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Abstract
In this paper, we deal with the Cauchy problem for a generalized two-component 
Camassa-Holm system with waltzing peakons and complex higher-order nonlinear 
terms. By the classical Friedrichs regularization method and the transport equation 
theory, the local well-posedness of solutions for the generalized coupled Cama-
ssa-Holm system in nonhomogeneous Besov spaces and the critical Besov space 
B
5∕2

2,1
× B

5∕2

2,1
 was obtained. Besides the propagation behaviors of compactly supported 

solutions, the global existence and precise blow-up mechanism for the strong solu-
tions of this system are determined. In addition to wave breaking, the another one of 
the most essential property of this equation is the existence of waltzing peakons and 
multi-peaked solitray was also obtained.

Keywords Two-component Camassa-Holm · Well-posedness · Besov spaces · 
Blow-up criteria · Waltzing peakons · Cauchy problem

Mathematics Subject Classification 35G25 · 35L05 · 35Q50 · 35Q53 · 37K10

1 Introduction

In this paper, we propose the following Cauchy problem

(1.1)

⎧⎪⎨⎪⎩

mt + vpmx + avp−1vxm = 0, t > 0, x ∈ ℝ,

nt + uqnx + buq−1uxn = 0, t > 0, x ∈ ℝ,

u(x, 0) = u0(x), v(x, 0) = v0(x), t = 0, x ∈ ℝ,
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where m = u − �2uxx, n = v − �2vxx ( � ≥ 0, � ≥ 0 ), the constants a, b ∈ ℝ and

p, q ∈ ℤ
+ . Obviously, the system (1.1) has nonlinearities of degree 

max{p + 1, q + 1} . If choosing m = u, n = v , then Equ. (1.1) is a generalized two-
component Burgers type system; if ordering m = uxx, n = vxx , then Equ. (1.1) 
becomes a generalized two-component Hunter-Saxton type system; and if select-
ing � = � = 1 , namely, m = u − uxx, n = v − vxx , then Equ. (1.1) reads as a gen-
eralized two-component Camassa-Holm type system. In this paper, to keep our 
paper concise, we only focus on the coupled Camassa-Holm type system, and 
m ≐ u − uxx, n ≐ v − vxx.

During last few decades, due to various mathematical problems and nonlinear phys-
ics phenomena interfered, the water wave and fluid dynamics have been attracting much 
attention [2, 4, 36, 44]. Since the raw water wave governing equations have proven to 
be nearly intractable, the request for suitably simplified model equations was initiated 
at the early stage of hydrodynamics development. Until the early twentieth century, the 
study of water waves was restricted almost exclusively to the linear theory. Due to the 
linearization approach losing some important properties, such us the rare wave break-
ing, then people usually propose some nonlinear models to explain practical behaviors 
liking breaking waves and solitary waves [7]. The most marked example is the follow-
ing dispersive nonlinear PDEs

where the constants � , �, c1, c2c3 ∈ ℝ . The Painlevé analysis method (cf.[14, 16, 
28]) shown that there are only three asymptotically integrable members in this fam-
ily, i.e., the famous KdV equation, the Camassa-Holm equation and the Degasperis-
Procesi equation. Recently, such integrable peakon equations with cubic nonline-
arity and wave breaking have been initialed: one is the Novikov equation, and the 
other one is the FORQ equation.

Integrable equations with soliton has been studied extensively since they usually 
have very delicate properties including infinite higher-order symmetries, infinitely 
many conservation laws, Lax pair, bi-Hamiltonian structure, which can be solved 
by the inverse scattering method, and so on. Discovering a new integrable equation 
may be accomplished via different methods. One of ways is the approach proposed 
by Fokas and Fuchssteiner [20] where the Korteweg-de Vries equation, the Cama-
ssa-Holm equation, and the Hunter-Saxton equation are derived in a unified way. 
The approach is based on the following fact: If �1, �2 are two Hamiltonian operators 
and for arbitrary number k their combination �1 + k�2 is also Hamiltonian, then

is an integrable equation. Now, letting �1 = �x and �2 = �x + ��3
x
+

�

3
(q�x + �xq) , 

where � and � are constants, then Equ. (1.3) reads as the celebrated KdV equation 
(see [30]). If choosing �1 = �x + ��3

x
 and �2 as above with q = u + �uxx , then Equ. 

(1.3) yields the following equation

(1.2)ut − �uxxx − �2uxxt = (c1u
2 + c2u

2
x
+ c3uuxx)x,

(1.3)qt = −(�2�
−1
1
)qx.
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which could be reduced to the well-known CH equation through selecting the 
parameters appropriately and making a change of variables with some scaling (see 
[5, 6, 9]). If setting �1 = ��3

x
 and �2 = �x + (q�x + �xq) with q = �uxx , then Equ. (1.3) 

leads to the HS equation (see [1, 27]):

Actually, in light of the Fokas-Fuchssteiner framework [20], one may generate gen-
eralized KdV-type or CH-type equations possessing bi-Hamiltonian 
structure(without regard to the integrability) and infinitely many conserved quanti-
ties. For instance, letting �1 = �x and �2 = ��x + ��3

x
+

�

k+2
(qk�x + �xq

k) , where �, � 
are constants and k ∈ ℤ

+ in Equ. (1.3) produces the following generalized Korteweg-
de Vries equation (see [10, 29]):

And choosing �1 = �x + ��3
x
 and �2 = ��x + ��3

x
+ �[(b − 1)q�x + �xq] with 

q = u + �uxx in Equ. (1.3) generates the following CH-b family equation [25, 32]:

Taking b = 3, � = � = 0, � = −1 in Equ. (1.7) yields the remarkable DP equation 
(see [14, 15]).

Furthermore, let us take �1 = �x(1 + ��2
x
)k and �2 = �k�xq

k−1 + �k�3
x
qk−1+

�[(b − 1)q�xq
k−1 + �xq

k] with q = u + �uxx , then Equ. (1.3) yields the following gener-
alized b-equation with nonlinearity of degree k + 1 [22]:

Taking k = 2 in Equ. (1.8) gives the Novikov equation through choosing the param-
eters appropriately and making a change of variables with some scaling [26, 33]. 
If choosing �1 = �x − �3

x
 and �2 = q2�x + qx�

−1
x
q�x with q = u − uxx , then Equ. (1.3) 

reads as

which is actually the FORQ equation [19, 21, 34, 35].
The other attractive feature of the CH types equation (1.8) with � = � = 0 and 

� = −1 is: it admits the following peakon solutions [22]:

with

(1.4)ut + ux + �uxxt + �uxxx + �uux +
��

3
(uuxxx + 2uxuxx) = 0,

(1.5)uxxt +
1

�
ux + uuxxx + 2uxuxx = 0.

(1.6)qt + ��xq + ��3
x
q + �qkqx = 0.

(1.7)ut + �ux + �uxxt + �uxxx + �(b + 1)uux + ��(uuxxx + buxuxx) = 0.

(1.8)
ut + ��xu

k + �uxxt + ��3
x
uk + �(b + 1)ukux + ��(ukuxxx + buk−1uxuxx) = 0.

(1.9)qt + 2q2ux + qx(u
2 − u2

x
) = 0,

on the line: uc(x, t) =
k
√
c ⋅ e−�x−ct�; on the circle: uc(x, t) =

k
√
c ⋅ cosh([x − ct]� − �),
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Equations (1.8) also has the multi-peakon solutions by the following unified form 
(cf.[22]):

here the peak positions qi(t) and amplitudes pi(t) satisfy

In recent years, the famous CH equation has been generalized to integrable two 
component Camassa-Holm models. One of them is the following form

Obviously, the 2CH and the 2DP are contained in Equ. (1.11) as two special cases 
with k1 = 2, k2 = � = ±1 and with k1 = 3 , respectively. Constantin and Ivanov [8] 
derived the 2CH in the condition of shallow water theory. where the variable �(x, t) 
is in connection with the horizontal deviation of the surface from equilibrium and 
the variable u(x, t) describes the horizontal velocity of the fluid, and all are measured 
in dimensionless units [8]. The 2DP was shown to have solitons, kink, and antikink 
solutions [41]. Escher, Kohlmann and Lenells studied the geometric properties of 
the 2DP and local well-posedness in various function spaces [18]. However, peakon 
and superposition of multi-peakons were not investigated yet.

Motivated by the work of Cotter, Holm, Ivanov and Percival for the Cross-
Coupled Camassa-Holm in [11] (called the CCCH equation, i.e., Equ. (1.1) with 
the choice of a = b = 2 and p = q = 1 ), we first deduce Equ. (1.1), and then study 
its wave-breaking criteria and peakon dynamical system. The CCCH can be 
derived from a variational principle by an Euler-Lagrange system with the fol-
lowing Lagrangian [11]

(1.10)[x − ct]� ≐ x − ct − 2�
[
x − ct

2�

]
.

on the line: u(t, x) =

N∑
i=1

pi(t) ⋅ e
−|x−qi(t)|; on the circle: u(t, x)

=

N∑
i=1

pi(t) ⋅ cosh([x − qi(t)]� − �),

p�
j
=

(
N∑
i=1

pie
−|qj−qi(t)|

)k

,

q�
j
= (b − k)pj

(
N∑
i=1

pie
−|qj−qi|

)k−1( N∑
i=1

pisgn(qj − qi)e
−|qj−qi|

)
.

(1.11)

⎧⎪⎨⎪⎩

mt = umx + k1uxm + 𝜎𝜌𝜌x, t > 0, x ∈ ℝ,

𝜌t = k2𝜕x(u𝜌), t > 0, x ∈ ℝ,

u(x, 0) = u0(x), 𝜌(x, 0) = 𝜌0(x), t = 0, x ∈ ℝ.

L(u, v) = ∫
ℝ

(uv + uxvx)dx.
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And the Euler-Poincaré system in one dimension defined as follows,

with K(x, y) = 1

2
e−|x−y| and the Hamiltonian h(n,m) = ∫

ℝ
nK ∗ mdx = ∫

ℝ
mK ∗ ndx, 

this Hamiltonian system own a two-component singular momentum map [11]

Such a formal waltzing peakons, multi-peakon and compactons of the CCCH are 
given in [11]. In [17], the authors given a geometrical interpretation for the CCCH 
system along with a large class of peakon equations. Recently, the Cauchy problem 
of Equ. (1.1) has been studied extensively. The local well-posedness, the condition 
lead to global existence or wave-breaking, continuity and analyticity of the data-to-
solution map, and persistence properties for the CCCH system were discussed in 
[24, 31, 37, 38].

Inspired by the argument on the approximate solutions for the CH-type equations 
in [12] and [39, 40], we want to obtain the local well-posedness for Equ. (1.1) by the 
transport equations theory and classical Friedrichs regularization method. However, 
comparing with the one appearing in [12, 39, 40], the nonlinear terms of Equ. (1.1) 
is very complicated. Unlike the regular procedure, we will use the original Equ. 
(1.1) rather than the nonlocal form (see (3.18) below) since the fact: 
‖u‖Bs

l,r
≊ ‖m‖Bs−2

l,r
 . The key to show the local well-posedness through the Littlewood-

Paley decomposition and nonhomogeneous Besov spaces is to prove the following 
inequality

and we obtain this inequality by mathematical induction, which involved the degree 
of the nonlinearities. This result specifically reads as follows.

Theorem  1.1 Assume that the Besov indexes 1 ≤ l, r ≤ +∞ and 
s > max{2 +

1

l
,
5

2
, 3 −

1

l
} . Let (u0, v0) ∈ Bs

l,r
× Bs

l,r
 . Then there exists a lifespan T > 0 

such that the Equ. (1.1) has a unique solution (u, v) ∈ Es
l,r
(T) × Es

l,r
(T) , moveo-

ver, the map (u0, v0) ↦ (u, v) is continuous from a neighborhood of the initial data 
(u0, v0) in Bs

p,r
× Bs

p,r
 into

for every s′ < s when r = +∞ , and s� = s whereas r < +∞.

(1.12)
�tm = −ad∗

�h∕�m
m = −(vm)x − mvx and v ≐ �h

�m
= K ∗ n,

�tn = −ad∗
�h∕�n

n = −(un)x − nux and u ≐ �h

�n
= K ∗ m,

(1.13)m(x, t) =

M∑
a=1

ma(t)�(x − qa(t)), n(x, t) =

N∑
a=1

nb(t)�(x − rb(t)).

‖uk(t)‖Bs
l,r
+ ‖vk(t)‖Bs

l,r
≤ ‖u0‖Bs

l,r
+ ‖v0‖Bs

l,r�
1 − 2�Ct(‖u0‖Bs

l,r
+ ‖v0‖Bs

l,r
)�
�1∕�

with � = max {p, q},

C([0, T];Bs�

l,r
) ∩ C

1([0, T];Bs�−1
l,r

) × C([0, T];Bs�

l,r
) ∩ C

1([0, T];Bs�−1
l,r

)
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Remark 1.1 We known that Bs
2,2
(ℝ) = Hs . Thus, under the condition m0, n0 ∈ Hs 

with s > 1

2
 , i.e., (u0, v0) ∈ Hs × Hs with s > 5

2
 , the above theorem implies that 

there exists a lifespan T > 0 such that the Cauchy problem (1.1) has a unique 
solution m, n ∈ C([0, T];Hs) ∩ C

1([0, T];Hs−1) , and the map (m0, n0) ↦ (m, n) 
is continuous from a neighborhood of the initial data (m0, n0) in Hs × Hs into 
C([0, T];Hs) ∩ C

1([0, T];Hs−1) × C([0, T];Hs) ∩ C
1([0, T];Hs−1).

For any s� < 5∕2 < s , we have the following imbed relationship:

which implies that Hs and Bs
2,1

 are very close, so, we next establish the local well-
posedness solution for Equ. (1.1) in the critical Besov space B5∕2

2,1
× B

5∕2

2,1
.

Theorem  1.2 Suppose that z0 ≐ (u0, v0) ∈ B
5

2

2,1
× B

5

2

2,1
 . Then there exists a lifespan 

T = T(z0) > 0 and a unique solution z = (u, v) verify that the Cauchy problem (1.1)

Furthermore, the solutions continuously depend on the initial data, i.e., the mapping

is continuous.

In order to get the precise blow-up scenario, we need the following equivalent 
theorem:

Theorem 1.3 Suppose that the initial data (m0, n0) ∈ Hs(ℝ) × Hs(ℝ) with s > 1

2
 , and 

(m, n) be the corresponding solution to the Cauchy problem (1.1), and T∗
m0,n0

> 0 is 
the maximum time of existence for the solution of the Equ. (1.1). Then

provided that T∗
m0,n0

< ∞.

It is will known that the solution of Camassa-Holm type equations occurs blowup 
only in the form of breaking waves, namely, the solution remains bounded but its 
slope about the space becomes unbounded in finite time [40]. Next, we establish the 
accurate blowup scenarios for sufficiently regular solutions to the Equ. (1.1).

Hs
↪ B

5

2

2,1
↪ H

5

2 ↪ B
5

2

2,∞
↪ Hs� ,

z = z(⋅, z0) ∈ C([0, T];B
5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
) × C([0, T];B

5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
).

z0 ↦ z(⋅, z0) ∶ B
5

2

2,1
× B

5

2

2,1
↦ C([0, T];B

5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
)

× C([0, T];B
5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
)

∫
T∗
m0,n0

0

�
‖n‖p

L∞
+ ‖m‖L∞‖n‖p−1L∞

+ ‖m‖q
L∞

+ ‖n‖L∞‖m‖q−1L∞

�
d𝜏 < ∞,
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Theorem  1.4 Let z0 = (u0, v0) ∈ L1 ∩ Hs with s > 5∕2 , and T be the lifespan 
of the solution z(x, t) = (u(x, t), v(x, t)) to Equ. (1.1) with the initial data z0 . If 
p = 2a, q = 2b , then every solution z(x, t) to Equ. (1.1) remains globally regular in 
all time. If p > 2a (or q > 2b ), then the corresponding solutions z(x,  t) blow up in 
a finite time iff (vp)x (or (uq)x ) are unbounded at −∞ in a finite time. If p < 2a (or 
q < 2b ), then the corresponding solutions z(x, t) blow up in a finite time iff (vp)x (or 
(uq)x ) tends to +∞ in a finite time.

Let us now give a sufficient condition for the global existence of the solutions to 
Equ. (1.1).

Theorem  1.5 Assume that u0 ∈ Hs ∩W
2,

p

a and v0 ∈ Hs ∩W
2,

q

b with s > 5∕2 and 
0 ≤ a ≤ p , 0 ≤ b ≤ q . Then the solution to Equ. (1.1) remains smooth for all time.

As per [11, 43], the CCCH system might not be completely integrable. However, 
it does have peakon and multi-peakon solutions which display interesting dynamics 
property with both oscillation and propagation. Furthermore, if the two initial values 
u0 or v0 of in Equ. (1.1) have a compact support, then the compact property will be 
succeed to u and v at all times t ∈ [0, T).

Theorem  1.6 Supposed that the initial data (u0, v0) ∈ Hs × Hs with s > 5∕2 , and 
m0 = (1 − �2

x
)u0 (or n0 = (1 − �2

x
)v0 ) have a compact support, and T = T(u0, v0) > 0 

be the maximal existence time to the corresponding initial data. Then the C1 func-
tions x ↦ m(x, t) (or x ↦ n(x, t) ) also have a compact support, for any t ∈ [0, T).

Finally, we will exhibit that Equ. (1.1) not only admits peaked solitary wave but 
also possesses multi-peaked solitray wave solutions.

Theorem 1.7 Let the constant c > 0 , Equ. (1.1) has the single peaked solitary wave 
in the form

which are global weak solutions iff � = c1∕q, � = c1∕p . Moreover, the multi-peaked 
solitary wave solutions for Equ. (1.1) takes on the form of

(1.14)on the line: u(t, x) = �e−|x−ct−x0|, v(t, x) = �e−|x−ct−x0|;

(1.15)

on the circle: u(t, x) =
�

cosh(�)
cosh([x − ct]� − �), v(t, x) =

�

cosh(�)
cosh([x − ct]� − �),

(1.16)

in the non-periodic case: u(t, x) =

M∑
i=1

fi(t)e
−|x−gi(t)|, v(t, x) =

N∑
j=1

hj(t)e
−|x−kj(t)|;
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whose peaked positions gi(t), kj(t) and amplitudes fi(t), hj(t) satisfy the following 
dynamical system

where ⟨f (x)⟩ = 1

2
(f (x−) + f (x+)) , and the notation [x − ct]� defined by Equ. (1.10).

The entire paper is organized as follows. In next section, we obtain the local well-
posedness solution in Besov spaces of Equ. (1.1) through proving Theorems 1.1−
1.2. In section  3, our goal is twofold, one is to get the condition leads to global 
existence and blow up phenomena, and the another is to analyze the propagation 
behaviors start from compactly supported solutions to the problem (1.1), see Theo-
rems 1.3−1.6 for the details. In section 4, the peakon and multi-peakons are derived 
through proving Theorem 1.7.

2  Local Well‑Posedness to Equ. (1.1) in the Besov Spaces

In present section, we will establish the local well-posedness for the initial-value 
problem Equ. (1.1) in the Besov spaces, i.e., prove Theorem 1.1 and 1.2. The prop-
erties of the Besov spaces and the Littlewood-Paley theory can be found in [39, 40].

2.1  Local Well‑Posedness to Equ. (1.1) in the Besov Spaces Bs
l,r

At the beginning we introduce the following definition.

Definition 2.1 For T > 0, s ∈ ℝ and 1 ≤ l ≤ +∞ and s ≠ 2 +
1

l
 , we define

and Es
l,r
≐ ∩T>0E

s
l,r
(T).

First, we get the uniqueness and continuity for the solution to the Equ. (1.1) with 
respect to the initial data, and we denote the generic constant C > 0 is only depend-
ing on l, r, s, p, q, |a|, |b|.

(1.17)

in the periodic case: u(t, x) =

M∑
i=1

fi(t) cosh([x − gi(t)]� − �), v(t, x)

=

N∑
j=1

hj(t) cosh([x − ki(t)]� − �),

(1.18)
ġi = vp(gi), ḟi = (p − a)vp−1(gi)⟨vx(gi)⟩fi,
ḣj = uq(kj), k̇j = (q − b)uq−1(kj)⟨ux(kj)⟩hj,

Es
l,r
(T) ≐ C([0, T];Bs

l,r
) ∩ C

1([0, T];Bs−1
l,r

) if r < +∞,

Es
l,∞

(T) ≐ L∞([0, T];Bs
l,∞

) ∩ Lip([0, T];Bs−1
l,∞

),
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Lemma 2.1 Assume that 1 ≤ l, r ≤ +∞ and the index s > max{2 +
1

l
,
5

2
, 3 −

1

l
} , 

and (ui, vi) ∈ {L∞([0, T];Bs
l,r
) ∩ C([0, T];S�)}2 (i = 1, 2) be two given solutions of 

the Cauchy problem (1.1) with respect to the initial data (ui(0), vi(0)) ∈ Bs
l,r
× Bs

l,r
 

( i = 1, 2 ), and denote u12 = u1 − u2, v12 = v1 − v2 . Therefore,

(i) If s ≠ 4 + 1∕l and s > max{1 +
1

l
,
3

2
} , then

for every t ∈ [0, T] , where

(ii) If s = 4 + 1∕l , then

for every t ∈ [0, T] , where � ∈ (0, 1)(i.e., � =
1

2
(1 −

1

2l
) ) and Γs(t, ⋅) as in case (i).

Proof The hypothesis of this theorem implies that m12 = m1 − m2, n12 = n1 − n2 , 
and u12, v12 ∈ L∞([0, T];Bs

l,r
) ∩ C([0, T];S�) , this gets that u12, v12 ∈ C([0, T];Bs−1

l,r
) , 

and (u12, v12) and m12, n12 solves the transport equations

According to Lemma 2.2 (i) in [40], we have

Since s > max{2 +
1

l
,
5

2
, 3 −

1

l
} ≥ 2 +

1

l
 , we obtain

(2.1)

‖u12‖Bs−1
l,r

+ ‖v12‖Bs−1
l,r

≤ �
‖u12(0)‖Bs−1

l,r
+ ‖u12(0)‖Bs−1

l,r

�
exp

�
C �

t

0

Γs(t, ⋅)d�

�
,

Γs(t, ⋅) =

�
‖v1‖pBs

l,r

+ ‖u1‖qBs
l,r

+ ‖u2‖Bs
l,r

p−1�
i=0

‖v1‖p−1−iBs
l,r

‖v2‖jBs
l,r

+‖v2‖Bs
l,r

q−1�
j=0

‖u1‖q−1−iBs
l,r

‖u2‖jBs
l,r

�
.

‖u12‖Bs−1
l,r

+ ‖v12‖Bs−1
l,r

≤ C
�
‖u12(0)‖Bs−1

l,r
+ ‖u12(0)‖Bs−1

l,r

��

Γ1−�
s

(t, ⋅)

exp

�
C� �

t

0

Γs(t, ⋅)d�

�
,

⎧⎪⎨⎪⎩

�tm12 + v
p

1
�xm12 = −[v

p

1
− v

p

2
]�xm2 −

a

p
�xv

p

1
m12 −

a

p
[�xv

p

1
− �xv

p

2
]m2,

�tn12 + u
q

1
�xn12 = −[u

q

1
− u

q

2
]�xn2 −

b

q
�xu

q

1
n12 −

b

q
[�xu

q

1
− �xu

q

2
]n2,

m12�t=0 = m12(0) ≐ m1(0) − m2(0), n12�t=0 = n12(0) ≐ n1(0) − n2(0).

(2.2)

‖m12‖Bs−3
l,r

≤‖m12(0)‖Bs−3
l,r

+ C �
t

0

�
‖�xvp1‖Bs−4

l,r
+ ‖�xvp1‖

B
1
l
p,r∩L

∞

�
‖m12‖Bs−3

l,r
d�

+ C �
t

0

‖[vp
1
− v

p

2
]�xm2 −

a

p
�xv

p

1
m12 −

a

p
[�xv

p

1
− �xv

p

2
]m2‖Bs−3

l,r
d�.
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Since the property (1 − �2
x
) ∈ OP(S2) , by Proposition 2.2 (7) in [40], for all s ∈ ℝ , 

we obtain that

If max{2 +
1

l
,
5

2
} < s ≤ 3 +

1

l
 , by Proposition 2.5 (2) in [40] and Bs−2

l,r
 being an alge-

bra, we arrive at

For the case s > 3 +
1

l
 , the inequality (2.3) also holds true since that Bs−3

l,r
 is an alge-

bra. Thus,

The second component v can be treat by the similar way, and get the following 
inequality

Therefore

Using Gronwall’s lemma, we obtain (i).
Next, we apply the interpolation method to deal with the critical case: s = 4 + 1∕l . 

Indeed, s − 1 = 3 +
1

l
= �

(
2 +

1

2 l

)
+ (1 − �)

(
4 +

1

2 l

)
 provide � =

1

2
(1 −

1

2l
)

∈ (0, 1) . According to Proposition 2.2(5) in [40] and the above inequality, we have

‖�xvp1‖Bs−4
l,r

+ ‖�xvp1‖
B

1
l
l,r
∩L∞

≤ 2‖�xvp1‖Bs−2
l,r

≤ C‖v1‖pBs
l,r

.

‖ui‖Bs
l,r
≊ ‖mi‖Bs−2

l,r
and ‖vi‖Bs

l,r
≊ ‖ni‖Bs−2

l,r
.

(2.3)

‖[vp
1
− v

p

2
]�xm2 −

a

p
�xv

p

1
m12 −

a

p
[�xv

p

1
− �xv

p

2
]m2‖Bs−3

l,r
+ ‖�xvp1 − �xv

p

2
‖Bs−3

l,r
‖m2‖Bs−2

l,r

≤ C

�
‖v1‖pBs−1

l,r

‖u12‖Bs−1
l,r

+ ‖u2‖Bs
l,r
‖v12‖Bs−1

l,r

p−1�
i=0

‖v1‖p−1−iBs
l,r

‖v2‖iBs
l,r

�
.

‖u12‖Bs−1
l,r

≤ ‖u12(0)‖Bs−1
l,r

+ C �
t

0
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q−1�
j=0
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�
Γs(�, ⋅)d�.
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which yields (ii).   ◻

Next, in order to prove the local existence theorem  1.1, we start establish 
the approximate solutions to Equ. (1.1) by the famous Friedrichs regularization 
approach.

Lemma 2.2 Let u(0) = v(0) ∶= 0 . Thus, there exists a sequence (uk, vk) ∈ C(ℝ+;B∞
p,r
)2 

verifying

and there is a lifespan T > 0 such that the sequence of smooth functions enjoying the 
following properties: 

 (i) The sequence (uk, vk)k∈ℕ is uniformly bounded in the spaces Es
p,r
(T) × Es

p,r
(T).

 (ii) The sequence (uk, vk)k∈ℕ is a Cauchy sequence in C([0, T];Bs−1
p,r

) × C([0, T];Bs−1
p,r

).

Proof The fact Sk+1u0 ∈ B∞
l,r

 and Lemma 2.3 in [40] enables us to show that the 
equation (Tk) exists a global solution by induction, moveover, which belongs to 
C(ℝ+;B∞

l,r
)2 for all k ∈ ℕ.

For s ≠ 3 +
1

l
 and max

{
2 +

1

2
,
5

2
, 3 −

1

l

}
 , Lemma 2.1 (i) implies

is true for all k ∈ ℕ . Due to s > 2 +
1

l
 , we know that Bs−2

l,r
 is an algebra and 

Bs−2
l,r

↪ L∞ . Thus, we have

‖u12‖B3+1∕l

l,r

+ ‖v12‖B3+1∕l

l,r
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B
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B
4+1∕2l
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B
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,
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⎧⎪⎨⎪⎩
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p
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k
mk = 0,
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q

k
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b

q
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q
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and also for ‖nk+1‖Bs−2
l,r

 . Thus, adding the two resulted inequalities yields

where Uk(t) ∶= ∫ t

0

�
‖vk(�)‖Bs

l,r
+ ‖uk(�)‖Bs

l,r

��

d� ≥ ∫ t

0

�
‖vk(�)‖�Bs

l,r

+ ‖uk(�)‖�Bs
l,r

�
d� 

and � = max {p, q} . Choosing 0 < T <
1

2𝜅C
�
‖u0‖Bs

l,r
+‖v0‖Bs

l,r

�𝜅 , and suppose by induction 

that

for all t ∈ [0, T).
Noticing

and substituting (2.5) and the above inequality into (2.4), one obtain
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(2.4)
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which implies that the sequence (uk, vk)k∈ℝ is uniformly bounded in the spaces 
C([0, T];Bs

l,r
) × C([0, T];Bs

l,r
) . The linear equation (Tk) and the proofs of Lemma 

2.1 implies that the sequence (�tuk, �tvk)k∈ℝ is uniformly bounded in the spaces 
C([0, T];Bs−1

l,r
) × C([0, T];Bs−1

l,r
) . Hence, the sequence (uk, vk)k∈ℝ is uniformly bounded 

in the spaces Es
l,r
(T) × Es

l,r
(T).

Let us now show that the sequence (uk, vk)n∈ℝ is a Cauchy sequence in 
C([0, T];Bs−1

l,r
) × C([0, T];Bs−1

l,r
) . In fact, from the equation (Tk) , for all k, j ∈ ℕ , we 

have,

where

Apparently, we have

with

For s > max{2 +
1

l
, 3 −

1

l
,
5

2
} and s ≠ 3 +

1

l
, 4 +

1

l
 , using a similar argument in the 

proof of Lemma 2.1, on can arrive
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Proposition 2.1 in [40] gives

By the same way, we can get

Due to the sequence {uk, vk}k∈ℕ being uniformly bounded in the spaces Es
l,r
(T) , we 

can get a constant CT > 0 independent of k, i and verifying

Arguing by the induction procedure, we have

when k → ∞ , we get the desired result. The interpolation method leads to the criti-
cal case s = 4 +

1

l
 , which yields the desired result.   ◻

Therefore, we can finish the proof of the existence and uniqueness for the solu-
tion of Equ. (1.1) in the nonhomogeneous Besov space.

Proof of Theorem 1.1 Let us first show that the limit (u, v) ∈ Es
l,r
(T) × Es

l,r
(T) and sat-

isfies system (1.1). Proposition 2.2(6)and Lemma 2.2 in [40] means that

V
j

k+1
(t) ≐ ‖uk+j+1 − uk+1‖Bs−1

l,r
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������
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Δdu0
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��rLp

� 1
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≤ C2−k��u0��Bs
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.
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.

V
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(t) ≤ CT

(
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V
j

k
(�)d�

)
, ∀t ∈ [0, T].

V
j

k+1
(t) ≤ CT

(
2−k

k∑
i=0

(2TCT )
i

i!
+ Ck+1

T �
(t − �)k

k!
d�

)

≤ 2−k

(
CT

k∑
i=0

(2TCT )
i

i!

)
+ CT

(TCT )
k+1

(k + 1)!
,

(u, v) ∈ L∞([0, T];Bs
l,r
) × L∞([0, T];Bs

l,r
).
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Combining an interpolation argument with Lemma 2.2 gets

Taking limit in the equation Tk reveals that (u, v) ∈ C([0, T];Bs�−1
l,r

) × C([0, T];Bs�−1
l,r

) 
and satisfy the Cauchy problem (1.1) for all s′ < s . Note the fact Bs

l,r
 is an alge-

bra as s > 2 +
1

l
 , and applying the Lemma 2.2 and Lemma 2.3 in [40] produces 

(u, v) ∈ Es
l,r
(T) × Es

l,r
(T).

At the end, the continuity on the initial data in the spaces

can be proved through the use of Lemma 2.1 and a interpolation argument. While the 
continuity in the spaces C([0, T];Bs

l,r
) ∩ C

1([0, T];Bs−1
l,r

) × C([0, T];Bs
l,r
) ∩ C

1([0, T];Bs−1
l,r

 
when r < ∞ can be obtained by a sequence of viscosity approximation solutions 
(u𝜖 , v𝜖)𝜖>0 for the initial-value problem (1.1) which converges uniformly in these 
spaces. The proof of Theorem 1.1 is completed.

2.2  Local Well‑Posedness for Equ. (1.1) in Critical Besov Space

In present section, local well-posedness of the solution for Equ. (1.1) in critical 
Besov spaces was established. Inspired by the argument of local existence about 
CH type equations [13], by the famous Friedrichs regularization methold, one can 
construct the approximate solutions of Equ. (1.1).

Lemma 2.3 Given (u0, v0) = 0 and the initial data (u0, v0) ∈ B
5

2

2,1
× B

5

2

2,1
 . Then there 

exists a sequence {(uk, vk)}k∈ℕ ∈ C(ℝ+;B∞
2,1
) satisfy the linear Cauchy problem (Tk) 

(see, Lemma 2.1). Furthermore, the solutions (uk, vk) enjoying the following two 
properties: 

 (i) The sequence (uk, vk)k∈ℕ is uniformly bounded in the spaces E
5

2

2,1
(T) × E

5

2

2,1
(T).

 (ii) The sequence (uk, vk)k∈ℕ is a Cauchy sequence in C([0, T];B
3

2

2,∞
) × C([0, T];B

3

2

2,∞
)

.

Proof Firstly, we claim that the sequence (uk, vk)k∈ℕ (defined by ( Tk )) is a Cauchy 

sequence in C([0, T);B
3

2

2,∞
) × C([0, T);B

3

2

2,∞
) , then by ||uk||

B
5
2
2,1

+ ||vk||
B

5
2
2,1

≤ M and the 

interpolation inequality imply that (uk, vk)k∈ℕ tends to (uk, vk) in C([0, T);Bs
2,1
) for all 

s <
5

2
 . This argument is very similar to the proof of Lemma 2.2, we omit the details 

here for concise.   ◻

(uk, vk) → (u, v) in C([0, T];Bs�

l,r
) × C([0, T];Bs�

l,r
), as k → ∞, for all s� < s.

C([0, T];Bs�

l,r
) ∩ C

1([0, T];Bs�−1
l,r

) × C([0, T];Bs�

l,r
) ∩ C

1([0, T];Bs�−1
l,r

) for all s� < s,
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The stability of the solution to Equ. (1.1) was obtain by the following lemma:

Lemma 2.4 Set ℕ̄ ≐ ℕ ∪∞ , for any initial data z0 ≐ (u0, v0) ∈ B
5

2

2,1
× B

5

2

2,1
 , then there 

exists a neighborhood V correspond to z0 in B
5

2

2,1
× B

5

2

2,1
 and a positive time T satisfy 

that every solution z of the initial-value problem (1.1) is continuous.

Proof At the beginning, we will claim that the map Φ in C([0, T];B
3

2

2,1
) × C([0, T];B

3

2

2,1
) 

is continuous. Fix 𝛿 > 0 and z0 ∈ B
5

2

2,1
× B

5

2

2,1
 , we prove that there exists two positive 

constants T and M verify that the solution z = Φ(z) ∈ C([0, T];B
5

2

2,1
)2 and satisfies 

‖z‖
L∞([0,T];B

5
2
2,1
)2
≤ M for any z�

0
∈ B

5

2

2,1
× B

5

2

2,1
 and ‖z�

0
− z0‖

B
5
2
2,1
×B

5
2
2,1

≤ � . Indeed,we 

already get that if we fix a time T > 0 satisfy that T <
1

2𝜅C‖z0‖𝜅Bs
l,r

, form the proof of 

the local well-posedness, then

Due to ‖z�
0
− z0‖

B
5
2
2,1

≤ � , it follows that ‖z�
0
‖
B

5
2
2,1

≤ ‖z0‖
B

5
2
2,1

+ � . Here, one can actually 

choose some suitable constant C verify that

and M = 21∕�(‖z0‖
B

5
2
2,1

+ �). Substitute this uniform bounds into Lemma 2.4 yields

Hence Φ is Hölder continuous from B
5

2

2,1
× B

5

2

2,1
 into C([0, T];B

3

2

2,1
) × C([0, T];B

3

2

2,1
).

On the other hand, we claim that the map Φ in C([0, T];B
5

2

2,1
) × C([0, T];B

5

2

2,1
) is con-

tinuous. Let z∞(0) ≐ (u∞(0), v∞(0)) ∈ B
5

2

2,1
× B

5

2

2,1
 and (zk(0))k∈ℕ ≐ (uk(0), vk(0))k∈ℕ 

tend to z∞
0

 in B
5

2

2,1
× B

5

2

2,1
 as k → ∞ . Let zk ≐ (uk, vk) be the solution of the initial-

value problem (1.1) correspond to the initial data zk(0) . Through the above proce-
dure we may obtain

(2.6)
||z�(t)||

B
5
2
2,1

≤
C||z�

0
||
B

5
2
2,1(

1 − 2�Ct||z�
0
||�
B

5
2
2,1

)1∕�
for all t ∈ [0, T].

T =
1

4𝜅C(‖z0‖
B

5
2
2,1

+ 𝛿)𝜅
< min

�
1

2𝜅C‖z�
0
‖𝜅
Bs
l,r

,
1

2C

�

‖Φ(v0) − Φ(u0)‖
L∞(0,T;B

5
2
2,1
)
≤ �e2�CM

�T .
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Apparently, proving zk → z∞ in the spaces C([0, T];B
5

2

2,1
) × C([0, T];B

5

2

2,1
) 

is equivalent to proving that mk = uk − �2
x
uk, nk = vk − �2

x
vk tends to 

p(∞) = u(∞) − u(∞)
xx

, q(∞) = v(∞) − v(∞)
xx

 in the spaces C([0, T];B
1

2

2,1
) as k → ∞.

Let us recall that (uk, vk) solves the linear transport equation:

Applying the Kato theory [13], we decompose the solution (mk, nk) into 
mk = �k + �k, nk = �k + �k with

and

Using properties of Besov spaces(cf. [13]), it is easily see that the sequence 

(mk, nk)k∈ℕ are uniformly bounded in the spaces C([0, T];B
1

2

2,1
) . Moreover,

In light of the product law in the Besov spaces and Lemma 4.3 in [13] to equation 
(2.10) yields

(2.7)sup
k∈ℕ

‖zk‖
L∞
T
(B

5
2
2,1
)
≤ M, for any n ∈ ℕ, t ∈ T .

(2.8)

⎧
⎪⎨⎪⎩

�tmk + v
p

k
�xmk +

a

p
�xv

p

k
mk = 0,

�tnk + u
q

k
�xnk +

b

q
�xu

q

k
nk = 0,

uk�t=0 = uk(0), vk�t=0 = vk(0).

(2.9)

⎧
⎪⎨⎪⎩

�
�t + v

p

k
�x
�
�(n) = −

a

p
�xv

p

k
mk +

a

p
�xv

p
∞m∞,�

�t + u
q

k
�x
�
�k = −

b

q
�xu

q

k
nk +

b

q
�xu

q
∞n∞,

uk�t=0 = uk(0) − u∞(0), vk�t=0 = vk(0) − v∞(0),

(2.10)

⎧⎪⎨⎪⎩

�
�t + v

p

k
�x
�
�k = −

a

p
�xv

p
∞m∞,�

�t + u
q

k
�x
�
�k = −

b

q
�xu

q
∞n∞,

uk�t=0 = u∞(0), vk�t=0 = v∞(0).

‖a
p
�xv

p

k
mk −

a

p
�xv

p
∞
m∞‖

B
1
2
2,1

≤ C‖�xvpk‖
B

1
2
2,1

‖mk − m∞‖
B

1
2
2,1

+ C

�
‖�xvpk − �xv

∞
k
‖
B

3
2
2,1

�
‖m∞‖

B
1
2
2,1

.

(2.11)

‖�(n)‖
B

1
2

2,1

≤ exp

�
C �

t

0

‖vp
k
(�)‖

B
3
2

2,1

d�

�
⋅

�
‖mk(0) − m∞(0)‖

B
1
2

2,1

+ �
t

0

����
a

p
�xv

p

k
mk −

a

p
�xv

p
∞
m∞

����B 1
2

2,1

d�

�
.
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By the argument in the first step, we can get that (uk, vk)n∈ℕ≐ℕ∪{∞}
 is uniformly 

bounded in the spaces C([0, T];B
5

2

2,1
) × C([0, T];B

5

2

2,1
) , and which tends to the limit 

(u∞, v∞) in the spaces C([0, T];B
3

2

2,1
) × C([0, T];B

3

2

2,1
) as k → ∞ . Therefore, adopt-

ing Proposition 3 in [13] reveals that (�k,�k) tends to (m∞, n∞) in the spaces 

C([0, T];B
1

2

2,1
) × C([0, T];B

1

2

2,1
) . Therefore, adding this convergence result into the esti-

mates (2.7) and (2.11), for large enough n ∈ ℤ
+ leads to

By the Gronwall’s inequality, we have

where the constant C depends only on the constants M and T. Continuity of the 

map Φ in the spaces C([0, T];B
5

2

2,1
) × C([0, T];B

5

2

2,1
) is now completed. Using the 

operator �t to original equations (1.1), then repeating the above procedure to the 
obtaining system in views of (�tu, �tv) , we obtain that the map Φ in the spaces 

C
1([0, T];B

3

2

2,1
) × C

1([0, T];B
3

2

2,1
) is continuous.   ◻

Proof of Theorem 1.2 From Lemma 2.3, one can get that the sequence {un, vn}n∈ℕ is uni-

formly bounded in the Besov spaces E
5

2

2,1
× E

5

2

2,1
 with E

5

2

2,1
= C([0, T];B

5

2

2,1
)∩

C
1([0, T];B

3

2

2,1
) , Lemma 2.5 further show that the sequence {un, vn}n∈ℕ tends to the limit 

(u, v) = (u∞, v∞) in the spaces C([0, T];B
3

2

2,1
) × C([0, T];B

3

2

2,1
) as k → ∞ . In other words 

{un, vn}n∈ℕ is a Cauchy sequence in L∞

(
[0, T];B

3

2

2,∞

)
× L

∞

(
[0, T];B

3

2

2,∞

)
 and con-

verges to some limit function (u, v) ∈ L
∞

(
[0, T];B

3

2

2,∞

)
× L

∞

(
[0, T];B

3

2

2,∞

)
 , and 

(u, v) ∈ E
5

2

2,1
× E

5

2

2,1
 is indeed a solution of (1.1). Furthermore, which is convergence in 

the spaces C([0, T],Bs1
2,1
), s1 < 5∕2 through interpolation theorem.

‖mk − m∞‖
B

1
2
2,1

+ ‖nk − n∞‖
B

1
2
2,1

≤ � + CMp+qeCM
p+qT

�
‖mk(0) − m∞(0)‖

B
1
2
2,1

+ ‖nk(0) − n∞(0)‖
B

1
2
2,1

+ �
t

0

�
‖mk − m∞‖

B
1
2
2,1

+ ‖nk − n∞‖
B

1
2
2,1

�
d� + �

t

0

‖uk − u∞‖
B

1
2
2,1

+ ‖vk − v∞‖
B

1
2
2,1

d�

�
.

‖mk − m∞‖
L∞(0,T;B

1
2
2,1
)
+ ‖nk − n∞‖

L∞(0,T;B
1
2
2,1
)

≤ C

�
‖mk(0) − m∞(0)‖

B
1
2
2,1

+ ‖nk(0) − n∞(0)‖
B

1
2
2,1

+ �

�
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On the other hands, Lemma 2.4 also obtain that the map Φ ∶ z0 → z = (u, v) in 

the spaces C([0, T];B
5

2

2,1
) × C([0, T];B

5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
) × C

1([0, T];B
3

2

2,1
) is continu-

ous. Let us pass the limit in the system (Tk) (see, Lemma 2.1), one can easy get that 
the pair (u, v) is a solution to Equ. (1.1) and verifies

The Lemma 2.3 implies that the continuity with the initial data 

(u0, v0) ∈ C([0, T];B
5

2

2,1
) × C([0, T];B

5

2

2,1
) . Now, we only need to prove the unique-

ness and stability of strong solutions to (1.1). Assume that (ui, vi) ∈ E
5

2

2,1
× E

5

2

2,1
 

are two solutions of (1.1) with mi = (1 − �2
x
)ui, ni = (1 − �2

x
)ui,i = 1, 2 . Then 

m12 ∶= m1 − m2, n12 ∶= n1 − n2 solves the transport equations

By a similar argument in the proof of Lemma 2.1, we can easy get

where U(t) = ∫ t

0
(‖m12(�)‖

B
1
2
2,∞

+ ‖n12(�)‖
B

1
2
2,∞

)d� , and used (2.5) that 

‖m
i
(�)‖

B

1
2

2,∞

+ ‖n
i
(�)‖

B

1
2

2,∞

 ≤ (
1−2�CZ�

0
�

1−2�CZ�
0
T

) 1

2�

=∶ M . If we define W(t) = e
−CA(t)

(‖m12(t)‖
B
−
1
2

2,1

+ ‖n12(t)‖
B
−
1
2

2,1

) , then get

If we set �(r) = r(1 − ln r) which satisfies the condition ∫ 1

0

dr

�(r)
 . A simple calculation 

shows that M(x) = ln(1 − ln x) , we deduce that �(t) ≤ eC
exp ∫ t

t0 − �(�)d� , if c > 0 . 
By virtue of Osgood lemma (cf. Lemma 3.4. in [3]) with �(t) = W(t)

C
 , we verify that

(u, v) ∈ C([0, T];B
5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
) × C([0, T];B

5

2

2,1
) ∩ C

1([0, T];B
3

2

2,1
).

⎧
⎪⎨⎪⎩

�tm12 + v
p

1
�xm12 = −[v

p

1
− v

p

2
]�xm2 −

a

p
�xv

p

1
m12 −

a

p
[�xv

p

1
− �xv

p

2
]m2,

�tn12 + u
q

1
�xn12 = −[u

q

1
− u

q

2
]�xn2 −

b

q
�xu

q

1
n12 −

b

q
[�xu

q

1
− �xu

q

2
]n2,

m12�t=0 = m12(0) ≐ m1(0) − m2(0), n12�t=0 = n12(0) ≐ n1(0) − n2(0).

e−CA(t)(‖m12(t)‖
B
−
1
2

2,∞

+ ‖n12(t)‖
B
−
1
2

2,∞

)

≤ ‖m12(0)‖
B
−
1
2

2,∞

+ ‖n12(0)‖
B
−
1
2

2,∞

+ CM�
t

0

e−CU(�)(‖m12(�)‖
B
−
1
2

2,∞

+ ‖n12(�)‖
B
−
1
2

2,∞

)d�

W(t) ≤ c

(
W(0) + �

t

0

W(�) ln

(
e +

C

W(�)

)
d�

)

≤ c

(
W(0) + �

t

0

W(�)

(
1 − ln

W(�)

C

)
d�

)

W(t) ≤ CW(0)exp{−Ct} ≤ CW(0)exp{−CT}
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which leads to

Next, we apply the interpolation argument ensures that

where � =
1

2
− s� ∈ (0, 1] . The above inequality implies the uniqueness. Conse-

quently, we prove the theorem 1.2.   ◻

3  Blow‑Up Criterion

In present section, we shall build up a blow-up criteria for Equ. (1.1). We first 
recall two useful lemmas as follows.

Lemma 3.1 (See [40]) If the Sobolev index r > 0 , then Hr ∩ L∞ is an algebra, and

where the constant c depend only on r.

Lemma 3.2 (See [40]) If Sobolev index r > 0 , then

where the constant c depend only on r.

Proof of Theorem  1.3 This theorem can be proved by an inductive method with 
respect to the Sobolev index s. The proof consist by the following three steps.

Step 1. For the cases s ∈
(

1

2
, 1
)
 , Using the Theorem 3.2 in [23] to the equations 

(1.1), one gets

for all t ∈ (0, T∗
m0,n0

) . Let u = G ∗ m = (1 − �2
x
)−1m, v = G ∗ n = (1 − �2

x
)−1n, where 

G =
1

2
e−|x| and ∗ stands for the convolution on ℝ . Then ux = �xG ∗ m where 

�xG(x) = −
1

2
sign(x)e−|x|. As per the Young inequality, we have

‖W(t)‖
B
−
1
2

2,∞

≤ C‖W(0)‖exp{−CT}
B
−
1
2

2,∞

≤ CT‖W(0)‖
B
−
1
2

2,1

sup
t∈[0,T]

‖W(t)‖Bs�

2,1

≤ ‖W(t)‖�
B
−
1
2

2,1

‖W(t)‖1−�
B

1
2
2,1

≤ ‖W(t)‖�
B
−
1
2

2,∞

‖W(t)‖1−�
B

1
2
2,1

≤ C‖W(0)‖� exp{−CT}
B
−
1
2

2,1

,

||fg||Hr ≤ c(||f ||L∞ ||g||Hr + ||g||L∞ ||h||Hr ),

||[Dr, f ]g||L2 ≤ c(||�xf ||L∞ ||Dr−1g||L2 + ||Drf ||L2 ||g||L∞),

(3.1)‖m(t)‖Hs ≤‖m0‖Hs + C �
t

0

�‖m�xvp(�)‖Hs + ‖m(�)‖Hs‖�xvp(�)‖L∞
�
d�



1 3

Journal of Nonlinear Mathematical Physics 

Utilizing Eq. (3.2), ‖ux‖Hs ≤ C‖m‖Hs , ‖vx‖Hs ≤ C‖n‖Hs and the Moser-type esti-
mates leads to

and

Plugging Eqs. (3.3) and (3.4) into (3.1) generates

Similarly, For the second equation of the system (1.1) leads to

Therefore

Then, Using the Gronwall’s inequality yields

Moreover, if there exists a maximal time T∗
m0,n0

< ∞ verify

then Equ. (3.6) implies that the following inequality holds

which is contradicted to the assumption T∗
m0,n0

< ∞.

(3.2)
‖u‖L∞ ≤ ‖G‖L1‖m‖L∞ ≤ C‖m‖L∞ , ‖v‖L∞ ≤ C‖n‖L∞ ,

‖ux‖L∞ ≤ ‖�xG‖L1‖m‖L∞ ≤ C‖m‖L∞ , ‖vx‖L∞ ≤ C‖n‖L∞ ,
��uxx��L∞ ≤ ��u − uxx��L∞ + ��u��L∞ ≤ C‖m‖L∞ .

(3.3)
‖m�xvp(�)‖Hs ≤ C

�‖�xvp‖L∞‖m‖Hs + ‖m‖L∞‖�xvp‖Hs

�

≤ C
�
‖n‖p

L∞
‖m‖Hs + ‖m‖L∞‖n‖p−1L∞

‖n‖Hs

�
,

(3.4)‖m(�)‖Hs‖�xvp(�)‖L∞ ≤ C‖n‖p
L∞
‖m‖Hs .

(3.5)

‖m(t)‖Hs ≤‖m0‖Hs + C �
t

0

�
(‖n‖p

L∞
+ ‖m‖L∞‖n‖p−1L∞

)(‖m‖Hs + ‖n‖Hs)
�
d�.

‖n(t)‖Hs ≤‖n0‖Hs + C �
t

0

�
(‖m‖q

L∞
+ ‖n‖L∞‖m‖q−1L∞

)(‖m‖Hs + ‖n‖Hs)
�
d�.

‖m(t)‖Hs + ‖n(t)‖Hs ≤ ‖m0‖Hs + ‖n0‖Hs

+ C �
t

0

�
‖n‖p

L∞
+ ‖m‖L∞‖n‖p−1L∞

+ ‖m‖q
L∞

+ ‖n‖L∞‖m‖q−1L∞

�
(‖n‖Hs + ‖m‖Hs) d�.

(3.6)
‖m(t)‖Hs + ‖n(t)‖Hs ≤ (‖m0‖Hs + ‖n0‖Hs)

exp
{

C ∫

t

0

(

‖n‖pL∞ + ‖m‖L∞‖n‖
p−1
L∞ + ‖m‖qL∞ + ‖n‖L∞‖m‖

q−1
L∞

)

d�
}

.

∫
T∗
m0,n0

0

�
‖n‖p

L∞
+ ‖m‖L∞‖n‖p−1L∞

+ ‖m‖q
L∞

+ ‖n‖L∞‖m‖q−1L∞

�
d𝜏 < ∞,

(3.7)lim sup
t→T∗

m0,n0

(‖m(t)‖Hs + ‖n(t)‖Hs) < ∞.
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Step 2. For the cases s ∈ [1, 2), we differentiate the system (1.1) with respect to x 
yields

By Theorem 3.2 in [23], we have

According to the Moser-type estimates in [40] and (3.2), we obtain

and

Plugging Eqs. (3.10) and (3.11) into Equ. (3.9) gives

By a similar argument to the second equation in (3.8) produces

Considering the estimate for (3.6) and the fact

one may see that (3.6) holds for all s ∈ [1, 2) . Repeating the above procedure as 
shown in Step 1, thus, Theorem 1.3 holds for all s ∈ [1, 2).

Step 3. Let us assume that Theorem  1.3 holds for the cases k − 1 ≤ s < k 
and 2 ≤ k ∈ ℕ . By the mathematical induction, we shall claim that it is true for 
k ≤ s < k + 1 as well. Differentiating the system (1.1) k times with respect to the 
space variant x leads to

(3.8)
�t(mx) + vp�x(mx) = −

a + p

p
(vp)xmx −

a

p
(vp)xxm,

�t(nx) + uq�x(nx) = −
b + q

q
(uq)xnx −

b

q
(uq)xxn.

(3.9)

‖�xm(t)‖Hs−1 ≤ ‖�xm0‖Hs−1 + C �
t

0

‖(vp)xmx + (vp)xxm‖Hs−1 d� + C �
t

0

‖mx‖Hs−1‖(vp)x‖L∞d�

(3.10)
‖(vp)xxm‖Hs−1 ≤ C

�‖(vp)xx‖L∞‖m‖Hs−1 + ‖m‖L∞‖(vp)xx‖Hs−1

�

≤ C
�
‖n‖p

L∞
‖m‖Hs + ‖m‖L∞‖n‖p−1L∞

‖n‖Hs

�
,

(3.11)

‖mx�xv
p‖Hs−1 = ‖�x[m(vp)x] − (vp)xxm‖Hs−1 ≤ C

�‖mxv
p‖Hs + ‖(vp)xxm‖Hs−1

�

≤ C
�
‖n‖p

L∞
‖m‖Hs + ‖m‖L∞‖n‖p−1L∞

‖n‖Hs

�
.

‖�xm(t)‖Hs−1 ≤ ‖�xm0‖Hs−1 + C �
t

0

�
‖n‖p

L∞
‖m‖Hs + ‖m‖L∞‖n‖p−1L∞

‖n‖Hs

�
d�.

‖�xm(t)‖Hs−1 + ‖�xn(t)‖Hs−1 ≤ ‖�xm0‖Hs−1 + ‖�xn0‖Hs−1

+ C �
t

0

�
‖n‖p

L∞
+ ‖m‖L∞‖n‖p−1L∞

+ ‖m‖q
L∞

+ ‖n‖L∞‖m‖q−1L∞

�
(‖n‖Hs + ‖m‖Hs) d�

‖�xm(t, ⋅)‖Hs−1 ≤ C‖m(t)‖Hs , ‖�xn(t, ⋅)‖Hs−1 ≤ C‖n(t)‖Hs ,
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According to Lemma 2.2 in [40], we get

By Sobolev embedding inequality and Moser-type estimate, we derive

where we applied Hs−
1

2
+�0(ℝ) ↪ L∞(ℝ) ( s ≥ 2 ) and

with �0 ∈
(
0,

1

4

)
 and H

1

2
+�0(ℝ) ↪ L∞(ℝ) . Plugging Eqs. (3.14) and (3.15) into Eq. 

(3.13) leads to

and

Then, by Gronwall’s inequality, we obtain

(3.12)

�t(�
k
x
mx) + vp�k

x
(mx) = −

a

p
�k
x
[(vp)xm] −

k−1∑
l=0

Cl
k
�k−l
x

(vp)�l
x
(mx),

�t(�
k
x
nx) + uq�k

x
(nx) = −

b

q
�k
x
[(uq)xn] −

k−1∑
l=0

Cl
k
�k−l
x

(vp)�l
x
(nx).

(3.13)

‖�k
x
m(t)‖Hs−k ≤‖�kxm0‖Hs−k + C �

t

0

‖(vp)x(�)‖L∞‖�kxm(�)‖Hs−n d�

+ C �
t

0

�������

k−1�
l=0

Cl
k

k−1�
l=0

Cl
k
�k−l
x

(vp)�l
x
(mx)

������Hs−k

+ ‖�k
x
[(vp)xm]‖Hs−k

�
d�.

(3.14)
‖�k

x
[(vp)xm]‖Hs−k ≤ C‖(vp)xm‖Hs ≤ C

�
‖n‖p

L∞
‖m‖Hs + ‖m‖L∞‖n‖p−1L∞

‖n‖Hs

�
,

(3.15)

������

k−1�
l=0

Cl
n
�k−l
x

vp�l+1
x

m

������Hs−k

≤ C

k−1�
l=0

�����
k−l
x

vp
���L∞

����
l+1
x

m
���Hs−k

+
����

k−l
x

vp
���Hs−k

����
l+1
x

m
���L∞

�

≤ C

n−1�
l=0

�‖vp‖
H

k−l+
1
2
+�0
‖m‖Hs−k+l+1 + ‖vp‖Hs−l‖m‖

H
l+1+

1
2
+�0

�

≤ C‖n‖p
H

s−
1
2
+�0

‖m‖Hs ,

‖m(t)‖Hs ≤ ‖m0‖Hs + C �
t

0

�
‖n‖p

H
s−

1
2
+�0

+ ‖m‖
H

s−
1
2
+�0
‖n‖p−1

H
s−

1
2
+�0

�
(‖m(�)‖Hs + ‖n(�)‖Hs) d�.

(3.16)

‖m(t)‖Hs + ‖n(t)‖Hs ≤ ‖m0‖Hs + ‖n0‖Hs + C �
t

0

(‖m(�)‖Hs + ‖n(�)‖Hs)

×

�
‖n‖p

H
s−

1
2
+�0

+ ‖m‖
H

s−
1
2
+�0
‖n‖p−1

H
s−

1
2
+�0

+ ‖m‖q
H

s−
1
2
+�0

+ ‖n‖
H

s−
1
2
+�0
‖m‖q−1

H
s−

1
2
+�0

�
d�



 Journal of Nonlinear Mathematical Physics

1 3

If there exist a maximal existence time T∗
m0,n0

< ∞ varify that

then by the solution uniqueness in Theorem  1.1, we know that 
‖n‖p

H
s−

1
2
+�0

+ ‖m‖
H

s−
1
2
+�0
‖n‖p−1

H
s−

1
2
+�0

+ ‖m‖q
H

s−
1
2
+�0

+ ‖n‖
H

s−
1
2
+�0
‖m‖q−1

H
s−

1
2
+�0

 is uniformly 

bounded in t ∈ (0, T∗
m0,n0

) . As per the mathematical induction assumption, we 
obtained a contradiction that

Therefore, we complete the proof of Theorem 1.3.   ◻

To prove Theorem 1.4, let us rewrite the initial-value problem of the transport 
equation (1.1) as follows

with the functions

Let us first provide the sufficient conditions lead to global existence for the solutions 
to Equ. (1.1).

Theorem  3.1 Assume that T be the maximal time of the solution z = (u, v) to the 
Cauchy problem (1.1) with the initial data z0 z0 = (u0, v0) ∈ Hs × Hs ( s > 5∕2 ). 
Morover, if there exists a positive constant M satisfies that

then the solution z(t, ⋅) with the Hs × Hs-norm does not blow up on [0, T).

Proof The local well-posedness was guaranteed by Theorem 1.1.
Using the operator Ds to the system (3.18), multiplying the result system by Dsu 

and Dsv , respectively. Then integrating the obtained system over ℝ , we may arrive at

(3.17)

‖m(t)‖Hs + ‖n(t)‖Hs ≤ (‖m0‖Hs + ‖n0‖Hs)

exp

�
C �

t

0

�
‖n‖p

H
s−

1
2
+�0

+ ‖m‖
H

s−
1
2
+�0
‖n‖p−1

H
s−

1
2
+�0

+ ‖m‖q
H

s−
1
2
+�0

+ ‖n‖
H

s−
1
2
+�0
‖m‖q−1

H
s−

1
2
+�0

��
.

∫
T∗
m0,n0

0

�
‖n‖p

L∞
+ ‖m‖L∞‖n‖p−1L∞

+ ‖m‖q
L∞

+ ‖n‖L∞‖m‖q−1L∞

�
d𝜏 < ∞,

lim sup
t→T∗

m0,n0

(‖m(t)‖Hs + ‖n(t)‖Hs) < ∞.

(3.18)
{

ut + vpux + I1(u, v) = 0,

vt + uqvx + I2(u, v) = 0,

{
I1(u, v) = (1 − �2

x
)−1[avp−1vxu + (p − a)vp−1vxuxx] + p(1 − �2

x
)−1�x(v

p−1vxux),

I2(u, v) = (1 − �2
x
)−1[buq−1uxv + (q − b)uq−1uxvxx] + q(1 − �2

x
)−1�x(u

q−1uxvx).

Γ ≐ (
||u||q−1

L∞
+ ||v||p−1

L∞

)(||ux||L∞ + ||vx||L∞
) ≤ M, t ∈ [0, T),



1 3

Journal of Nonlinear Mathematical Physics 

with

Now, we estimate the right-hand side of (3.19),

In the above inequality, we applied Lemma 3.2 with r = s is used.
By Lemma 3.1 and the mathematical induction, we have ||vp||Hs ≤ p||v||p−1

L∞
||v||Hs 

and

Therefore, we obtain

which reveals

In a similar way, from (3.20) we can get the estimate for ||v||2
Hs . So, we arrive at

Adopting the assumption of the theorem and the Gronwall’s inequality imply

which completes the proof of Theorem 3.1.   ◻

Now, we use Theorem 3.1 to show the blow-up scenario for Equ. (1.1).

(3.19)
1

2

d

dt
||u||2

Hs + (vpux, u)s + (u, I1(u, v))s = 0,

(3.20)
1

2

d

dt
||v||2

Hs + (uqvx, v)s + (v, I2(u, v))s = 0,

I1(u, v) = (1 − �2
x
)−1

[
a

p
(vp)xu +

p − a

p
(vp)xuxx

]
+ (1 − �2

x
)−1�x[(v

p)xux],

I2(u, v) = (1 − �2
x
)−1

[
b

q
(uq)xv +

q − b

q
(uq)xvxx

]
+ (1 − �2

x
)−1�x[(u

q)xvx].

|(vpux, u)s| = |(Dsvpux,D
su)0| = |([Ds, vp]ux,D

su)0 + (vpDsux,D
su)0|

≤ ||[Ds, vp]ux||L2 ||Dsu||L2 + 1

2
|((vp)xDsu,Dsu)0|

≤ c(||(vp)x||L∞ ||u||2Hs + ||ux||L∞ ||vp||Hs ||u||Hs).

|(vpux, u)s| ≤ c||v||p−1
L∞

(||vx||L∞ + ||ux||L∞)(||v||Hs + ||u||Hs)2.

|(I1(z), u)s| ≤ ||I1(z)||Hs ||u||Hs ≤ c(||(vp)xu||Hs−2 + ||(vp)xuxx||Hs−2 + ||(vp)xux||Hs−1)||u||Hs

≤ c||(vp)x||L∞ ||u||2Hs ,

1

2

d

dt
||u||2

Hs ≤ c||v||p−1
L∞

(||vx||L∞ + ||ux||L∞)(||u||Hs + ||v||Hs)2.

1

2

d

dt

(||u||Hs + ||v||Hs

)2 ≤ d

dt

(||u||2
Hs + ||v||2

Hs

)

≤ cΓ
(||ux||L∞ , ||vx||L∞

)
(||u||Hs + ||v||Hs)2.

||u||Hs + ||v||Hs ≤ exp(cMt)(||u0||Hs + ||v0||Hs),



 Journal of Nonlinear Mathematical Physics

1 3

Proof of Theorem 1.4 Let z = (u, v) and T according to the assumption of the theo-
rem. Multiplying both sides of Equ. (1.1) by m, and integrating the result equation 
by parts, one can get

We also notice

Casting p = 2a, q = 2b in Eq. (3.21) yields

In view of Theorem  3.1 and Sobolev inequality ‖u(t, ⋅)‖2
L∞

≤ ‖u(t, ⋅)‖2
H1

 , one may 
see that every solution to the Cauchy problem (1.1) remains globally regular in time.

If p > 2a (or q > 2b ) and the slope of the function vp (or uq ) is lower bounded or 
if p < 2a (or q < 2b ) and the slope of the function vp (or uq ) is upper bounded on 
[0, T) ×ℝ , then there exists a positive constant M > 0 verify that

In view of the Gronwall’s inequality, we obtain

This inequality and Theorem 3.1 imply that the solution of Equ. (1.1) does not blow 
up in a finite time.

On the other hand, combing Theorem 3.1 and Sobolev’s imbedding theorem give 
that if the slope of the functions vp, uq becomes unbounded either lower or upper in a 
finite time, then the solution will blow up in a finite time. This complete the proof of 
Theorem.   ◻

Next, let us consider the following Cauchy problem:

where u, v denote the solution to the problem (1.1). Adopting classical ordinary dif-
ferential equations theory leads to the results on �,� , which are key to the blow-up 
scenarios.

(3.21)

d

dt ∫ℝ

m2dx = 2
d

dt ∫ℝ

mmtdx = −2∫
ℝ

m(vpmx +
a

p
(vp)xm)dx =

p − 2a

p ∫
ℝ

m2(vp)xdx.

d

dt ∫ℝ

n2dx =
q − 2b

q ∫
ℝ

n2(uq)xdx.

‖u(t, ⋅)‖2
H2 ≤ ‖m(t, ⋅)‖2

L2
≤ 2‖u(t, ⋅)‖2

H2 , ‖v(t, ⋅)‖2
H2 ≤ ‖n(t, ⋅)‖2

L2
≤ 2‖n(t, ⋅)‖2

H2 .

‖ux(t, ⋅)‖2L∞ ≤ ‖u(t, ⋅)‖2
H2 ≤ ‖m(t, ⋅)‖2

L2
= ‖m(0, ⋅)‖2

L2
< ∞, ‖vx(t, ⋅)‖2L∞ ≤ ‖n(0, ⋅)‖2

L2
< ∞.

d

dt �ℝ

m2dx ≤ M �
ℝ

m2dx,
d

dt �ℝ

n2dx ≤ M �
ℝ

n2dx.

||m(t, ⋅)||L2 ≤ ||m(0, ⋅)||L2 exp{Mt}, ||n(t, ⋅)||L2 ≤ ||n(0, ⋅)||L2 exp{Mt} ∀t ∈ [0, T),

(3.22)

⎧⎪⎨⎪⎩

�t = vp(t,�(t, x)), for all (t, x) ∈ [0, T) ×ℝ,

�t = uq(t,�(t, x)), for all (t, x) ∈ [0, T) ×ℝ,

�(0, x) = x,�(0, x) = x, x ∈ ℝ,



1 3

Journal of Nonlinear Mathematical Physics 

Lemma 3.3 Let T > 0 be the lifespan of the solution to Equ. (1.1)with corre-
spond to u0, v0 ∈ Hs(s > 5∕2 ). Then the system (3.22) exists a unique solution 
�,� ∈ C

1([0, T),ℝ) . and the map �(t, ⋅),�(t, ⋅) is an increasing diffeomorphism over 
ℝ , where

for all (t, x) ∈ [0, T) ×ℝ.

Proof Theorem  1.1 leads to u, v ∈ C([0, T);Hs) ∩ C
1([0, T);Hs−1) . Thus, both func-

tions u(t, x), v(t, x) and ux(t, x), vx(t, x) are bounded, Lipschitz in space and C1 in time. 
As per the classical existence and uniqueness theorem of ODEs, equation (3.22) 
exists a unique solution �,� ∈ C

1([0, T),ℝ).
Differentiating both sides of equation (3.22) respect to x yields

which implies

Employing the Sobolev embedding theorem gives, for every T ′ < T ,

So, there exists two constants K1,K2 > 0 such that �x ≥ e−K1t,�x ≥ e−K2t for 
� ∈ [0, T), x ∈ ℝ , which yields the Lemma 3.3.   ◻

Lemma 3.4 Let z and T be as in the statement of the Lemma 3.3. Then, we have

Moreover, if there exist M1 > 0 and M2 > 0 such that a

p
(vp)�(t,�) ≥ −M1 and 

b

q
(uq)�(t,�) ≥ −M2 , then

and

𝜙x(t, x) = e∫ t

0
(vp)𝜙(s,𝜙(s,x))ds > 0,𝜑x(t, x) = e�

t

0

(uq)𝜑(s,𝜑(s, x))ds > 0,

⎧
⎪⎨⎪⎩

d

dt
�x = (vp)�(t,�(t, x))�x, (t, x) ∈ [0, T) ×ℝ,

d

dt
�x = (uq)�(t,�(t, x))�x, (t, x) ∈ [0, T) ×ℝ,

�x(0, x) = 1,�x(0, x) = 1, x ∈ ℝ,

𝜙x(t, x) = e∫ t

0
(vp)𝜙(s,𝜙(s,x))ds > 0,𝜑x(t, x) = e∫ t

0
(uq)𝜑(s,𝜑(s,x))ds > 0.

sup
(𝜏,x)∈[0,T)×ℝ

|(vp)x(𝜏, x)| < ∞, sup
(𝜏,x)∈[0,T)×ℝ

|(uq)x(𝜏, x)| < ∞.

(3.23)

⎧⎪⎨⎪⎩

m(t,�(t, x))�
a

p

x (t, x) = m0(x), t ∈ [0, T), x ∈ ℝ

n(t,�(t, x))�
a

p

x (t, x) = n0(x), t ∈ [0, T), x ∈ ℝ.

||m(t, ⋅)||L∞ = ||m(t,�(t, ⋅))||L∞ ≤ exp{2M1T}||m0(⋅)||L∞ , t ∈ [0, T), x ∈ ℝ

||n(t, ⋅)||L∞ = ||n(t,�(t, ⋅))||L∞ ≤ exp{2M2T}||n0(⋅)||L∞ , t ∈ [0, T), x ∈ ℝ.
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Furthermore, if ∫
ℝ
|m0(x)|p∕adx(or ∫

ℝ
|n0(x)|q∕bdx ) converge with a ≠ 0(or b ≠ 0 ), 

then

(Respectively, ∫
ℝ
|n(t, x)|p∕bdx = ∫

ℝ
|n0(x)|q∕bdx, t ∈ [0, T) for all t ∈ [0, T)).

Proof Noticing d�x(t,x)

dt
= �xt = (vp)�(t,�(t, x))�x(t, x) , we differentiate the left-hand 

side of the first equation in (3.23) with respect to the variable t, and recall the first 
equation in (1.1), we obtain

In a similar way, we would arrive at

which implies that the function m(t,�(t, x))�a∕p
x (t, x) and n(t,�(t, x))�b∕q

x (t, x) are 
independent on the time t. By (3.22), we know �x(x, 0) = 1 . So, Eq. (3.23) holds.

Combining Lemma 3.3, Eq. (3.23), and �x(0, x) = 1 , one can get

moreover,

which concludes the proof of the lemma.   ◻

Let us now come to prove Theorems 1.5–1.6 using Lemma 3.4.

Proof of Theorem 1.5 Since u0 ∈ Hs ∩W
2,

p

a for s > 5∕2 , Lemma 3.4 tells us that

∫
ℝ

|m(t, x)|p∕adx = ∫
ℝ

|m0(x)|p∕adx, t ∈ [0, T).

d

dt
{m(t,�(t, x))�a∕p

x
(t, x)}

=
[
mt(t,�) + m�(t,�)�t(t, x)

]
�a∕p
x

(t, x) +
a

p
m(t,�)�(a−p)∕p

x
(t, x)�xt(t, x)

=

[
mt(t,�) + m�(t,�)v

p(t,�) +
a

p
m(t,�)(vp)�(t,�)

]
�a∕p
x

(t, x)

= 0.

d

dt
{n(t, q(t, x))�b∕q

x
(t, x)} = 0,

||m(t, ⋅)||L∞ = ||m(t,�(t, ⋅))||L∞ = ||�−a∕p
x

m0||L∞
=
‖‖‖‖‖
exp

{
−
a

p �
t

0

(vp)�(s,�(s, x))ds

}
m0(⋅)

‖‖‖‖‖L∞
≤ exp{2M1T}||m0(⋅)||L∞ , t ∈ [0, T),

∫
ℝ

|m0(x)|p∕adx = ∫
ℝ

|m(t,�(t, x))|p∕a�x(t, x)dx = ∫
ℝ

|m(t,�(t, x))|p∕ad�(t, x)

= ∫
ℝ

|m(t, x)|p∕adx, t ∈ [0, T),
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and

which imply m = (1 − �2
x
)u ∈ L

p

a and therefore u ∈ W
2,

p

a . Sobolev imbedding the-
orem implies that W2,

p

a ⊂ C
1 for 0 ≤ a ≤ p . Therefore, ||u||L∞ and ||ux||L∞ are uni-

formly bounded for all t ∈ [0, T) . Theorem 1.4 guarantees the Theorem 1.5 is ture, 
i.e., the solution of the problem (1.1) is global existence.   ◻

Proof of Theorem  1.6 Since the initial date (u0, v0) ∈ Hs × Hs ( s > 5∕2 ), 
m0 = (1 − �2

x
)u0 has a compact support. Without loss of generality, suppose that m0 

is supported in the compact interval [a, b]. Lemma 3.3 ensure that 𝜙x(x, t) > 0 on 
the interval ℝ × [0, T) . Lemma 3.4 conclude that, for any t ∈ [0, T) , the C1 function 
m(x, t) exists compact support in [�(a, t),�(b, t)] .   ◻

4  The Peaked Traveling Wave Solutions of Equs.(1.1)

In present section, in order to prove Theorem 1.9, we construct some appropriate 
sequences of peakon solutions by the method of undetermined coefficients. First, 
let us show that the peakon formulas (1.14–1.15) and multi-peakon formulas 
(1.16–1.17) define some weak solutions to Equ. (1.1) both on a circle and on a line, 
respectively.

Proof of Theorem  1.7 The non-periodic peakon solution in the form of (1.14). 
Without loss of generality, we set x0 = 0 . First, Rewriting the model (1.1) as

where

Noticing that

then we have

A simple computation reveals

�
ℝ

|m(t, x)| p

a dx ≤ �
ℝ

|m0(x)|
p

a dx ≤ ||u0||W2,
p
a

if 0 < a ≤ p,

||m(t, x)||L∞ ≤ ||m(0, x)||L∞ if a = 0,

(4.1)
{

ut + vpux + I1(u, v) = 0,

vt + uqvx + I2(u, v) = 0,

{
I1(u, v) = (1 − �2

x
)−1[avp−1vxu + (p − a)vp−1vxuxx] + p(1 − �2

x
)−1�x(v

p−1vxux),

I2(u, v) = (1 − �2
x
)−1[buq−1uxv + (q − b)uq−1uxvxx] + q(1 − �2

x
)−1�x(u

q−1uxvx).

ut = sgn(x − ct)cu, ux = −sgn(x − ct)u, vt = sgn(x − ct)cu, vx = −sgn(x − ct)v,

(4.2)
ut + vpux = −(−cu + vpu)sgn(x − ct), vt + uqvx = −(−cv + uqv)sgn(x − ct).
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For the case x < ct , we derive

For the case x > ct , we deduce

Consequently, we obtain

and

I1(u, v) =
1

2 ∫
ℝ

e−|x−y|[avp−1vyu + (p − a)vp−1vyuyy](t, y)dy

+
p

2
�x ∫

ℝ

e−|x−y|(vp−1vyuy)(t, y)dy

= −
a��p

2 ∫
ℝ

sgn(y − ct)e−|x−y|e−(p+1)|y−ct|(t, y)dy

+
(p − a)��p

4 ∫
ℝ

�y
[
sgn(y − ct)e−|y−ct|

]2
e−|x−y|e−(p−1)|y−ct|dy

−
p��p

2 ∫
ℝ

sgn2(y − ct)sgn(x − y)e−|x−y|e−(p+1)|y−ct|dy

= ��p ∫
ℝ

[
−

a

2
sgn(y − ct) −

3p − a

4
sgn2(y − ct)sgn(x − y)

+
(p − a)(p − 1)

4
sgn3(y − ct)

]

e−|x−y|−(p+1)|y−ct|(t, y)dy.

I1(u, v) = ��p
( (a − p)(p + 2)

4 ∫
x

−∞

e(p+2)y−x−(p+1)ctdy

+
p(a + 4 − p)

4 ∫
ct

x

e−py−x+(p+1)ctdy

+
(p − a)(p + 2)

4 ∫
∞

ct

e−(p+2)y+x+(p+1)ctdy
)

= ��p
(
−e(p+1)(x−ct) + ex−ct

)
.

I1(u, v) = ��p
( (a − p)(p + 2)

4 ∫
ct

−∞

e(p+2)y−x−(p+1)ctdy

+
p(p − a − 4)

4 ∫
x

ct

e−py−x+(p+1)ctdy

+
(p − a)(p + 2)

4 ∫
∞

x

e−(p+2)y+x+(p+1)ctdy
)

= ��p
(
e(p+1)(x−ct) − ex−ct

)
.

(4.3)I1(u, v) = (−�pu + vpu)sgn(x − ct),

(4.4)I2(u, v) = (−�qv + uqv)sgn(x − ct).
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Combining Equs. (4.2–4.4) with the assumption � = c1∕q, � = c1∕p , we get that the 
first equation of the system (4.1) holds on the line in the sense of distribution.

The periodic peakon solution in the forms of (1.15). We claim that Equ. (4.1) 
is equivalent to Equ. (1.1), let us start from the original system(1.1). Let f ∈ L1

loc
(X) , 

and the open set X ⊂ ℝ . Assume that f � ∈ L1
loc
(X) and is continuous except at a sin-

gle point x0 ∈ X ; then the right-handed and left-handed limits f (x±
0
) exist, moreover, 

(Tf )
� = Tf � + [f (x+

0
) − f (x−

0
)]�x0 , where Tf  is the distribution associated to the func-

tion f and �x0 is the Dirac delta distribution centered at x = x0 . Denote 

K ≐ x − ct − 2�
[
x−ct

2�

]
− � . Noticing that

where �ct is the periodic Dirac delta distribution centered at x = ct mod 2� , we have 
u − uxx = 2� sinh(�)�ct and

Employing the hyperbolic identity cosh2 x = 1 + sinh2 x yields

Then, we find

Similarly, we have

and

Therefore, we have

ut = cu, ux = � sinhK, uxx = u − 2� sinh(�)�ct,

vt = cv, vx = � sinhK, vxx = v − 2� sinh(�)�ct,

(1 − �2
x
)ut = −2c� sinh���

ct
.

�2
x
(vpux) = ��p�2

x
(sinhK coshp K)

= ��p�x(cosh
p+1 K + p coshp−1 K sinh2 K − 2 sinh(�) coshp(�)�ct)

= ���x((p + 1) coshp+1 K − p coshp−1 K − 2 sinh(�) coshp(�)�ct)

= ��p[(p + 1)2 coshp K sinhK − p(p − 1) coshp−2 K sinhK

− 2 sinh(�) coshp(�)��
ct
].

(1 − �2
x
)(vpux) = ��p[(1 − (p + 1)2) coshp K sinhK + p(p − 1) coshp−2 K sinhK

+ 2 sinh(�) coshp(�)��
ct
].

p�x(v
p−1vxux) = p��p�x(cosh

p−1 K sinh2 K) = ��p�x(cosh
p+1 K − coshp−1 K)

= p��p((p + 1) coshp K sinhK − (p − 1) coshp−2 K sinhK),

vxuxx =
��

2
�x sinh

2 K =
��

2
�x(cosh

2 K − 1) = �� sinhK coshK,

avp−1vxu + (p − a)vp−1vxuxx = p��p sinhK coshp K.
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In a similar way, for n(t) we obtain

So, the periodic peaked function (1.15) is a solution to the equation (1.1) iff 
� =

c1∕q

cosh(�)
, � =

c1∕p

cosh(�)
.

Multi-peakon solutions (1.16) and (1.17) for Equ.(1.1).
Let us use an adhoc definition for ux(x, t), vx(x, t) given by

which imply ux(x, t), vx(x, t) are equal to ⟨ux(x, t)⟩ = 1

2
(ux(x

−, t) + ux(x
+, t)) and 

⟨vx(x, t)⟩ = 1

2
(vx(x

−, t) + vx(x
+, t)) , respectively. Note that

i.e., m = u − uxx = 2
∑M

i=1
fi(t)�gi(t), n = v − vxx = 2

∑N

j=1
fj(t)�gj(t) , which lead to

where ḟ = 𝜕tf  . Casting a test function � ∈ C∞
0
(ℝ) and (f , �gi) = f (gi) on the equa-

tion yields

mt + vpmx + avp−1vxm

= (1 − �2
x
)ut + (1 − �2

x
)(vpux) + avp−1vxu + (p − a)vp−1vxuxx + p�x(v

p−1vxux)

= −2c� sinh���
ct
+ 2��p sinh(�) coshp(�)��

ct
.

nt + vqnx + bvq−1vxn = −2c� sinh���
ct
+ 2�q� sinh(�) coshp(�)��

ct
.

ux(t, x) = −

M∑
i=1

sgn(x − gi(t))fi(t)e
−|x−gi(t)|, vx(t, x) = −

N∑
j=1

sgn(x − gj(t))fj(t)e
−|x−gj(t)|,

uxx(t, x) = u(x, t) − 2

M∑
i=1

fi(t)�gi(t), vxx(t, x) = v(x, t) − 2

N∑
j=1

fj(t)�gj(t),

mt + vpmx +
a

p
(vp)xm = 2

M∑
i=1

[−fiġi𝜕x(𝛿gi) + ḟi𝛿gi + vpfi𝜕x(𝛿gi) +
a

p
(vp)xfi𝛿gi]

= 2

M∑
i=1

[(−fiġi + vpfi)𝜕x(𝛿gi) + (ḟi +
a

p
(vp)xfi)𝛿gi],

(
mt + vpmx +

a

p
(vp)xm,𝜑

)

= 2

M∑
i=1

−fiġi
(
𝜕x𝛿gi ,𝜑

)
+ 2

M∑
i=1

fi
(
vp𝜕x𝛿gi ,𝜑

)
+ 2

M∑
i=1

(
(ḟi +

a

p
(vp)xfi)𝜑, 𝛿gi

)

= 2

M∑
i=1

fiġi
(
𝛿gi , 𝜕x𝜑

)
− 2

M∑
i=1

fi
(
(vp)x𝜑 + (vp)𝜕x𝜑, 𝛿gi

)
+ 2

M∑
i=1

(
(ḟi +

a

p
(vp)xfi)𝜑, 𝛿gi

)

= 2

M∑
i=1

[
fi(ġi − vp(gi))𝜑x(qi) + (ḟi +

a − p

p
(vp)x(gi)fi)𝜑(gi)

]
.
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Similarly, we have

Accordingly, the multi-peakon is a solution to Equs.(1.1) iff gi(t), hj(t) and ampli-
tudes fi(t), kj(t) verify the ODE system defined by (1.18).   ◻

Numerical experiments of Peakons solutions to system (1.1).
Next we perform some numerical experiments to illustrate our results. Rewrit-

ing system (1.18) in a specific form:

Now, we consider the special case with M = N , fj = hj , gj = kj p = q and a = b , 
then system (4.5–4.8) reduces to

which coincide with the generalized b-family equation(cf.[42]). For 
p = 1, a = 2,M = 2 to system (4.9), we obtain the two-peakon dynamics of CH 
equation as follows:

(
nt + vqnx +

b

q
(vq)xn,𝜑

)

= 2

N∑
j=1

[
hj(k̇j − uq(kj))𝜑x(qj) + (ḣj +

b − q

q
(uq)x(kj)hj)𝜑(kj)

]
.

(4.5)̇g𝜎 =

(
N∑
j=1

hje
−|g𝜎−kj|

)p

, 1 ≤ 𝜎 ≤ N,

(4.6)̇k𝜇 =

(
M∑
j=1

fje
−|k𝜇−gj|

)q

, 1 ≤ 𝜇 ≤ M,

(4.7)

̇f𝜎 = f𝜎

[
(a − p)

N∑
j=1

sgn(g𝜎 − kj)hje
−|g𝜎−kj|

(
N∑

m=1

hme
−|g𝜎−km|

)p−1

, 1 ≤ 𝜎 ≤ N,

(4.8)

̇h𝜇 = h𝜇

[
(b − q)

M∑
j=1

sgn(k𝜇 − gj)fje
−|k𝜇−gj|

(
M∑

m=1

fme
−|k𝜇−gm|

)q−1

, 1 ≤ 𝜇 ≤ M.

(4.9)̇g𝜎 =

(
M∑
j=1

fje
−|g𝜎−gj|

)p

, ̇f𝜎

(4.10)=(a − p)f�

M∑
j=1

sgn(g� − gj)fje
−|g�−gj|

(
M∑
j=1

fje
−|g�−gj|

)p−1

,



 Journal of Nonlinear Mathematical Physics

1 3

which was studied by Camassa and Holm [5]. Taking p = q = 1, a = b = 2 , the sys-
tem (1.1) yields the CCCH system(cf. Cotter et.al[11]). In case N = M = 2 , kj = gj 
and g1 = g2 with (4.5–4.8) satisfies:

This implies f1 = c1, f2 = c2, h1 = c3, h2 = c4, g1 = g2 = (c1 + c2)
qt + c5

= (c3 + c4)
pt + c6 , c5 = c6,

It is clearly that (4.13) corresponds to our conclusion (1.14). When p = 1, q = 2 , 
according to (4.12), the c1, c2, c3, c4 satisfy (c1 + c2)

2 = c3 + c4.
If t = 1 , c5 = 3 and p = 1, q = 2 , and taking c1 + c2 = 2, c3 + c4 = 4 , 

c1 + c2 = 3, c3 + c4 = 9 and c1 + c2 = 4, c3 + c4 = 16 , respectively, the single-
peakon solution given by (4.13) with correspond to red, blue, green (See Fig. 1).

Finally, if x = 1 , c5 = 3 and p = 1, q = 2 , taking c1 + c2 = 2, c3 + c4 = 4 , 
c1 + c2 = 3, c3 + c4 = 9 and c1 + c2 = 4, c3 + c4 = 16 , respectively, the single-
peakon solution given by Fig. 2.

(4.11)

⎧
⎪⎨⎪⎩

ġ1 = f1 + f2e
−�g1−g2�,

ġ2 = f2 + f1e
−�g2−g1�,

̇f1 = f1f2sgn(g1 − g2)e
−�g1−g2�(f1 + f2e

−�g1−g2�),
̇f2 = f1f2sgn(g2 − g1)e

−�g2−g1�(f2 + f1e
−�g2−g1�).

(4.12)
{

ġ1 = ġ2 = (h1 + h2)
p = (f1 + f2)

q,
̇f1 = 0, ̇f2 = 0, ḣ1 = 0, ḣ2 = 0.

(4.13)
u(x, t) = (c1 + c2)e

−|x−[(c1+c2)qt+c5]|, v(x, t) = (c3 + c4)e
−|x−[(c1+c2)qt+c5]|.
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Fig. 1  Solid line: u(x, t); Dashed line: v(x, t)
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