the predictions made by these systems: To what extent can 
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we rely on the predictions made by ML models, and how accurate are these models? 
[59, 60]. Second, DTs are seen as flawed due to their reliance on devices to transfer 
data. This poses a significant gap in the reliability of DT since these devices can expe-
rience crashes or disconnections for various reasons [59]. A recent study investigating 
the incorporation of AI systems in hospital settings reveals that numerous physicians 
maintain a skeptical attitude toward AI due to the significant risks associated with 
possible misdiagnoses and inappropriate treatment [60]. Therefore, establishing 
trust and confidence in the concept of DT as a whole necessitates the establishment of 
standards, raising awareness and advancing technologies, all of which require signifi-
cant effort and time [59].

5.2.4 Inequality and injustice in terms of accessibility to technology

The utilization of DT technology can contribute to inequality and other forms 
of injustice. Certainly, since it is a relatively new technology, not everyone may have 
access to it or be covered by health insurance that includes DT services. This can 
further widen existing socioeconomic disparities.

5.2.5 Human enhancement and good gene pool

The potential for predicting lifespan could be based on a combination of genetic 
makeup and lifestyle information found in someone’s DT. By analyzing data from DTs, 
it may be possible to identify clusters of people with different life expectancies and 
distinguish those prone to leading long and healthy lives from others. This medically 
relevant distinction can be built upon existing statistical patterns in the population of 
DTs. If certain lifestyle factors associated with long life are discovered, efforts can be 
made to encourage more people to adopt those healthier habits using various incen-
tives. The question arises as to whether this life extension or betterment achieved 
through such means should be considered therapy or enhancement [61]. While the 
debate regarding the distinction between therapy and enhancement is ongoing, there 
is currently no consensus regarding the intended purpose of DTs [62]. A clearer 
understanding of the differentiation between therapy and enhancement in the context 
of DT is likely to emerge as DT applications mature and receive broader attention and 
engagement from the scientific community, policymakers and regulators.

6. Conclusions

DTs in healthcare represent a promising and (to some extent) revolutionary 
convergence of advanced technologies such as AI, IoT, Big Data and VR to create 
applications that can benefit human health and health systems’ efficiency. They have 
transformative potential across various dimensions of healthcare, from diagnostics 
and therapy planning to medical education and clinical trial design. Their inherent 
capabilities to deliver personalized, predictive and dynamic models of individual 
patients could vastly improve health outcomes, and their ability to reproduce com-
plex systems and to exploit the available informative set bears the potential to create 
much-needed efficiencies for both healthcare providers and technology producers. 
DTs provide exciting possibilities in diagnostics and therapy planning, through 
which physicians can visualize and understand a patient’s health state in real time, 
enabling personalized and timely interventions. Medical education stands to benefit 
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significantly from DTs, providing immersive, realistic training without the risks asso-
ciated with training on real patients. Furthermore, DTs can contribute substantially 
to clinical trials, addressing issues such as ethical concerns, participant selection and 
trial design. They also hold the promise to optimize hospital operations and service 
delivery, thereby further enhancing the quality of healthcare and optimizing the use 
of healthcare resources.

However, DTs are not devoid of challenges. On the technical side, the integra-
tion of multiple technologies, most of which were not initially developed to work in 
integration, and the need for synchronized operation presents a formidable challenge. 
The quality of data that forms the basis of DTs, including potential bias, overconfi-
dence in models, and diversity of data sources, are just some of the current limitations 
of DTs that need to be critically assessed to ensure accuracy and reliability. Moreover, 
the socioethical implications of DTs are complex. Issues surrounding security and 
privacy, changes in structures and roles within healthcare institutions and in clinical 
decision-making, trust in DT systems and accessibility inequalities necessitate rigor-
ous examination and appropriate policy responses. These concerns become especially 
pertinent given the sensitive and personal nature of the data involved in DTs, which 
makes them attractive targets for cyber threats and raises ethical considerations. The 
advent of DTs also brings up intriguing discussions on the subject of human health 
enhancement, as DTs may eventually facilitate personalized health optimization 
strategies. However, this must be cautiously approached, ensuring it does not foster 
(or even boost) inequality or violate ethical principles.

We believe that healthcare institutions must proactively navigate these challenges, 
considering both the technical complexities and the broader socioethical implications. 
Developing global standards for DT technology, fostering trust and understanding 
among medical practitioners, and ensuring adherence to security and privacy regula-
tions will be essential steps toward realizing the full potential of DTs. Future efforts 
should be directed toward advancing the technology, promoting its understand-
ing among key stakeholders, and establishing robust policies that strike a balance 
between leveraging the immense potential of DTs and addressing the associated 
challenges. A holistic and ad-hoc approach that integrates technical advancement, 
regulatory compliance and ethical considerations will be key to unlocking the vast 
potential of DTs for global healthcare improvements.
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