
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

5-2023 

A Machine Learning Approach to Obese-Inflammatory A Machine Learning Approach to Obese-Inflammatory 

Phenotyping Phenotyping 

Tania Mayleth Vargas 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Applied Statistics Commons 

Recommended Citation Recommended Citation 
Vargas, Tania Mayleth, "A Machine Learning Approach to Obese-Inflammatory Phenotyping" (2023). 
Theses and Dissertations. 1266. 
https://scholarworks.utrgv.edu/etd/1266 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.utrgv.edu%2Fetd%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1266?utm_source=scholarworks.utrgv.edu%2Fetd%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


A MACHINE LEARNING APPROACH TO OBESE-INFLAMMATORY PHENOTYPING 

A Thesis 

by 

TANIA MAYLETH VARGAS 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

Major Subject: Applied Statistics and Data Science 

The University of Texas Rio Grande Valley 

May 2023 





A MACHINE LEARNING APPROACH TO OBESE-INFLAMMATORY PHENOTYPING 

A Thesis  

by 

TANIA MAYLETH VARGAS 

COMMITTEE MEMBERS 

Dr. Kristina Vatcheva 

Chair of Committee 

Dr. Mrinal Roychowdhury 

Committee Member 

Dr. Santanu Chakraborty 

Committee Member 

Dr. Xiaohui Wang 

Committee Member 

May 2023 





Copyright 2023 Tania Mayleth Vargas 

All Rights Reserved





ABSTRACT 

Vargas, Tania M., A Machine Learning Approach to Obese-Inflammatory Phenotyping. Master 

of Science (MS), May, 2023, 51 pp., 12 tables, 12 figures, references, 67 titles. 

Obesity is the accumulation of an abnormal, or excessive, amount of fat in the body, 

which can have negative effects on overall health. This excess accumulation of macronutrients in 

adipose tissue can cause the release of inflammatory mediators, leading to a pro-

inflammatory state. Inflammation is a known risk factor for various health conditions, 

including cardiovascular diseases, metabolic syndrome, and diabetes. This study sought to 

examine the use of data mining methods, particularly clustering algorithms, to identify 

inflammatory biomarker phenotypes and their association with obesity in a local adolescent 

population. The algorithms evaluated in this study included: k-means, Ward's hierarchical 

agglomerative method, fuzzy c-means, Gaussian mixture model, and principal component 

analysis (PCA). The algorithms were assessed using different validation indices, graphs, as 

well as clinical interpretation of the resulting clusters. The results showed that k-Means, k = 

3, produced the most accurate clusters. Based on their characterization, the clusters were 

defined as: severe risk for metabolic dysfunction, moderate risk for metabolic dysfunction, and 

normal metabolic function. Adolescents with a higher BMI and waist circumference had 

higher odds of being classified in the severe metabolic risk cluster. Although PCA is a 

different type of clustering algorithm, it supported the resultant cluster by grouping their 

dominant inflammatory biomarkers characteristics into separate principal components. 

iii 
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These findings suggested a strong relationship between CRP and Leptin inflammatory 

biomarkers and higher BMI and waist circumference in the local adolescent study population. 



v 

DEDICATION 

To my loving family. Your unwavering love and support have been the driving force 

behind my achievements. Thank you for always believing in me. 





ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my Committee Chair, Dr. Kristina Vatcheva, 

for her invaluable guidance, continuous support, and insightful feedback throughout the entire 

thesis process. Her dedication, expertise, and willingness to share her knowledge has been 

instrumental in shaping my research work. I am incredibly grateful for her mentorship, patience, 

and encouragement. 

I would like to extend my thanks to Dr. Mrinal Roychowdhury, Dr. Santanu Chakraborty, 

and Dr. Xiaohui Wang for serving as Committee Members for my thesis. Their time, expertise, 

and guidance were critical to the completion of my thesis.  

A special thank you to Dr. Saraswathy Nair for providing me the data used in my research. 

I appreciate your support and assistance. 

vi 





vii 

TABLE OF CONTENTS 

Page 

ABSTRACT ..................................................................................................................................iii 

DEDICATION ................................................................................................................................v 

ACKNOWLEDGMENTS .............................................................................................................vi 

TABLE OF CONTENTS .............................................................................................................vii 

LIST OF TABLES .........................................................................................................................ix 

LIST OF FIGURES ........................................................................................................................x 

CHAPTER I. INTRODCUTION ....................................................................................................1 

Motivation ...........................................................................................................................1 

Objectives ...........................................................................................................................8 

CHAPTER II. THEORETICAL BACKGROUND ........................................................................9 

Clustering Algorithms .........................................................................................................9 

𝐾-Means ................................................................................................................10 

Hierarchical ...........................................................................................................12 

Fuzzy 𝐶-Means .....................................................................................................13 

Gaussian Mixture Model .......................................................................................14 

Principal Component Analysis .............................................................................16 

CHAPTER III. METHODS ..........................................................................................................18 

Study Data .........................................................................................................................18 

Data Analysis ....................................................................................................................18 



viii 

CHAPTER IV. RESULTS ............................................................................................................21 

Statistical Analysis ............................................................................................................21 

Descriptive Statistics .............................................................................................21 

Cluster Analysis ....................................................................................................23 

Regression Analysis ..............................................................................................35 

CHAPTER V. DISCUSSION .......................................................................................................39 

REFERENCES .............................................................................................................................45 

BIOGRAPHICAL SKETCH ........................................................................................................51 



ix 

LIST OF TABLES 

Page 

Table 1: Descriptive statistics of study data .................................................................................21 

Table 2: Clusters from K-Means algorithm (k=2) ........................................................................25 

Table 3: Clusters from K-Means algorithm (k=3) ........................................................................26 

Table 4: Clusters from Hierarchical algorithm (k=2) ...................................................................28 

Table 5: Descriptive characteristics of the clusters from Hierarchical algorithm (k=3) .............. 29 

Table 6: Clusters from Fuzzy C-Means algorithm (c=2) ............................................................. 30 

Table 7: Clusters from Fuzzy C-Means algorithm (c=3) ..............................................................31 

Table 8: Clusters from Gaussian Mixture model algorithm (g=2) ...............................................32 

Table 9: Cluster validation indices ...............................................................................................33 

Table 10: Rotated factor pattern and final community estimates from PCA ................................34 

Table 11: Crude and Adjusted OR (95% CI) based on logistic regression for 2 derived 

Clusters .............................................................................................................................37 

Table 12: Crude and Adjusted OR (95% CI) based on multinomial logistic regression for 

3 derived clusters ..............................................................................................................38 





x 

LIST OF FIGURES 

Page 

Figure 1: General application of clustering algorithms (Xu & Wunsch, 2005) ..............................3 

Figure 2: Difference between lean and obese adipose tissue (McArdle et al., 2013) .....................6 

Figure 3: Spearman correlation heat map .....................................................................................23 

Figure 4: Optimal number of clusters for K-Means algorithm .....................................................24 

Figure 5: Clusters from K-Means algorithm (k=2) .......................................................................24 

Figure 6: Clusters from K-Means algorithm (k=3) .......................................................................25 

Figure 7: Optimal number of clusters for Hierarchical (Ward’s) algorithm .................................27 

Figure 8: Clusters from Hierarchical algorithm (k=2) ..................................................................27 

Figure 9: Clusters from Hierarchical algorithm (k=3) ..................................................................28 

Figure 10: Clusters from Fuzzy C-Means algorithm (c=2) ..........................................................30 

Figure 11: Clusters from Fuzzy C-Means algorithm (c=3) ..........................................................31 

Figure 12: Clusters from Gaussian Mixture model algorithm (g=2) ............................................32 

Figure 13: PCA scree plot .............................................................................................................34 





1 

CHAPTER I 

INTRODUCTION 

Motivation 

In modern society, the collection of data continues to increase. Due to the expansion of 

technology, we have the capability to not only collect data directly from subject of interest, but 

also from different data generating sources. However, collected data may be gathered in various 

forms and thus be different in terms of quality. Raw data can be unorganized and messy. 

Researchers have begun to use machine learning techniques to gain understanding and learn from 

the data or simply to organize and store data accurately. There are two main types of machine 

learning techniques, supervised and unsupervised (Jain et al, 1999). Supervised techniques allow 

the researchers to discover patterns and variables from the labeled data set. Labeled data are data 

with known outcome (target) variable(s). Unlabeled data sets are datasets in which there is no 

particular outcome variable, or classification variable, nor is anything known about the relationship 

between the observations. When significant characteristics or properties are identified for any 

variables in an unlabeled data set, then a meaningful label, or class, may be designated to the 

pertaining variable to convey its significance.  The supervised algorithm will learn from the labeled 

variables in a training data, and use those observations to predict the value, or class, of an unlabeled 

variable. Unsupervised techniques use machine learning algorithms to learn and discover hidden 

patterns from unlabeled data. These algorithms group observations that are most similar to each 

other and maximizes the dissimilarity to the other groups. The creation of different groups allows 
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the researcher to be able to discern any relationships between the variables by analyzing the 

patterns (Gentleman et al, 2008). In a data-driven world, these methods have been powerful tools 

in research.  

Methods of data collection may vary, and the obtained data may come in different forms 

or arrangement. Since the features in the data sets will not always appear clearly categorized into 

groups or labels, it is crucial to emphasize the importance of unsupervised algorithms when it 

comes to dealing with unlabeled data (Nwogbaga, 2020). One of the strengths of unsupervised 

learning machines is their autonomy and independence. However, it is important to note that one 

of the drawbacks with clustering algorithms in the era of Big Data, is their need for improvement 

in stability and time. (Zerhari et al, 2015). Although unsupervised learning can answer clustering 

and association problems, the main goal for the algorithm is to identify hidden patterns among the 

dataset, group the observations based on a similarity index, and produce a succinct summary 

without the use of a teacher (Hiran et al, 2021). Algorithms such as Principal Component Analysis 

(Chi-Hsien & Nagasawa, 2019), Generative Adversarial Networks (McAlpine et al, 2022), and 

varying clustering methods (Syarif et al, 2012) are a few of the unsupervised learning algorithms 

that have been implemented for data analysis in different fields. It is important to note that different 

unsupervised algorithms have different functionality. PCA is a data reduction technique that 

reduces high-dimensional data into lower dimensions by creating new variables, which are known 

as the principal components, when combining variables with similar properties or characteristics 

from the original dataset (Abdi & Williams, 2010). Essentially, PCA allows the researchers to 

remove redundant variables, or the columns, in a dataset and unveil the core variables that re-

express the original high-dimensional dataset in a compressed version (Shlens, 2014). On the 

contrary, clustering methods cluster observations, or the rows, in a data set based on similarity and 
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maintain all the original variables. With increasing interest in unsupervised learning machines, 

clustering algorithms have taken center stage due to their efficiency in grouping data points (i.e., 

subjects) based on specified properties the algorithm learns (Jain et al, 1999).  A few examples of 

clustering algorithms include K-Means, Hierarchical, DBSCAN, Expectation Maximization, and 

Gaussian Mixture Model. One of the key steps when using these algorithms, is to evaluate the 

clusters properly to decide which clustering method is most relevant with the input dataset to 

optimize the results (Palacio-Niño & Berzal, 2019). Figure 1 demonstrates the general process 

when applying a clustering algorithm. 

Figure 1 General application of clustering algorithms (Xu & Wunsch, 2005) 

Cluster analysis has been widely implemented in the field of academics, data mining, 

epidemiology, and the marketing field, to name a few. It has been a focal point in some studies to 

use cluster analysis primarily to recognize patterns and identify possible linkage between variables. 

For instance, Scherzer et al. (2018) conducted k-means clustering on clinical data consisting of 

332 HIV positive men and women to determine whether cardiac phenotypes can be identified 

among the 8 biomarkers being studied. As a result, 3 clusters were produced with different 

phenotypes. Cluster 1 was the normal group that had the lowest mean levels for all measured 

biomarkers. Cluster 2 was identified as the cardiac phenotype because it had the highest levels of 

ST2, NT-proBNP, and GDF-1. Cluster 3 was identified as the inflammatory phenotype because it 
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had the highest levels of CRP, IL-6, and D-dimer. As a result, the authors determined 6 serum 

biomarkers found in the men and women that could be grouped into clusters differentiating 

cardiopulmonary structural and functional abnormalities (Scherzer et al., 2018). In the Allam & 

Gumpeny (2012) study, hierarchical clustering was used to analyze microarray data compromised 

of 26,097 genes and researchers found 3 genes, SORL1, APP, and APOE, highly expressed in 

patients diagnosed with Alzheimer’s along with 21 additional genes that could potentially be 

linked as well. Moore et al. (2010) performed Ward’s hierarchical cluster analysis identified 5 

clusters with different asthma phenotypes from 34 variables and 726 participants in The Severe 

Asthma Research Program cohort. Each cluster was categorized as a different severity level of 

asthma and 80% of the subjects were assigned to the correct cluster of asthma severity (Moore et 

al., 2010). These studies demonstrate the power of clustering analysis as an effective tool that can 

be used to identify population subgroups that have specific phenotypes and properties. 

Even though clustering algorithms may be sufficient to complete certain projects, 

sometimes they may only be needed in intermediate stages. Semi-supervised algorithms help in 

situations where the small portion of labeled data may be insufficient for a supervised model or 

when researchers are simply interested in discovering possible variables linked to their outcome 

variable. Bair et al. (2013) discussed the various situations where hybrid clustering models may 

be implemented to optimize statistical analysis and explained how clustering algorithms may still 

be adequate when combined with supervised algorithms, and in some cases more advantageous, 

in data sets were there are partial labels, prior knowledge about correlations between variables, or 

the outcome variable is known. For instance, in Zhu et al. (2019), a logistic regression model was 

created and enhanced using PCA and k-means clustering for the analysis of the Pima Indians 

Diabetes dataset. PCA was applied to the original dataset to obtain the most important variables 
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from the dataset to improve the performance of the k-means algorithm. The k-means algorithm 

was applied to further clean the data and remove any outliers to pass through the logistic regression 

model. Applying the PCA and k-means algorithm increased the logistic regression performance 

compared to traditional methods used in previous articles and successfully predicted a diabetes 

diagnosis. Similarly, Villarin (2019) analyzed 15 predictor variables from 498 census tracts in the 

City of Ceville in Spain to determine whether any of the variables could predict water 

consumption.  First, 498 census tracts were reduced to 4 different groups using PCA. Through 

Ward’s hierarchical and k-means clustering algorithms, 9 clusters were identified within the 4 

groups. Multivariate linear regression analysis was performed on each cluster to determine any 

significant relationships between water consumption and the predictor variables from each cluster. 

The author found the average cadastral value and number of inhabitants per household were the 

most significant variables when predicting the quantity of water consumption (Villarin, 2019). 

These studies are prime examples of the versatility of clustering analysis has and its beneficial 

impact in various topics of interest in research.  

Obesity has been a subject of interest in research due to its alarmingly increasing rates in 

the population (Wang et al, 2008). The magnitude of the issue has been discussed and projected 

that by 2030, 51.1% of adults will be considered obese (Wang et al, 2008). Studies have brought 

awareness to the serious side effects of obesity such as heart disease, diabetes, hypertension, and 

premature death in obese adults (Poirier et al, 2006; Hossain et al, 2007; Masters et al, 2013). It 

appears to be a linkage between obesity and inflammation based on various articles (Hotamisligil, 

2006; Amin et al, 2019). The coupling of inflammation and excess weight in obese individuals 

may lead to further health complications (Lumeng & Saltiel, 2011). Figure 2 depicts the difference 

between lean and obese adipose tissue, indicating obese adipose tissue being in a pro-inflammatory 
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state. This has forced scientists to reassess the cause of obesity and its relationship with possible 

inflammatory biomarkers.  

Figure 2 Difference between lean and obese adipose tissue (McArdle et al, 2013) 

A few inflammatory biomarkers of interest in relation to obesity have been C-reactive 

protein (CRP), MCP-1, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and interleukin-

8 (IL-8), and leptin (Wang & Nakayama, 2010; Kanda et al, 2006; Park et al, 2005). A study that 

included 100 patients and half were classified as obese, higher levels of MCP-1 and IL-8 were 

higher in patients classified as obese (Kim et al, 2006).  Studies investigating the relationship 

between CRP and adiposity have demonstrated overweight or obese individuals tend to have 

higher CRP levels (Santos et al, 2005; Visser et al, 2001). Ellulu et al. (2017) proposed a 

mechanism of action where obesity has excess macronutrients that stimulate adipose cells to 

release inflammatory biomarkers such as TNFα and IL-6. Dornbush & Aeddula (2022) further 

discuss the similar structure between IL-6, a proinflammatory biomarker, and leptin. The authors 

noted the amount of leptin in the body positively correlates to the total amount of adipose tissue. 
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These are a few of the inflammatory biomarkers currently associated with obesity and 

inflammation.  

Although extensive research has been carried out in this subject, the treatments for obesity 

remain inadequate and have led to disappointing results for patients (Brownell, 2010). It has been 

shown early onset of obesity will significantly increase the risk of obesity in adulthood (Serdula 

et al, 1993). Since the cause of obesity remains unsolved and treatment success rates remain low 

for adults, it's crucial to initialize early prevention efforts in the younger population. The 

association between obesity and inflammation biomarkers in adolescents has not been concluded 

and requires more research. 

Clustering has advanced the research in the medical field; however, it is important to 

understand that some clustering methods may only be useful for specific data types. Researchers 

have compared different clustering methods to determine the strengths and weaknesses of each 

algorithm. In Hammouda & Karray (2000), k-means, fuzzy c-means, Mountain, and Subtractive 

clustering methods were compared in a real-life study to analyze medical data from 300 individuals 

and 13 different variables relating to heart disease. Each algorithm was evaluated based on their 

performance in correctly identifying whether an individual would ultimately be clustered with the 

heart disease diagnosis or not. The researchers reported that the k-means and fuzzy c-means were 

the most accurate algorithms, although, fuzzy c-means was slower than the k-means clustering 

technique. The authors decided to include mountain and subtractive clustering and discovered the 

data set being used in this study was too big for these algorithms and performed poorly. Yim & 

Ramdeen (2015) discussed the possibility of having different results while performing Hierarchical 

clustering analysis with 3 different linkage measures, single, average, and complete, on a 

psychological dataset consisting of 67 Cantonese-English bilingual young adults to try to identify 
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subgroups among the bilingual individuals. Although the same dataset was used for each linkage 

measure, different clusters were produced. The authors discussed the responsibility researchers 

have when choosing the right algorithm for their data and the ambiguity behind these choices. 

They further explain since clustering algorithms will cluster the data regardless, it does not always 

mean the clusters are meaningful. The interpretation and significance of the clusters are given by 

the researcher and if they don’t have an accurate understanding of the correct clustering procedure 

for each algorithm, it may lead to inaccurate results (Yim & Ramdeen, 2015). These studies 

demonstrate the importance of understanding the concept for various clustering methods and the 

data being analyzed to avoid misinterpreting or influencing the results by accident. 

Objectives 

The objectives of our study are: (1) to compare various clustering methods in identifying 

inflammatory groups (biomarker phenotypes), and (2) to identify relationship between these 

groups with obesity measures in local adolescent population.  
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CHAPTER II 

THEORETICAL BACKGROUND 

Clustering analysis has become a powerful tool for data exploration and analysis in various 

fields, including machine learning, biology, and business. Jain (2010) summarizes the three 

different purposes for the use of cluster analysis in research as “underlying structure”, “natural 

classification”, and “compression.” In “underlying structure”, the researcher intends to understand 

the data by identifying inconsistencies and generate hypotheses. In “natural classification”, the 

researcher intends to establish the similarity between objects within a group and dissimilarity to 

the other groups. In “compression”, the goal is to summarize and condense the data into the most 

meaningful groups. Once the goal of the clustering analysis has been established, the researcher 

can determine which clustering technique is most fitting.  

Clustering Algorithms 

The clustering algorithms can be further categorized into two main types: hierarchical and 

partitional (non-hierarchical). Hierarchical algorithms merge or divide the initial clusters to build 

a hierarchy represented by a dendrogram. Alternatively, partitioning algorithms divide the data 

points into smaller partitions, or clusters, using different standards unique to each algorithm.  

Furthermore, distance metrics are generally used to determine the similarity between data 

points in a cluster. Although there are various distance metrics available, applying an effective 

distance metric can greatly improve the performance of the clustering algorithm. When 

determining which distance metric to use, it is important to consider the data in which the 
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clustering analysis will be applied to. The Minkowski distance metric is the general distance 

formula and defined as 

𝑑𝑚𝑖𝑛𝑘(𝑥, 𝑦) = (∑|𝑥𝑖 −  𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

 and it can be manipulated by changing the value of 𝑝. When 𝑝 = 1, we have the Manhattan 

distance defined as 

𝑑𝑚𝑎𝑛(𝑥, 𝑦) = ∑|𝑥𝑖 −  𝑦𝑖|

𝑛

𝑖=1

 When 𝑝 = 2, we have the Euclidean distance defined as 

𝑑𝑒𝑢𝑐(𝑥, 𝑦) =  √∑  (𝑥𝑖 −  𝑦𝑖)2

𝑛

𝑖=1

When 𝑝 = ∞, we have the Chebychev distance defined as 

𝑑𝑐ℎ𝑒𝑏(𝑥, 𝑦) = min
𝑖=1

|𝑥𝑖 − 𝑦𝑗|

For the purpose of the study, Euclidean distance was the most appropriate and used for the 

𝑘-Means, Hierarchical, and Fuzzy 𝐶-Means clustering algorithms.  

𝑲-Means 

The k-means clustering algorithm was first presented by MacQueen in 1967 with the main 

goal of grouping n data points into k clusters. Each observation or data point is matched to the 

cluster with the nearest centroid. The mean of the data points within the cluster is another way to 

define the cluster centroid. Lloyd (1982) enhanced MacQueen’s 𝑘-means algorithm by 

incorporating “Expectation-Maximization” algorithm (Dempster et al., 1977). In Sinaga and Yang 

(2020), the updated 𝑘-means algorithm is thoroughly discussed as a partitioning clustering 
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algorithm used to partition 𝑛 data points into 𝑘 clusters while applying the EM algorithm. The 

number of clusters, 𝑘, is not known prior to the analysis and determines the number of centroids 

the algorithm will initiate at the start. The data points are assigned to the cluster with the nearest 

centroid. The centroid is defined as the mean of the cluster. The goal of the algorithm is to optimize 

the objective function defined as  

𝐽 =  ∑  ∑ 𝑟𝑛𝑘 ‖𝑥𝑛− 𝜇𝑘‖2

𝐾

𝑘=1

𝑁

𝑛=1

which is the sum of squares of distances of each object to its assigned vector, where 𝑛 = 1, . . , 𝑁 

and 𝑘 = 1, … , 𝐾. If 𝑟𝑛𝑘 = 0, the object is not assigned to the cluster. If 𝑟𝑛𝑘 = 1, the object is

assigned to the cluster. The algorithm finds the values for 𝑟𝑛𝑘 and 𝜇𝑘  that minimize 𝐽. Cluster

assignment and centers are updated through an iterative process, by  

𝜇𝑘 =  
∑ 𝑟𝑛𝑘𝑥𝑛𝑗

𝑁
𝑛=1

∑ 𝑟𝑛𝑘
𝑁
𝑛=1

and 

𝑟𝑛𝑘 =  {
1 if ‖𝑥𝑛− 𝜇𝑘‖2 =  min

1 ≤𝑘 ≤𝐾
‖𝑥𝑛− 𝜇𝑘‖2

0,  otherwise

where ‖𝑥𝑛− 𝜇𝑘‖2 represents the Euclidean distance between the object, 𝑥𝑛, and the centroid,

𝜇𝑘. The process will continue until the parameters have no significant change or stop changing

overall, also signifying convergence is reached. The 𝑘-means algorithm assumes the derived 

clusters are spherical shaped and of similar size. Since the algorithm uses a distance metric for 

similarity between the data point and the designated centroid, the data points form a spherical 

shape around the centroid. 



12 

Hierarchical 

Kaufman & Rousseeuw (1990) developed a method of hierarchical clustering analysis that 

identifies nested clusters and arranges them into a hierarchical tree, also referred to as a 

dendrogram. The two primary methods of hierarchical clustering are divisive analysis (DIANA) 

and agglomerative nesting (AGNES). Agglomerative hierarchical clustering operates using a 

bottom-up technique where each object begins as an individual cluster at the bottom, and as the 

tree ascends, similar objects combine to form new clusters at the top. On the other hand, divisive 

hierarchical clustering, follows a top-down approach, where the data begins as one cluster, and as 

the tree descends, the initial cluster breaks into new clusters to combine the most similar data 

points. This process ultimately leads to smaller clusters as it reaches the bottom. The degree of 

similarity between the objects is computed using a distance formula. There exist several distance 

formulas that can be applied in hierarchical clustering analysis, but the Euclidean distance is often 

the default option for clustering algorithms and was used in this analysis. 

Additionally, hierarchical clustering involves four primary linkage methods: single, 

average, complete, and Ward’s method. Ward’s method was proposed by Ward (1963) as a linkage 

criterion for hierarchical clustering. When clusters are joined or divided, the aim is to reduce the 

variation within a cluster as much as possible. The procedure estimates the total of the squared 

distances between each data point in the cluster and the centroid in order to determine the variance 

of the produced clusters. 

Given 𝐶, a group of data points, the error sum of squares (ESS) associated with 𝐶 is 

calculated by 

ESS(𝐶) =  ∑(x −  𝜇(𝐶)) (x −  𝜇(𝐶))
𝑇

𝑥∈𝐶

=  ∑ xx𝑇

𝑥𝜖𝐶

− |𝐶|𝜇(𝐶)𝜇(𝐶)𝑇
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where 𝜇(𝐶) is the mean of 𝐶, 

𝜇(𝐶) =  
1

|𝐶|
 ∑ x

𝑥𝜖𝐶

 

Assuming there are 𝑘 groups in one level of the clustering, 𝐶1, 𝐶2, … , 𝐶𝑘, then the amount

of information that is lost is expressed as the sum of the error sum of squares, which is calculated 

by 

ESS =  ∑ ESS (𝐶𝑖)

𝑘

𝑖=1

which is the total within-group ESS. 

Fuzzy C-Means 

Bezdek (1984) presented the Fuzzy C-means method as an enhancement to Lloyd's 

(1982) classic k-means algorithm. The fundamental distinction between k-means and fuzzy 

c-means clustering algorithms is their methodologies for assigning each data point to a cluster.

Bezdek's contribution was to allow for a degree of membership of each data point in each cluster, 

as opposed to the hard clustering of k-means, which assigns each data point to just one cluster 

based on its proximity to the centroid. Another main difference is in the algorithms’ assumptions. 

The FCM algorithm does not assume clusters will be spherical or that all clusters will be equal in 

size, as assumed in 𝑘-means. The FCM algorithm aims to minimize the objective function 

defined as 

𝐽𝑚 =  ∑ ∑ 𝜇𝑖𝑗
𝑚 ‖𝑥𝑖 −  𝑐𝑗‖

2
𝑁

𝑗=1

𝐷

𝑖=1

where 𝐷 is the number of data points and 𝑁 denotes the number of clusters. The value 𝑚 > 1 in 

the fuzzy partition matrix is applied as an exponent that determines the extent of fuzzy overlap 
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across the clusters. The number of data points that have significant membership in more than one 

cluster is used to calculate the overlap. The degree of fuzziness in the membership assignments is 

influenced by the value of 𝑚, where 𝑥𝑖 represents the 𝑖𝑡h data point, 𝑐𝑗 denotes the center of the

𝑗𝑡h cluster, and 𝜇𝑖𝑗 represents the extent to which 𝑥𝑖 belongs to the 𝑗𝑡h cluster. Consequently, the

form and size of the resulting clusters are affected by the value of 𝑚.  

In the FCM algorithm, each data point, 𝑥𝑖 is assigned membership values. These values

are initialized randomly at the start. It should be emphasized that for any data point, the total 

membership values across all clusters add up to 1, which reflects the assumption that each point 

belongs to some degree to each of the resulting clusters. The cluster centers are calculated by 

𝑐𝑗 =  
∑ 𝜇𝑖𝑗

𝑚 𝑥𝑖
𝐷
𝑖=1

∑ 𝜇𝑖𝑗
𝑚𝐷

𝑖=1

And updating the 𝜇𝑖𝑗 by

𝜇𝑖𝑗 =  
1

∑ (
‖𝑥𝑖 −  𝑐𝑗‖
‖𝑥𝑖 −  𝑐𝑘‖

)

2
𝑚−1

𝑁
𝑖=1

Finally, the algorithm will calculate the objective function, 𝐽𝑚, while repeating the

previous steps until convergence is reached. Convergence can be attained by achieving a certain 

minimum threshold improvement value or by performing a specified maximum number of 

iterations to enhance the  𝐽𝑚. Improving the 𝐽𝑚 by less than a specified minimum threshold, or

until a specified maximum number of iterations, will allow for convergence to be reached. 

 Gaussian Mixture Model 

The Gaussian Mixture Model (GMM) is a clustering algorithm proposed by Dempster et 

al. (1977) that assumes the data arise from a mixture of multiple Gaussian distributions, where 
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each is associated with a different cluster. The algorithm employs the Expectation-Maximization 

(EM) method and probabilistic models to estimate the parameters of the Gaussian mixture and 

assign data points to clusters based on their probabilities. Specifically, the EM algorithm 

iteratively refines the estimates of the mixture parameters and the posterior probabilities of each 

data point belonging to each cluster until convergence. 

To cluster the data using the GMM algorithm, the parameters and the probabilities of 

each data point belonging to each cluster are initially assigned random values, then updated 

iteratively until convergence is achieved. Once it converges, the data points are assigned to the 

most likely cluster based on the probabilities computed in the “Expectation” (E) step. 

The GMM objective function is to maximize the likelihood value for data 𝑋, 

the likelihood value, 𝑝(𝑥), 

𝑝(𝑥𝑖) =  ∑ 𝑝(𝑥𝑖|𝑐𝑘) 𝑝(𝑐𝑘)

𝐾

𝑘=1

𝑝(𝑋) =  ∏ 𝑝(𝑥𝑖) =  ∏ ∑ 𝑝(𝑥𝑖|𝑐𝑘) 𝑝(𝑐𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

𝑁

𝑖=1

or the log-likelihood value, 𝐿, 

𝐿 = log(𝑝(𝑋)) =  ∑ log (∑ 𝑝(𝑥𝑖|𝑐𝑘) 𝑝(𝑐𝑘)

𝐾

𝑘=1

)

𝑁

𝑖=1

 

If we assume that the data were generated by a mixture of 𝐾 Gaussian distributions, we 

can express the probability density function, 𝑝(𝑥) as the sum of the marginalized probabilities of 

each cluster for all data points. To estimate the maximum likelihood parameters of the Gaussian 

mixture, we can apply the Expectation Maximization (EM) algorithm, which is which is often 
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used in practice and yields the maximum likelihood estimates. The EM algorithm consists of 

computing the probability, 𝑟𝑖𝑐, that the data point, 𝑥𝑖, belong to cluster 𝑐 through

𝑟𝑖𝑐 = 𝑝(𝑦𝑐  | 𝑥𝑖) =  
𝑝(𝑦𝑐 , 𝑥𝑖)

𝑝(𝑥𝑖)
=  

𝑝(𝑥𝑖 | 𝑦𝑐)  𝑝(𝑦𝑐)

∑ 𝑝(𝑥𝑖|𝑦𝑐) 𝑝(𝑦𝑐)𝐾
𝑐=1

After computing the probabilities of each data point belonging to each cluster, the next 

step in the algorithm is to determine the new parameter 𝑚𝑐, which specifies the proportion of

points assigned to each cluster. The parameters are updated by calculating the maximum 

likelihood estimates for each cluster 𝑐 through 

𝑚𝑐 =  ∑ 𝑟𝑖𝑐

𝑁

𝑖=1

 , 

𝜋𝑐 =  
𝑚𝑐

𝑁
 , 

𝜇𝑐 =  
1

𝑚𝑐
 ∑ 𝑟𝑖𝑐  𝑥𝑖

𝑁

𝑖=1

 , 

∑ =  
1

𝑚𝑐
∑ 𝑟𝑖𝑐 (𝑥𝑖 − 𝜇𝑐)𝑇 (𝑥𝑖 −  𝜇𝑐)

𝑁

𝑖=1
𝑐

To estimate the unknown parameters of a mixture of Gaussian distributions, the 

Expectation-Maximization (EM) algorithm is iteratively applied until the log-likelihood value, L, 

converges. The GMM method assumes the observed data set was generated from a mixture of 

Gaussian (normal) distributions with unknown parameters. Each cluster is modeled as a normal 

distribution characterized by its mean and covariance. 

Principal Component Analysis 

Introduced by Pearson (1901), Principal Component Analysis (PCA) is a statistical 

method that aims to reduce the dimensionality of a dataset. Its objective is to identify the 
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principal components, which are linear combinations of the dataset features that capture the 

highest variance in the data. These principal components are obtained as the eigenvectors of the 

covariance matrix of the data, and the corresponding eigenvalues represent the amount of 

variance explained by each component. The principal components are ranked in order of the 

eigenvalues, and the first component explains the most variance in the data. All the principal 

components combined explain the total variance of the dataset. Although the number of principal 

components is equal to the number of variables in the dataset, the first component accounts for 

the largest variance overall, while the subsequent components account for decreasing amounts of 

variance and are perpendicular to the preceding ones. It is important to note that all principal 

components are calculated under the condition of being orthogonally rotated, or perpendicular, to 

avoid correlation with each other, thus explaining the maximum amount of variance in the data 

set. 

Before initiating the analysis, the data must be standardized by subtracting the mean and 

dividing by the standard deviation for each variable. Once the variables have been standardized, 

the covariance matrix must be computed. The matrix is a d x d matrix, where d is the number of 

variables, thus demonstrating symmetry. The entries in the covariance matrix represent the 

covariance between each pair of variables. 

Once the principal components are obtained, the data is projected on a lower-dimensional 

space made up by the first 𝑘 principal components, where 𝑘 is the number of dimensions of the 

new subspace. 
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CHAPTER III 

METHODS 

Study Data 

This study was conducted using secondary data collected from 183 local adolescents. Data 

included socio-demographic and anthropometric measures, such as age, sex, height, weight, head 

circumference, body mass index (BMI), body circumferences to assess for adiposity (waist and 

hip), along with 6 different inflammatory biomarkers: CRP, HGF, IL-8, Leptin, TNFα, and MCP1. 

The study focused only on the 6 inflammatory biomarkers and their association with BMI and 

waist circumference.  

Data Analysis 

Missing values were removed and a total of 167 observations with complete data were 

analyzed. All the variables, except MCP1, had a right-skew distribution and where log transformed 

to obtain a normal, or approximately normal, distribution. Normality was evaluated using 

histograms, normal probability plots, and Shapiro-Wilk test. All variables were standardized for 

the purpose of the clustering analysis.  

Descriptive statistics of the study population were produced for the variables considered in 

the analyses. Continuous variables were described with mean and standard deviation and 

categorical variables were described with frequencies and percentages. Spearman correlation 

analysis was conducted to determine whether any variables were correlated with each other. 
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Five different clustering algorithms were applied to the data: k-Means, Ward’s hierarchical 

agglomerative method, fuzzy c-means, Gaussian mixture model, and principal component 

analysis.  The clustering algorithms were computed using R software, while mainly using the 

“cluster” and “factoextra” package (Maechler et al, 2013; Kassambara & Mundt, 2017). The 

“cluster” package was used for the computation of k-Means, Ward’s hierarchical agglomerative 

method, and fuzzy c-means. The “mclust” package was used for the computation of the Gaussian 

mixture model clusters. The “factoextra” package was used for the graphical representations of the 

derived clusters and for the statistical methods needed for validating the number of clusters used 

for the k-Means and Ward’s hierarchical agglomerative method. The three methods included in 

this package and were used were the elbow, silhouette, and gap statistic. These statistics were not 

applicable to the fuzzy c-means or Gaussian mixture model.  

The “clValid” and “fpc” package were used to obtain the cluster validation indices, 

including: Dunn Index, Average Silhouette width, Calinski-Harabasz index, and the within-cluster 

sum of squares (Brock et al, 2008; Hennig & Imports, 2015). A maximized Dunn index indicates 

a better clustering outcome. The average silhouette width ranges from 0 to 1, where a value closer 

to 1 suggests the data are better clustered. A higher Calinski-Harabasz index indicates better 

clustering performance. The within-cluster sum of squares evaluated internal cohesion and 

external separation. A smaller value indicated more closely related objects within the cluster.  

Multinomial logistic regression was used to determine factors associated with cluster 

membership, as well as to evaluate the relationship of the derived clusters and BMI and waist 

circumference. The principal component analysis was conducted using SAS 9.4 (SAS Institute, 
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Inc). Tukey-Kramer test was used for post-hoc multiple pairwise comparisons of means between 

groups.  All statistical tests were two-sided and were performed at significance level of 0.05.  
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CHAPTER IV 

RESULTS 

Statistical Analysis 

Descriptive Statistics 

The study population was composed of the local adolescent population whose age ranged 

from 14-20 years old. The majority of the study population consisted of sex1, 63.4%, and BMI 

ranging from 17.50 - 49.36 (Table 1).  The normality of the distribution of each of the variables 

was evaluated with histograms, normal probability plots and the Shapiro-Wilk test. Variables with 

right skewed distribution, such as CRP, HGF, IL-8, Leptin, and TNFα, were log-transformed for 

normalization and be used in the clustering analysis. 

Table 1 Descriptive statistics of study data 

Numerical 

Variable Mean (SD) 

Age 15.79 (1.40) 

BMI 25.76 (6.42) 

Waist Circumference 86.00 (17.32) 

CRP 1944.57 (3836.57) 

HGF 1166.87 (821.87) 

IL-8 2.31 (1.38) 
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Table 1, continued 

Figure 3 is a heat map created to represent the Spearman correlation coefficients, r, between 

the 6 biomarkers used in the clustering analysis. The red color represents a negative correlation, 

and the blue color represents a positive correlation. The intensity of the color will depend on the 

strength of the correlation. Most, if not all, relationships between the variables are none or very 

weak (r < .3). There appears to be a weak relationship between CRP and Leptin (r=0.41) and IL-8 

and TNFα (r=0.37).   

Leptin 15062.39 (16503.55) 

TNFα 3.25 (1.24) 

MCP1 218.37 (104.34) 

lCRP 6.71 (1.16) 

lHGF 6.78 (0.88) 

lIL-8 0.74 (0.41) 

lLeptin 9.16 (1.05) 

lTNFα 1.13 (0.36) 

Categorical 

Variable Frequency 

Sex 0 67 (36.6%) 

Sex 1 116 (63.4%) 
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Figure 3 Spearman correlation heat map 

Cluster Analysis 

K-Means. K-Means cluster analysis was performed on standardized log-transformed

biomarkers. The optimal number of clusters was determined by the elbow, silhouette, and gap 

statistic methods (Figure 4), as well as visual inspection of the derived clusters produced by the 

algorithm (Figure 5, Figure 6). The gap statistic method did not produce an optimal number of 

clusters, while the elbow and silhouette method suggested that 2 or 3 clusters were optimal. 𝐾-

means clusters of 𝑘=2 and 𝑘=3 produced the best cluster separation, meaning the overlap between 

clusters was minimized (Figure 5, Figure 6). 
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Figure 4 Optimal number of clusters for K-Means algorithm 

Figure 5 Clusters from K-Means algorithm (𝑘=2) 
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Table 2 Clusters from K-Means algorithm (𝑘=2) 

Table 2 shows the descriptive characteristics of the derived clusters for 𝑘-means (𝑘=2). A 

t-test used to compare the means between two groups, showed that Cluster 1 compared to Cluster

2 was characterized with higher mean levels of ln(IL-8)  (p<0.0001), ln(TNF- α) (p<0.0001), and 

MCP1 (p<0.0001). Cluster 2 was distinguished from Cluster 1 with higher mean levels of ln(CRP) 

(<0.0001) and ln(Leptin) (p<0.0001). 

Figure 6 Clusters from K-Means algorithm (𝑘=3) 

Biomarker Cluster 1 (n=92) Cluster 2 (n=75) p-value

lCRP 6.14 (0.75) 7.40 (1.20) <0.0001 

lHGF 6.83 (0.89) 6.72 (0.87) 0.4371 

lIL-8 0.91 (0.43) 0.54 (0.28) <0.0001 

lLeptin 8.65 (0.95) 9.79 (0.80) <0.0001 

lTNFα 1.22 (0.35) 1.01 (0.33) <0.0001 

MCP1 261.92 (105.27) 164.95 (74.47) <0.0001 
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Table 3 Clusters from K-Means algorithm (𝑘=3) 

^* indicate difference in means as determined by Tukey-Kramer test. 

Table 3 shows the descriptive characteristics of the derived clusters for 𝑘-means (k=3). 

Tukey-Kramer test for post-hoc multiple pairwise comparisons of means between groups, showed 

that Cluster 1 compared to Cluster 2 and Cluster 3 was characterized with higher mean levels of 

ln(HGF) (p=0.0005), ln(IL-8)  (p<0.0001), ln(TNF- α) (p<0.0001), and MCP1 (p<0.0001). Cluster 

3 compared to Cluster 1 and Cluster 2 was characterized with higher mean levels of ln(CRP) 

(p<0.0001) and ln(Leptin) (p<0.0001). Cluster 2 compared to Cluster 1 was characterized with 

lower mean levels of ln(CRP) (p<0.0001), ln(HGF) (p=0.0005), ln(IL-8)  (p<0.0001), ln(TNFα) 

(p<0.0001), and MCP1 (p<0.0001). Cluster 2 compared to Cluster 3 was characterized with lower 

mean levels of ln(CRP) (p<0.0001), ln(Leptin) (p<0.0001), and ln(TNFα) (p<0.0001). 

Hierarchical (Ward’s). Hierarchical cluster analysis was performed on standardized log-

transformed biomarkers. The optimal number of clusters was determined by the elbow, silhouette, 

and gap statistic methods (Figure 7), as well as visual inspection of the derived clusters produced 

by the algorithm (Figure 8, Figure 9). The gap statistic method did not produce an optimal number 

of clusters, while the elbow and silhouette method suggested 2 or 6 clusters were optimal. Based 

on the plots of the derived clusters with 𝑘=2 and 𝑘=3, hierarchical clusters of 𝑘=2 and 𝑘=3 

produced good cluster separation of the analyzed data (Figure 8, Figure 9).  

Biomarker Cluster 1 (n=46) Cluster 2 (n=73) Cluster 3 (n=48) p-value

lCRP 6.44 (0.88)^ 6.03 (0.60)^ 8.00 (0.97)^ <0.0001 

lHGF 7.18 (0.61)^ 6.54 (0.96)^ 6.77 (0.86) 0.0005 

lIL8 1.14 (0.45)^* 0.63 (0.29)^ 0.54 (0.26)* <0.0001 

lLeptin 8.95 (0.98)^ 8.69 (0.92)* 10.10 (0.64)^* <0.0001 

lTNFα 1.46 (0.25)^ 0.94 (0.27)^ 1.09 (0.34)^ <0.0001 

MCP1 287.63 (110.58)^* 204.72 (93.10)^ 172.75 (78.12)* <0.0001 
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Figure 7 Optimal number of clusters for Hierarchical (Ward’s) algorithm 

Figure 8 Clusters from Hierarchical algorithm (𝑘=2) 
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Table 4 Clusters from Hierarchical algorithm (𝑘=2) 

Table 4 shows the descriptive characteristics of the derived clusters for Hierarchical (k=2). 

A t-test used to compare the means between two groups, showed that Cluster 2 compared to Cluster 

1 was characterized with higher mean levels of ln(CRP) (<0.0001) and ln(Leptin) (p<0.0001). 

Cluster 1 was distinguished from Cluster 2 with higher mean levels of ln(HGF) (p=0.0083), ln(IL-

8) (p<0.0001), ln(TNF- α) (p<0.0001), and MCP1 (p<0.0001).

Figure 9 Clusters from Hierarchical algorithm (𝑘=3) 

Biomarker Cluster 1 (n=117) Cluster 2 (n=50) p-value

lCRP 6.45 (1.09) 7.32 (1.09) <0.0001 

lHGF 6.76 (0.98) 6.83 (0.61) 0.0083 

lIL-8 0.86 (0.41) 0.47 (0.26) <0.0001 

lLeptin 8.86 (1.00) 9.88 (0.79) <0.0001 

lTNFα 1.22 (0.36) 0.90 (0.25) <0.0001 

MCP1 245.57 (107.57) 154.73 (59.93) <0.0001 
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Table 5 Descriptive characteristics of the clusters from Hierarchical algorithm (𝑘=3) 

^* indicate difference in means as determined by Tukey-Kramer test. 

Table 5 shows the descriptive characteristics of the derived clusters for Hierarchical (k=3). 

Tukey-Kramer test for post-hoc multiple pairwise comparisons of means between groups, showed 

that Cluster 2 compared to Cluster 1 and 3 had higher mean levels of ln(Leptin) (p<0.0001). Cluster 

1 compared to Cluster 2 and Cluster 3 was characterized with higher mean levels of ln(TNF- α) 

(p<0.0001), and MCP1 (p<0.0001). Cluster 3 compared to Cluster 1 was characterized with lower 

mean levels of ln(CRP) (p<0.0001), ln(HGF) (p=0.0005), ln(TNFα) (p<0.0001), and MCP1 

(p<0.0001). Cluster 3 compared to Cluster 2 was characterized with lower mean levels of ln(CRP) 

(p<0.0001), ln(Leptin) (p<0.0001), ln(TNFα) (p<0.0001), and MCP1 (p<0.0001). 

Fuzzy 𝑪-Means. Fuzzy 𝑐-means cluster analysis was performed on the 6 standardized and 

log-transformed biomarkers. Fuzzy clusters of 𝑐=2 and 𝑐=3 produced the best cluster plots as seen 

in Figure 10 and Figure 11. 

Biomarker Cluster 1 (n=28) Cluster 2 (n=50) Cluster 3 (n=89) p-value

lCRP 7.61 (1.26)^ 7.32 (1.10)* 6.08 (0.71)^* <0.0001 

lHGF 7.20 (0.66)^ 6.83 (0.61) 6.62 (1.02)^ 0.0083 

lIL8 0.96 (0.45)^ 0.47 (0.26)^* 0.83 (0.40)* <0.0001 

lLeptin 9.31 (0.82)^ 9.88 (0.79)^ 8.72 (1.01)^ <0.0001 

lTNFα 1.51 (0.29)^ 0.90 (0.25)^ 1.13 (0.33)^ <0.0001 

MCP1 333.42 (88.94)^ 154.73 (59.93)^ 217.93 (97.97)^ <0.0001 
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Figure 10 Clusters from Fuzzy 𝐶-Means algorithm (𝑐=2) 

Table 6 Clusters from Fuzzy 𝐶-Means algorithm (𝑐=2) 

Biomarker Cluster 1 (n=87) Cluster 2 (n=80) p-value

lCRP 6.45 (1.03) 7.16 (1.19) <0.0001 

lHGF 6.83 (0.92) 6.72 (0.87) 0.4602 

lIL-8 0.79 (0.42) 0.63 (0.37) 0.0090 

lLeptin 8.91 (0.99) 9.60 (0.85) <0.0001 

lTNFα 1.12 (0.33) 1.09 (0.38) 0.5860 

MCP1 232.07 (111.05) 198.10 (96.82) 0.0394 

Table 6 shows the descriptive characteristics of the derived clusters for Fuzzy 𝑐-means 

(𝑐=2). A t-test used to compare the means between two groups, showed that Cluster 2 compared 

to Cluster 1 was characterized with higher mean levels of ln(CRP) (<0.0001) and ln(Leptin) 

(p<0.0001). Cluster 1 was distinguished from Cluster2 with higher mean levels of ln(IL-8)  

(p=0.0090) and MCP1 (p=0.0394). There was no significant difference in mean levels of ln(HGF) 

and ln(TNFα) between Cluster 1 and Cluster 2. 
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Figure 11 Clusters from Fuzzy 𝐶-Means algorithm (𝑐=3) 

Table 7 Clusters from Fuzzy 𝐶-Means algorithm (𝑐=3) 

^* indicate difference in means as determined by Tukey-Kramer test. 

Table 7 shows the descriptive characteristics of the derived clusters for Fuzzy 𝑐-means 

(𝑐=3). Tukey-Kramer test for post-hoc multiple pairwise comparisons of means between groups, 

showed that Cluster 3 compared to Cluster 1 and 2 was characterized with higher mean levels of 

ln(HGF) (p=0.0393) and ln(IL-8)  (p=0.0781). Cluster 2 compared to Cluster 1 and Cluster 3 was 

characterized with higher mean levels of ln(CRP) (<0.0001) and ln(Leptin) (p<0.0001). Cluster 1 

compared to Cluster 3 was characterized with lower mean levels of ln(CRP) (p<0.0001) and 

ln(HGF) (p=0.0022). Cluster 1 compared to Cluster 2 was characterized with lower mean levels 

of ln(CRP) (p<0.0001) and ln(Leptin) (p<0.0001). 

Biomarker Cluster 1 (n=50) Cluster 2 (n=68) Cluster 3 (n=49) p-value

lCRP 6.46 (0.88)* 7.25 (1.22)^* 6.50 (1.14)^ <0.0001 

lHGF 6.57 (1.03)^ 6.74 (0.88) 7.04 (0.71)^ 0.0393 

lIL-8 0.76 (0.446) 0.63(0.39) 0.78 (0.35) 0.0781 

lLeptin 8.94 (0.78)* 9.66 (0.90)^* 8.96 (1.10)^ <0.0001 

lTNFα 1.10 (0.35) 1.09 (0.38) 1.13 (0.33) 0.8856 

MCP1 215.70 (114.68) 198.92 (98.60) 239.31 (102.55) 0.1318 
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Gaussian Mixture Model. Gaussian Mixture Model cluster analysis was performed on 

standardized log-transformed biomarkers. The optimal number of clusters was calculated using 

the “G”, the optimal number of mixture components, value from the “Mclust” function in R Studio. 

Figure 12 shows the 2 clusters constructed using the Gaussian Mixture Model. 

Figure 12 Clusters from Gaussian Mixture model algorithm (g=2) 

Table 8 Clusters from Gaussian Mixture model algorithm (g=2) 

Biomarker Cluster 1 (n=53) Cluster 2 (n=114) p-value

lCRP 7.73 6.23 <0.0001 

lHGF 6.42 6.95 0.0002 

lIL-8 0.50 0.86 <0.0001 

lLeptin 9.89 8.83 <0.0001 

lTNFα 1.02 1.17 0.0100 

MCP1 170 241 <0.0001 

Table 8 shows the descriptive characteristics of the derived clusters for Gaussian Mixture 

Model (g=2). A t-test used to compare the means between two groups, showed that Cluster 1 

compared to Cluster 2 was characterized with higher mean levels of ln(CRP) (<0.0001) and 

ln(Leptin) (p<0.0001). Cluster 2 was distinguished from Cluster 1 with higher mean levels of 

ln(HGF) (p=0.0002), ln(IL-8)  (p<0.0001), ln(TNF- α) (p<0.01), and MCP1 (p<0.0001). 
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Validation Indices. Four different indices were calculated to compare the quality of the 

clusters created by the 𝑘-means, Hierarchical, Fuzzy 𝑐-means, and Gaussian Mixture Model 

algorithms. The calculated indices were Dunn Index, Average Silhouette width, Calinski-Harabasz 

index, and the within-cluster sum of squares. A maximized Dunn index indicates a better clustering 

outcome. Hierarchical clustering algorithm had the highest Dunn index value, 0.1122, equally for 

𝑘=2 and 𝑘=3 clusters, followed by Gaussian mixture model, with a Dunn index value of 0.1054. 

The average silhouette width ranges from 0 to 1, where a value closer to 1 suggests the data are 

better clustered. Gaussian mixture model had the closest average silhouette width value equal to 

0.1757, followed by 𝑘-means (𝑘=3) with an average silhouette width equal to 0.1730. A higher 

Calinski-Harabasz index indicates better clustering performance. K-means (𝑘=2) had the highest 

Calinski-Harabasz index value, 37.166, followed by Fuzzy 𝑐-means (𝑐=2) with a Calinski-

Harabasz index value of 36.738 and 𝐾-means (𝑘=3) had a value of 36.658. The within-cluster sum 

of squares evaluated internal cohesion and external separation. A smaller value indicated more 

closely related objects within the cluster. 𝐾-means (𝑘=3) had the lowest within-cluster sum of 

squares of 688.295, followed by fuzzy 𝑐-means (𝑐=3) with a value of 718.508. A summary of all 

the validation indices is shown in Table 9. 

Table 9 Cluster validation indices 

Validation Index 
K-Means Hierarchical Fuzzy C-Means Gaussian 

k=2 k=3 k=2 k=3 c=2 c=3 g=2 

Dunn 0.0995 0.0969 0.1122 0.1122 0.1046 0.0970 0.1054 

Avg.silwidth 0.1695 0.1730 0.1425 0.1323 0.1687 0.1356 0.1757 

Calinski-Harabasz 37.166 36.658 30.5368 27.3551 36.738 31.669 31.8725 

Within.ss 812.898 688.295 840.456 746.851 814.622 718.508 834.754 
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Principal Component Analysis. Principal component analysis was performed on the 6 

different biomarkers. The principal axis method was used to extract the components, and this was 

followed by a varimax (orthogonal) rotation. Only the first two components had eigenvalues 

greater than 1.00; results of a scree plot also suggested that only the first two were meaningful. On 

Figure 13, the eigenvalue significantly drops after factor 2, meaning the remaining factors account 

for a smaller amount of the total variance, therefore, only the first two components were retained 

for rotation.   

Table 10 Rotated factor pattern and final community estimates from PCA 

Component 1 Component 2 h2 Biomarker 

4 80 0.65 CRP 

62 13 0.41 HGF 

67 -19 0.49 IL8 

-8 70 0.50 Leptin 

62 -16 0.41 MCP1 

69 10 0.49 TNFα 

Figure 13 PCA scree plot 
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Regression Analysis 

Multinomial Logistic. Table 11 shows the results of multinomial logistic regression 

analysis of factors associated with the 2 derived clusters from the 𝑘-means, Hierarchical Ward’s 

Method, Fuzzy 𝑐-means, and Gaussian Mixture Model algorithms. Cluster 1 was characterized as 

the baseline, or healthy cluster, for the analysis. 

For the 𝑘-Means algorithm, adolescents with higher levels of BMI and higher waist 

circumference measurements had significantly higher odds of membership in Cluster 1, which was 

characterized with higher levels of lCRP and lLeptin compared to Cluster 2 as seen in Table 2. For 

the Hierarchical Ward’s Method, adolescents with higher levels of BMI and higher waist 

circumference measurements had significantly higher odds of membership in Cluster 1, which was 

characterized with higher levels of lCRP and lLeptin compared to Cluster 2 as seen in Table 4.  

For Fuzzy 𝑐-means, adolescents with higher levels of BMI and higher waist circumference 

measurements had significantly higher odds of membership in Cluster 1, which was characterized 

with higher levels of lCRP and lLeptin compared to Cluster 2 as seen in Table 6. The Gaussian 

Mixture Model did not produce any significant results. 

Table 12 shows the results of multinomial logistic regression analysis of factors associated 

with the 3 derived clusters from the 𝑘-means, Hierarchical Ward’s Method, and Fuzzy 𝑐-means 

algorithms. Cluster 3 was characterized as the baseline, or healthy cluster, for the analysis.  

The 𝑘-Means algorithm demonstrated adolescents with higher levels of BMI had 

significantly higher odds of membership in Cluster 2, which was characterized with higher levels 

of lCRP and lLeptin compared to Cluster 3 as seen in Table 3. In addition, when BMI was adjusted 

for age and sex, higher levels of BMI had significantly higher odds of membership in Cluster 2, 
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which was characterized with higher levels of lCRP and lLeptin compared to Cluster 3. 

Adolescents with a higher waist circumference had significantly higher odds of membership in 

Cluster 2 compared to Cluster 3, including when adjusted for age and sex as well.  

Similar results can also be seen for the Fuzzy 𝑐-means algorithm. Adolescents with higher 

levels of BMI and higher waist circumference measurements had significantly higher odds of 

membership in Cluster 1, which was characterized with higher levels of lCRP and lLeptin 

compared to Cluster 3 as seen in Table 7. The same results were given when adjusting for age and 

sex. 

As for the results for Hierarchical Ward’s method, the results weren’t as clear as the 

previous algorithms. There wasn’t a definite distinction of higher odds membership between the 

Cluster 1 or Cluster 2 compared to Cluster 3 for higher levels of BMI. Adolescents with a higher 

waist circumference had significantly higher odds of membership in Cluster 2 compared to Cluster 

3, which was characterized with higher levels of lLeptin compared to Cluster 3 as seen in Table 5. 



37 

Table 11 Crude and Adjusted OR (95% CI) based on logistic regression for 2 derived clusters 

Clustering Method Variable 

Crude Adjusted** 

Cluster 1 vs. Cluster 2* Cluster 1 vs. Cluster 2* 

OR (95% CI) p-value OR (95% CI) p-value

K-Means
BMI 1.219 (1.134, 1.309) <0.0001 1.279 (1.172, 1.397) <0.0001 

Waist 1.057 (1.032, 1.082) <0.0001 1.070 (1.042, 1.099) <0.0001 

Hierarchical Ward's 
BMI 1.182 (1.109, 1.260) <0.0001 1.210 (1.125, 1.301) <0.0001 

Waist 1.052 (1.029, 1.076) <0.0001 1.062 (1.036, 1.089) <0.0001 

Fuzzy C-Means 
BMI 1.129 (1.067, 1.196) <0.0001 1.169 (1.095, 1.247) <0.0001 

Waist 1.043 (1.022, 1.065) <0.0001 1.057 (1.032, 1.082) <0.0001 

Gaussian Mixture Model 
BMI 1.006 (0.957, 1.058) 0.8043 1.009 (0.960, 1.061) 0.7201 

Waist 1.001 (0.982, 1.019) 0.9502 1.002 (0.983, 1.022) 0.8059 

* Cluster 2 was categorized as the healthy cluster.

** Adjusted for age and sex. 
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Table 12 Crude and Adjusted OR (95% CI) based on multinomial logistic regression for 3 derived clusters 

Clustering 
Method 

Variable 

Crude Adjusted** 

Cluster 1 vs. Cluster 3* Cluster 2 vs. Cluster 3* Cluster 1 vs. Cluster 3* Cluster 2 vs. Cluster 3* 

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

K-Means
BMI 1.029 (0.943, 1.122) 0.5239 1.304 (1.191, 1.427) <0.0001 

1.035 (0.945, 
1.134) 

0.4597 
1.379 (1.234, 

1.542) 
<0.0001 

Waist 1.012 (0.984, 1.042) 0.3923 1.096 (1.062, 1.131) <0.0001 
1.015 (0.985, 

1.045) 
0.3317 

1.119 (1.077, 
1.163) 

<0.0001 

Hierarchical 
Ward's 

BMI 1.094 (1.008, 1.189) 0.0324 1.218 (1.133, 1.311) <0.0001 
1.115 (1.020, 

1.218) 
0.0165 

1.259 (1.157, 
1.369) 

<0.0001 

Waist 1.007 (0.979, 1.036) 0.6130 1.054 (1.030, 1.080) <0.0001 
1.010 (0.981, 

1.041) 
0.5034 

1.065 (1.037, 
1.093) 

<0.0001 

Fuzzy 
C-Means

BMI 1.212 (1.118, 1.314) <0.0001 1.067 (0.981, 1.161) 0.1319 
1.278 (1.164, 

1.402) 
<0.0001 

1.082 (0.990, 
1.182) 

0.0838 

Waist 1.064 (1.035, 1.093) <0.0001 1.020 (0.992, 1.048) 0.1574 
1.082 (1.049, 

1.116) 
<0.0001 

1.022 (0.994, 
1.051) 

0.1237 

* Cluster 3 was categorized as the healthy cluster.

** Adjusted for age and sex.
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CHAPTER V 

DISCUSSION 

The purpose of this study was to evaluate and compare the performance of 5 clustering 

algorithms used on 6 inflammatory and obesity biomarkers. 𝐾-means, Hierarchical Ward’s 

Method, fuzzy 𝑐-means, and Gaussian Mixture Model clustering algorithms were compared using 

4 different validation indices and by their results in the multinomial logistic regression analysis. 

Although the Principal Component Analysis was not evaluated as the rest of the clustering 

algorithms, it was also analyzed to determine whether it corroborated the results from the other 

type of clustering algorithms.  

The k-means clustering algorithm, followed by Ward’s hierarchical agglomerative method, 

had the best overall performance based on the cluster validation indices used in this study. 

Specifically, the k-means algorithm yielded the highest Calinski-Harabasz and lowest within-

cluster sum of squares values, while the hierarchical method had the highest Dunn Index value. 

However, the statistical analysis showed the k-means clustering algorithm with 3 derived clusters 

had the highest performance compared to the other clustering methods. Out of the three clusters, 

one of the clusters has the highest levels of CRP and Leptin, another cluster had the highest levels 

of IL-8, TNFα, and MCP1, and the remaining cluster had the lowest levels for all 6 biomarkers. 

Logistic regression analysis showed that a higher BMI was associated with the cluster that had the 



40 

highest CRP and Leptin levels. Additionally, a higher waist circumference measurement was also 

associated with the cluster that had the highest CRP and Leptin levels. 

Similar findings regarding the positive correlation between CRP and Leptin levels and their 

association with obesity has also been established in recent studies. Pardina et al. (2010) 

investigated the levels of IGF-1, CRP, NO, Leptin, and Adiponectin and discovered that CRP and 

Leptin levels were significantly higher in the 34 morbidly obese patients compared to the 22 

normal-weight patients. The obese patients underwent a gastric bypass surgery and 6 months 

afterwards, CRP levels dropped 57%. Leptin levels did not reduce significantly after 6 months. 

However, 12 months after the procedure, CRP and Leptin levels in the morbidly obese patients 

dropped to the same level as the normal-weight patients. Additionally, Valle et al. (2005) studied 

the difference between CRP, Leptin, and Adiponectin levels in 51 obese children compared to 51 

non-obese children, ranging from the age of 6 to 9 years. The authors found that the obese children 

had significantly higher levels of CRP and Leptin, along with the development of low-grade 

inflammation. Furthermore, they concluded a positive correlation between log CRP and BMI, 

along with Leptin and BMI, comparable to our results. 

Moreover, researchers have investigated the relation between obesity and inflammation 

and whether there is any significant connection. Glowinska and Urban (2003) studied the levels of 

inflammatory and anti-inflammatory cytokines in 64 adolescents, ranging from the age of 12 and 

17, with atherosclerosis risk factors, such as obesity, diabetes, and hypertension. The authors found 

that higher levels of inflammatory cytokines, including IL-6 and TNFa, are positively correlated 

with BMI in obese adolescents and slim adolescents with hypertension. This demonstrates that 

there could be a presence of low-grade inflammation before reaching an obesity weight level. 
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Similar conclusions were found in the Utsal et al. (2012) were 13 biomarkers were studied in 76 

boys, ages 10 to 11 years old, half of which had a normal BMI and the rest had an overweight 

BMI. Researchers found significantly higher levels of 6 of the 13 biomarkers, including IL-6, IL-

8, MCp1, and CRP, in overweight boys compared to the boys with a normal BMI. These studies 

demonstrate that the presence of inflammation is still possible in young adults who are overweight 

although not obese. The evidence presented in these studies support the idea that although 

inflammation can certainly be present in individuals who are obese, those who are overweight may 

also exhibit mild inflammation. This distinction is significant because mild inflammation in an 

adolescent may be a potential risk factor for developing obesity in later years. 

It should be noted that clustering algorithms will always generate clusters, even if there is 

no meaningful underlying structure in the data set. Therefore, it is crucial to evaluate the resulting 

clusters to determine their actual statistical significance. While Ward's hierarchical agglomerative 

method and fuzzy c-means algorithms yielded clinically relevant clusters similar to k-means, they 

received poor evaluations from the cluster validation indices. On the contrary, the k-means 

algorithm not only yielded clinically relevant clusters, but also held the highest rank based on the 

validation indices. Prior research has also demonstrated k-means to be one of the most efficient 

clustering algorithms. Velmurugan (2014) compared the performance of k-Means and fuzzy c-

means clustering algorithms using a 12 telecommunication data sets and concluded k-Means was 

more favorable due to its faster computation time and evenly distributed clusters. However, Dubey 

et al, (2018) also compared the performance of k-means and FCM using only 699 records and 

found FCM had a 97% accuracy rate as opposed to 92% from the k-means method. This illustrates 

the impact the size of a data set can have on the outcomes of the clustering algorithms. Other 

common types of clustering algorithms include Hierarchical methods. Zhao & Karypis (2002) 
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analyzed 12 different datasets, ranging from 878 to 4069 data points, using partitional and 

hierarchical methods. They concluded partitioning methods were more accurate than hierarchical 

methods, especially when working with bigger data sets. Since Hierarchical clustering algorithms 

are computationally intensive, when dealing with larger data sets it is more prone to errors resulting 

in a higher inaccuracy (Gülagiz & Sahin, 2017). 

Furthermore, Ahmad & Dang (2015) evaluated partitional, hierarchical, and density-based 

clustering algorithms using different small and large data sets. The data sets ranged from 8 to 1554 

attributes and 100 to 2924 observations. The researchers concluded that the k-means clustering 

algorithm was the most efficient and effective due to its low computational complexity and ability 

to handle both small and relatively large datasets. Some of the limitations for the hierarchical and 

density-based algorithms discussed in their study were time complexity, sensitivity to outliers, and 

difficulty handling large data sets. In Kameshwaran & Malarvizhi (2014), the researchers noted 

that one of the advantages of hierarchical and density-based models is that a-priori specification, 

such as the number of clusters computed, is not necessary. As for the disadvantages, they noted 

one major issue with the hierarchical clustering algorithm is that it cannot revise or undo previously 

computed clusters, which may lead to inaccurate clusters if incorrect assumptions are made in the 

early computational stages.  

Additionally, in our study we conducted Principal Component Analysis, where 2 principal 

components were extracted. However, the two components did not account for more than 80% of 

the variance. The first principal component included CRP and Leptin, while the second principal 

component included HGF, IL-8, MCP1, and TNFα. Although the explained variance ratio was not 
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met, the analysis supported the variables found in each component were similar to the variables 

clustered together in 2 of the groups that were determined by the k-means algorithm. 

 Overall, the k-means clustering algorithm was found to produce the most accurate clusters 

for obesity-inflammatory biomarkers considering several factors. Cluster validation indices 

indicated that it performed favorably compared to the other algorithms based on half of the indices 

applied. Furthermore, the similarity of the resulting clusters to the principal components computed 

by PCA provided further evidence. Additionally, when the clusters were interpreted in a clinical 

context, they were found to be relevant and significant.  

While our study has yielded valuable insights, it is not without limitations. The sample size 

was relatively small, consisting of only 183 participants. After pre-processing the data for analysis, 

all subjects with missing data points were removed, leading to a reduced sample size of 163 

participants. Although this type of limitation could reduce the statistical power of the analysis, the 

clustering algorithms were still able to identify clusters of inflammatory biomarkers that are 

supported by other research studies. Another limitation was that the participants used for our 

sample were from a local adolescent population. Therefore, our findings cannot be extended to the 

general population. Additionally, the study utilized a cross-sectional design, which poses 

challenges in establishing causality or exploring the changes over time between variables. 

Although the outcomes indicate associations among variables in a particular instance, it is 

insufficient for determining causation. Overall, these limitations should be kept in mind when 

interpreting the study's findings and caution should be exercised when extending the conclusions 

to other populations. 
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Clustering algorithms have become increasingly popular with the rise of data due to their 

wide range of applications across various fields. While having various clustering techniques 

available, it can become challenging determining which method is best suited for a particular 

study. Abbas (2008) compares the performance of k-means, Hierarchical, Self-Organizing Maps, 

and Expectation Maximization clustering algorithms and concluded k-means and EM algorithms 

performed better than the Hierarchical algorithm overall. Their performance significantly increases 

when using big data, however, while using a small data set, the Hierarchical clustering algorithm 

outperformed the other methods. Data sets can vary in size or types and not all algorithms will be 

equally effective for all. Selecting an inappropriate algorithm can lead to inaccurate results or 

misinterpretation of the data. It is essential to carefully evaluate the characteristics of the data and 

the limitations of different clustering algorithms. 

While clustering algorithms can be effective in recognizing patterns in data, it ultimately 

is up to the researcher to correctly interpret the derived clusters accurately since the algorithms 

will produce clusters regardless of significance. This may become an issue since the interpretation 

of the results will depend on the researcher’s level of knowledge in the field. Misinterpretation of 

data can lead to incorrect conclusions and potentially harmful decisions. Therefore, it is important 

for researchers to continue improving clustering interpretability. 
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