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Abstract

Titanium is one of the most abundantly utilized nanomaterials for human con-
sumption. Biomedical applications of nano titania include sunscreens, drug delivery, 
prosthetic implants, bioimaging probes, and antimicrobial and antirheumatic agents for 
various treatment of diseases, including autoimmune disease, neurogenerative diseases, 
cardiovascular, musculoskeletal, and cancer. Its applications as a drug delivery vehicle 
and photosensitizer in cancer therapy and diagnosis are highly appreciated, especially for 
skin and natural cavities applications. The reactive oxygen species (i.e., H2O2, OH., OH2, 
1O2, etc.) generation properties of nano titania after activation with light or ultrasound 
make it ideal for apoptosis induction in neoplastic cells. In addition, the singlet oxygen 
(1O2) generating properties make it suitable for bioimaging deep-seated and superficial 
tumors after activation. Nano titania is highly biocompatible with negligible adverse 
effects. In this chapter, we will focus on the anticancer effects of nano titania on various 
types of cancers by employing it as a drug delivery vehicle and sensitizer for external 
source-activated modalities viz. photodynamic and sonodynamic therapy.

Keywords: nano titania, anticancer effects, theranostics, photodynamic therapy, 
sonodynamic therapy

1. Introduction

Nanotechnology has opened a new avenue to investigate and explore the poten-
tials of materials at the nanoscale with known functionality at the macroscale. The 
biomedical applications of nanoscale materials are supported by the evidence that 
most of the cellular organelles, cell membranes, protein ligands, and DNA sizes are 
ranged from 2 to 20 nm [1]. The interaction of materials with cellular organelles at 
the nanoscale can significantly enhance their desired biomedical application with 
enormous traceability. Nanotechnology is applicable in various areas of the healthcare 
system due to the distinguished biological and physicochemical properties of nano-
materials. Various nanostructures with distinct characteristics have been utilized in 
drug delivery, diagnostic probes, prosthetic implants, and biotechnological applica-
tions. Out of many, titanium dioxide (TiO2) has been extensively utilized [2].

TiO2 are metallic oxide nanoparticles, widely used, and are of great inter-
est in modern therapeutics. They are semiconductive, highly stable, and possess 
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anticorrosive and antibacterial characteristics. Titanium is the second most 
abundantly consumed metal, with daily 1–2 mg/kg consumption for children and 
0.2–0.7 mg/kg for adults in the USA [3]. It is well distributed on the earth’s crust and 
abundantly found in T, TiCl4, and TiO2. The anatase is the most reactive crystalline 
form of TiO2 compared to brookite, rutile, and TiO2-B1 as various polymorphs [4]. 
Titanium is well recognized for its exceptional characteristics, such as low weight, 
good mechanical strength, high wear resistance, and biocompatibility [5, 6]. They 
are less toxic than other nanomaterials and relatively economical to fabricate [7, 8]. 
Anatase and rutile exist in a tetragonal structure, whereas brookite is rhombohedral 
[9]. Moreover, an amorphous form of TiO2 can also be found [10].

Their white appearance is attributed to their high refractive index and is used in 
skin care products as a white pigment. They possess catalytic activity upon exposure 
to UV light and can be utilized for water treatment to remove the chemicals from 
them [8]. In addition, TiO2 has also been used as an additive in food products [11–14]. 
TiO2 is one of the most produced nanoparticles due to its wide range of applications 
[15]. TiO2 has been employed in biomedical applications such as molecular imaging, 
drug delivery system, and therapeutic approaches alongside conventional therapies 
or substitutes [16, 17]. Akira Fujishima was the first to discover its anticancer effect 
against human cervical cancer cells (HeLa). Photoactivation with UV light could 
generate hydroxyl (OH.), per hydroxyl (H2O

.), and singlet oxygen (1O2) as Reactive 
Oxygen Species (ROS) [18]. These ROS then interfere with cellular signal pathways 
and induce apoptosis by damaging the mitochondria. Different biomedical applica-
tions of nano titania are shown in Figure 1. This chapter focuses on combining 
various applications of titanium NPs in biomedicine, especially in various cancer 

Figure 1. 
Various biomedical applications of titanium-based nanoparticles (developed by using BioRender).
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therapeutics and diagnostic purposes. We will also spotlight its applications in the 
specialized modalities viz. photodynamic and sonodynamic therapy as photosensitiz-
ers. In targeted cancer therapies, the use of nano titania as a delivery vehicle is highly 
favorable and this will be the main focus of this chapter.

2. Antimicrobial activity of Titania nanoparticles

Antimicrobial activity is one of the major applications of biomedical sci-
ence. Pathogenic microbial species such as Escherichia coli, Klebsiella pneumoniae, 
Staphylococcus epidermidis, Staphylococcus aureus, and Proteus vulgaris are known to 
affect humans by causing various infections. Prescribed antibiotics occasionally 
cannot kill or cause growth inhibition of these pathogenic bacteria, and they often 
develop multidrug resistance. Therefore, there is an urgent need to develop novel and 
nano-based therapy to eradicate bacterial infections. Mahendran et al. synthesized 
biomolecule-coated TiO2 nanocatalysts by using rhizome extracts. They observed that 
nano titania catalysts showed robust antimicrobial activity. This potential antimi-
crobial activity was produced against P. aeruginosa and S. epidermidis. They further 
observed the resistance against nano titania catalysts in gram-positive than gram-
negative bacteria [19].

Fungal diseases cause deterioration in mangoes post-harvesting, affecting their 
quality and shelf-life. In the last few years, edible coatings have been investigated to 
preserve fruits and vegetables. Nano titanium dioxide is an immensely active nano-
material with antibacterial, anti-ultraviolet, super lipophilic, and non-toxic charac-
teristics. Chitosan is a good food preservative, antioxidant, and antibacterial agent 
for coating fruits and vegetables. Xing et al. used Chitosan (CTS) and TiO2 composite 
coating and analyzed its antifungal properties against Colletotrichum gloeosporioides 
(MA), Cladosporium oxysporum (ME), and Penicillium steckii (MF). They found 
that CTS/TiO2 composite exhibited a better antifungal effect than chitosan coating 
alone. CTS/TiO2 coating killed the molds, induced leakage of intracellular proteins 
and nucleic acid, disrupted the cell membrane integrity, retard the mycelial growth, 
and increased the conductivity value of fungal suspensions [20]. Maneerat and 
Hayata used TiO2 coating films and examined the antifungal effect. They showed a 
significant reduction in the penicillium rot development in apples and lemons [21].

3. Sonodynamic therapy

Sonodynamic Therapy (SDT) has recently gained much attention as a new 
anticancer treatment strategy that is relatively cheap, minimally invasive, and 
possesses deep penetration power. In this therapy, ultrasound waves activate the 
sonosensitizers (sound-sensitive agents), killing tumor cells by producing ROS 
[22]. The use of ultrasound offers some advantages in comparison to the use of 
light in cancer treatment which includes sonoporation (cell permeabilization medi-
ated by ultrasound waves) and deeper penetration (depending on the frequency 
of ultrasound) which could be up to 15 cm in soft tissues [23–25]. Sonosensitizers 
refer to the use of chemical compounds that could increase the cytotoxicity 
of ultrasound. Nano-sonosensitizers are considered potent sonosensitizers, as 
compared to conventional organic sonosensitizing agents, owing to their high 
bioavailability achieved by improved pharmacokinetics, pharmacodynamics, and 
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biodistribution properties. Generally, nano-sonosensitizers can be categorized 
into two main types: (1) nanoparticles which include TiO2, and (2) nanoparticles 
assisted sonosensitizers, consisting of nanoparticles loaded with organic molecules 
with controlled release at the target site [26]. Among many nanoparticles, the use 
of TiO2 NPs is preferred because of their inert behavior in the biological system, 
easy fabrication, and cost-effectiveness. TiO2 is a semiconductor with a large 
energy band gap, allowing for electron transitions from the valence to the conduc-
tion band when exposed to UV light. This facilitates the generation of free radicals, 
including the enormously reactive singlet oxygen. However, UV radiations are 
not clinically ideal due to low penetration power. Using ultrasound can overcome 
this due to its greater in vivo penetration ability with low frequency [27]. Various 
studies have reported the use of TiO2 NPs as anticancer agents in vitro and in vivo 
systems, especially when combined with ultrasound irradiation.

TiO2 NPs, in association with high-intensity ultrasound waves, were used for 
sonodynamic therapy of squamous cell carcinoma cells (HSC-2). The authors 
reported that the toxicity of TiO2 with ultrasound was much higher than that of TiO2 
or ultrasound alone, which increased with the increase in intensity and exposure time 
[28]. SDT with TiO2 NPs was evaluated for the treatment of melanoma. C32 (mela-
noma cell line) was treated with ultrasound waves of 1 MHz frequency. The apoptotic 
effect was more significantly observed in the TiO2-based SDT than in either treatment 
alone. In addition, the apoptotic percentage of cells was increased by 2.73 times than 
untreated cells [29]. Aksel et al. reported that TiO2 NPs mediated sonodynamic, 
photodynamic, and Sono-Photodynamic (SPDT) Therapy for prostate cancer. SDPT 
combines sonodynamic therapy and photodynamic therapy along with TiO2 NPs as 
sensitizers. The results showed a reduction in cancer cell viability after TiO2-mediated 
sono-photodynamic therapy. The production of singlet oxygen affects the intrinsic 
pathway, which might be responsible for producing antiapoptotic effects [30].

4. Photodynamic therapy

Photodynamic Therapy (PDT) is an emerging non-invasive therapy that received 
clinical approval. This therapy is preferred over conventional anticancer treatments 
due to its high efficacy, specificity, and subtle side effects [1, 31]. This therapeutic 
strategy utilizes photosensitizers (chemicals, drugs) with light in the presence of 
molecular oxygen to stimulate the generation of ROS, thereby inducing tumor cell 
death. However, the combination of PDT and drug is expected to produce a more 
significant effect as an anticancer treatment since PDT alone is relatively inefficient in 
eradicating cancer [32–35]. The photosensitizer should ideally enter the target cells/
tissues without affecting the neighboring healthy tissues (Figure 2).

Moreover, the treatment can be confined to an elevated concentration of photo-
sensitizers. This promising strategy can be applied to inhibit microbial growth and 
treat cancer and infectious diseases [35]. The effectiveness of PDT relies on the type 
of photosensitizers used. Several materials, including inorganic [33], organic, and 
porphyrin-based materials [34], have been used as photosensitizers in PDT. However, 
several drawbacks have been associated with these materials, such as inadequate dis-
persion in water and photostability. In addition, these materials cannot absorb light of 
longer wavelength, i.e., greater than 700 nm, which results in improper light penetra-
tion and subsequent reduction in cell killing effect. This causes unwanted toxicity and 
damage to cancer and normal cells or tissues.
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Metal oxide nanoparticles have been widely studied as photosensitizing agents 
in PDT due to the drawbacks associated with porphyrin-based photosensitizing 
agents. TiO2 NPs gained immense interest due to their distinct characteristics, 
enabling them to effectively kill tumor cells upon optical irradiation. Irradiation 
of TiO2 NPs, with an energy greater than or equal to the bandgap, causes the redox 
reaction on the surface of these NPs, which leads to the generation of reactive 
oxygen species, including superoxide anions, hydrogen peroxide, and hydroxyl 
radicals [36, 37]. TiO2 is more stable than other conventional photosensitizers 
because they are nanosized particle with anti-photodegradable stability. TiO2 
NPs have been used as photosensitizers in several types of tumor cell lines, which 
include HepG2 (hepatocellular carcinoma cells) [38], HeLa (cervical cancer cells) 
[39], MDA-MB-468 and MCF7 (breast cancer cells) [40], leukemia cells (K592) 
[41], and lung cancer cells (NSCLC) [42].

TiO2 NPs are considered marvelous photosensitizers; however, their possible 
toxicity impedes their applicability in PDT [8, 43]. TiO2 can be excited in its pris-
tine form by short-wavelength ultraviolet irradiation. Lagopati et al. conducted a 
study in which they used TiO2 as photosensitizers against breast cancer cells (MCF7 
and MDA-MB-468). TiO2 nanostructures were prepared by using the sol-gel tech-
nique. The results showed significant effects of the applied modification against 
MDA-MB-468 cells [44]. Modifying TiO2 NPs with Quantum Dots (QDs) have 
received significant attention since they allow TiO2 to absorb light of much longer 
wavelengths and, thereby, deeper tissue penetration. In PDT, QDs usually possess 
dual-function properties and act as energy transducers and carriers for photosensitiz-
ers. Ramachandran et al. synthesized TiO2 NPs by microwave-assisted synthesis and 
TiO2 conjugated with N-doped graphene QDs (N-GQDs/TiO2) by two-pot hydro-
thermal method. N-GQDs/TiO2 nanocomposites generated ROS, particularly singlet 
oxygen, upon activation with the light of the near-infrared region. This induced cell 
death in MDA-MB-231 cells more significantly than in the HS27 cell line (human 
foreskin fibroblasts) [45].

Figure 2. 
TiO2 NPs-based photodynamic or sonodynamic therapy of cancer cells. The ROS generated after photo-
sonoactivation results in mitochondria damage leading to cytochrome c release to induce apoptosis in cancer cells 
(developed by using BioRender).
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5. Drug delivery vehicle

Nano titania holds a higher reputation among various nanodrug delivery materials 
due to its amenability to a vast array of surface functionalization for targeting tissues, 
easy forming composites with other metals, porous texture, and highly biocompatible 
nature [46]. Its excretion also occurs via a standard excretory route, i.e., the hepato-
urinary system. Nano titania has been reported to carry not only anticancer drugs 
but also other types of drugs, such as dexamethasone [47], DNA fragments [48], 
norfloxacin [49], ciprofloxacin [50], and aspirin [51], etc.

TiO2 nanowhiskers were employed in cancer therapeutics to deliver Temozolomide 
(TMZ) to Glioblastoma Multiforme (GBM) orthoptic models. These TiO2 nanowhis-
kers traversing the Blood-Brain Barrier (BBB) were accelerated by ultrasonication. 
Additionally, the ultrasound could also assist in releasing TMZ from TiO2 and gener-
ate ROS to induce apoptosis [52]. Likewise, Kim et al. have also reported ultrasound-
driven doxorubicin delivery to cancer cells by TiO2 nanoparticles [53]. Among other 
anticancer drugs, 5 fluorouracil drug delivery to cancer cells by ZnO-doped TiO2 was 
performed by Faria et al. The ZnO doping could shift their absorption from UV (TiO2 
only) to red (TiO2-ZnO), making it a perfect candidate for photodynamic therapy 
[54]. Liposome-covered TiO2 nanotubes have also delivered the 5 fluorouracil to HeLa 
cells [55]. Doxorubicin’s successful loading on TiO2 nanotubes and efficient delivery 
to cancer cells is another example of TiO2 employment as a drug delivery vehicle. 
The drug release was lower pH dependent [56]. Similarly, paclitaxel delivery via 
Polyethylene Glycol (PEG) and folic acid surface decorated TiO2 nanoparticles was 
reported by Venkatasubbu et al. [57].

Not only in cancer theranostics but TiO2’s role as a vehicle in other diseases, 
including rheumatoid arthritis, has also been explored. The porphyrin derivative, i.e., 
Tetra Sulphonatophenyl Porphyrin (TSPP), was loaded on TiO2 nanowhiskers by an 
adsorption process assisted by its porous nature [58–60]. The TiO2 could deliver the 
TSPP to inflamed tissue and release it upon photoactivation with 532 nm light.

6. Anticancer effects

Cancer remains a critical global threat due to severe complications such as unbear-
able physical pain, severe cytotoxicity, side effects, and compromised therapeutic 
efficacy of conventional therapeutic strategies, including surgical interventions, 
chemo- and radiotherapy [61–73]. Various studies are aimed at investigating the new 
therapeutic approaches, including Photodynamic Therapy (PTD), Chemodynamic 
Therapy (CDT), Sonodynamic Therapy (SDT), Photothermal Therapy (PTT), 
Starvation Therapy (ST), and Immunotherapy (IMT) having lower side effects and 
high-level efficiency [26, 74–79]. New therapeutic approaches have been effectively 
applied as a substitute to conventional therapies and merged with imaging techniques 
for diagnosis, which is quite optimistic for the diagnosis and treatment of cancer 
[80, 81]. Cancer theranostics, a combination of diagnostics and treatment, has recently 
gained much interest [82]. Several therapeutic strategies can be integrated with various 
imaging techniques to synthesize multifunctional tumor-targeted nanoprobes, having 
a significant therapeutic effect and improving tumor identification [83].

In recent years, a newly established field of nanomedicine has been instigated 
to offer various solutions. Nanomedicine is the implementation of nanomaterials, 
possessing particle sizes ranging from 1 to 100 nm, to diagnose, observe, prevent, 
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and treat disease [84]. Nanoparticles (NPs) have been extensively used as anticancer 
therapeutic agents, particularly in cargo delivery, i.e., genes, chemotherapeutic 
drugs, or contrast agents [70, 85–87], or alone, using their inherent toxicity, e.g., 
associated with the release of reactive oxygen/nitrogen species [88, 89]. Additionally, 
nanoparticles can be coated with a chemical or biological material to facilitate their 
stealth characteristics and minimize their tendency to aggregate in biological fluids. 
Moreover, they can be coupled with selected ligands to enhance their targeted cell 
delivery [90]. NPs can impulsively accumulate in the tumors because of the Enhanced 
Permeability and Retention (EPR) effect. They can easily pass through the tumor 
vasculature due to large pores, and inadequate lymphatic drainage allows their reten-
tion, expediting their therapeutic efficacy without being associated with the targeted 
ligands [91]. Nano titania-based anticancer therapy is well-known (Figure 3). Below 
are various types of cancers treated with nano titania.

6.1 Breast cancer

Breast cancer is the primary cause of mortality in women ranging from 35 to 
55 years of age in industrialized countries. The prevalence of breast cancer is rela-
tively high because the breast is among the most vulnerable organ to malignancy 
(after the liver, lungs, and stomach) [92, 93]. Conventional treatment modalities 

Figure 3. 
Different types of cancer that can be treated with nano titania (developed by using BioRender).
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include surgery, chemo-, radio- and hormonal therapy, or a combination of these 
therapeutic options [94–96]. The complete removal of the tumor is challenging due 
to limited access to the region for surgery, side effects associated with conventional 
therapy, and the development of drug resistance. Hence, the five-year survival rate is 
limited to 20% [97]. Recently, pembrolizumab and atezolizumab, immunotherapeu-
tic drugs, have received FDA approval. However, only triple-negative breast cancer 
patients can use these therapeutic drugs [98]. Therefore, designing a targeted drug 
delivery technique for anticancer therapy with minimal cytotoxicity in normal tissues 
is persistently required [99]. In this context, nanoparticles seemed to be a promising 
approach possessing low cytotoxicity, target specificity, mature drug distribution in 
the tumor, and fast elimination of the drug from the body [99–102].

TiO2 nanoparticles are among the prominent nanoparticles with both in vitro and in 
vivo applications. TiO2 nanoparticles exhibit distinct morphology and surface chemistry, 
adequate biocompatibility, employ intrinsic biological activity, reduced side effects, and 
insignificant eco-toxicity [103]. Previously, it was reported that TiO2 induces ROS gen-
eration by interfering with the EGFR signaling cascade, leading to apoptosis induction in 
tumor cells compared to nearby physiological cells [104]. However, there is little infor-
mation about the therapeutic role of TiO2 in breast cancer compared to conventional 
therapeutic drugs, i.e., doxorubicin is lacking. Doxorubicin is among the most effective 
therapeutic drugs in ovarian and breast cancer [105]. However, its clinical application 
is restricted due to adverse effects, of which cardiotoxicity is the most significant [106]. 
Iqbal et al. synthesized TiO2 NPs from leaf extract of Zanthoxylum armatum and evalu-
ated their safety and anticancer activity. They demonstrated that TiO2 NPs and doxoru-
bicin were equally effective against breast cancer in vivo and ex vivo. TiO2 NPs exhibited 
anticancer activity by inducing ROS-dependent cell death in 4 T1 breast cancer cells. In 
vivo analysis in 4 T1 breast cancer cells containing BALB/c mice revealed that TiO2 NPs 
exerted doxorubicin comparable to anticancer activity and without any cardiotoxicity 
and body weight alteration as compared to doxorubicin [107].

Kim et al. analyzed the possible cytotoxicity in breast cancer cells. They used two 
cell lines, Hs578T and MDA-MB-231, which overexpress Epidermal Growth Factor 
Receptor (EGFR). EGFR is a transmembrane protein activated by binding growth 
factors and transmitting cellular signals inducing cell survival and propagation. They 
tried to elucidate the effect of alterations in extracellular signaling receptors mediated 
by TiO2 nanoparticles rather than focusing on the toxicity induced by TiO2-mediated 
ROS generation. They showed that the cytotoxicity caused by TiO2 nanoparticles in 
breast tumor cells is due to the interference in the EGFR-regulated signaling pathway, 
which reduced cell adhesion, survival, and propagation, thus inducing apoptosis [104]. 
Mahendran et al. used Gloriosa superba rhizome extract to synthesize crystalline TiO2 
nanocatalysts. These TiO2 nanocatalysts caused exorbitant mitochondrial depolariza-
tion and DNA damage when treated with MCF-7 cells, primarily due to the persistent 
release of TiO2 nanoparticles and the generation of free radicals [19].

6.2 Pancreatic cancer

Pancreatic cancer is the third major contributor of deaths caused by cancers in 
the United States [108], with a five-year survival rate of about 10% only [109, 110]. 
Only about 15–20% of cancer patients can avail the surgical treatment due to 
delayed diagnosis [111], and even after tumor resection, the five-year survival rate 
remains about 20% only [112–114]. Immune Checkpoint Blockade (ICB) therapeutic 
approaches have been developed which are based on the applicability of monoclonal 
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antibodies against PD-L1 (programmed cell death ligand 1) and CTLA-4 (cytotoxic 
T-lymphocyte antigen 4), able to support tumor eradication and protection from 
recurrence and metastasis [115–118]. However, these approaches failed to exhibit 
significant results in patients diagnosed with pancreatic cancer [119–121]. Hence, the 
combination of ICB and therapeutic approaches, able to enhance T-cell infiltration 
and activation in the tumor, can be promising for treating and preventing tumor 
relapse and metastasis [122–124].

Ultrasound exposure represents a non-invasive, inexpensive, and well-portable 
therapeutic tool [125–127] and is well-studied in the perspective of cancer treatment, 
in addition to its general utilization in imaging systems [126, 128–130]. Ultrasound-
activated sonodynamic therapy (SDT) can cause tumor cell death by inducing high 
levels of ROS generation, causing apoptotic or necrotic immunogenic cell death [131, 
132]. Titanium diselenide (TiSe2) is a 2D transition metal dichalcogenide extensively 
used in photodynamic therapy due to its good photoresponsivity [133]. Chen et al. 
synthesized TiSe2 nanosheets and evaluated the combination of TiSe2-mediated 
sonodynamic therapy with PD-1 blockage for pancreatic cancer treatment in vitro 
using Pac02 cells and in vivo model of pancreatic cancer. They reported the genera-
tion of ROS by TiSe2 nanosheets upon exposure to non-invasive US irradiation and 
induction of immunogenic death of malignant cells, thereby promoting the matura-
tion of dendritic cells and infiltration of activated T cells within the tumor. Besides 
inhibiting primary pancreatic tumor growth, this combinatorial therapeutic approach 
also inhibited the growth of distant tumors and lung metastasis [134].

6.3 Lung cancer

The limited therapeutic efficiency of Non-Small Cell Lung Carcinoma (NSCLC) 
is due to the resistance to chemotherapeutic drugs. The median survival rate is about 
6 months only. Nanoparticles are progressively emerging as a new tool against drug 
resistance because of their limited toxicity and ability to act on numerous targets in 
cancer cells due to their distinct physicochemical features [135]. Two-dimensional (2D) 
titanium carbide (Ti2C) possesses ultra-high surface area and enhanced cell membrane 
penetration ability as compared to other conventional nanoparticles [136]. It also 
contains many reactive groups that can be utilized as potent protein interaction sites 
affecting their structure and function. The chemo drug resistance reversal ability of 
Ti2C was evaluated by Zhu et al. by using the characteristics of 2D Ti2C on the NSCLC 
cell line. The cells were treated with cisplatin, the standard drug for treating end-stage 
NSCLC, with and without Ti2C. They found that Ti2C reversed the resistance of NSCLC 
to cisplatin by reducing the antioxidant reserves in the cells and decreasing the expres-
sion of primary drug resistance genes. They also reported drug resistance reversal in the 
NSCLC model in vivo [135]. Balachandran et al. synthesized TiO2 nanoparticles using a 
novel wet chemical technique using titanium tetra isopropoxide precursor, characterized 
by SEM, TEM, XRD, and UV–visible spectroscopic analysis. The synthesized nanopar-
ticles exhibited good photocatalytic activity and were evaluated for anticancer effect in 
A549 (lung cancer) cells. The cells were treated with TiO2 and exposed to UV light. After 
4 hours, TiO2 caused approximately 85% of cell decomposition [137].

6.4 Colorectal cancer

Colorectal Cancer (CRC) is among the most common malignancy in humans. 
Its prevalence is increasing despite several advances in therapeutic and diagnostic 
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interventions. CRC is caused due to gradual transformation of epithelial cells found 
in the intestinal lumen to tumor cells. Cancer treatment aims to utilize an anticancer 
agent that can induce apoptosis. These days, nanoparticles (NPs) are considered 
novel anticancer agents. Nanosized titanium dioxide nanoparticles (TiO2 NPs) with 
about <100 nm diameter possessing whiteness and opacity are publicly accepted. The 
biological properties of TiO2 NPs depend on their size, physicochemical properties, 
and surface area since particles with a large surface area are more chemically reactive 
[138]. Wei et al. reported the green synthesis of TiO2 from the extract of Calendula 
officinalis and evaluated its effects on colorectal carcinoma cell lines WiDr, LS123, 
DLD-1, and SW1417 [SW-1417]. TiO2 reduced the viability of all colorectal carci-
noma cells in a dose-dependent manner [139]. Vigneshwaran et al. synthesized TiO2 
nanoparticles from Lactobacillus and evaluated its cytotoxic effects on the HT-29 cell 
line. They reported ROS generation in HT-29 cells by the treatment with TiO2 NPs and 
the induction of apoptosis by intrinsic pathway [140].

6.5 Cervical cancer

Cervical cancer is the malignancy of the uterine cervix. It is ranked fourth in 
commonly occurring cancer in women globally and second in the low and medium 
Human Development Index (HDI) [141]. The key risk factors include late menopause, 
increasing age, obesity, elevated estrogen levels, breast cancer, no childbirth, diabetes 
mellitus, and tamoxifen use. Some gene mutations can also cause cervical cancer 
[142]. The treatment strategies for cervical cancer include radiotherapy, immunother-
apy, and chemotherapy [143]. Due to the severe adverse effects of chemotherapeutic 
drugs, research interest has been transferred to metallic nanoparticles [144–146].

Titanium nanoparticles can be used with other nanoparticles, such as zinc and 
silver, to evaluate their anticancer effects on cervical cancer cell lines [147]. Ag/AgBr/
TiO2 nanoparticles effectively eliminated xenograft tumors due to their photocata-
lytic activity [148]. Thermodynamic therapeutic potential, bioimaging, and doxo-
rubicin delivery to cervical cancer cells by hybridized TiO2 and zinc phthalocyanine 
nanoparticles were also studied [149]. Yurt et al. synthesized zinc phthalocyanine and 
hybridized it with TiO2 to evaluate their photodynamic therapeutic effect and nuclear 
imaging potential. Intracellular localization of ZnPc and ZnPc/TiO2 in cervical adeno-
carcinoma (HeLa) and breast cancer cells was observed. High uptake of ZnPc/ZnPc-
TiO2 by the cervical and breast cancer cells suggested their use as cancer theranostic 
agents [150]. TiO2 has also been reported to enhance caspase-3 activity and prevent 
the growth of HeLa cells [151].

6.6 Brain cancer

The brain is probably the most mature organ of the human body, so its protection is a 
crucial issue [152]. Despite several advancements in developing therapeutic and diag-
nostic procedures, brain cancer is a great challenge to treat, and a successful therapeutic 
strategy still cannot be established. The major hurdles to establishing a successful treat-
ment strategy for brain tumors include tumor recurrence, acquired resistance to chemo-
therapeutic agents, and complex central nervous system structure [153]. Glioblastoma 
is the most common and dangerous tumor in adults. Despite the availability of various 
treatments, such as chemotherapy, radiotherapy, and surgical resection, the prognosis is 
still inferior. Following the diagnosis, the life expectancy of glioblastoma patients is just 
12–15 months, and the five-year survival rate is approximately 5% [154].
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The blood-brain barrier (BBB) is a highly selective interface responsible for 
maintaining homeostasis, protecting from harmful agents, and providing all neces-
sary molecules to the brain [155]. Brain disorders and tumors require the drug to 
cross the BBB to exert its therapeutic effect. Several lipophilic therapeutic agents can 
pass through the BBB, but due to its selective permeability, several other medications 
fail to cross it [156, 157]. Various pharmacological agents are considered potentially 
harmful external agents by the BBB. Thus they are removed by the efflux system, 
degraded by the enzymes, or hindered from crossing the BBB [158]. Only molecules 
smaller than 400 Daltons or less than nine hydrogen bonds are BBB permeable. 
Therefore, several nanomedicine-based approaches have been suggested to facilitate 
drug delivery across the BBB in the recent past [159, 160].

Nanoparticles have gained much interest in this regard [161–163]. It has been 
reported that engineered nanomaterials can cause neurotoxicity [164]. TiO2-NPs can 
induce neurotoxicity due to their ability to cross BBB [165–167]. They are potential 
candidates for treating glioblastoma multiforme (GBM) and other tumor types. Gene 
and protein expression analysis revealed the reduction of antitumor drug resistance 
and metastasis by inhibiting angiogenesis. These characteristics would make TiO2 
promising therapeutic agents against cancer, particularly if other chemotherapeutic 
agents can be combined. Fuster et al. evaluated the anticancer effects of TiO2 NPs and 
ZnO-NP on the T98G glioblastoma cell line and reported that TiO2 is a more effective 
anticancer agent than ZnO. They demonstrated that TiO2 exposure disrupted the 
BBB and induced neuroinflammation and suggested the necessity of risk assessment 
regarding the TiO2 toxicity in the central nervous system [168]. Using ultrasound-
sensitive piezoelectric nanoparticles, Marino et al. delivered electric stimulations to 
distant glioblastoma cells. Barium titanate NPs were functionalized with antibodies 
against transferrin receptors to target BBB and glioblastoma cells. The distant ultra-
sound-mediated piezo-stimulation caused a significant reduction in the proliferation 
of glioblastoma cells in vitro and greatly enhanced the chemotherapeutic sensitivity 
when combined with temozolomide [169].

6.7 Prostate cancer

Cancer is the major cause of global mortality after cardiopulmonary arrest [170]. 
Prostate cancer is the fifth most common cancer worldwide and ranked second in 
men among common cancer types [171]. The onset of cancer can be characterized 
by delayed progression, tumor markers, detectable preneoplastic abrasion, and high 
prevalence [172]. Surgery is a successful option in some cases. However, after a few 
years, tumor recurrence can shorten chemotherapy as a valuable therapeutic option 
for prostate cancer. However, associated side effects such as toxicity, fatigue, diffi-
culty breathing, low white blood cell count, and blood clotting hamper their efficacy 
for tumor eradication [173]. Recently, targeted drug delivery and stimulus-responsive 
release have minimized toxicity and improved drug delivery and accumulation at the 
target site [174, 175].

Different inorganic nanoparticles such as TiO2, graphene oxide, iron oxide, and 
porous silica have been used for drug delivery and anticancer therapeutic agents 
[173]. TiO2 NPs are considered potent drug carriers and photosensitizers due to their 
low cost, toxicity, and non-photobleaching characteristics [176, 177]. ROS generation 
by ultrasound-activated TiO2 NPs has been reported by various studies [29, 178, 179]. 
However, in comparison to light, ultrasound scattering in the tissue is weaker, mak-
ing it penetrate deeply without losing energy [33]. Previous studies revealed that 
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combining TiO2 with rare earth or noble metals can increase ROS quantum yield 
[29, 180]. Ayca et al. synthesized TiO2 and ZnO NPs. They showed the potent inhibi-
tion of the growth of prostate cancer cells (DU-145) by TiO2 and ZnO2 nanocompos-
ites [173]. Ultrasound-activated multifunctional system based on TiO2:Gd@DOX/FA 
for MRI-guided therapy for prostate cancer was developed by Yuan et al. [181]. This 
system acts as a sonosensitizer for sonodynamic therapy and drug nanocarriers for 
pH-responsive drug release. Gd doping to TiO2 improved their sonodynamic ability 
and their performance in MRI. In vitro and in vivo anticancer treatment proved the 
efficacy of TiO2:Gd/DOX/FA in inhibiting cancer by ultrasound-responsive chemo-
sonodynamic therapy without damaging other organs and as MRI agents. Aksel et al. 
showed the formation of apoptotic bodies in the PC3 prostate cancer cell line by TiO2 
NPs-mediated photo-sonodynamic therapy [30].

6.8 Bladder cancer

Urothelial bladder cancer is among the most widespread malignancies [182]. It is 
categorized into two subgroups, i.e., Muscle-Invasive Bladder Cancer (MIBC) and 
Non-Muscle-Invasive Bladder Cancer (NMIBC). Most bladder cancers are NMIBC 
at diagnosis. Frequent tumor relapse is found in about 50–70% of NMBIC [183], and 
10–15% tend to progress into MIBC [3, 184]. Chemotherapy or Bacillus Calmette-
Guérin (BCG) and post-transurethral resection are the therapeutic interventions used 
[185]. Other therapeutic options are under investigation, including photodynamic 
therapy, radiotherapy, immunotherapy, gene therapy, and nanodrug delivery system 
using nanoparticles [186]. Among many therapeutic options, a photodynamic theory 
is less invasive than any surgical intervention [187]. Under physiological conditions, 
TiO2 NPs possess promising photodynamic characteristics and are suitable materi-
als for cancer treatment. Studies reported the development of Ti(OH)4 in which 
peroxide was coated on TiO2 nanoparticles [188, 189]. Ti(OH)4 could absorb visible 
light and showed equivalent photocatalytic activity upon exposure to UV radiations 
with 90% greater photocatalytic efficiency than TiO2 NPs. Moreover, Ti(OH)4 can 
generate hydroxyl radicals when it comes in contact with water, even after numerous 
photodegradation cycles [188]. In another study, a bladder cancer cell line, MB49, was 
treated with various concentrations of Ti(OH)4, and the results demonstrated that 
photo exposure of Ti(OH)4 stimulated ROS generation and induced dose-dependent 
necrosis in cancer cells [190]. Black TiO2 NPs were used as photosensitizers triggered 
by near-infrared light with maximum 808 nm absorbance by T24 cells (bladder 
cancer cells). The cells were incubated with TiO2 NPs and irradiated at 808 nm. The 
results showed concentration-dependent enhanced antitumor activity by the black 
TiO2 NPs. Hence, black TiO2 was proven a potent anticancer agent, promising photo-
sensitizer, and maximally active at near-infrared and visible light [191].

6.9 Skin cancer

Skin cancer is the most common human malignancy due to the uncontrolled 
growth of tumor cells associated with the dermis and epidermis. Patients need 
recurrent treatment due to the aggravated and repetitive growth of tumor cells and, 
therefore, suffer from treatment-associated side effects and toxicity. Though the topi-
cal chemotherapeutic option is associated with less severe side effects, it is impeded 
due to the rapid liquifying characteristic of the polymers used in the therapy and 
tormenting-sized microneedles [192, 193].
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Melanoma is a type of skin cancer that appears in melanocytes (skin cells) [194]. 
Melanocytes are the producers of melanin, which gives color to the skin [4, 195]. 
Ultraviolet radiations are the leading cause of melanoma, adversely affecting DNA 
repair, skin cell growth [196], immunosurveillance, and apoptosis. These adverse 
reactions allow the activation of oncogene or deactivation of tumor suppressor genes 
and subsequent tumor development [197]. Clinically, nanoparticles are shown to have 
the ability of tumor reduction and lessen the side effects [198–200]. Conventional 
anticancer therapies, including chemotherapy, radiotherapy, and surgery, are associ-
ated with the risk of harming adjacent healthy cells. This problem can be overcome 
using chemotherapeutic agents conjugated nanoparticles that can precisely target 
tumor cells [201, 202]. TiO2 NPs possess unique characteristics and have been applied 
in various fields [203]. They also have immunomodulatory effects [204].

Titanium dioxide nanotubes (TNT) offer a larger surface for carrying molecules 
and have distinct physicochemical properties. They are potent anticancer agents. 
They have been conjugated with quercetin to evaluate their effect against melanoma. 
Quercetin is a flavonoid found in fruits and leafy vegetables and possesses antioxi-
dant, antiviral, and anticancer effects. The in vitro anticancer effect of quercetin-
conjugated TNT (TNT-Qu) was evaluated on melanoma cells (B16F10). The results 
showed inhibitory effects of TNT-Qu on the migration of B16F10 cells, enhanced 
DNA fragmentation, and cell cycle arrest in the cells. Moreover, TNT-Qu was more 
cytotoxic to the B16F10 cells than quercetin or TNT alone [205]. The anticancer effect 
of TNT-Qu was also evaluated on the B16F10 mouse melanoma model and two-stage 
chemical carcinogenesis in vivo model. The study’s results demonstrated enhanced 
antitumor effects of TNT-Qu than either of the two alone by the topical application of 
TNT-Qu. TNT-Qu treatment inhibited tumor growth and increased the survival time 
of the two-stage chemical carcinogenesis mice models [206]. TiO2 exhibits full-size 
dependent immunomodulatory effects in the nanorod form [207]. TiO2 NPs were 
hydrothermally converted to nanorods that greatly enhanced the loading efficiency of 
resveratrol, which would be a great anticancer agent for skin cancer [208]. Polyvinyl 
Alcohol (PVA) is biocompatible, hydrophilic, and biodegradable [209]. PVA nano-
fibers are a dressing material for wound healing [210, 211]. Conjugating a polymeric 
form of PVA with a pharmaceutical agent improves EPR and facilitates the slow and 
sustained release of the incorporated drugs [212]. Ekambaram et al. reported the 
anticancer effect of the green synthesized TiO2 nanorods loaded with resveratrol-
incorporated nanofibers against skin cancer cells (A431). They found inhibition in 
cancer cell growth by activating caspase enzymes [213].

6.10 Hematological malignancies

Hematological malignancies originate from the bone marrow or blood and result 
from the acquisition of genetic abnormalities that lead to unrestrained proliferation, 
resistance to cell death, and evasion of the immune system [214]. The occurrences 
of hematological malignancies, including leukemia, multiple myeloma, lymphoma, 
myelodysplastic syndromes, and myeloproliferative neoplasm, continuously increase 
despite recent advances which increased the five-year rate in many types of hema-
tological malignancies [215]. Photodynamic therapy (PDT) has advantages over 
conventional anticancer therapy, including no risk of drug resistance and control-
lable ROS generation by controlled dosimetry [216–218]. TiO2 NPs have been used 
in many cancer types [40, 42, 219–221], but the biggest hurdle is the high energy 
band gap of TiO2 (anatase, 3.2 EV) which needs the excitation by detrimental UV 
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radiations. Doping of TiO2 with metal/non-metals resolves this issue by making TiO2 
able to activate by absorbing light of longer wavelengths [222–224]. N-TiO2 exhibits 
anticancer activity and higher capability of ROS production in comparison to TiO2 
NPs [39, 225, 226]. N-TiO2 was used as a photosensitizer in PDT for leukemia cells. 
Upon activation with visible light, N-TiO2 photosensitizers induced ROS-mediated 
autophagy in leukemia cells (K562), which increased with the increasing doses of 
light and photosensitizer. In addition, low doses of PDT also showed enhanced ROS 
and autophagy in normal peripheral lymphocytes. However, the typical human cell 
model showed no cytotoxic or inhibitory effects [41].

Acute lymphoblastic leukemia occurs due to the abnormal growth of white 
blood cells in the bone marrow [227, 228]. It is the most common cancer in children 
2–5 years of age [229]. The treatment advancements show 90% effectiveness in cur-
ing the disease, but relapse and drug resistance remain the most significant clinical 
challenge [230]. Recently, using nanostructured devices and nanomaterials to deliver 
medications against cancer is the most advanced method for treating cancer [231]. 
Metal nanocomposites are being investigated for theranostics, and various functional 
groups are being incorporated to modify metal/metal oxide nanocomposites [232]. 
Recently, ZnO-TiO2-chitosan-amygdalin nanoparticles have gained much interest 
as potent anticancer agents. MOLT-4 (T-lymphoblast malignant cells) were treated 
with nanocomposite (ZnO-TiO2-chitosan-amygdalin) to evaluate its cytotoxic effect 
on these cells. The results showed increased cytotoxicity, mitochondrial membrane 
depolarization, caspase activation, and ROS generation in leukemia cells [233].

6.11 Oral cancer

Oral Squamous Cell Carcinoma (OSCC) is characterized by local hypoxia and 
tumoral necrosis spreading on a large area, which is the cause of drug resistance and 
low chemotherapeutic response [234]. Immune suppression is also a factor that limits 
the therapeutic response and poor prognosis [235]. The primary therapy is surgical 
resection for OSCC, while radiotherapy and chemotherapy are additional treatment 
options [236]. However, with all the present treatment options, the five-year survival 
rate is still 60%, which severely damages the life quality [237]. Photodynamic theory 
utilizing nanoparticles as photosensitizers has gained much attention for OSCC 
cure and prevention [238, 239]. TiO2 NPs have widely investigated nanoparticles as 
photosensitizers in photodynamic therapy since their photocatalytic activity was 
discovered in 1972 [240–242]. Metal polypoidal complexes have attracted scientists 
as photosensitizers. Ru(II) complex TLD-1433 photosensitizers have been used in 
clinical trials for bladder cancer (non-muscle invasive bladder cancer) in Canada 
[243, 244]. TLD-1433 can potentially cause DNA damage under hypoxic conditions 
[243, 245]. Based on this phenomenon, TiO2@Ru@siRNA nanocomposite comprised 
SiRNA-loaded TiO2 NPs modified with ruthenium-based photosensitizers. This 
nanocomposite shows photodynamic effects upon irradiation with visible light. It can 
cause lysosomal damage, HIF-1α gene silencing, production of type I and type II ROS, 
and eradication of OSCC cells efficiently. In addition, it also reduces the expression of 
immunosuppressive factors and elevates the antitumor immune response. The PDX 
and oral rat carcinoma model significantly improved antitumor immunity and inhib-
ited tumor progression and growth [246]. Pure TiO2 and TiO2 nanoparticles modified 
with ginger, garlic, and turmeric were used for anticancer activity against KB oral cell 
line by Maheshwari et al. They found that modified TiO2 showed better anticancer 
activity against oral cancer cells than pure TiO2 [247].
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7. Conclusion

In summary, the nano titania application in cancer therapy and diagnosis is highly 
favorable due to its biocompatible and porous nature, surface modification, and ROS 
generation properties. The TiO2 surface can be coated with polymeric and metallic 
nanostructures to enhance drug loading ability and target desired tissue viz. tumor. 
Due to their inert nature, nano titania is commonly implemented as food additives 
and cosmetic products. However, UV light application limits its photoactivation, 
which is inconsistent with WHO recommended therapeutic window (600–1000 nm). 
Indeed, their surface coating or nanocomposite formation can shift its absorption 
from UV to NIR range, which holds promising effects in anticancer therapy and 
diagnosis via bioimaging. Their photodynamic or photothermal therapy effect suits 
topical and body cavity cancer resection. Employing titanium nanoparticles as drug 
carriers for anticancer therapy might help improve therapeutic effects and avoid 
undesirable side effects. Combining titanium NPs with other nanoparticles also 
holds great therapeutic potential in cancer. The applications of nano titania and their 
conjugates discussed in this chapter can be utilized to improve cancer theranostics.
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