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Abstract
Background and Aims—Elevated alanine aminotransferase (ALT >40 IU/mL) is a marker of
liver injury but provides little insight into etiology. We aimed to identify and stratify risk factors
associated with elevated ALT in a randomly selected population with a high prevalence of
elevated ALT (39%), obesity (49%) and diabetes (30%).

Methods—Two machine learning methods, the support vector machine (SVM) and Bayesian
logistic regression (BLR), were used to capture risk factors in a community cohort of 1532 adults
from the Cameron County Hispanic Cohort (CCHC). A total of 28 predictor variables were used
in the prediction models. The recently identified genetic marker rs738409 on the PNPLA3 gene
was genotyped using the Sequenom iPLEX assay.

Results—The four major risk factors for elevated ALT were fasting plasma insulin level and
insulin resistance, increased BMI and total body weight, plasma triglycerides and non-HDL
cholesterol, and diastolic hypertension. In spite of the highly significant association of rs738409 in
females, the role of rs738409 in the prediction model is minimal, compared to other
epidemiological risk factors. Age and drug and alcohol consumption were not independent
determinants of elevated ALT in this analysis.

Copyright ©2012 IMSS. Published by Elsevier Inc.
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Conclusions—The risk factors most strongly associated with elevated ALT in this population
are components of the metabolic syndrome and point to nonalcoholic fatty liver disease (NAFLD).
This population-based model identifies the likely cause of liver disease without the requirement of
individual pathological diagnosis of liver diseases. Use of such a model can greatly contribute to a
population-based approach to prevention of liver disease.

Keywords
Alanine aminotransferase; Liver disease; Machine learning; NAFLD; PNPLA3 polymorphism;
Public health

Introduction
High rates of chronic end-stage liver disease have been documented together with
significantly elevated prevalence of diabetes and obesity among Mexican–Americans living
at the United States (U.S.)/Mexico border (1–3). Most striking are data from a randomly
recruited cohort from this population in which we show a high rate (~39%) of the metabolic
syndrome and elevated alanine aminotransferase (ALT) levels, indicative of liver injury (4).
We observe a marked gender effect with young males more likely to be obese and to have
raised ALT levels (5). These rates are in the absence of evidence for excessive alcohol
consumption, but in any event alcoholic and nonalcoholic fatty liver disease (NAFLD) are
not exclusive processes and may be additive. These observations raise the important
question as to whether this population has high rates of NAFLD and, more importantly,
nonalcoholic steatohepatitis (NASH), which leads to end-stage liver disease. Although
elevated ALT is known to be indicative of liver injury, it lacks diagnostic specificity for
NAFLD in the absence of liver biopsy. Because the risks and the cost of liver biopsy,
particularly in a disadvantaged population, are prohibitive on a large scale, we applied
machine learning methods to our database in order to identify risk factors for the elevated
ALT from extensively documented clinical and biological information. From this we obtain
an estimate of the potential burden of NAFLD in our population of Americans of Mexican
descent. This knowledge is important in health disparity populations ill equipped to bear
additional burdens of preventable liver disease both economically and socially.

The Hispanic population in the city of Brownsville, Cameron County, Texas is one of the
poorest in the U.S. (2). Since 2003 we have recruited >2000 healthy participants randomly
selected from the community: the Cameron County Hispanic Cohort (CCHC) (2). These
individuals consented to extensive sociodemographic, anthropometric and biological
analyses. Using weighted data (i.e., data corrected for sampling bias based on census data to
account for age, gender, tract/block and household clustering) from this cohort show the
prevalence of obesity and diabetes to be high; 7.9% individuals are morbidly obese (BMI
≥40), 48.5% individuals overall are obese (BMI ≥30), and 81.7% are obese or overweight
(BMI ≥25). Using the 2010 definition of diabetes recommended by the American Diabetes
Association (ADA) (6), 19.2% had pre-diabetes [fasting plasma glucose (FPG) 100–125 mg/
dL or A1C 5.7–6.4%] and 30.7% had diabetes (FPG ≥126 mg/dL or glycosylated
hemoglobin [HbA1c] ≥6.5%). In addition to obesity and diabetes, we found the prevalence
of elevated ALT (≥40 U/L) to be 40.8%. ALT is mainly produced in the liver and released
into the bloodstream as the result of liver injury. Chronic liver disease is one of the major
causes of death in the adult Hispanic population in the U.S. (2008 statistics of the National
Center for Injury Prevention and Control: NCIPC, http://www.cdc.gov/injury/wisqars/
fatal.html). Liver disease is ranked as the eighth leading cause of death among Hispanics
aged 25 to 34 years, rising to sixth at 35–44 years, and fourth between the ages of 45 and 64
years. Our own data yielded rates of 126/100,000 for end-stage liver disease in a
retrospective chart review using ICD-9 codes for end-stage liver disease (1). Rates were
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considerably higher in males (386/100,000) and overall 8.7% of the 176 cases identified had
been diagnosed with hepatocellular carcinoma. There were no biopsy data and only four
patients had been referred for liver transplant and none had received one. This study drew
charts from a Federally Qualified Clinic in Brownsville serving the same mainly uninsured
Mexican–American population from which we drew the CCHC (1). As stated above, the
limitation of all these data is that accurate diagnosis of the cause of liver disease depends on
the relatively invasive and expensive procedure of liver biopsy. Given these constraints and
the concerns raised by our data, we sought to generate more precise data on risk factors
using less invasive procedures (venipuncture).

Recently, genome-wide association studies have provided a new tool in the identification of
genetic susceptibility of liver injury (7,8). Two single nucleotide polymorphisms (SNP)
rs738409 (causing the amino acid substitution Ile148Met) and rs2281135 in the PNPLA3
locus have been highlighted as being associated with NAFLD (7) and elevated ALT (9),
respectively. Our preliminary genetic analysis of the CCHC suggests rs738409 tags the
genetic association with elevated ALT better than rs2281135. In addition, our data showed
the genetic susceptibility tagged by rs738409 was not biased by population structure of the
admixed Mexican–American population. Therefore, genotypes of rs738409 were used as a
genetic risk factor in the machine learning process.

Machine learning methods are able to automatically capture risk factors from a large number
of variables. The support vector machine (SVM) and Bayesian logistic regression (BLR) are
the two most representative machine learning methods for disease risk modeling. SVM is a
modern machine learning method that operates by finding an optimal separating hyperplane
between affected and unaffected individuals (10). SVM is particularly useful in classifying
high-dimensional data and taking into account the interactions among environmental and
genetic factors (11,12). Logistic regression is a classical method in disease risk modeling.
BLR extends the logic regression to a Bayesian framework by incorporating prior
information (13). In this study we aimed to identify the risk factors contributing to elevated
ALT in the Brownsville CCHC using these two machine learning methods. We anticipate
that this approach will provide a robust measure of the likely disease processes associated
with abnormal liver function in this Mexican–American population without invasive liver
biopsy. The information will be important for public health policy makers and planners to
develop the most efficient prevention and disease management strategies at the population
level.

Materials and Methods
Ethics Statement

Written informed consent was obtained from each participant, and the study was approved
by the Committee for the Protection of Human Subjects of the University of Texas Health
Science Center at Houston (UTHealth).

Subjects
This study investigated 1532 adult individuals on whom we had complete data, recruited
prospectively in the Cameron County Hispanic Cohort (CCHC). These individuals were
from households randomly selected for recruitment on the basis of 2000 census tract data in
the city of Brownsville, Cameron County, Texas (2). The general description of this cohort
is in our previous report (2). Among these adult participants in this study, 39% have ALT
>40.
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Data Management and Confidentiality
Standard protocols for data entry, cleaning, and quality control of the data were applied
throughout. Personal identifiers are secured separately with access limited to only those
personnel needing to contact participants who had given prior consent to be recontacted. De-
identified data are also secured behind the UTHealth firewall with access only to approved
collaborators. Data weighting was performed as described (2).

Genotyping
The genotyping of rs738409 was performed using the Sequenom iPLEX assay (Sequenom,
Cambridge, MA). The genotyping call rate was 100%. For the purpose of quality control, 93
DNA samples were genotyped in duplicate. The concordance rate of each duplicate is 100%.

Variables for Risk Modeling
The following variables were included in our risk model: gender, age, rs738409 genotype,
body mass index (BMI), body height, waist circumference, hip circumference, waist/hip
ratio, pulse rate, blood pressure, physical activity, alcohol consumption, smoking, education
levels, status of diabetes (diagnosed by the ADA 2010 guidelines) (6), history of hepatitis,
medications, fasting plasma glucose (FPG), fasting plasma insulin level, homeostasis model
assessment-estimated insulin resistance (HOMA-IR) (14), fasting lipids [serum
triglycerides, high-density lipoprotein cholesterol (HDL-c), non-HDL-c, and low-density
lipoprotein cholesterol (LDL-c)]. These input variables were linearly scaled to the range [0;
+1] and were mapped into a high-dimensional feature space.

Machine Learning Methods
In this study, all classification tasks were performed by support vector machine (SVM) and
Bayesian logistic regression (BLR). SVM is a very effective supervised machine learning
classifier widely used in pattern recognition or classification. Our soft margin SVM model
was implemented with the LIBSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm)
(15). The radial basis function (RBF) kernel was chosen in this study, which gives the
highest accuracy for our test. In our study, the RBF kernel showed better performance than
the linear kernel in the SVM model (AUC scores: 0.743 vs. 0.735 in males; 0.690 vs. 0.664
in females). For parameter selection, a grid search heuristic was imposed with 10-fold cross-
validation. The weight (or relative importance) of each variable in the SVM model was
assessed by the F-score. The F-score measures the discrimination of two groups where the
larger F-score suggests the feature (elevated ALT in this paper) and is better discriminated
by the variable (16). BLR is the extension of binary logistic regression model. Compared to
a standard logistic regression model, the regression coefficients in BLR were estimated with
Bayesian prior density (13). Our BLR model was implemented with the Laplace prior part of
the Bayesian binary regression (BBR) software (http://code.google.com/p/bbrbmr/). The
weight of each variable in the BLR model was assessed by the maximum likelihood β value.
Comparisons between the two groups (normal ALT ≤40 vs. elevated ALT >40) were
performed using Student t-tests for continuous variables and Pearson χ2 tests for categorical
variables. For the purposes of modeling, we chose this cut-off for ALT so that our results
would be comparable with a previous study using data from a different population (17). This
study used the receiver operating characteristic (ROC) curve to assess the model
performance. The ROC curve plot was generated by calculating true-positive rates and false-
positive rates over a relevant range of thresholds. For obtaining aggregate numbers of true
vs. false positive rates, the thresholds of each ROC curve underwent stepwise variation from
0–1 in each 0.01 interval. Each threshold was assigned as the probability of an individual
having liver injury. The area under the curve (AUC) was used as a measure of performance
of the classifiers.
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Results
We modeled the risk of liver injury for males and females separately because the rate of
elevated ALT is highly stratified according to gender (male = 54.7%, female = 27.4%). In
the risk modeling, the performances of the SVM method and the BLR method were assessed
based upon area under the receiver operator characteristic curve (AUROC) scores of 0.743
(males) and 0.690 (females) for SVM, 0.693 (males) and 0.670 (females) for BLR (Figure
1). Although SVM and BLR had different performances in our study, SVM results were
largely supported by BLR results. The weights of predictor variables in the SVM model
represented by the F-scores were validated by removal of a specific predictor variable and
then reassessment of AUC scores. For example, consistent with the F scores of the genetic
marker rs738409, AUC scores before and after removing rs738409 in the SVM model were
0.743 vs. 0.743 in males and 0.690 vs. 0.669 in females. The risk factors contributing to
elevated ALT in males and females are shown in Table 1. Our models identified four groups
of risk factors in both genders: (1) abnormal fasting plasma insulin level and insulin
resistance (HOMA-IR); (2)(3) serum triglycerides and non-HDL-c; (4) diastolic
hypertension; and interestingly (5) genetic susceptibility tagged by the PNPLA3 SNP
rs738409 in females. Alcohol consumption was not identified as a risk factor in this
population. These risk factors of increased ALT in this community cohort are consistent
with the known risk factors of NAFLD (17,18).

Increased glutamate oxaloacetic transaminase (also known as aspartate aminotransferase,
AST) may also manifest liver injury. Elevated ALT with ALT/AST <1 are considered
counter to the diagnosis of NAFLD (19). Among the 556 individuals with ALT >40, there
are 93 individuals with ALT/AST <1. Our risk modeling in this subset of 93 subjects
showed poor AUROC scores suggesting that the risk factors in these participants were
largely unrelated to metabolic syndrome, and therefore undetermined using the current set of
variables. Nevertheless, our risk model in these 93 individuals did capture increased insulin
level and HOMA-IR as the major risk factors in males, with history of hepatitis as the
second risk. In females, our modeling highlights the major risk from BMI and waist
circumference, whereas non-HDL-c is the second risk. Even in participants with elevated
ALT and ALT/AST <1, metabolic syndrome remains a risk factor for liver injury.

Discussion
This study highlights the major but under-appreciated health and economic threats of liver
disease in disadvantaged populations with high rates of obesity and diabetes. Obesity
induces NAFLD through dysfunctional adipose metabolism mediated by adipokines (20).
Our results show that body weight consistently contributes particular risk of liver injury
independent of BMI in both males and females. These observations suggest that total
amount of body fat is of special importance in contributing to the risk of NAFLD.
Furthermore, waist circumference and waist/hip ratio also contribute to liver injury,
emphasizing the importance of central fat distribution. Because our observations are highly
statistically significant, they underline recent data regarding the roles of central and
generalized obesity in NAFLD (21). Although generalized obesity increases the risk of
NAFLD, central obesity makes an additional and independent contribution to NAFLD. We
confirm that insulin resistance and increased fasting plasma insulin are also important
correlates of liver injury, most markedly in females. To date, it is still unclear whether
NAFLD is caused by insulin resistance (22) or leads to insulin resistance because of critical
disturbances in liver metabolism (23). However, dysfunctional adipose metabolism is a
common pathological mechanism shared by insulin resistance and NAFLD (24,25).
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Both serum triglycerides and non-HDL cholesterol contributed to the risk of liver injury in
this population. The risk effect of non-HDL-c is especially obvious in males manifested by
its high rank among all the risk factors (Table 1). This differs from the previously reported
correlation between hypertriglyceridemia (but not hypercholesterolemia) and fatty
infiltrations of NAFLD (26), emphasizing the importance of separately analyzing the
genders in order not to mask potential correlates that are gender dependent. Given the high
rates of end-stage liver disease in our previous study where we found significantly higher
rates in males than females (1), this gender difference may point to important metabolic
pathways and/or behavioral differences in this population that lead to different rates of
NAFLD in each gender (27,28). In addition, our analysis highlighted the critical role of non-
HDL-c rather than total cholesterol in liver injury. A very minor risk effect of total
cholesterol could be identified in our modeling provided we did not discriminate non-HDL-c
from total cholesterol, because HDL-c counteracted and diluted the risk of non-HDL-c. On
the other hand, LDL-c calculated according to the formula of Friedewald et al. (29) is not
associated with increased ALT in our study. This finding provides additional evidence that,
instead of calculated LDL-c, non-HDL-c is a risk marker of metabolic syndrome (30) or the
liver injury of metabolic syndrome NAFLD in our population. The machine learning
approach adds to our previous observations by identifying diastolic hypertension as an
independent major risk factor for liver injury in this Hispanic community. Although diastolic
hypertension is a common complication of the metabolic syndrome, it is not known whether
there is an independent pathogenic mechanism associating it with NAFLD.

A gender-specific genetic susceptibility was highlighted in this study. As shown by our
study, the genetic susceptibility tagged by the PNPLA3 SNP rs738409 is only seen in
females. The lack of association in males cannot be explained by sample size or statistical
power. Comparing the genetic effect in males (OR [95% CI] = 1.171 [0.911, 1.505]) and
females (OR [95% CI] = 1.640 [1.347, 1.996]), the heterogeneity is statistical significance (p
= 0.038). In addition to our study, a similar gender-specific effect has been reported by
meta-analysis of genetic association of rs738409 and NAFLD (31). Molecular mechanisms
underlying this gender-specific effect remain unknown, which is being investigated in our
future study. In spite of the highly significant association, the role of rs738409 in the
prediction model is minimal compared to other epidemiological risk factors.

We found that history of hepatitis contributed only a minor risk for elevated ALT in males.
Our previous unpublished data show very low rates of hepatitis C seropositivity (0/320) and
hepatitis B (3/320) in randomly collected sera from this population (Fisher-Hoch,
unpublished data). We also found that aging in itself was not a risk factor for NAFLD. On
the contrary, evidence of liver injury was most marked in younger males who are also more
likely to be severely obese (5). Neither drugs nor alcohol consumption was an indicator of
liver injury in this study; however, a history of medication (including any prescription drugs
by a physician) did show a protective effect in males. This may be correlated with receiving
treatment for insulin resistance, hypertriglyceridemia, or hypertension. Although physical
activity showed a trend towards a protective effect, it did not reach statistical significance,
perhaps due to imprecise quantification of physical activity in this study. The interesting
finding of this study that FBG does not contribute to the high risk of elevated ALT in males
highlighted that intensive control of blood glucose alone may not be a viable therapeutic
target for liver injury in metabolic syndrome.

We identified and stratified the most important and specific risk factors for liver injury in
this cohort of Mexican-American subjects. Our conclusions are consistent with previous
studies on subjects with a clear diagnosis of NAFLD (17,18) because risk factors for liver
injury in our study are largely concordant with previous studies on NAFLD. In a group of
Korean subjects with NAFLD, Oh et al. showed that increased ALT was associated with
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serum lipid (increased triglycerides and non-HDL-c, and decreased HDL-c), insulin
resistance (fasting glucose, fasting insulin, and HOMA-IR), body fat (waist circumference
and BMI), and hypertension (diastolic blood pressure) (17). In a group of Italian subjects
with NAFLD, Bedogni et al. showed increased risk of NAFLD due to obesity,
hyperglycemia, hypertriglyceridemia, and systolic hypertension (18). In comparison, the
distribution pattern of risk factors identified by our study suggests NAFLD as likely the
most important cause of increased ALT in Mexican-Americans. Our model allows us to
identify NAFLD as the major cause of liver injury in this Mexican-American population.
Globally, NAFLD is a fast emerging disease and has recently received extensive attention.

The definitive diagnosis of NAFLD is difficult. Liver biopsy is the “gold standard” to
diagnose NAFLD and to differentiate it from NASH because it determines the presence and
extent of hepatic fibrosis (32). However, because of the potential serious complications
(0.1% major hemorrhage, and 0.01% death) and its technical complexity, inconvenience to
the participant and cost, liver biopsy is not suitable for use in a screening study at the
population level (33) so was not considered appropriate in this study. Despite these
limitations, our data identify NAFLD as a likely major contributor to the extraordinarily
high rate of liver injury in this Mexican-American population with limited access to health
care. Community-based efforts and simple preventive medicine to reduce NAFLD are
critically needed to significantly lower the burden of liver injury, including end-stage liver
disease, in disadvantaged populations.
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Figure 1.
The risk modeling of liver injury in the Cameron Cohort Hispanic Cohort (CCHC). (A)
SVM and BLR models in males. (B) SVM and BLR model in females. As shown by the
AUROC score, the SVM model has better performance in both males and females than the
BLR model.
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