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Optimal Control in the Treatment of Retinitis Pigmentosa

E.T. Camacho ∗, L.A. Melara †, M.C. Villalobos ‡, S. Wirkus §.

November 1, 2012

Abstract

Numerous therapies have been implemented in an effort to minimize the debilitating effects of
the degenerative eye disease Retinitis Pigmentosa (RP), yet none have provided satisfactory long-
term solution. To date there is no treatment that can halt the degeneration of photoreceptors. The
recent discovery of the RdCVF protein has provided researchers with a potential therapy that could
slow the secondary wave of cone death. In this work, we build on an existing mathematical model
of photoreceptor interactions in the presence of RP and incorporate various treatment regiments
via RdCVF. Our results show that an optimal control exists for the administration of RdCVF. In
addition, our numerical solutions show the experimentally observed rescue effect that the RdCVF
has on the cones.

2 Background of Retinitis Pigmentosa and Photoreceptors

Retinitis pigmentosa (RP) is a heterogeneous group of diseases that affect approximately 1 in 4000
individuals with typical manifestations between adolescence and early adulthood [2, 35]. The patho-
genesis of RP, while mainly genetically programmed with over 100 genes identified to dated, is a
continuum of metabolic disorders leading to rod and cone photoreceptor degeneration with accom-
panying associated retinal pigment epithelium degeneration. The characteristics, disease progression,
and age of onset of RP vary dramatically among patients, including members in the same family [2].
RP is classified by different mechanisms including genetic mutation, mode of inheritance, predom-
inant photoreceptors involved, pattern of functional vision loss, age of onset, and others. The more
common subtype of RP is rod-cone RP in which rod loss precedes the secondary degeneration of
cones. Other types include cone-rod (or inverse) RP, where the cones degenerate first, and simul-
taneous RP, where both cell types die simultaneously. In rod-cone RP, the loss of rod cells and of
their functionality at the early stages of the disease leads to poor night vision and ultimately night
blindness. Because rods are located in the periphery of the retina and the cones are concentrated in
the fovea (central part), the rod degeneration also leads to tunnel vision, and ultimately loss of central
vision, accuity, and color vision at later stages of RP as the cones degenerate [12]. The irreparable
effects of RP and its vast range of onset ranging from infancy to late adulthood make it a priority to
investigate potential long term therapies and their optimal administration.

Although numerous gene mutations encoding for different proteins have been identified, it is not
fully understood how these can all lead to the same common pathway of the disease. Thus, it is
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crucial to understand the structure and interaction of the photoreceptors (rods and cones) together
with the retinal pigment epithelium (RPE) and how these specialized cells form a functional unit that
is critical for sight [36]. The photoreceptors receive the incoming light photons and transmit these
chemical signals to the brain through series of well-understood steps [14, 26]. In receiving light,
the photoreceptors undergo a tremendous amount of stress and are equipped to continually deal with
this by undergoing a periodic shedding and continuous renewal of its outer segment, which are made
up of discs. The shed outer segment (OS) discs are phagocytised by the adjacent RPE. In addition,
the RPE is responsible for delivering essential proteins and growth factors to the photoreceptors. In
humans, a typical photoreceptor will undergo complete renewal in 9-17 days depending on its location
within the retina, with a given outer segment typically shedding around 10% of its length each day
[26]. In a healthy eye, new discs are continuously made (renewed) throughout the day and on average
the number made equals the number shed so that the height of the photoreceptor remains roughly
constant over time. In patients with RP this renewal and shedding is disturbed resulting in shorter
outer segments and patchiness in certain regions indicative of photoreceptor death/absence.

Secondary Cone Wave Death and RdCVF

The secondary death of cones that often follows some six months after the complete loss of rods in rod-
cone RP had puzzled researchers for many years because it occurred even when the mutations didn’t
directly affect the cones in most cases of RP. The mysterious secondary cone death in RP has motivated
extensive experiments by researchers including mathematical investigation of the essential interactions
of photoreceptors and their shedding and renewal processes [4, 5, 6, 11, 18, 19, 23, 24, 29, 30, 33,
34, 38]. The human retina reaches maturity by age five and, even though new photoreceptors are
not made in mature retinas, the renewal and shedding processes are considered to be the mechanism
by which photoreceptors undergo a birth and death process [3, 13, 28]. Neural degeneration of the
photoreceptors that typically results from genetic defects and mutations (such as RP) are implicated in
disturbances of the shedding and renewal processes resulting in abnormal photoreceptor outer segment
length and thus promoting the complete disappearance of the rods and cones [24, 27]. The lack of an
appropriate balance between shedding and renewal has been implicated in the progression of RP as
this reflects a lack of proper photopigment movement, distribution of proteins, and functioning of the
photoreceptor [5]. As apoptosis is the primary manner in which the photoreceptors die, one can also
look into therapies based on preventing apoptosis [15].

Among all recent research findings, one that has gained recent popularity in terms of explaining
the secondary death wave of photoreceptors in RP is the lack of the rod-derived cone viability factor
(RdCVF). RdCVF is a truncated thioredoxin-like protein specifically expressed by photoreceptors. In
2004, Leveillard et al. discovered RdCVF and showed that this protein was necessary for the survival
and functionality of cones [18]. The mathematical necessity of RdCVF for survivability of the pho-
toreceptors was independently confirmed in [4]. Experiments revealed that the amount of RdCVF was
the same in both normal and mutated rods prior to their degeneration and that any decrease in RdCVF
was strongly correlated with the decrease in the number of rods during their degenerative process.
In addition, the effect of RdCVF was reported to be independent of the casual mutation (autosomal-
recessive or autosomal-dominant) leading to rod degeneration [38]. These investigations indicated
that RdCVF had a significant cone rescuing effect; however, the protective effects of RdCVF have not
been experimentally shown to extend to degenerating rods. The most important result of these investi-
gations in terms of finding a potential long term therapy for all RP partients is that the presence of the
rod cells is not necessary for cone survival as long as RdCVF is present [4, 11, 18, 19, 31, 38, 33]. The
discovery of RdCVF’s ability to preserve cone functionality is very promising since maintaining func-
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tional cones even when 95% of the cones are gone may prevent blindness. While the identification of
this protein offers new treatment possibilities for RP the mechanism by which one would effectively
deliver RdCVF is still unclear [18, 33].

Treatment Options

There is no known cure for most types of RP [2]. Recently, a possible treatment that has begun
to be considered is the administration of doses of RdCVF even if all the rods are gone (rod-cone
RP). Besides treatment with RdCVF (still preliminary), there are few treatment options such as light
avoidance and/or the use of low-vision aids to slow down the progression of RP. Researchers suggest
high doses of vitamin A (15,000 IU/day) may slow progression a little in some people, but the results
are not strong. More importantly, the high amount of vitamin A dosage over a prolonged time rase the
risk of liver disease and thus many doctors have stopped prescribing vitamin A as a treatment of RP.
Even thought recent results suggest that taking too much vitamin A can be toxic, high doses of omega-
3 fatty acid (including DHA) in combination with vitamin A supplements can result in a 40% slower
rate of visual acuity loss per year [1]. However, even though certain therapies (such as vitamin A and
E suplementation) have shown to slow down the progression of the disease, this is not consistent with
all forms of RP as some actually show an accelerated retinal degeneration due to these supplements
[2]. Research has also shown that certain growth factors may help slow the progression as they are
aimed at repairing or protecting damaged cells. Among these are synthetic nucleic acid nanoparticles,
ciliary neurotrophic factor (CNTF), and others. Growth factors are chemicals that support cells to
grow and repair themselves. Research groups are working on the potential uses of growth factors
in the treatment of retinal disease in the hope that damaged cells can be repaired or protected from
damage; however, delivery of these and administration is still in question [31].

Gene therapy has recently gained much attention as researchers attempt to discover ways that
healthy genes can be inserted into the retina. This method relies on the gene causing the problem
being known but in many cases of RP the faulty gene or genes are yet to be discovered. Once a
faulty gene causing RP has been identified, gene therapy aims to replace the faulty gene within the
affected retinal cells with new genes that work properly. The new genetic material, usually carried by
a harmless virus, is injected directly into the affectedarea of the retina. The hope is that the cells then
begin to work correctly and the damage is either stopped or reversed. The success of gene therapy in
clinical trials and lab experiments is still debatable even in cases where the faulty gene is presumed
to be known as results have been mixed potentially due to the variability in RP and the connectivity
of the genetic vision network. Stem cell therapy is also being explored to see if stem cells injected
into the retina can be persuaded to differentiate into retinal cells. Stem cells are cells that can divide
(differentiate) into other cell types and they have the potential to replace damaged or missing retinal
cells which is very promising since retinal cells affected by RP are very specialized cells that the body
cannot replace.

Researchers have also created a retinal prosthesis, which is a man-made device intended to take
over the function of the lost photoreceptors by electrically stimulating the remaining healthy cells of
the retina. Through electrical stimulation, the activated ganglion cells can provide a visual signal to
the brain. The visual image captured by a video camera, placed behind the affected persons glasses, is
transmitted via electromagnetic radiation to a small decoder chip located on the retinal surface. Data
and power are then sent to a set of electrodes connected to the decoder. Electrical current passing
from individual electrodes stimulate cells in the appropriate areas of the retina corresponding to the
features in the visual scene. Finally, there has been work in transplant research in which healthy retinal
cells grown in the laboratory are transplanted into sick retinas. This has not yet been considered as
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clinically safe and successful but some researchers believe that transplanting retinal cells with their
underlying supportive RPE cell layer might be more effective. This type of treatment is still in its
infancy thus it is difficult to assess the potential of this form of therapy. It is also currently not known
how this treatment works. It may be via the production of growth factors by the transplanted tissue that
nourishes the remaining retinal cells. Studies are assessing the transplantation of developing sheets of
retinal cells grown in the laboratory.

While a myriad of treatments exist, none have shown success with all subtypes of RP. We choose
to focus on the common pathway to RP (regardless of the defective gene) in the most common RP
subtype— rod-cone RP. We specifically will consider treatment by administering RdCVF, which
seems to be the most promising general treatment in rod-cone RP. While the understanding of RP
has increased tremendously in the last two decades through physiological experimental research, a
permanent therapy that will prolong the life of these photoreceptors or that will reverse its inevitable
death still awaits [15, 19]. This is the catalyst behind our work in which we explore through optimal
control the potential therapeutic benefits of a particular protein in human visual system.

3 Problem Formulation

In the case of RP, experimental results show that a typical disease progression involves a shortening
of both types of photoreceptors before their respective deaths [32]. While different genetic defects
affect specific but widely varying functional aspects of the rods, these can be thought of as “defects
that affect the shedding” and “defects that affect the renewal” of the photoreceptor outer segment as
they are all linked to these processes. This paper builds on previous work by Camacho et al. [4, 5]
who developed mathematical models of photoreceptor interactions in a healthy eye and in a diseased
eye with retinitis pigmentosa (RP). Both models incorporate the essential role that RdCVF plays in the
long-term survival of the cones, as was experimentally shown by Leveillard et al. [18]. In experimental
research, the administration of RdCVF to the diseased eye is currently done either with the injection
of RdCVF into the eye, by expression of it from viral vectors, or by its delivery via RdCVF-producing
cells [19]. In this paper, we propose an optimal control model which minimizes the dosage of the
RdCVF protein that is administered to the human eye while maximizing the number of cones, that
is, minimizing cone depletion. Initially, we describe the ordinary differential equations (ODE) model
and then proceed to construct the optimal control problem.

3.1 ODE Model

The mathematical models in [4, 5] describe the interactions between three populations of photorecep-
tors (where the rods are divided into two populations based on their phenotype) and the trophic factor
at time t. These populations are defined as:

• Rn(t): population of normal rods,

• Rm(t): population of mutated rods,

• C(t): population of cones,

• T (t): trophic pool (RPE).

Here we consider Rm(t) to represent those rods that have begun to express the mutation and
have had some aspect of their functionality compromised because of this mutation [5]. For brevity,
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we drop the notation t for time, and we let Rn ≡ Rn(t) and similarly for the other variables. We
consider the units to be “cells.” Fractions of a cell are interpreted as the photoreceptor outer segment
discs and as the nutrients (such as growth factors, metabolites, ions, and water) for the trophic pool
[10, 16, 20, 21, 25, 36, 37]. The system of differential equations modeling these interactions is given
by

Ṙn = Rn(anT − µn −m) (1)

Ṙm = Rm(amT − µm) +mRn (2)

Ċ = C(acT − µc + dnRn + dmRm) + Cu (3)

Ṫ = T (Γ− kT − βnRn − βmRm − γC), (4)

where the parameters are nonnegative; see Table 1 in Section 10. For simplicity, we define equations
(1) - (4) as

ẋ = f(t,x,u),

where x = (Rn, Rm, C, T ). In this work, we incorporate the administration of RdCVF as the termCu
in equation (3), where u is a control function of t. Experiments in [18, 19] demonstrate that including
RdCVF provides a rescue effect for the cones and that the RdCVF is expresed in the neural retina but
not in the RPE of the P23H rat[38]. We note that the incorporation of the term Cu does not distinguish
between the current therapies involving RdCVF (the injection of it into the eye, the expression of it
from viral vectors, or delivery of it by RdCVF-producing cells [19]).

3.2 Objective Functional

Since the secondary death of the cones occurs as a result of their deprivation of RdCVF, we formulate
an optimal control problem that takes into account administration of RdCVF to the cones. The objec-
tive functional considers minimizing the dosage of RdCVF while maximizing cone longevity based
on cell counts. The functional u : [0, tf ] → R denotes the control and represents the percentage of a
dosage of RdCVF administered over the time period [0, tf ] that helps the cones survive. To compare
our results with the qualitative results of the experiments, we consider the dosage of u administered
over a period of two weeks (tf = 336 hours) [18]. The optimal control problem has the state equations
in (1) - (4) and objective functional

I(u) =

∫ tf

0

(ε
2
u(t)2 − C

)
dt, (5)

where the weight ε represents the importance of minimizing u. We define the set of controls U as

U = {u|u is measurable, 0 ≤ u(t) ≤ 1, t ∈ [0, tf ]} , (6)

which is a closed set. By the boundedness of u(t) ∈ U , the set U is convex.
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4 Existence of the State Variables and Optimal Control

In this section, we prove the existence of the state variables and the optimal control u∗(t). Initially,
we find upper and lower bound solutions of the system (1)-(4) by excluding any terms associated with
the control. In this case, the lower bound solutions of the system (1)-(4) are zero.

Now, we determine upper bounds (Rmaxn , Rmaxm , Cmax, Tmax) for the system (1)-(4) over the
time interval [0, tf ]. Let the initial conditions at time t = 0 for the state variables be denoted by
(Rn0, Rm0, C0, T0). The upper bound solution Tmax of (4) is given by Tmax = T0e

Γtf where Γ > 0.
Using Tmax we obtain an upper bound Rmaxn of (1) by solving

dRn
dt

= anT
maxRn,

whose solution is given by Rn(t) = Rn0e
anTmaxt and thus an upperbound for the solution is Rmaxn ≡

Rn0e
anTmaxtf . Next, we use the upperbounds Tmax and Rmaxn to find an upperbound solution to (2).

In this case, we solve

dRm
dt
−ARm = B

where A = amT
max ≥ 0 and B = mRmaxn ≥ 0. The solution is given by Rm(t) = −B

A + (Rm0 +
B
A )eAt with upper bound

Rmaxm ≡
(
Rm0 +

B

A

)
eAtf .

Finally, using Tmax we find an upperbound solution to (3) and in a similar fashion obtain Cmax ≡
C0e

acTmaxtf . We use Tmax and Cmax to form a set of upper bound solutions for (1)-(4). Creating
new variables (R̄n, R̄m, C̄, T̄ ), we bound system (1)-(4) on the time interval [0, tf ] as follows

dR̄n
dt

= R̄nanT
max (7)

dR̄m
dt

= amR̄mT
max +mR̄n (8)

dC̄

dt
= wC̄ + Cmaxu (9)

dT̄

dt
= ΓT̄ . (10)

where w = acT
max+dnR

max
n +dmR

max
m . In the following theorem, we use system (7)-(10) to show

the existence of the state variable x = (Rn, Rm, C, T ). Then we proceed to prove the existence of an
optimal control u∗(t). We use a standard procedure found in [7, 8], for example, that uses the work of
Fleming and Rishel [9] (Theorem 4.1 and Corollary 4.1) to prove the existence of u∗(t). Define F to
be the class of functions (x, u) where u ∈ U and the solution x of system (1)-(4) satisfies the initial
conditions (Rn0, Rm0, C0, T0).

Theorem 1 (Existence of Optimal Control) Let x satisfy the state equations in (1)-(4) with initial
conditions Rn0 ≡ Rn(0), Rm0 ≡ Rm(0), C0 ≡ C(0) and T0 ≡ T (0), let I(u) be the objective
functional defined in (5), and let U be given by (6). Then there exists u∗ ∈ U minimizing I(u)
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if the following conditions are met:
(a) F is not empty.
(b) The admissible control set U is closed and convex.
(c) The right hand side of each of the state equations is bounded by a linear function in the control u
and the corresponding state variable x.
(d) The integrand of I(u) is convex on U and is bounded from below by c1|u|2− c2 for some constant
c1 > 0.

Proof: We will prove the theorem by showing that conditions (a)-(d) hold. The state system (1)-
(4) has bounded coefficients and the solutions are bounded on the finite interval [0, tf ] (previously
shown). Therefore, by Theorem 9.2.1 from [22], a solution to the state system (1)-(4) exists. Thus F
is not empty. Since U is closed and convex by definition, condition (b) is met. Each of the functions
in the right hand side of (1)-(4) is continuous by definition. Define ~a(t,x) to be the right hand side of
(1)-(4) excluding the control u and rewrite the function f(t,x, u) as

f(t,x, u) = ~a(t,x) + C


0
0
u
0

 .

Rewriting ~a(t,x) as a linear transformation and applying the bounds on the solutions, we have

|f(t,x, u)| ≤

∣∣∣∣∣∣∣∣


anT
max 0 0 0
m amT

max 0 0
0 0 w 0
0 0 0 Γ




R̄n
R̄m
C̄
T̄


∣∣∣∣∣∣∣∣+ Cmax

∣∣∣∣∣∣∣∣


0
0
u
0


∣∣∣∣∣∣∣∣

≤ D (|x|+ |v|)

where v = (0, 0, u, 0) and the constant D depends on the coefficients in the system. Therefore,
f(t,x, u) is bounded by a linear combination of the state variable x and the control u; this shows con-
dition (c). For the last condition, the integrand of I is convex on U since it is a combination of linear
and squared terms. Since u and C are bounded, then the integrand is bounded from below. Thus,
conditions (a) - (d) have been satisfied, and Theorem 1 establishes the existence of the pair (x∗, u∗)
which minimizes I(u) over F.

5 Optimality Conditions

In this section we outline the first-order necessary optimality conditions for the optimal control prob-
lem with objective functional I(u) in (5) subject to the state equations (1)-(4). The optimality condi-
tions allow us to characterize the optimal control u∗(t).

For convenience, we rewrite (5) with (1)-(4) as the following maximization problem

max
u

J(u) subject to ẋ = f(t,x, u) (11)
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where

J(u) = −I(u) =

∫ tf

0

(
C − ε

2
u2
)
dt. (12)

Thus, we seek an optimal control u∗ such that

J(u∗) = max
u∈U

J(u) subject to ẋ = f(t,x, u∗).

Theorem 1 allows us to proceed to Pontryagin’s Maximum Principle. First, we define the Hamiltonian
as

H(x, λ, u) = C − ε

2
u2 + λT f(t,x, u)

where λ ≡ λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t))T is the vector of adjoint variables. For simplicity, we
let H ≡ H(x, λ, u) and λi ≡ λi(t) for i = 1, . . . , 4. More explicitly, using system (1) - (4) and the
objective functional in (12), the Hamiltonian is described as

H = C − ε

2
u2 + λ1Rn(anT − µn −m) + λ2(Rm(amT − µm) +mRn)

+ λ3C(acT − µc + dnRn + dmRm + u) + λ4T (Γ− kT − βnRn − βmRm − γC).

Theorem 2 (Pontryagin’s Maximum Principle) If u∗ and x∗ are optimal for problem (11), then there
exist piecewise differentiable adjoint functions λi : [0, tf ]→ R for i = 1, . . . , 4 such that

dλ1

dt
= − ∂H

∂Rn
= −λ1(anT

∗ − µn −m)− λ2m− λ3dnC
∗ + λ4βnT

∗ (13)

dλ2

dt
= − ∂H

∂Rm
= −λ2(amT

∗ − µm)− λ3dmC
∗ + λ4βmT

∗ (14)

dλ3

dt
= −∂H

∂C
= −1− λ3(acT

∗ − µc + dnR
∗
n + dmR

∗
m + u∗) + λ4γT

∗ (15)

dλ4

dt
= −∂H

∂T
= −λ1anR

∗
n − λ2amR

∗
m − λ3acC

∗

−λ4(Γ− kT ∗ − βnR∗n − βmR∗m − γC∗) + λ4kT
∗ (16)

with transversality conditions
λi(tf ) = 0, for i = 1, 2, 3, 4.

In addition, the optimal control is characterized by

u∗ = min

{
1,

(
C∗λ3

ε

)+
}
, (17)

where

r+ =

{
r if r ≥ 0
0 if r < 0,

8



with

r =
C∗λ3

ε
.

We refer to (17) as the characterization formula for u.

We note that the optimal solution u∗ depends on the adjoint variable λ3(t) and the state variable C∗(t)
which in turn depend on other adjoints and state variables and thus it is not possible to get a closed
form solution of u∗(t).

Applying Pontryagin’s Maximum Principle, we obtain the following optimality conditions that
must be met for an optimal control u∗, state variable x∗ and adjoint function λ∗ : [0, tf ]→ R4:

(ODE) ẋ = ∇λH(x, λ, u) ≡ f(t,x, u)

(ADJ) λ̇ = −∇xH(x, λ, u) ≡ g(t, λ,x, u)
(M) H(x, λ, u) = max H(x, λ, u),
(TRANS) λ(tf ) = 0.

Note that with λ∗ and with condition (M), we have ∂H
∂u = Hu = 0 at the optimal control u∗ for

each t. Thus u∗ is a critical point for the Hamiltonian [17]. We use this optimality condition to derive
the characterization of the optimal control u∗ in Section 7.

6 Description of the Discretized Variables

We approximate a solution x to the system (1) - (4) as described below. The time interval [0, tf ] is
discretized into N equally spaced subintervals with the following nodes

0 = t0 < t1 < . . . < tN = tf (18)

and

h = ti+1 − ti, for i = 0, . . . , N − 1.

Let xk = (Rn(tk), Rm(tk), C(tk), T (tk))
T be the discretized vector x at time tk.

Similarly, uk ≡ u(tk) for k = 0, . . . , N . Thus the vector ~u = [u0, u1, u2, . . . , uN ] holds the dis-
cretized values at all time steps tk for k = 0, 1, . . . , N .

Given an initial iterate x0 ∈ R4 to the system (1) - (4) and initial control ~u over the time interval
[0, tf ], an approximation to the solution of the system (1) - (4) for state variable x is obtained using an
implementation of a fourth-order Runge-Kutta method forward in time. Therefore, for k = 0, . . . , N ,

k1 = f(tk,xk, uk)

k2 = f(tk + h
2 ,xk + h

2k1,
1
2(uk + uk+1))

k3 = f(tk + h
2 ,xk + h

2k2,
1
2(uk + uk+1))

k4 = f(tk+1,xk + k3, uk+1)

xk+1 = xk + h
6 (k1 + 2k2 + 2k3 + k4).
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Note that in calculating k2 and k3 in the Runge-Kutta algorithm, uk was replaced with the average of
uk and uk+1. While there are many ways to approximate this value, approximating it with the average
is sufficient [17].

To numerically compute a solution λ to the adjoint system (ADJ), we implement the Runge-Kutta
algorithm backward in time. Assume the previous discretization of [0, tf ] and h defined as before. Let
the adjoint vector ~λk ∈ R4 be defined as ~λk = (λ1(tk), λ2(tk), λ3(tk), λ4(tk))

T whose components
are the values of the adjoint variables at discrete time tk. We enforce the transversality condition by
setting initial iterate ~λN = ~0. So, for k = N,N − 1, . . . , 1 we have

k1 = g(tk, ~λk,xk, uk)

k2 = g(tk − h
2 ,
~λk − h

2k1,
1
2(xk + xk−1), 1

2(uk + uk−1))

k3 = g(tk − h
2 ,
~λk − h

2k2,
1
2(xk + xk−1), 1

2(uk + uk−1))

k4 = g(tk−1, ~λk − k3,xk−1, uk−1)
~λk−1 = ~λk − h

6 (k1 + 2k2 + 2k3 + k4).

7 Updating the Control Variable

In this section, we derive the characterization of the optimal control. By Pontryagin’s Maximum
Principle, at optimality the Hamiltonian satisfies

∂H

∂u
= 0 = −εu+ Cλ3. (19)

Then the optimal control u∗ is

u∗ = min

{
1,

(
C∗ λ3

ε

)+
}
,

where the notation for (C∗ λ3/ε)
+ is defined in (17).

At the discrete time tk, we compute the discrete characterization of u∗ using (17), which we denote
as u1k = u1(tk). Therefore, we have

u1k = min

(
1,

(
C(tk)λ3(tk)

ε

)+
)

for each k. (20)

Then the update for uk+1 is computed by taking the average of u1k and uk (see [17]) as follows:

uk+1 =
u1k + uk

2
for k = 0, 1, . . . , N − 1.

Once these values have been obtained over the discretized time interval [0, tf ], we form the new vector
~u = [u0, u1, u2, . . . , uN ] of control variables to test convergence.

10



8 Convergence

Consider the discretization of [0, tf ] given in (18). Let ~u ≡ ~u(t) ∈ RN+1 to be the discretization of u
over [0, tf ] where

~u = (u(t0), u(t1), u(t2), . . . , u(tf )),

contains the estimated values from the current run of the Forward-Backward Sweep Method (FBSM).
Define ~uold ∈ RN+1 to contain values of u from the previous run of FBSM.

A stopping criteria for the control ~u requires the relative error to be less than tolerance δ, namely,

‖~u− ~uold‖
‖~u‖

≤ δ

where ‖ · ‖ denotes the `1 vector norm [17]. The above inequality is rewritten as

δ‖~u‖ − ‖~u− ~uold‖ ≥ 0 (21)

to allow for controls that take value zero. Following [17], we define β1 to be

β1 = δ‖~u‖ − ‖~u− ~uold‖.

Similarly, we use the same stopping criteria for each of the estimated state variables x = (x1(t),x2(t),x3(t),x4(t)) ∈
R4×N+1, obtained from the current run of the FBSM. Therefore, x contains the estimated values over
the interval [0, tf ] and is given by

x =


x1(t0) x1(t1) x1(t2) · · · x1(tf )
x2(t0) x2(t1) x2(t2) · · · x2(tf )
x3(t0) x3(t1) x3(t2) · · · x3(tf )
x4(t0) x4(t1) x4(t2) · · · x4(tf )

 .

The estimated state variables from the previous run of FBSM are stored in the vector xold ∈ R4×N+1.
Again, we define

βi+1 = δ‖xi‖ − ‖xi − xoldi‖, i = 1, . . . , 4.

The same stopping criteria is applied to the adjoint variables. The matrix ~λ = (~λ1(t), ~λ2(t), ~λ3(t), ~λ4(t)) ∈
R4×N+1 contains the estimated values of adjoint variables over [0, tf ] which were obtained from the
current run of FBSM. The matrix ~λold ∈ R4×N+1 contains the estimated values from the previous run
of FBSM. Once again, we define,

βi+1 = δ‖~λi‖ − ‖~λi − ~λoldi‖, i = 5, . . . , 8.

This results in the following set

11



{β1, β2, . . . , β9} .

If
min {β1, β2, β3, . . . , β9} > 0,

then convergence has been obtained. Otherwise, we perform another run of FBSM and continue with
the same procedure.

9 Algorithm

The following algorithm summarizes the numerical approximation to the solution of (11). Given
uniform discretization of the time interval [0, tf ] with mesh size h, stopping criteria δ > 0 and initial
condition x(t0).

1. Initialize ~u = 0.

2. Use ~u and x(t0) to approximate solution x to (ODE) forward in time t over [0, tf ] .

3. Use ~λ(tf ) = 0, x, and ~u to approximate solution ~λ to (ADJ) backward in time t over [0, tf ].

4. Update ~u using the characterization formula (17).

5. Test for convergence. If convergence fails, return to Step 2 using the updated values for x and
~u and repeat.

We define a single completion of steps 2 - 5 as one iteration.

10 Numerical Results and Discussion

We present numerical results depicting five different stages of rod and cone decay. Normal levels of
rods and cones in the human eye are 90-120 million and 4.5-6 million, respectively. The number of
rods includes both normal and mutated rods. The trophic factor consists of many biological compo-
nents and is not quantified as a unit, [4]. The trophic pool is mediated by the RPE and thus it is also
in the millions. Each of the initial conditions correspond to a stage and the optimal control problem is
solved for each stage to study the rescue effects of the cones under the various circumstances. In an
effort to isolate the effect of RdCVF, we assume that the trophic pool is not affected in the initial three
stages and it is minimally affected in the last two stages. Table 1 shows the different stages with the
corresponding initial conditions given in millions for rods, cones and trophic factor.

The units of time t are days and t ∈ [0, 14], see [18]. The stopping criteria is δ = 1 × 10−3.
Table 2 shows the values of parameters for the state equations (1)-(4). These parameter values were
obtained from [5]. The percent of rescue effect is computed using the following formula

% rescue effect =
C(tf )− Ĉ(tf )

|C(tf )− C(t0)|

where function values C(t0) and C(tf ) are the initial and final number of cones without treatment,
respectively. The function value Ĉ(tf ) represents the final number of cones after treatment.

12



Table 1: Table of initial conditions for five stages

initial conditions STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
Rn(0) 9.2×107 1.0× 107 0 0 0
Rm(0) 2.0×106 7.3× 107 3.0× 106 0 0
C(0) 4.5×106 4.4× 106 4.1× 106 3.7× 106 7.0× 105

T (0) 2.34×106 2.34× 106 2.34× 106 2.32× 106 2.25× 106

The weight ε > 0 from (12) represents the importance of minimizing the control function u. For large
ε, the control u is close to 0. Similarly, for small ε, the control function u is close to 1. Table 3 gives
a summary of the rescue effect at each stage for various values of ε in order to produce approximately
40% rescue effect of cones in Stage 5 [5, 18, 38]. Stages 4 and 5 represent the situations in which all
rods have died and thus the only source of RdCVF in cones is from administration of it.

Due to the magnitudes of the parameter values in Table 2, the numerical implementation used
nondimensionalized state equations of (1)-(4). The time variable t and the control function u were not
rescaled.

Table 2: Table of parameter values

parameter value description
an 4.5× 10−8 renewal rate of Rn outer segments mediated by T
am varies renewal rate of Rm outer segments mediated by T
ac varies renewal rate of C outer segments mediated by T
k varies limiting capacity of trophic factors
dm 1.3× 10−11 direct help of RdCVF given to cones by mutated rods
dn 1.29× 10−11 direct help of RdCVF given to cones by normal rods
m 3.68× 10−7 mutation rate of normal rods
βn 1× 10−9 rate of trophic pool usage by normal rods
βm 1× 10−9 rate of trophic pool usage by mutated rods
µc 1/9 shedding rate of cones
µm 1/9.5 shedding rate of mutated rods
µn 1/9.5 shedding rate of normal rods
γ 4.88× 10−8 rate of trophic pool usage by cones
Γ 1.48 total inflow rate into the trophic pool

13



Table 3: Percentage of cone rescue effect and number of iterations. Decreasing the value of ε corre-
sponds to higher dosages of the treatment administered.

DESCRIPTION STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
ε 1.0× 1013 5.0× 1012 1.0× 1012 4.0× 109 1.8× 109

Rescue effect 1.21% 0.71% 9.01% 40.24% 40.59%
Iterations 10 10 10 12 11

Experimental evidence suggests that RdCVF has little to no effect on degenerating rods and that
the rescue effect of RdCVF on cones increases with a higher concentration in the absence of rods [18].
The numerical results in Figures 1 and 2, associated with the early stages of RP, show some portion
of normal rods are still present and some fraction of rods have had their functionality affected by the
expresssion of the mutated gene and are thus now considered as mutated rods. As expected, the normal
rods population dereases and the mutated rod population also decreases but at a slower rate over time
in Stages 1 and 2. As we are focusing on the common pathway to photoreceptor degeneration, we
see that the cone population is relatively unaffected (but with a slight decrease) likely due to less
availability of RdCVF from rods. This effect is balanced with a greater availability of trophic factors
since rods are now far fewer in number. One might expect this very early in the disease but only for a
short time while reactive oxidative species and other negative side effects lead to depletion of the RPE
(trophic pool). The Stage 3 graph of Figure 3 demonstrates this similar situation but when all of the
normal rods have disappeared. The effect is magnified in comparison with the Stage 1 and 2 results.

Administration of RdCVF to replace that lost by the degenerating rods is shown to have a 40%
rescue affect on the cone population [18, 38]. Choosing ε values as shown in Table 3 shows that
we can find the dosage of RdCVF that will give this observed 40% rescue effect. Stage 4 shows the
beginning of the secondary cone loss whereas Stage 5 shows a situation in which nearly all cones
have disappeared. Stage 5 is particularly significant because experimental research suggests that day
vision still occurs when only 5% of the cones are still present. Thus it is crucial to consider these two
late stage scenarios in which both normal and mutated rods have completely degenerated. Such an
individual will experience night blindness together with tunnel vision during the day with some accuity
loss. In both Figure 4 and Figure 5, cone degeneration is slowed down through the administration
of RdCVF even after all rods have disappeared. Table 3 summarizes the percentage of the cone
rescue effect and the number of iterations computed to obtain convergence. The numerical results in
Figures 1 - 5 also show that the number of rods were unaffected by the treatment in all five stages and
the trophic factor stays roughly constant.

As treatment of rod-cone RP with RdCVF in order to prevent the secondary cone loss is being
examined experimentally, it is crucial to have a better understanding of how this treatment affects our
system. Equally important is to have an idea of the amount of dosage necesary to halt the progression
of complete vision loss as some high dosage may lead to a reverse effect of other dangerous side effects
such as the case with high prolonged dosages of vitamin A. We have shown that the mathematical
modeling of photoreceptor interaction with administration of RdCVF has a rescue effect on the cones
that is observed experimentally. Once researchers have a better understanding of any toxicity or other
potential secondary issues associated with large dosages of RdCVF, this model can be used to guide
levels of administration of this essential protein. The results of this model suggest that the combined
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earlier mention of vitamin A therapy and omega 3 therapy together with administration of RdCVF
may be the best way to slow the deneration of the photoreceptors. The former can help sustain the
RPE or minimize its decay by assisting it in dealing with all the metabolic demands while the latter
can help maintain the remaining cones without further demain on the RPE and possibly prevent the
complete loss of cones, thereby preserving some day vision.
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[19] Theirry Léveillard and José-Alain Sahel. Rod-derived cone viability factor for treating blinding
diseases: From clinic to redox signaling. Degenerative Retinal Disorders, 2:1–13, 2010.

[20] Yiwen Li, Weng Tao, Lingyu Luo, Deqiang Huang, Konrad Kauper, Paul Stabila, Matthew M.
LaVail, Alan M. Laties, and Rong Wen. Cntf induces regeneration of cone outer segments in a
rat model of retinal degeneration. PLoS ONE, 5:1–7, 2010.

[21] Rebecca Longbottom, Marcus Fruttigera, Ron H. Douglasb, Juan Pedro Martinez-Barberac,
John Greenwooda, and Stephen E. Mossa. Genetic ablation of retinal pigment epithelial cells
reveals the adaptive response of the epithelium and impact on photoreceptors. Proc. Natl Acad.
Sci., 3:18728–18733, 2009.

[22] D.L. Lukes. Differential Equations: Classical to Controlled. Academic Press, 1982.

[23] Katherine M. Malanson and Janis Lem. Progress in Molecular Biology and Translational
Science, chapter Rhodopsin-Mediated Retinitis Pigmentosa. Elsevier, 2009. 1-31.

[24] Saddek Mohand-Said, David Hicks, Theirry Léveillard, Serge Picaud, Fernanda Porto, and
José A. Sahel. Rod-cone interactions: Developmental and clinical significance. Progress in
Retinal and Eye Research, 20(4):451–467, 2001.

[25] Yusuke Murakami, Yasuhiro Ikeda, Yoshikazu Yonemitsu, Mitsuho Onimaru, Kazunori Naka-
gawa, Ri-ichiro Kohno, Masanori Miyazaki, Toshio Hisatomi, Makoto Nakamura, Takeshi Yabe,
Mamoru Hasegawa, Tatsuro Ishibashi, and Katsuo Sueishi. Inhibition of nuclear translocation
of apoptosis-inducing factor is an essential mechanism of the neuroprotective activity of pig-
ment epithelium-derived factor in a rat model of retinal degeneration. The American Journal of
Pathology, 173:1326–1338, 2008.

[26] Clyde W. Oyster. The Human Eye: Structure and Function. Sinauer Associates, Inc., 1999.

[27] Aristofanis Pallikaris, David R. Williams, and Heidi Hofer. The reflectance of single cones in
the living human eye. Investigative Ophthalmology and Visual Science, 44:10, 2003.

17



[28] David S. Papermaster. The birth and death of photoreceptors: The friedenwald lecture.
Investigative Ophthalmology and Visual Science, 43(5), May 2002.

[29] James K. Phelan and Dean Bok. A brief review of retinitis pigmentosa and the identified retinitis
pigmentosa genes. Molecular Vision, 6:116–124, 2000.

[30] Claudio Punzo, Karl Kornacker, and Constance L Cepko. Stimulation of the insulin/mtor path-
way delays cone death in a mouse model of retinitis pigmentosa. Nature Neuroscience, 12(1),
Jan 2009.

[31] Sacha Reichman, Ravi Kiran Reddy Kalathur, Sophie Lambard, Najate Aı̈t-Ali1, Yanjiang Yang,
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Figure 1: Stage 1: IC (Rn, Rm, C, T ) = (9.2×107, 2.0×106, 4.5×106, 2.34×106). This represents an early stage
of RP in which most of the normal rods are still present and only a small fraction of rods have had their functionality
affected by the expresssion of the mutated gene. Over time, the normal rods population dereases as the mutated
rod population also decreases but at a slower rate. The cone population also decreases for a time, likely due to less
availability of RdCVF from rods but this is also offset somewhat by the greater availability of trophic factors (due to
less rods). The following parameter values were used am = 4.501× 10−8, ac = 4.71× 10−8 and k = 5× 10−7. Top
left: Control u vs. time t. Top middle: Normal rods vs. time. Top right: Mutated rods vs. time. Bottom left: Cones vs.
time. Bottom right: Rod-trophic factor vs. time.

19



0 5 10 14
0

0.2

0.4

0.6

0.8

1

x 10
−5

t

u(
t)

Control u

0 5 10 14

9.9

9.92

9.94

9.96

9.98

10

x 10
6

t

R
n(t

)

Normal rods

0 5 10 14
7.22

7.24

7.26

7.28

7.3

x 10
7

t

R
m

(t
)

Mutated rods

0 5 10 14

4.36

4.37

4.38

4.39

4.4

x 10
6

t

C
(t

)

Cones

0 5 10 14

2.32

2.325

2.33

2.335

2.34

x 10
6

t

T
(t

)

Trophic factor

 

 

Without control
With Control

Figure 2: Stage 2 IC (Rn, Rm, C, T ) = (1.0 × 107, 7.3 × 107, 4.4 × 106, 2.34 × 106). This represents a stage
of RP in which most of the normal rods have disappeared although some are still present and the mutated rod
population is the larger of the two. Over time, both the normal and mutated rod populations again decrease. The
cone population also decreases for a time, likely due to less availability of RdCVF from rods but this is also offset
somewhat by the greater availability of trophic factors (due to less rods). The following parameter values were used
am = 4.501 × 10−8, ac = 4.71 × 10−8 and k = 5 × 10−7. Top left: Control u vs. time t. Top middle: Normal rods
vs. time. Top right: Mutated rods vs. time. Bottom left: Cones vs. time. Bottom right: Rod-trophic factor vs. time.
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Figure 3: Stage 3: IC (Rn, Rm, C, T ) = (0, 3.0 × 106, 4.1 × 106, 2.34 × 106). This represents a middle stage of
RP in which all the normal rods have disappeared with some mutated rods still present. The mutated rod population
and cone population decrease as a result of RP and of less availability of RdCVF, respectively. We see some effect
when the control is realized. The following parameter values were used am = 4.52 × 10−8, ac = 4.77 × 10−8 and
k = 5.5 × 10−7. Top left: Control u vs. time t. Top middle: Normal rods vs. time. Top right: Mutated rods vs. time.
Bottom left: Cones vs. time. Bottom right: Rod-trophic factor vs. time.21
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Figure 4: Stage 4: IC (Rn, Rm, C, T ) = (0, 0, 3.7 × 106, 2.32 × 106). This represents a late stage of RP in
which both rod populations have completely died off. Without RdCVF, the cone population would die off but the
administration via the control shows a rescuing effect of the cone population at the level of 40%. The following
parameter values were used am = 4.52× 10−8, ac = 4.78× 10−8 and k = 6.4× 10−7. Top left: Control u vs. time
t. Top middle: Normal rods vs. time. Top right: Mutated rods vs. time. Bottom left: Cones vs. time. Bottom right:
Rod-trophic factor vs. time. 22
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Figure 5: Stage 5: IC (Rn, Rm, C, T ) = (0, 0, 7.0 × 105, 2.25 × 106). This represents a very late stage of RP in
which both rod populations have completely died off and the cone population is near extinction too. Without RdCVF,
the cone population would die off but the administration via the control again shows a rescuing effect of the cone
population at the level of 40%. The following parameter values were used am = 4.52× 10−8, ac = 4.78× 10−8 and
k = 6.6 × 10−7. Top left: Control u vs. time t. Top middle: Normal rods vs. time. Top right: Mutated rods vs. time.
Bottom left: Cones vs. time. Bottom right: Rod-trophic factor vs. time.23
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