
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

8-2022

Neural Networks and Stochastic Differential Equations Neural Networks and Stochastic Differential Equations

Stephanie L. Flores
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Applied Statistics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Flores, Stephanie L., "Neural Networks and Stochastic Differential Equations" (2022). Theses and
Dissertations. 1272.
https://scholarworks.utrgv.edu/etd/1272

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.utrgv.edu%2Fetd%2F1272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.utrgv.edu%2Fetd%2F1272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1272?utm_source=scholarworks.utrgv.edu%2Fetd%2F1272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

DEEP LEARNING AND STOCHASTIC MODELING

A Thesis

by

STEPHANIE L. FLORES

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: Applied Statistics and Data Science

The University of Texas Rio Grande Valley

August 2022

DEEP LEARNING AND STOCHASTIC MODELING

A Thesis
by

STEPHANIE L. FLORES

COMMITTEE MEMBERS

Dr. Hansapani Rodrigo
Chair of Committee

Dr. Tamer Oraby
Committee Member

Dr. Erwin Suazo
Committee Member

Dr. Santanu Chakraborty
Committee Member

August 2022

Copyright 2022 Stephanie L. Flores

All Rights Reserved

ABSTRACT

Flores, Stephanie L., Deep Learning and Stochastic Modeling. Master of Science (MS), August, 2022,

53 pp., 11 figures, references, 25 titles.

Influenced by the seminal work, “Physics Informed Neural Networks” by Raissi et al., 2017,

there has been a growing interest in solving and parameter estimation of Nonlinear Partial Differ-

ential Equations (PDE) with Deep Neural networks in recent years. In fact, this has broadened the

pathways and shed light on using deep learning to solve stochastic PDE’s (SPDE).In this work, we

intend to investigate the current approaches of solving and parameter estimation of the stochastic

heat equation with convolution neural networks and generative adversarial neural networks. The

combination of methods can improve speeds, accuracy, and lessen data-related difficulties in solv-

ing Stochastic PDEs. Such improvements can assist a wide array of the sciences in computational

research and data sciences.

iii

DEDICATION

To my parents, who always supported me in my pursuit of education.

 And to my favorite person, Jorge. Thank you for showing me the importance of a

good laugh and a good cup of coffee.

iv

ACKNOWLEDGMENTS

I want to thank Dr. Oraby and Dr. Suazo for their continued help in my studies with stochas-

tic differential equations. The research conducted with you both and Dr. Yoon during the summer

REU helped me become a better student.

I want to thank Dr. Chakraborty for being a part of the committee and helping with aspects

of the research.

Finally, I want to thank Dr. Rodrigo for her help and encouragement during the difficult and

rewarding journey of writing a thesis. As a student who started research with a minimal knowledge

of deep learning and programming, I believe that Dr. Rodrigo encouraged me to take the initiative

to learn and grow as the student I am today.

Working on this thesis is an experience I won’t forget, and I’ll won’t forget how everyone

has helped me on this journey. I could not have done this alone, thank you.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . vii

CHAPTER I. INTRODUCTION . 1

1.1 Deep Learning . 1

1.2 Stochastic Partial Differential Equations . 2

1.3 Further information on Stochastic Differential Equations 3

1.4 Neural Networks . 6

CHAPTER II. METHODOLOGY . 8

2.1 Setup . 8

2.1.1 The Diffusion Equation Solution . 8

2.1.2 CNNs . 9

2.1.3 GANs . 12

2.1.4 Wasserstein GANs . 13

2.2 Goals . 16

CHAPTER III. RESULTS . 17

3.1 SPDE Solution Generation . 17

3.2 CNN . 17

3.3 GAN . 20

CHAPTER IV. CONCLUSION AND DISCUSSION . 23

REFERENCES . 25

APPENDIX A . 28

APPENDIX B . 45

vi

BIOGRAPHICAL SKETCH . 53

LIST OF FIGURES

Page

Figure 1.1: Simple schematic of a neural network 3
Figure 2.1: Architecture of a standard CNN architecture 10
Figure 2.2: The architecture of the mult-output CNN, split into two branches. 11
Figure 2.3: An illustration of the architecture of a vanilla GAN showing the
 relation of a generator and discriminator model from (Brownlee 2019). 14

Figure 2.4: This is the WGAN gradient penalty as discussed in (Gulrajani
 et al. 2017). 15

Figure 3.1: A compilation of U(x,t) Solutions with differing values of σ and D. 18

Figure 3.2: Depictions of K for different values of σ . . 19

Figure 3.3: A table showing the different results of several multi-output CNN models. . . . 20

Figure 3.4: Plotting actual vs. predicted values with differing models. 21

Figure 3.5: Mean Average Error with differing models. 21

Figure 3.6: Top right image is actual solution of 1-D diffusion equation with the σ = 0.08,
 D = 0.5. . 22

vii

CHAPTER I

INTRODUCTION

1.1 Deep Learning

Machine learning is an process that allows computers to solve problems, using algorithms

such as logistic regression and the naive Bayes to solve problems such as medical recommendations

and e-mail spam detection (Goodfellow, Bengio, and Courville 2016). Many modern luxuries are

possible by the works of machine learning. From technology that can conduct efficient webs search,

automated driving in vehicles, computer vision and optical character recognition (Liu et al. 2017).

Even with these successes, the performance of machine learning processes began to falter once

more human processing mechanisms (such as speech and vision) were involved (Liu et al. 2017).

One of the problems with these artificial intelligence task was a requirement of representations

of data; there has to be a human labeling component, which can become difficult to perform with

a large amount of data (Goodfellow, Bengio, and Courville 2016).

The deep learning model is a solution to this problem. Deep learning is a computational

model comprised of multiple processing layers that learn representations of data with multiple

levels of abstraction (LeCun, Benglo, and Hinton 2015). There are several factors that make deep

learning an attractive option when problem-solving: a universal learning approach, which allows

models to be used in all types of domains, robustness, which does not require specification for

features when the model is learning, generalization, in which in which different types of data and

applications are able to use the same deep learning model, and scalability (Alzubaidi et al. 2021).

Thus, the deep learning model has led to much breakthrough in processing images, video, speech,

and audio (LeCun, Benglo, and Hinton 2015). Due to ability of a deep learning model to process

1

and interpret large amounts of unlabeled data, the, deep learning has become a staple in the big

data analysis scene, used in cyber security, medical informatics, and social media (Liu et al. 2017).

It is because of this ability to interpret abstract data that deep learning practices would be useful for

solving problems traditionally done numerically — differential equations.

1.2 Stochastic Partial Differential Equations

In order to describe natural phenomena, differential equations are usually utilized in areas

such as biology, mathematics, physics, and more. Differential equations are used to solve problems

such as image smoothing medical magnetic resonance images, estimating population growth and

decay, fluid motion and more (Lysaker, Lundervold, and Tai 2003) (Bahuguna and Dabas 2008)

(Siemrod 1976). Differential equations are described to be mathematical models relating to an

unknown function and one or more of its derivatives, while a partial differential equation is a dif-

ferential equation that involves partial derivatives of a function of more than one variable (Trench

2013). One type of differential equation that is especially interesting is the stochastic differential

equation, a type of differential equation with randomness in the coefficients of the equation (Øk-

sendal 1998). There are many ways to solve these types of differential equations, depending on the

problem at hand. Some traditional methods of solving these types of problems are filtering and Ito

integration (Handel n.d.).

What exactly is a stochastic differential equation? We stated that it is a PDE with a stochas-

tic term. To further elaborate, The stochastic term represents a stochastic process. A common

archetype of stochastic processes is Brownian motion, which describes many natural phenomena,

such as the movement of pollen particles in fluid, gaseous momentum, motions of fluids, and more

(Paul and Bashchnagel 2000). Brownianmotion describes the phenomenon of the outcome of many

unpredictable and at times unobservable events, such as the change of the stock market or collisions

of particles, or investment decisions, which all lead to a observed effect (Paul and Bashchnagel

2000).

A common modern problem of the information age is the abundance, or lack, of data. This

conundrum of data is addressed in the paper (Yang, Zhang, and Karniadakis 2018), in which the

2

Figure 1.1: Simple schematic of a neural network

authors discuss the three cases of data in physical fields:

• the lack of data, but understanding of underlying physics

• the access of some data and some understanding of physics

• the abundance of data, but a lack of understanding of physics

How does one solve differential equations with these data conundrums? We want a solution

that is adaptable and can handle a variety of cases, as described above. This paper and the research

behind it is heavily inspired by the writings of Raissi and their paper (Raissi, Perdikaris, and Kar-

niadakis 2017) (insert complete one, better). The works of Raisai et. all speak of using physics

informed neural networks to solve partial differential equations.

1.3 Further information on Stochastic Differential Equations

In previous works, we considered the following two different stochastic Burgers equations

with a space-uniform white noise of the form

du = (A(t)∂zzu+B(t)u∂zu+C(t)∂zu+D(t)u)dt +E(t)∂zudWt (1.1)

and

3

du = (A(t)∂zzu+B(t)u∂zu+C(t)∂zu+D(t)u)dt +E(t)dWt (1.2)

for t ∈ [t0,T] and z∈Rwith u(0,z) = ϕ(z) for z∈R (Flores et al. 2020). The diffusion heat equation

that we want to work on takes a similar form to equation 1.1, but with B(t) = 0, C(t)=0, D(t) = 0,

and E(t) = σ .

Most physical and biological systems are not homogeneous, in part due to fluctuations in

environmental conditions and the presence of nonuniform media. Therefore, most of the nonlinear

equations with real applications possess coefficients varying spatially and/or temporally and even

stochastic terms. Reaction –diffusion equations play a fundamental role in a large number ofmodels

of heat diffusion and reaction processes in nonlinear acoustics, biology, chemistry, genetics and

many other areas of research (Flores et al. 2020).

Consider the probability space (Ω,F ,P) for which the Brownian motion {Wt , t ≥ 0} is

defined and E(WsWt) = min(s, t) for all s, t ≥ 0. Also consider the filtration Ft := σ(Ws : s ≤ t)

being the smallest σ−algebra to whichWs is measurable for s ≤ t.

Then consider the stochastic differential equation (SDE) with variable coefficients (Flores

et al. 2020)

dXt = α(t,Xt)dt +β (t,Xt)dWt , (1.3)

with initial state Xt0 and for t ∈ [t0,T]. The SDE in (1.3) has a general solution given by

Xt = Xt0 +
∫ t

t0
α(s,Xs)ds+

∫ t

t0
β (s,Xs)dWs

for t ≤ T . If α(t) := α(t,Xt) and β (t) := β (t,Xt), then equation (1.3) has a general solution given

by

Xt = Xt0 +
∫ t

t0
α(s)ds+

∫ t

t0
β (s)dWs

for t ≤ T . The process {Wt ; t ≥ 0} is a Wiener process with respect to a filtration {Ft ; t ≥ 0}.

The initial state Xt0 is Ft0 and the functions α(t) and β (t) are Lebesgue measurable and bounded

4

on [t0,T]. The latter implies both the global Lipschitz and linearity growth conditions required to

ensure the existence and (path-wise) uniqueness of a strong solution to (1.3), (Flores et al. 2020).

Let Xt and Yt be any two diffusion processes like those defined by the solution of equation

(1.3). If F(x,y) is a differentiable function that works as a transformation for two processes Xt and

Yt , then the general bi-variate Itô formula (Flores et al. 2020) gives

dF(Xt ,Yt) = ∂xF(Xt ,Yt)dXt +∂yF(Xt ,Yt)dYt +
1
2

∂xxF(Xt ,Yt)(dXt)
2 (1.4)

+
1
2

∂yyF(Xt ,Yt)(dYt)
2 +∂xyF(Xt ,Yt)dXtdYt .

F(t,y) is a differentiable function. If Yt is a diffusion process that solves (1.3), then the Itô formula

becomes (Kloeden1992)

When Xt = t the general Itô formula of F(t,y) is a differentiable function. IfYt is a diffusion

process that solves (1.3), then the Itô formula becomes (Kloeden1992)

dF(t,Yt) = f (t,Yt)dt +g(t,Yt)dWt , (1.5)

where

f (t,x) = ∂tF(t,x)+α(t,x)∂xF(t,x)+
1
2

β 2(t,x)∂xxF(t,x)

and

g(t,x) = β (t,x)∂xF(t,x).

Before introducing the numerical algorithm for solving (1.1) and (1.2), we must first in-

troduce the following central proposition. The proposition also assists in finding exact solutions

for equations (1.1) and (1.2), in particular when exact solutions of the deterministic differential

equations (1.6).

The following is the stated propositions in (Flores et al. 2020): LetA,B,C,D,E ∈C b ([t0,T])

be bounded continuous functions on [t0,T]. Assume that B(t)> 0 for all t ∈ [t0,T]. Then, we have:

1. The stochastic Burgers equation with the initial value problem (1.1) has a solution u(t,z) =

5

U(t,Xt), whereU(t,x) is the solution of

∂tU = (A(t)− 1
2

E2(t))∂xxU +B(t)U∂xU +D(t)U, U(0,x) = ϕ(x) (1.6)

and Xt is the solution of

dXt =C(t)dt +E(t)dWt (1.7)

with initial state Xt0 = z and for t ∈ [t0,T].

We also take into consideration the following Lemma, taken from (Flores et al. 2020):

1. The stochastic process Xt solving

dXt =C(t)dt +E(t)dWt

with Xt0 ∼ N(xt0 ,σ2
0) independent of Wt , is a non-stationary Gaussian process with mean

xt0 +
∫ t

t0 C(s)ds and variance σ2(Xt) = σ2
0 +

∫ t
t0 E2(s)ds.

2. The covariance of the two processes Xt andWt is

σ(Xt ,Wt) =
∫ t

t0
E(s)ds.

3. Moreover,

[Xt |Wt = w]∼ N

(
xt0 +

∫ t

t0
C(s)ds+

∫ t
t0 E(s)ds

t
w,σ2

0 +
∫ t

t0
E2(s)ds−

(
∫ t

t0 E(s)ds)2

t

)
.

The proof of this lemma can be found in previous works (Flores et al. 2020).

1.4 Neural Networks

Neural Networks have been a hot topic as of late. A neural network defines a wide class

of flexible nonlinear regression and discriminant models, data reduction models, and nonlinear dy-

namical systems, defined in (Sarle 1994). These neural networks are named so because of their

6

resemblance of a neuron located in the human brain, and their behavior is similar (source). (add

a picture, mention layers, hidden, outputs use the one in report) Common terminology of neural

networks is defined in (Sarle 1994) as follows: variables are features, independent variables are

called inputs, predicted values are called outputs, dependent variables are called either targets or

training values, and residuals (the measure of difference between outputs and targets) are called

errors.The estimation by neural networks is commonly called training, obserations are called pat-

terns, parameter estimates are called weights, interactions are called higher-order neurons (Sarle

1994). Transformations in the model are called funcitonal links, regression and discriminant anal-

ysis is called supervised learning, and interpolation and extrapolation are called generalization

(Sarle 1994). (Mention ANN and DNN) With neural networks, data is often divided into a training

set and a test set for cross-validation (Sarle 1994). As advances in deep neural networking con-

tinue to grow, and with the inspiration from the aforementioned research work, we aim to further

explore and possibly extend the SDEs with deep neural networks (Raissi, Perdikaris, and Karni-

adakis 2017).

Along with techniques inspired by Raissai et. all, we would like to utilize another deep

learning model: generative adversarial networks (GANs). GANs are a model architecture for train-

ing a generative model, and are comprised of a generator – a model that is used to generate new

plausible examples from the problem domain – and a discriminator - amodel that is used to classify

examples as real (from the domain) or fake (generated) (Brownlee 2019).

7

CHAPTER II

METHODOLOGY

2.1 Setup

2.1.1 The Diffusion Equation Solution

The equation that we decide to focus on in this project is the diffusion equation. The dif-

fusion equation is a PDE which describes density fluctuations with materials undergoing diffusion

(“The Diffusion Equation” 2018). The standard diffusion equation is as follows:

∂u
∂ t

= ∇ · (D(u,x)∇u), (2.1)

in which u(x, t) represents the diffusing material at position x and time t. The diffusion

coefficient for density u at x is denoted by (D(u(x, t),x) (“The Diffusion Equation” 2018). In our

research, we focused on the case in which D is constant, which reduces equation 2.1 to

∂u
∂ t

= D · ∂ 2u
∂x2 , (2.2)

which call also be described as the heat equation. We decide to focus in on the one-dimensional

heat equation, as well as choosing Cauchy conditions: |x| < ∞, t > 0, with initial conditions

u(x,0) = f (x) (Kumar n.d.). Implementing a change of variables and considering the heat equa-

tion’s properties of conservation of energy, it can be found that the fundamental solution of the heat

equation is as follows (Kumar n.d.):

Φ(x, t) =
1√

4πDt
e−

x2
4Dt . (2.3)

8

Using this information as well as the previous works done in (Flores et al. 2020), particularly

referring to 1.1 and Proposition 1.1 in (Flores et al. 2020), it follows that the stochastic 1-D heat

equation has the following solution:

X(t) = X(0)+N(0,σ2 ∗ t;0, t) (2.4)

’

Thus, we add a stochastic term to equation 2.5 to get

Φ(x, t) =
1√

4πDt
e−

(x+σ∗t)2
4Dt . (2.5)

Once we had our solution for the stochastic 1-D diffusion equation, we can generated a

dataset for our deep learning models. We chose the following parameters for our diffusion equation:

u(x,0) = f (x), where f (x) = x. We generated 50 arrays for each pair of σ and D, to end up with a

dataset of 5,000 arrays. With these arrays, we intend to use our CNNmodel for parameter detection,

and our GAN for solution generation.

2.1.2 CNNs

Our first objective concerns parameter discovery using convolutional neural networks (CNNs).

CNNs are a form of deep supervised learning, which is consistent with the GANs (Alzubaidi et al.

2021). CNNs are great because the can identify relevant features in data without any human inter-

ference; the model has been used in applications such as computer vision, speech processing, facial

recognition, and more (Alzubaidi et al. 2021). Another benefit of this model is the fact that they are

able to share weights and local connections, which leads to a faster training process than regular

fully connected networks (Alzubaidi et al. 2021).

There are several components of a CNN that differentiate them from other deep learning

models. First, there is the convolutional aspect of the model, in which the input data (an image with

height, width, and 3 layers representing the RGB channel of the image) has regional connections

to nodes of the next layer of the network, as well as the fact that the layers have fixed weights

9

Figure 2.1: Architecture of a standard CNN. Demonstrates common practices such as padding and
pooling of image. Image from (“What is the Convolutional Neural Network Architecture?” 2020)

(Albawi, Mohammed, and Al-Zawi 2017). This ’window’ and fixed weight implementation creates

a convolutional matrix (filters), which can create operations such as edge detection, sharpening, and

blurring of images (Albawi, Mohammed, and Al-Zawi 2017). Controlling how the filter moves

through the image is called stride: controlling the amount of stride controls the size of the output.

To prevent loss from the border of an image, we can implement padding in a CNN, which prevents

data loss and manages output size of a convolutional layer (Albawi, Mohammed, and Al-Zawi

2017). The data then passes through a nonlinear activation layer (in our case, we used a ReLU

activation function), and then a pooling layer in which the image is ’downsized’, only the larges

values of a window are kept as the image is downsized (Albawi, Mohammed, and Al-Zawi 2017).

Finally, the last layers of the CNN include a flattening layer which then connects to a fully connected

network, which ends with an output layer which is usually a classification or regression layer.

Since we want to use the CNN model for parameter estimation of σ and D, we decided to

go for a multi output CNN, inspired by (Bressan 2020). Similar to the model of (Bressan 2020),

we create a model with branches with similar layers, but with a regression output to approximate

the parameters, as shown in image 2.2.

10

Figure 2.2: The architecture of the mult-output CNN, split into two branches. The red indicates the
CNN layers, which take in the image input. Inspired by (Bressan 2020)

11

Since the output of the model is a regression, we decided to use the Mean Average Error

(MAE) and the R2 score to examine the performance of the model. The MAE of a regression

model measures the average magnitude of absolute differences between N predicted vectors S =

x1,x2, . . . ,xN and S∗ = y1,y2, . . . ,yN (Qi et al. 2020). The corresponding loss function is described

as:

LMAE(S,S∗) =
1
N

N

∑
i=1

||xi − yi||,

where || · ||1 denotes L1 norm (Qi et al. 2020).

The coefficient of determination, also known as the R2, is a measure of the goodness of

fit of a model, specifically measuring how well the regression line approximates the actual data

(“Coefficient of Determination, R-squared” n.d.). A widely used formula for the coefficient of

determination is as follows:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳi)2 , (2.6)

where the numerator of the second term is commonly referred to as the sum squared regression

(SSR) and the denominator is referred as the total sum of squares (SST) (“Coefficient of Determi-

nation, R-squared” n.d.). The SSR refers to the sum of residuals squared, and the SST is the sum of

the distance the data is away from the mean all squared (“Coefficient of Determination, R-squared”

n.d.). Usually, a score closer to one denotes a great fit, while a score close to zero or a negative

number denotes a poor fit (“Coefficient of Determination, R-squared” n.d.).

2.1.3 GANs

Our research utilized a type of deep learning network called a generative adversarial net-

work, also known as GANs. Initially, we explored the idea of exploring different types of GANs,

such as vanilla GANs, DeepConvolutional GenerativeAdversarial Networks (DCGANs) orWasser-

stein GANs (WGANs). Eventually, we settled on the utilization of theWGAN for several beneficial

reasons: Although these models were primarily used in the context of computer vision (Mwiti n.d.),

12

novel research demonstrates that these models can be utilized with any array-based data. we be-

lieve that they can be successfully utilized in modeling PDEs and SDEs due to their probabilistic

learning capability.

A plain vanilla GAN consists of two sub-models; a generator, which generates new sce-

narios/examples, and a discriminator, which classifies examples as real or fake (Brownlee 2019).

Generators take as inputs a vector of noise, usual generated with a Gaussian distribution, which ini-

tially has no meaning (Brownlee 2019). After the model is trained, points in the multi-dimensional

vector of space correspond to points in the problem domain; the generator model creates a latent

(hidden) space which recognizes patterns in the domain that are not necessarily observable directly,

and thus new points may be drawn from the latent space and can be used to generate new exam-

ples(Brownlee 2019). In vanilla GANs, the discriminator model takes as input an example from the

problem domain as input (either real or generated) and conducts a binary classification as real or

fake on the input (Brownlee 2019). Once the GAN has been trained, the discriminator is discarded,

and only the generator is preserved (Brownlee 2019). Using this model, which corrects itself by

rejecting bad examples and reinforcing its discrimination accuracy, creates an architecture that is

able to learn and recognize patters such that little supervision is needed (Brownlee 2019). GANs

contain architecture and layers used in CNNs within them, meaning that they can take input that

represents an image and generate images as well (Brownlee 2019).

2.1.4 Wasserstein GANs

While GANs are powerful deep learning models, they are also difficult to train. Pitfalls

such as mode collapse, which is the problem when multiple inputs to the generator map to the same

output, or the case when the generator’s output oscillates without converging (the former which

is an issue in our own research), vanilla GANs are a difficult model to train (Brownlee 2019).

Hoping to overcome these issues, we chose to work with Wasserstein GAN models Wasserstein

GANs are different from plain vanilla GANs in that they seek an alternative way of training the

generator model to better approximate the distribution of data observed in a given training data set,

and rather than using a discriminator, the WGAN uses a critic to score the ”realness” or ”fakeness”

13

Figure 2.3: An illustration of the architecture of a vanilla GAN showing the relation of a generator
and discriminator model from (Brownlee 2019)
.

of a given image (Brownlee 2019). The difference in the two GAN models can be seen in their

respective objective functions: For the vanilla GAN, the game between the generator G and the

discriminator D is the described in the minimax objective

min
G

max
D

Ex∼Pr [log(D(x))]+Ex̃∼Pg [log(D(x̃))], (2.7)

wherePr is the data distribution, andPg is the model distribution, where x̃=G(z), where z is

the input generated by a Gaussian distribution(Gulrajani et al. 2017). This value function, however,

can lead to training issues such as vanishing gradients (Gulrajani et al. 2017).

Thus, WGANs propose using a Wasserstein-1 distance in minimization, as the measure is

continuous everywhere and differentiable everywhere (Gulrajani et al. 2017). Thus, the WGAN

value function becomes (with construction using Kantorovisch-Rubinstein duality)

min
G

max
D∈D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)], (2.8)

14

Figure 2.4: This is the WGAN gradient penalty as discussed in (Gulrajani et al. 2017). This algo-
rithm was utilized in our models.
.

where D is a set of 1-Lipshitz functions, which was enforced with weight clipping of the

critic to lie within a compact space [−c,c] (Gulrajani et al. 2017).

Weight clipping can lead to some problems, such as capacity under use, which leads the

critic toward simpler functions, and exploding/vanishing gradients, due to the interaction of the

weight constraint and the cost functions (Gulrajani et al. 2017). That is why the final objective

function we decide to use is the following, which is an alternative way to enforce the Lipschitz

constraint:

min
G

max
D∈D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)]+λEx̃∼Px̂ [(||∇x̂D(x̂)||2 −1)2], (2.9)

where the last term of the equation is the gradient penalty, which incorporates a sampling

distribution Px̂ based on Pr and Pg, a penalty coefficient λ , the discarding of batch normalization,

and a two sided penalty which encourages the gradient to go towards 1. (Gulrajani et al. 2017)

The use of deep learning methods are extremely likely to improve and provide more stable

and accurate results over traditional numerical methods. Additionally, as evidence by previous

research (Yang, Zhang, and Karniadakis 2018) these techniques are ideal when the underlying

15

physics are known, yet partially obscured, and when there are several scattered measurements in

addition to the conventional boundary and initial conditions.

2.2 Goals

The purposes of this paper are utilize two deep learning models in the following way:

1. Generating images of the 1-D heat equation to use as a dataset,

2. Using CNNs to estimate parameters of the heat equation, and

3. Using GANs to generate solutions with the calculated dataset.

In this paper we record the results of our project in the next chapter oraganized by the goals

listed above, and end with a discussion of the results and possible future directions of the work.

16

CHAPTER III

RESULTS

3.1 SPDE Solution Generation

Our first results to report are on the generation of the stochastic differential equationwe have

chosen to model. As mentioned in the methodology, we have generated a 1-dimensional stochastic

heat equation. We chose several values for α and D, with the values from α ranging from .01 to

.1, and the values for D ranging from .1 to 1. We focused on a Cauchy approach for the equation,

thus limiting x ∈ [−L,L], and in this case we choose the value of L to be 2.5 to limit the amount of

empty space around the diffusion of the equation. For the purpose of feeding these images (shown

in 3.1 into CNN model, we have chosen to plot the images without axes, labels, or a title to have

the model train better.

We first generated the stochastic portion of the 1-dimensional heat equation, which changed

in its intensity depending on what value of σ was used to generate the stochastic term (shown in

3.2. We then added the stochastic term to the values of x, which then allowed us to calculate the

solution to the heat equation normally.

3.2 CNN

For the CNN model, we calculated the mean average error of both the test and validation

model. We also plotted the actual vs. predicted points with the model on a test dataset (the data

was split 70 percent training, 30 percent testing). The model that performed the best for us was the

model with 100 iterations and a batch size of 32. When the model was run with a higher number

of epochs, the loss and mae tend to diverge and grow.

There was a tendency for the σ value in all of our models to have a greater difficulty being

17

Figure 3.1: A compilation of U(x,t) Solutions with differing values of σ and D. Top Row: σ =
0.01, D = 0.1 ; σ = 0.01, D = 0.5 ; σ = 0.01, D = 1.0 ; Second Row: σ = 0.05, D = 0.1 ; σ = 0.05,
D = 0.5 ; σ = 0.05, D = 1.0 ; Bottom Row: σ = 0.1, D = 0.1 ; σ = 0.1, D = 0.5 ; σ = 0.1, D = 1.0 ;
Here, we solve the 1-D heat equation 2.5 with f(x) = x.

18

Figure 3.2: Depictions of K for different values of σ . K represents the Brownian motion X(t) =
X(0)+N(0,sigma ∗ ∗2 ∗ t;0, t). Notice how higher values of σ show greater oscillations in the
image.

19

Figure 3.3: A table showing the different results of several multi-output CNN models. The model
that we believed performed best is highlighted in red. The values for D were usually predicted
much better than that of σ .

accurately predicted with regression. The better models would predict values for σ in the correct

domain, but with a low amount of accuracy. Poorer performing models would tend to generate

negative values for σ . The values forD tended to be accurately predicted and in the correct domain,

but models also tend to have more difficulty for smaller values of D, particularly for values of D

around .1.

3.3 GAN

We had intended to utilize the parameters estimated from the CNNwith the GAN. However,

the model had difficulty recreating images even without parameter implementation. The standard

model ran 10,000 epochs, with variations in the learning rate, parameters with the Adam Optimiza-

tion, batch size, and normalization, with little effect.

Image generation tends to heavily focus on values of zero, likely a case of mode collapse of

a WGAN. It is also observed that, while the original arrays have higher values towards the middle

area of the image, generated images have higher values towards the top. This is a subject of further

exploration for future works.

20

Figure 3.4: Plotting actual vs. predicted values with differing models. Top Row: 100 iterations,
32 batch size; 100 iterations, 16 batch size; 100 iterations, 64 batch size ; 100 iterations, 32 batch
size; 130 iterations, 16 batch size; 200 iterations, 64 batch size ; The best model is the one on the
upper left.

Figure 3.5: Mean Average Error with differing models. Top Row: 100 iterations, 32 batch size; 100
iterations, 16 batch size; 100 iterations, 64 batch size ; 100 iterations, 16 batch size; 130 iterations,
16 batch size; 200 iterations, 16 batch size ; The best model is the one on the upper left.

21

Figure 3.6: Top right image is actual solution of 1-D diffusion equation with the σ = 0.08, D = 0.5.
Other images show attempts of recreating image with WGAN with gradient penalty models. The
model seems to fix on the values of zero on image generation. Higher values also tend to be
generated towards the top of the graphs rather than towards the middle.

22

CHAPTER IV

CONCLUSION AND DISCUSSION

While initially this project started off on physics informed partial differential equations, over

time the project morphed to what it is today. The CNN did relatively well in parameter prediction

for the 1-D diffusion equation, and while the GAN results where nothing really special, the author

believes that with more time and examination that the direction is a promising one.

The generated images of the heat equation was a great start. Eventually, the idea would be

not only to work with 1-dimensional heat equations, but also with multi-dimensional equations as

well. It was decided to start small, and then build from the results. We could also look into experi-

menting with other types of stochastic equations, as well as different parameters for the stochastic

and diffusion terms.

In terms of the CNN, the results were positive in that theD parameter of the inverse problem-

solving can be estimated well with some of our models. There is reason to suspect that the models

have difficulty training on parameters of smaller values, as noted in the results section. As afore-

mentioned, the model has difficulty estimating parameters when their values are smaller than .1.

We can also look into restricting the CNN to generate only positive terms in generation.

The results of the WGAN were lackluster, due to the inability of the models to generate an

image that resembled the 1-D heat equation. There are paths to explore in terms of improving the

model, such as changing the type of loss of the model, to changing the scope of input into the model.

We currently pass one array, so it may be feasible to pass multiple arrays in hopes of a better output.

The overall goal of the research was to perform parameter estimation, and with estimated

parameters, create a generator model based on the given stochastic differential equation and param-

eters. While a portion of our results were successful, for the generation we can continue with the

23

work of GANS, and perhaps look into different types of deep learning models such as recurrent

neural networks. Eventually, once we hone in on the models, we intend to experiment with more

types of stochastic differntial equations as well.

24

REFERENCES

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi (2017). “Understanding of a convolu-
tional neural network”. In: 2017 International Conference on Engineering and Technology
(ICET), pp. 1–6. DOI: 10.1109/ICEngTechnol.2017.8308186.

Alzubaidi, Laith et al. (2021). “Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions”. In: Journal of Big Data 8.1, p. 53. DOI: 10.1186/s40537-
021-00444-8. URL: https://doi.org/10.1186/s40537-021-00444-8.

Bahuguna, D. and J. Dabas (2008). “Partial functional differntial equation with and integral con-
dition and applications to population dynamics”. In: Nonlinear Analysis: THeory, Methods
& Applications 69.8, pp. 2623–2635.

Bressan, Rodrigo (2020). Building a multi-output Convolutional Neural Network with Keras. URL:
%5Curl % 7Bhttps : / / towardsdatascience . com / building - a - multi - output -
convolutional-neural-network-with-keras-ed24c7bc1178%7D.

Brownlee, Jason (2019). Generative Adversarial Networks with Python. 1.5. Machine Learning
Mastery.

“Coefficient of Determination, R-squared” (n.d.). In: (). URL: https : / / www . ncl . ac . uk /
webtemplate/ask-assets/external/maths-resources/statistics/regression-
and-correlation/coefficient-of-determination-r-squared.html.

Flores, Stephanie et al. (2020). “Exact and Numerical Solution of Stochastic Burgers Equations
with Variable Coefficients”. In: Discrete and Continuous Dynamical System Series S 13.

25

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. Cambridge, Mas-
sachusetts, London, England: The MIT Press.

Gulrajani, Ishaan et al. (2017). Improved Training of Wasserstein GANs. arXiv.

Handel, Ramon van (n.d.). “Stochastic Calculus, Filtering, and Stochastic Control”. In: (). URL:
https://byjus.com/jee/differential-equations/.

Kumar, V.V.K Srinivas (n.d.). “The Heat Equation”. In: (). URL: https://web.iitd.ac.in/
~vvksrini/Oldhomepage/1d-fund-heat.pdf.

LeCun, Yann, Yoshua Benglo, and Geoffrey Hinton (2015). “Deep Learning”. In: Nature 521,
pp. 436–444.

Liu, Weibo et al. (2017). “A survey of deep neural network architectures and their applications”.
In: Neurocomputing 234, pp. 11–26.

Lysaker, M., A. Lundervold, and Xue-Cheng Tai (2003). “Noise removal using fourth-order partial
differential equation with applications to medical magnetic resonance images in space and
time”. In: IEEE Transactions on Image Processing 12.12, pp. 1579–1590. DOI: 10.1109/
TIP.2003.819229.

Mwiti, Derrick (n.d.). Introduction to Generative Adversarial Networks (GANs): Types , Applica-
tions, and Implementations. https://heartbeat.fritz.ai/introduction-to-generative-adversarial-
networks-gans-35ef44f21193.

Øksendal, Bernt (1998). Stochastic Differential Equations- An Introduction with Applications. Uni-
versity of Oslo, Box 1053, Blindern, N-0316 Oslo, Norway: Springer.

Paul, Wolfgang and Jörg Bashchnagel (2000). Stochastic Processes. Switzerland: Springer.

26

Qi, Jun et al. (2020). “On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector
Regression”. In: IEEE Signal Processing Letters 27, pp. 1485–1489. DOI: 10.1109/LSP.
2020.3016837.

Raissi, Maziar, Paris Perdikaris, and George EmKarniadakis (2017). Physics Informed Deep Learn-
ing (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv.

Sarle, Warren S. (1994). Neural Networks and Statistical Models.

Siemrod, Marshall (1976). “A hereditary partial differential equation with applications in the theory
of simple fluids”. In: Archive for Rational Mechanics and Analysis 62, pp. 303–321.

“The Diffusion Equation” (2018). In: URL: https://www.uni- muenster.de/imperia/md/
content/physik_tp/lectures/ws2016-2017/num_methods_i/heat.pdf.

Trench,William F. (2013). Elementary Differential Equations with Boundary Value Problems. Trin-
ity Unversity, San Antonio, Texas, USA.

“What is the Convolutional Neural Network Architecture?” (2020). In: URL: https : / / www .
analyticsvidhya . com / blog / 2020 / 10 / what - is - the - convolutional - neural -
network-architecture/.

Yang, Liu, Dongkun Zhang, and George Em Karniadakis (2018). Physics-Informed Generative
Adversarial Networks for Stochastic Differential Equations. arXiv.

27

APPENDIX A

28

APPENDIX A

CNN CODE

1.1 CNNCode

P r e l i m i n a r i e s

impo r t g lob

impo r t p a t h l i b

impo r t pandas as pd

impo r t numpy as np

impo r t os

impo r t m a t p l o t l i b . p y p l o t a s p l t

from ke r a s . c o n s t r a i n t s impo r t nonneg

from s k l e a r n . p r e p r o c e s s i n g impo r t MinMaxScaler

impo r t random

random . seed (123)

t f . debugg ing . d i s a b l e _ t r a c e b a c k _ f i l t e r i n g ()

TRAIN_TEST_SPLIT = 0 . 7

29

IM_WIDTH = IM_HEIGHT = 198 #255

############### Pa r ame t e r s

t e s t _ b a t c h _ s i z e = 32

num_model_runs = 5

i n i t _ l r = 1e−7

epochs = 200

b a t c h _ s i z e = 32

v a l i d _ b a t c h _ s i z e = 32

model_name = ” 130 _ i t e r _mm_ l i n _ l r 7 _ b s 3 2_ l d s _ 4 c ”

d a t a _ d i r = ’ / Use r s / s t e p h a n i e f l o r e s / Py ch a rmP ro j e c t s / r e s e a r c h _ p r o j /

images / u_ t r im_50 ’

d a t a _ d i r = p a t h l i b . Pa th (d a t a _ d i r)

####################################

Pa r s e Da t a s e t f u n c t i o n

Read and l a b e l t h e d a t a p r o p e r l y

de f p a r s e _ d a t a s e t (d a t a s e t _ p a t h , e x t = ’ png ’) :

d e f p a r s e _ i n f o _ f r om _ f i l e (p a t h) :

t r y :

f i l e n ame = os . p a t h . s p l i t (p a t h) [1]

f i l e n ame = os . p a t h . s p l i t e x t (f i l e n ame) [0]

f i t e r , s i g _ v a l , D_val = f i l e n ame . s p l i t (’ _ ’)

30

r e t u r n i n t (f i t e r) , f l o a t (s i g _ v a l) , f l o a t (D_val)

e x c e p t Excep t i on as ex :

r e t u r n None , None , None

f i l e s = g lob . g lob (os . p a t h . j o i n (d a t a s e t _ p a t h , ”*/*.% s ” % ex t))

r e c o r d s = []

f o r f i l e i n f i l e s :

i n f o = p a r s e _ i n f o _ f r om _ f i l e (f i l e)

r e c o r d s . append (i n f o)

d f = pd . DataFrame (r e c o r d s)

d f [’ f i l e ’] = f i l e s

d f . columns = [’ f i t e r ’ , ’ s igma ’ , ’D’ , ’ f i l e ’]

d f = df . d ropna ()

r e t u r n d f

d f = p a r s e _ d a t a s e t (d a t a _ d i r)

d f . head ()

####################################

Data Gene r a t o r C l a s s

C r e a t e a d a t a g e n e r a t o r

31

from PIL impo r t Image

c l a s s UDataGenera to r () :

’ ’ ’ Gene r a t e s d a t a f o r t h e U d a t a s e t ’ ’ ’

d e f _ _ i n i t _ _ (s e l f , d f) :

s e l f . d f = df

de f g e n e r a t e _ s p l i t _ i n d e x e s (s e l f) :

p = np . random . p e rmu t a t i o n (l e n (s e l f . d f))

t r a i n _ u p _ t o = i n t (l e n (s e l f . d f) * TRAIN_TEST_SPLIT)

t r a i n _ i d x = p [: t r a i n _ u p _ t o]

t e s t _ i d x = p [t r a i n _ u p _ t o :]

t r a i n _ u p _ t o = i n t (t r a i n _ u p _ t o * TRAIN_TEST_SPLIT)

t r a i n _ i d x , v a l i d _ i d x = t r a i n _ i d x [: t r a i n _ u p _ t o] , t r a i n _ i d x

[t r a i n _ u p _ t o :]

s e l f . max_sigma , s e l f . min_sigma = (s e l f . d f [’ s igma ’] . max () ,

s e l f . d f [’ s igma ’] . min ())

s e l f . max_D , s e l f . min_D = (s e l f . d f [’D’] . max () , s e l f . d f [’D’

] . min ())

r e t u r n t r a i n _ i d x , v a l i d _ i d x , t e s t _ i d x

de f p r e p r o c e s s _ image (s e l f , img_pa th) :

im = Image . open (img_path)

im = im . r e s i z e ((IM_WIDTH, IM_HEIGHT))

32

im = np . a r r a y (im) / 255 .0

r e t u r n im

de f g e n e r a t e _ image s (s e l f , image_idx , i s _ t r a i n i n g , b a t c h _ s i z e

=16) :

images , s , D = [] , [] , []

wh i l e True :

f o r i dx i n image_ idx :

e qu a t = s e l f . d f . i l o c [i dx]

s igma_v = equa t [’ s igma ’]

D_v = equa t [’D’]

f i l e _ v = equa t [’ f i l e ’]

im = s e l f . p r e p r o c e s s _ image (f i l e _ v)

s e l f . s ig_denom = s e l f . max_sigma − s e l f . min_sigma

s e l f . D_denom= s e l f . max_D − s e l f . min_D

s . append (sigma_v / s e l f . max_sigma)

#D. append (D_v / s e l f . max_D)

s . append (((s igma_v − s e l f . min_sigma) / s e l f .

s ig_denom))

D. append (((D_v − s e l f . min_D) / s e l f . D_denom))

33

images . append (im)

y i e l d i n g c o n d i t i o n

i f l e n (images) >= b a t c h _ s i z e :

y i e l d np . a r r a y (images) , [np . a r r a y (s) , np .

a r r a y (D)]

images , s , D = [] , [] , []

i f no t i s _ t r a i n i n g :

b r e ak

d a t a _ g e n e r a t o r = UDataGenera to r (d f)

t r a i n _ a r r a y , v a l i d _ a r r a y , t e s t _ a r r a y = [] , [] , []

f o r i i n r ange (0 , num_model_runs) :

t r a i n _ i d x , v a l i d _ i d x , t e s t _ i d x = d a t a _ g e n e r a t o r .

g e n e r a t e _ s p l i t _ i n d e x e s ()

t r a i n _ a r r a y . append (t r a i n _ i d x)

v a l i d _ a r r a y . append (v a l i d _ i d x)

t e s t _ a r r a y . append (t e s t _ i d x)

####################################

Mul t i −Outpu t C l a s s

from ke r a s . models impo r t Model

from ke r a s . l a y e r s impo r t Ba t c hNo rma l i z a t i o n

34

from ke r a s . l a y e r s . c o n v o l u t i o n a l impo r t Conv2D

from ke r a s . l a y e r s . c o n v o l u t i o n a l impo r t MaxPooling2D

from ke r a s . l a y e r s . c o r e impo r t A c t i v a t i o n

from ke r a s . l a y e r s . c o r e impo r t Dropout

from ke r a s . l a y e r s . c o r e impo r t Lambda

from ke r a s . l a y e r s . c o r e impo r t Dense

from ke r a s . l a y e r s impo r t F l a t t e n

from ke r a s . l a y e r s impo r t I n p u t

impo r t t e n s o r f l ow as t f

c l a s s UMult iOutputModel () :

””” Con t a i n 2 b ranches , one f o r signma , one f o r D”””

de f mak e _ d e f a u l t _ h i d d e n _ l a y e r s (s e l f , i n p u t s) :

”””Conv2D −> Ba t c hNo rma l i z a t i o n −> Poo l i ng −> Dropout ”””

x = Conv2D (1 6 , (3 , 3) , padd ing=” same ”) (i n p u t s)

x = A c t i v a t i o n (” r e l u ”) (x)

x = Ba t c hNo rma l i z a t i o n (a x i s =−1) (x)

x = MaxPooling2D (p o o l _ s i z e = (3 , 3)) (x)

x = Dropout (0 . 2 5) (x)

#x = Conv2D (32 , (3 , 3) , padd ing =” same ”) (x)

#x = A c t i v a t i o n (” r e l u ”) (x)

#x = Ba t c hNo rma l i z a t i o n (a x i s =−1) (x)

#x = MaxPooling2D (p o o l _ s i z e = (2 , 2)) (x)

#x = Dropout (0 . 2 5) (x)

35

#x = Conv2D (32 , (3 , 3) , padd ing =” same ”) (x)

#x = A c t i v a t i o n (” r e l u ”) (x)

#x = Ba t c hNo rma l i z a t i o n (a x i s =−1) (x)

#x = MaxPooling2D (p o o l _ s i z e = (2 , 2)) (x)

#x = Dropout (0 . 2 5) (x)

r e t u r n x

de f bu i l d _ s i gma_b r an ch (s e l f , i n p u t s) :

x = s e l f . m a k e _ d e f a u l t _ h i d d e n _ l a y e r s (i n p u t s)

x = F l a t t e n () (x)

x = Dense (3 2) (x)

x = A c t i v a t i o n (” r e l u ”) (x)

x = Ba t c hNo rma l i z a t i o n () (x)

x = Dropout (0 . 2 5) (x)

x = Dense (1) (x)

x = A c t i v a t i o n (” l i n e a r ” , name = ” s i gma_ou t pu t ”) (x)

r e t u r n x

de f bu i l d_D_branch (s e l f , i n p u t s) :

x = s e l f . m a k e _ d e f a u l t _ h i d d e n _ l a y e r s (i n p u t s)

x = F l a t t e n () (x)

x = Dense (3 2) (x)

x = A c t i v a t i o n (” r e l u ”) (x)

36

x = Ba t c hNo rma l i z a t i o n () (x)

x = Dropout (0 . 2 5) (x)

x = Dense (1) (x)

x = A c t i v a t i o n (” l i n e a r ” , name=” D_outpu t ”) (x)

r e t u r n x

de f a s s emb l e _ f u l l _mode l (s e l f , width , h e i g h t) :

i n p u t _ s h a p e = (h e i gh t , width , 4)

i n p u t s = I n p u t (shape= i n p u t _ s h a p e)

s igma_branch = s e l f . b u i l d _ s i gma_b r an ch (i n p u t s)

D_branch = s e l f . bu i l d_D_branch (i n p u t s)

model = Model (i n p u t s = i n pu t s ,

o u t p u t s =[s igma_branch , D_branch] ,

name=” pde_ne t ”)

r e t u r n model

t r y :

os . maked i r s (’ . /% s / a r r a y s ’ % model_name)

e x c ep t OSError a s e r r o r :

p r i n t (e r r o r)

sig_mae , sig_vmae , D_mae , D_vmae = [] , [] , [] , []

37

m_loss , v a l _ l o s s = [] , []

op t = t f . k e r a s . o p t im i z e r s . Adam(l e a r n i n g _ r a t e = i n i t _ l r , decay=

i n i t _ l r / epochs) # , decay= i n i t _ l r / epochs

f o r i i n r ange (0 , l e n (t e s t _ a r r a y)) :

model_f = UMult iOutputModel () . a s s emb l e _ f u l l _mode l (IM_WIDTH,

IM_HEIGHT)

#####################################

Model P a r ame t e r s

T r a i n t h e model

model_f . compi l e (o p t im i z e r =opt ,

l o s s = { ’ s i gma_ou t pu t ’ : ’mse ’ ,

’ D_outpu t ’ : ’mse ’ } ,

l o s s _w e i g h t s ={ ’ s i gma_ou t pu t ’ : 1 . 4 , # 1 . 7

’ D_outpu t ’ : 1 . 7 } , # 1 . 7

me t r i c s ={ ’ s i gma_ou t pu t ’ : ’mae ’ ,

’ D_outpu t ’ : ’mae ’ })

from ke r a s . c a l l b a c k s impo r t ModelCheckpoin t

t r a i n _ g e n = d a t a _ g e n e r a t o r . g e n e r a t e _ image s (t r a i n _ a r r a y [i] ,

i s _ t r a i n i n g =True , b a t c h _ s i z e = b a t c h _ s i z e)

38

v a l i d _ g e n = d a t a _ g e n e r a t o r . g e n e r a t e _ imag e s (v a l i d _ a r r a y [i] ,

i s _ t r a i n i n g =True , b a t c h _ s i z e = v a l i d _ b a t c h _ s i z e)

c a l l b a c k s = [

ModelCheckpoin t (” . / mode l_checkpo in t ” , mon i t o r = ’ v a l _ l o s s ’)

]

h i s t o r y = model_f . f i t (t r a i n _ g e n ,

s t e p s _ p e r _ e p o c h = l e n (

t r a i n _ a r r a y [i]) / / b a t c h _ s i z e ,

epochs=epochs ,

c a l l b a c k s = c a l l b a c k s ,

v a l i d a t i o n _ d a t a = va l i d_gen ,

v a l i d a t i o n _ s t e p s = l e n (

v a l i d _ a r r a y [i]) / / v a l i d _ b a t c h _ s i z e)

####################################

SIGMA and D Abso lu t e E r r o r

s ig_mae . append (h i s t o r y . h i s t o r y [’ s igma_outpu t_mae ’])

s ig_vmae . append (h i s t o r y . h i s t o r y [’ va l_ s i gma_ou tpu t_mae ’])

D_mae . append (h i s t o r y . h i s t o r y [’ D_output_mae ’])

D_vmae . append (h i s t o r y . h i s t o r y [’ va l_D_outpu t_mae ’])

h i s t _ d f = pd . DataFrame (h i s t o r y . h i s t o r y)

o r save t o csv :

39

h i s t _ c s v _ f i l e = ’ . /% s / h i s t o r y _%s . csv ’ % (model_name , s t r (i))

w i th open (h i s t _ c s v _ f i l e , mode= ’w’) a s f :

h i s t _ d f . t o _ c s v (f)

np . s ave (’ . /% s / a r r a y s / s ig_mae . npy ’ % model_name , s ig_mae)

np . s ave (’ . /% s / a r r a y s / s ig_vmae . npy ’ % model_name , s ig_vmae)

np . s ave (’ . /% s / a r r a y s / D_mae . npy ’ % model_name , D_mae)

np . s ave (’ . /% s / a r r a y s / D_vmae . npy ’ % model_name , D_vmae)

####################################

Eva l u a t e on a Te s t Se t

s i g _ t r u e _ a r r , s i g _ p r e d _ a r r , D_ t r u e_a r r , D_p red_a r r = [] , [] , [] , []

from s k l e a r n . m e t r i c s impo r t r 2 _ s c o r e

s i g_ r 2 , D_r2 = [] , []

f o r i i n r ange (0 , l e n (t r a i n _ a r r a y)) :

t e s t _ g e n e r a t o r = d a t a _ g e n e r a t o r . g e n e r a t e _ imag e s (t e s t _ a r r a y [i

] ,

i s _ t r a i n i n g =

Fa l s e ,

b a t c h _ s i z e =

t e s t _ b a t c h _ s i z e

40

)

s i g_p r ed , D_pred = model_f . p r e d i c t (t e s t _ g e n e r a t o r ,

s t e p s = l e n (

t e s t _ a r r a y [i]) / / t e s t _ b a t c h _ s i z e)

t e s t _ g e n e r a t o r = d a t a _ g e n e r a t o r . g e n e r a t e _ imag e s (t e s t _ a r r a y [i

] , i s _ t r a i n i n g =Fa l s e , b a t c h _ s i z e = t e s t _ b a t c h _ s i z e)

images , s i g _ t r u e , D_t rue = [] , [] , []

f o r t e s t _ b a t c h i n t e s t _ g e n e r a t o r :

image = t e s t _ b a t c h [0]

l a b e l s = t e s t _ b a t c h [1]

images . ex t end (image)

s i g _ t r u e . ex t end (l a b e l s [0])

D_t rue . ex t end (l a b e l s [1])

s i g _ t r u e = np . a r r a y (s i g _ t r u e)

D_t rue = np . a r r a y (D_t rue)

s i g _ t r u e = s i g _ t r u e * d a t a _ g e n e r a t o r . max_sigma

s i g _ p r e d = s i g _ p r e d * d a t a _ g e n e r a t o r . max_sigma

#D_t rue = D_t rue * d a t a _ g e n e r a t o r . max_D

#D_pred = D_pred * d a t a _ g e n e r a t o r . max_D

41

s i g _ t r u e = s i g _ t r u e * (d a t a _ g e n e r a t o r . s ig_denom) +

d a t a _ g e n e r a t o r . min_sigma

s i g _ p r e d = s i g _ p r e d * (d a t a _ g e n e r a t o r . s ig_denom) +

d a t a _ g e n e r a t o r . min_sigma

D_t rue = D_t rue * (d a t a _ g e n e r a t o r . D_denom) + d a t a _ g e n e r a t o r .

min_D

D_pred = D_pred * (d a t a _ g e n e r a t o r . D_denom) + d a t a _ g e n e r a t o r .

min_D

s i g _ t r u e _ a r r . append (s i g _ t r u e)

s i g _ p r e d _ a r r . append (s i g _ p r e d)

D_ t r u e _ a r r . append (D_t rue)

D_p red_a r r . append (D_pred)

s i g _ r 2 . append (r 2 _ s c o r e (s i g _ t r u e , s i g _ p r e d))

D_r2 . append (r 2 _ s c o r e (D_true , D_pred))

p r i n t (’R2 s c o r e f o r D: ’ ,)

p r i n t (s i g _ p r e d)

p r i n t (D_pred)

np . s ave (’ . /% s / a r r a y s / D_p red_a r r . npy ’ % model_name , D_pred_a r r)

np . s ave (’ . /% s / a r r a y s / D_ t r u e _ a r r . npy ’ % model_name , D_ t r u e _ a r r)

np . s ave (’ . /% s / a r r a y s / s i g _ r 2 . npy ’ % model_name , s i g _ r 2)

np . s ave (’ . /% s / a r r a y s / D_r2 . npy ’ % model_name , D_r2)

42

r i n t (’ h e l l o ’)

f o r i i n r ange (0 , l e n (s ig_mae)) :

f i g , (ax1 , ax2) = p l t . s u b p l o t s (1 , 2)

ax1 . p l o t (np . a r ange (l e n (s ig_vmae [i])) , s ig_vmae [i] , marker= ’ . ’

, c= ’ r ed ’)

ax1 . p l o t (np . a r ange (l e n (s ig_mae [i])) , s ig_mae [i] , marker= ’ . ’ ,

c= ’ b l u e ’)

ax1 . g r i d ()

p l t . s e t p (ax1 , x l a b e l = ’ epoch ’ , y l a b e l = ’ sigma_mae ’)

ax2 . p l o t (np . a r ange (l e n (D_vmae [i])) , D_vmae [i] , marker= ’ . ’ , c=

’ r ed ’)

ax2 . p l o t (np . a r ange (l e n (D_mae [i])) , D_mae [i] , marker= ’ . ’ , c= ’

b l u e ’)

ax2 . g r i d ()

p l t . s e t p (ax2 , x l a b e l = ’ epoch ’ , y l a b e l = ’D_mae ’)

t r y :

os . mkdir (’ . /% s / me t r i c ’ % model_name)

e x c ep t OSError a s e r r o r :

p r i n t (e r r o r)

p l t . s a v e f i g (’ . /% s / me t r i c / mod e l _ i t e r _%s . png ’ % (model_name , s t r

(i)))

p l t . c l o s e ()

43

f o r i i n r ange (0 , l e n (s i g _ t r u e _ a r r)) :

t r y :

os . mkdir (’ . /% s / a c t _ p r e d ’ % model_name)

e x c ep t OSError a s e r r o r :

p r i n t (e r r o r)

f i g , (ax1 , ax2) = p l t . s u b p l o t s (1 , 2)

ax1 . s c a t t e r (s i g _ t r u e _ a r r [i] , s i g _ p r e d _ a r r [i])

ax1 . s e t _ y l im ([. 0 1 , . 1])

p l t . s e t p (ax1 , x l a b e l = ’ s i g _ t r u e ’ , y l a b e l = ’ s i g _ p r e d ’)

ax2 . s c a t t e r (D_ t r u e _ a r r [i] , D_p red_a r r [i])

ax1 . s e t _ y l im ([. 1 , 1])

p l t . s e t p (ax2 , x l a b e l = ’ D_t rue ’ , y l a b e l = ’ D_pred ’)

p l t . s a v e f i g (’ . /% s / a c t _ p r e d / m_ i t e r _%s . png ’ % (model_name , s t r (i

)))

p l t . c l o s e ()

44

APPENDIX B

45

APPENDIX B

U SOLUTION CODE

2.1 U solution Code

impo r t os

os . getcwd ()

c u r r _ d i r e c t = ’ / Use r s / s t e p h a n i e f l o r e s / Py ch a rmP ro j e c t s /

r e s e a r c h _ p r o j ’

os . c h d i r (’ / Use r s / s t e p h a n i e f l o r e s / Py ch a rmP ro j e c t s / r e s e a r c h _ p r o j ’)

””” F i l e s o f t h e a r r a y s / images a r e i n t h e form # of p a i r , sigma , D

D i r e c t o r y f i l e s a r e named as sigma , D”””

F i l e : b rownian . py

from math impo r t s q r t

impo r t math

impo r t m a t p l o t l i b

from b r own i a n_ f u n c t i o n impo r t brownian

from c r e a t e _ i m _ d i r e c t o r i e s impo r t c r e a t e _ i m _ d i r e c t o r i e s

46

impo r t s c i p y . i n t e g r a t e a s i n t e g r a t e

impo r t numpy as np

from py l ab impo r t p l o t , show , g r i d , x l a b e l , y l a b e l

impo r t m a t p l o t l i b . p y p l o t a s p l t

###############################

Def ine P a r ame t e r s

The Wiener p r o c e s s p a r ame t e r .

sigma = 1 # Wiener C o e f f i c i e n t

d_ a r r a y = np . l i n s p a c e (. 1 , 1 , 1 0) #10 (x (. 1 , 1 , 1 0))

s i g _ a r r a y = np . l i n s p a c e (. 0 1 , . 1 , 1 0) #10

d_ a r r a y = np . a r r a y ([. 1 , . 5 , 1 . 0]) #10 (x (. 1 , 1 , 1 0))

s i g _ a r r a y = np . a r r a y ([. 0 1 , . 0 5 , . 1])

#D = 2 # D i f f u s i o n C o e f f i c i e n t

D = 2

s i g t = 1

To t a l t ime .

T = 2 # 1

Number o f t ime s t e p s .

N = 500

Time s t e p s i z e

d t = T / N

Number o f r e a l i z a t i o n s t o g e n e r a t e .

m = 1

C r e a t e an empty a r r a y t o s t o r e t h e r e a l i z a t i o n s .

x = np . empty ((m, N + 1))

47

I n i t i a l v a l u e s o f x .

x [: , 0] = 0

M = 1000 # Number o f space s t e p s

c o l o r s = ’ plasma ’

x range = np . append (np . a r ange ((− e _ p o i n t) , e _po i n t , dx) , [1])

t r a n g e = np . l i n s p a c e (0 . 0 , N * dt , N + 1)

##

sigma w i l l change / non− c o n s t a n t

de f c r e a t e _ k (map_name , sigma , xrange , v i s u a l i z e = Fa l s e , s ave =

F a l s e) :

’ ’ ’ C r e a t e s t h e a r r a y x + sigma * wt ’ ’ ’

V i s u a l i z e Wt

brownian (x [: , 0] , N, dt , sigma , ou t =x [: , 1 :])

i f v i s u a l i z e i s True :

f o r k i n r ange (m) :

p l o t (t r a ng e , x [k])

x l a b e l (’ t ’ , f o n t s i z e =16)

y l a b e l (’ x ’ , f o n t s i z e =16)

g r i d (True)

show ()

b_ c a l c = np . r e p e a t (x , M + 1 , a x i s =0) # Wt

x_va l = np . r e p e a t (xrange , N + 1 , a x i s =0) . r e s h a p e ([M + 1 , N +

1]) #x

K_ar ray = x_va l + b_ c a l c

48

i f s ave i s True :

np . s ave (’ . / a r r a y s / k / ’ + map_name , K_ar ray)

r e t u r n K_ar ray

You must g e t xrange , t r a ng e , K i n which each row i s f o r an x

from 0 t o 1 and each column i s f o r t from 0 t o 1

and K=x+sigma*W_t

de f p l o t _ k (a r r a y , map_name , xrange , impath , show_p lo t = F a l s e) :

f i g , ax = p l t . s u b p l o t s ()

cmap = p l t . get_cmap (c o l o r s)

im = ax . pco lo rmesh (t r a ng e , xrange , a r r a y , cmap= ’ v i r i d i s ’ , norm

= m a t p l o t l i b . c o l o r s . Normal i ze (vmin =0 , vmax = 1))

p l t . x l a b e l (’ Time ’)

p l t . y l a b e l (’ Space ’)

p l t . t i t l e (’ P l o t o f K (x + sigma*W_t) : ’ + map_name)

p l t . c o l o r b a r (im)

p l t . s a v e f i g (’ . / images / k _ t h e s i s / ’ + map_name + ’ . png ’)

i f show_p lo t i s True :

p l t . show ()

p l t . c l o s e (’ a l l ’)

d e f f i n d_u (a r r ay , map_name , d t i l) :

So l v i ng t h e s e r i e s u s i n g K

u_a r r a y = np . empty ((1 001 , 5 01))

f o r i i n r ange (1 , t r a n g e . shape [0]) :

c o n s t = 1 / ((4 * math . p i * d t i l * t r a n g e [i]) ** (1 / 2))

49

f o r j i n r ange (0 , a r r a y . shape [0]) :

e xp_con s t = math . exp (− ((a r r a y [j , i]) **2) / (4* d t i l*
t r a n g e [i]))

u _ a r r a y [j , i] = c o n s t*exp_con s t
u _ a r r a y [0 , 0] = 0

#np . s ave (’ . / a r r a y s / u s o l / ’ + map_name , u _ a r r a y)

r e t u r n u_ a r r a y

de f p l o t _ u (a r r a y , map_name , xrange , impath , show_p lo t = F a l s e) :

f i g , ax = p l t . s u b p l o t s ()

cmap = p l t . get_cmap (c o l o r s)

im = ax . pco lo rmesh (t r a ng e , xrange , a r r a y , cmap=cmap , norm =

m a t p l o t l i b . c o l o r s . Normal i ze (vmin =0 , vmax = 1) , s h ad i ng= ’

n e a r e s t ’)

p l t . x l a b e l (’ Time ’)

p l t . y l a b e l (’ Space ’)

p l t . t i t l e (’ P l o t o f u (x , t) : ’ + map_name)

p l t . c o l o r b a r (im)

p l t . a x i s (’ o f f ’)

p l t . s a v e f i g (impa th + ’ / ’ + map_name + ’ . png ’ , bbox_ inche s= ’

t i g h t ’)

i f show_p lo t i s True :

p l t . show ()

p l t . c l f ()

d e f __main__ () :

50

f o r k i n s i g _ a r r a y :

s i g = k

f o r j i n d _ a r r a y :

D = j

e _ p o i n t = 3 * math . s q r t (2 * D)

#dx = ((e _ p o i n t * 2)) / M

xr = np . l i n s p a c e (−2 . 5 , 2 . 5 , M + 1)

D_ t i l d a = D − (1 / 2) * (s i g ** 2)

p a t h c = ’ / Use r s / s t e p h a n i e f l o r e s / Py ch a rmP ro j e c t s /

r e s e a r c h _ p r o j / images / u _ t h e s i s / { s i g p : . 2 f }_{dp : . 2 f } ’ # changed

t e s t i n g / u

p a t h c = pa t h c . f o rma t (s i g p = k , dp = j)

i f os . p a t h . i s f i l e (p a t h c) i s F a l s e :

c r e a t e _ i m _ d i r e c t o r i e s (p a t h c)

f o r i i n r ange (0 , 1) :

k_map = ’ { r e ad }_{ r s i g : . 2 f }_{ rd : . 2 f } ’

k_map = k_map . f o rma t (r e ad = i , r s i g = s ig , rd = D)

uxt_map = ’ { r e ad }_{ r s i g : . 2 f }_{ rd : . 2 f } ’

uxt_map = uxt_map . f o rma t (r e ad = i , r s i g = s ig , rd=D)

K = c r e a t e _ k (k_map , s i g , x r)

p l o t _ k (K, k_map , xr , p a t h c)

u_ so l = f i n d_u (K, uxt_map , D_ t i l d a)

p l o t _ u (u_so l , uxt_map , xr , p a t h c)

__main__ ()

de f t e s t _ g e n (s igma_va l , D_val) :

51

D_ t i l d a = D_val − (1 / 2) * (s i gma_va l ** 2)

k_map = ’ k _ t e s t s : { r s i g : . 2 f } , D: { rd : . 2 f } ’

k_map = k_map . f o rma t (r s i g = s igma_va l , rd=D_val)

uxt_map = ’ u x t _ t e s t s : { r s i g : . 2 f } , D: { rd : . 2 f } ’

uxt_map = uxt_map . f o rma t (r s i g = s igma_va l , rd=D_val)

K = c r e a t e _ k (k_map , s i gma_va l)

p l o t _ k (K, k_map , show_p lo t =True)

u_ so l = f i n d_u (K, uxt_map , D_ t i l d a)

p l o t _ u (u_so l , uxt_map , show_p lo t =True)

52

BIOGRAPHICAL SKETCH

Stephanie Flores graduated from Donna High School in 2015, where she earned the Coca-

Cola First Generation Scholarship. She has since then earned a Bachelor’s Degree in Applied

Mathematics in 2019 and a Master’s Degree in Applied Statistics and Data Science in 2022 from

the University of Texas of Rio Grande Valley. Upon the beginning of her graduate career, Stephanie

had earned the Presidential Grant in Research Assistantship.

Stephanie has participated in the Louis Stokes Alliances for Minority Participation in 2017

with research in Integer Partitions with Dr. Kronholm, and has researched on behalf of the Na-

tional Science Foundation in REU in 2018 on the topic of Stochastic Differential Equations with

Dr. Oraby, Dr. Suazo, and Dr. Yoon. She had interned for the Department of Defense during 2019

on a data analyst project and at Apple as a data science intern during 2021.

To contact Stephanie, feel free to message her with the following email:

stephflores721@gmail.com.

53

	Neural Networks and Stochastic Differential Equations
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	CHAPTER I. Introduction
	Deep Learning
	Stochastic Partial Differential Equations
	Further information on Stochastic Differential Equations
	Neural Networks

	CHAPTER II. Methodology
	Setup
	The Diffusion Equation Solution
	CNNs
	GANs
	Wasserstein GANs

	Goals

	CHAPTER III. Results
	SPDE Solution Generation
	CNN
	GAN

	CHAPTER IV. Conclusion and Discussion
	REFERENCES
	APPENDIX A
	CNNCode

	Biographical Sketch
	Blank Page

