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Chapter

A Review of Wind Turbine Icing 
Prediction Technology
Lidong Zhang, Yimin Xu and Yuze Zhao

Abstract

The global wind energy business has grown considerably in recent years. Wind 
energy has a bright future as a major component of the renewable energy sector. 
However, one of the major barriers to the growth of wind energy is the freezing of 
wind turbine blades. The major solution to overcome the aforementioned problem 
will be to foresee wind turbine ice using existing anti-icing technologies. As a result, 
improving wind turbine ice prediction technology can assist wind farms in achieving 
more precise operation scheduling, avoiding needless shutdowns, and increasing 
power generation efficiency. Traditional wind turbine icing prediction methods have 
problems such as misjudgment and omission, while machine learning algorithms have 
higher accuracy and precision. Because of the rapid advancement of deep learning 
technology, machine learning algorithms have become an important tool for predict-
ing wind turbine icing. However, in real applications, machine learning algorithms 
still face obstacles and limits such as inadequate data and poor model interpretability, 
which require additional study and refinement. This chapter discusses the application 
of machine learning algorithms in wind turbine icing prediction, provides a com-
prehensive description of the applicability and accuracy of various machine learning 
algorithms in wind turbine icing prediction, and summarizes the applications and 
advantages.

Keywords: wind turbine, icing prediction, machine learning, artificial neural network, 
forecasting accuracy

1. Introduction

The percentage of total power generation provided by wind has grown continuously 
as humanity has learned how to utilize wind resources. According to BP’s World Energy 
Outlook 2023 [1], primary energy sources such as wind power would provide 25 to 55% 
of global primary energy from 2019 to 2050. Renewable and nuclear energy growth is 
predicted to meet all worldwide electricity demand between 2022 and 2025, accord-
ing to the International Energy Agency’s Electricity Market Report 2023, released 
in 2022 [2]. Wind resources’ improving cost competitiveness, as well as legislative 
incentives, are driving the rapid spread of wind power [1]. Wind energy resource-
rich areas of the world are primarily found in the northern hemisphere [3]. However, 
icing of wind turbine blades in cold climates [3, 4], single anti-deicing methods [5, 6], 
and imprecise wind turbine icing forecast are all issues in the growth of wind power 
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generation. Long-term wind turbine operation in cold weather conditions lowers 
power generation [6]. When icing conditions are met, water droplets in the air, rainfall, 
drizzle, or wet snow freeze or stick to wind turbine blades, resulting in the formation 
of ice. Wind turbine ice can shorten the life of components by causing uneven blade 
mass distribution and higher blade loading [7]. While moderate freezing can have an 
effect on the aerodynamic qualities of wind turbine blades, significant icing can cause 
the wind turbine to shut down completely, decreasing the efficiency of wind resource 
utilization [8]. Wind turbines exposed to mild or moderate ice for 10% of the year can 
lose 24% of their overall power production, whereas wind turbines exposed to icing for 
lengthy periods of time can lose up to 50% of their annual power production [9, 10]. 
Wind turbine shutdowns due to icing can result in not only power production losses, 
but also in large-scale power outages, as seen on February 14, 2021, in the United States, 
state of Texas, when cold weather hit Texas with a minimum temperature of −21°C 
(the average winter temperature in Texas is 1.4°C). Cold weather prompted the closure 
of 57.3% of wind turbines (about 18,000 MW), affecting nearly 4 million people [11]. 
Several contributing elements are currently unaccounted for in faulty wind turbine 
ice prediction models, making it difficult to effectively anticipate wind turbine icing 
[12, 13]. If historical meteorological data and data from Supervisory Control And Data 
Acquisition (SCADA) systems are included in classical ice prediction models, and then 
supervised machine learning methods are applied to forecast icing, the models can 
anticipate the majority of icing events [14–16].

To summarize, the advancement of wind power generation is a significant step 
toward a more sustainable energy future. Nonetheless, wind turbine ice continues 
to be a significant barrier to the effective and dependable use of wind resources. 
Accurate prediction of wind turbine ice may considerably increase wind turbine 
performance and assure power supply stability. It is consequently critical to continue 
researching and improving improved wind turbine ice prediction models.

2.  Shallow machine learning-based wind turbine blade icing prediction 
method

2.1 Neural network

2.1.1 BP neural network

In 1986, Rumelhart et al. developed the error Backpropagation method [17], some-
times known as the BP algorithm, for training neural networks for the first time. The 
BP neural network is a shallow forward-type neural network that operates using the 
error backpropagation algorithm [17]. Figure 1 depicts the basic idea of this neural 
network computational model, which comprises of an input layer [18, 19]. There is 
a concealed layer and an output layer. A large number of neurons are connected as 
network nodes, and each neuron processes the excitation function as the network 
weights’ connection strength signal, and the pattern information contained in the 
input data is mapped to the output layer by adjusting these connection strengths. 
The information flow direction of forward propagation is input layer (Figure 1 
Layer1) → hidden layer (Figure 1 Layer2) → output layer (Figure 1 Layer3) [18, 19].

In 2019, Cheng et al. developed a BP neural network-based icing prediction 
model for the problem of wind turbine blade icing [20], which cannot be success-
fully predicted in advance, and testing results demonstrated that the model could 
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predict blade icing with an accuracy of 0.984 [20]. Li et al. 2022 compared the 
trained BP neural network to the Radial Basis Function (RBF) neural network for 
leaf icing prediction in a research on prediction accuracy [21]. The BP neural net-
work’s relative percentage error was lower than the RBF network’s using 12 sets of 
processed data, with an average Ewhole value within 7.5%, indicating superior stabil-
ity. The findings demonstrated the efficacy and superiority of BP neural networks in 
forecasting blade icing [21].

2.1.2 Elman neural network

The Elman Neural Network (ENN) is a feedback-based neural network model 
developed by American Psychologist J. L. Elman in 1990 [22, 23]. It has a simple design 
and outstanding performance. It works as shown in Figure 2. The forward neural 
network has an input layer (Figure 2 Input Layer), a hidden layer (Figure 2 Hidden 
Layer), and an output layer (Figure 2 Output Layer), as well as a context layer, which 
is used to remember the hidden layer’s output from the previous moment and calculate 
the characteristics of time-delayed data, giving it dynamic memory [22]. The Elman 
neural network can anticipate blade icing in wind turbine blade icing prediction appli-
cations by analyzing historical meteorological data such as temperature, humidity, and 
wind speed. Additionally, the Elman neural network can use blade icing thickness, 
icing time, and other icing data to reduce bias and thus improve prediction accuracy 
[20, 22, 23].

Cheng et al. used the trained Elman neural network to predict future values of 
icing-related characteristics in 2019 [20], and the prediction results revealed that 
the Elman neural network predicted blade icing defects with a 97.8% accuracy rate 
[20]. Cheng et al. used processed data to perform icing prediction comparison 

Figure 1. 
Principle of BP neural network computational model.
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tests between the Elman neural network and other neural networks in 2020 [24]. 
According to the testing results, the Elman neural network exhibited reduced devia-
tion and obtained greater accuracy [24].

When the BP and Elman neural networks are compared, it becomes clear that the 
Elman network sacrifices computational accuracy for greater efficiency, whereas the 
BP network is better suited for specific complex models. Both networks have distinct 
benefits in wind turbine icing prediction, and the proper method may be chosen 
based on the actual scenario to handle the problem.

2.2 Integrated learning

2.2.1 Boosting

The Boosting approach is an ensemble learning method for improving classifier 
performance by combining a large number of weak classifiers [25, 26]. Two of the 
most well-known algorithms are AdaBoost and XGBoost. Because of its quick train-
ing speed and precise forecasting capabilities, XGBoost is an important tool in wind 
turbine blade icing prediction [27, 28]. The computational model principle of this 
method is depicted in Figure 3.

In 2019, Wang et al. utilized the XGBoost algorithm to predict the wind turbine 
blade icing process and compared the prediction results with those of traditional 
machine learning algorithms and neural networks. The XGBoost algorithm achieved 
higher accuracy in predicting blade icing, reaching up to 95.18%. In 2021 [29], Guo 
et al. constructed normal behavior models based on output power and rotor speed 
using the XGBoost algorithm, and the model error was as low as 0.53% [30].

Figure 2. 
Principle of Elman neural network computational model.
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2.2.2 Stacking

The Stacking method is a machine learning methodology based on model integra-
tion that integrates many base models to build a prediction model that outperforms 
a single model [26]. The computational model principle of this method is depicted in 
Figure 4. The final prediction results are generated by taking the prediction results 
from the base model as extra features and then training and predicting these features 
using a meta-model [26, 31].

Li et al. used the Stacking method to anticipate wind turbine blade icing in 2022 by 
combining Relief and One-Dimensional Convolutional Superposition of Bidirectional 
Gated Recurrent Units (1D-CNN-SBiGRU). The prediction results reveal that the sug-
gested technique improves the WA (Weighted Accuracy) by 43.08%/34.61%/14.44% 
when compared to SVM/CNN/BiLSTM, respectively [32].

2.2.3 Bagging

Bagging (Bootstrap Aggregating) is an additional integrated learning method 
that bootstraps the training set to generate multiple training sets, trains a weak 
learner based on each training set, and then fuses the prediction results of these weak 
learners into the final prediction result by voting or averaging to improve the model’s 
accuracy and generalization ability. The computational model principle of this 
method is depicted in Figure 5. Bagging may be used to generate several blade icing 
prediction models and improve forecast accuracy by fusing the prediction outputs of 
various models in wind turbine blade icing prediction [28, 33].

Zhang et al. developed a CM technique based on KNN regression and bagging 
ensemble strategy to detect wind turbine operational conditions in 2022 and tested 
it with SCADA data gathered in the field [34]. The findings demonstrated that the 
ensemble model may achieve the anticipated estimate accuracy while also improving 
operating efficiency by around 30% [34].

Figure 3. 
Computational model principle of XGBoost algorithm.
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Figure 5. 
Computational model principle of bagging algorithm.

Figure 4. 
Computational model principle of stacking algorithm.
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By summarizing the applicability and benefits as well as drawbacks of the three 
prediction algorithms discussed above, it is easy to conclude that the Bagging algo-
rithm is appropriate when we need to predict complex icing conditions; the Boosting 
algorithm is appropriate when accuracy is required but data is sparse; and the Stacking 
algorithm may be a better choice when a high-performance prediction model with 
sufficient computational is required. In real-world applications, the approach must 
further consider factors like data amount, icing quality, and distribution, and so on.

3. Deep learning

In their 2006 publication “A fast learning algorithm for deep belief nets,” Hinton 
et al. developed the idea and learning algorithm of deep belief networks [35]. Deep 
learning reached a new stage of growth with the introduction of deep belief networks, 
and researchers began to investigate more complicated neural network topologies and 
sophisticated learning algorithms [36]. Deep learning’s core idea is to use a multilayer 
neuron structure to abstract and process data layer by layer, with each layer generat-
ing a new set of features for the next layer, so that more advanced features can be 
gradually acquired, eventually achieving accurate data classification and prediction. 
Deep learning has also been frequently employed in the prediction of wind turbine 
blade icing in recent years. Deep learning, as a sophisticated model learning method, 
can leverage historical data from wind turbine blades to accurately forecast and 
identify wind turbine blade icing conditions [35–38].

Several classical neural network models have emerged with the development of 
deep learning, including Convolutional Neural Network (CNN), Recurrent Neural 
Network (RNN), Deep Neural Networks (DNN), and Deep Belief Network (DNN). 
(DNN), Stacked Autoencoder (SAE), and Transfer Learning (TL). Specific applica-
tions of these neural network models to wind turbine blade icing prediction are 
discussed in this section.

3.1 Convolutional neural networks

In their 1998 study “Gradient-Based Learning Applied to Document Recognition,” 
LeCun et al. established the topology of convolutional neural networks and successfully 
applied it to handwritten digit recognition [39]. Convolutional Neural Networks (CNN) 
are deep learning models that have gained popularity due to their excellent accuracy in 
image recognition applications. CNN’s core principle is to employ convolutional opera-
tions to extract features from multidimensional input, such as Figure 6, and to perform 
hierarchical feature representation using several convolutional and pooling layers 
(Figure 6 Convolutional). Eventually, fully linked layers are used to execute classifica-
tion, regression, and other tasks [37, 39]. Convolutional neural networks are often used 
to predict ice on the surface of wind turbine blades because of their high efficiency and 
prediction accuracy in image recognition task [40].

Kreutz et al. proposed in 2021, a convolutional neural network model with dual 
inputs and a one-dimensional convolutional filter to predict wind turbine blade 
icing in the next 24 hours using historical data from wind turbines as well as weather 
forecasts, and experimented with the model using data from three different wind 
farms, and the experimental results showed that the model had an average prediction 
accuracy of 97.9% [41]. Following this, in 2022, Cheng et al. suggested a Temporal 
Attention-based Convolutional Neural Network (TACNN). TACNN was compared 
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to 10 different baseline networks in three data sets in a comparative experiment, and 
the experimental findings demonstrated that TACNN had considerable benefits over 
others [42]. In 2022, Xiao et al. combined convolutional neural network (CNN) with 
recurrent neural network (RNN), Long Short-Term Memory (LSTM), and gated 
recurrent unit (GRU) to build CNN, CNN-RNN, CNN-LSTM, and CNN-GRU and 
performed prediction comparison experiments, and the experimental results show 
that the proposed models outperform single deep learning models in prediction [43].

3.2 Recurrent neural networks

Elman et al. developed the recurrent neural network model in 1986, and recur-
rent neural network research has progressed greatly since then [23]. The Recurrent 
Neural Network (RNN) is a type of neural network capable of processing sequential 
data [44]. Its primary idea is to offer a recurrent structure that allows data to be sent 
from one-time step to the next. An RNN has an input layer (x), a hidden layer (s), 
an output layer (o), and parameter matrices (u, v, and w), as shown in Figure 7. The 
connections between hidden layers in recurrent neural networks allow information 
from the previous instant to be maintained and passed on to the next instant. In the 
realm of wind turbine blade icing prediction, RNNs can estimate future wind turbine 
blade icing using input wind turbine historical temperature, humidity, wind speed, 
and other meteorological data. RNNs may also be used with other deep learning 
models, such as convolutional neural networks (CNNs), to improve the accuracy and 
efficiency of hybrid models for forecasting wind turbine blade icing [45, 46].

In 2022, Li et al. integrated the physical information of the underlying wind 
turbine system into a data-driven model, using the structural properties and linear-
ized representation of the wind turbine system as physical constraints, and applied 
them to a Deep Residual Recurrent Neural Network (DR-RNN) to form a deep 
learning model based on physical information, as well as conducted experiments. The 
experimental findings demonstrate the model’s accuracy and effectiveness [47]. In the 

Figure 6. 
Principle of convolutional neural network computational model.
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year 2021, Tian et al. presented a Multilayer Convolutional Recurrent Neural Network 
(MCRNN). On the balanced dataset processed with the data resampling technique, 
the suggested MCRNN outperforms the ideal baseline by 38.8 and 42.9%, respec-
tively, and by 23.9 and 30.6% on the unbalanced dataset processed with the MCRNN 
optimized with the equilibrium-like loss function. This model’s broad application for 
icing prediction is demonstrated [48].

3.3 Deep neural networks

Deep Neural Network (DNN) research has improved greatly since Frank 
Rosenblatt’s invention of the model in 1960 [49], and it is currently applied in a wide 
range of fields [50–53]. The computational model principle of this method is depicted 
in Figures 8 and 9. Deep Neural Networks (DNNs) show high accuracy and gener-
alization capabilities in the prediction of wind turbine blade icing. They can predict 
icing occurrences by automatically learning characteristics and trends from massive 
amounts of data.

Li et al. proposed a universal DNN model for assessing prediction accuracy 
using pre-designed model performance indicators such as the reward function. The 
technique may relate continuously transmitted features to the binary state of turbine 
blade icing by using intermediate feature variables. Experiment findings suggest that 
the integrated metric system outperforms a single accuracy measure when assess-
ing prediction models [54]. Cui et al. performed icing impeller model tests as well 
as natural world icing trials before recommending a deep neural network-based 
approach for predicting icing quality in 2022 [55]. In the trials, a mapping relation-
ship between the rate of variation of the icing impeller’s natural frequency and its 
mass was discovered, and the correlation coefficients were all greater than 0.93. The 
DNN prediction model of impeller icing quality uses the rate of change of the first six 
orders of natural frequency as one of its input components. The results showed that 
the MAE and MSE of the trained model were close to zero. For different impeller icing 
states, the DNN model’s average prediction errors were 4.79, 9.35, 3.62, and 1.63% 
[55]. Using a DNN model, Jeong et al. predicted that freezing of wind turbine blades 
will occur in 2022. Along with meteorological data, the authors gathered field-based 
experimental data. The DNN model was created and trained to predict blade icing on 
wind turbines. The results showed that the DNN model had strong prediction ability 
under a range of meteorological situations and could accurately anticipate wind 
turbine blade icing [56].

Figure 7. 
Principle of recurrent neural network model.
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3.4 Stacked autoencoder

The Stacked Autoencoder (SAE) is a powerful deep learning model that automati-
cally encodes data via unsupervised learning. In 2006 [35], Hinton and Salakhutdinov 
introduced the model, which employs numerous non-linear transformations to learn 
higher-order features of the input data [57]. A stacked autoencoder is composed of 
multiple autoencoders, each of which receives the output of the previous layer as 
input and trains on it. The main advantage of SAE is its capacity to autonomously 
extract significant features from data for supervised learning tasks without the need 
for labeled data. The computational model principle of this method is depicted in 
Figure 10. SAE is commonly used for feature extraction and data dimensionality 
reduction in wind turbine blade icing prediction [58].

Figure 9. 
Deep neural network calculation principle diagram.

Figure 8. 
Schematic diagram of deep neural network model.
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In 2020, Lu et al. used stacked self-coding and Fisher Autoencoder (FAE) to 
extract discriminative wind turbine icing features, which were then input into a 
hybrid model that combined DFAE with Self-Organizing Map (DFAE-SOM), and 
the experiments revealed that the hybrid model is more efficient when data with 
discriminative features is input [59]. Yi et al. published a wind turbine icing data 
approach based on discriminative feature learning the same year. The approach 
constructs representations with SAE using normal operation data and time series 
information, combines original data, SAE-extracted features, and residual vectors for 
discriminative features, and performs feature selection and dimensionality reduction. 
The method’s practicality and superiority were demonstrated using a benchmark 
dataset [60].

3.5 Transfer learning

In 1995, Caruana pioneered transfer learning by developing the first transfer 
learning model. Transfer Learning (TL) is a machine learning technique that applies 
previously learned knowledge to a new task. Its central concept is to train and reason 
by transferring a learnt model from one domain to another related domain in order 
to improve the model’s generalization capacity and efficiency [61–63]. Figure 11 
shows how it works. Transfer learning may be used to forecast wind turbine icing 
utilizing current meteorological datasets (e.g., temperature, humidity, wind speed, 
precipitation, etc.) in the field of wind turbine ice prediction. Training time may be 
substantially decreased and prediction accuracy can be increased by pre-training a 
model on a large meteorological dataset and then transferring it to the wind turbine 
icing prediction job. Transfer learning may also aid in the prediction of wind turbine 
ice in various areas or models.

In 2022, Li et al. published a generalized DNN-based model for predicting wind 
turbine icing situations that is based on data from SCADA systems and has a high 

Figure 11. 
Principle diagram of migration learning calculation.

Figure 10. 
Schematic diagram of stack self-coding calculation.
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combined accuracy [64]. Previously, in 2021, Chen et al. developed TrAdaBoost, a 
ground-breaking transfer learning algorithm that has been shown to increase perfor-
mance in dealing with imbalances and varying distributions of wind turbine data [65].

In recent years, deep learning has been actively used and researched in the field 
of wind turbine blade icing prediction, with the objective of enhancing the operating 
efficiency and safety of wind generating systems. The most often used deep learn-
ing models nowadays include CNN, RNN, DNN, SAE, and TL. Each of these models 
has advantages and disadvantages, and the most appropriate model must be chosen 
depending on the unique circumstance in real-world applications [66–69].

4. Conclusion

Overall, the use of deep learning in the prediction of wind turbine blade icing has 
shown excellent results.

Convolutional Neural Networks (CNNs) are commonly employed in deep learning 
for extracting spatial information from time series data, allowing them to identify 
icing spots effectively. For accurate icing time estimates, Recurrent Neural Networks 
(RNNs) examine serial data and identify temporal correlations. Deep learning algo-
rithms with context adaptation will become more important in wind turbine icing 
prediction. Future study will concentrate on increasing accuracy, lowering computing 
complexity, and tackling uncertainty. Furthermore, by incorporating multiple data 
sources for training and refinement in wind turbine blade icing prediction, federated 
learning will improve model stability and generalization.

Deep learning is increasingly being used to forecast wind turbine blade ice. As 
a result of the continuous development and application of machine learning, deep 
learning, data mining, physical modeling, and data-driven technologies, the per-
formance and accuracy of wind turbine icing prediction methods have significantly 
improved, providing more effective support and guarantee to ensure the normal 
operation of wind turbines and promoting the sustainable development and promo-
tion of wind energy.
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