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Abstract
We prove asymptotics and study sign patterns for coefficients in expansions of elements in
the Habiro ring which satisfy a strange identity. As an application, we prove asymptotics and
discuss positivity for the generalized Fishburn numbers which arise from the Kontsevich–
Zagier series associated to the colored Jones polynomial for a family of torus knots. This
extends Zagier’s result on asymptotics for the Fishburn numbers.
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1 Introduction

The expression

F(q) :=
∞∑

n=0

(q)n (1.1)
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57 Page 2 of 17 A. Goswami et al.

first occurred in a talk entitled “Analytic continuation of Feynman integrals” by Kontsevich
as part of the Seminar on Algebra, Geometry and Physics at MPIM Bonn on October 14,
1997. Here and throughout,

(a)n = (a; q)n :=
n∏

k=1

(1 − aqk−1)

is the standard q-hypergeometric notation. Note that (1.1) does not converge on any open
subset of C, but is well-defined when q is a root of unity (where it is finite) and when q is
replaced by 1 − q . Moreover, F(q) is an element of the Habiro ring [13]

H := lim←−
n

Z[q]/〈(q)n〉.

Motivated by Kontsevich’s lecture and Stoimenow’s work on regular linearized chord dia-
grams [16], Zagier determined the asymptotic behavior for the Fishburn numbers ξ(n)which
are the coefficients in the formal power series expansion

F(1 − q) =:
∞∑

n=0

ξ(n)qn = 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + · · · .

Namely, as n → ∞ [19, Theorem 4]

ξ(n) ∼
( 6

π2

)n
n!√n

(
C0 + C1

n
+ · · ·

)
(1.2)

where C0 = 12
√
3

π
5
2
e

π2

12 , C1 = C0

(
3
8 − 17π2

144 + π4

432

)
and all Ci are effectively computable

constants. A key step in proving (1.2) is the “strange identity”

F(q)“ = ” − 1

2

∞∑

n=1

n
(12
n

)
q

n2−1
24 (1.3)

where “=” means that the two sides agree to all orders at every root of unity (for further
details, see [19, Sections 2 and 5]) and

( 12
∗

)
is the quadratic character of conductor 12.

The idea is to first express ξ(n) in terms of the Taylor series coefficients of F(e−t ), then
employ (1.3) to, ultimately, obtain estimates for these coefficients. These estimates, in turn,
lead to (1.2). “Identities” such as (1.3) are not only important in proving asymptotics, but
also play a crucial role in obtaining congruences for ξ(n) modulo prime powers [2] and
quantum modularity for F(q) [20]. For developments in these latter two directions, see [1,
2, 5, 8–12, 17]. The positivity of the Fishburn numbers ξ(n) is a consequence of any of its
numerous combinatorial interpretations [18, A022493]. The purpose of this paper is to prove
asymptotics and study sign patterns for coefficients in expansions of elements in H which
satisfy a general type of strange identity. Before stating our main result, we introduce some
notation.

Let f : Z → C be a function of period M ≥ 2. For integers a ≥ 0 and b > 0, consider
the partial theta series

θ
(ν)
a,b, f (q) :=

∞∑

n=0

nν f (n)q
n2−a
b

123
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where ν ∈ {0, 1}. Suppose there exists

Ff (q) :=
∞∑

n=0

An, f (q)(q)n ∈ H

where An, f (q) ∈ Z[q] such that
Ff (q)“ =” θ

(ν)
a,b, f (q). (1.4)

We write

Ff (1 − q) =:
∞∑

n=0

ξ f (n)qn

and define

G(ν)
f (k) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2√
M

∑

m (mod M)

f (m) sin
(2πmk

M

)
if ν = 0,

2√
M

∑

m (mod M)

f (m) cos

(
2πmk

M

)
if ν = 1.

(1.5)

Assume there exists a smallest positive integer kν such that G(ν)
f (kν) �= 0. Next, we define

M f ,ν := 2 · #{0 ≤ m ≤ M − 1 : f (m) �= 0}
|G(ν)

f (kν)|
√
M

max
0≤m≤M−1

| f (m)| (1.6)

and let N (max)
f ,ν ≥ 0 be the smallest integer such that

M f ,ν (ζ(2n + ν + 1) − 1) < 1 (1.7)

for n ≥ N (max)
f ,ν where ζ(s) is the Riemann zeta function. Observe that N (max)

f ,ν exists since
ζ(2n + ν + 1) − 1 → 0 as n → ∞ and M f ,ν is independent of n. Finally, let Bk(x) denote
the kth Bernoulli polynomial for an integer k ≥ 0. Our main result is now the following.

Theorem 1.1 Assume (1.4) is true. Then as n → ∞, we have

ξ f (n) ∼ (−1)ν
(

M

2πkν

)2n+ν+1 G(ν)
f (kν)22n+νn!nν− 1

2

bn
√

πM
e
bk2νπ2

2M2 . (1.8)

Moreover, there exists an integer 0 ≤ N f ,ν ≤ N (max)
f ,ν such that if

(−1)n+1
M∑

m=1

f (m)B2n+ν+1

( m

M

)
(1.9)

has the same sign as (−1)νG(ν)
f (kν) for all 0 ≤ n < N f ,ν , then for all non-negative integers

�, ξ f (�) has the same sign as (−1)νG(ν)
f (kν).

The paper is organized as follows. In Sect. 2, we prove Theorem 1.1. In Sect. 3, we
give some applications, including asymptotics and positivity statements for the generalized
Fishburn numbers ξt (n) which arise from the Kontsevich–Zagier series Ft (q) associated to

123



57 Page 4 of 17 A. Goswami et al.

the colored Jones polynomial for the family of torus knots T (3, 2t ), t ≥ 2 [8]. This extends
(1.2) and gives an alternative proof of the positivity of the Fishburn numbers ξ(n) (see
Corollary 3.1 and Remark 3.2). In Sect. 4, we comment on asymptotics for other expansions
of Ff (q) and then concludewith conjectures concerning the positivity of coefficients for these
expansions in three situations:Ft (q), the Kontsevich–Zagier series associated to the colored
Jones polynomial for the family of torus knots T (2, 2m + 1), m ≥ 1 and a “Habiro-type”
q-series with origins in Ramanujan’s lost notebook [3].

2 Proof of Theorem 1.1

Proof of Theorem 1.1 We follow the strategy of [19]. To find the asymptotics of ξ f (n), we
first consider the expansions

Ff (e
−t ) =

∞∑

n=0

Bn, f

n! tn (2.1)

and

e
−ta
b F f (e

−t ) =
∞∑

n=0

Cn, f

n!
(
t

b

)n

. (2.2)

Let

P(ν)
a,b, f (q) := q

a
b θ

(ν)
a,b, f (q)

and define the L-function

L(s, f ) =
∞∑

n=1

f (n)

ns
.

The Mellin transform of P(ν)
a,b, f (e

−t ) is

∫ ∞

0
t s−1P(ν)

a,b, f (e
−t )dt =

∞∑

n=0

nν f (n)

∫ ∞

0
t s−1e

−tn2
b dt

= bs�(s)
∞∑

n=0

f (n)

n2s−ν

= bs�(s)L(2s − ν, f ) (2.3)

where �(s) is the usual Gamma function. Applying Mellin inversion to (2.3), we obtain

P(ν)
a,b, f (e

−t ) = 1

2π i

∫

Re(s)=c
bs�(s)L(2s − ν, f )

ds

ts

where Re(s) = c is the abscissa of absolute convergence of bs�(s)L(2s−ν, f )
t s . It is well-known

that L(s, f ) can be analytically continued to the whole complex plane except for a possible
simple pole at s = 1 with residue

R f ,M := 1

M

∑

m (mod M)

f (m).

123
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By a standard complex analytic computation, we have

P(ν)
a,b, f (e

−t ) ∼
∞∑

n=0

(−1)n L(−2n − ν, f )

bnn! tn + b
ν+1
2 �

(
ν+1
2

)
R f ,M

t
ν+1
2

as t → 0+. By (1.4) and (2.2), we compare coefficients to obtain

Cn, f = (−1)n L(−2n − ν, f ). (2.4)

Also, it is clear from (1.4) and (2.2) that R f ,M = 0. Via [15, Eqn. (24)] or [6, Chapter 12],
we have

L(−2n − ν, f ) = (−1)n+ν

(
M

2π

)2n+ν+1
(2n + ν)!√

M

∞∑

k=1

G(ν)
f (k)

k2n+ν+1 . (2.5)

Let kν ≥ 1 be the smallest integer such that G(ν)
f (kν) �= 0. Then

L(−2n − ν, f ) = (−1)n+ν

(
M

2π

)2n+ν+1 G(ν)
f (kν)(2n + ν)!
k2n+ν+1
ν

√
M

(
1 + O

((
kν

kν + 1

)2n−ε
))

(2.6)

for any ε > 0.1 Using (2.4) and (2.6), it follows

Cn, f = (−1)ν
(
M

2π

)2n+ν+1 G(ν)
f (kν)(2n + ν)!
k2n+ν+1
ν

√
M

(
1 + O

((
kν

kν + 1

)2n−ε
))

. (2.7)

From (2.1), we have

Bn, f = 1

bn

n∑

k=0

(
n

k

)
an−kCk, f = 1

bn

(
Cn, f + naCn−1, f + n(n − 1)a2

2
Cn−2, f + · · ·

)
.

(2.8)

From (2.7) and (2.8), we deduce

Bn, f = Cn, f

bn

⎛

⎜⎝1 +
na

(
2πkν

M

)2

(2n + ν − 1)(2n + ν)

+
n(n − 1)a2

(
2πkν

M

)4

2(2n + ν − 3)(2n + ν − 2)(2n + ν − 1)(2n + ν)
+ · · ·

⎞

⎟⎠ .

(2.9)

An application of Stirling’s formula

n! = √
2πn

(n
e

)n (
1 + 1

12n
+ 1

288n2
+ · · ·

)
(2.10)

1 We can take ε = 0 when ν = 1.
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57 Page 6 of 17 A. Goswami et al.

implies

(2n + ν)!
n!2 = 22n+νnν− 1

2√
π

(
1 + (−1)ν+1(2ν + 1)

8n
+ (−1)ν(6ν + 1)

128n2
+ · · ·

)
. (2.11)

Combining (2.7), (2.9) and (2.11) yields

Bn, f = (−1)ν
(

M

2πkν

)2n+ν+1 G(ν)
f (kν)22n+νn!2nν− 1

2

bn
√

πM

(
1 + O

((
kν

kν + 1

)2n−ε
))

×
(
1 + (−1)ν+1(2ν + 1)

8n
+ (−1)ν(6ν + 1)

128n2
+ · · ·

)
⎛

⎜⎝1 +
na

(
2πkν

M

)2

(2n + ν − 1)(2n + ν)

+
n(n − 1)a2

(
2πkν

M

)4

2(2n + ν − 3)(2n + ν − 2)(2n + ν − 1)(2n + ν)
+ · · ·

⎞

⎟⎠

and so

Bn, f ∼ (−1)ν
(

M

2πkν

)2n+ν+1 G(ν)
f (kν)22n+νn!2nν− 1

2

bn
√

πM

(
1 + α1, f ,ν

n
+ α2, f ,ν

n2
+ · · ·

)

(2.12)

whereα1, f ,ν := a
(
2πkν
M

)2

4 + (−1)ν+1(2ν+1)
8 and all the remaining constantsαi, f ,ν are effectively

computable. Now, we recall

tm

m! =
∞∑

n=m

Sn,m
(1 − e−t )n

n! (2.13)

where Sn,m denotes the Stirling numbers of the first kind. From (2.1) and (2.13), we inter-
change sums

Ff (e
−t ) =

∞∑

m=0

Bm, f

∞∑

n=m

Sn,m
(1 − e−t )n

n! = B0, f +
∞∑

n=1

(1 − e−t )n

n!
n∑

m=1

Sn,mBm, f

and thus

ξ f (n) = 1

n!
n−1∑

m=0

Sn,n−mBn−m, f . (2.14)

Next, from Sn,n = 1 and the recursion Sn+1,m = Sn,m−1 + nSn,m we have

Sn,n−m = n2m

2mm!
(
1 − β1(m)

n
+ β2(m)

n2
+ · · ·

)
(2.15)

with computable coefficients β1(m) = 2m2+m
3 , β2(m), . . .. From (2.12), it follows

Bn−m, f

Bn, f
=

(
bk2νπ

2

M2

)m (
(n − m)!

n!
)2 (

1 + O

(
1

n

))
(2.16)

123
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and by (2.10)
(

(n − m)!
n!

)2

= 1

n2m

(
1 + m(m − 1)

n
+ 3m4 − 4m3 + m

6n2
+ · · ·

)
. (2.17)

Finally, we combine (2.14)–(2.17) to obtain

ξ f (n) = Bn, f

n!
n−1∑

m=0

1

m!
(
bk2νπ

2

2M2

)m (
1 + O

(
1

n

))

×
(
1 − β1(m)

n
+ β2(m)

n2
+ · · ·

) (
1 + m(m − 1)

n
+ 3m4 − 4m3 + m

6n2
+ · · ·

)

= Bn, f

n!

( ∞∑

m=0

1

m!
(
bk2νπ

2

2M2

)m

+ O

(
1

n

))

= Bn, f

n! e
bk2νπ2

2M2

(
1 + O

(
1

n

))
.

The result (1.8) now follows from (2.12). Now for fixed f , we have from (2.4) and (2.5)

Cn, f = (−1)νG(ν)
f (kν)

(
M

2π

)2n+ν+1
(2n + ν)!

k2n+ν+1
ν

√
M

⎛

⎝1 + 1

G(ν)
f (kν)

∞∑

k=kν+1

G(ν)
f (k)

k2n+ν+1

⎞

⎠ .

(2.18)
Next, (1.5) implies

∣∣∣∣∣
G(ν)

f (k)

G(ν)
f (kν)

∣∣∣∣∣ ≤ M f ,ν

and this yields
∣∣∣∣∣∣

1

G(ν)
f (kν)

∞∑

k=kν+1

G(ν)
f (k)

k2n+ν+1

∣∣∣∣∣∣
≤ M f ,ν (ζ(2n + ν + 1) − 1) < 1 (2.19)

for n ≥ N (max)
f ,ν where N (max)

f ,ν is as in (1.7). Clearly, we can choose 0 ≤ N f ,ν ≤ N (max)
f ,ν

satisfying (2.19) for n ≥ N f ,ν . For such an N f ,ν , it now follows from (2.18) that Cn, f and

(−1)νG(ν)
f (kν) have the same sign for all n ≥ N f ,ν . Next, we note using (2.4) and [2, Lemma

3.2] that

Cn, f = (−1)n+1 M2n+ν

2n + ν + 1

M∑

m=1

f (m)B2n+ν+1

( m

M

)
(2.20)

where for k ≥ 0, Bk(x) denotes the kth Bernoulli polynomial. Hence (2.20) implies that if
Cn, f , or equivalently (1.9), has the same sign as (−1)νG(ν)

f (kν) for 0 ≤ n < N f ,ν , then (2.8)

and (2.14) imply that ξ f (�) has the same sign as (−1)νG(ν)
f (kν) for all � ≥ 0. ��

3 Examples

In this section, we illustrate Theorem 1.1 with three examples.
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57 Page 8 of 17 A. Goswami et al.

3.1 Kontsevich–Zagier series for torus knots T(3, 2t)

For t ≥ 2, consider the Kontsevich–Zagier series associated to the family of torus knots
T (3, 2t )

Ft (q) = (−1)h
′′(t)q−h′(t)

∞∑

n=0

(q)n
∑

3
∑m(t)−1

�=1 j�� ≡ 1 (mod m(t))

(−1)
∑m(t)−1

�=1 j�q
−a(t)+∑m(t)−1

�=1 j��

m(t) +∑m(t)−1
�=1 (

j�
2 )

×
m(t)−1∑

k=0

m(t)−1∏

�=1

[
n + I (� ≤ k)

j�

]
(3.1)

where

h′′(t)=
{

2t−1
3 if t is even,

2t−2
3 if t is odd,

h′(t)=
{

2t−4
3 if t is even,

2t−5
3 if t is odd,

a(t)=
{

2t−1+1
3 if t is even,

2t+1
3 if t is odd,

m(t) = 2t−1, I (∗) is the characteristic function and
[
n
k

]
= (q)n

(q)n−k(q)k

is the q-binomial coefficient.2 The expression Ft (q) matches the N th colored Jones poly-

nomial for T (3, 2t ) at a root of unity q = e
2π i
N , converges in a similar manner as F(q) and

is an element of H (see [8] for further details). The generalized Fishburn numbers ξt (n) are
defined by

Ft (1 − q) =
∞∑

n=0

ξt (n)qn .

An application of Theorem 1.1 is the following. Note that (1.2) follows after taking t = 1
and simplifying (for brevity, we only state the leading term).

Corollary 3.1 Let t ≥ 1. As n → ∞, we have

ξt (n) ∼ sin( π
2t )

2t
√
3π

(
3 · 2t

π

)2n+2 22n+1n!√n

(3 · 2t+2)n
e

π2

3·2t+1 . (3.2)

Moreover, let Nt ≥ 0 be the smallest integer such that

ζ(2n + 2) < sin
( π

2t

)
+ 1 (3.3)

for n ≥ Nt . If

(−1)n
[
B2n+2

(
2t+1 − 3

3 · 2t+1

)
− B2n+2

(
2t+1 + 3

3 · 2t+1

)]
≥ 0 (3.4)

for all 0 ≤ n < Nt , then ξt (�) > 0 for all � ≥ 0 and t ≥ 1.

Proof TheKontsevich–Zagier seriesFt (q) satisfies the strange identity [8, Proposition 2.4]3

Ft (q)“ =” θ
(1)
(2t+1−3)2,3·2t+2,χt

(q) (3.5)

2 For t = 1, one may define the sum over the j� to be 1 in (3.1) to recover (1.1).
3 Taking t = 1 in (3.5) and (3.6) recovers (1.3).

123



Asymptotics and sign patterns for coefficients. . . Page 9 of 17 57

where

χt (n) :=

⎧
⎪⎨

⎪⎩

− 1
2 if n ≡ 2t+1 − 3, 3 + 2t+2 (mod 3 · 2t+1),

1
2 if n ≡ 2t+1 + 3, 2t+2 − 3 (mod 3 · 2t+1),

0 otherwise.

(3.6)

Note that χt is an even function with period M = 3 · 2t+1. Next, we claim that k1 = 1. To
see this, observe that (1.5) and (3.6) yield

G(1)
χt

(1) = − 1√
3 · 2t+1

{
cos

(
2π(2t+1 − 3)

3 · 2t+1

)
+ cos

(
2π(3 + 2t+2)

3 · 2t+1

)

− cos

(
2π(2t+1 + 3)

3 · 2t+1

)
− cos

(
2π(2t+2 − 3)

3 · 2t+1

)}

= − 1√
2t−1

sin
( π

2t

)
(3.7)

which is non-zero for any t ≥ 1. By Theorem 1.1, (3.5) and (3.7), (3.2) follows. To deduce
the positivity statement for ξt (n), we first note using (1.6) and (3.7) that

Mχt ,1 = 8
√
3 · 2t+1

∣∣∣∣G
(1)
χt (kν)

∣∣∣∣

= 4√
3 sin

(
π
2t

) .

Thus, (1.7) implies that N (max)
t := N (max)

χt ,1
≥ 0 is the smallest integer satisfying

ζ(2n + 2) <

√
3

4
sin

( π

2t

)
+ 1

for n ≥ N (max)
t . In fact,

∣∣∣∣G
(1)
χt

(k)

∣∣∣∣ ≤ 1√
2t−1

and thus we obtain using (3.7)
∣∣∣∣∣

1

G(1)
χt (1)

∞∑

k=2

G(1)
χt (k)

k2n+2

∣∣∣∣∣ ≤ ζ(2n + 2) − 1

sin
(

π
2t

) < 1

for n ≥ Nt with 0 ≤ Nt ≤ N (max)
t . Using Theorem 1.1 and the fact that

Bk(x) = (−1)k Bk(1 − x) (3.8)

for k ≥ 0, it now follows that for all non-negative integers �, ξt (�) > 0 if (3.4) is non-negative
for 0 ≤ n < Nt . ��

Remark 3.2 Using Corollary 3.1, we verify (3.4) for 0 ≤ n < Nt to confirm that ξt (�) > 0
for all � ≥ 0 and 1 ≤ t ≤ 500. In particular, this shows that ξ(�) > 0 for all � ≥ 0. In Table
1, we list values of Nt for 1 ≤ t ≤ 10.
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Table 1 List of values of Nt for
1 ≤ t ≤ 10

t 1 2 3 4 5 6 7 8 9 10

Nt 0 0 1 1 1 2 2 3 3 4

3.2 Kontsevich–Zagier series for torus knots T(2, 2m+ 1)

Let m ∈ N. For 0 ≤ � ≤ m − 1, define the Kontsevich–Zagier series for the torus knot
T (2, 2m + 1) as follows:

X (�)
m (q) :=

∞∑

k1,k2,...,km=0

(q)km q
k21+···+k2m−1+k�+1+···+km−1

m−1∏

i=1

[
ki+1 + δi,�

ki

]

where δi,� is the characteristic function. The expression X (�)
m (q) matches the N th colored

Jones polynomial for T (2, 2m + 1) when � = 0 and q = e
2π i
N and is an element ofH. Write

X (�)
m (1 − q) =:

∞∑

n=0

ξ�,m(n)qn .

Another application of Theorem 1.1 is the following. Observe that (1.2) also follows by
choosing m = 1 and � = 0 and simplifying as X (0)

1 (q) = F(q).

Corollary 3.3 Let m ∈ N and 0 ≤ � ≤ m − 1. As n → ∞, we have

ξ�,m(n) ∼ sin

(
π(� + 1)

2m + 1

) (
2m + 1

π2

)n+1 2n+3n!√n√
π

e
π2

8m+4 . (3.9)

Moreover, let Nm,� ≥ 0 be the smallest integer such that

ζ(2n + 2) < sin

(
π(� + 1)

2m + 1

)
+ 1 (3.10)

for n ≥ Nm,�. If

(−1)n
[
B2n+2

(
2m − 2� − 1

8m + 4

)
− B2n+2

(
2m + 2� + 3

8m + 4

)]
≥ 0 (3.11)

for all 0 ≤ n < Nm,�, then ξ�,m(k) > 0 for all k ≥ 0 and 0 ≤ � ≤ m − 1.

Proof Hikami [14, Eqn. (15)] established the strange identity

X (�)
m (q)“ =” θ

(1)

(2m−2�−1)2,8(2m+1),χ(�)
m

(q) (3.12)

where

χ(�)
m (n) :=

⎧
⎪⎨

⎪⎩

− 1
2 if n ≡ 2m − 2� − 1, 6m + 2� + 5 (mod 8m + 4),

1
2 if n ≡ 2m + 2� + 3, 6m − 2� + 1 (mod 8m + 4),

0 otherwise.

(3.13)

Note that χ(�)
m (n) is an even function with period M = 8m + 4. Next, we claim that k1 = 1.

To see this, observe that (1.5) and (3.13) yield

G(1)

χ
(�)
m

(1) = − 1√
8m + 4

{
cos

(
2π(2m − 2� − 1)

8m + 4

)
+ cos

(
2π(6m + 2� + 5)

8m + 4

)
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Table 2 List of values of Nm,�

for 1 ≤ m ≤ 5 and
0 ≤ � ≤ m − 1

m 1 2 3 4 5

� 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

Nm,� 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0

− cos

(
2π(2m + 2� + 3)

8m + 4

)
− cos

(
2π(6m − 2� + 1)

8m + 4

)}

= − 2√
2m + 1

sin

(
π(� + 1)

2m + 1

)
(3.14)

which is non-zero for any m ∈ N and 0 ≤ � ≤ m − 1. By Theorem 1.1, (3.12) and (3.14),
(3.9) follows. To deduce the positivity statement for ξ�,m(n), we first note using (1.6) and
(3.14) that

M
χ

(�)
m ,1

= 8
√
8m + 4

∣∣∣∣G
(1)

χ
(�)
m

(kν)

∣∣∣∣

= 2

sin
(

π(�+1)
2m+1

) .

Thus, (1.7) implies that N (max)
m,� := N (max)

χ
(�)
8m+4,1

≥ 0 is the smallest integer satisfying

ζ(2n + 2) <
1

2
sin

(
π(� + 1)

2m + 1

)
+ 1 (3.15)

for n ≥ N (max)
m,� . In fact,

∣∣∣∣G
(1)

χ
(�)
m

(k)

∣∣∣∣ ≤ 2√
2m + 1

and thus we obtain using (3.14)
∣∣∣∣∣∣

1

G(1)

χ
(�)
m

(1)

∞∑

k=2

G(1)

χ
(�)
m

(k)

k2n+2

∣∣∣∣∣∣
≤ ζ(2n + 2) − 1

sin
(

π(�+1)
2m+1

) < 1

for n ≥ Nm,� with 0 ≤ Nm,� ≤ N (max)
m,� . Using Theorem 1.1 and (3.8), it now follows that for

all non-negative integers k, ξ�,m(k) > 0 if (3.11) is non-negative for 0 ≤ n < Nm,�. ��

Remark 3.4 UsingCorollary 3.3,we verify (3.11) for 0 ≤ n < Nm,� to confirm that ξ�,m(k) >

0 for all k ≥ 0, 1 ≤ m ≤ 500 and 0 ≤ � ≤ m − 1. In Table 2, we list values of Nm,� for
1 ≤ m ≤ 5 and 0 ≤ � ≤ m − 1.

Remark 3.5 In fact, we can determine an infinite number of m and 0 ≤ � ≤ m − 1 such that
ξ�,m(k) is positive for every k ≥ 0. Let us put � = cm + d . Then

(1) It turns out that in order for � ∈ Z, c and d must be rational numbers in their reduced
forms such that c = p1

q1
and d = p2

q1
so that

p1m ≡ −p2 (mod q1). (3.16)
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(2) Let m0 be the smallest non-negative integer satisfying the congruence in (3.16). Then
with the choices of c and d as in (1) and using (3.10) with Nm,� = 0, we have

max

(
0,

2m0 − 3

4

)
≤ cm0 + d ≤ m0 − 1, and

1

2
≤ c ≤ 1. (3.17)

Equations (3.16) and (3.17) can now be used to determine an infinite family of m and 0 ≤
� ≤ m − 1 such that ξ�,m(k) > 0 for all k ≥ 0 and m ≥ 1. For example, let us choose
c = 1 (p1 = 1, q1 = 1). Then (3.16) and (3.17) force m0 = 1 and d = −1. Thus,
ξm−1,m(k) > 0 for all k. Similarly, if we choose c = 1

2 (p1 = 1, q1 = 2), then (3.16)
implies that m ≡ 1 (mod 2). This combined with (3.17) force m0 = 1 and d = − 1

2 so that
we have ξm−1

2 ,m(k) > 0 for all k ≥ 0 and integers m ≡ 1(mod 2).

3.3 An example with � = 0

For k ≥ 1, let Gk(q) denote the q-series

Gk(q) :=
∑

nk≥nk−1≥···≥n1≥0

qnk+2n2k−1+nk−1+···+2n21+2n1(q; q2)nk
[

nk
nk−1

]

q2
· · ·

[
n2
n1

]

q2

(3.18)

and write

Gk(1 − q) =:
∞∑

n=0

ξG k (n)qn .

The k = 1 case of (3.18) is of substantial historical and modern importance as it appears in
Ramanujan’s lost notebook (e.g., see [3, Sect. 5], [4, Entry 9.5.2] or [7, page 419]).

Corollary 3.6 As n → ∞, we have

ξG k (n) ∼
cos

(
π

2(2k+1)

)
22n+2n!

π
3
2
√
n

(
2k + 1

π2

)n

e
π2

8(2k+1) . (3.19)

Moreover, ξG k (n) > 0 for all n ≥ 0 and k ≥ 1.

Proof It was shown in [2, Example 5.2] that

Gk(q) =
∞∑

n=0

χk(n)q
n2−k2
2k+1 (3.20)

where

χk(n) :=

⎧
⎪⎨

⎪⎩

1 n ≡ k, k + 1 (mod 4k + 2),

−1 n ≡ −k, −k − 1 (mod 4k + 2),

0 otherwise.

(3.21)

Observe that (3.20) is not a strange identity but an actual identity valid for |q| < 1 and every
odd order root of unity q (see [2, Example 3.2]). Although Gk(q) /∈ H, we note that when
q = e−t with t → 0+, the expression (q; q2)nk in the right-hand side of (3.18) will have an
asymptotic expansion starting with tnk . Hence, the expansions (2.1) and (2.2) for this q-series
as t → 0+ are still valid and we can apply Theorem 1.1. First, we have that χk(n) is an odd
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function with period M = 4k + 2. Next, we claim that k0 = 1. To see this, observe that for
any � ≥ 1, (1.5) and (3.21) yield

G(0)
χk

(�) = 4√
4k + 2

[
sin

(
πk�

2k + 1

)
+ sin

(
π(k + 1)�

2k + 1

)]

= 8√
4k + 2

sin

(
π�

2

)
cos

(
π�

2(2k + 1)

)
(3.22)

and thus

G(0)
χk

(1) = 8√
4k + 2

cos

(
π

2(2k + 1)

)

which is non-zero for all k ≥ 1. By Theorem 1.1, (3.20) and (3.22), (3.19) follows. Next,
using (1.6) we get

Mχk ,0 = 1

cos

(
π

2(2k + 1)

) .

As cos
(

π
2(2k+1)

)
is an increasing function for k ≥ 1 and

Mχ1,0 · (ζ(3) − 1) = 0.233 · · · < 1,

we can choose Nχk ,0 = 1 for all k ≥ 1. To deduce the positivity statement for ξG k (n), we
need only show that

4k+2∑

m=1

χk(m)B1

(
m

4k + 2

)
≤ 0 (3.23)

for all k ≥ 1. To prove (3.23), we first note that B1(x) = x − 1
2 . Hence, (3.21) implies

4k+2∑

m=1

χk(m)B1

(
m

4k + 2

)
= −1.

��

4 Other expansions and conjectures

Other expansions for F(q) frequently appear throughout the combinatorics literature. For
example, we have [18, A138265]

F

(
1

1 + q

)
= 1 + q + q2 + 2q3 + 5q4 + 16q5 + 61q6 + 271q7 + 1372q8 + · · ·

and [18, A289312]

F

(
1−q

1+q

)
=1+2q+6q2+26q3+142q4+946q5+7446q6+67658q7 + 697118q8 + · · · .
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Table 3 Coefficients forFt (
1

1+q ) for 1 ≤ t ≤ 5

t = 1 1 + q + q2 + 2q3 + 5q4 + 16q5 + 61q6 + 271q7 + 1372q8 + 7795q9 + 49093q10 + . . .

t = 2 1 + 3q + 8q2 + 31q3 + 160q4 + 1029q5 + 7910q6 + 70658q7 + 718687q8 + . . .

t = 3 1 + 7q + 42q2 + 329q3 + 3395q4 + 43638q5 + 670663q6 + 11980513q7 + . . .

t = 4 1 + 15q + 190q2 + 3005q3 + 61885q4 + 1587420q5 + 48722721q6 + 1739070735q7 + . . .

t = 5 1 + 31q + 806q2 + 25637q3 + 1054465q4 + 54008696q5 + 3311724885q6 + . . .

Using Theorem 1.1, we may deduce asymptotics for the coefficients of Ff

(
1

1 + q

)
and

Ff

(
1 − q

1 + q

)
. Namely, if we write

Ff

(
1

1 + q

)
=:

∞∑

n=0

g f (n)qn,

then

g f (n) ∼ (−1)ν
(

M

2πkν

)2n+ν+1 G(ν)
f (kν)22n+νn!nν− 1

2

bn
√

πM
e− bk2νπ2

2M2 . (4.1)

This follows upon first noting

Ff

(
1

1 + q

)
= Ff

(
1 − q

1 + q

)
=

∞∑

j=0

ξ f ( j)q
j

∞∑

m=0

(−1)m
(
j + m − 1

m

)
qm

and so

g f (n) =
n−1∑

�=0

(−1)�
(
n − 1

�

)
ξ f (n − �),

then applying Theorem 1.1. Similarly, if

Ff

(
1 − q

1 + q

)
=:

∞∑

n=0

h f (n)qn,

then one can check

h f (n) ∼ (−1)ν
(

M

2πkv

)2n+ν+1 G(ν)
f (kν)23n+νn!nν− 1

2

bn
√

πM
. (4.2)

Asymptotics for the coefficients of Ft (q), X (�)
m (q) and Gk(q) with q replaced by 1

1+q

or 1−q
1+q now follow readily from (4.1), (4.2) and Corollaries 3.1, 3.3 and 3.6. Thus, all but

finitely many coefficients are positive for Ft (q), X (�)
m (q) and Gk(q) where q is replaced by

1
1+q or 1−q

1+q . Interestingly, it appears numerically that more is true. Some supporting data is
given in Tables 3, 4, 5, 6, 7, 8.

Based on the evidence in Remarks 3.2 and 3.4, the computations in Remark 3.5 and Tables
3, 4, 5, 6, 7, 8, we make the following
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Table 4 Coefficients forFt (
1−q
1+q ) for 1 ≤ t ≤ 5

t = 1 1 + 2q + 6q2 + 26q3 + 142q4 + 946q5 + 7446q6 + 67658q7 + 697118q8 + 8031586q9 + . . .

t = 2 1 + 6q + 38q2 + 318q3 + 3406q4 + 44790q5 + 699126q6 + 12630702q7 + . . .

t = 3 1 + 14q + 182q2 + 2982q3 + 62734q4 + 1630174q5 + 50474886q6 + 1813113398q7 + . . .

t = 4 1 + 30q + 790q2 + 25590q3 + 1064590q4 + 54905390q5 + 3382387174q6 + . . .

t = 5 1 + 62q + 3286q2 + 211606q3 + 17496462q4 + 1797007566q5 + 220762565542q6 + . . .

Table 5 Coefficients for X (�)
5 ( 1

1+q ) for 0 ≤ � ≤ 4

� = 0 1 + 5q + 25q2 + 180q3 + 1725q4 + 20538q5 + 291571q6 + 4801844q7 + . . .

� = 1 2 + 9q + 45q2 + 330q3 + 3195q4 + 38286q5 + 545949q6 + 9020385q7 + . . .

� = 2 3 + 12q + 60q2 + 446q3 + 4350q4 + 52374q5 + 749294q6 + 12410001q7 + . . .

� = 3 4 + 14q + 70q2 + 525q3 + 5145q4 + 62139q5 + 890925q6 + 14779290q7 + . . .

� = 4 5 + 15q + 75q2 + 565q3 + 5550q4 + 67134q5 + 963578q6 + 15997212q7 + . . .

Table 6 Coefficients for X (�)
5 (

1−q
1+q ) for 0 ≤ � ≤ 4

� = 0 1 + 10q + 110q2 + 1650q3 + 32230q4 + 776666q5 + 22237534q6 + 737031746q7 + . . .

� = 1 2 + 18q + 198q2 + 3018q3 + 59598q4 + 1446210q5 + 41605014q6 + 1383694074q7 + . . .

� = 2 3 + 24q + 264q2 + 4072q3 + 81048q4 + 1976760q5 + 57067560q6 + 1902795528q7 + . . .

� = 3 4 + 28q + 308q2 + 4788q3 + 95788q4 + 2344076q5 + 67828068q6 + 2265402148q7 + . . .

� = 4 5 + 30q + 330q2 + 5150q3 + 103290q4 + 2531838q5 + 73345162q6 + 2451727038q7 + . . .

Table 7 Coefficients for Gk (
1

1+q ) for 1 ≤ k ≤ 5

k = 1 1 + q + 3q2 + 11q3 + 50q4 + 280q5 + 1892q6 + 15052q7 + 137957q8 + . . .

k = 2 1 + 2q + 8q2 + 42q3 + 293q4 + 2630q5 + 29054q6 + 380894q7 + 5773064q8 + . . .

k = 3 1 + 3q + 15q2 + 103q3 + 977q4 + 12137q5 + 186601q6 + 3411009q7 + 72158001q8 + . . .

k = 4 1 + 4q + 24q2 + 204q3 + 2454q4 + 39000q5 + 768720q6 + 18028512q7 + . . .

k = 5 1 + 5q + 35q2 + 355q3 + 5180q4 + 100346q5 + 2413318q6 + 69085190q7 + . . .

Table 8 Coefficients for Gk
(
1−q
1+q

)
for 1 ≤ k ≤ 5

k = 1 1 + 2q + 6q2 + 34q3 + 278q4 + 2978q5 + 39302q6 + 615554q7 + 11151446q8 + . . .

k = 2 1 + 4q + 20q2 + 180q3 + 2420q4 + 42916q5 + 940244q6 + 24478804q7 + . . .

k = 3 1 + 6q + 42q2 + 518q3 + 9674q4 + 239302q5 + 7323946q6 + 266553414q7 + . . .

k = 4 1 + 8q + 72q2 + 1128q3 + 26952q4 + 855240q5 + 33608136q6 + 1571210280q7 + . . .

k = 5 1 + 10q + 110q2 + 2090q3 + 60830q4 + 2355562q5 + 113032942q6 + 6454755274q7 + . . .
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Conjecture 4.1 We have

(1) the coefficients of Ft (1 − q), Ft (
1

1+q ) and Ft (
1−q
1+q ) are positive for all t ≥ 1.

(2) the coefficients of X (�)
m (1− q), X (�)

m ( 1
1+q ) and X (�)

m (
1−q
1+q ) are positive for all m ∈ N and

0 ≤ � ≤ m − 1.
(3) the coefficients of Gk(

1
1+q ) and Gk(

1−q
1+q ) are positive for all k ≥ 1.
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