Smoking and Drinking Activates NF-κB /IL-6 Axis to Promote Inflammation During Cervical Carcinogenesis

Vivek K. Kashyap,^{1,2,3} Prashanth K.B. Nagesh,^{1,3,5} Ajay K. Singh,³ Andrew Massey,^{1,3,4} Godwin P. Darkwah¹, Murali M. Yallapu,^{1,2,3} Meena Jaggi,^{1,2,3}* and Subhash C. Chauhan^{1,2,3}*

¹Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA 78504

²South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA

³Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA

⁴Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, NIH, Maryland, 20894, USA

⁵Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, 10065, USA

ABSTRACT

BACKGROUND: High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated the molecular mechanisms involved in the interplay of smoking and/or drinking with HPV infectivity and defined a systematic therapeutic approach for their attenuation in cervical cancer.

METHODS: The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in cell proliferation, clonogenicity, biophysical properties, cell migration, and invasion. Expression of HPV16 E6/E7, NF- κ B, cytokines, cell cycle, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay and confocal microscopy.

RESULTS: The exposure of cervical cancer cells to B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers; it also enhanced cellular clonogenicity, migration, and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF- α and NF- κ B signaling, leading to IL-6 upregulation and activation of VEGFA. These molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by Cur/PLGA-Cur.

CONCLUSIONS: These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. However, these events were determined to be attenuated by treatment with Cur/PLGA-Cur treatment, implying its role in cervical cancer prevention/treatment. **Keywords**: Cervical cancer, HPV16 E6/E7; Cigarette smoking and drinking; Benzo[a]pyrene; Human immunodeficiency virus; NF- κ B