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A B S T R A C T   

Background: Abnormalities in brain structure are shared across diagnostic categories. Given the high rate of 
comorbidity, the interplay of relevant behavioural factors may also cross these classic boundaries. 
Methods: We aimed to detect brain-based dimensions of behavioural factors using canonical correlation and 
independent component analysis in a clinical youth sample (n = 1732, 64 % male, age: 5–21 years). 
Results: We identified two correlated patterns of brain structure and behavioural factors. The first mode reflected 
physical and cognitive maturation (r = 0.92, p = .005). The second mode reflected lower cognitive ability, poorer 
social skills, and psychological difficulties (r = 0.92, p = .006). Elevated scores on the second mode were a 
common feature across all diagnostic boundaries and linked to the number of comorbid diagnoses independently 
of age. Critically, this brain pattern predicted normative cognitive deviations in an independent population-based 
sample (n = 1253, 54 % female, age: 8–21 years), supporting the generalisability and external validity of the 
reported brain-behaviour relationships. 
Conclusions: These results reveal dimensions of brain-behaviour associations across diagnostic boundaries, 
highlighting potent disorder-general patterns as the most prominent. In addition to providing biologically 
informed patterns of relevant behavioural factors for mental illness, this contributes to a growing body of evi-
dence in favour of transdiagnostic approaches to prevention and intervention.   

1. Introduction 

Mental illness typically manifest during childhood or adolescence 
(Caspi et al., 2020; Kessler et al., 2007), alluding to the importance of 
neurodevelopment for mental health. The interplay of a multitude of 
factors likely shapes the neurodevelopmental trajectory; however, most 
studies have typically investigated only one or a few such factors at a 

time. Associations that are relevant for brain development may in turn 
be elevated in clinical populations and subsequently relevant for psy-
chopathology. A comprehensive mapping of behavioural factors and 
how they relate to measures of brain structure in a clinical sample of 
youth represents a critical step towards understanding the role of neu-
rodevelopment in health and disease. 

Empirically derived models of psychopathology point to common 
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symptomatology (i.e. general vulnerability) across classic diagnostic 
categories. In line with this, abnormalities in both genetics (Lahey et al., 
2011; Pettersson et al., 2016; Roelfs et al., 2021), brain structure 
(Goodkind et al., 2015; Opel et al., 2020) and cognition (Abramovitch 
et al., 2021; Caspi et al., 2014) are shared across diagnostic syndromes. 
Furthermore, general psychopathology is linked to deviations from 
normative cortical (Parkes et al., 2021) and cognitive (Kjelkenes et al., 
2022) development, pointing to the relevance of mapping associated 
behavioural factors across diagnostic boundaries during 
neurodevelopment. 

Multivariate approaches in adults reveal a positive-negative popu-
lation dimension linking brain features with lifestyle, demographic, and 
psychometric measures (Smith et al., 2015), in which factors typically 
considered positive are linked to advantageous or healthy brain features, 
while negative factors exhibit the opposite pattern. This “positive--
negative” axis of covariation has since been reported in studies of ado-
lescents (Modabbernia et al., 2021a) and children (Alnæs et al., 2020; 
Modabbernia et al., 2021b), alluding to the presence of a link between 
brain and behaviour for advantageous development already early in life. 
However, the distribution of such brain-behaviour associations in rela-
tion to psychopathology is not well mapped. Investigating 
brain-behaviour associations in a clinical population of youth may 
elucidate the relevance of such patterns for mental health. 

Symptoms of anxiety, irritability, and attention-deficit hyperactivity 
disorder (ADHD) have in a previous study been linked to both shared 
and unique patterns of brain connectivity (Linke et al., 2021). This 
finding was replicated across two independent clinical samples of youth, 
suggesting both disorder-general and disorder-specific patterns of psy-
chopathology in the youth brain. Across children with and without an 
ADHD diagnosis (Ball et al., 2018), higher ADHD symptom load was 
linked with poorer academic performance, delayed pubertal develop-
ment, and regional variability in cortical brain structure. However, less 
is known about how such patterns vary across diagnostic boundaries 
(Lynch et al., 2021). Identification of shared and distinct patterns of 
brain-behaviour associations across diagnostic boundaries may provide 
more informed models of psychopathology, illuminating the role of 
neurodevelopment and brain-behaviour associations. Such patterns can 
be determined by utilising multivariate approaches and dimensional 
clinical and behavioural phenotypes, as employed in several recent 
studies (Smith et al., 2015; Modabbernia et al., 2021a, 2021b; Alnæs 
et al., 2020). However, few studies have employed this approach in 
clinical youth samples, thus the relevance of the reported 
brain-behaviour relationships remain to be determined. 

In the current study we used canonical correlation analysis (CCA) in 
a sample of youth where the majority had at least one diagnosed psy-
chiatric disorder. The aim was to identify latent dimensions of associa-
tions between brain structure and clinical, cognitive, and socio- 
environmental factors, and to reveal putative and empirically esti-
mated cross-diagnostic and diagnosis-specific factors. By using symptom 
scores instead of categorical diagnostic information when decomposing 
the data, we modelled brain associations with dimensional measures of 
psychopathology (Caspi et al., 2014). Diagnostic information was used 
to assess the relevance of the detected patterns for clinical diagnosis. To 
improve interpretability (Smith et al., 2015; Alnæs et al., 2020; Miller 
et al., 2016), we submitted the CCA scores to independent component 
analysis (ICA). This procedure results in maximally correlated, maxi-
mally interpretable latent dimensions (i.e. modes) across the two 
high-dimensional datasets. As such, these dimensions link a broad range 
of behavioural factors that are present across diagnostic boundaries to 
individual differences in brain structure. If specific brain-behaviour 
patterns related to each diagnostic category exist, we expected these 
to appear as distinct modes for each diagnosis. While instead, if the 
strongest pattern is a cross-diagnostic vulnerability to psychopathology, 
we expected the analysis to yield one general clinical mode across 
diagnostic categories. 

Finally, we assessed the generalisability and construct validity 

(Chaytor and Schmitter-Edgecombe, 2003) of the identified clinical 
brain pattern in an independent population-based sample. First, we 
derived out-of-sample brain scores using overlapping brain-imaging 
measures derived from a harmonised protocol across the two samples. 
We then associated these out-of-sample brain-scores to measures of 
overlapping clinical and cognitive constructs in the independent sample. 

2. Materials and methods 

2.1. Sample 

We accessed brian structural, clinical, cognitive, and socio- 
environmental variables from the Healthy Brain Network (HBN) (Alex-
ander et al., 2017), a cohort consisting of children and adolescents from 
New York City, USA aged 5–21. The data collection is currently ongoing, 
with behavioural data from 3628 individuals and magnetic resonance 
imaging (MRI) data from 2645 individuals having been released by the 
time of analyses for this study. Individuals were recruited through 
community sampling in which children with clinical concerns were 
encouraged to participate. Then, they underwent extensive assessment 
of biological and behavioural characteristics, such as neuroimaging, 
neuropsychological testing, psychiatric evaluation, genetics, physical 
assessment, and interviews regarding environmental, demographical 
and lifestyle factors. After quality control and data cleaning (described 
in Section 2.2), the final sample, with both MRI and behavioural data 
available, consisted of 1732 participants (624 females; mean ± sd age: 
10.52 ± 3.17 years). Sample demographics are provided in Fig. 1. 

2.2. Data pre-processing 

Behavioural data from 3628 participants in HBN were processed 
using R (https://cran.r-project.org). Categorical diagnostic information 
was removed from the data, keeping only symptom scores. Then vari-
ables were cleaned for extreme scores and large amounts of missing data 
(remaining n = 2603). See Supplementary methods in the Supplemen-
tary Material for more detail. MRI measures were obtained from T1- 
weighted scans of 2645 participants. Quality assurance was performed 
using the MRIQC classifier (Esteban et al., 2017) (n = 2479). For par-
ticipants with more than one T1-weighted scan sequence, we selected 
the sequence with the best estimated quality. Distributions of imaging 
quality across scan sequences are shown in Fig. S1. 

The selected T1-weighted data were then processed using FreeSurfer 
(Fischl, 2012; Iglesias et al., 2015a, 2015b, 2018; Saygin et al., 2017; 
Billot et al., 2020) (see Supp. methods). We extracted cortical thickness, 
area, and volume for 34 regions of interest per hemisphere using the 
Desikan-Killiany parcellation, in addition to gyrification indices, 
nuclei/subfield and subcortical volumes, as well as summary statistics 
(n = 2440). Next, MRI variables were cleaned and quality controlled 
(n = 2379, see Supp. methods) and the remaining variables residualised 
for scanner/site, and T1-weighted scan sequence. Volumetric features 
were residualised for estimated total intracranial volume (eTIV). To also 
capture associations with global volume, eTIV was included as a variable 
in the analysis. Both for behavioural and MRI data, remaining missing 
values were imputed with knnimpute and data was normalised using a 
rank-based normal transformation (palm_inormal) from FMRIB Software 
Library Permutation Analysis of Linear Models (Winkler et al., 2014). 
The final sample, with both behavioural and MRI data available, con-
sisted of 1732 participants with 793 behavioural variables and 447 
imaging variables (see Table S1 and S2 for a list). 

2.3. CCA-ICA, split-half reliability, and permutation testing 

To estimate modes of brain-behaviour-associations across partici-
pants, we used ICA with CCA as an intermediate step. The canonical 
variates from CCA represent linear combinations of the imaging vari-
ables that explain variance in linear combinations of the behavioural 
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variables across participants. To facilitate interpretation of the resulting 
orthogonal canonical variates, and following previous applications of 
CCA in population imaging (Alnæs et al., 2020; Miller et al., 2016), we 
submitted the CCA scores to ICA, using the fastICA algorithm (Hyväri-
nen and Oja, 2000). See Supplementary methods for more detail. To 
increase robustness, while at the same time avoiding rank deficiency and 
fitting to noise, we submitted both imaging and behavioural data to 
principal component analysis (PCA) before running CCA-ICA. All ana-
lyses were performed using MATLAB R2020b (Inc, 2020). As part of the 
analysis, we estimated the optimal dimensionality and decomposition 
for PCA and ICA and selected the dimensionality yielding the highest 

split-half reliability for the least reliable component (see Fig. S2 and S3). 
These tests revealed that results were robust to the choice of dimen-
sionality. Next, the significance of the resulting CCA-ICA modes was 
tested using permutations (n = 1000), which inherently controls the 
family-wise error (FWE). To ensure that the initial CCA variates were 
significant (i.e. prior to ICA), these were also tested using permutations 
(n = 1000). 

2.4. Interpretation of CCA-ICA modes 

For plotting and interpretation of the resulting CCA-ICA modes, we 

Fig. 1. Demographics and clinical characteristics of the sample. Distributions of age by sex, sex, comorbidity, diagnosis categories, racial/ethnic background, and 
scanner location. 
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correlated the CCA-ICA participant weights (i.e. mode loadings) into the 
original de-confounded data. The resulting correlations reflect the 
strength with which each variable in the original data load onto the 
overarching pattern (akin to factor loadings), but do not inform us on the 
explicit strength of any bivariate relationships between individual var-
iables. A lists of all variables, with correlations and CCA-ICA weights, 
are shown in Table S3 and S4. 

2.5. Consistency across age, sex, racial/ethnic background, 
socioeconomic status, clinical diagnosis, and medication use 

To assess the effect of age and sex on each mode, we plotted and 
regressed the mode loadings against age, age2, and sex using linear 
models. We also reran the CCA-ICA with all behavioural phenotypes 
residualised with respect to sex. These results revealed similar patterns 
of covariation as the original analysis (correlations between the original 
and sex-adjusted results were r = 0.94 and r = 0.80 for mode 1 and 
mode 2, respectively). Similarly, we reran the correlations between 
mode loadings and original data controlling for age, to check the specific 
influence of age on each mode. These results revealed an almost iden-
tical pattern of covariation for mode 2 (r = 0.98), indicating that mode 1 
(r = 0.86) captured most of the age-related variance. In effect, this age- 
residualised the data driving an age-invariant mode 2. See Fig. S5 for 
partial correlations between mode 2 and original data controlling for 
age. 

Considering that factors related to inequality and socioeconomics 
differ between ethnic groups, these variables were not regressed out of 
the data. To examine whether the detected modes were generalisable 
across racial/ethnic background, we plotted the mode loadings by 
ethnic group (see Fig. S6). Similarly, we plotted the mode loadings by 
median-split of household income, as a proxy for socioeconomic status 
(SES; see Fig. S7). We also reran the correlations between mode loadings 
and original data controlling for household income. These results 
revealed unchanged patterns of covariation (correlations between the 
original and income-adjusted results were r = 0.99 for both modes), 
indicating that our results are consistent across socioeconomic levels. 
The correlation between household income and mode 2 weights was 
r = 0.15. 

Based on clinical diagnostic information provided in the HBN sam-
ple, each participant was categorised based on their first given diag-
nosis, as either “ADHD”, “anxiety disorders”, “mood disorders”, “other 
disorders”, “other neurodevelopmental disorders” or “no diagnosis”. 
Mode loadings were then regressed against diagnosis, with pairwise 
comparisons estimated using the emmeans package in R and adjusted for 
multiple comparisons using Tukey. “No diagnosis” was used as a refer-
ence group. We also regressed mode loadings against number of di-
agnoses. All associations were adjusted for age, age2, and sex. 

As a cross check to investigate whether the dominance of ADHD in 
the sample influenced our findings, we then ran a leave-one-out-cross- 
validation of the CCA-ICA, excluding all those in the sample with an 
ADHD diagnosis. In this analysis, we decomposed the variables by 
multiplying them with the CCA-ICA weights estimated in the original 
analysis and then we correlated the mode loadings with the original 
data, as before. These results revealed similar patterns of covariation as 
the original analysis (the correlation between the original and leave-out- 
ADHD results was r = 0.97 for both modes), indicating that the domi-
nance of ADHD did not unduly drive our findings. Finally, we also reran 
the correlations between mode loadings and original data controlling for 
medication use (yes/no; 288 participants reported yes). These results 
revealed unchanged patterns of covariation (correlations between the 
original and medication-adjusted results were r = 0.99 for both modes), 
indicating that our results are consistent across medication use. 

2.6. Out-of-sample validation 

For the validation sample, we accessed brain MRI, cognitive, and 

clinical data from the Philadelphia Neurodevelopmental Cohort (PNC), 
a large community-based study of brain development in youths aged 
8–21 (Satterthwaite et al., 2016). As a sub-sample of the larger study, 
1445 participants have undergone MRI. Participants were recruited 
from a larger genetic study at the Children’s Hospital of Philadelphia, 
stratified by sex, age, and ethnicity. After pre-processing and quality 
control, the final sample consisted of 1253 participants (681 females). 
Age distribution is provided in Fig. S8. 

The MRI data was processed using the same analysis pipeline as 
described above for HBN. Clinical variables included 129 symptom 
scores decomposed into 7 components using ICA, as reported previously 
(Alnaes et al., 2018): Attention/ADHD, anxiety, conduct disorder, 
depression, psychosis prodrome, mania, and obsessive-compulsive dis-
order (Hettwer et al., 2022). These clinical symptom components reflect 
increased presence of symptoms. In addition, we included a general 
symptom burden measure (mean clinical ICA-score). As cognitive 
measures, we included a general cognitive ability factor (gF, first prin-
cipal component from a PCA across 12 cognitive tests) (Alnaes et al., 
2018) and a social cognitive score (the sum of the Penn Emotion Iden-
tification Test and Penn Emotion Differentiation Test) (Moore et al., 
2015), in addition to a normative deviation score for cognitive abilities 
(Kjelkenes et al., 2022), which reflects the deviation of each partici-
pant’s cognitive ability relative to same-aged peers. 

To assess whether the brain-side of the CCA-ICA results were repli-
cable in the validation sample, we decomposed the PNC MRI variables 
by multiplying them with the imaging CCA-ICA weights estimated in 
HBN. To test whether the resulting MRI spatial maps in PNC overlapped 
with those of HBN, we correlated them and tested the significance of 
these correlations using spin permutations (Vos de Wael et al., 2020; 
Alexander-Bloch et al., 2018). Then, to investigate whether the 
brain-behaviour pattern was generalisable to the validation sample, we 
tested whether the detected brain pattern in PNC could predict scores on 
clinical and cognitive measures. To do this, we correlated the brain 
loadings with clinical and cognitive scores in the PNC sample. These 
scores were not overlapping with clinical and cognitive scores in HBN, 
so they could not be directly compared. However, if the clinical and 
cognitive variables in each sample are ecologically valid, they should 
yield comparable associations with the detected brain pattern, if the 
detected pattern is indeed generalisable. To assess the reliability of the 
associations between derived brain loadings and clinical and cognitive 
variables in PNC, we performed 1000 bootstraps using resampling with 
replacement. For each bootstrap iteration we decomposed the MRI 
variables and correlated the derived brain loadings with the clinical and 
cognitive measures. The resulting bootstrap distribution was used to 
calculate the 95 % confidence intervals for the out-of-sample brain 
scores vs cognitive-clinical correlations. 

3. Results 

3.1. Modes of covariation 

By joint multivariate modelling using CCA-ICA, we aimed to delin-
eate linked dimensions (i.e. modes of covariation) between brain 
structure and clinical, cognitive, and socio-environmental variables in a 
clinical sample of youth. This analysis identified two such modes of 
brain-behaviour covariation (both r = 0.92, pcorr = .005 and pcorr = .006 
for mode 1 and mode 2, respectively). In the initial CCA (i.e. prior to 
ICA), pcorr = .001 for the two first variates. Each mode of brain- 
behaviour covariation represents a distinct pattern that relates a 
weighted set of cognitive, clinical, and socio-environmental factors to a 
weighted set of brain structures. As shown in Fig. 2A, mode 1 captured a 
pattern of associations linked to physical and cognitive maturation. The 
most heavily weighted variables included age, height, weight, pubertal 
development, and academic performance such as numerical operations, 
spelling, and word reading. Higher scores on these measures were linked 
to less parental supervision at home, less need for help with homework, 
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lower prevalence of depressive symptoms, and being able to stay seated 
in the classroom. In relation to the brain, this mode was associated with 
lower cortical thickness and gyrification, specifically in the global gyr-
ification index (GI), precentral, postcentral, and paracentral GI, as well 
as precuneus, superiorparietal, and mean cortical thickness. 

Mode 2 captured a pattern of clinical and cognitive scores, inde-
pendent of age. Specifically, mode 2 linked language skills, academic 
performance, and trouble with social communication to distinct patterns 
of brain structure (see Fig. 2B). Trouble with social communication and 
social cognition overall was associated with worse phonological pro-
cessing and other indications of language fundamentals, worse academic 
performance, and having an individualised education plan. These 
measures were further linked to callous-unemotional traits, lower social 

status, and higher prevalence of psychological difficulties such as 
attention problems, externalisation, internalisation, and hyperactivity. 
This pattern of associations was linked to several brain features, such as 
lower global white matter surface area, rostral middle frontal cortical 
area, lateral orbitofrontal cortical volume, and regional as well as mean 
cortical gyrification. See Fig. S9 for loadings of all variables included in 
the analysis. 

To understand the degree to which these linked dimensions were 
disorder-general or disorder-specific, we then investigated the extent to 
which diagnostic categories explained individual differences in loading 
on each mode. Fig. 3 shows loading on mode 2 by diagnostic category 
and by number of diagnoses (see Fig. S10 for loading on mode 1). Linear 
models (see Table 1, S5, S6, and S7) revealed that participants diagnosed 

Fig. 2. Multivariate pattern of brain-behaviour associations across diagnostic boundaries in youth. Left: Mode 1 captures a pattern linking age, physical, and 
cognitive maturation with lower cortical thickness and gyrification. Right: Mode 2 captures a pattern linking trouble with social communication, cognitive ability, 
and symptoms of psychopathology with lower white matter surface area and gyrification. The values represent correlations between original data values and 
participant CCA-ICA weights (i.e. mode loadings). Depicted here are the variables with the strongest associations with each mode. In; inches. Lbs; pounds. WIAT; 
Wechsler individual achievement test. Lh; left hemisphere. Rh; right hemisphere. CBCL; child behavior checklist. SDQ; strengths and difficulties questionnaire. SRS; 
social responsiveness scale. 

Fig. 3. A larger, more negative score on mode 2 (linking social skills, cognitive ability, and psychopathology to brain structure) was a common feature across all 
diagnostic boundaries. Left: All diagnostic categories had a stronger, more negative loading on mode 2 compared to having no diagnosis. Right: Stronger, more 
negative loading on mode 2 by increasing number of diagnoses (comorbidities). Box plot notches exhibit 95 % confidence intervals for comparing medians. Centred 
around no diagnosis median. ADHD; attention-deficit hyperactivity disorders. Other ND; other neurodevelopmental disorders. 
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with mood disorders showed a higher loading on mode 1, while all 
diagnostic categories, except anxiety disorders, were associated with 
more negative loading on mode 2 compared to participants without a 
diagnosis. Both mode 1 and mode 2 exhibited a significant linear asso-
ciation with the number of diagnoses (see Table S8 and S9). This was 
true when including “no diagnosis” in the model or not, suggesting that 
this effect was not driven by case-control effects. 

3.2. Out-of-sample validation 

As a final step, we tested the replicability and generalisability of our 
findings using an independent sample. Using the brain pattern derived 
from the HBN sample, we estimated feature weights (i.e. loadings) 
across MRI variables in the PNC sample. Comparing these loadings, we 
found strong positive correlations between the two samples (r = 0.95, 
pcorr < .001 and r = 0.71, pcorr < .001 for mode 1 and mode 2, respec-
tively; see Fig. S11 for null distributions of the spin permutation test). As 
shown in Fig. S12 and S13, the covariation structure across MRI vari-
ables in PNC highly resembled HBN. Next, to test the generalisability 
and predictive ability of the brain patterns to clinical and cognitive 
measures, we estimated correlations between the derived brain scores in 
PNC with cognitive and clinical variables. While the measured clinical 

and cognitive constructs were similar between the two samples, they 
were not assessed using identical instruments. Thus, this out-of-sample 
validation also constitutes a test of the external validity of the brain- 
behaviour relationship. This analysis revealed that a larger, more 
negative mode 2 brain loading was linked to greater negative deviation 
from a normative cognitive trajectory, lower cognitive abilities, higher 
average symptom burden, as well as higher symptoms of anxiety and 
conduct disorder (see Fig. 4). Mode 2 was largely age invariant, how-
ever, to further confirm the age-independence of mode 2, the scores 
were residualised with respect to age in this plot. Mode 1 exhibited 
positive associations with age and cognitive abilities, as well as higher 
average symptom burden (see Fig. S14). 

4. Discussion 

In this study we leveraged the HBN sample, a clinical youth cohort 
aged 5–21, to delineate dimensions of brain-behaviour associations 
across diagnostic boundaries in youth. We identified two modes of 
brain-behaviour covariation, linking maturation, cognitive ability, so-
cial skills, and symptoms of psychopathology to individual differences in 
brain structure. The dimension linking cognitive ability, social skills, 
and symptoms of psychopathology to brain structure was a common 
feature across all diagnostic boundaries, suggesting a disorder-general 
effect. We also demonstrated the generalisability and predictive ability 
of these patterns in an independent population-based sample with a 
similar age range. Together, these findings suggest that brain-behaviour 
associations in youth are broad and transdiagnostic, implicating factors 
such as cognitive ability and social skills and scaling with the number of 
comorbid illnesses. 

The first mode linked lower cortical thickness and gyrification with 
age and measures of physical and cognitive maturation, reflecting age- 
related improvements in school performance, pubertal development, 
higher height, and weight. This mode replicates previous studies in 
youth showing lower cortical thickness (Shaw et al., 2008; Mills et al., 
2016; Tamnes et al., 2010) and gyrification (Raznahan et al., 2011; Su 
et al., 2013) with increasing age, as well as cognitive maturation (Chung 
et al., 2017). Moreover, our results align with a previous multivariate 
investigation in a longitudinal sample of adolescents (Modabbernia 
et al., 2021a), identifying the strongest brain-behaviour associations to 
be between measures of brain structure and sex, age, and indices of 
maturation. This emphasises common maturational factors as the most 
important influences on neurodevelopment, also when environmental, 

Table 1 
Pairwise comparisons of associations with each mode between no diagnosis and 
each diagnostic category. Age, age2, and sex are included as covariates.  

Comparison Beta SE df LL UL t- 
value 

corr p 

Mode 1        
ADHD 0.03 0.04 1719 -0.08 0.13 0.73 0.978 
Anxiety 0.01 0.04 1719 -0.11 0.13 0.28 1.000 
Mood 0.27 0.06 1719 0.09 0.46 4.22 3.7 × 10-4 

Other < 0.01 0.06 1719 -0.18 0.17 -0.06 1.00 
Other ND 0.06 0.04 1719 -0.05 0.17 1.58 0.611 
Mode 2        
ADHD -0.68 0.08 1719 -0.91 -0.46 -8.64 3.7 × 10-12 

Anxiety -0.24 0.09 1719 -0.51 0.02 -2.66 0.084 
Mood -0.74 0.14 1719 -1.15 -0.33 -5.15 4.3 × 10-6 

Other -0.51 0.14 1719 -0.90 -0.12 -3.71 0.003 
Other ND -0.57 0.09 1719 -0.81 -0.32 -6.59 8.7 × 10-10 

Note. ADHD; attention-deficit hyperactivity disorders. ND; neurodevelopmental 
disorders. SE; standard error. df; degrees of freedom. LL; lower confidence level 
(2.5 %). UL; upper confidence level (97.5 %). corr p; p-value adjusted with 
Tukey. 

Fig. 4. Mode 2 derived brain loadings in PNC correlate 
with comparable clinical and cognitive measures. A larger, 
more negative score on mode 2 is correlated with lower 
cognitive ability and negative deviations from normative 
cognitive development. A negative cognitive normative 
deviation indicates poorer cognitive development than 
expected. Error bars represent bootstrapped 95 % confi-
dence intervals for correlations across 1000 bootstrap- 
decompositions of the PNC imaging data. ADHD; 
attention-deficit hyperactivity disorder. OCD; obsessive 
compulsive disorder. gF; general cognitive ability.   
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demographical, and psychosocial influences were considered. 
The second mode captured a pattern of socio-cognitive difficulties 

associated with lower cortical volume, surface area, and gyrification. 
Specifically, this pattern reflected difficulties with communicating and 
relating to peers, worse language development and school performance, 
and emerging psychological difficulties. Such a “positive-negative” 
dimension across behavioural, clinical, and socio-environmental factors 
has previously been linked to individual differences in brain 
morphology and connectivity in population-based samples (Smith et al., 
2015; Alnæs et al., 2020; Modabbernia et al., 2021b). The current results 
extend these findings by demonstrating their relevance for character-
ising psychopathology in youth that already have a psychiatric diag-
nosis. Indeed, we established that the current pattern was detectable 
also in an independent population-based sample. This overlap between 
clinical and non-clinical populations lend support to the con-
ceptualisation of psychopathology as existing on a continuum, such as 
the p-factor framework (Caspi and Moffitt, 2018). Importantly, the 
pattern we identified was common across all diagnostic boundaries, 
indicating a disorder-general or shared pattern. Having a higher number 
of diagnoses (i.e. comorbidities) was also associated with larger de-
viations (i.e. larger, more negative loading) on mode 2. This is in line 
with comorbidity as a prevalent feature of mental illness (Plana-Ripoll 
et al., 2019), as well as the finding that transdiagnostic symptom burden 
(i.e. the p-factor) is more predictive of clinical life trajectories than any 
specific diagnosis (Caspi et al., 2020, 2014). This has implications for 
prevention and interventions targeting risk for mental illness in youth, 
as well as the understanding of psychopathology aetiology more 
broadly. 

Previous work on shared brain structural abnormalities across 
diagnostic boundaries in adults found one latent factor to explain ab-
normalities associated with major depression, bipolar disorder, schizo-
phrenia, and OCD, while abnormalities in ADHD and autism spectrum 
disorder (ASD) were largely independent (Opel et al., 2020). Contrary to 
this, we found a great degree of overlap in brain-behaviour associations 
across all disorders. In the current work, the brain associations across 
disorders were constrained by their link to the behaviour-associations, 
which may explain the different results. Whether neurodevelopmental 
disorders belong in the general psychopathology domain or rather 
represent separate entities remains a topic of discussion (Ronald, 2019). 
Our findings suggest that in terms of brain-behaviour associations, 
ADHD and ASD belong in the same terrain as other psychiatric disorders. 

Cortical surface area was among the highest loading brain measures 
on mode 2, the dimension linked to cognitive ability, social skills, and 
psychopathology. Postnatal surface area expansion has been proposed to 
reflect local cellular events, such as intracortical myelination, glio-
genesis, synaptogenesis and dendritic arborization (Hill et al., 2010). In 
typically developing children, surface area increases until late childhood 
or early adolescence (Amlien et al., 2016). As such, lower surface area 
may reflect disadvantageous or delayed brain development. Indeed, 
smaller surface area has been linked to poorer cognition, poorer physical 
development, and poorer social environment in children aged 9–10 
relative to same-aged peers (Modabbernia et al., 2021b). Given that 
surface area was adjusted for eTIV in our analyses, the high loading of 
this brain feature likely reflect cortical folding, the only plausible 
avenue for expanding cortical surface area without a corresponding 
expansion of intracranial volume (Mota and Herculano-Houzel, 2015). 
Indeed, both global and regional cortical gyrification were also among 
the highest loading brain features on mode 2. 

Gyrification typically decreases from middle childhood until young 
adulthood (Raznahan et al., 2011), and we replicated this age-related 
gyrification pattern in mode 1. Mode 2 was, however, only weakly 
associated with age, and the pattern of lower gyrification here was 
linked to individual differences in clinical and cognitive measures. 
Common age-related effects appear to be captured by mode 1, as shown 
by the fact that raw scores and t scores on cognitive tests exhibit over-
lapping loading on mode 2. Moreover, the pattern of variable loading in 

mode 2 when controlling for age was largely overlapping with the 
original uncorrected analysis, further supporting this interpretation. As 
such, the pattern of associations in mode 2 is to a large extent age 
invariant and represent other mechanisms than merely the effect of age. 

Reduced cortical folding in individuals with socio-cognitive diffi-
culties is in line with previous work relating lower gyrification to neu-
rodevelopmental diagnoses such as ADHD (Wolosin et al., 2009), ASD 
(Bos et al., 2015), intellectual disability (Zhang et al., 2010), and 
dyslexia (Casanova et al., 2004). This association may thus represent an 
important neural correlate for social and neurocognitive difficulties. 
Indeed, our validation of the mode 2 brain pattern in an independent 
population-based sample revealed a robust association with deviations 
from normative cognitive development. These results suggests that 
cognitive problems represent a relevant characteristic of mental illness 
across diagnostic boundaries, which is compatible with previous find-
ings identifying cognition as a common risk factor for psychopathology 
and a core characteristic of general vulnerability for psychopathology 
(Abramovitch et al., 2021; Caspi et al., 2014; Michelini et al., 2019). 
Interventions aimed at improving mental health in youth may thus 
benefit from targeting cognitive development and the environments 
supporting it, such as schools and education. In line with previous 
findings linking SES to vulnerability for mental illness (Reiss, 2013), 
mode 2 was associated with SES. However, the correlation was moder-
ate, suggesting that brain-linked vulnerability cannot be simply 
explained as SES-driven individual differences. 

Other studies have reported shared brain connectivity patterns 
across anxiety, irritability, and ADHD in other clinical samples of youth 
(Linke et al., 2021). While substantial evidence now points towards 
cross-diagnostic brain deviations in psychopathology (Goodkind et al., 
2015; Sha et al., 2019), this does not rule out disorder-specific patterns, 
and a full account of the brain basis of mental illness require mapping of 
both (Linke et al., 2021; Buckholtz and Meyer-Lindenberg, 2012). Mood 
disorders predicted mode 1 in addition to mode 2, unlike the other 
diagnostic categories which were only linked to mode 2. This is likely 
driven by the fact that individuals with a mood disorder were older than 
the rest of the sample. Having a higher number of diagnoses was also 
associated with higher loading on mode 1, likely reflecting the increased 
prevalence of diagnoses with increasing age (Caspi et al., 2020). 

Some limitations should be noted. Acquiring high-quality neuro-
imaging data in youth and clinical samples is challenging, especially in 
clinical cohorts. Here we utilised the MRIQC classifier to exclude par-
ticipants with insufficient image quality and excluded any remining 
extreme data points from analysis. Both samples applied cross-sectional 
designs, while longitudinal studies are required to conclude whether the 
observed age-related individual differences reflect within-person 
developmental trajectories. Multiple measurements may also allow for 
determining the dynamic interplay between environmental factors, 
mental health symptoms, and brain changes, thereby illuminating 
whether brain changes precede or is a consequence of mental health 
symptoms (Muetzel et al., 2017). The current sample consisted of largely 
children with a clinical diagnosis. Although evidence suggests substan-
tial overlap across diagnostic boundaries, we do not know whether those 
individuals who develop mental illness early in life represent a quali-
tatively different group in terms of aetiology compared to those devel-
oping mental illness during adolescence and early adulthood. Evidence 
suggests that age-of-onset is an important aspect of the p-factor, which is 
more predictive of clinical life trajectories than any specific diagnosis 
(Caspi et al., 2020, 2014). The identified brain-behaviour patterns were 
detectable in an independent sample, which further supports the gen-
eralisability of our findings and is a strength of the current study. 

5. Conclusions 

In this study, we delineated dimensions of brain-behaviour associa-
tions across diagnostic boundaries in youth. In addition to expected 
patterns of maturation, we found that lower cognitive ability, poor 
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social skills, and symptoms of psychopathology are linked to individual 
differences in brain structure, and that this is a common feature across 
diagnostic boundaries. These findings were detectable in an indepen-
dent sample, supporting their generalisability and predictive ability. In 
line with the p-factor framework, this suggests that broad and trans-
diagnostic effects are the most potent patterns of brain-behaviour as-
sociations. This emphasises the importance of transdiagnostic 
approaches in the identification of shared and distinct patterns relevant 
for psychopathology, a critical step towards more informed models of 
psychopathology. 
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