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Chapter

The Inverse of the Discrete
Momentum Operator
Armando Martínez-Pérez and Gabino Torres-Vega

Abstract

In the search of a quantum momentum operator with discrete spectrum, we obtain
some properties of the discrete momentum operator for nonequally spaced spectrum.
We find the inverse operator. We use the matrix representation of these operators,
and we find that there is one more eigenvalue and eigenfunction than the dimension
of the matrix. We apply the results to obtain the discrete adjoint of the momentum
operator. We conclude that we can have discrete operators which can be self-adjoint
and that it is possible to define a self-adjoint extension of the corresponding Hilbert
space. These results help us understand the quantum time operator.

Keywords: discrete quantum mechanics, discrete momentum operator, inverse of the
momentum operator, nonstandard finite differences derivative, exact discrete
integration

1. Introduction

Nonstandard finite difference derivatives help determine the discrete versions of
some differential equations and their solutions [1–10]. This method uses nonstandard
expressions of the finite differences derivative in such a way that they give the exact
result when applied to a particular function.

Another benefit of nonstandard finite difference for the derivative of a function is
that it can be used as a discrete quantum operator to deal with quantum mechanical
operators with discrete spectrum [11, 12]. Since some quantum operators have a
discrete spectrum, a discrete derivative can be very useful in quantum mechanics
theory [11, 12].

In Section 2, we define and obtain some properties of the discrete derivative
operator from a global point of view, i.e., considering all the values of a function on all
the points of a mesh at once. This is done by defining a matrix that collects the
derivatives for each mesh point when applied to a given vector. We find the eigen-
values and eigenvectors of the derivative matrix. We also discuss the commutation
properties between the derivative and coordinate matrices. The canonical commutator
is satisfied only along some directions.

The summation by parts theorem and the adjoint of the momentum operator are
found in Section 3. We introduce the discrete symmetric operator definition similar to
continuous variables functions in a Hilbert space.
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An interesting result is that the considered matrices have more eigenvalues and
corresponding almost eigenvectors (the last entry of the eigenvector is null) beside the
usual number due to their dimension of them. For a semi-infinite matrix, the last
entry is of little effect, and such additional eigenvalues will belong to the matrix
spectrum when seen as an operator. Such additional eigenvalues and eigenvectors
are common to all the considered matrices. With these results, we can say that
there are also self-adjoint discrete operators and that we can also have discrete self-
adjoint extensions in the corresponding Hilbert space. These results are beneficial
when dealing with the question of the existence of a time operator in quantum
mechanics [12].

We introduce the discrete inverse matrix of the discrete derivative operator in
Section 4. The difference between the scheme we address in this work with other
proposals for a discrete derivative is a modification in the derivative matrix for the
final point of a grid of points, which causes the derivative matrix to have an inverse.

We can deal with any mesh without asking for equidistant points. At the end of
this paper, there are some concluding remarks.

2. Discrete derivation

Let us consider a partition P ¼ q0, q1, q2, … , qN
� �

of the interval q0, qN
� �

and

vectors f ¼ f 0, f 1, … , fN
� �T

, and g ¼ g0, g1, … , gN
� �T

associated to this partition. The
distances Δj ¼ qjþ1 � qj, for each j, are not supposed to be equal.

The finite differences derivative matrix D is defined as

D ¼

�
1

ξ0

1

ξ0
0 … 0 0

0 �
1

ξ1

1

ξ1
… 0 0

0 0 �
1

ξ2
… 0 0

⋮

0 0 0 … �
1

ξN�1

1

ξN�1

0 0 0 … 0 �
1

ξN

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (1)

where

ξj ¼ Δj e
�ipΔj=2sinc

Δj

2
p

� 	

, j ¼ 0, … ,N � 1, (2)

ξN ¼ �
i

p
: (3)

The function sinc zð Þ is the entire function equal to one at z ¼ 0 and z�1 sin z
otherwise. The continuous parameter p in this expression is related to the conjugate
variable to the discrete variable qj, see Eq. (11) below. The choice of ξj ensures that the
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finite differences derivative (d-derivative) delivers the exact result when acting on
the complex exponential function e�ipq.

In case it is needed, for small Δj we have the power series expansion

ξj≈Δj � i
p

2
Δ

2
j �

p2

6
Δ

3
j , 0≤ j<N: (4)

We see that ξj is similar to the difference Δj of the usual finite differences deriva-

tive. However, we will only consider the case where Δj has a finite value.
Let us discuss some properties of the d-derivative matrix. The action of the d-

derivative matrixD when acting to the left, on the vector fT ¼ f 0, f 1, … , fN
� �

, results in

fTD ¼ �
f 0
ξ0
,� Dfð Þ1,� Dfð Þ2, … ,� Dfð ÞN

� 	

, (5)

where

Dfð Þj ¼
f j
ξj
�
f j�1

ξj�1
, (6)

is a finite differences approximation to the derivative of a function extended to the
complex plane. These improved increments ξj are defined over the complex plane. For

a small difference Δj, we have that

Dfð Þj≈
f jþ1

Δjþ1
�

f j
Δj

 !

þ i
p

2
f jþ1 � f j


 �

þ
p2

12
f jþ1 � f jþ1


 �

Δjþ1: (7)

We see that we have another discrete approximation to the derivative of a func-
tion.

Now, the action to the right of the derivative matrix on a vector is:

Dg ¼ Dgð Þ0, Dgð Þ1, … , Dgð ÞN�1,�
fN
ξN

� 	T

, (8)

where

Dgð Þj ¼
gjþ1 � gj

ξj
, (9)

is a modified finite differences derivative of g qð Þ at qj. In case Δj is small, we have that

Dg
� �

j
≈
gjþ1 � gj

Δj
þ i

p

2
gjþ1 � gj


 �

�
p2

12
Δj gjþ1 � gj


 �

: (10)

The first term in this approximation is the usual finite differences derivative of a
function.

Note that for in the limiting case, Δj ! 0, both nonstandard finite differences
(Eq. 5) and (Eq. 8) reduce to the usual forward finite difference approximation to the
derivative.
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The eigenvalues of the derivative matrix D are λj ¼ �1=ξN, � 1=ξN�1, … , � 1=ξ0,
and the corresponding eigenvectors are

ξNN
QN�1

n¼0 ξN � ξnð Þ

ξN�1
N

QN�1
n¼1 ξN � ξnð Þ

ξN�2
N

QN�1
n¼2 ξN � ξnð Þ

⋮

1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

ξN�1
N�1

QN�2
n¼0 ξN�1 � ξnð Þ

ξN�2
N�1

QN�2
n¼1 ξN�1 � ξnð Þ

ξN�3
N�1

QN�3
n¼2 ξN�1 � ξnð Þ

⋮

0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, … ,

1

0

0

⋮

0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A
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>
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<
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

: (11)

Note that, due to the operator character of the matrix, there is an additional
eigenvector, the exponential function e ¼ e�ipq0 , e�ipq1 , e�ipq2 , … , e�ipqN

� �

, with eigen-
value �ip,

De ¼ �ipe: (12)

3. The adjoint of the discrete derivative

A sesquilinear form between vectors f and g is defined with the help of the
summation matrix:

S ¼

ξ0 0 0 … 0 0

0 ξ1 0 … 0 0

0 0 ξ2 … 0 0

⋮

0 0 0 … ξN�1 0

0 0 0 … 0 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

, (13)

obtaining

fT SDg

¼ �f 0g0 þ f 0g1 � f 1g1 þ f 1g2 � f 2g2 þ f 2g3 � f 3g3 þ … þ fNgN

¼ gT B� S~D
� �

f,

(14)

where

~D ¼

0 0 0 0 0 0

�
1

ξ1

1

ξ1
0 … 0 0

0 �
1

ξ2

1

ξ2
… 0 0

⋮

0 0 0 …
1

ξN�1
0

0 0 0 … 0 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (15)
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and

B ¼

�1 0 0 0 0 0

0 0 0 … 0 0

0 0 0 … 0 0

⋮

0 0 0 … 0 0

0 0 0 … 1 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: (16)

Eq. (13) is the summation by parts equality in matrix form. We call the matrix ~D
the d-adjoint of the discrete derivative matrix D.

A row of the summation by parts matrix equality is:

X

N�1

n¼0

ξnf n Dg
� �

n
þ
X

N�1

n¼1

ξn
~Df
� �

n
gn ¼ fN�1gN � f 0g0, (17)

which is the discrete version of the integration by parts theorem of the calculus of
continuous variables.

The previous results are useful in quantummechanics theory when considering the
momentum or the Hamiltonian operators with a discrete spectrum.

We define the discrete momentum operator at qj as

P̂j ¼ �i Dð Þj, 0≤ j<N, (18)

and its adjoint

P̂
†

j ¼ �i ~D
� �

j
, 0< j<N: (19)

The summation by parts provides the adjoint of the momentum operator and its
symmetry property. Explicitly, Eq. (16) is rewritten as

X

N�1

n¼0

ξnf
∗

n �iDg
� �

n
�
X

N

n¼1

ξn �i ~D
∗
f


 �

n

h i ∗

gn ¼ �i f ∗

N�1gN þ i f ∗

0 g0, (20)

This equality yields

f jP̂g
� 


¼ ~Pf jg
� 


¼ �i f ∗

N�1gN þ i f ∗

0 g0: (21)

Thus, we say that the discrete momentum operator P̂ is d-symmetric, if fN�1 ¼

eiθf 0 and gN ¼ eiθg0, as is the case for continuous variables operators.
It is also possible to consider self-adjoint extensions for the discrete momentum

operator, as it is done for the case of the continuous variable momentum operator [13].

3.1 Commutator between the d-derivative and the coordinate

In general, a discrete canonical commutation relationship A,B½ � ¼ I is not possible
for finite-dimensional matrices A and B because the trace of this relationship results in
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a contradiction ((0 = 1) [14]. However, there are some directions in which the
commutator evaluates to a constant different from zero: the directions pointed at by
its eigenvectors, for example. In addition, the matrix can be considered as an opera-
tion with additional eigenfunctions [15].

If we call Q ¼ diag qj


 �

to the coordinate matrix, the usual commutator between

the d-derivative and coordinate matrices is:

D,Q½ � ¼

0
Δ0

ξ0
0 … 0 … 0

0 0
Δ1

ξ1
… 0 … 0

0 0 0 … 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

0 0 0 … 0 …
ΔN�1

ξN�1

0 0 0 … 0 … 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (22)

This matrix shifts and rescales the vector entries on which it acts. This matrix
approaches an identity matrix when Δj ! 0.

For a finite Δj, we look for the eigenvectors of the commutator matrix to obtain a
diagonal matrix. The eigenvalues of the commutator (21), considered as a matrix, are

all zero with multiplicity N þ 1. The eigenvectors are 1, 0, … , 0ð ÞT and 0, … , 0ð ÞT

with multiplicity N. In addition to considering the eigenvectors of this commutator
matrix to obtain a diagonal matrix, we can take advantage of rescaling to cancel
shifting and return to the original vector [15]. Then, the commutator matrix (21) has
the additional eigenvector

hT ¼
1

λN�1

Y

N�2

j¼0

Δj

ξj
,

1

λN�2

Y

N�2

j¼1

Δj

ξj
, … ,

λξN�1

ΔN�1

 !T

, (23)

with an eigenvalue λ. The action of the commutator matrix on these vectors results
in the same vector with the last entry equal to zero, which is almost an eigenvector.

Still another eigenvector, with eigenvalue one, is

~h
T
¼ 1,

ξ0

Δ0
, … ,

Y

N�1

n¼0

ξn

Δn

 !T

, (24)

The commutator is equal to one along this direction. Then, the canonical commu-
tation relationship is also valid in this direction.

Thus, along the mentioned directions, the d-derivative has similar properties as its
continuous variable counterpart.

4. The inverse of the d-derivative

The d-derivative matrix that we use can be inverted. The determinant of the
d-derivative matrix is
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∣D∣ ¼
1

ξ0ξ1ξ2ξ3 … ξN
: (25)

The inverse of the d-derivative matrix D is the negative of the progressive discrete
integration matrix

I ¼

ξ0 ξ1 ξ2 ξ3 … ξN

0 ξ1 ξ2 ξ3 … ξN

0 0 ξ2 ξ3 … ξN

0 0 0 ξ3 … ξN

⋮

0 0 0 0 … 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: (26)

We discuss some properties of the d-integration matrix I. When the d-integration

matrix I is applied to the left to a vector fT results in

fT I ¼ I0f, I 1f , I 2f, … , INfð Þ, (27)

where

I jf ¼ ξj f 0 þ f 1 þ … þ f j


 �

, j≤N: (28)

The entries of the resulting vector are the progressive discrete integrations of f
when the subintervals are of equal length ξj. When the d-integration matrix is applied

to the right, we get

Ig ¼ I0g, I1g, I2g, … , INg
� �

, (29)

where

Ijg ¼ gjξj þ gjþ1ξjþ1 þ … þ gNξN, 0≤ j≤N: (30)

This result is the progressive discrete integration of g when the subintervals are of
different lengths.

The eigenvalues of I are ξ0, … , ξN, and its eigenvectors are the same as for D,

Eq. (10). But, there is the additional eigenvector e ¼ e�ipq0 , … , e�ipqN
� �T

,

Ie ¼
i

p
e: (31)

The d-derivative and its inverse are constant along the same directions. The
domain of the d-derivative and d-integration is the same.

Now, the commutator between S and Q is
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Q , I½ � ¼

0 ξ1 q1 � q0
� �

ξ2 q2 � q0
� �

ξ3 q3 � q0
� �

… �ξN qN � q0
� �

0 0 ξ2 q2 � q1
� �

ξ3 q3 � q1
� �

… �ξN qN � q1
� �

0 0 0 ξ3 q3 � q2
� �

… �ξN qN � q2
� �

⋮

0 0 0 0 … �ξN qN � qN�1

� �

0 0 0 0 … 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

,

(32)

which is the progressive discrete integral of g qð Þ q� qj


 �

when acting on the vector g.

5. Conclusions

We have found another property of the d-derivative matrix: its inverse. The
inverse of the d-derivative has the right properties; the properties of the continuous
variable integration.

We discussed some of the properties of the discrete momentum operator when
considering all of a subset of the spectrum points at once and its associated discrete
integration matrices. The matrices are related by a common eigenvector for continu-
ous variable functions. These results give us confidence that our choice is a good
candidate for the discrete quantum momentum operator.

We also found that the matrices associated with the discrete derivative and the
discrete integration have an additional eigenvalue and eigenvector, in contrast with
the usual behavior of standard matrices. We have increased the number of eigen-
values and eigenvectors of a matrix by using it as an operator.

These operators are of help in defining a time operator and its eigenvalues and
eigenvectors for use in nonrelativistic quantum mechanics [12]. They can also be used
when the angular momentum on a circle is considered [16–18].

These results imply that we can deal with discrete quantum operators in almost the
same way as for continuous variable operators case, including deficiency indices and
self-adjoint extensions [13].

We have considered the exact discrete derivative for the complex exponential
function, but these results are also valid for the real exponential function e�pq with the
replacements

ξN ¼
1

p
, (33)

ξj ¼
1� e�pΔj

p
, j<N: (34)
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