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Chapter

Catalysis for Glycerol Production 
and Its Applications
Anele Sibeko, Lethiwe D. Mthembu, Rishi Gupta 

and Nirmala Deenadayalu

Abstract

Globally, there is a climate change due to greenhouse gases, hence the production 
processes for chemicals should comply with green chemistry principles to decrease 
the impact it has on the climate. This book chapter focuses on the catalytic production 
of glycerol, which is a platform chemical that is widely used in the manufacture of 
various industrially important chemicals and derivatives, namely 2,3-dihydroxy-
propanal, glycerol ether, glycerol ester, acrolein, 1,2-propanediol and glycidol. The 
literature reviewed compares the production of glycerol using homogeneous and 
heterogeneous catalysts, to determine efficient and environmentally benign glycerol 
catalysts and to study glycerol as a platform chemical and its value in application.

Keywords: catalysis, homogenous catalysts, heterogeneous catalysts, value-added 
compounds, glycerol production

1. Introduction

The enormous growth in demand for fuels, along with growing environmental 
concerns and limited raw oil sources has increased the use of renewable energy. 
Biodiesel is one of the potential alternatives, and renewable fuels, has gained popular-
ity in recent years, and their production capacity have grown significantly.

It is produced through various methods such as the transesterification of non-
edible and waste vegetable oils with methanol and efforts are also being made to 
utilise the glycerol by-product to compensate the production cost of biodiesel to make 
it commercially viable, yielding quite significant percentage of a glycerol by-product 
which lowers the production cost and makes it commercially available. For every 4 
litres of biodiesel generated [1].

Around 500 grams of glycerol is made, this equates to approximately 11,500 tons 
of 99.9% pure glycerine produced by a plant with a capacity of 113,562,354 million 
litres per year. The resulting oversupply of raw glycerol from biodiesel production 
can influence the purified glycerol market significantly as glycerol is a high-value and 
commercial chemical with thousands of applications [2].

Although extensive research has been carried out on the use of glycerol for vari-
ous industrial applications, however, a compilation review on different approaches 
of glycerol production using homogenous and heterogeneous catalysts is scarce. The 
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present chapter focuses on compiling different state-of-the-art in glycerol manu-
facturing techniques with a special emphasis on homogeneous and heterogeneous 
catalysis approaches. Moreover, an attempt has also been made to review the applica-
tion of glycerol in the production of various platform chemicals preferably using 
microbial pathways. A section has been dedicated on reviewing the application of 
glycerol in animal feed.

2. Glycerol production

Glycerol can be manufactured using a variety of chemical synthesis feedstocks. It 
can be produced, for example, by propylene synthesis by several methods [3], such 
as oil hydrolysis, or transesterification of fatty acids or oils. The following sections 
describe briefly about different glycerol production processes.

2.1 Glycerol production by propylene

As previously stated, several methods for producing glycerol from propylene can 
be used [4, 5]. In Figure 1, one of the major processes is shown, which includes the 
use of chlorination (Cl2) [6].

2.1.1 Glycerol production via chlorination process

Propylene chlorination (Figures 1 and 2) produces allyl chloride at a temperature 
of 510°C in the presence of hypochlorous acid at 38°C. Glycerine dichlorohydrin is 
formed when allyl chloride reacts. The glycerol dichlorohydrin is then hydrolysed by 
sodium carbon oxide in a 6% sodium carbonate solution at 96°C or directly to glycer-
ine, the epichlorohydrin being removed as an overhead in a stripping column. Finally, 
the epichlorohydrin is hydrated to glycerine using sodium hydroxide [4], resulting in 
a final glycerol yield of around 90% [6].

Figure 1. 
Flow diagram illustrating the production of glycerol from propylene [6].



3

Catalysis for Glycerol Production and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.109553

2.1.2 Glycerol production via oxygenation process

Figure 3 illustrates two paths to produce glycerol from propylene via oxygenation. 
Oxygen (O2) reacts with propylene to produce acrolein, adding an aldehyde (HC=O). 
Acrolein can be converted to allyl alcohol with a reducing agent sodium borohydride 
(NaBH4) in a presence of isopropanol as a solvent; peroxide is added to allyl alcohol to 
produce glycerol. In the other reactions, peroxide is added to acrolein which results in the 
formation of glyceraldehyde; the glyceraldehyde reacts with hydrogen to produce glycerol.

2.2 Saponification

In this reaction, sodium hydroxide (base) reacts with triglyceride as an ester to 
form glycerol and soap molecules. This method has been employed since 2800, and the 
first industrial factory was developed in 1860 [7]. As demonstrated in Figure 4, this 
reaction occurs between triglyceride and sodium hydroxide (caustic soda), producing 
glycerol and soap [6, 8].

Figure 2. 
Reaction of the propylene chlorination process.

Figure 3. 
Production of glycerol from propylene oxygenation reaction.
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2.3 Transesterification of the beaver oil

The transesterification reaction of beaver oil with ethanol to produce glycerol was 
carried out in 1864 [9, 10]. Figure 5 shows the reaction in which methyl-esters from 
triglycerides (oils) and methanol (alcohol) combine to form glycerol and fatty esters 
(or biodiesel) [5, 6, 11, 12].

Figure 5. 
Glycerol production by a transesterification reaction [6].

Feedstock Glycerol 

concentration 

(w/w %)

Methanol 

concentration (w/w 

%)

Soap 

concentration 

(w/w %)

Impurities 

(w/w %)

Ref.

Palm oil 
waste

87 — — 6 [13]

Oil of 
Jatropha

19–22 14.5 29 11–21 [14]

Soybean oil 63 6.2 — — [15]

Soybean oil 22 10.9 26.2 23.5 [15]

Figure 4. 
Illustrates the saponification reaction between triglyceride and sodium hydroxide (caustic soda) for the glycerol 
production [6].



5

Catalysis for Glycerol Production and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.109553

Interestingly, the glycerol yield from transesterification was not only found to be 
dependent on different types of processes but also on the different type of oil feed-
stocks (Table 1) [13–18].

3. Glycerol catalysis

Transesterification of oil is accomplished using both homogenous as well as 
heterogeneous catalysts. Table 2 depicts glycerol production advantages and disad-
vantages of using different type of catalysts.

Moreover, depending on the type of catalyst used, the transesterification process 
can be categorised as homogeneous and heterogeneous catalysis to make biodiesel and 
subsequently glycerol.

Feedstock Glycerol 

concentration 

(w/w %)

Methanol 

concentration (w/w 

%)

Soap 

concentration 

(w/w %)

Impurities 

(w/w %)

Ref.

Soybean oil 33 12.6 26.1 22.3 [15]

Vegetable oil 
waste

28 9 21 39 [15]

Palm oil 81 1 — 2.0 [16]

Seed oils 63–77 — — — [17]

Used frying 
oil

85 — — 15 [18]

Table 1. 
Different glycerol streams depending on initial feedstocks and production reactions.

Catalysts group Type of catalyst Advantages Disadvantages

Homogeneous base 
catalyst

NaOH/KOH • Fast reaction rate, mild 
condition and less 
energy intensity.

• Catalysts are widely 
available and 
economical.

• If the usage limit for oil is less than 
0.5 wt. % free fatty acid. Soap forma-
tion occurs as well if the free fatty acid 
content in the oil is more than 2 wt. %.

• Excessive soap formation reduces the 
glycerol yield and causes problems 
during product purification.

Heterogeneous 
base catalyst

CaO/MgO • Reaction conditions are 
mild and less energy-
intensive, reuse and 
regenerating of a catalyst.

• Mild reaction condi-
tion and less energy 
intensive.

• Sensitive to free fatty acid content in 
the oil due to its basicity property.

• Excessive soap formation decreases 
the glycerol yield and causes prob-
lems during product refining.

Homogenous Acid 
catalyst

H2SO4/HCl • Affordable than base 
catalysed process.

• Very slow reaction rate.

Not easy to separate the catalyst from 
products.

Table 2. 
Advantages and disadvantages of glycerol catalysts [19].
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3.1 Homogeneous catalysis

During homogenous catalysis, the first stage comprises the reaction of veg-
etable oils with methanol in the presence of a catalyst, and then the separation 
of glycerol from the resultant mixture using a settler unit follows. The remaining 
flow is sent to a chamber that uses mineral acids to remove the catalytic compo-
nent, resulting in two paths: a glycerol recovery chamber and an evaporator that 
separates biodiesel from the other products. The unit for purifying comprises 
three output units: the first with 80–95% glycerol; the second one with water, 
dissolved salts and unreacted methanol (it is then recycled back to the reactor); 
and one with fatty esters [12]. Figure 6 depicts the glycerol manufacturing 
process employing homogeneous catalysts (namely, sodium hydroxide or sodium 
methylate) [6, 20, 21].

3.2 Heterogeneous catalysis

This type of catalysis procedure envisions two reaction phases to improve veg-
etable oil conversion; reactor 1 is supplied by vegetable oil and methanol. The product 
stream is sent through a heat exchanger to evaporate some of the residual methanol, 
and the remaining stream is directed to a decanter to separate polar and non-polar 
components such as glycerol and mainly vegetable oil and biodiesel, respectively. 
While, in reactor 2, the non-polar stream is reacted for the second time to boost bio-
diesel synthesis and recover methanol. The product stream travels through the heat 
exchanger, which takes out all unreacted methanol, and the decanter, which separates 
the biodiesel from polar components.

The polar streams from the first and second polar decanters are directed to 
another heat exchanger to recover the remaining methanol in the mixture, while the 
leftover fraction is delivered to a final decanter to separate vegetable oil and residual 
glycerol. Figure 7 is a flowchart of triglyceride transesterification using heteroge-
neous catalysts such as aluminium and zinc oxide [6].

Figure 6. 
The production plant for biodiesel is based on a homogenous catalyst.
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4. Glycerol: a platform chemical

Synthesis of glycerol following microbial route has been known for over a century, 
however, new improvements in the biodiesel business have resulted in the production 
of large amounts of glycerol. During the biodiesel production process, approximately 

Figure 7. 
A heterogeneous catalysis-based production plant flowchart [6].

Figure 8. 
Glycerol as a platform chemical.
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10% of glycerol is produced, accounting for about 90% of total glycerol produced 
[22]. Glycerol has gathered substantial interest in its conversion to higher value-added 
compounds due to its availability and potential to operate as a key building block in a 
biorefinery (Figure 8) [23].

Glycerol oxidation produces a wide range of compounds, such as glyceric acid 
dihydroxyacetone, glyceraldehyde, hydroxy-pyruvic acid, glycolic acid and oth-
ers. Controlling reaction selectivity is a critical challenge in obtaining the desired 
molecules.

For example, glyceric acid is a crucial intermediary for more extensively oxidised 
compounds such as tartronic acid and mesoxalic acid. The catalytic aerobic oxida-
tion of glycerol in a basic media has been extensively studied using monometallic or 
bimetallic catalysts such as Au, Pt and Pd.

Table 3 lists some of the most prominent catalysts used in this field [24–27, 30, 38–40]. 
Another approach for producing value-added compounds from glycerol is the reduction 
process. Lactic acid is produced by a reduction of glycerol in the presence of hydroxide 
bases [41]. This reaction is frequently carried out at medium to high pressures and 
temperatures ranging from 100 to 240°C using Cu- and Zn-based catalysts enhanced by 
sulphide Ru [28].

Glycerol carbonate is another derivative of glycerol that is formed by reac-
tion between glycerol and urea, ethylene or propylene carbonate [22] or carbon 
dioxide [42]. It is also used in the commercial manufacture of epichlorohydrin. 
Epichlorohydrin is produced in a similar manner by Solvay and Dow Chemical 
Company [43]. When the principal hydroxyl groups in glycerol are selectively 
oxidised, the economically valuable chemicals glyceraldehyde [44], glyceric acid 
[45] and tartronic acid [46] are formed. Dihydroxyacetone (DHA) is produced by 
oxidation of the secondary hydroxyl group, whereas ketomalonic acid is produced by 
oxidation of all three hydroxyl groups [47].

Another glycerol derivative, glycidol, offers immense potential for the synthesis of 
industrially useful compounds such as epoxy resins, polyurethanes and polyglycerol 
esters. A bio-based technique for producing glycidol from glycerol was recently pub-
lished [48]. The manufacture of acrolein from glycerol is an innovative, eco-friendly 
technology that has several advantages, such as less oil extraction and a minimal 
environmental impact [31]. In general, acrolein is synthesised from glycerol by acid-
catalysed dehydrogenation over synthetic aluminium phosphate (AlPO4), zeolites 
with varied channel configurations (HY and H-ZSM-5) and SiO2/Al2O3 ratio [31, 49].

A novel synthetic approach for the synthesis of chlorohydrin was proposed, which 
involved reacting a polyhydroxy aliphatic hydrocarbon with a chlorination agent. 
Vitiello et al. [33] focused on the activity and selectivity of homologous chlorinated 
series of catalysts for glycerol halogenation, such as acetic acid, monochloro, dichloro 
and trichloroacetic acid.

Table 3 also includes information on one of the most significant glycerol conver-
sion processes, esterification with acetic acid, which produces monoacylglycerol, 
diacylglycerol and glycerol carbonate. These materials are often used in cryogenics, 
biodegradable polyester and cosmetics [35, 36]. Sulphated-based superacids, het-
eropoly acid-based catalysts, tin chloride, zeolite, ZrO2-based solid acids and other 
significant acid catalysts can be used for glycerol esterification [35–37, 50–52].

Finally, pyrolysis of glycerol to produce syngas is another method of converting 
glycerol. The pyrolysis of biomass has been extensively studied in the specialist litera-
ture, although in most cases, only metal-based catalysts have been used. The micro-
wave-assisted pyrolysis of glycerol over a carbonaceous catalyst is a unique approach 
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for syngas generation in which the heating method and operating temperature 
(between 400 and 900°C) can impact the catalytic action of the activated carbons to 
optimise syngas production [37]. Table 3 outlines some of the products derived from 
glycerol that may be transformed into other compounds with high added value.

5. Value-added products from glycerol via biological conversions

From 2004 to 2008, the global production of crude glycerol from biodiesel conver-
sion increased from 200 thousand tonnes to 1.224 million tonnes [2, 19]. Meanwhile, 

Reaction type Reactant Catalyst Pressure 

(bar)

Temperature 

(°C)

Product Ref.

Glycerol 
oxidation

O2 Pd–Ag/C 3 80 Dihydroxyacetone [24]

O2 Pt/NCNT — 60 [25]

O2 Pt/MCN 3 40 Glyceraldehyde [26]

O2 Pt/SiO2 1 100 [27]

O2 Pt/MCN 3 40 Glyceric acid [26]

O2 Pt/SiO2 1 100 [27]

Glycerol 
reduction

H2 Ru/Al2O3 25 180 1,2-propanediol [28]

H2 Ru/Al2O3 25 200 Ethylene glycol [29]

H2 Ru/ZrO2 80 240 [30]

Glycerol 
dehydrogenation

— AlPO4–450 1 190–230 Acrolein [31]

— HY(5.2) 1 170–230 [31]

— 12 wt. % 
V2O5, V/P 

molar ratio 
of 0.2

1 325 [32]

Glycerol 
halogenation

HCl Aspartic 
acid

4.5 100 1,3-dichloropropanol [33]

HCl Glutamic 
acid

4.5 100 [33]

Glycerol 
esterification

Acetic 
acid

Sb2O5 1 80–120 Monoglicerides [34]

Palmitic 
acid

ZrSBA-15 1 160–180 Diacylglicerol [35]

Acetic 
acid

Graphene 
oxide

1 120 [36]

Acetic 
acid

ZSM-5 1 120 [36]

Glycerol pyrolysis — Bituminous 
carbon

1 400–900 Syngas [37]

— Coconut 
shell

1 400–900 [37]

Table 3. 
Compounds derived from traditional glycerol conversion under similar operating conditions.
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in 2005, the global market for purified glycerol was anticipated to be over 900,000 
tonnes [53]. This provided a chance for scientists to discover new uses for refined and 
crude glycerol. Multiple publications on the direct use of crude glycerol from bio-
diesel synthesis have been published.

5.1 1,3-Propanediol

The most promising alternative for the biological conversion of glycerol in 
anaerobic fermentative production is 1,3-propanediol [54], which indicates that crude 
glycerol could be employed directly for the manufacture of 1,3-propanediol in fed-
batch cultures of pneumoniae.

Raw glycerol composition had less influence on the biological conversion and, 
therefore, a low fermentation cost could be predicted. However, using a response 
surface approach, the generation of 1,3-propanediol by Klebsiella pneumoniae was 
optimised. The highest concentration of 1,3-propanediol produced However, sta-
tistical optimisation along with genetic engineering approaches may be utilised to 
improve the 1,3-propanediol production [14, 55]. K. pneumoniae ATCC 15380 recently 
improved the synthesis of 1,3-propanediol from crude glycerol from Jatropha bio-
diesel. The yield, purity and recovery of 1,3-propanediol obtained were 56 g/L, 99.7% 
and 34%, respectively [14]. In addition, a hollow fibre membrane was used to produce 
an integrated bioprocess that linked biodiesel generation by lipase with microbial 
production of 1,3-propanediol by K. pneumoniae [56].

5.2 Citric acid

Citric acid synthesis by Yarrowia lipolytica ACA-DC 50109 from raw glycerol 
was not only comparable to that obtained from sugar-based standard media [57] 
but also single-cell oil and citric acid were produced simultaneously [58, 59]. 
When acetate-negative mutants of the Y. lipolytica Wratislavia AWG7 strain were 
employed in a fed-batch fermentation to ferment crude glycerol, the final concen-
tration of citric acid was 131.5 g/L, which was similar to that produced from pure 
glycerol (139 g/L). Similarly, Y. lipolytica LGAM S(7)1 has also shown the ability to 
convert crude glycerol to citric acid [60]. Interestingly, another strain Y. lipolytica 
N15 could produce large levels of citric acid, namely up to 98 g/L of citric acid 
and 71 g/L of citric acid from pure glycerol medium and crude glycerol medium, 
respectively [61].

5.3 Hydrogen and other lower molecule fuels

The photo-fermentative conversion of crude glycerol to hydrogen is one of the 
most fascinating approach to utilise glycerol. Both crude glycerol and pure glycerol 
can produce up to 6 moles of H2 per mole of glycerol, representing 75% of the theo-
retical value. However, significant technological challenges, such as increasing the 
efficiency of light use by organisms and building effective photobioreactors, must be 
overcome before a viable method can be developed [62]. When Enterobacter aerogenes 
HU-101 was used, hydrogen and ethanol were synthesised at high yields and rates. 
However, in order to improve the rate of glycerol use, the crude glycerol should be 
diluted with a synthetic medium [63]. While Jitrwung and Yargeau [64] modified 
several media compositions of the E. aerogenes ATCC 35029 fermented crude glycerol 
procedure to maximise hydrogen generation.
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5.4 Polyhydroxyalkanoates (PHB)

As an estimate, a biodiesel facility with a capacity of 10 million gallons per year 
could produce 20.9 tons of PHB [65]. The feasibility of using crude glycerol for PHB 
manufacture was investigated using Paracoccus denitrificans and Cupriavidus necator 
JMP134, and the resultant polymers were shown to be remarkably comparable to 
those generated from glucose. However, a high osmotic (sodium chloride-contami-
nated) crude glycerol was found to have harmful impact on PHB synthesis and needs 
to be taken care of. One way to handle the issue is combining crude glycerol from vari-
ous producers to reduce the harmful effect of NaCl contamination [66]. In addition, 
for a large-scale PHB synthesis, a technique based on the C. necator DSM 545 fermen-
tation of crude glycerol was developed [67]. Following this in the presence of NaCl, 
Zobellella denitrificans MW1 could use crude glycerol for growth and PHB synthesis at 
high concentrations. As a result, it was recommended as an appealing alternative for 
large-scale PHB manufacturing using crude glycerol [68]. Furthermore, when mixed 
microbial consortia (MMC) were utilised to produce PHA from crude glycerol, it was 
shown that methanol in the crude glycerol was converted to PHB by MMC.

5.5 Lipids as the sole carbon source

Crude glycerol might be used to manufacture lipids, which could be utilised to 
make a sustainable biodiesel feedstock. For example, raw glycerol might be used to cul-
ture Schizochytrium limacinum SR21 and Cryptococcus curvatus. However, the glycerol 

Product Reaction Yield Ref.

1,3-Propanediol Fed-batch cultures of Klebsiella pneumoniae strain 1.7 g/L/h [54]

Maximum 1,3-propanediol production from K. 

pneumonia

13.8 g/L [55]

Citric acid Yarrowia lipolytica strain ACA-DC 50109 (process 
modelling)

NA [57]

Acetate mutants of Y. lipolytica Wratislavia AWG7 
strain; fed-batch operation

139 g/L [74]

Y. lipolytica strain LGAM S (7)1 35 g/L [60]

Hydrogen Photofermentative conversion process; 
Rhodopseudomonas palustris strain

6 mol/mol 
glycerol

[62]

Enterobacter aerogenes strain HU-101; continuous 
culture; porous ceramics as a support material to 

fix cells

63 mmol/L/h [63]

Poly(hydroxyalkanoates) 
(PHAs)

Pseudomonas oleovorans NRRL B-14682 and P. 

corrugata 388 grew and synthesised PHB and 
mcl-PHA, respectively

NA [75]

Producing PHB; Paracoccus denitrificans and 
Cupriavidus necator JMP 134 strains

48% [66]

Lipid Schizochytrium limacinum SR21; batch culture 73.3% [69]

Cryptococcus curvatus; two-stage fed-batch process 52% [76]

Table 4. 
Biological conversion of crude glycerol.
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content over a certain threshold may prevent the rapid reproduction of cells. The best 
glycerol content for batch culturing of crude glycerol obtained from yellow grease 
were 25 and 35 g/L for untreated and treated crude glycerol, respectively, which may 
subsequently lead to cellular lipid content of approximately 75%. Methanol residues in 
crude glycerol may cause damage to the development of S. limacinum SR21 [69].

For lipid synthesis in C. curvatus yeast, fed-batch was preferable to batch; however, 
the addition of ammonium sulphate and Tween 20 improved the accumulation of 
lipids and carotenoids Saenge et al. [70] demonstrated that the oleaginous red yeast 
Rhodotorula glutinis TISTR 5159 generated lipids and carotenoids when grown on crude 
glycerol. Chlorella protothecoides was also capable of converting crude glycerol to lipids.

The lipid yield was 0.31 g lipids/g substrate [71]. Similarly, using C. protothecoides 
and crude glycerol (62% purity), Furthermore, Chatzifragkou et al. [72] did research, 
to investigate the ability of 15 eukaryotic micro-organisms to change crude glycerol to 
metabolic products. The results showed that yeast accumulated limited lipids (up to 
22 wt.% in the case of Rhodotorula), whereas fungi collected greater levels of lipids in 
their mycelia (range between 18.1 and 42.6 wt.% of dry biomass). Interestingly, Chen 
and Walker [73] found that a fed-batch operation yielded a maximum lipid produc-
tivity of 3 g/L per day, which was greater than that generated by a batch procedure.

Tables 4 and 5 outline an overview of the conversions of crude glycerol to poten-
tial chemical through biological and catalytic conversions.

6. Application of crude glycerol in animal feedstock

Glycerol has been used as an animal feed additive since the 1970s [82]. However, 
the availability of glycerol has limited its application in diets [83], because of the 
rising corn prices and the oversupply of crude glycerol, the possibility of using crude 
glycerol from biodiesel in feeds has recently been examined.

6.1 Crude glycerol in non-ruminant diets

Crude glycerol is an excellent energy source due to its high absorption rates for 
non-ruminants such as broilers. Once ingested, the enzyme glycerol kinase converts 
it to glucose for energy generation in the liver of mammals [83]. Its samples from 
various biodiesel manufacturers were tested as energy sources. The digestible energy 
(DE) values for 85% of the crude glycerol samples ranged from 14.9 to 15.3 MJ/kg, 

Product Reaction Yield Ref.

Acrolein Fluidised bed, tungsten-doped zirconia catalyst 21% [77]

Monoglyceride Two-step process, purification of the monoglyceride 
produced from glycerolysis of palm stearin

~99% purity [78]

Glycerolysis of soybean oil ~42% [79]

Gaseous 
products

Steam gasification with in situ CO2 removal 88 vol.% H2 
purity

[80]

Hydrothermal reforming of crude glycerol ~90 vol.% H2 
purity

[81]

Table 5. 
Conventional catalytic conversions of crude glycerol.
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with metabolisable energy (ME) values ranging from 13.9 to 14.7 MJ/kg [84]. Overall, 
the use of crude glycerol derived from biodiesel process as an animal feed component 
offers significant potential for replacing maize in diets and is gaining popularity. 
However, the existence of potentially dangerous contaminants in biodiesel crude 
glycerol needs to be taken into consideration [85].

6.2 Crude glycerol in ruminant diets

Besides, the non-ruminants, crude glycerol may play a very significant role in the 
diets of ruminant animals as well. However, to improve its edibility, more emphasis 
should be placed on the crude glycerol produced by small-scale biodiesel plants that 
employ basic batch distillation or evaporation processes. There are several reports 
where use of crude glycerol has shown significant improvement in the overall perfor-
mance of ruminants. Crude glycerol, at up to 15% dry matter in finishing lamb diets, 
might increase feedlot performance, particularly during the first 14 days, but had little 
influence on carcass attributes [86]. Diets for meat goats containing up to 5% crude 
glycerol were shown to be superior to medium-quality hay [87]. Nursing dairy cows 
can also be fed up to 15% of their dry matter diet without affecting feed intake, milk 
output or yield [88, 89]. When crude glycerol was added at 8% or less of dry matter in 
cow-finishing diets, its weight growth and feed efficiency were increased [90].

7. Summary and conclusions

Glycerol may be produced using various techniques and feedstocks, such as propylene 
synthesis by various routes, hydrolysis of fatty acid triglycerides, or transesterification of 
fatty acids or oils. The efficient use of crude glycerol is critical to the commercialisation 
and advancement of biodiesel synthesis. In the long run, using biomass-derived glycerol 
will not only help to reduce society’s reliance on non-renewable resources, but it will also 
encourage the development of integrated biorefineries. This review focuses on the value-
added prospects for crude glycerol derived from biodiesel production, primarily as a feed 
ingredient for animal feed and as a feedstock for chemicals.

For example, crude glycerol can be converted into 1,3-propanediol, citric acid, 
poly(hydroxyalkanoates), butanol, hydrogen, docosahexaenoic acid-rich algae, 
monoglycerides, lipids and syngas. Though many of the processes discussed have 
already been employed by the industries, they require additional research to minimise 
the manufacturing cost and be operationally practical for inclusion into biorefineries.

Furthermore, contaminants in crude glycerol can have a noticeable impact on the 
conversion of glycerol into other products. Pollutants in crude glycerol hinder cell 
and fungi’s rapid reproduction, resulting in less production rates and product yields 
in many biological conversion processes (compared with pure or commercial glycerol 
under the same culture conditions). Contaminants, on the other hand, poison the 
catalysts in traditional catalytic conversions, boosting char generation and affecting 
product yield.

Many technologies need to be better understood and refined, such as optimising 
reaction parameters, production yields and fermentation conditions; generating 
mutant strains and efficient bioreactors for stable cultures and enhancing the activity 
and selectivity of catalysts.

Researchers have also obtained promising results on utilisation of crude glycerol 
as animal feed, particularly with non-ruminant animals such as pigs, laying hens and 
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broilers. But various precautions must be taken before this biomass-derived chemi-
cal may be used on a large scale in animal diets. To begin with, animal producers 
must exercise caution when deciding to incorporate crude glycerol as a component 
of animal feed diets, since the chemical composition of crude glycerol varies greatly 
depending on the processes and feedstocks used to manufacture biodiesel. Secondly, 
contaminants in crude glycerol affect feed performance to some extent. Finally, the 
amount of crude glycerol in feed formulations must be considered. It is advised that a 
crude glycerol feed standard be established so that it would be uniform for all produc-
ers, the resulting “standard” crude glycerol would have greater value.

There is a need to develop improved processes as well as other important value-
added products. For example, among other renewable and bio-derived sources, 
glycerol has come up as an appealing possibility since it represents a relevant and 
alternative solution for producing hydrogen via reforming processes that may be car-
ried out in both traditional and novel reactors.

Besides, catalytic process, though it is not yet introduced, the transesterification 
reaction using supercritical fluids has also gained noticeable attention. As one or 
two reaction stages are possible in a single-step supercritical fluid transesterifica-
tion, the reaction occurs only once reactants are heated to critical temperatures 
and pressures with triglycerides [20, 21]. Triglycerides are initially transformed 
to free fatty acids and by-products in the hydrolysis reaction during the two-step 
subcritical-supercritical fluid transesterification. The acquired free fatty acids 
undergo esterification reaction, yielding fatty acid methyl esters in a supercritical 
fluid process [91, 92].
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